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ABSTRACT OF THE DISSERTATION

Systematic Annealing Approach for Statistical Data Assimilation

by

Jingxin Ye

Doctor of Philosophy in Physics

University of California, San Diego, 2016

Professor Henry D. I. Abarbanel, Chair

Data assimilation transfers information from observations of a complex system

to physically-based system models. Typically, the observations are noisy, the model

has errors, and the initial state of the model is uncertain, so the data assimilation

is statistical. In statistical data assimilation one evaluates the conditional expected

values, conditioned on measurements, of interesting quantities on the path of a model

through observation and prediction windows. This often requires working with very

high dimensional integrals in discrete time descriptions of the observations and model

dynamics, which become function integrals in the continuous time limit. Two familiar

xi



methods for performing these integrals include (1) Monte Carlo calculations and (2)

variational approximations using the method of Laplace plus perturbative corrections

to the dominant contributions. We attend here to aspects of the Laplace approximation

and develop an annealing method for locating the variational path satisfying the Euler-

Lagrange equations that comprises the major contribution to the integrals. This

begins with the identification of the minimum action path starting with a situation

where the model dynamics is totally unresolved in state space, and the consistent

minimum of the variational problem is known. We then proceed to slowly increase

the model resolution, seeking to remain in the basin of the minimum action path,

until a path that gives the dominant contribution to the integral is identified. After

a discussion of some general issues, we give examples of the assimilation process for

some simple, instructive models from the geophysical literature. Then we explore a

slightly richer model of the same type with two distinct time scales. This is followed

by a model characterizing the biophysics of individual neurons.

xii



Chapter 1

Introduction

1.1 Data Assimilation

One type of data analysis procedure frequently encountered in a broad spectrum

of scientific field is to combine observations of physical systems to numerical models.

The numerical model may be created from empirical summary/assumptions, or the

ideas of some underlying mechanisms. In either case, the common problem is that

the number of observations of the actual system available for analysis is orders of

magnitude smaller than the number of values required to specify the model, including

the time-independent parameters in the model that cannot be determined from first

principle and also some time-dependent dynamical state variables that cannot be

measured directly. Data assimilation provides a systematic approach to transfer the

information from the observations to the quantitative, predictive model of the observed

physical system, which allows us to estimate of those unknown parameters and state

variables, and predict the future behavior of the physical system.

Data assimilation has been applied to varieties of fields including meteorol-

1
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ogy [30, 71], geochemistry [27], systems biology [69], and many others. Most of the

physical systems can be expressed or converted as a set of first-order differential

equations. The deterministic dynamics of the model state x is taken to satisfy

dxa(t)

dt
= Fa(x(t)); a = 1, 2, ..., D, (1.1)

in continuous time, where D is the dimensionality of the model state.

In each temporal observation window, it is usual that only a sparse set of the

D-dimensional model dynamical variables x(t) are measured. From L-dimensional

observations yl(tn); l = 1, 2, ..., L at times tn = {t0, t1, ..., tm = tf}, we must estimate

the full D-dimensional state xa(t); a = 1, 2, ..., D. Typically the measurements are

sparse, L� D; We must also estimate any unknown fixed parameters in the model or

in the measurement functions hl(x(t)), l = 1, 2, ..., L relating the model output x(t)

to the observations yl(t).

We usually discrete the dynamical model at times tn = {t0, t1, ..., tm = tf} and

write x(n) ≡ x(tn) interchangebly. And in discrete time Eq(1.1) becomes

xa(n+ 1) = fa(x(n)). (1.2)

One step mapping function fa may depend on t if the time discretization is not

uniform.

The use of measurements in the window [t0, tf ] to estimate Np time-independent

parameters p = {p1, p2, . . . , pNp} and unknown states completes the model [3] and

permits us to test or validate the model through predictions for t > tf where a selected

metric compares new observations y(t > tf ) to new model outputs h(x(t > tf )).
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1.2 Probabilistic Formulation of Data Assimilation

Since the measurements are always noisy and the model always has errors,

one requires a statistical description of the assimilation of information from the

observations into the model. Such a description is based on estimating the conditional

distribution of states and parameters P (x(tn)|Y(n)) conditioned on measurements up

to time tn : Y(n) = {y(t0), ...,y(tn−1),y(tn)} to predict the conditional distribution

for t > tf .

Our focus is not on the evaluation of P (x(tn)|Y(n)) itself, but on the quantities

of physical (or biological) interest: the conditional expected value of functions G(X)

along the path X = {x(t0), ...x(tm−1),x(tm),p} of the state through the observation

window and beyond. X is a (m+1)D+Np dimensional vector. Writing the conditional

probability distribution P (X|Y) = P (x(t0), ...,x(tm)|y(t0), ...,y(tm)), the expected

value of G(X) is

E[G(X)|Y] =

∫
dXG(X)P (X|Y)∫
dXP (X|Y)

. (1.3)

Important examples of G(X) include the mean or expected path, in which case

G(X) = X, moments about this expected path, and marginal distributions of, say,

xb(tk) in which case G(X) = δ(θ − xb(k)) giving P (θ).

1.2.1 Conditional Probability P (X|Y)

To evaluate the conditional expected value of functions G(X) with Eq.(A.2), we

would like to figure out P (X|Y), the probability distribution of the path X conditioned

on the measurements Y. Before we derive the exact P (X|Y) forumation, let us prepare

two ingredients needed to cook P (X|Y): the transition probability P (x(n)|x(n− 1))
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x(0)

y(0)

x(1)

y(1) . . .

. . . x(n)

y(n) . . .

. . . x(m)

y(m)

Figure 1.1: Dynamical model states and observations relationship diagram:
x(n) represents the state variable of the model, and y(n) represents the
obtained measurements at the discrete time t = tn.

from x(n− 1) to x(n), and the emission probability from the system state x(n) to the

measurement time series y(n).

After we represent the state of the model at each time step tn = {t0, t1, ..., tm =

tf} as D-dimensional vector x(n). The one-step mapping process from tn−1 to tn

is assumed to be Markovian. The time evolution represented by the conditional

probability P (x(n)|x(n− 1)) which only depends on x(n− 1) but not any previous

states before tn−1. When there is no model error existing in Eq.(1.2), the transition

from x(n− 1) to x(n) is deterministic, and P (x(n)|x(n− 1)) is reduced to be delta

function. The distribution will be broader than delta function as the model error ε

increases. One-step mapping function Eq.(1.2) becomes

xa(n+ 1) = fa(x(n)) + ε. (1.4)

When model error is Gaussian distributed, i.e. ε ∼ N (0,Σf ),

P (x(n)|x(n− 1)) = P (ε) ∝ exp
[
||x(n+ 1)− f(x(n))||Σ−1

f

]
. (1.5)

Another important component is the probabilistic relationship between the

model state and the measurement time series. Without losing generality, we can
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assume the measurement function y(n) = h(x(n)) is simplified as identity function,

y(n) = x(n) + η,

where η is measurement noise. The noise will be distributed as some known distribution

which is determined by many factors like experimental instruments. The emission

probability from x(n) to y(n) is also assumed be Markovian, which means the previous

states x(t < n) have no effects on the measurement y(n). For Gauassian case with

η ∼ N (0,Σm),

P (x(n)|y(n)) = P (η) ∝ exp
[
||y(n)− x(n)||Σ−1

m

]
. (1.6)

The formulation of P (X|Y) can be derived by employing its Markovian prop-

ertiy and the definition of conditional probability repeatedly. Applying the definition

of conditional probability P (A|B) = P (A,B)/P (B), we have

P (X|Y) =P (x(0), . . . ,x(m)|y(0), . . . ,y(m))

=
P (x(0), . . . ,x(m),y(0), . . . ,y(m))

P (y(0), . . . ,y(m))

=
P (x(0 : m),y(0 : m))

P (y(0 : m))
(1.7)

where the semicolon are used to simplify the time notations x(0 : m) = {x(0), . . . ,x(m)}.

Because y(0 : m) are measurements, the denominator term P (y(0 : m)) is known

to us and will be dropped as constant later. We will only forcus on the numera-

tor term P (x(0 : m),y(0 : m)). Firstly, let us calculate the recursive formula of
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P (x(0 : n),y(0 : n)) in terms of P (x(0 : n− 1),y(0 : n− 1)),

P (x(0 : n),y(0 : n)) =P (y(n)|x(0 : n),y(0 : n− 1)) P (x(0 : n),y(0 : n− 1))

=P (y(n)|x(0 : n),y(0 : n− 1)) P (x(n)|x(0 : n− 1),y(0 : n− 1))

× P (x(0 : n− 1),y(0 : n− 1))

where the definition of conditional probability P (A,B) = P (A|B)P (B) is used. Since

y(n), x(n) only depend on x(n) and x(n− 1), respectively. By Markovian propertiy,

the two terms can be simplified as

P (y(n)|x(0 : n),y(0 : n− 1)) = P (y(n)|x(n)),

P (x(n)|x(0 : n− 1),y(0 : n− 1)) = P (x(n)|x(n− 1)).

Therefore, we have

P (x(0 : n),y(0 : n)) =P (y(n)|x(n)) P (x(n)|x(n− 1)) P (x(0 : n− 1),y(0 : n− 1)).

(1.8)

With P (x(0),y(0)) = P (y(0)|x(0))P (x(0)), by induction, P (x(0 : m),y(0 : m)) can

be written as

P (x(0 : m),y(0 : m)) =
m∏
n=0

P (y(n)|x(n))
m∏
n=1

P (x(n)|x(n− 1)) P (x(0)). (1.9)

The conditional probability Eq.(1.7) can expressed as

P (X|Y) =

∏m
n=0 P (y(n)|x(n))

∏m
n=1 P (x(n)|x(n− 1)) P (x(0))

P (y(0 : m))
. (1.10)
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1.2.2 Data Assimilation Action

This expression for P (X|Y) ∝ exp(−A0) defines the “action” A0(X). We do

not further explicitly show the dependence of the action on the measurements. In

discrete time this is an integral of dimension D times the number of discrete time

steps in the observation plus prediction windows. In continuous time it is a functional

path integral [36, 103].

The action A0(X) has the exact representation [3] in discrete time

A0(X) =−
m−1∑
n=0

ln[P (x(n+ 1)|x(n))]− ln[P (x(0))]

−
m∑
n=0

ln [P (y(n)|x(n)]

+ terms independent of X.

P (x(n+ 1)|x(n)) is the transition probability for the state x(n) at time tn to arrive

at the state x(n+ 1) at time tn+1, and P (x(0)) is the distribution of the state at time

t0 when observations commence. The dynamics moving the model state x(n) through

time resides in P (x(n+ 1)|x(n)).

The discretization in time of Eq.(1.1) can be explicit or implicit. Either choice

defines an action A0(X) as a function of the components of X. Throughout this thesis,

the trapezoidal rule is used to discretize the model equations,

xa(n+ 1) = xa(n) +
∆t

2
[Fa(x(n+ 1)) + Fa(x(n))]. (1.11)

The model equations could then be written as a function of both x(n) and x(n+ 1):

ga(x(n),x(n + 1),p) = 0. When there is no model error, P (x(n + 1)|x(n)) =
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δD+NP (g(x(n),x(n+ 1),p)).

Once a model has been selected by physical considerations, and choices are

made for the distributions of errors in the measurements and of errors in the model,

the central challenge of statistical data assimilation is the estimation of the path

integral Eq. (A.2).

One approach is to use Monte Carlo methods for evaluating the high dimensional

integral [81, 37, 65, 13].

In this thesis we investigate results associated with the estimation of the

integral Eq. (A.2) using Laplace’s method [66]. This is a variational calculation

seeking extremum paths Xq of the action, where the Jacobian

∂A0(X)

∂X

∣∣∣∣
X=Xq

= 0, q = 0, 1, .... , (1.12a)

and the Hessian

∂2A0(X)

∂X2

∣∣∣∣
X=Xq

is positive definite. (1.12b)

Laplace’s method also allows the evaluation of corrections to Eq. (A.2) using any

of the Xq as the leading approximation for the expected value. Furthermore, when f(x)

is not linear in the model state variables, there may be multiple solutions to Eq. (1.12),

and we must select which among them provide the most important contributions to

the integral. Finding the extremum path is widely known as 4DVar [30, 71] in the

geophysical literature.

Paths with distinct values of A0(X) lead to exponentially different contributions
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to the expected value path integral Eq. (A.2). The path which gives the smallest value

of the action,

A0(X0) = min
Xq

A0(Xq), (1.13)

X0 is the conditional mode of the distribution and also the maximum likelihood

estimate. When the action level A0(X
0) is much less than any other action level

coming from paths Xq 6=0, it exponentially dominates the integral.

1.3 Challenge of Action Minimization

We now discuss the stability issues associated with minimizing the action A0

when the dynamical model Eq.(1.2) is enforced. In the case, there is no model error,

once the initial condition x(0) of the system is determined, other state variables can

be obtained by

x(n) = fn[x(0)].

The action A0(X) can be rewritten as function of the initial condition x(0). The

minimization problem turns to be

minimize
x(0)

A0(x(0)) =
m∑
n=0

L∑
l=1

[xl(n)− yl(n)]2

subject to x(n) = f [x(n− 1)], n = 1, . . . ,m.
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The necessary condition for the minimum of A0(x(0)) is

∂A0(x(0))

∂x(0)
= 0,

∂A0(x(0))

∂p
= 0.

In the derivatives above, it contains ∂x(n)/∂x(0) satisfying

∂x(n)

∂x(0)
=
∂f(x(n− 1))

∂x(n− 1)

∂x(n)

∂x(0)
=
∂f(x(n− 1))

∂x(n− 1)

∂f(x(n− 2))

∂x(n− 2)
. . .

∂f(x(0))

∂x(0)

Let Df(x(n)) denote the Jacobian matrix ∂f(x(n− 1))/∂x(n− 1). In many natural

systems, lots of nonlinear dynamical systems that are highly sensitive to initial

conditions are referred as chaotic systems, such as weather and climate. In chaotic

systems, the Jacobian matrix Df(x(n)) has its largest eigenvalue larger than 1, which

leads the value of ∂x(n)/∂x(0) increasing exponentially as function of n. This can

give rise to the instability of minimization manifold quite irregular.(Fig.5.3)

In addition to the instability caused by chaos, as we will show in the latter

chapters, the sensitivity to parameters p and the dynamics of different scales also

causes similar irregular behavior for the minimization problem.

Therefore, the search for minima of action A0(X
0) in nonlinear problems

requires some care. In the core of this thesis, we will show how to use annealing

approach to search for the maximum likelihood estimate X0.

In Chapter 2, our goal is to expand on the details of an annealing method to

locate the saddle paths with the smallest action. A simple dynamical model Lorenz96

D = 5 is employed to illustrate the details of the annealing method. Additionally,

in Chapter 3 we use the annealing method to explore several interesting nonlinear
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dynamical models. These include Lorenz96 model in higher dimensionally D = 20,

a model with combined “fast” and “slow” time scales of the dynamics as well as a

standard Hodgkin-Huxley model of an isolated neuron. The latter is a prelude for

more complex, biophysically realistic neuron models both in isolation and within

functional networks with biophysical connections among them. No model is perfect,

it is meaningful to study the action levels for wrong models. In the last section

of Chapter 3, models with totally wrong dynamics, missing terms and incorrect

coefficients are investigated.

Further, we estimate the corrections to the approximation of retaining only X0

as dominating the integral Eq. (1.12) in Chapter 4. Since the correction may fail in

non-Gaussian model error case, the effects of distribution tail on the action levels are

discussed. We also compare this work with the QSVA method [78], which seeks to

solve a related problem by manipulating the length of the assimilation window.

Chapter 5 demonstrates the application of data assimilation methods to a

biophysical neuron model with detailed calcium dynamics.



Chapter 2

Annealing Method

In this chapter, we give the formulation of the minimization problem in both

discrete time and continuous time, and then present the details of our annealing

approach. Finally the method is illustrated using Lorenz96 D = 5 model.

2.1 Formulation of Action A0 in Discrete Time and

in Continuous Time

2.1.1 Discrete Time

To simplify the discussion we make two familiar assumptions about how the

measurement errors and the model errors enter the expression for the action A0(X):

the errors in each are taken to be distributed as a Gaussian,

• the measurement error enters with an inverse covariance matrix Rm(l, k, t) =

Rm(l, t)δlk, k, l = 1, 2, ..., L,

• and the model error enters with an inverse covariance matrix Rf (a, b) = Rf (a)δab,

12
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a, b = 1, 2, ..., D.

As the dynamics x(n + 1) = f(x(n)) is nonlinear, the overall path integral is not

Gaussian with this choice for the error distributions.

In the presence of Gaussian additive model error, the dynamics satisfies the

D-dimensional stochastic discrete time map

xa(n+ 1) = fa(x(n)) +Rf (a)−1/2ηa(n), (2.1)

and each component ηa(n) is Gaussian distributed as N (0, 1). Here we assume

there is no cross-covariance between different state variables, and the case with

cross-covariances needs further study. We also assume the measurement function

hl(x(t)) = xl(tn), n = 0, 1, . . . ,m.

The Gaussian error action A0(X) in discrete time takes the form

A0(X) =
m∑
n=0

L∑
l=1

Rm(l, n)

2
[xl(n)− yl(n)]2 − ln[P (x(0))]

+
m−1∑
n=0

D∑
a=1

Rf (a)

2
[xa(n+ 1)− fa(x(n))]2. (2.2)

The distribution of initial states P (x(0)) in the action is often assumed to

be uniformly distributed or Gaussian distributed. For the uniform distribution case

− ln[P (x(0)] is a constant and cancels between the numerator and denominator of

expected values Eq. (A.2). When P (x(0)) is Gaussian, suppose the variation of x(0)

is given about some base state xbase, so − ln[P (x(0)] = (x(0)− xbase)
2Rbase/2. This

has the form of the measurement term evaluated at n = 0. This expression can be

incorporated into the term with coefficient Rm in the action.
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We no longer display − ln[P (x(0))] in the following discussion. The resulting

action Eq. (A.1) we call the Gaussian error action. Many other actions may be of

physical interest, and they depend in detail on our representation of errors in the

measurements and errors in the model.

