
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Runtime Memory Management in Many-core Systems

Permalink
https://escholarship.org/uc/item/5g82h1fz

Author
Tajik, Hossein

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5g82h1fz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Runtime Memory Management in Many-core Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Hossein Tajik

Dissertation Committee:
Professor Nikil Dutt, Chair

Professor Tony Givargis
Professor Alex Nicolau

2016

Portion of Chapter 2 c© 2016 ACM
Portion of Chapter 3 c© 2016 ACM
Portion of Chapter 4 c© 2016 ACM

All other materials c© 2016 Hossein Tajik

DEDICATION

To my mother, father, and sister for all their support, kindness, and love.
In memory of Dina Radjabalipour, who will be in our thoughts forever.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

1.1 Emerging Many-core Systems . 1
1.2 Memory Subsystem Challenges in Many-core platforms 4
1.3 Variability . 10
1.4 Thesis Overview . 12

2 SPMPool: Runtime SPM Management in Embedded Many-Cores 16

2.1 Introduction . 16
2.2 Motivation . 18

2.2.1 Key Contributions of SPMPool . 22
2.3 Related Work . 22
2.4 SPMPool . 25

2.4.1 SPMPool Memory Manager . 27
2.4.2 SPMPool Architectural Assists . 34

2.5 Experimental Setup and Results . 36
2.5.1 Experimental Setup . 36
2.5.2 Experimental Results - X86 . 38
2.5.3 Experimental Results - ARM . 43
2.5.4 Experimental Results for Multi-threaded applications 44
2.5.5 Overhead . 46

2.6 Discussion . 49
2.6.1 Scalability and multi-agent management 49
2.6.2 Sensitivity to Application Mapping 50

2.7 Conclusion . 51

iii

3 Auction-Based Memory Mapping in Many-core Systems 52

3.1 Introduction . 52
3.2 Related Work . 55
3.3 Auction Mechanism for Central Management of SPMPool 57

3.3.1 SPM Mapping Problem Modeling . 58
3.4 Distributed Management of SPMPool . 64

3.4.1 Non-communicative Distributed Pool Management 65
3.4.2 Auction-based Distributed Pool Management 67

3.5 Experimental Setup and Results . 73
3.5.1 Experimental Setup . 73
3.5.2 Central Auction-Based Memory Mapping 74
3.5.3 Distributed Multi-Pool Management 75
3.5.4 Overhead . 77

3.6 Conclusion . 79

4 Memory Phasic Behavior 80

4.1 Introduction . 80
4.2 Related Work and Motivation . 82

4.2.1 Contributions . 85
4.3 Memory Phases . 85

4.3.1 Memory Phase Definition . 86
4.3.2 Offline Memory Phase Detection . 87

4.4 Online Detection of Memory Phases . 88
4.4.1 Memory Phase Detection Scheme . 89
4.4.2 Overhead of Online Phase Detection 96

4.5 Memory Phase driven SPM Mapping: a Use Case 97
4.5.1 Compute New SPM Mapping . 98

4.6 Experimental Setup and Results . 100
4.6.1 Experimental Setup . 100
4.6.2 Experimental Goals . 101
4.6.3 Program Phase vs Memory Phase . 102
4.6.4 Accuracy of Capturing Memory Accesses 104
4.6.5 Latency Reduction of phase driven SPM Mapping 105

4.7 Conclusion . 106

5 Concluding Notes and Future Directions 108

5.1 Main Contributions . 109
5.2 Future Research . 110

Bibliography 111

iv

LIST OF FIGURES

Page

1.1 40 years of microprocessor trend [102]. 2
1.2 SCC Processor layout . 4
1.3 Basic structures of single-chip shared-memory multi-cores 5
1.4 Effects of cache contention on scalability . 7
1.5 Concept of virtual SPMs in SPMvisor . 9
1.6 Measured core-to-core Fmax variation for 80 cores 11
1.7 Highest accessed pages of povray and h264 benchmarks 11
1.8 System level view of SPMPool . 14

2.1 SPMPool role in many-core system with a single-pool configuration. 18
2.2 Example of a system with four cores and four SPMs. 20
2.3 Example of applications and their working set of pages 20
2.4 Motivating example for sharing SPM resources. 21
2.5 SPMPool Memory Manager . 27
2.6 Virtual address space . 35
2.7 Example remote SPM access. 36
2.8 Highest accessed pages of benchmarks used in the experiments 39
2.9 Percentage of memory access time improvement achieved by the SPMPool. . 40
2.10 Scalability analysis . 41
2.11 Maximum improvement Variation (%) for 4x4 configurations. 42
2.12 Percentage of overall memory access latency improvement for MiBench . . . 44
2.13 Memory access latency of different shared memory policies in 4x4 platform . 46
2.14 Memory access latency of different shared memory policies in 8x8 platform . 47
2.15 Memory Migration Overhead . 48
2.16 Memory access latency using different task placement policies. 50

3.1 Modeling SPM mapping problem with auction mechanism 59
3.2 Using object sets to reduce number of objects 64
3.3 System view of distributed management . 65
3.4 System view of distributed pool management. 69
3.5 Comparison of memory access latency of different policies for 4x4 platform . 74
3.6 Comparison of memory access latency of different policies for 8x8 platform . 75
3.7 Memory access latency, using different distributed management schemes . . . 76
3.8 Comparison of memory access latency for different region sizes 76
3.9 Communication overhead of distributed management 77

v

3.10 Comparison of communication overhead for different region sizes 78
3.11 Number of pages transferred between off and on chip 78
3.12 Storage overhead of central and distributed management 79

4.1 Memory Phases and Program Phases for the same code snippet 81
4.2 Timeline of a single application with memory phase detection. 89
4.3 Hardware implementation of capturing memory accesses 93
4.4 Tuple representative of each page in WWS. 95
4.5 System level view of memory phase driven SPM Mapping 98
4.6 Memory Phases vs Program Phases in qsort benchmark. 103
4.7 Memory access latency using Program and Memory triggered SPM mapping 104
4.8 Percentage of correct answers generated by frequent algorithm 105
4.9 Memory access latency for different SPM mapping methods 106

vi

LIST OF TABLES

Page

1.1 ITRS Mobile Devices Trends [71][23] . 3

2.1 Cost of Access (Number of Cycles) to each memory 21
2.2 Cost of Access in 4x4 platform . 37
2.3 List of Benchmarks . 38
2.4 Off-chip memory access ratio of most-accessed policy versus local-only policy 43
2.5 List of benchmarks used from MiBench suite 44
2.6 List of benchmarks used from PARSEC suite 45

3.1 List of benchmarks used from MiBench suite 74

4.1 List of benchmarks from MiBench suite [55] 101

vii

ACKNOWLEDGMENTS

First, I would like to express my gratitude to my advisor Professor Nikil Dutt. Throughout
these years, he was my role model and his enthusiasm and passion was the main driver for
me to do a better research. Without his knowledge and guidance, it was impossible for me
to finish my PhD and I learned a lot from him. He is a great person and wonderful mentor
and I am very thankful for his patience toward me.