2.1.2 Continuous Time

Although all calculations are performed in discrete time, we use continuous

time to gather insight into the saddle paths for the action, and return to discrete

time with the lessons in mind. Let time become continuous between the initiation of

observations at time t0 and the completion of measurements at time tf , we identify

the action in continuous time as

A0(x(t)) =

∫ tf

t0

dtL(x(t), ẋ(t), t) (2.3)

where the Lagrangian L(x(t), ẋ(t), t), also called the Onsager-Machlup functional [77],

is

L(x(t), ẋ(t), t) =
L∑
l=1

Rm(l, t)

2
[xl(t)− yl(t)]2 +

D∑
a=1

Rf (a)

2
[ẋa(t)− Fa(x(t))]2.

Rm(l, t) is nonzero only near the observations times t ≈ tn.

The transition from discrete to continuous time has a subtlety which we note

here, then bypass as we will return to discrete time for all of our examples and for

any applications. As carefully explained in the book of Zinn-Justin [103] and the

papers [52, 45] there is a Jacobian involved in the transformation from discrete to

continuous time which affects the action through a term involving the divergence of
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the vector field F(x). It adds the term

Θ(0)

∫ tf

t0

dt∇x · F(x(t)), (2.4)

to the action, where Θ(x) is the Heaviside function. The value of the quantity

Θ(0) depends on the stochastic discretization scheme we choose. Θ(0) = 0, 1/2

corresponding to the Itô and the Stratonovich scheme, respectively. As noted, we work

with the discrete time version of the path, so we do not further consider this term.

2.2 Laplace’s Approximation: Saddle Paths of the

Action A0(x(t))

2.2.1 General Results in Continuous Time

In continuous time the expected values are written as [36, 103]

E[G(x(t)|Y] =

∫
Dx(t)G(x(t)) exp[−A0(x(t))]∫
Dx(t) exp[−A0(x(t))]

, (2.5)

following Eq. (A.2). There are no restrictions on the variation of the endpoints in

this expected value. This is seen directly in the discrete time formulation where we

integrate G(X) over all locations on the path including the initial point x(t0) and the

ending point x(tm).

The expansion of the action Eq. (2.3) about saddle paths xq(t); q = 1, 2, . . . ,

satisfying

δA0(x(t))

δx(t)

∣∣∣∣
x(t)=xq(t)

= 0, (2.6)
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at x(t) = xq(t) yields, writing δx(t) = x(t)− xq(t),

A0(x(t)) =A0(xq(t)) + δxa(t)
∂L(x, ẋ, t)

∂ẋa

∣∣∣∣tf
t0

+

∫ tf

t0

dt δxa(t)

(
∂L(x, ẋ, t)

∂xa
− d

dt

∂L(x, ẋ, t)

∂ẋa

)∣∣∣∣
x(t)=xq(t)

+
1

2

∫ tf

t0

dt δxa(t)Mab(x
q(t), ẋq(t), t, d/dt)δxb(t) + · · · . (2.7)

The first variation of the action must be zero as a necessary condition for a

possible minimum [68]. The integration by parts term leading to the Euler-Lagrange

equations requires at the endpoints that

δxa(t)
∂L(xq(t), ẋq(t), t)

∂ẋqa(t)

∣∣∣∣tf
t0

= 0, (2.8)

which leads to, as δx(t) is not zero,

∂L(xq(t), ẋq(t), t)

∂ẋqa(t)

∣∣∣∣tf
t0

= 0, (2.9)

and are boundary conditions on the saddle path xq(t). These are known as “natural

boundary conditions” [55, 62, 35, 68]. This is a necessary condition for the minimum

path.

The second variation of the action contains the term in (δx(t), δẋ(t)) space

δxa(t)
∂2L(x(t), ẋ(t), t)

∂xa(t) ∂xb(t)
δxb(t) + 2δxa(t)

∂2L(x(t), ẋ(t), t)

∂xa(t) ∂ẋb
(t)δẋb(t)

+ δẋa(t)
∂2L(x(t), ẋ(t), t)

∂ẋa(t) ∂ẋb(t)
δẋb(t). (2.10)

This is familiar from many books on the calculus of variations [55, 62, 35, 68]. Sufficient
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conditions for a minimum of the action are discussed in [55, 62, 35].

The Euler-Lagrange equations determining xq(t) are

Rf (a)

{
d

dt
[ẋa(t)− Fa(x(t))] + [ẋb(t)− Fb(x(t))]

∂Fb(x(t))

∂xa

}
= Rm(l, t)[xl(t)− yl(t)]δal.

(2.11)

Since the variations of the locations in state space δx(tf) and δx(t0) are

unconstrained and independent when we are evaluating the expected value of a

function on the path G(X), the Euler-Lagrange equation is a second order differential

equation in time with endpoint conditions

∂L(x(t), ẋ(t), t)

∂ẋa
= Rf (a)[ẋa(t)− Fa(x(t))] = 0, (2.12)

at t = t0, tf .

These Euler-Lagrange equations have been considered by Bröcker [15, 17, 16]

as well as being considered over some years in the work of Bennett [7, 21]. We will

discuss the relation of our work with the work by Bröcker below.

2.2.2 Boundary Conditions on the Euler-Lagrange Equations

In most treatments of variational problems in data assimilation, one addresses a

slightly different set of boundary conditions for the Euler-Lagrange equations defining

the saddle path. That is because a slightly different question is asked.

To see the difference we return to discrete time. We are concerned with the

expected value of a function on the path which includes integration over both the

final point in state space x(tf ) as well as the initial point in state space x(t0). We can
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rewrite the numerator of the expected value of a function on the path X = {X′,x(0)}

as ∫
dX′G(X′,x(0))K(X; tf ; x(0), t0) dDx(0). (2.13)

If we hold off in performing the integral over the initial state at the fixed

time t0, then the Laplace approximation which includes a variational principle for

the quantity K(X; tf ; x(0), t0) has natural boundary conditions associated with the

end point x(tf ) which is integrated over and not fixed, and it has the restriction that

δx(t0) = 0 as x(0) is not integrated over in the variational principle.

This leads to the common statement that the relevant path has a fixed initial

point and a free end point, changing the two point boundary value problem to be

addressed to the one stated in the literature [21]. Each choice of boundary conditions

is correct for the question posed.

2.2.3 Finding Saddle Paths

In continuous time, the saddle path condition is the two point boundary value

problem we have described in Eq. (2.11) and Eq. (2.12). There are many discussions

of how to numerically solve these [6, 54, 90], and in a sense we now use the collocation

solution method discussed in these references by our return to the discrete time

problem.

If we begin with the Gaussian error action

A0(X) =
m∑
n=0

L∑
l=1

Rm(l, n)

2
[xl(n)− yl(n)]2 +

m−1∑
n=0

D∑
a=1

Rf (a)

2
[xa(n+ 1)− fa(x(n))]2,

(2.14)

finding saddle paths, where ∂A0(X)/∂X = 0, of this nonlinear function at sizable Rf
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entails a search in a high dimensional space in which the saddle paths Xq are located

in narrow, possibly deep, valleys not easily found by an arbitrary selection of an initial

path for a numerical optimization routine [78, 81].

We have investigated direct searches of saddle paths for this form of the

action using a quasi-Newton BFGS method [80] and the public domain optimization

program [95] called IPOPT. For the BFGS method, the analytical form of the first-

order derivative for the action Eq. (2.14) is provided to optimization routines; When

IPOPT is used, in addition to the analytical gradient, the Hessian matrix is also

presented in analytical form to IPOPT, both of which are obtained by using a Python

script we developed [100]. In each case the paths found via a direct search from a

more or less arbitrary initial selection were not correct. The metric for ‘correct’ is

whether the estimated parameters for the model and the full state of the model at

the end of an estimation window, x(tf ), give good predictions for t > tf . We will see

some aspects of this as we begin to explore examples.

2.2.4 First-order Optimality Conditions of Continuous and

Discrete Action

The Euler-Lagrangian equation Eq.(2.11) and the boundary conditions Eq.(2.12)

can be explicitly written as

D∑
a=1

Rf (a)
∂Fa(t)

∂xb
[−ẋa(t) + Fa(t)]−Rf (b)ẍb(t) +Rf (b)

D∑
a=1

∂Fb(t)

∂xa
ẋa(t) = 0 (2.15)

Rf (b)[ẋb(t = 0)− Fb(x(t = 0))] = Rf (b)[ẋb(t = tm)− Fb(x(t = tfm))] = 0 (2.16)
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Actually, the first-order optimality conditions of action in discrete action is the same

as the Euler-Lagrangian equation in continuous time. We will start from the first-order

optimality conditions of action in discrete action and recover Eq.(2.15) and Eq.(2.16).

In the discretized case, the trapezoidal integration scheme is used for center

points and the forward Euler scheme at t = 0 and the backward Euler scheme at

t = m∆t. The measurement error terms are easy to deal with since they are quadratic

in x. We omit the measurement terms in the following discussion.

Center Points The derivative of A0 in respect to xb(n) for 0 < n < m,

0 =
∂

∂xb(n)

m−1∑
n=0

D∑
a=1

Rf (a)

2
[xa(n+ 1)− fa(x(n))]2.

Keeping the terms that contains xb(n) only,

0 =
D∑
a=1

Rf (a)[xa(n)− fa(x(n− 1))]

[
δab −

∂fa(n− 1)

∂xb(n)

]

+
D∑
a=1

Rf (a)[xa(n+ 1)− fa(x(n))]

[
−∂fa(n)

∂xb(n)

]
(2.17)

Under the trapezoidal integration rule, fa(n+1) = xa(n)+ ∆t
2

[Fa(x(n+1))+Fa(x(n))],

and the two elementary derivatives in Eq.(2.17) are

∂fa(n− 1)

∂xb(n)
=

∆t

2

∂Fa(x(n))

∂xb(n)

∂fa(n)

∂xb(n)
= δab +

∆t

2

∂Fa(x(n))

∂xb(n)
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Substitute them into Eq.(2.17), and divide ∆t2 on both sides:

0 =−Rf (b)
xb(n+ 1)− 2xb(n) + xb(n− 1)

∆t2
+Rf (b)

Fb(x(n+ 1))− Fb(x(n− 1))

2∆t

−
D∑
a=1

Rf (a)

[
xa(n+ 1)− xa(n− 1)

2∆t
− Fa(x(n))

]
∂Fa(n)

∂xb(n)

+
D∑
a=1

Rf (a)
1

4
(Fa(x(n+ 1))− 2Fa(x(n)) + Fa(x(n− 1)))

∂Fa(n)

∂xb(n)
(2.18)

It is easy to recover Eq.(2.15) by replacing those finite difference formula with the

corresponding derivatives.

Boundary Points

0 =
∂A0

∂xb(0)
=

D∑
a=1

Rf (a)[xa(1)− fa(x(0))]

[
−δab −

∆t

2

∂Fa(0)

∂xb(0)

]

0 =
∂A0

∂xb(m)
=

D∑
a=1

Rf (a)[xa(m)− fa(x(m− 1))]

[
δab −

∆t

2

∂Fa(m)

∂xb(m)

]

Divide ∆t on both sides:

0 =
D∑
a=1

Rf (a)

[
xa(1)− xa(0)

∆t
− Fa(x(0)) +

1

2
(Fa(x(0))− Fa(x(1)))

]
×
[
−δab −

∆t

2

∂Fa(0)

∂xb(0)

]
0 =

D∑
a=1

Rf (a)

[
xa(m)− xa(m− 1)

∆t
− Fa(x(m)) +

1

2
(Fa(x(m))− Fa(x(m− 1)))

]
×
[
δab −

∆t

2

∂Fa(m)

∂xb(m)

]

Ignore the second-order terms, it is the boundary condition Eq.(2.16).

Therefore, in the limit that ∆t → 0, we have shown the equivalence of the
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first-order optimality conditions between the continuous and discrete cases.

2.3 Annealing Method

We have proposed a strategy for dealing with this ‘submersion’ of the paths

with smallest action. The idea is that when the model errors are forced, by large Rf , to

be small, the nonlinearity of the vector field f(x) manifests itself at the smallest scales

in the phase space of the paths X where we are searching. This causes complicated

fine structure seen as multiple local minima [3] in the action, especially when the

number of measurements L is too small.

As one reduces Rf , the loss of resolution of the flow of the nonlinear dynam-

ics becomes large, and there is an averaging effect over the multiple local minima

encountered. In fact at Rf = 0, there is no influence of the nonlinear dynamics of

x(n+ 1) = f(x(n)) at all, and the action we are working with then is

A0(X) =
m∑
n=0

L∑
l=1

Rm(l, n)

2
[xl(n)− yl(n)]2. (2.19)

The minimum of this consists of xl(t) = yl(t) for the observed states with the

unobserved states completely unspecified. The huge degeneracy of this minimum

action is broken as Rf increases from zero, and we propose to adiabatically track the

Rf = 0 minimum, which is also the global minimum for Rf = 0, by slowly raising the

magnitude of Rf from zero.

We call this tracking of extremum path in Rf “annealing” for short as it treats

the importance of the deterministic dynamics in a steady, slowly growing manner,

as if small Rf corresponds to a high effective temperature in which the nonlinear
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interaction among “particles” located at x(t) is initially in a harmonic well centered

near the observations y(t). As we increase Rf it is as if we cool down a ‘temperature’

proportional to R−1
f and impose structure on the trajectories x(t). Note our annealing

method is totally different from the well-known simulated annealing method [56].

Our ‘annealing schedule’ is written as

Rf = Rf0α
β (2.20)

with α > 1 and β ≥ 0. We proceed in the following manner

• Start at a small value of Rf = Rf0. We take as an initial path for our

optimization algorithm the solution at Rf = 0 just described with xl(t) = yl(t)

and the other elements of the path drawn from a uniform random distribution

covering the dynamical range of their variation. In practice we have selected

Rf0 to be between 0.001 and 0.01.

We have also performed this initial stage of the annealing calculation starting

at Rf = Rf0 with an initial set of N0 random choices for the components of X.

Since the influence of the dynamics is so small at Rf0, the paths quickly become

those suggested in the previous paragraph. No difference in the subsequent

calculations have been seen by us.

• Using a selected optimization procedure, we then utilize N0 choices for initial

paths Xq
0; q = 1, 2, ..., N0 with xl(t) = yl(t) and randomly chosen unobserved

state variables. Fixed parameters in the model or in an observation function

h(x) are also randomly selected over a finite range. The optimization procedure

takes these initial paths and, with Rf = Rf0 (that is β = 0), results in N0 new



24

paths which we call Xq
1; q = 1, 2, ..., N0. We then evaluate the action A0(X

q
1)

on each of these N0 paths. At this early stage we usually find the infinitely

degenerate action values for the initial path Xq
0 have begun to split.

• We proceed by raising the value of Rf from Rf0 to Rf0α, that is β = 1, and

use the N0 paths Xq
1 as initial paths for this application of the optimization

procedure. This results in a new set of N0 paths Xq
2.

• The paths Xq
2 are now used as N0 initial paths for Rf = Rf0α

2, that is β = 2.

This results in a set of N0 paths resulting from our optimization procedure which

we call Xq
3.

• We continue this annealing schedule until by using the N0 paths Xq
J−1 to initialize

the optimization procedure at β = J−1 we arrive at a set of N0 paths Xq
J where

we terminate the schedule.

When the annealing schedule is completed, we often encounter in our plots

of A0(X
q) versus logα[Rf ] a region for β large enough where some A0(X

q) becomes

independent of Rf . The lowest action level that splits off in action level value from

the action on other paths, will, when the number of measurements L is large enough,

provide the dominant contribution to 〈G(X)〉.

Independence of A0(Xq) from Rf indicates that the model output has matched

the deterministic dynamics x(n+ 1) = f(x(n)) quite well. The remaining term in the

action is then

A0(X) =
m∑
n=0

L∑
l=1

Rm(l, n)

2
[xl(n)− yl(n)]2. (2.21)

As the values [yl(n)−xl(n)] are distributed as N (0, σ2) by our choice, the measurement

error term
∑m

n=0

∑L
l=1[(xl(n)−yl(n))/σ]2/2 has a χ2-distribution with L(m+1) degrees



25

of freedom [32]. The mean and RMS variation of this distribution over different choices

of noise waveforms are

µ =
1

2
(m+ 1)L (2.22)

σ =

√
(m+ 1)L

2
(2.23)

This level is shown in our action value versus Rf plots by a heavy horizontal line.

When the action levels as a function of Rf reach this expected χ2 lower limit, we have

a path X0 on which the model behavior is consistent with the data within the noise

level of the data.

In the examples we will discuss below, we have selected N0 = 10 ∼ 100 and

taken 20 ∼ 50 annealing steps as a stopping point. We have also used α = 2 on the

whole, but also selected α = 1.5 when we chose to take smaller annealing steps in Rf

within our schedule.

2.4 An Example Illustrating Annealing; Lorenz96

Model with D = 5

We begin by examining the dynamical equations introduced by Lorenz [73]:

dxa(t)

dt
= xa−1(t)(xa+1(t)− xa−2(t))− xa(t) + ν (2.24)

and a = 1, 2, ..., D; x−1(t) = xD−1(t); x0(t) = xD(t); xD+1(t) = x1(t). ν is a fixed

parameter which we take to be in the range 8.0 to 8.2 where the solutions to the

dynamical equations are chaotic [58]. The equations for the states xa(t); a = 1, 2, ..., D
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are meant to describe ‘stations’ on a periodic spatial lattice.

We perform a twin experiment wherein we generate D time series using a

standard adaptive fourth order Runge-Kutta algorithm with a time step ∆t = 0.025

with no model error. To these we add Gaussian noise with mean zero and variance

σ2 = 0.25 to each time series xa(t). These noisy versions of our model time series

constitute our ‘data. Our choice of σ2 means a signal to noise ratio about 60 dB. We

selected ν = 8.17 in these calculations.