I also want to thank my previous mentors who helped me reach this point in my life. Dr.
Houman Homayoun was a huge help for me during the first year of my PhD. Prof. Alireza
Ejlai was my advisor during my Masters program and helped me a lot to learn about Embed-
ded Systems. Dr. Ramin Halavati was the first one who taught me how to research. Reza
Sadigh was my first computer programming teacher and I became interested in computer
science because of him. Aydin Khatamnejad helped me to be a better programmer. I am
very grateful to have these wonderful people in my life.

I want to thank UC Irvine graduate division and NSF Variability Expedition (Grant
Number CCF-1029783) for providing funding opportunities during my PhD program. I also
thank ACM for permission to include Chapter Two and Four of my dissertation, which were
originally published in ACM TECS journal and ESTIMedia symposium respectively.

I was very lucky to be in DRG and spend time with many great people. Majid Namaki
Shoushtari was a true friend and helped me a lot during hard times and Bryan Donyanavard
helped me to shape my research. I am also very thankful for Kasra Moazzemi, Abbas
Banaiyan, Luis (Danny) Bathen, codrut stancu, Janmartin Jahn, Tiago Rogerio Muck, Ju-
rnGyu Park, Roger Chen-Ying Hsieh, Hamid Nejatollahi, Trent Lo, Gustavo Girao, Santanu
Sarma, Dr. Amir Rahmani, Prof. MyungKeun Yoon, , Prof. Antonio Augusto Frhlich, Jun
Y Shin, Kazuyuki Tanimura, Juan Gonzalez, Prof. Alfonso Avila, Prof. Yukio Mitsuyama,
Prof. Gu-Min Jeong, and Dr. Yuko Hara-Azumi.

There were many people who brought laughter and joy to my life. I am very grateful for
them, especially I want to thank Mojtaba Torkjazi, Shahab Yassemi, Amir Gholamipour,
Maryam Balouch, Hamed Youssefpour, Andy Jackson, Andrea Thorstensen, Hossein Tajari,
Noah Monavvary, Mohammad Khorramzadeh, Pouria Pirzade, Arash Karami, Reza Baghaei,
Sholeh Forouzan, Sonja Lind, Alandi Bates, Hamid Hezari, and Hessam Kooti.

I would like to express my gratitude to Prof. Alex Nicolau and Prof. Tony Givargis who
helped me to revise and improve my work during the past four years. They were great sources
of knowledge and experience for me. I would like to thank Prof. Hoyoung Hwang and Prof.
Sung-Soo Lim for their friendliness, knowledge, and generosity. I am also very grateful for
Prof. Jorge Henkel for all his advices which improved my research. I also want to thank
Prof. Michael Dillencourt who is a great man and provided a lot of teaching opportunities
for me. Last but not the least, I want to thank Melanie Sanders, Melanie Kilian, and Grace
Wu for providing a great atmosphere in ICS department and CECS.

viii

CURRICULUM VITAE

Hossein Tajik

EDUCATION

Doctor of Philosophy in Computer Science 2016

University of California, Irvine Irvine, California

Master of Science in Computer Engineering 2010

Sharif University of Technology Tehran, Iran

Bachelor of Science in Computer Engineering 2007

Sharif University of Technology Tehran, Iran

RESEARCH EXPERIENCE

Graduate Research Assistant 2011–2016

University of California, Irvine Irvine, California

Graduate Research Assistant 2009–2010

Sharif University of Technology Tehran, Iran

Undergraduate Research Assistant 2004–2006

Sharif University of Technology Tehran, Iran

TEACHING EXPERIENCE

Teaching Assistant 2013–2016

University of California, Irvine Irvine, California

Teaching Assistant 2009–2010

Sharif University of TEchnology Tehran, Iran

ix

REFEREED JOURNAL PUBLICATIONS

SPMPool: Runtime SPM Management for Memory-

intensive Applications in Embedded Many-Cores

2016

ACM Transaction on Embedded Computing Systems

Automatic Management of Software Programmable

Memories in Manycore Architectures

2016

IET Computers & Digital Techniques

REFEREED CONFERENCE PUBLICATIONS

On Detecting and Using Memory Phases in Multimedia

Systems

2016

Estimedia

Orchestrated application quality and energy storage

management in solar-powered embedded systems

2015

ISQED

VAWOM: Temperature and process variation aware

WearOut Management in 3D multicore architecture

2013

Design Automation Conference (DAC)

A Novel Approach to Very Fast Isolated Word Speech

Recognition

2006

International Conference on Pattern Recognition

A novel noise immune, fuzzy approach to speaker inde-

pendent, isolated word speech recognition

2006

World Automation Congress

x

ABSTRACT OF THE DISSERTATION

Runtime Memory Management in Many-core Systems

By

Hossein Tajik

Doctor of Philosophy in Computer Science

University of California, Irvine, 2016

Professor Nikil Dutt, Chair

With the number of cores on a chip continuing to increase, we are moving towards an era

where many-core platforms will soon be ubiquitous. Efficient use of tens to hundreds of

cores on a chip and their memory resources comes with unique challenges. Some of these

major challenges include: 1) Data Coherency – the need for coherency protocol and its

induced overhead poses a major obstacle for scalability of many-core platforms. 2) Memory

requirement variation – concurrently running applications on a many-core platform have

variable and different memory requirements, not only across different applications, but also

within a single application; in this dynamic scenario, static analysis may not suffice to capture

dynamic behaviors. 3) Scalability – inefficiency of a central management makes distributed

management a necessity for many-core platforms.