The measurement window is from t0 = 0 to tf = 4.0, so m = 160. L

‘measurements’ are made at each time step; these are the y(tn). The measurement

error matrix Rm is taken to have diagonal elements at each measurement time tn and

is zero at other times. Its magnitude is taken as Rm = 1/σ2 = 4. The model error

matrix is also taken as diagonal, with elements along the diagonal Rf = Rf02β, and

we take β = 0, 1, 2, . . . ,. Rf0 was chosen 0.01 for these calculations.

We begin with one measurement y1(n) among the five possible states, i.e. L = 1,

and in Fig. 2.1 we display the log10 of the action A0(X) evaluated at each of the

N0 = 100 saddle paths for Rf = Rf02
β with Rf0 = 0.01 We begin with β = 0 and

increase it to β = 22.

The BFGS quasi-Newton method [80] was used as our search algorithm in this

example. The optimization stopping conditions for scaled gradient norm, scaled stepsize

norm and function change are all 1×10−8 and they are fixed throughout the annealing

procedure. Low tolerance (larger than 1 × 10−6) may cause incorrect results or no

convergence. We provided the gradient of A0(X) in an analytical form to the algorithm.

We initialized the search at Rf = Rf0 with N0 initial paths X = {x(0),x(1), ...,x(m)}

as described above. At Rf = Rf0 we selected the unobserved states at each time step
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Figure 2.1: (a): Action levels as a function of log2[Rf/Rf0] = β for the
Lorenz96 model, D = 5, L = 1, Rf0 = 0.01. As Rf increases, the model error
is decreased. The horizontal line shows the expected value of the measurement
error terms in the action. The measurement error term is distributed as χ2

with this expected value. (b): Zooming in on the Left Panel for large β
showing close action levels. The resulting saddle paths all have action levels
above the χ2 expected value for the measurement error action alone. This is
an indication that L = 1 is not sufficient for identifying a good path for the
Lorenz96 D = 5 model.

from a uniform distribution in the interval [-10,10]. This is approximately the dynamic

range of state variables in the Lorenz96 model. At fixed Rm each search procedure as

we slowly increase Rf yields N0 saddle paths Xq and associated action levels A0(Xq).

As Rf increases many initial paths may lead to the same action level.

As one can see in Fig. 2.1 the degenerate action levels at Rf = 0 are split at

β = 0 and then rise until, around β = 12;Rf ≈ 100, two levels split off from the rest

and become rather independent of Rf . There are still two quite close levels. Also

shown is the expected value of the χ2-distributed measurement error at 80.5. The

distance of the action levels of the paths giving A0(X) near values about 150 tell us
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Figure 2.2: (a): Action Levels as a function of Rf for the Lorenz96 model,
D = 5, L = 2, Rf0 = 0.01. We used y1(t) and y3(t) as data in the action. (b):
Action Levels as a function of Rf for the Lorenz96 model, D = 5, L = 3, Rf0

= 0.01. We used y1(t), y3(t), and y5(t) as data in the action.

that these paths are unlikely to give consistency of the model with the data. Using

either of these two paths to give us the full model states at the end of the estimation

window tf = 4 to predict beyond tf gives quite inaccurate predictions.

Next we present L = 2 measurements, y1(n) and y3(n), to the model and again

evaluate saddle paths as we vary β. Each path has (m + 1)D = 805 components,

so the annealing problem is a search for saddle paths of the action Eq. (A.1) in an

805-dimensional space. We take the distribution of the three unobserved states at t0,

the beginning of the observation window, to be uniform over the dynamical range of

x(t0).

At β = 0 the degenerate action levels from Rf = 0 are split slightly. We follow

these to larger values of Rf . (Fig. 2.2) At low Rf the resolution in path space is

very coarse, and our search is successful for finding low lying action levels. Fig. 2.2
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shows quite clearly that there are many paths with similar action level until we reach

β ≈ 12, and after that only one remains independent of Rf as the other action levels

rise. The expected value of the χ2-distribution of measurement errors in the action is

NdataRmσ
2/2. This is 161 here, and it is shown in the figure as a heavy horizontal

line. The action level for X0 is very near this χ2 consistency condition suggesting that

the path X0 expresses consistency of the model and the data.

When we increase the number of measured time series to L = 3, the results in

Fig. 2.2 show that one path alone emerges from the degeneracy at Rf = 0 and after

β ≈ 12 is again nearly independent of Rf and close to the expected limit from the χ2

distribution.

To get some insight into how the annealing procedure proceeds in the sequence

of estimates for the observed and unobserved states of the model to which L = 2

‘data’ time series are presented, we show in Fig. 2.3 the estimated and the ‘data’ time

courses for both an observed state variable x1(t) and an unobserved state variable

x2(t) for selected values of β = 0, 12 and 21.

In Fig. 2.3 representative time series which are part of the path for different

values of β in the lowest action level are plotted to illustrate the annealing process in

detail. For very small β, say 0, Rf = 0.01, the top two panels of Fig. 2.3 show the

known and estimated components x1(t), observed, and x2(t), unobserved, from one of

the saddle paths. Since Rm � Rf , and the measurement error dominates the overall

size of the action, paths are forced to follow the noisy measurements almost exactly so

as to minimize the measurement error, i.e. xl(t) ≈ yl(t). The effect of the model error

term is quite small with Rf = 0.01, the unmeasured states are usually undetermined.

Its form depends on the initial random guess path. In this example, the initial path
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Figure 2.3: Estimation results for one observed state variable x1(t) and
one unobserved (not assimilated) state variable x2(t) during the annealing
procedure. β = 0, The estimation of x1(t) overfits its measurement. As β
increases to 12, the estimated observed state becomes smoother. The observed
and unobserved state variables arrive at their true states when β is large
enough. Here β = 21.
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happens to be chosen near the true path, and the unobserved state x2 is close to the

known data at the beginning and end of the window.

As β is increased to 12, Rf ≈ 40, we have moved from a regime where Rf is

quite small to a regime where Rf has become sizable. The role of the model error

is no longer insignificant. The trajectory of the observed state x1(t) is smoother,

passing through the middle of the noise fluctuations, but not tracking the noise as

was done at β = 0. The greater Rf , the more information is input from the model.

This information from the model helps the observed state filter out the noise to some

extent. When β increases up to 21, Rf � Rm, it enforces the model more and more

exactly, xa(n+ 1) ≈ fa(x(n)). Both observed states and unobserved states converge

to the true path for the lowest action level. The size of action A0(X) matches the

observation error residual NdataRmσ
2/2.

It is important to note that if we begin our search for the saddle paths Xq

at large values of Rf , we are almost sure to miss the actual path X0 which gives

the lowest action level, since the Hessian matrix of A0(X) is ill-conditioned when

Rf is large and the lowest action level occupies a tiny corner of the large (here 805

dimensional) path space. See Fig. 4.6 in [81].

2.5 Endpoint Conditions on the Minimum Paths

In the integral for conditional expected values Eq. (A.2), when expressed

in discrete time, each of the integrals for states
∫
dDx(n) along the path X =

{x(0),x(1), ...,x(m)} is unconstrained as we do not specify or hold fixed any of

the state values in X. Yet, when we proceed to the continuous time limit, as we have

argued from the derivation of the Euler-Lagrange equations the canonical momentum
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Figure 2.4: Five canonical momenta pa(t) = Rf [ẋa(t)−Fa(x(t))] of one local
minimum path for the Lorenz96 model, D = 5, L = 2. β = 13. Rf (a) = Rf

for all a = 1, ...,5. At the endpoints t = 0 and t = 4, all the pa(t) go to zero,
satisfying the boundary conditions associated with the vanishing of the first
variation of the action. Each pa(t) is scaled by its maximum magnitude over
0 ≤ t ≤ 4

∂L(x, ẋ, t)/∂ẋ(t) must vanish at the temporal end points of the integration.

We investigated this by examining the saddle paths for β = 13 using the

Lorenz96 model with D = 5 and L = 2. In Fig. 2.4 we show the canonical momentum

pa(t) = Rf(a)[ẋa(t)− Fa(x(t))] for a = 1, ..., 5 scaled by the maximum value within

the observation window.

We randomly picked one of the saddle paths at β = 13, and we evaluated

the ẋ(t) in the canonical momentum using the second-order central finite difference

scheme

ẋ(n) =
x(n+ 1)− x(n− 1)

2∆t
+O(∆t2),

for interior points in the observation window. We maintained second-order accuracy
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for the evaluation of ẋ(t) at the boundary by using

ẋ(0) =
−3x(0) + 4x(1)− x(2)

2∆t
+O(∆t2)

ẋ(m) =
3x(m)− 4x(m− 1) + x(m− 2)

2∆t
+O(∆t2).

The scaled trajectories in t0 ≤ t ≤ tf of the five components of canonical momentum

pa(t) are plotted in Fig. 2.4, which shows the required boundary condition is satisfied

rather well. As this boundary condition is necessary for an extremum of the action

when the end points are not constrained, this result may be only a consistency check

on the accuracy of our calculation. Of course, it is good that the result is positive.

Chapter 2, in full, is a reprint of the material as it appears in Jingxin Ye,

Daniel Rey, Nirag Kadakia, Michael Eldridge, Uriel I. Morone, Paul J. Rozdeba,

Henry D. I. Abarbanel, John C. Quinn Systematic variational method for statistical

nonlinear state and parameter estimation, Physical Review E, 92(5), 052901 (2015).

The dissertation author was the primary investigator and author of this paper.



Chapter 3

Further Examples

Continuing the topic of the illustrative example, we check the behavior of the

annealing method on larger dimensional Lorenz96 model with D = 20. To further

explore the annealing method and examine an example from the atmospheric sciences

literature [73] and an example involving a standard Hodgkin-Huxley neuron model.

The first has both fast and slow variables, namely fast and slow time scales in the

governing differential equations, representing small scale (fast) and large scale (slow)

atmospheric variations. The challenge to a variational method is to reliably capture

both time scales in identifying an accurate saddle path. The second moves away

from the simple vector fields in the Lorenz96 model, and fluid dynamical models in

a general sense, which are at most quadratic in their nonlinearities. The kinetics of

gating variables associated with voltage dependent conductances in neurons involves

parameters and states entering the vector fields through exponentials reflecting the

underlying statistical properties of the cellular processes.

34
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3.1 Lorenz96 model D = 20

Larger dimensional Lorenz96 [73] model used frequently in geophysical data

assimilation discussions as a testbed for our proposed annealing method. We studied

D = 20 and added f as an additional degree of freedom satisfying ḟ = 0. We performed

a twin experiment in which we solved these equations with an arbitrary choice of

initial conditions xa(0) using a fourth order Runga-Kutta solver with ∆t = 0.025 over

160 steps in time. t0 = 0 and tm = T = 4. We then added iid Gaussian noise with

zero mean and variance σ2 = 0.25 to each time series. L = 1, 2, . . . of the data series

were represented in the action at each measurement time tn during our annealing

procedure.

In the action we selected Rm = 4, the inverse variance of the noise added to

the data in our twin experiment, so the minimum action level we expect is 161L/2.

The paths are (m+ 1)(D + 1) = 3381-dimensional. Our search for minimum paths

used a BFGS routine [80] to which we provided an analytical form of the gradient of

A0(X). The search was initialized with 100 initial paths from a uniform distribution

of values in the interval [-10,10].

In Fig.3.1 we display the computed action levels for L = 5, 7, 8 and 9. For

L = 5 there are many close action levels associated with the extremum paths of

the action Eq.(A.1). The expected lowest action level Eq.(2.22), minimum A0(X
0)

and next A0(X
1) action levels are for L = 5 : 402.5, 373.5, 403.8; for L =

7 : 573.5, 545.2, 749.8; L = 8 : 644.0, 613.2, 1161.6, and L = 9 : 724.5, 685.4, 2256.1.

Our estimate for the forcing parameter, set to 8.17, was 8.22 at large β.

The real test of an estimation procedure is not accuracy in the estimation, but

accuracy in prediction beyond the observation window. As this is a twin experiment,
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Figure 3.1: Action levels as a function of Rf for Lorenz96 model, D = 20,
Rf0 = 0.01. a) L = 5 we used y1(t), y3(t), y5(t), y7(t), y9(t) in the action; b)
at L = 7, y11(t), y13(t) are added; c) at L = 8, y15(t) is added; d) at L = 9
y17(t) is added. The expected values of the lowest action level are denoted by
black dashed lines.
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Figure 3.2: Data, estimated, and predicted time series for the Lorenz96
model [73] with D = 20, L = 8. a) x3(t) was an observed state variable and
b) x12(t) was unobserved. The data (black) the estimated state variable (red)
and the predicted state variable (blue) are shown for each of them.

we show in Fig.3.2 the data, the estimated state variable and the predicted state

variable for an an observed variable x3(t) and for an unobserved variable x12(t) for

L = 8. In a real experiment, we could not compare our estimates for the parameters

or the unobserved state variables. Although the estimation procedure for the path

X0 with the minimum action value is rather good, estimating 12 unobserved states

and one parameter, there are, of course, errors in our knowledge of the full state

x(T = 4). The predictions lose their accuracy in time because of the chaotic nature of

the trajectories at f = 8.17.

To see how well our procedure works for several unknown parameters, we

introduced 10 different forcing parameters fa into the Lorenz96 model at D = 10:

ẋa(t) = xa−1(t)(xa+1(t)− xa−2(t))− xa(t) + fa. There the lowest action level stands

out from the rest at L = 4. In Table 3.2 we show our estimates for the ten forcing
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parameters for L = 4, 5, and 6, as well as the actual value used in the calculations

of the data. In these estimates and for the single forcing parameter reported above

for D = 20, there is a known source of bias [59]. As one can see in the examples it is

small here.

Table 3.1: Known and Estimated forcing parameters for the Lorenz96 Model
at D = 10, L =4, 5, and 6.

Known fa L = 4 L = 5 L = 6
5.7 5.742 5.737 5.768
7.1 7.096 7.080 7.094
9.6 9.696 9.686 9.654
6.2 6.156 6.174 6.131
7.5 7.605 7.592 7.604
8.4 8.353 8.330 8.349
5.3 5.310 5.278 5.214
9.7 9.679 9.703 9.643
8.5 8.632 8.629 8.626
6.3 6.334 6.336 6.308

3.2 Lorenz96 model with both fast and slow vari-

ables

Dynamical systems varying with several distinct time scales are commonly seen

in earth system models. In the same paper where Lorenz introduced the Lorenz96

model we reported on earlier, he also introduced a modified model with both fast and

slow variables to study the local instability responsible for convective activity. [73]
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This model is given by

dxk(t)

dt
=− xk−1(t)(xk−2(t)− xk+1(t))− xk(t) + ν − hc

b

kJ∑
j=J(k−1)+1

zj(t);

dzj(t)

dt
=− cbzj+1(t)(zj+2(t)− zj−1(t))− czj(t) +

hc

b
xfloor[(j−1)/J ]+1(t). (3.1)

where k = 1, 2, ..., Dslow = K; j = 1, 2, ..., Dfast = JK and floor[x] is the floor function.

x0(t) = xK(t), x−1(t) = xK−1(t), etc. and likewise for the z(t) variables. The first

equation describes the linked dynamics of a set of K slow, large-amplitude variables

xk(t), each of which is associated with J fast, small-amplitude variables zj(t) whose

dynamics are described by the second equation. zj(t) represents a convective-scale

quantity coupling with xk(t) that favors the convective activity. They can be visualized

as sectors on a lattice circle (Figure 1 in Ref.[97]). Each xk(t) sector contains many

zj(t) sectors. We chose Dslow = K = 5 and Dfast = J = 5; this means that five zj(t)

sectors are contained in one xk(t) sector. The detailed time scales for xk and zj are

determined by the parameters h, c, b. We follow Lorenz and select h = 1, c = 10, b = 10,

so the fast variables zj(t) vary approximately 10 times more rapidly than the slow

variables xk(t), while their amplitudes are about one tenth of those of the xk(t). The

forcing parameter ν is taken to be 18 following Wilks’ work to make both xk(t) and

zj(t) chaotic [97].

To generate our data, we integrate the slow equations with a time step ∆t =

0.001 for the temporal window t = [0, 4] = 4000∆t using a standard adaptive fourth

order Runge-Kutta scheme. From these time series ‘data’ are obtained by adding

white Gaussian measurement noise to the computed time series: N (0, 0.5) for xk(t)

and N (0, 0.05) for zj(t).
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Fixing the parameters h, c, b and f at the values used to generate the data,

we seek to estimate the unobserved state variables as L < K(J + 1) time series are

presented to the model. As above we perform our calculation using the annealing

method. Following our definition, Rm equals the inverse of the variance of measurement

noise, i.e. Rm = 4 for xk(t) and Rm = 400 for zj(t) when the corresponding variables

are measured, and 0 otherwise.

Instead of choosing the same Rf value for every variable as we did in our

illustrative example Lorenz96 model, the values of Rf need to be determined by

how rapidly the variables changes. The Rf works as a penalty parameter during the

annealing process. A more rapidly varying variable requires a larger Rf to regulate

its fluctuations, and vice versa. By manipulating the values of Rf , we can ensure the

model error terms are of the similar scale. Therefore, during the variational process, all

the elements of each path from different variables will be well adjusted simultaneously

to the path.

As we stated above, the amplitude of the dzj(t)/dt is approximately ten times

smaller than that of the dxk(t)/dt, so the variance of model error for xk(t) is about

100 times larger. The Rf ’s, as the inverse of model error variance, are chosen to be

Rf0 =


0.01 for xk(t)

1 for zj(t).

According to our results above in the Lorenz96 D = 5 model the action level

plots suggest that when measurements of y1(t), y3(t) are presented, all the unmeasured

states can be accurately estimated and lead to excellent prediction. We proceed then

by presenting the noisy x1(t) and x3(t), namely, y1(t), y3(t) to the fast/slow model, and
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Figure 3.3: Action Levels as a function of Rf for the Lorenz96 Fast/Slow
model, K = 5, J = 5: when L = 13 we used noisy measurements of x1(t), x3(t)
and z2j−1(t)’s with j = 1, 2, . . . , 11 as measured variables. At L = 14, z23(t)
is added; at L = 15, z25(t) is also added. Note that when L = 14 and
L = 15, the lowest action level splits off from the other allowed action levels
corresponding to other paths meeting the saddle path condition.

then gradually increase the number of noisy measurements of zj(t) until we can find

the consistent lowest action level we expect. We call the total number of measurements

L and recognize it is comprised of 2 observations of the xk(t) and L− 2 observations

of the zj(t).

The action level plots are shown in Fig. 3.3. We start the annealing calculation

with N0 = 100 initial random paths, so that whether there are paths located at the

expected lowest action level is a stochastic event. When L ≤ 13, it is rare to find

a path finally reaching the expected lowest action level. The same calculations for

L = 12, 13 are repeated 10 times, and no action level near the overall expected values

is observed. Fig. 3.3 shows one example of L = 13 such that no action level levels

out with increasing Rf . This suggests none of the paths is consistent with the model

and that model errors are amplified as Rf increases. It is a sign that indicates the
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information provided by the selected measurements is not enough. Another sign

denoting lack of information in the measurements is that there are many close action

levels near the expected lowest action level as shown in Figure 1 of Ref.[99].

It is worth pointing out that not having enough measurement information is

not the only possible cause of having no levels becoming independent of Rf for large

Rf . Anything introducing significant non-zero model errors can cause this as well.

For example, numerical discretization error in action may appear to be important

in fast/slow dynamical systems when one doesn’t use a small enough observation

time step to meet the requirement of the resolution of their fastest dynamics. In the

Lorenz96 fast/slow model K = 5, J = 5 if we use ∆t > 0.0025, one can observe this

even when L = 14.

We added another measurement to the action, and the complicated action

levels at L = 13 are immediately reduced to three distinct levels when 12 ≤ β ≤ 19

and then collapses into two levels, including one associated with the expected value,

after β ≥ 20. Adding in z25(t), we found all of the 100 random initial paths converge

to the solution of the consistent action minimum.

The estimated state variables of the Lorenz96 fast/slow model at L = 14 are

displayed in Fig. 3.4. Predictions are obtained by advancing the model forward in

time using the estimated state variables at t = 4.0 as an initial condition. (Fig. ??)

Both estimation and prediction show excellent agreement with the data generated in

this twin experiment. In time the prediction loses its accuracy because of the chaotic

nature of solutions to this dynamical system. This is especially apparent for the fast

variables zj(t).

The annealing method is successful in locating a dominant lowest action path
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Figure 3.4: Data, estimated and predicted time series for the Lorenz96
Fast/Slow model with K = 5, J = 5 and L = 14. f = 18. We used noisy
versions of the x1(t), x3(t) and of the z2j−1(t), j = 1, 2, . . . , 12 as measured
variables. x4(t) is an unobserved slow variable. Both of the fast variables
z6(t) and z24(t) are observed. z23(t) is an unobserved fast variable.
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even in the presence of distinct times scales in the dynamics. One must sample

the observations fast enough to capture the higher frequency variations of the fast

variables. In the annealing search for lowest action levels, one must also select the

ratios of the maximal values of Rf to reflect the different dynamical time scales.

3.3 Hodgkin-Huxley neuron model: NaKL model

We selected a fairly standard Hodgkin-Huxley (HH) neuron model [50, 89]

consisting of four state variables: the voltage V (t) across the cell membrane as

well as three voltage dependent gating variables for Na+ and K+ channels m(t), h(t)

and n(t). The equation governing changes in voltage across the cell membrane is

current conservation with conductances for Na+ and K+ ions through the membrane

that depend on the voltage V (t). This reflects the change in permeability to these

ions of proteins that transect the membrane and change their conformation as a

function of the voltage across the membrane. The specific forms of the voltage

dependent conductivities in this HH model are taken from textbook descriptions

based on the 1940s and 1950s work of Hodgkin, Huxley, Katz, and many others. The

reversal potentials are determined by the competition of diffusion associated with ion

concentration differences within and without the cell and transport of charged ions by

the electric field associated with the difference in voltage across the membrane. The

Nernst equation which determines these reversal potentials is directly from statistical

physics.

The cell responds to external currents as a driving force by its cross membrane

voltage V (t) rising if the current causes depolarization of the cell, or the voltage

decreases when the cell becomes more polarized. (Fig. 3.5) The rise in voltage triggers
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an instability in the phase space of the HH model associated with a sudden influx of

Na+ ions which is then counterbalanced by a flow of K+ ions out of the cells as the

voltage rises to order + 50 mV. All this takes place on the order of 5 ms and is seen

as a ‘spike’ in the voltage time series.

The model is governed by the following four first-order differential equations:

C
dV (t)

dt
=Iinj(t) + gNam(t)3h(t)(ENa − V (t))

+ gKn(t)4(EK − V (t)) + gL(EL − V (t))

da(t)

dt
=
a0(V (t))− a(t)

τa(V (t))
a(t) = {m(t), h(t), n(t)}

a0(V ) =
1

2
+

1

2
tanh

(
V − Va

∆Va

)
τa(V ) =τa0 + τa1

(
1− tanh2

(
V − Va

∆Va

))

In these equations the gion’s are maximum conductances for the ion channels,

the Eion are reversal potentials for those ion channels, Iinj(t) is the external stimulating

current injected into the neuron. This current is selected by the experimenter and has

no independent dynamics.

The gating variables a(t) are taken to satisfy first order kinetic equations and

range between zero and unity. The overall strength of an ion channel is set by the

maximal conductances, and this represents the number of individual ion channels.

These are phenomenological choices.

The quantities a0(V ) and τa(V ) are the voltage dependent activation function

and the voltage dependent time constant of the gating variable a(t). The forcing to

the cell Iinj(t) is known to us. In our parametrization of the cell dynamics there are

19 fixed parameters and three unobserved state variables a(t) = {m(t), h(t), n(t)} to
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be determined. All a(t) lie between zero and one.

Only the voltage across the cell membrane is measurable in real neurobiological

experiments, however, successful data assimilation, in effect, ‘measures’ the gating

variable time series as well as the unknown parameters. We present only noisy time

series of V (t) to the model; these are our y(t) in the notation we have used for the

general discussion above.

The parameters used to generate data are listed in Table 3.2. The waveform of

the injected current is chosen to be a combination of step functions and segments of a

chaotic time series taken from one of the variables of the Lorenz63 model [72]. This

current is displayed in the bottom panel of Fig. 3.5. A standard adaptive fourth order

Runge-Kutta solver is used to produce the data using time steps of ∆t = 0.025ms,

and white Gaussian noise with an RMS level of 1mV is added to the V (t) time

series to represent the noise accompanying the measurements in laboratory biological

experiments. This voltage time course is in the top panel of Fig. 3.5.

The previous two examples, the Lorenz96 D = 5 model and the Lorenz96

fast/slow model contain only quadratic nonlinear terms in their differential equations.

The difficulties of state and parameter estimation result from their chaotic trajectories.

The NaKL model in the selected parameter region is not chaotic, and the challenge of

data assimilation comes from the richer nonlinearity in the dynamics of the gating

variables and the sensitivity of the model behavior to changes in parameter values.

In the numerical optimization used to find the saddle paths for any model one

must specify search bounds for each parameter and each state variable. The goal

is to find appropriate choices for these values that constrain the model states and

parameters to biologically acceptable regions. The bounds for the voltage V (t) are
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Figure 3.5: (a) Voltage response of the standard Hodgkin-Huxley neuron
model with Na+, K+ and leak channels, our NaKL model, in response to the
applied (injected) stimulus current shown in the (b)

taken as −150mV and +70mV based upon our solutions to the equations. The gating

variables are bounded between 0 and 1, since they represent the probability whether

ion channels are open or closed.

The optimization is implemented with IPOPT using an interior-point method [95].

We found the interior-point method both more stable and substantially faster than

the L-BFGS-B method [102].

In this twin experiment only a noisy voltage V (t) is ‘measured’ and presented

to the model; so L = 1. As the dynamical range of voltage is a hundred times

larger than that of the gating variables, we first calculated the action levels with

R
(V )
m = 1, R

(V )
f0 = 10−3, R

(m)
f0 = 10, R

(h)
f0 = 10, R

(n)
f0 = 10 and α = 3/2. The largest β

was taken as 50. Also we decreased α from 2 to 3/2 so that the pace of increasing

resolution in model state space is slower than in our earlier examples as we increment

changes in Rf . This allows us to stay well within the basin of attraction of the lowest
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Figure 3.6: (a, b): Data (black), estimated (red) and predicted (blue) state
variables V (t),m(t) for the NaKL model when only the noisy membrane
voltage V (t) is measured and presented to the model. (c,d): Data (black),
estimated (red) and predicted (blue) state variables h(t), n(t) when only the
noisy membrane voltage V (t) is measured and presented to the model
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Table 3.2: Known and estimated parameters for the NaKL model. We also
display the bounds used for the nonlinear search algorithm.

Parameters Known Estimated Search Lower Bound Search Upper Bound
gNa 120.0 108.4 50.0 200.0
ENa 50.0 49.98 0.0 100.0
gK 20.0 21.11 5.0 40.0
EK -77.0 -77.09 -100.0 -50.0
gL 0.3 0.3028 0.1 1.0
EL -54.0 -54.05 -60.0 -50.0
C 0.8 0.81 0.5 1.5
Vm -40.0 -40.24 -60.0 -30.0

∆Vm 0.0667 0.0669 0.01 0.1
τm0 0.1 0.0949 0.05 0.25
τm1 0.4 0.4120 0.1 1.0
Vh -60.0 -59.43 -70.0 -40.0

∆Vh -0.0667 -0.0702 -0.1 -0.01
τh0 1.0 1.0321 0.1 5.0
τh1 7.0 7.76 1.0 15.0
Vn -55.0 -54.52 -70.0 -40.0

∆Vn 0.0333 0.0328 0.01 0.1
τn0 1.0 1.06 0.1 5.0
τn1 5.0 4.97 2.0 12.0

action level.

The top panel of Fig. 3.7 displays the action level plot with the configuration

above. When 25 ≤ β ≤ 39, there are several different levels, and they reveal the

expected action level after β ≥ 40. The action level plot suggests that the voltage

measurement alone is sufficient to determine the three unobserved state variables as

well as the 19 parameters. The estimates of these parameters are displayed in Table

3.2.

We can select the values of Rf0’s for each state variable according to our

knowledge about the amplitudes and time scales of the state variables by looking

at the time series of solutions of the model. The time constants of gating variables

characterize the their response to the change of voltage. The sodium activation variable
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Figure 3.7: Action levels as a function of Rf for the NaKL model with only
the noisy membrane voltage V (t) measured and presented to the model. (a):

we selected R
(V )
f0 = 10−3, R

(m)
f0 = 10, R

(h)
f0 = 10, R

(n)
f0 = 10 and α = 3/2.; (b):

Rm = 1, R
(V )
f0 = 10−3, R

(m)
f0 = 10, R

(h)
f0 = 1000, R

(n)
f0 = 1000, and α = 3/2

m(t) is the fastest, with a time constant of several hundreds of microseconds, which is

a little bit slower than V (t). h(t) and n(t) are much slower having a time constant of

a few milliseconds. We set the ratio of R
(m)
f0 /R

(V )
f0 = 5× 104 and raised the ratio of

R
(n)
f0 /R

(m)
f0 and R

(h)
f0 /R

(m)
f0 from 1 to 10 to compensate for the effects induced by different

time constants. With Rm = 1, R
(V )
f0 = 10−3, R

(m)
f0 = 50, R

(h)
f0 = 500, R

(n)
f0 = 500, the

action level plot in the bottom panel of Fig. 3.7 shows this configuration of Rf0 can

effectively enforce that most saddle paths stay near the expected lowest action level.

The detailed action levels can depend on the choice of Rf0. In the NaKL

example when the ratios of R
(n)
f0 /R

(m)
f0 and R

(h)
f0 /R

(m)
f0 are as large as 100, we often

observed another action level with a value close to the lowest one. This can also

depend on the specific choice of the N0 initial paths with which we start the annealing.
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A lesson we learn from this example is that we should take both the amplitude

and the time scale of the state variables into consideration when selecting the scale

of Rf values. The proper configurations of Rf values enlarge the probability to have

the candidate paths converge to the expected action level, and also accelerate the

convergence rate to the optimal paths.

3.4 Action Levels for Wrong Models

To give some sense of what one might expect if the model were totally wrong,

we presented data from a collection of 1963 Lorenz model [72] oscillators oscillators to

a Lorenz96 D = 10 model.

Twelve time series data are generated by four individual Lorenz63 [72] systems

with different initial conditions. Gaussian white noise with zero mean and standard

deviation σ = 0.5 are added to each time series. All these ‘data’ yl(t) are rescaled to

lie in [−10, 10].

We then place these signals as ‘data’ in the action with the model taken as

Lorenz96 D = 10, the single forcing parameter is treated a time-dependent state

variable obeying ḟ = 0. We use L = 6 as measurements using the data time series

taken, y1(t), y3(t), y5(t), y7(t), y9(t), y2(t). In Fig.3.8 (a) we display the action levels

associated with this for L = 6. Results for other values of L are consistent with these.

Another two common types in real data assimilation: fixed the parameter at wrong

value and one or more terms in the formula are wrong. To simulate the two cases, we

did the following two experiments:
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Figure 3.8: a) Action levels as a function of Rf for Lorenz96 model, D = 10,
Rf0 = 0.01, L = 6 when the wrong data is used for the Lorenz96 model. We
actually used data from four realizations of the Lorenz63 model [72]. The
action levels are also quite large, and, for L = 6, numerous and not well
separated. b) The forcing parameter f in Lorenz96 model is fixed at wrong
value. c) The decay term in Lorenz96 model −xi is set to be −2xi. The
structure of the action levels versus Rf here shows no trace of the minimum
allowed level Eq.(2.22) and indicates the data and the model are incompatible.

1. Wrong parameter in Lorenz96 Model: F = 18 instead of 8.17

ẋi = −xi−1(xi−2 − xi+1)− xi + F

2. Wrong term in Lorenz96 Model: η = 2 instead of η = 1

ẋi = −xi−1(xi−2 − xi+1)− ηxi + F

The twin data are generated with the right model with f = 8.17 and correct term −xi.

The two wrong models defined above are used to assimilate the generated data. And

the action levels are displayed in Fig.3.8 (b) and (c). Those two cases can be clearly
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identified that no action level goes to the expected action level. The structure of the

action levels versus Rf here shows no trace of the minimum allowed level Eq.(2.22)

and indicates the data and the model are incompatible.

Part of Chapter 3 is a reprint of the material as it appears in Jingxin Ye, Daniel

Rey, Nirag Kadakia, Michael Eldridge, Uriel I. Morone, Paul J. Rozdeba, Henry D.

I. Abarbanel, John C. Quinn Systematic variational method for statistical nonlinear

state and parameter estimation, Physical Review E, 92(5), 052901 (2015) and Jingxin

Ye, Nirag Kadakia, Paul J. Rozdeba, Henry D. I. Abarbanel, John C Quinn, Precision

Variational Approximations in Statistical Data Assimilation, Nonlinear Processes

in Geophysics, 22 (2), 205-213 (2015). The dissertation author was the primary

investigator and author of this paper.



Chapter 4

Discussion

4.1 Corrections to the Approximation of the Dom-

inant Saddle Path Xq to 〈G(X)〉

The path integral formulation of 〈G(X)〉 allows more than just the leading

variational approximation to this expected value, as is always the case in the Laplace

method. The idea is to identify the path X0 with the smallest action level and then

expand the integral in X about X0.

Near X0 we write

A0(X) = A0(X0) + (X−X0)α1γ(X0)2
α1α2

(X−X0)α2 + · · · , (4.1)

and the Hessian matrix γ(X0)2 = A
(2)
0 (X0)/2 is positive definite, if X0 gives a minimum

of the action.

Changing integration variables to Uα = γαβ(X0)(X−X0)β leads to the numer-

54
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ator of 〈G(X)〉 in Eq. (A.2) arising from X0

∫
dX exp[−A0(X)]G(X) =

exp [−A0(X0)]

det γ(X0)

∫
dU exp

(
−U2 − V

) [
G(X0) +W

]
(4.2)

where

V (U,X0) =
∑
r=3

A(r)(X0)α1...αr

r!
[γ(X0)−1U]α1 · · · [γ(X0)−1U]αr ,

W (U,X0) =
∑
k=1

G(k)(X0)α1...αk

k!
[γ(X0)−1U]α1 · · · [γ(X0)−1U]αk

.

In the denominator we replace the numerator term G(X) = G(X0) +W (U,X0)

by unity.

The terms in this integral are evaluated by expanding the Taylor series con-

tributions V (U,X0) and W (U,X0) in powers of U, and performing the resulting

Gaussian integrals in U. Terms with odd powers of U vanish by symmetry. The

contributions to leading order in 1/Rf coming from the path X0 for E[G(X)|Y] are

E[G(X)|Y] =G(X0) +

∫
dU exp (−U2)√

π(m+1)D

{
1

2
G(2)(X0)[γ(X0)−1U]2

− A(4)(X0)

24
G(X0)[γ(X0)−1U]4 − A(3)(X0)

6
G(1)(X0)[γ(X0)−1U]4

+
A(3)(X0)2

72
G(X0)[γ(X0)−1U]6

}
+O

(
1

R2
f

)
(4.3)

From the form of eion in Eq. (2.14) we see that for large Rf each factor of

γ(X0) is of order
√
Rf , and each ‘vertex’ A

(4)
0 (X0) and A

(3)
0 (X0) is of order Rf . The
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Gaussian integrals over U are discussed in the opening chapters of Ref.[103].

Statistics such as the covariance about the saddle path X0 may be evaluated

by selecting G(X) to be the matrix in path (a, n) = α space as

G(X) = (X−X0)α (X−X0)β = UηUκ(γ(X0)−1)κα (γ(X0)−1)η β.

The Gaussian integral ∫
dU UαUβ exp

(
−U2

)
, (4.4)

is easily performed, giving

〈(X−X0)α (X−X0)β〉 =
1

2
(γ2(X0)−1)αβ, (4.5)

which behaves as 1/Rf for large Rf , implying a steep, narrow minimum in path space.