To address all these issues, this dissertation proposes a comprehensive approach to manage

available memory resources in many-core platforms equipped with Software Programmable

Memories (SPMs). The main contributions of this dissertation are: 1) We introduce SPM-

Pool: a scalable platform for sharing Software Programmable Memories. The SPMPool

approach exploits underutilized memory resources by dynamically sharing SPM resources

between applications running on different cores and adapts to the overall memory require-

ments of multiple applications that are concurrently executing on the many-core platform.

xi

2) We propose different central and distributed management schemes for SPMPool and study

the efficiency of auction-based mechanisms in solving the memory mapping problem. We also

introduce a distributed auction-based scheme to manage the memory resources of platforms

without central coordination. 3) We introduce offline and online memory phase detection

methods in order to increase the adaptivity of memory management to the temporal changes

in memory requirements of a single application. We also use memory phasic information to

relax the need for static analysis of applications.

We implemented a Java and Python based simulator for many-core platforms to investigate

the efficacy of the proposed methods in this dissertation. The runtime memory management

schemes proposed here enable better performance, power, and scalability for many-core sys-

tems.

xii

Chapter 1

Introduction

1.1 Emerging Many-core Systems

Moore’s law has been the driving force for the semiconductor industry in the past decades.

Every technology generation tends to double the number of transistors on each die by re-

ducing the feature size. Smaller transistors can be switched on and off faster which gives a

potential for higher frequencies. Improvements in integrating different technologies in a sin-

gle die has provided the ability to have a full System On a Chip (SOC). This ever-increasing

resources on a chip has provided a unique opportunity for development of more powerful

computer systems.

Providing faster and smaller transistors by each technology generation came with the cost

of increased power density – more activity in smaller area. Increase in power density caused

higher temperatures and reaching thermal limits of ICs, known as Power Wall, stalled the

frequency growth of computer systems. Figure 1.1 shows the microprocessor trend in the

past decades. While transistor count has been continued to increase in each generation,

frequency has been almost the same for the past 15 years.

1

Figure 1.1: 40 years of microprocessor trend [102].

Inability to find enough Instruction Level Parallelism –ILP Wall– was another major

obstacle [33, 61] that alongside with Power Wall put an end to development of Superscalar

uni-core processors and were driving forces for multi-core processors. In these processors,

better utilization of hardware resources are obtained by multi-threading.

IBM Power4 [128] was the first commercial processor to integrate two cores on a same die

in 2001. From that time on, multi-core processors have been viable solutions for effective use

of huge numbers of transistors on a chip. With increase in the number of cores on a chip, we

are moving to the era where many-core platforms – platforms with hundreds of cores – will

be common. Table 1.1 shows the trend of increase in the number of cores in mobile devices

and micro-servers – used in data centers, predicted by ITRS [71]. Based on this prediction,

it’s expected to have more than 30 AP (Application Processor) cores and 200 GPU cores in

mobile devices, and about 100 cores in micro-servers in less than 10 years, with the number

of cores usually constrained by the power budget.

2

Table 1.1: ITRS Mobile Devices Trends [71][23]
Year 2015 2017 2019 2021 2023 2025

Mobile
Devices

Number of AP cores 4 9 18 18 28 36
Number of GPU cores 6 19 49 69 141 247
Max frequency of any

component in system (GHz)
2.7 2.9 3.2 3.4 3.7 4

Bandwidth between AP and
Main memory (Gb/s)

25.6 34.8 52.6 57.3 61.9 61.9

Severs
Server Units/Rack 40 40 40 40 40 40

Number of Cores/socket 18 29 47 59 74 93
Main Memory/Single Server Unit (GB) 32 45 64 76 91 108

Mobile devices were invented as portable telephones with the ability to receive and make

phone calls. During the past decades they evolved to very powerful computer systems. The

number of smartphones, tables, and other mobile devices users has already outnumbered

PC users [123]. Although most of these mobile devices use Multiprocessor System-on-Chip

(MPSoC) platforms, different kinds of applications such as gaming, navigation, social me-

dia applications, and etc. are running on them; consequently, they are used like a general

purpose processor. There is also an increasing demand for data centers and cloud resources

which are servicing different types of customers and applications simultaneously. It’s ex-

pected that many-core platforms, forming single-chip cloud computers such as [68], increase

the computation capabilities. As an example, Figure 1.2 illustrates Intel’s SCC processor

organization, which shows a 24 processor laid out as a 6× 4 tiled grid.

The prevalence of mobile devices and cloud computing brings a unique execution model

to many-core systems where different applications can be executed concurrently on many-

core platforms. These applications can be downloaded or uploaded from any source and

usually no offline analysis of them is available. They can enter and exit at any time. In

this execution model, resource assignments cannot be done at design time and the resource

assignment decisions should be done at runtime. Without careful design of the runtime

system, the efficient use of resources cannot be achieved in many-core systems.

3

Figure 1.2: SCC Processor layout – 24 Tiles in a 6x4 mesh of routers (R), four DDR3 Memory
controllers (MC) and a single PCI link. Each tile contains 2 P54C cores, 16 kB each of data
cache (L1-D$) and instruction cache (L1-I$) plus a 256 kB unified cache. The tile includes
a 16 kB Message Passing Buffer and a mesh interface unit (I/F) to connect to the router
[126].

Efficient use of hundreds of cores on a chip comes with unique challenges. Not addressing

these challenges might yield a very poor performance in many-core platforms. Using tra-

ditional bus-based platforms is not practical due to high power consumption and latency,

and bandwidth limits which make those platforms unscalable. A proper interconnection net-

work has to be used for connecting different cores. Developing efficient programs to leverage

many-core resources is not straightforward which makes programmability a great challenge

for many-core platforms. The necessity of sharing memory between different cores, makes

the memory management of many-core systems very complicated.

1.2 Memory Subsystem Challenges in Many-core plat-

forms

The concept of the Memory Wall has been known for decades [130] and it states that the

rate of improvement in processor speed is higher than that of off-chip memory (e.g., DRAM)

speed, therefore the memory system is the performance [and power] bottleneck for the entire

4

system. To tackle this problem, a hierarchy of memories with different size/speed is created.

Registers, multiple levels of onchip memories (cache or SPM), RAM, and storage(disk) are

four different levels of memory which can be found in most computer systems. A memory

management system decides how to use the memory subsystem – from small and fast registers

to large and slow disks. Traditionally caches are used to fill the speed gap between memory

and logic. Fast SRAM based cache memories are controlled by hardware and they are

transparent from software. In presence of more than one core, it’s very common to have

both private and shared caches. Different levels of cache create a tradeoff between capacity

and speed. Figure 1.3 depicts a typical memory subsystems in multicore platforms. While

all requirements of traditional memory subsystems such as high bandwidth, low energy, and

low cost exist in many-core system, some requirements and challenges arise while moving

toward hundreds of cores.