These results are specific for the form of the action in Eq. (2.14), and may

not apply for other choices for the distribution of noise in the measurements or the

distribution of the errors in the models. Distributions with power law or ‘fat’ tails

require additional scrutiny.

4.2 Effects of Distribution Tail on Action Levels

In the previous discussion, we assume additive Gaussian errors in the measure-

ment and model errors. We explore here a non-Gaussian distribution for model errors

(can also be used for measurement errors) Cauchy-Lorentz distribution, allowing us to

assess the influence of “fat” tails in the action for data assimilation problems.
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When we looked at a model error that obeys Cauchy-Lorentz distribution

PC(x) ∝
(

1 +
1

2
Rfx

2

)−p
, (4.6)

we found that the saddle path X0 no longer appeared to have corrections acting as

inverse powers of Rf .

The Gaussian and the Cauchy distributions are two examples of distributions

that they become delta function of x when Rf →∞. And they differ by the “fatness”

of their tails. Gaussian distribution decays as exp(−x2), while the Cauchy distribution

acts as x−2p for large x which gives a much “fatter” tail than a Gaussian.

We investigate an interpolating distribution for λ > 0,

PI(x) ∝ exp

[
−p(1 + αx2)λ − 1

λ

]
, (4.7)

which is a Gaussian distribution when λ = 1 and a Cauchy distribution when λ→ 0.

Thus PI(x) has familiar features of smooth distribution that approximate delta

functions. If we select this distribution for the model errors and retain a Gaussian for

the measurement errors, the action can be written as

A0(X) =
m∑
n=0

L∑
l=1

Rm(n, l)

2
(yl(n)− xl(n))2 − log[P (x(0)]

+
m−1∑
n=0

D∑
a=1

p

λ

[(
1 +

Rf (a)

2
(xa(n+ 1)− fa(x(n))2

)λ
− 1

]
(4.8)

Here we choose λ = 5× 10−3, 0.5, 1, 3 to study the effects of the distribution tail on

action level. The same calculation was did for Lorenz96 model D = 5, L = 2 as in

Section 2.4 but with the new nongassian action Eq. (4.8). (Fig. 4.1)
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Figure 4.1: Action levels as a function of Rf for Lorenz96 model, D =
5, L = 2, Rf0 = 0.01. Different values of λ are used in the Eq.(4.8): a) λ = 3;
b) λ = 1; c) λ = 0.5; d) λ = 5× 10−3;
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The action levels diverges to 1013 at high Rf for λ = 3. As λ decreases, it slows

down the procedure for the lowest action level approaching the expected action level

value. For λ = 3, it reaches the expected action level at β = 12, and the corresponding

β = 18 for λ = 5× 10−3. In Panel d) of Fig. 4.1, the behavior of the action levels are

largely regularized: only four action levels appear. Small λ would be useful to control

the divergence of action levels for some sensitive models.

Another important thing needs to be pointed out that the λ has little effects

on the convergence of the numerical optimization procedure. The numbers of paths

out of 100 candidate paths that converges to the lowest action level at different λ

values are listed in Table 4.1.

Table 4.1: For Lorenz96 model D = 5, L = 2, the numbers of paths out of
100 candidate paths that converges to the lowest action level at different λ
values.

λ Num. of Measurements (L) Lowest Action (A0(X0)) Num. of Paths
1 2 137 2
3 2 137 4

0.5 2 137 3
5× 10−3 2 137 2
5× 10−4 2 137 2
5× 10−5 2 137 3

4.3 Connection with Bröcker’s Results

The annealing method has a close relationship, and in some places a significant

overlap with two very nice papers [15, 17] and a quite valuable and pedagogical

Summer School presentation by J. Bröcker [16]. He considers the formulation of the

assimilation problem in continuous time and identifies an action which corresponds to
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our A0(X).

Missing in his discussions is the context of the path integral to be used to

evaluate expected values of functions on the path, so no method is presented to

evaluate the accuracy of the variational result as a function, say, of Rf . He identifies

the boundary conditions on the Euler-Lagrange equations for the extrema of the

action, and recognizes with great care how one selects among the possibilities.

His formulation of the actual action differs from ours in that he adds to the

deterministic equations ẋ(t) = F(x(t)) a control term which is employed in moving

the output of a model toward the observations, then he imposes this control via a

Lagrange multiplier. The Euler-Lagrange equations in Eq. (11) of Ref.[16] are, happily,

in his notation the same as our Eq. (2.11). In Section 3, especially Exercise 3.1 of

Bröcker’s Summer School notes [16] he shows that his approach and our yield the

same extremum conditions on the action.

Importantly he recognizes and explores with insight the manner in which the

model error term in the action and the measurement error term in the action ‘balance’

to direct the solution to a chaotic model equation to those regions of phase space

where the observations provide information about the model solutions.

Bröcker does not consider the question of how many measurements are required

to allow the search for extrema of the action to be achievable [2] or whether any of

the allowed extrema are, in fact, the overall minimum of the action. He does stress

the importance of the model error term in the action and formulates its appearance

in a very clear and useful fashion.

Our use of an annealing method to address these latter two questions has roots

in our own work [3] and has connections with Bröcker’s work. The route we follow now
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is to return to discrete time formulations of the action with a focus on the questions

one wishes to answer in the use of the data assimilation methods in physical and

biological problems: (1) What is the expected value of the state and parameters of the

model system at the end of an observation window–this includes unmeasured as well as

measured states. (2) What are the RMS errors about this expected state ? (3) What

is the accuracy, including RMS errors, of the predictions of the model, conditioned on

information transferred to it by the data, for times after the observation window.

4.4 Comparison with the quasi-static variational

assimilation (QSVA) Method

There is another strategy for determining the best path for a selected model

with chaotic trajectories given observed data known as the quasi-static variational

assimilation (QSVA) method [78]. In this approach the known equations of motion are

initialized with some x(0)(t = 0) and integrated forward a small step in time of length

τ . A cost function comparing the known observations with the model output over

that time step τ is minimized to adjust the initial condition x(0)(t = 0)→ x(1)(t = 0).

Then the time interval is extended to 2τ and starting with x(1)(t = 0) the equations of

motion are integrated forward to 2τ . The difference between the orbit from the initial

condition x(1)(t = 0) is compared via the cost function to data in the longer interval

2τ and the cost function is minimized taking x(1)(t = 0)→ x(2)(t = 0). This repeated

adding increments of time to the observation window until it is Nτ long, and a final

x(N−1)(t = 0) is found via minimizing the cost function over the interval up to Nτ .

Starting with this final selection of initial condition x(N−1)(t = 0) a trajectory to time
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Nτ and beyond is generated using the equations of motion. This gives a path through

the estimation window [0, Nτ ] and beyond for prediction. By choosing the original

initial condition x(0)(t = 0) within a resolution ball of uncertainty and drawing N0

different selections, one can generate N0 different paths during both the estimation

and prediction windows. In the paper [78] the Lorenz 1963 model was used with

parameters set to produce chaotic orbits, and it was assumed all the state variables

were observed.

We have made a direct comparison of the QSVA approach with our annealing

method. We used the Lorenz96 model with D = 5 and L = 3 to generate ‘data’, and

then we added noise of the same level with variance σ2 = 1/4 to the observations. We

observed L = 3, y1(t), y3(t), and y5(t) and in choosing x(0)(t = 0) for QSVA we selected

the unobserved components y2(0), y4(0) from a uniform distribution in the interval

[−10, 10]. We then evaluated (1) N0 = 100 initial conditions arriving at 100 final

selections of initial conditions using time steps of τ = 4∆t = 0.1 where ∆t = 0.025 and

(2) a second numerical trial with τ = 4∆t = 0.004 where ∆t = 0.001 with N0 = 60

initial conditions. We generated the data with a fourth-order Runge-Kutta integrator

for the D = 5 Lorenz96 equations with forcing f = 8.17. The minimization of the cost

function

C(x(0), N) =
N∑
n=0

L∑
l=1

(xl(n)− yl(n))2 (4.9)

at each step to find an improved x(K)(0) was performed using a quasi-Newton BFGS

method [80]. The estimation window was taken as 160 ∆t = 4, and the prediction

window ranged from 4 to 8.

We compared this calculation of initial conditions and estimated and predicted

orbits with the annealing method described in Sec.2.4 using annealing up to β = 30
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as shown in the right panel of Fig. 2.2.

To compare the outcome of the two approaches we display the following results

for the first set of calculations with ∆t = 0.025 and N0 = 100:

• In the autonomous Lorenz96 model D = 5 there is one unstable direction

with positive Lyapunov exponent λ = 0.53 and one neutral direction as it is a

differential equation. We projected the N0 = 100 solutions from QSVA into the

plane of these two directions along with the location in the same plane of the

first state x(0) from the annealing process. These are shown in Fig. 4.2.

• The outcome of the annealing estimations gives the whole path in the time

interval [0,4], including x(t = 0) and x(t = 4) at the start and end of the interval,

respectively. The predictions of annealing method are obtained in two ways:

one integrates dynamical model Eq. (2.24) forward from x(t = 0) and the other

one starts from the end of the estimation window x(t = 4) directly which can

largely reduce the numerical errors introduced by chaos. (Fig. 4.3) However,

QSVA only allows the first option.

• We evaluated the RMS error for both the annealing and QSVA calculations by

comparing the model output in all state variables both in the prediction window.

The prediction RMS are defined as

RMS =

√√√√ 1

DN

2N∑
n=N+1

D∑
a=1

(xa(n)− ya(n))2.

We performed a second set of calculations with ∆t = 0.001 and N0 = 60 initial

conditions. We projected the N0 = 60 solutions from QSVA into the plane of these
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two directions, unstable and neutral, along with the location in the same plane of the

first state x(0) from the annealing process. The projection and a zooming in on the

small values of the error are shown in Fig. 4.2. The histogram of RMS errors during

the prediction window are then shown in Fig. 4.3.

Our conclusion is that the QSVA method, while straightforward to implement,

may not do as well in the realistic case of noisy sparse data, L < D, which is likely

to be encountered in realistic situations. It is clear that as one decreases the time

step between iterations of the QSVA protocol, the error as seen in the projection onto

the unstable and neutral directions at the end of the assimilation window decreases,

yet there are quite a few instances when the error is quite large. Similarly, in the

histogram of the RMS errors in the prediction window, as shown in Fig. 4.2 shows

much better results than for the larger value of ∆t in the first calculation.

The annealing results are rather the same in each case with a clear clustering

of errors in the neutral/unstable plane near small errors, and a tight cluster of RMS

prediction errors. We can conclude that the annealing method produces a much

narrower distribution of candidates for the path with smallest action level when

dealing with noisy, sparse data than the QSVA method in the same conditions. QSVA

does produce a selection of paths with excellent initial conditions for prediction, but

these come along with paths quite far from those with small errors. How one is to

choose among the paths with large deviations from small errors is not entirely clear in

the QSVA algorithm applied to the circumstances presented here.

The two critical differences in this comparison are that the annealing methods

seeks paths as the outcome of the variational principles, and it surveys those paths

and selects that which gives rise to the minimum observed value of the action. It
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Figure 4.2: Lorenz96, D = 5, L = 3, projection of x(0) on the neutral W0

and unstable Wu manifolds for annealing with β = 30 and for QSVA; N0 =
100 and ∆t = 0.025. a): large time step ∆t = 0.025 is used; b): fine time
step ∆t = 0.001 is presented.

should also be noted, as we mentioned earlier in the paper, that when one looks for a

path with minimum action in the deterministic case, called strong 4DVar or large Rf ,

the procedure does not find the desired minimum [81]. QSVA utilizes models with no

model error (Rf →∞) throughout.

Part of Chapter 4 is a reprint of the material as it appears in Jingxin Ye, Daniel

Rey, Nirag Kadakia, Michael Eldridge, Uriel I. Morone, Paul J. Rozdeba, Henry D.

I. Abarbanel, John C. Quinn Systematic variational method for statistical nonlinear

state and parameter estimation, Physical Review E, 92(5), 052901 (2015) and Jingxin

Ye, Nirag Kadakia, Paul J. Rozdeba, Henry D. I. Abarbanel, John C Quinn, Precision

Variational Approximations in Statistical Data Assimilation, Nonlinear Processes

in Geophysics, 22 (2), 205-213 (2015). The dissertation author was the primary

investigator and author of this paper.
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Chapter 5

HVc Neuron Model with Calcium

Dynamics

5.1 Dynamical Model Completion

In developing and using methods of statistical data assimilation to characterize

the biophysical properties of functional networks of neurons, we have previously built a

Hodgkin-Huxley type model (HH model) of the dynamics of individual neurons [46, 51,

4] . This model, as all such models, has numerous unknown fixed parameters that must

be determined for each class of neuron under consideration. We used well designed

stimulating currents for individual neurons in the avian song system nucleus HVC

and measured the response of the membrane voltage to estimate the many biophysical

parameters in the voltage and kinetic equations of such a model. This estimation

‘completes’ the model in the sense that once the fixed parameters are established,

then given initial conditions for the state variables, observed and unobserved, we can

predict the response of the model neuron to a new stimulus [4].

67
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We tested/validated the biophysical HH model by showing that with the

estimated parameters it could reliably predict the observed response to new stimulating

currents. The required initial conditions for prediction in the completed model were

established by using a very short (100 ms) segment of the data set for times beyond

the observation window.

The methods we utilize here were quite instrumental in designing the large

collection of data sets analyzed in [4], and we expect that to be the case again when

we move from simulations of neurons with important Ca dynamics to the design of

experiments to explore those dynamics.

Our stimulation/response protocols presented data comprising an applied

stimulating current Iapp(t) and the observed response membrane voltage V (t)data.

These time series alone allow estimation of the fixed parameters and unobserved

state variables of the neuron. The latter are the voltage dependent gating variables

associated with ionic currents of Na+, K+, and Ca2+ ions.

The estimation procedure seeks to minimize a distance between the output

of the HH model V (t) and the observed data V (t)data over an observation window

[0, T ] where we selected T = 1500 ms [4]. The cost function or objective function

representing the error between the data and the model output is taken as

m∑
n=0

(V (tn)data − V (tn))2, (5.1)

where observations are made at times tn; n = 0, 1, 2, ..., tm = T . This objective

function was minimized subject to the deterministic HH equations of motion, given

below, as equality constraints dynamically taking the states between time tn and time

tn+1. This cost function is also seen as the error in the synchronization of the model
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output with the data.

The measurement in the experiments above only includes membrane voltage.

That has been the conventional way to determine properties of neurons since the

1950s when the HH model was first built.[46] Although we did not encounter models

of this form in our previous analysis of the HVC data [4], it is not clear that the

single measurement of membrane voltage will suffice for this estimation procedure. As

we will show here, even when very well sampled in time, a single measurement may

simply contain insufficient information to determine the unmeasured state variables.

The systems where more measurements are required appear to be those where chaotic

solutions to the dynamical equations are possible for some biophysically plausible set

of stimuli and model parameters. We found that Ca2+ dynamics could cause failure

in determining properties of neurons with voltage measurement only.

Many examples are known of the necessity for more measurements at each

measurement time to remove impediments associated with the instability of the

manifold in state space where the data and the model output are synchronized [4].

When synchronization fails, the synchronization error Eq. (5.1) has multiple local

minima as a function of the parameter or state value sought through the minimization.

This impediment to estimation must be regulated to provide a smooth surface on

which one implements a search procedure for the minimum of the cost function Eq.

(5.1).

There is now substantial evidence of the role of Ca2+ dynamics in the neurons

of HVC [96, 39, 53, 22, 70]. This adds a set of rather slow dynamical processes to the

much faster voltage gated processes involving Na+ and K+ ions. When we extended

these voltage dynamics models to include the important biophysical processes of Ca2+
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uptake and release from internal stores, the question of how many measurements are

required changes. Mixing slow and fast dynamical processes, coupled nonlinearly to

each other, can be a setting for the appearance of chaotic behavior. In the case of

voltage plus calcium dynamics chaos does appear.

The appearance of chaos in calcium oscillations is quite natural. Calcium

bursting behavior characterized by an irregular number of secondary spikes and

irregular spacing between the initial spikes and nonperodic oscillations with varying

amplitudes are observed widely under different stimuli.[23, 83, 41] Seemingly erratic,

or irregular, time-series behavior with little apparent structure in the time course can

be generated by a deterministic system operating in chaotic regime, This inspired

many analyses of chaotic calcium models. [14, 47, 25] Houart et al. produced chaos by

extending the simpler Dupont-Goldbeter [26] model to account for fluctuating IP3

concentrations. [47] The IP3 concentration is synthesized by the introduction Ca2+

ions, and in turn prompts Ca2+ release from internal stores. This simple feedback

leads to oscillatory behavior that results in chaos. Borghans et al. found similar chaotic

behavior when accounting for a variable IP3 concentration. [14] Feedback dynamics

can easily result in systems with chaotic regimes so it is instructive to analyze the

difficulties of estimating such a system.

This leads to a situation where more than voltage measurements alone are

required

• to synchronize data with model output,

• accurately estimate fixed parameters and unobserved state variables, and

• provide accurate predictions as validation of the consistency of the model with

the observations.
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The goal of this paper is to determine the difficulties of estimating model

parameters and state variables in a model that exhibits chaotic oscillations. The

model presented is not intended to be a quantitatively accurate description of real

neurons. Rather, our more modest aim is to present a system which replicates

qualitative features that we anticipate in the HVC neurons of the avian song system.

HVC and the other nuclei of the song system are our target neurons for the experiments

we plan [4], so our focus on their properties will appear several times within the general

issues in this paper.

In particular, our model exhibits spiking bursts and has regimes of chaotic

behavior. These features make it challenging to correctly estimate parameters and

unmeasured state variables, as was described in [4]. Indeed, we show that the model

in this paper requires more than just voltage measurements to completely estimate

the full state of the model and use those estimates to make accurate predictions as a

test of model validity.

5.2 The Biophysical Role of Ca2+ Dynamics

Calcium ions play an important role in regulating a great variety of neuronal

processes. Calcium can act in signal transduction resulting from activation of ion

channels or as a second messenger caused by indirect signal transduction pathways.