Processor

One or more

levels of cache

Processor

One or more

levels of cache

Processor

One or more

levels of cache

Processor

One or more

levels of cache

Shared Cache

Main Memory I/O System

(a)

Processor

One or more

levels of cache

Processor

One or more

levels of cache

Processor

One or more

levels of cache

Processor

One or more

levels of cache

Main Memory I/O System

Bank 0

Shared Cache

Bank 1

Shared Cache

Bank 2

Shared Cache

Bank 3

Shared Cache

Interconnection Network

(b)

Figure 1.3: Basic structures of single-chip shared-memory multi-cores using (a)bus (b) in-
terconnection network [61].

Although processor frequency hasn’t improved for many years, multi and many core

systems create the necessity for higher Memory bandwidth while DRAM doesn’t scale in

nanometer feature sizes [94]. Latency and bandwidth of accessing offchip memory depends

on the distance to memory controller and number of cores per memory controller. To com-

pensate this gap between processor and memory performance, huge real estate of onchip

5

transistors are dedicated to memories and memory is the major shared resource among

different cores [93]. Concurrently running applications don’t have the same memory require-

ments. All these characteristics make the management of memory subsystem in many-core

platforms very complicated.

In many-core systems, coherency is a major bottleneck for scalability. If a piece of data

is copied in different cores, the consistency of those copies should be guaranteed by the

coherence protocol. If any thread updates one of these copies, all other copies should be

invalidated which is very costly [135]. It’s shown by [21] that even a single contended cache

line can destroy the potential scalability of an application (Figure 1.4).

As we scale to many-core systems, it becomes increasingly challenging to scale the cor-

responding cache-based memory hierarchies [58, 1, 85] . One important reason is the rapid

increase of coherence logic overhead with the number of cores. Some processors have already

tried to alleviate this problem by removing hardware cache coherence from processors either

partially or completely, e.g., Intel SCC [69], Kalray MPPA-256 [36]. In these architectures,

the coherence whenever needed by the application/system must be implemented in soft-

ware. Another promising solutions to overcome this problem is to use Scratchpad Memories

(SPM), also known as Software Controlled Memories and Software Programmable memories,

instead of caches [111]. SPMs are controlled by software and in contrast with hardware con-

trolled caches do not require a hardware coherence protocol, but instead transfer the burden

of memory management to software. Different platforms such as IBM cell processor [66] and

Tilera [124] use software controlled memories as their onchip memory.

SPMs offer many advantages over caches:

• The use of SPMs allows developers to exploit application semantics effectively to

achieve efficient execution.

• They provide power efficiency by eliminating the hardware overhead of traditional

6

0

5

10

15

20

25

30

35

40

1 6 12 18 24 30 36 42 48

No
rm

al
ize

d
th

ro
ug

hp
ut

Cores

gmake
Exim

One contended

cache line

A single contended cache line can wreck scalability
Figure 1.4: Effects of cache contention on scalability [21].

caching.

• Predictability is a critical factor for real-time systems. It is hard to estimate the worst-

case execution time (WCET) of software executing in cached architectures, since cache

replacement policies executing in hardware result in unpredictable execution times for

cache hits and misses. On the other hand, SPMs allow predictable estimation of WCET

since all memory accesses are explicitly controlled in software.

• There is potential for performance improvement by orchestrating the management of

data transfers explicitly in software.

• Present the ability to explicitly manage data accesses for thermal and wearout con-

straints, particularly for emerging memory technologies, e.g., non-volatile memories

(NVM).

While there is a large body of work on using SPMs for guaranteeing WCET (e.g., for

real-time applications), this thesis focuses on exploiting SPMs as an alternative selection of

onchip memories in many-core systems to avoid coherency problem.

Early efforts in programming SPM-based architectures required application developers to

7

insert data management instructions manually. However, with the increasing complexity of

embedded software [41], as well as the diversity of the underlying architectures, automated

techniques are required to understand the application and insert data management instruc-

tions automatically. Automatic insertion of data management instructions can be achieved

statically (by programmers or the compiler), or dynamically (through runtime systems that

execute additional instructions to achieve the desired effect).

SPM virtualization can be used to design effective memory hierarchies and provide appli-

cations with the convenience of a transparently managed address space, while simultaneously

using developers’ guidance to mitigate the complexity of managing shared memory, as well

as utilizing the non-uniform characteristics of the underlying hardware. These techniques

are designed to wisely allocate SPM space among tasks in the multitasking environment.

When software-programmable on-chip memory is contained in an additional layer of vir-

tualization, application developers can specify when and what data to store near the core

executing its instructions without knowing the intimate details of the underlying memory

architecture. The runtime software (as part of the operating system) can map the data to

any physical location on- or off-chip. Additional address translations to this intermediate

virtualization layer must be stored to enable accesses to the data in the address space. This

can be done with a translation table that maps virtual addresses of the task executing on

the core to intermediate physical addresses, which is essentially a physical address in on-chip

SPM space.

Bathen et al. [11] introduced the concept of SPM Virtualization through SPMVisor, a

scheme for bus-based multi-cores in which virtual SPMs (vSPMs) allow programmers to as-

sume access to the entire on-chip memory space through virtualized address spaces. Each

thread can therefore assume it has access to a dedicated contiguous memory (Figure 1.5b)

without considering interference from competing threads (Figure 1.5a). A virtualization

layer, with the help of of Protected Evict Memory (PEM) space, is responsible for determin-

8

SPM

Task2 Task1

(a) Tasks compete for physical SPM space

vSPM1

Task2 Task1

(b) Tasks see their own virtual SPM space

vSPM2

1K

1K

1K

1K

1K

1K

1K

1K

Darker color

means higher

priority block

vSPM1

vSPM2

1K

1K

1K

1K

1K

1K

1K

1K

(c) Block-based priority-driven SPM

allocation in SPMVisor

SPM

PEM

Main

Memory

0

4k-1
4k

8k-1

8k

nGB- 1

Figure 1.5: Concept of virtual SPMs in SPMvisor [11].

ing what data is placed on-chip and what data is placed off-chip based on defined priorities

(Figure 1.5c). This bus-based approach does not work in platforms with tens or hundreds

of cores where a bus should be replaced with an interconnection network: using PEMs be-

comes very costly, and obtaining priority of applications is not always possible. But this

SPM virtualization can be adapted to many-core platform characteristics.

When platform size approaches hundreds of cores, a single central manager becomes in-

capable of managing the entire system with a reasonable overhead due to increased com-

munication distance, network congestion, overhead of keeping data for every application,

computation, etc. Therefore, using central management for memory mapping degrades sys-

tem performance significantly and makes any management system unscalable. To solve this

problem, a distributed management should be employed to increase the efficiency of resource

assignment, especially for SPM resources in many-core systems.

9

1.3 Variability

Advances in the semiconductor industry have allowed creation of smaller feature sizes for

transistors. This process has shrunk to the atomic scales. For example, in a 22nm man-

ufacturing process, the gate length is only 42 atomic diameters and the oxide is only five

atomic layers thick [54]; and this gets even worse in newer technologies. Atomic feature sizes

makes the fabrication and control process very hard and costly for hardware manufacture

companies. As a result, there is not a total control on fabrication process and some intended

characteristics differ from the final product, resulting in various forms of manufacturing or

process variability.

Within die and die-to-die process variations are produced by systematic effects (such

as lithographic lens aberrations) and random effects (such as dopant density fluctuation)

[104, 95]. One of the most important parameters, prone to variation, is transistor threshold

voltage (Vth). Variation in threshold voltage affects frequency and leakage power of processors

[104]. Voltage and temperature are two other important factors contributing to variation.

Speed (frequency) variation between different parts of the die is one of the most important

effects of process variation. Lower voltage, higher temperature, and slower transistors can

make some parts of the die slower than others. Significant frequency difference already exists

between different cores in multi and many-core platforms. For example, Figure 1.6 shows

the frequency variation for the Intel 80-core TeraFLOPS processor, measured for different

operating voltages [39]. As demonstrated, there is a 28% frequency variation between fastest

and slowest core at 1.2V, this number is 62% at 0.8V.

In addition to PVT – Process, Voltage, Temperature – variation, considerable variation

exists in the software stack. Two different applications may have completely different pro-

cessing, memory, and IO requirements. Even a single application can experience variation in

data, control flow, technology, and environment [6]. Not addressing the variation in software

10

Figure 1.6: Measured core-to-core max frequency variation for 80 cores on a single die [39].

0

2

4

6

8

10

12

14

1 6 11 16 21 26 31 36 41 46 51 56 61

M
il

li
o

n
s

Povray

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56 61

M
il

li
o

n
s

h264 - 1

mcf gobmk - 1
Figure 1.7: Highest accessed pages of povray and h264 benchmarks

stack can cause a significant performance degradation. Memory access variation is of great

importance specifically, because memory is usually the main bottleneck of performance.

For example, Figure 1.7 shows the number of accesses to the highest accessed pages for

the h264 and povray benchmarks. Povray has a few pages with very high number of accesses

and some pages with very low number of accesses. While povray has a discrete spectrum

of accesses, h264 has a relatively continuous spectrum and the number of accesses to each

page can be high, medium, or low. Also Figure 1.7 suggests that h264 requires more memory

resources than povray, indicating significant variation in memory demand across applications.

Any application can experience variant behavior and characteristics during its course of

11

execution. Therefore the average or aggregate behavior of an application is not a good rep-

resentative of the application. For instance, if page A is accessed more than page B during

the execution of an application, it’s quite possible that in a finer grained analysis of memory

accesses, a long period of time exists in which page B is accessed much more than page A. Re-

source allocation and optimization can be more efficient considering the temporal variation

in a single application. Applications have very dynamic behavior and the memory require-

ments of each individual application varies over time throughout the course of execution.

For instance, rendering high-motion scenes needs more memory resources than rendering

still scenes. Most applications can be divided into different phases of execution. Repetitive,

or phasic, behavior of applications has been the subject of research for more than a decade.

Typically the phasic behavior is investigated with respect to the structure of applications

(i.e., application’s basic blocks and control flow) or execution working set. Although these

efforts have proven useful, detecting patterns in the execution of an application by tracking

instructions (or Basic Blocks) does not always capture the memory phases of the application.

Typical program phasic behavior extraction techniques do not differentiate between program

and memory behavior [9, 40, 110], and thus miss opportunities for more aggressive memory

management in the face of high memory demands.

1.4 Thesis Overview

Any architecture and management system in many-core platforms should address challenges

in the memory subsystem. Most of these challenges are specific to many-core platforms

and management systems for single and multi-core platforms do not provide a promising

solutions for them. Some examples are listed below:

• Memory Coherency: Sharing memory is a crucial technique to speed up communica-

tion between different threads or processes, specially in multi-threaded applications.

12

Caching of shared data creates the need for implementing coherence protocols which

is a huge burden for the system and can cause a significant performance degradation.

Using traditional caching systems has the potential to make the many-core platform

inefficient.

• Dynamic Workload and lack of static analysis: With advances in technology and mobile

devices, powerful computing systems are ubiquitous now and they are exhibiting more

cores every year. These devices have a very dynamic workload and any combination

of applications can be executed on them. While static analysis is available for some

applications, there is no prior applications available for most applications. Therefore

many management decisions should be made at runtime.

• Memory Requirement Variation: Different Applications concurrently running on a

many-core platform have different memory requirements. This memory requirement

variation also exists within each individual application. Assigning predefined memory

resources to each application reduces the efficacy of resource management. Sharing

physical onchip memory resources and providing the ability to access remote cores for

each thread, alongside with detecting and exploiting the workload variation increases

the performance of many-core platforms.

• Scalable Management: With increase in the number of cores, employment of a central

manager becomes excessively expensive. Increased communication distance between

cores/applications and manager, network congestion due to excessive number of mes-

sages from and toward the manager, increased required storage to keep data for every

application, rise in amount of computations, etc. contribute to the intolerable overhead

of central management in many-core platforms. Therefore, a distributed management

is necessary for scalable memory management in many-core platforms.