Intracellular calcium signals regulate processes that operate over a wide range of time

scales, from neurotransmitter release at the microsecond scale to gene transcription,

which lasts for minutes and hours [12]. In the HVC of the songbird, the contributions

of calcium channels and calcium mediated events to spiking and bursting have been

observed. In vivo, L-type Ca2+ bursting activity in HVCRA neurons [70], and calcium
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transients show strong preference for the presentation of the bird’s own song in

identified HVC neurons where a strong correspondence between calcium signals and

juxtacellular electrical activity is exhibited [39]. In vitro, T-type low voltage activated

Ca channels are expressed in HVC neurons contributing to their postinhibitory rebound

firing [22]. Moreover, the spike frequency adaptation seen in HVC projection neurons is

largely due to a Ca2+ induced K channel [22, 63]. In addition multiple calcium binding

proteins that determine the dynamics of free calcium inside neurons [86] are enriched

in the HVC of songbirds [96, 53]. All these studies motivate an investigation of the

roles that Ca2+ ions play in the electrical activity of HVC neuronal subpopulations in

vitro and during singing.

Calcium is a crucial intracellular messenger in mammalian neurons where the

final transduction of any neuronal signal involves the movement of calcium ions. At

rest, the intracellular calcium concentration of most neurons is about 50∼100 nM, and

that can rise to levels that are ten to 100 times higher during electrical activity [11].

The cytosolic calcium concentration is determined by the balance between calcium

influx and efflux as well as by the exchange of calcium with internal stores. In addition,

calcium-binding proteins such as parvalbumin or calretinin, acting as calcium buffers,

determine the dynamics of free calcium inside neurons. Most importantly, only the

free calcium ions inside the cytosol are biologically active.

Calcium influx from the extracellular space is controlled by various mechanisms

including voltage gated calcium channels, ionotropic glutamate receptors, nicotinic

acetylcholine receptors, and transient receptor potential type C channels [42, 34, 44, 82].

The extrusion of calcium ions from the cytosol is done via the plasma membrane

calcium ATPase and the sodium-calcium exchanger [12]. The release of messenger



73

calcium ions from internal stores, mostly the endoplasmic reticulum (ER), is controlled

by the inositol trisphosphate receptors and ryanodine receptors [10]. The high calcium

level inside the ER is controlled by the sarco-endoplasmic reticulum calcium ATPase

pump that transports calcium ions from the cytosol to the ER.

In addition to the ER, mitochondria can also play the role of calcium buffers by

absorbing calcium ions during cytosolic calcium elevations via the calcium uniporter

and then releasing the calcium ions back to the cytosol slowly via the sodium-calcium

exchange [24].

Variation in the intracellular concentration of Ca2+ ions, [Ca2+]i(t) ≡ ZCa(t),

is governed by the flow of these ions through the cell membrane via voltage gated

channels, as well as by uptake and release by the ER as a storage device. These

properties and more are discussed in many research papers [33, 12], including a very

informative review and summary by Falcke and colleagues [93].

Earlier work on coupling voltage and calcium dynamics [31, 76], as well as the

dynamics of Ca2+ uptake and release [47] independent of its connection to voltage

dynamics of Na+ and K+ ion flow, provide the foundation for the model we discuss

here. The presence of Ca2+ channels and their interaction with voltage dynamics in

HVC neuron cells has been established by [22]. These results have strongly motivated

us to explore the inclusion of Ca2+ dynamics in the model utilized in conjunction with

our analysis of experiments on HVC neurons [4].

Ca2+ ions are released and stored in the ER predominately through the media-

tion of inositol 1,4,5-triphosphate (IP3) in many cell types [93], and we will incorporate

a model of these processes in our overall model of the cellular dynamics. This uptake

and release via IP3 mediation has been suggested as a source of Ca2+ oscillations in



74

the work of Houart, et al [47], and we adopt their model, with a faster time scale,

compared to their original idea of its role in more global rhythms of animals. This is

not the only candidate for incorporating calcium dynamics into neuronal processes;

we have analyzed two other models of Ca dynamics with some care [31, 76], but we

do not report on them here.

Examples of the important role of calcium in intracellular dynamics abound.

For instance, the permeability of some potassium channels in the cellular membrane

are affected by the presence of calcium, and membrane calcium channels themselves

may be voltage-gated [51, 84]. The interplay between these two mechanisms acts to

regulate firing patterns [18]. Additionally, calcium is known to be a major determinant

in the potentiation and depression of excitatory synaptic strength, and thus is expected

to play an important role in memory and learning. This is widely thought to underly

how networks of neurons “rewire” and learn. While these processes are certainly

important, they act on a much longer time scale than the interacting voltage and

calcium processes we include in our model.

The main issues we address in this paper are those raised when the relatively

slow dynamics associated with Ca2+ ion uptake and release interact with the much

faster voltage dynamics to produce chaotic behavior. These are issues in using methods

of data assimilation to estimate parameters and unobserved state variables using time

series of observed quantities from experiments.

We do not yet use any of these models in the analysis of experiments in this

paper, but we perform “twin experiments”. In these we generate data by solving the

model with known parameters, and then by presenting observables such as membrane

voltage V (t) or intracellular Ca2+ concentration ZCa(t) to the model, we are able to
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examine our estimation methods in a controlled context.

When additional complex dynamics is introduced into a neuron model, such

as the intracellular calcium dynamics we present here, the synchronization manifold

of the model may become unstable [5]. This can make it impossible to estimate

unknown parameters and unobserved states with voltage measurements alone, raising

the following interesting questions:

• How do calcium dynamics effect neuron behavior?

• How many measurements are needed to synchronize such a neuron model with

observed data after the introduction of calcium dynamics?

• If other measurements are required in addition to membrane voltage, what can

play that role?

We do not have full answers to these questions. However, in this paper, we

construct a conductance-based neuron model, into which we couple a detailed model

of intracellular calcium dynamics. Using this model, we investigate the estimation

problems through numerical experiments to give a clear image of the biophysical issues

raised via calcium dynamics. We will show that voltage measurements are not enough

to ‘cure’ the instabilities just noted, and we will address a solution to this. When we

move from simulations to experimental data, we expect to encounter the same issues

in a richer context.
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5.3 Models of Voltage Plus Calcium Dynamics

5.3.1 Dynamics of Voltage Dependent Channels

We now describe the coupled model of voltage and Ca2+ dynamics, beginning

with the membrane voltage and currents. This is a single-compartment point neuron

model, with ion channels comprising standard Na+, K+, and leak channels coupled

to additional currents seen in the work of [22]: two voltage gated Ca2+ channels

ICaL(t) and ICaT(t); an h channel Ih(t) with a long time constant and operating

primarily in the hyperpolarized regime; and, crucially, a potassium channel IK/Ca

whose conductance depends on the intracellular calcium concentration ZCa(t). The

consequences of the presence of IK/Ca are outlined in Section (5.3.2).

Table 5.1: Parameter values in the voltage dynamics: gx’s are the conduc-
tances of currents, Ex’s are reversal potentials, κK/Ca is the threshold for Hill
function, and Cm is the membrane capacitance.

gNa 450 nS ENa 45 mV gK 50 nS EK -90 mV
gCaL 10 nS ECaL 85 mV gCaT 3 nS ECaT 85 mV
gK/Ca 2 nS EK -90 mV gh 4 nS Eh -30 mV
gL 2 nS EL -70 mV κK/Ca 0.35 µM Cm 100 pF

With these currents, the HH equation for the voltage dynamics has the form

Cm
dV (t)

dt
= INa(t)+IK(t)+Ileak(t)+ICaL(t)+ICaT(t)+IK/Ca(t)+Ih(t)+Iapp(t), (5.2)

where Cm is the membrane capacitance and Iapp(t) is an externally applied current
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selected by us. The ion currents themselves are given by

INa(t) = gNa [m0(V (t))]3 h(t) (ENa − V (t)) (5.3a)

IK(t) = gKn(t)4 (EK − V (t)) (5.3b)

IL(t) = gL (EL − V (t)) (5.3c)

ICaL(t) = gCaLs0(V (t)) (ECa − V (t)) (5.3d)

ICaT (t) = gCaT [aT0(V (t)) bT0(rT (V (t)))]3 (ECa − V (t)) (5.3e)

IK/Ca(t) = gK/Ca
ZCa(t)4

ZCa(t)4 + κ4
K/Ca

(EK − V (t)) (5.3f)

Ih(t) = gh [0.3 rf (t) + 0.7 rs(t)] (Eh − V (t)) . (5.3g)

The gating variables X(t) = {h(t), n(t), rT (t), rf(t), rs(t)} obey first-order kinetics

according to the equations

dX(t)

dt
=
X0(V (t))−X(t)

τX(V (t))
, (5.4)

where the voltage dependence of the X0 and the τX ’s are given in Table 5.2. The

other four gating variables {m, s, aT , bT} are assumed to have fast time constants, so

they do not have their own dynamics and in Eqs.(5.3) they are set to X0(V ).

As it stands so far, ZCa(t) only plays the role of an external time dependent

forcing of the neuron through the Hill function kinetics in IK/Ca(t), as we have not yet

introduced a dynamical equation for ZCa(t) itself. Note that ZCa(t) would have also

entered into the equations for ICaL(t) and ICaT(t) had we used the GHK form for the

voltage/current relation. We did examine the effects of the change from the ohmic

current dependence in ICaL(t) and ICaT (t) we use here to the full GHK form of these
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currents arising because of the substantial difference in Ca concentration within and

without the cell. These was no visible difference in the results we present relevant to

our main question of the ability to estimate the states and parameters of the model

neuron using voltage measurements alone. We retain the ohmic form here recognizing

that use of the GHK formulation may be important elsewhere.

The model we used in [4] for describing the experimental data on stimu-

lus/voltage response experiments we have conducted on HVC neurons comprised

these currents, absent the IK/Ca(t) current, along with additional Na and K currents.

The manner in which some voltage dependent conductances, especially Ih(t), was

represented there is different in that model, and the Ca currents used GHK [51]

voltage current relations reflective of the 10,000:1 ratio of extracellular to intracellular

Ca concentrations. As we are concentrating here on the role of the added slow Ca

dynamics to be described in a moment, we adopted a subset of the full model used

earlier.

When we utilize the lessons from the “twin experiment” analysis of this V+Ca

model and select models with which to analyze the observed laboratory data, we

will examine several variants, all with the same core issue as explored here, but with

somewhat different realizations of the Calcium dynamics. To proceed we select one

version of Calcium dynamics: the model of Houart, et al [47].

5.3.2 Coupling Ca2+ into voltage dynamics

We introduce a calcium-dependent potassium current IK/Ca as the first ingre-

dient in coupling the voltage and calcium dynamics. The conductance of this channel
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depends on ZCa(t) through a Hill function, which has the generic form

H(x, κx, n) =
xn

xn + κnx
(5.5)

where the Hill coefficient n is a positive integer. This type of IK/Ca is also referred

to as an SK current, distinct from a so-called BK current, whose conductance has

dependence on both voltage and intracellular calcium [84]. This gives rise to a K/Ca

current of the form

IK/Ca(t) = gK/Ca
ZCa(t)4

ZCa(t)4 + κ4
K/Ca

(EK − V (t))

= gK/CaH(ZCa(t), κK/Ca, 4)(EK − V (t)). (5.6)

The choice n = 4 gives it a high sensitivity to ZCa(t) and is widely used in similar

analyses [67, 31]. Additionally, we selected κK/Ca = 0.35µM since intracellular calcium

levels are normally about 0.1 µM. This means only a slight rise in internal calcium

levels are required to activate IK/Ca, which suppresses spiking behavior and “turns off”

bursts. Since calcium levels are generally about 104 times larger in the extracellular

medium than in the cytoplasm, this yields a relatively small influx of Ca2+ ions.

With an appropriate stimulus, a model containing only INa and IK would

produce a continuously repeating spike train. The introduction of IK/Ca means the

neuron model intermittently activates another K current which drives the voltage

response of the neuron towards EK = −90mV and turns off spiking behavior of

the neuron. Combined with the hyperpolarization-activated Ih and ICaL, the neuron

model’s subthreshold behavior is greatly enriched, as will be seen in the simulations

to follow.
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5.3.3 Modeling intracellular Ca2+ uptake and release

To fully model the complexity of calcium dynamics, we are looking for a model

that exhibits various complex behaviors. Dupont and Goldbeter proposed a model

to study complex Ca2+ oscillations [26], later studied in detail by [14, 47]. They

demonstrated that the model shows complex oscillatory phenomena such as limit cycle

oscillations, bursting, quasiperiodic oscillations, and deterministic chaos [47]. In many

cell types, the uptake and release of Ca2+ ions by the ER is mediated predominantly

by IP3 [93]. This uptake and release via IP3 mediation has been suggested as a

source of intracellular Ca2+ oscillations. The complex ZCa(t) oscillations arising in

this model are due to the release of Ca2+ from internal stores, with dynamics based

mainly on mechanisms of Ca2+-induced Ca2+ release (CICR) that take into account

the Ca2+-stimulated degradation of IP3 by a 3-kinase [47].

CICR was originally found to occur in muscle and cardiac cells, and was later

found in a variety of other cells including neurons [19]. Solovyova et al. have observed

CICR in cultured rat dorsal root ganglia neurons [88]. However, they also observed

CICR triggered by Ca2+ entry through voltage-gated Ca2+ channels. The sum of the

two voltage-gated calcium currents ICaT and ICaL may therefore act as a calcium-

release stimulus. We thus used the intracellular calcium dynamics model of Houart

et al. [47], but with the replacement βinput → βinput (IL(t) + IT (t)) for the (previously

constant) external stimulus. This change now acts to couple the calcium dynamics to

the membrane voltage.

There are three dynamical quantities of interest in the intracellular medium.

The first is the cytosolic calcium concentration ZCa(t), the second is the calcium

concentration ZER(t) in the endoplasmic reticulum, and the third is the concentration
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Table 5.3: All the parameters values entering the dynamics of the cytosolic
calcium concentration ZCa(t), the calcium concentration, and the endoplasmic
reticulum ZER(t).

Parameter Value Parameter Value
νo (µM s−1) 3.22 γpump (µM s−1) 6
βinput (µM s−1pA−1) 2× 10−5 κp (µM) 0.1
γleak(s−1) 10 νsynthesis (µM s−1) 1.83
γCICR (µM s−1) 30 α0 (unitless) 1.5
κcCa (µM) 0.6 γIP3leak (s−1) 13
κcER (µM) 0.3 γdegradation (µM s−1) 50
κcIP3 (µM) 0.1 κdIP3 (µM) 0.3194
γERleak (s−1) 1 κpCa (µM) 1

of catalytic IP3, ZIP3(t). Following [47] we adopt

dZCa(t)

dt
= ν0 + βinput(ICaL(t) + ICaT(t))− γleakZCa(t)

+γCICR H(ZCa(t), κcCa, 2) H(CaER(t), κcER, 2)

+γERleakZER(t)− γpump H(ZCa(t), κp, 2),

dZER(t)

dt
= −γCICR H(ZCa(t), κcCa, 2) H(ZER(t), κcER, 2)

−γERleakZER(t) + γpump H(ZCa(t), κp, 2),

dZIP3(t)

dt
= νsynthesis + α0βinput(IL(t) + IT (t))− γIP3leakZIP3(t)

−γdegradation H(ZIP3(t), κdIP3, 1) H(ZCa(t), κpCa, 4),

where the form of H(x, κx, n) is given in Eq.(5.5).

In this model we assume free calcium ions are uniformly distributed across the

cytosol. This avoids the additional complication of introducing a partial differential

equation to model the spatial dependence of the ZCa(t) dynamics. This simplification

is consistent with experimental results [88].
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5.4 Data generation for twin experiments

As with previous V+Ca models [31, 76], we focus our attention in this paper

on chaotic oscillations. This requires the parameterization of the calcium dynamics to

lie within a particular parameter range specified in [47]. We adopted the intracellular

calcium model of [9, 47] with the exception that all time constants were reduced by

a factor of 60, so that the calcium oscillations would occur on the scale of seconds

rather than minutes. Since the time between voltage spikes is on the order of some

milliseconds, this rescaling makes the voltage behavior switch between a resting state

with no spiking and a firing state with repeated production of action potentials lasting

about 10 spikes. There is no loss in generality or information here, since the length of

a burst is still much longer than that of single spike. This also allows the model to

undergo several bursts within a reasonable timescale for numerical integration. Finally,

the scaling coefficient (βinput in the model) of the calcium currents was adjusted to

limit the stimulus to the chaotic regime according to the stability diagram in [47].

The model was integrated with an adaptive Runge-Kutta 4th order scheme

(see [79], Section 16.2), using a maximum integration time step ∆t = 0.02 ms and an

error tolerance ε = 10−8. Fig. 5.1 shows the resulting time course of the membrane

voltage V (t) and cytosolic Ca2+ concentration ZCa(t) with a constant applied stimu-

lating current Iapp = 600 pA. The main characteristic in the behavior of the model

neuron is the production of action potential bursts with varying durations controlled

by the variation of ZCa(t).

As in the other models of voltage plus calcium dynamics, we find irregular

bursting of the action potential. The model neuron enters into a bursting period

of action potentials when ZCa(t) decreases. Low ZCa(t) cuts off the current IK/Ca(t)
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Figure 5.1: Time series for the V+Ca model. Top Panel Time course
of membrane voltage Bottom Panel Time course of the cystolic calcium
concentration ZCa(t) and time course of the calcium concentration in the ER
ZER(t).

allowing the neuron to depolarize countering the tendency of IK/Ca(t) to drive the

neuron to EK ≈ −90 mV which involves deep hyperpolarization. Within a burst the

spiking frequency is sensitive to the change of ZCa(t) through the current IK/Ca(t)

This is called spike frequency accommodation; however, it is not visible in Fig. 5.1.