13

SPMPool Memory

Manager

Runtime

Manager

R R R R R

R R R R R

R R R R R

R R R R R

Application 1 Application 2 Application 3 Application n

R

R

R

R

Core

Other

SPM
Physical Page

Physical Page

Application

Mapper

Application

Scheduler

SPMPool

arch. assist

R

R

R

R

R

R

R

R

R R R R R

R R R R R

R R R R R

R R R R R

R

R

R

R

R

R

R

R

R

R

R

R

R R R

R R R

R R R

R R R

R R R

R R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Agent 1

Agent 3 Agent 4

Agent 2

Application 1

time

mem

Phase 1 Phase 2 Phase 3

Figure 1.8: System level view of SPMPool

A comprehensive solution for these challenges needs a powerful runtime system equipped

with architectural assists. To address all these challenges this thesis proposes SPMPool: a

scalable platform for sharing scratchpad memories. Figure 1.8 depicts the system level view

of SPMPool. Scratchpad memories (SPMs) are used in each core as the onchip memory

– instead of caches. SPMPool approach exploits the underutilized memory resource by

dynamically sharing SPM resources across cores, and adapts to the overall memory needs of

multiple applications that are concurrently executing on the many-core platform. SPMPool

is the first solution for dynamic runtime memory management by sharing SPMs across

concurrently executing applications in unpredictable workloads.

The SPMPool Memory Manager organizes SPM resources as Pools-of-SPMs and assigns

the SPM resources to applications executing within the pool based on their memory require-

14

ments. SPMPool Architectural Assists facilitate the sharing and remote access of SPMs by

applications. Each core executes a memory phase change detection scheme and sends the

information to the associated manager. The objective of SPMPool approach is to maximize

system performance by minimizing the wait time incurred by memory accesses. The mem-

ory mapping is managed by a distributed management scheme which makes this approach

scalable.

Different aspects of SPMPool approach is described in the following chapters of this thesis.

We start with some simplifying assumptions to illustrate the basic concepts of SPMPool.

After showing the effectiveness of SPMPool, some assumptions are relaxed to address the

shortcomings of the basic SPMPool approach. The organization of the rest of this thesis can

be summarized as follows:

• In Chapter 2 the basic concepts of SPMPool approach is described. SPM resources

are shared between cores, creating one core with a central manager. The required ar-

chitectural assists and memory manager routines are characterized. Memory mapping

problem and some optimal and heuristic solutions are discussed. A solution for sharing

memory without implementing coherence protocol is introduced in this chapter.

• In Chapter 3 an auction-based distributed memory management scheme is proposed.

After proving the efficacy of auction-based method in solving memory mapping problem

of SPMPool, a distributed management for hundreds of cores with numerous pools-of-

SPMs is introduced.

• In Chapter 4 offline and online methods to detect memory phases are introduced. Those

memory phases are used to improve the memory mapping in SPMPool by making the

mapping more dynamic. Prioritizing different applications which is a byproduct of

memory phase detection is used to eliminate offline analysis of applications.

• In Chapter 5, the thesis is ended with concluding notes and future directions.

15

Chapter 2

SPMPool

Runtime SPM Management in Embedded Many-Cores

2.1 Introduction

As mentioned in Chapter 1, embedded many-core systems increase their performance by

offering highly parallel computational resources. This allows embedded systems to run de-

manding applications such as real-time video processing, live object tracking, etc. With

increase in the number of cores on chips, keeping the coherency of caches becomes very

challenging. In addition, the power consumption of caching logic hardware makes the cache

architecture very power hungry in many-core platforms. As an alternative, Software Pro-

grammable Memories (also called scratchpad memories or SPMs) are deployed as on-chip

memories in embedded many-cores for achieving lower power, better predictability, and

higher area efficiency. Such a large number of SPMs distributed over many cores makes

memory mapping challenging for the controlling software.

The high variability of memory intensity between concurrently executing applications

causes on-chip memory resources to be more valuable for some applications over others.

16

Furthermore, the abundant presence of processing elements in many-cores results in periods

of execution during which not all cores (as well as their SPMs) are utilized. However,

traditionally applications are limited to using only their local memory [26, 7, 8, 30]. On the

other hand, dynamic scenarios – where applications start and stop at any time – can result

in changing memory access patterns that require data allocation to be adapted at runtime.

In this chapter, we present the SPMPool approach [121] that exploits the underutilized

memory resource opportunity by dynamically sharing SPM resources across cores, and adapt-

ing to the overall memory needs of multiple applications1 that are concurrently executing

on the many-core platform. To the best of our knowledge, SPMPool is the first solution

for dynamic runtime memory management by sharing SPMs across concurrently executing

applications in unpredictable workloads2.

Figure 2.1 depicts the system level view of SPMPool. Applications start and stop at any

time and are assigned to cores within a pool by the Runtime Manager. Multiple applications

can be assigned to a pool. SPM resources in a pool are shared among all the applications

assigned to that pool. The SPMPool Memory Manager organizes SPM resources as Pools-

of-SPMs and assigns the SPM resources to applications executing within the pool based on

their memory requirements.

SPMPool Architectural Assists in Figure 2.1 facilitate the sharing and remote access of

SPMs by applications. Whereas multiple design objectives can be addressed, in this work the

objective of SPMPool approach is to maximize system performance by minimizing the wait

time incurred by memory accesses. This is done by assigning underutilized SPM resources

of a pool to memory-intensive applications within the pool.

The rest of this chapter is organized as follows: In Section 2.2 the motivation for sharing

SPM resources is discussed. Section 2.3 summarizes different SPM related research efforts in

1we use the terms application and task interchangeably in this work.
2The set of running applications and their entrance times are not known prior to execution.

17

SPMPool Memory

Manager

Runtime

Manager

R R R R R

R R R R R

R R R R R

R R R R R

Application 1 Application 2 Application 3 Application n

R

R

R

R

R R R R

R R R R

R R R R

R

R

R

Core

Other

SPM
Physical Page

Physical Page

Application

Mapper

Application

Scheduler

SPMPool

arch. assist

Pool of

SPMs

Figure 2.1: SPMPool role in many-core system with a single-pool configuration.

recent years. Section 2.4 introduces basic architecture and different components of SPMPool.

Runtime system requirements, architectural assists, and memory mapping problem are also

discussed in this section. Section 2.5 presents experimental setup and results, while Section

2.6 will discuss the scalability and task mapping in SPMPool. Section 2.7 contains some

concluding remarks.

2.2 Motivation

In memory intensive applications, the amount of data used exceeds the amount of SPM

resources on-chip – many applications use megabytes of data while SPM resources are on

the order of kilobytes. In order to avoid severe performance degradation, the subset of data

stored in SPM must be carefully selected. The state-of-the-art mechanisms for allocating

data to SPM select this subset based on the size of the SPM available at the core on which

18

the respective application is executing [98, 114, 127]. However, if there are fewer applications

than cores, the SPM resources belonging to unused cores are unutilized. Another form of

underutilization of SPM resources occurs when concurrently executing applications have

considerably different levels of memory usage.