During a burst, calcium ions flood into the cytosol through voltage-gated calcium

channels. The free calcium ions in the cytosol induce release of Ca2+ from the ER,

an internal calcium store, by CICR. This, along with the membrane calcium current,

greatly increases ZCa(t) during a burst. As ZCa(t) rises, IK/Ca(t) activates, driving

the neuron back to a hyperpolarized state. This competition between polarizing and

depolarizing processes, results in chaotic oscillations in the parameter range we have

selected.
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To determine whether the irregular behavior visible in Fig.5.1 is chaotic, we

evaluated the largest Lyapunov exponent for the observed time series, and we display

that in Fig.5.2. We see that for βinput, which sets the scale of the driving force

from voltage gated calcium channels into the ER dynamics, just above zero to about

4× 10−5 µM/(ms pA), a positive Lyapunov exponent appears. This is similar to the

behavior of the other two Voltage plus Ca dynamical models we analyzed [31, 76].

Lyapunov exponents are obtained by a recursive QR decomposition of the

Oseledec matrix [1]. For each βinput, a trajectory of T = 600 sec is generated. To

avoid overflow the Jacobian matrices, DF (x, n∆t) n = 1, 2, . . . are calculated by

integrating the variational equations with DF (x, (n − 1)∆t) equal to the identity

matrix. If ∆t is too small, of the order of the spiking period (1ms), the Lyapunov

exponents exhibit spiking behavior. They can be made smoother by averaging over

the time of voltage bursts, namely over ∆t = 1500ms.

5.5 Estimation of Model States and Parameters

from Sparse Data

The central question we address in this paper has to do with the number of

measurements required to permit accurate estimation of the fixed parameters and

unobserved state variables of the model using time series of the data. There is a direct

connection between the ability to synchronize the data with the model output and

the ability to accurately estimate unknown parameters and unobserved state variables

in the model [4]. If this synchronization is absent, then the surface over which one

searches in the estimation procedure has many local minima. When synchronization
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Figure 5.2: The largest Lyapunov exponent of the full V+Ca model as a
function of the parameter βinput.

occurs, this surface becomes quite smooth and estimation proceeds with accuracy.

This connection is present here as well, as we shall show.

We introduce information about the data into the model dynamics through

terms in the dynamical equation for state variables xl(t) which are observed. These

have the form gxl (yl(t)− xl(t)) ; l = 1, 2, ..., L, where the gxl are constant, nonzero,

and positive coupling strengths for the measured components. We will consider two

kinds of data within the V+Ca models: measurements of the membrane voltage

V (t) y1(t) = Vdata(t) and measurements of the cytosolic calcium concentration ZCa(t)
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y2(t) = Cadata(t). Accordingly, we modify the equations in the model to be

dV (t)

dt
= FV (V (t), ZCa(t),Y(t)) + gV (y1(t)− V (t)) (5.7a)

dZCa(t)

dt
= FCa (V (t), ZCa(t),Y(t)) + gCa (y2(t)− ZCa(t)) , (5.7b)

where FV (V (t), ZCa(t),Y(t)) and FCa(V (t), ZCa(t),Y(t)) are the vector fields in the

model as outlined in Section 5.3. The dependence on V (t) and Ca(t) is written

explicitly for clarity. The rest of the dynamical variables, whose equations remain

unchanged, are collected in Y(t).

Our overall goal is to provide a method for accurately estimating the parameters

and state variables of a model of neuron dynamics when we observe a sparse subset of

the state variables in the model. The general formulation of this is given in [4], and

here we use the variational approach which minimizes a cost function comparing the

model output with the data that has been collected, subject to the dynamical equations

of the model. The model thus acts as a nonlinear filter which pass information in the

data along to the unobserved state variables and constrains the parameters.

In the present case we have a model with many gating variables, fixed parame-

ters, and dynamical variables, and we seek to determine all of these parameters and all

states from observations over a temporal window [0, T ]. If we have good estimations

of the parameters from data in this window and we have accurate estimations of

the states at t = T , we can use the model differential equations to predict observed

behavior for t > T . We consider here the possibility of measuring two state variables,

the membrane voltage V (t) and the intracellular calcium concentration ZCa(t). From

one or both of these time series observations during [0, T ], we want to estimate the
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fixed parameters and all the gating variables and other state variables at T .

5.5.1 Estimation with V(t) Measurements Only

We first ask if we can estimate parameters and states of the V plus Ca system

with voltage measurements alone using a coupling term as in Eq.(5.7)? To answer this

we look at the synchronization error as a function of the selected value of the initial

condition of calcium concentration for the model ZCa(t = 0)Model minus the known

initial value for the calcium concentration in the data ZCa(t = 0)Data when all other

parameters fixed to their known values in generating the data, this should have a zero

when ZCa(t = 0)Model is chosen correctly. We evaluate this synchronization error, or

cost function, with gV fixed at gV = 2.0ms−1,

CSE (ZCa(t = 0)Model − ZCa(t = 0)Data, gCa) =
2

N

N∑
n=N/2

(y1(tn)− V (tn))2 , (5.8)

and for various values of gCa. This is displayed in Fig.5.3. V (tn) is a time series of

the model output obtained by forward integration of Eq.5.7 starting with a different

initial condition than that used to generate the data. The first half of the integration

data points containing the initial transient behavior is discarded. The synchronization

error is evaluated using the model output voltage only, even though in this twin

experiment we know all of the other state variables because we generated the data. In

a laboratory experiment, we would only know the observed and model output voltages,

and, perhaps, the observed and model output ZCa(t).

In generating the model trajectories, we fixed all parameters and initial

state values at the values used in generating data except for the initial condition
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Figure 5.3: Synchronization error as a function of the deviation of the ZCa(t)
initial condition from its actual value: ZCa(t = 0)Model − ZCa(t = 0)Data. The
coupling of voltage data is fixed at gV = 2.0 s−1, and a selection of values
of gCa are listed in the legends: when gCa = 0 ms−1, the synchronization
manifold exhibits surface with many local minima. This is the case when no
measurements of ZCa(t)Data are made. Next we select positive values of gCa:
gCa = 2.0 ms−1 (the synchronization error is shown multiplied by a factor of
5) and gCa = 5.0 ms−1 (the synchronization error is shown multiplied by a
factor of 10) display the smoothing process of the synchronization manifold
as the gCa coupling strength increases.
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ZCa(t = 0). To estimate this initial condition, we should minimize the synchro-

nization error over a range of values of ZCa(t = 0)Model. In Fig.5.3 we display

CSE (ZCa(t = 0)Model − ZCa(t = 0)Data, gCa) versus the difference ZCa(t = 0)Model −

ZCa(t = 0)Data for various values of the calcium coupling gCa and a fixed value of the

voltage coupling gV . To estimate ZCa(t = 0)Model, we could search over the surface

shown by some form of iterative procedure. However, with gCa = 0 s−1, which means

no calcium data are presented, the surface is peppered by local minima, and local

optimization procedures will fail to find the correct ZCa(t = 0)Model, in general.

With gCa = 0, then, namely no information about ZCa(t)Data passed to the

model, the surface over which we must search for ZCa(t = 0)Model has multiple local

minima, and this impedes accurate estimation.

5.5.2 Estimation with V(t) and ZCa(t) Measurements

We next increased gCa to 2.0 s−1 and again computed the synchronization error.

Note that in the figure, this synchronization error is multiplied by a factor of 5 so that

it is clearly seen on the same scale as the surface for gCa = 0 s−1. While the surface

is smoother, there remains a visible local minimum away from zero, and again local

optimization procedures are not suitable, especially if there are more local minima

not shown in the plot.

The final curve in Fig.5.3 was computed with gCa = 5.0 s−1. The search surface

is smoothed out enough so that essentially any search algorithm will result in the

correct answer. This display has the synchronization error multiplied by a factor of

10 so that it is clearly seen on the same scale as the surface for gCa = 0 s−1. Thus,

increasing gCa with gV fixed and large enough results in the synchronization of the
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data and the model output, both of which are chaotic, as well as smoothing the surface

over which a search must proceed.

We can examine the effect of varying both gV and gCa using the joint synchro-

nization error in V (t) and ZCa(t) measurements:

CSE (gV , gCa)V&Ca =
2

N

N∑
n=N/2

[
(V (tn)data − V (tn))2

S2
V

+
(ZCa(tn)data − ZCa(tn))2

S2
Ca

]
.

(5.9)

The constants SV and SCa are selected to scale the V (t) and ZCa(t) dynamical ranges to

be nearly equal. For this purpose we set Sk = |max xk−min xk| for the kth contribution

to SE, where the minimum and the maximum are taken over the observation window.

The result is shown in Fig.5.4 with SV = 82.5 mV and SCa = 0.236 µM.

This figure demonstrate that when either gV or gCa is zero, the synchronization

error does not go to zero leading to inaccurate estimations of the parameters and state

values determining the model output.

5.6 State and Parameter Estimation; Prediction

after Estimation

So far we have established that in coupling measurements of V (t) and ZCa(t) into

the overall cellular dynamics via Eq.(5.7), we are able to transmit enough information

to the model to smooth out the search surface of the synchronization error. The

couplings gV and gCa are not part of the biophysics of the model, however. After they

are used to synchronize the model output and the data, they should be disposed of

when predicting data beyond the observation window.
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Figure 5.4: Synchronization error as a function of two coupling strengths gCa
and gV : CSE (Eq.(5.9)) remains at nonzero values when either gCa or gV is
equal to zero. This indicates that when only V (t) or only ZCa(t) are observed,
it does not allow synchronization of the model output with the data. However,
this Figure shows that the synchronization error does go to zero when gCa
and gV are both large enough. This indicates that two measurements will
allow accurate estimation of the parameters and unobserved states in the
V+Ca model. At the end of the observation window, t = T , we are then able
to use the model with estimated parameters and initial conditions at t = T to
predict the response of the neuron for t > T . This last step is the validation
criterion for the model itself.
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To allow these couplings to regulate the instabilities on the synchronization

manifold, and then send them to zero when the estimation procedure is completed,

we now explicitly make the coupling strengths gV and gCa functions of time and

treat gV (tn) and gCa(tn) as additional parameters to be estimated according to our

estimation protocol. In principle this means they will be small at times along the orbit

when the synchronization manifold is nearly stable and larger in unstable regions.

More precisely, we introduce the coupling strengths as additional penalties into the

cost function Eq.(5.9) as

CSE =
2

N

N∑
N/2

[
(V (tn)data − V (tn))2

S2
V

+
(ZCa(tn)data − ZCa(tn))2

S2
Ca

+ gV (tn)2 + gCa(tn)2

]
,

(5.10)

which is to be minimized subject to Eq.(5.7). The minimization was done using the

publicly available nonlinear optimization software IPOPT [95, 94, 60]. This estimates

all the model parameters, all the model state variables at time within the observation

window, and estimates gCa(tn) and gV (tn).

5.6.1 Prediction with only V (t) Measurements

First, we performed the state and parameter estimation for the full model but

with voltage measurements alone. This was done to verify the conclusion made

above that it is not feasible to estimate unobserved states with voltage data only. We

performed the optimization with 80,000 voltage data points spaced in model time by

∆t = 0.02 ms, with all parameters fixed and an external stimulus Iapp = 600 pA. The

estimated states were then used to continue integrating the model forward with the

same Iapp but with gV = 0ms−1, gCa = 0ms−1.



94

Since, when only V (t) is observed, the SE surface should be riddled with local

minima, any “optimal” solution found by the estimation should make the model

predict future solutions poorly. Indeed, this was the case, and an example inaccurate

prediction is shown in Fig.5.5.
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Figure 5.5: Results from dynamical state estimation for the V+Ca model
with only voltage data presented (gCa = 0 s−1). 80,000 voltage data points are
used for estimation; this is an assimilation window of 1600ms. All parameters
model are fixed, and all the states are to be estimated. The result shown is
the integration based on using the estimated state variables at t = 0 ms as
initial conditions then integrating the dynamical equations with gV = 0 ms−1

using the estimated initial conditions. The disagreement between estimate
and data shows that the information from voltage observations alone is not
enough to accurately estimate all the unobserved states. The known data are
in black. Estimates are shown in red.
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Figure 5.6: Results from dynamical state estimation for the full model with
both V (t) and ZCa(t) presented to the model. 80,000 voltage data points
and 80,000 ZCa(t) data points are used for estimation; this is an assimilation
window of 1600ms. All the states except V (t) and ZCa(t) are to be estimated.
In this case we also estimated the parameters listed in Table 5.4. Other
parameters in the model are fixed. Prediction is made by integrating the
model forward using the estimated parameters and estimated state variables at
T = 1600ms as initial conditions. A vertical line indicates where estimations
terminate and prediction begins. The known data are in black. Estimates
are in red, and predictions are shown in blue.
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Table 5.4: Estimated parameters and comparison with their true values.
Both V (t) and ZCa(t) data were presented to the model neuron.

Parameter Value in Data Estimate
gNa (nS) 450 450.02610
gK (nS) 50 50.00015
gL (nS) 2 2.00124
gCaT (nS) 3 2.40044
gCaL (nS) 10 10.00011
gh (nS) 4 3.37253
gCaK (nS) 2 2.00110
ν0 (µM s−1) 3.22 3.22316

βinput (µM s−1pA−1) 2× 10−5 1.99973× 10−5

5.6.2 Prediction with both V (t) and ZCa(t) Measurements

When we presented both voltage and calcium measurements to the model,

the estimation using IPOPT returned accurate state and parameter values which gave

the model strong predictive behavior. The resulting estimates are listed in Table 5.4.

Note that all of the conductances were very accurately estimated except gCaT and

gh. This is probably because ICaT and Ih are triggered by large hyperpolarizing

currents [22], but we stimulated the neuron with a contant depolarizing current. In

our model, however, IK/Ca can hyperpolarize the neuron below threshold and thus

activate ICaT and Ih to some extent, so inaccurate estimates for these two maximal

conductances appear not to effect the value of SE very much. If the neuron were

driven by a large hyperpolarized step current, the estimates of these quantities might

be improved significantly.
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5.7 Discussion and Summary

We have shown that the use of a neuron model which couples membrane voltage

dynamics to the relatively slow dynamics of intracellular calcium uptake and release

requires more than a measurement of the membrane voltage trace alone to estimate

model parameters and initial conditions when the parameter values give the model

chaotic behavior. Specifically, we have shown that simultaneous measurements of

voltage V (t) and cytosolic calcium concentration ZCa(t) are sufficient to regularize

this system and estimate the maximal conductances of the membrane currents.

The calcium components in our V+Ca model are intrinsically chaotic. Complex

forms of calcium oscillations are typically observed in biological phenomena, oscillations

express periodic as well as nonperiodic behavior. [14, 98, 38, 8, 20, 40, 75, 29, 87, 85, 61]

The erratic behavior may often be thought as to be the consequence of stochastic

effects, but it can also be generated by a deterministic system operating in the chaotic

regime. The model we used here that was found exhibit both aperodic oscillation

and bursting behaviors in its chaotic regime. (Fig.7 in [25]) Similar calcium bursting

behavior characterized by irregular number of secondary spikes and an irregular spacing

between main spike and aperodic oscillation with varying amplitudes are observed

in hepatocytes under different stimuli. [23, 83, 41] Hazledine et al. found the largest

Lyapunov exponent is positive for calcium oscillation data obtained from certain

legume plants, which directly identifies that calcium oscillation is chaotic. [43, 61]

The non-periodic nature of calcium oscillations is related to the concentration

of extracellular agonists such as hormones and neurotransmitters, thereby dictating

that the external signal is encoded in terms of the temporal pattern of calcium

oscillations, the so-called frequency encoding calcium signals. [98, 38] It is not yet
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known to what extent this chaotic nature of oscillations is essential to the cell function

(muscle/neurons/etc); however, it had been hypothesized that chaotic oscillations is

likely a common feature of calcium signal transductions where chaos permits greater

flexibility in the regulation of protein activity than either stochastic or stable systems,

allowing differential responses in multifunctional signaling pathways. [8, 61]

Our focus here is on properties of coupled voltage and calcium dynamics as

it relates to our ability to use observed time courses in individual cells, as well as in

networks, to determine the biophysical cellular processes and the network connectivity

in networks of neurons.

We used “twin experiments” in which model output trajectories with known

initial conditions and parameter values were used as sources of experimental ‘data’

in the dynamical synchronization procedure. This is to be compared to a realistic

experimental setting in which only a limited number of physical quantities can be

measured and in general with a non-negligible level of noise [4]. The advantage of

using twin experiments is that they provide a controlled setting in which we have

exact knowledge of the entire state of the system. While the true metric of success is

the estimation and accurate prediction of the measurable quantities, twin experiments

give one the opportunity to investigate the efficacy of the data assimilation methods

on the entire model space, and to possibly eliminate unnecessary or degenerate degrees

of freedom.

When such a V+Ca model is applied to analyze experimental data, knowledge

of the neuron’s membrane potentials and the intracellular Ca2+ concentration is needed

to interpret Ca2+ signalling. Loading calcium indicators into neurons has been widely

used in recent years. Fluorescent Ca2+ indicators can be loaded into biological neurons



99

through the same microelectrodes used for recordings the intracellular voltage thereby

allowing simultaneous electrophysiological recordings and ratiometric calcium imaging.

In the early years, calcium indicators were delivered through sharp microelectrodes both

in vitro [48] and in vivo [91]. In more recent years, calcium dyes are delivered through

whole-cell patch-clamp micropipettes [64, 101, 28, 74] and the whole-cell recordings

are generally performed under visual guidance using two-photon imaging [49, 57, 92].

When using the kind of model explored in this paper to analyze data from

indivudal neurons [4] it may suffice to use the single compartment approach described

here. However, we recognize that when neurons with voltage and Ca dynamics are

to be used in biophysical realizations of networks, we will need to introduce spatial

representations (compartments) for dendritic process where the Ca dynamics resides,

and axonal processes to facilitate communication of neural activity within the network.

Chapter 5, in full, is a reprint of the material as it appears in Jingxin Ye,

Paul J. Rozdeba, Uriel I. Morone, Arij Daou, Henry D. I. Abarbanel, Estimating

the Biophysical Properties of Neurons with Intracellular Calcium Dynamics, Physical

Review E, 89(6), 062714 (2014). The dissertation author was the primary investigator

and author of this paper.



Appendix A

Annealing code minAone User Guide

A.1 About minAone

The annealing code minAone described in this document is used for calculating

action levels of dynamical systems. The code is developed as an extention of minAzero

written by Bryan Toth and Chris Knowlton. That is where the name minAone comes

from. In another aspect, following the lowest action level A0, A1 represents the

second lowest one, which is an interesting quantity we care about and has significant

application in statistical data assimilation.

A.2 Problem Statement

Given a dynamical system modeled by D-dimensional discrete map

xa(n+ 1) = fa(x(n)), a = 1, . . . , D

100
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the probability distribution of its states can be expressed as P (X|Y ) = exp(−A0),

when L-dimensional obersations Y are present. If one assumes both measurement

noises and model error are independent and gaussian, the action A0 has the format of

A0(X) =
m∑
n=0

Rm(n)

2

L∑
l=1

[xl(n)− yl(n)]2 +
Rf

2

m−1∑
n=0

D∑
a=1

[xa(n+ 1)− fa(x(n))]2. (A.1)

where Rm and Rf are the inverse of variances.

The annealing method is based on the observation that the minima solution

Xq of A0 at Rf = 0 is xl(n) = yl(n), the other D − L components of the model state

vector are undetermined, and the solution is degenerate. As we increase Rf , the action

levels split, and depending on Rm, Rf , L and the precise form of the dynamical vector

field f(x), there will be 1,2,. . . minima of A0.

A.3 Annealing Procedure

The annealing process proceeds as follows: with very small initial Rf , we

call it Rf0, solve the (m + 1)D-dimensional search problem with an optimization

algorithm that seeks minima of A0(X). Start the search with a set of trial paths

whose components are selected from a uniform distribution within limits suggested by

examining the times series generated by the model x→ f(x) (or any other selection

process for the initial guess). This will generate a collection of approximate paths Xq.

Increase Rf by a small increment (we choose Rf = {Rf0α
β}, where α = 2, β = 0, 1, . . .

in our examples), and using the paths found for the smaller Rf as initial guesses, find a

new set of approximate Xq. Continue this process until the lowest action level path X0

produces a A0(X0) near expected value, which can be identified from our knowledge
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of measurement noises. In our example, as the values [yl(n)− xl(n)] ∼ N (0, σ2) by

our choice, the measurement error term
∑m

n=0

∑L
l=1[(xl(n) − yl(n))/σ]2/2 has a χ2

distribution with L(m + 1) degrees of freedom. The mean and uncertainty of this

distribution over different choices of noise waveforms are (m+1)L/2 and
√

(m+ 1)L/2,

respectively.

After identifying the global minima and other local minima of A0, we can

employ laplace method to approximate the expected value 〈G(X)〉 of a function G(X)

is

〈G(X)〉 =

∫
dX G(X) exp[−A0(X)]∫
dX exp[−A0(X)]

≈ G(X0). (A.2)

plus exponentially small corrections. If the action level A0(X
0) is substantially

less than the action level on the next path A0(X
0) � A0(X

1), all statistical data

assimilation expected values 〈G(X)〉 are given by X0 and fluctuations about that path

with exponential accuracy of order exp[−(A0(X1)− A0(X0))].

More details can be found in Ye, J., Kadakia, N., Rozdeba, P. J., Abarbanel, H.

D. I., and Quinn, J. C.: Improved variational methods in statistical data assimilation,

Nonlin. Processes Geophys., 22, 205-213, doi:10.5194/npg-22-205-2015, 2015

A.4 Installing Required Programs and Packages

This document will assume that the user is using a Linux distribution and has

basic compliers installed including gcc, gfortran and python.
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A.4.1 Python Packages

These python scripts link to the sympy library. To install these, use apt-get/yum

install sympy or download directly from sympy.org.

A.4.2 IPOPT

Download

Get it here: https://projects.coin-or.org/Ipopt

• Download and unzip latest version of IPOPT

• As of right now this is 3.11.7 - Efficacy of installation instructions may degrade

over time as packages are updated.

• Go into ThirdParty folder in the IPOPT directory then do the following com-

mands.

$ cd Blas

$ ./get.Blas

$ cd ../Lapack

$ ./get.Lapack

$ cd ../ASL

$ ./get.ASL

$ cd ../Metis

$ ./get.Metis

• Get the HSL subroutines from http://hsl.rl.ac.uk/ipopt

• Note that there are two releases for HSL - you will want the more complete one

that contains ma57, ma77, and ma97.

• While the freely available ma27 will work for many problems, the newer packages

are faster, work on larger problems, and can use multi-core architecture.
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• This will require filling out a form stating essentially that you are in academia

and waiting a couple hours for a link to download.

• Unpack the resulting library into the ThirdParty folder such that the path is

(IPOPT Path)/ThirdParty/HSL/coinhsl

Install

• Go to the IPOPT directory

$ mkdir build

$ cd build

$ ../configure

• Note that if you have lapack or blas installed previously you can use –with-lapack

and –with-blas to link to those packages

• If something goes wrong refer here

http://www.coin-or.org/Ipopt/documentation/node19.html

• Assuming everything worked:

$ make

$ make test

$ make install

A.5 minAone.py Description

minAone is a python script used to write C++ code and compiler instructions

using the IPOPT (Interior Point OPTimization) libraries to estimate unmeasured

states and parameters in dynamical systems with limited measurements. The scripts

take a set of differential equations and state and parameter names provided by a text
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file ”equations.txt” and returns a set of C++ files consisting of a set of constraints

based on a discretized version of those differential equations. A second text file

’specs.txt’ allows for changes in run specific quantities state and parameter bounds, as

well as input files without the need to recompile.

List of Files

• discAone.py

-Discretizes equations and creates strings for Jacobian and Hessian Elements.

• makecppAone.py

-Writes C++ file linking to IPOPT libraries using strings from discAone.py

• makehppAone.py

-Writes header file for above

• makemakeAone.py

-Writes makefile for problem. Will need to be changed based on install location

of IPOPT

• makeoptAone.py

-Writes settings file for IPOPT

These files can be put in /usr/local/sbin for ease of use

Modify makemakeAone.py

The Makefile compiles C ++ object files and links them with the installed

IPOPT libraries, in order to create an executable. Since the location of the IPOPT
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libraries, as well as the flags used to compile them, differ between installations, this

file will be unique to a given machine. Modification of the makemake.py script to give

correct Makefiles for a given machine consists of:

• Ensure that the IPOPT installation proceeded correctly, as evidenced by zero

errors for the make install step.

• In the IPOPT build directory, try to compile (make) one of the examples, for

instance at /build/Ipopt/examples/hs071 cpp.

• If this compiles and runs correctly, open the Makefile in this directory.

• Make note of the entries in the following fields of this Makefile: CXX, CXXFLAGS,

CXXLINK- FLAGS, INCL, LIBS.

• In makemake.py, replace the default entries for these fields with those given in

the example Makefile.

– makemakeAone.py is formatted differently than a Makefile, since it is a

python code generation script.

– Lines that begin with the # sign will be comments in the Makefile - leave

these alone.

– All lines must end with \n\in order for the Makefile to be generated

correctly.

– The best way to ensure that all the compile flags are correct is to copy and

paste from the example Makefile, ensuring that the end line characters are

in place.
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• The modification of makemake.py must only be done once for a given machine,

unless IPOPT is reinstalled for whatever reason.

A.6 Running the Code

minAone uses two text documents (along with any needed data files) as input,

equations.txt and specs.txt. Once these are filled

equations.txt contains information on the model and is used once for generating

the needed cpp and hpp files for the run. The file should be written as described

below in this order.

• The first line is the problem name, this name will be used to name the resulting

executable.

• The second line tells minAzero how many dynamical variables, parameters,

coupling terms, stimuli, functions, and measurements there are, in that order

as a comma delimited list. It is essential that these numbers are accurate as

minAzero uses this to know how many lines to read for each component of the

code.

• A list of every differential equation.

• The measurement term of the cost function. A penalty term for coupling terms

is suggested as any coupling to measurements is not present in physical systems.

• The names of all the variables. These must be the same as used in the differential

equations and should be multiple letters/and or numbers such that variable

name is contained in any other name or common function.
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• The names of parameters, names of couplings, names of data, and names of

stimuli, in that order. Again use fully unique names.

• Function names and number of arguments of that function separated by a comma.

Use a function if there is some component of the dynamics with a removable

singularity or other difficult numerical object that requires an alternative local

definition.

• Functions will require an additional file ’myfunctions.cpp’ containing the function

definition along with its jacobian and hessian (an example of this is included)

specs.txt contains run specific information such as file names, variable bounds, and

problem length. This file can be edited without recompiling the code.

• First line is the number of full steps the code will use. Because the code is

compiled using a midpoint method, the actual problem length will double this

plus one.

• Second line is the number of lines in each input file to skip. This allows for the

code to start at any point in a long data set.

• Third line is double the time step of the data. Again since a midpoint method

is used, the time step is for a whole step - which includes two points.

• If you wish to start at a non constant guess, you can put a 1 followed by a line

with an initial condition file. This file should have one column for each state. If

you do not want to include an initial condition file, use 0

• One line for each of the measured data file names. Each file should be a single

column.
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• One line for each of the stimulus data file names. Each file should be a single

column.

• For each variable, the lower bound, upper bound, and RF0 value separated by

commas.

• For each parameter a lower bound, upper bound

• One line for annealing settings, alpha, incresement of beta and maximum beta

separated by commas

Once everything is filled out and all data files are present, you can run the python

scripts:

$ minAone.py

$ make

$ ./(problem_name)_cpp

If data files are missing or too short, the code will segfault. The output file con-

tains annealing result for one path named like D5 M1 PATH0.dat. Each line of

D5 M1 PATH0.dat contains the optimal path at different values of beta. The first

three numbers are beta exitflag and action value, respectively. Exitflag can be 0 or 1.

1 means IPopt routines find the optimal path and 0 means it fails. The rest numbers

represent the optimal path.

beta exitflag action_value

optimal_path[x1(0) x2(0) x3(0) x4(0) x5(0) x1(1) x2(1) x3(1)

x4(1) x5(1) ... x1(NT) x2(NT) x3(NT) x4(NT) x5(NT)

p(1) p(2) ... p(NP)]
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A.7 Run in Parallel

One excute (problem name) cpp can obtain the result for only one random

initial path. To explore the landscape of action A0, we need to start from different

random paths and each of them will converge to different local minima. Since all those

paths are indenpendent from each other, it is easy to implement the calculation in

parallel using array job.

Here we give a example submission scripts on ccom-boom cluster

#!/bin/bash

#$ -t 1-100

#$ -N job_name

#$ -cwd

#$ -j y

#$ -M your@email.com

#$ -S /bin/bash

#$ -m beas

#$ -o ./output

#$ -e ./error

#$ -q batch.q

./problem_name_cpp $SGE_TASK_ID

Each path will be stored in individual file with the name like D5 M1 PATH0.dat,

D5 M1 PATH2.dat,...,D5 M1 PATH100.dat.

A.8 Examples

Two examples are provided: the first one is Lorenz96 D=5 to show the basic

settings of equations.txt and specs.txt. And the other example is NaKL to show

how to include external stimuli in equations.txt and specs.txt.
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A.8.1 Lorenz96 D=5

Lorenz96 D=5 Vector Field

dx1

dt
= x5(x2 − x4)− x1 + f

dx2

dt
= x1(x3 − x5)− x2 + f

dx3

dt
= x2(x4 − x1)− x3 + f

dx4

dt
= x3(x5 − x2)− x4 + f

dx5

dt
= x4(x1 − x3)− x5 + f

Lorenz96 D=5 equations.txt

# Problem Name

lorenz96

# nY,nP,nU,nI,nF,nM

5,1,0,0,0,1

# equations

yy5*(yy2-yy4)-yy1+FF1

yy1*(yy3-yy5)-yy2+FF1

yy2*(yy4-yy1)-yy3+FF1

yy3*(yy5-yy2)-yy4+FF1

yy4*(yy1-yy3)-yy5+FF1

# Objective/Cost function

4*(data1-yy1)*(data1-yy1)

# variable names

yy1

yy2

yy3

yy4

yy5

# parameter names

FF1

# data names

data1

# stimuli names
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Lorenz96 D=5 specs.txt

# Includes the problem length

80

# How much data to skip

# In case you do not want to start at the beginning of the data file

100

# Time step - this is twice the time step of the data,

# since the data includes time and midpoints.

0.02

# Data File names - input

x1.dat

# Data File name - stimuli

# No stimuli for this problem

# Boundary & initial conditions

# 0 for no initial data file, 1 for data file

# A data file must include values for all state variables

# at each time point.

0

# If above is 1, list name of data file next. If 0, no entry needed.

# State Variables:

# These are in the formats: lower bound, upper bound, Rf0

# y1

-15, 15, 0.01

# y2

-15, 15, 0.01

# y3

-15, 15, 0.01

# y4

-15, 15, 0.01

# y5

-15, 15, 0.01

# Parameters:

0, 20, 8.17

#annealing setting: R_f = R_f0*alpha^beta

#There are in the formats: alpha, incresement of beta, maximum beta

# here we have alpha=2, beta = 0, 1, 2, 3, ..., 29

2,1,30
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A.8.2 NaKL

NaKL Vector Field

dV

dt
= CIinj(t) + gNam

3h(ENa − V ) + gKn
4(EK − V ) + gL(EL − V )

da

dt
=
a∞ − a
τa

, a = {m,h, n}

a∞ =
1

2
+

1

2
tanh

(
V − Va

∆Va

)
τa = τa0 + τa0

(
1− tanh2

(
V − Va

∆Va

))

NaKL equations.txt

simple_nakl

# nY,nP,nU,nI,nF,nM

4,19,0,1,0,1

#vector field

gNa*(m0*m0*m0*h0)*(ENa-V0)+gK*n0*n0*n0*n0*(EK-V0)+gL*(EL-V0)+Area*Iinj

(0.5*(1+tanh((V0-Vmo)*dVm)) - m0)/(Cm1+Cm2*(1.0-tanh((V0-Vmo)*dVm)

*tanh((V0-Vmo)*dVm)))

(0.5*(1+tanh((V0-Vho)*dVh)) - h0)/(Ch1+Ch2*(1.0-tanh((V0-Vho)*dVh)

*tanh((V0-Vho)*dVh)))

(0.5*(1+tanh((V0-Vno)*dVn)) - n0)/(Cn1+Cn2*(1.0-tanh((V0-Vno)*dVn)

*tanh((V0-Vno)*dVn)))

#obj function

(VDATA0 - V0)*(VDATA0 - V0)

#states

V0

m0

h0

n0

#parameters

gNa

ENa

gK

EK

gL

EL

Area
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Vmo

dVm

Cm1

Cm2

Vho

dVh

Ch1

Ch2

Vno

dVn

Cn1

Cn2

#data names

VDATA0

#stimuli

Iinj

NaKL specs.txt

3000

0

0.04

#data

./noise_measured.dat

#stimuli

./current.dat

0

#./allstates.dat

# state bounds and Rf0

-150,70,1e-3

0, 1,1e1

0, 1,1e1

0, 1,1e1

# parameter bounds

#gna

50,200,100,120

#Ena

0,100,50,50

#gki

5,40,30,20

#Ek

-100,-50,-70,-77

#gl



115

0.1,1,.2,.3

#El

-60,-50,-52,-54

#Area

0.5,1.5,1,0.8

#mv1

-60,-30,-45,-40

#mv2

.01,0.1,.075,0.06667

#cm1

0.05,.25,.15,.1

#cm2

.1,1,.4,.4

#hv1

-70,-40,-50,-60

#hv2

-0.1,-.01,-.05,-.06667

#ch1

.1,5,1.2,1

#ch2

1,15,6,7

#nv1

-70,-40,-52,-55

#nv2

.01,0.1,.03,.03333

#cn1

.1,5,.8,1

#cn2

2,12,5,5

#anneal settings

2,1,30

A.9 Troubleshooting

I have tested these scripts over a wide range of problems, so I believe that the

algorithms are correct. However, there are a few common errors that may crop up.

• Variable and parameter naming is very important. At few common problems can

crop up. Never use a variable name that includes the name of another variable.
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For instance p1 and p11 would be bad, since p11 includes p1. In this case, p01

and p11 would be adequate. Along this vein, all variable names should be at

least 2 characters long, just in case.
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[17] Jochen Bröcker and Ivan G Szendro. Sensitivity and out-of-sample error in
continuous time data assimilation. Quarterly Journal of the Royal Meteorological
Society, 138(664):785–801, 2012.

[18] Teresa R Chay and John Rinzel. Bursting, beating, and chaos in an excitable
membrane model. Biophysical Journal, 47(3):357–366, 1985.

[19] Teresa Ree Chay. Modelling for nonlinear dynamical processes in biology.
Patterns, Information and Chaos in Neuronal Systems, pages 73–122, 1993.

[20] Teresa Ree Chay. Electrical bursting and luminal calcium oscillation in excitable
cell models. Biological cybernetics, 75(5):419–431, 1996.

[21] B. S. Chua and A. F. Bennett. An inverse ocean modeling system. Ocean
Modelling, 3:137–165, 2001.

[22] Arij Daou, Matthew Ross, Frank Johnson, Richard L Hyson, and Richard
Bertram. Electrophysiological characterization and computational models of
hvc neurons in the zebra finch. Journal of Neurophysiology, 2013.

[23] C Jane Dixon, Peter H Cobbold, and Anne K Green. Oscillations in cytosolic
free ca2+ induced by adp and atp in single rat hepatocytes display differential
sensitivity to application of phorbol ester. Biochem. J, 309:145–149, 1995.

[24] Michael R Duchen. Contributions of mitochondria to animal physiology: from
homeostatic sensor to calcium signalling and cell death. The Journal of physiology,
516(1):1–17, 1999.

[25] G Dupont, G Houart, and A Goldbeter. From simple to complex ca 2+ os-
cillations: regulatory mechanisms and theoretical models. In Understanding
Calcium Dynamics, pages 131–152. Springer, 2003.



119
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