For instance, users can run various types of applications concurrently on a mobile device.

Mobile computing devices like tablets are replacing PCs and they have very powerful pro-

cessors. In these devices many processes are running simultaneously. Its very likely that

in the future these mobile computing devices use many-core platforms. In these platforms,

it is possible to browse the web, listen to music, find a place using the map, play a game,

video chat with a friend, or use a calculator to compute a mathematical expression. These

applications have different memory requirements; some of them are very memory intensive

(e.g., imaging applications) and some of them have small memory footprint (e.g., calculator).

In both cases of underutilization, severe performance penalties can result from inefficient

SPM usage. A solution to this problem could be the redistribution of SPM resources to

executing applications with the goal of reducing the overall memory latency. In this work,

we model memory access latency for one application as the summation of access latency over

all its memory accesses during the course of execution. Overall memory access latency can

be obtained by adding the memory access latency of all applications in the working set (we

use the overall memory access latency as a proxy for performance). To exemplify, consider

a multi-core architecture with a 4-core mesh network as illustrated in Figure 2.2.

Now consider a sample workload (shown in Figure 2.3) on a smart-phone consisting of three

applications with a working set of four virtual pages each. Each application has a different

memory footprint. Application B is an imaging application with high memory usage, while

application C is a scientific calculator and has low memory requirements. Application A is

a text editor and has moderate usage of memory. In Figure 2.3, each page is annotated with

the total number of accesses. All three applications start executing concurrently. Figure 2.4a

19

A1

SPM 0Core 0

A1 SPM 3Core 3

Page

SPM 2Core 2

Page
App

SPM 1Core 1

Page

Page
App App

App
Page

Page

Page

Page

Figure 2.2: Example of a system with four cores and four SPMs.

App A App B App C
Page A0 75

Page A1 100

Page A2 50

Page A3 5

Page B0 1000

Page B1 900

Page B2 900

Page B3 1000

Page C0 5

Page C1 5

Page C2 5

Page C3 10

Application X
Page 0# accesses

Page 1# accesses

Page 2# accesses

Page 3# accesses

Figure 2.3: Applications and their working set of pages, along with the total number of
accesses to each page over the entire execution.

shows the resulting memory mapping for this working set on the system, if each application

was to use its local SPM only.

A superficial inspection of this memory mapping reveals that application B is forced

to place two highly utilized memory pages in off-chip memory, while physical SPM pages

belonging to Core 3 are unused. Also, application C’s relatively low utilized pages are granted

an equal amount of SPM pages as other applications’ more utilized pages. Memory access

latency for each application is obtained by:

∑

p∈application pages

(#accesses to p)× (Latency of access to p)

The latency of access to page p depends on the distance between an application’s home core

and page p. The total memory access latency (based on the information in Figure 2.3 and

Table 2.1) for application A is 5125 cycles, application B is 164000 cycles, and application

C is 915, resulting in a total memory access latency of 170040 cycles after all applications

20

A1

SPM 0Core 0

A0App A

A1 SPM 3Core 3

IDLE
C3

SPM 2Core 2

C0App C

B3

SPM 1Core 1

B0App B
A1

(a)

A1

SPM 0Core 0

A0App A

A1 SPM 3Core 3

IDLE
C3

SPM 2Core 2

A2App C

B3

SPM 1Core 1

B0App B
A1

B1

B2

(b)

Figure 2.4: Motivating example for sharing SPM resources.

Table 2.1: Cost of Access (Number of Cycles) to each memory
SPM 0 SPM 1 SPM 2 SPM 3 Off-chip

Core 0 1 4 4 7 90
Core 1 4 1 7 4 90
Core 2 4 7 1 4 90
Core 3 7 4 4 1 90

complete their execution.

If we expanded the pool of available memory for each application by allowing them to

use non-local SPMs, we could place memory pages on-chip according to their utilization and

use all SPM resources. Using this approach, the alternative configuration shown in Figure

2.4b successfully reduces the total amount of off-chip memory accesses for all applications

to 11390 cycles. We propose to combine all SPMs in this manner as a global Pool-of-SPMs

that provides memory resources accessible to any executing application.

Current allocation methods either completely ignore any potential contention for memory

resources from other applications, or assume the set of executing applications at any given

time is predictable [125, 116, 122, 50, 97, 90, 133]. When an application is started or

stopped, previously unused data may be accessed frequently and data that has previously

been allocated to SPM may no longer be accessed. Hence, the state-of-the-art techniques

can hardly avoid severe performance penalties in such scenarios. SPMPool addresses such

issues that arise when applications start or stop at any time and may execute concurrently.

21

2.2.1 Key Contributions of SPMPool

• We present a Runtime Memory Manager that evaluates and generates performance-

driven SPMmappings for concurrently executing applications on application start/stop.

• We describe exact and heuristic formulations for the SPMPool Mapping Problem to

efficiently share SPM resources among applications.

• We illustrate the architectural assists needed to enable pooling of SPMs for local and

remote SPM accesses.

• We demonstrate efficacy of SPMPool for a mix of concurrently executing applications

on configurations ranging from 16 to 256 cores, showing up to 76% reduction in memory

access latency with minimal overhead.

2.3 Related Work

A variety of approaches for both allocating and scheduling spatially shared resources in multi-

core processors have previously been explored [107, 3, 2, 63, 136, 78, 10, 91]. Some of these

approaches propose scheduling algorithms and migration policies for workloads on multi-

cores that use power and performance counters to determine task to core mappings (e.g., [136,

78, 10, 91]). These approaches all target traditional power or performance metrics, monitor

shared last level cache (LLC) contention, and improve individual application behavior more

significantly than the overall workload. Thread-scheduling can be used orthogonally to

resource partitioning in order to alleviate contention for certain shared resources such as

interconnects, but does not directly allocate contended resources such as memory. Hoffman

et al. [63] present a novel programming model that, among many features, provides a

decision-making engine in order to adapt applications’ hardware allocation to meet goals

specified by each application developer. More recent work ([107, 3, 2]) has focused on multi-

22

core architectures that include a shared reconfigurable fabric. They specify runtime managers

that adaptively allocate subsets of the reconfigurable fabric between concurrently executing

tasks in variable workloads. While we can draw inspiration from some of these techniques

and employ others in conjunction, the general resource sharing techniques for multi-cores are

not explicitly applicable for sharing SPMs. Most of the approaches depend exclusively on

performance counters, including LLC miss rate, to evaluate their allocations. These counters

are architecture-dependent, and depend specifically on a cache memory hierarchy that is not

analogous to an SPM-based architecture.

As for allocation of shared caches for contentious workloads, there has been significant

interest in performance-aware cache partitioning [113, 99, 24, 74, 100, 72, 131]. The cache

community has previously explored distance-aware dynamic partitioning (NUCA) [76, 29, 57]

as well as sharing cache resources for multi- and many-core architectures [108, 84, 83]. These

approaches, similarly to SPMPool, typically aim to reduce the number of off-chip memory

accesses. However, these solutions are not applicable for sharing SPMs: cache contents are

controlled by hardware implemented replacement policies and address mapping, while SPM

contents are explicitly allocated and mapped freely by software. SPM organization is not

hierarchical and does not hold duplicate data, and is therefore more similar to a swap-space.

Moreover, cache hierarchies are unable to address the scalability issue for chips with hundreds

of cores executing numerous applications all sharing the entire on-chip memory pool. More

recently, Beckman et al. [12] have proposed a solution for software-controlled partitioning

of shared last level caches in multi-cores.

Along with LLC, DRAM is one of the most commonly shared resources between applica-

tions in many-cores. There exist parallels between the problems outlined in this work and

those that the NUMA community have long been addressing for main memory. They have

previously proposed OS-controlled mapping of data in memory physically near the accessing

tasks in order to both increase performance [20] and reduce power [82]. They also attempt

23

to characterize the complex memory access costs for modern NUMA architectures [22]. We

share a common goal with NUMA solutions of performance improvement through memory

access latency reduction. A network of on-chip SPMs can be likened to a NUMA architec-

ture with numerous latency levels. In the case of SPMs, migrations can be made at a finer

granularity (e.g., cache-line vs. page), and therefore may be more sensitive to access locality.

There is a large body of existing work on SPMs that includes uni- and multi-core solutions

for SPM mapping, covering static or dynamic approaches. Static SPM mapping algorithms

map a fixed subset of the memory address space to SPM space at compile-time, and the

contents of the SPM do not change during execution [127, 114, 115, 98]. Such rigid techniques

typically target guaranteed worst-case execution times (WCET) for real-time applications

and are vulnerable to the changing needs of unpredictable workloads consisting of multiple

applications that start and stop unpredictably.

Dynamic SPM mapping techniques can be further divided into compile-time-driven dy-

namic approaches, and run-time approaches. Compile-time-driven dynamic SPM algorithms

typically consider only a single application, or assume predictable workloads for multiple

applications, which is unrealistic [125, 116, 122, 50, 97, 90, 133]. More recent run-time

approaches augment dynamic compile-time mapping with a combination of hardware and

operating system (OS) support to allow for reaction to runtime memory behavior of indi-

vidual applications [48, 28, 11, 43, 37, 75]. However – unlike our SPMPool approach – these

solutions do not consider simultaneous (spatial and temporal) sharing of the SPM space with

other executing applications at runtime or do not provide solutions for multicore platforms.

To the best of our knowledge, for many-core systems with unpredictable concurrently

executing workloads, SPMPool is the first SPM mapping technique that shares distributed

on-chip memory resources across multiple executing applications. Furthermore, SPMPool

adapts the mapping at run-time based on the relative memory needs of the concurrently-

executing applications. In this work, memory requirements of applications are obtained by

24

offline profiling; but this can be replaced by any technique that quantifies memory require-

ment of applications. Our SPMPool approach complements other adaptive resource shar-

ing/management approaches targeting compute-focused paradigms such as invasive comput-

ing [60, 107], by providing an adaptive approach for dynamic memory management/sharing.

2.4 SPMPool

Recall from Figure 2.1 that we apply the SPMPool approach to a many-core platform con-

sisting of tiles connected through a Network-on-Chip (NoC), each containing a simple core

and a local SRAM scratchpad bank. This platform supports workloads consisting of many

applications with different memory characteristics, and includes a runtime manager to handle

application scheduling.

Many modern mobile platforms support the concurrent execution of multiple independent

applications on both shared and separate resources. In many-core systems, coherency is a

major bottleneck for scalability. If a data is copied in different cores, the consistency of those

copies should be guaranteed by the coherence protocol. If any thread updates one of these

copies, all other copies should be invalidated which is very costly [135]. It has been shown

by Clement et al. [31] that even one single contended cache line can destroy the potential

scalability of an application.

To avoid this complexity, in our proposed architecture only a single copy of a piece of data

may exist on-chip. We enforce this in the following ways:

1. Single-threaded applications run on one core.

2. Multi-threaded applications in which different threads do not share memory can be

modeled and executed as multiple single-threaded applications on different cores.

25

3. For multi-threaded applications in which different threads share memory, only one copy

of shared data will be exist in on-chip memory at any given time.

This architecture might degrade performance in some multi-threaded applications, but it

obviates the need for a coherence protocol.

In this initial investigation we assume a flat memory hierarchy, i.e., data is not cached.

Therefore, only one copy of any piece of data is held in on-chip memory, eliminating the

necessity for us to implement any additional coherence protocol. This simplification allows us

to explore diverse workloads at different scales in our experiments. The previous assumptions

outline the framework in which we apply the SPMPool approach for the remainder of this

work.

As shown in Figure 2.1, SPMPool consists of three different components:

1. Pools-of-SPMs in the tiled many-core computing platform with a NoC fabric, where

applications mapped to each pool can share SPMs based on their varying workloads

and dynamic memory needs. Each application has a private virtual address space, not

shared with any other application.

2. SPMPool Memory Manager, which determines the placement of each executing appli-

cation’s memory working set within a Pool-of-SPMs, while considering the memory

requirements of all other applications executing within that Pool.

3. SPMPool Architectural Assists within each core, to enable sharing and accesses to

remote SPMs within the shared Pool-of-SPMs.

We now describe the SPMPool Memory Manager (outlining exact and heuristic memory

mapping algorithms), and the SPMPool Architectural Assists (for supporting intra-Pool

sharing and remote SPM access).

26

StartStart

Add application’s page
access weights generated

by profiff ling

Add application’s page
access weights generated

by profiling

Wait foff r
SPMPool event
Wait for

SPMPool event

SPMPool
event?
SPMPool
event?

Remove application’s
page access weights

Remove application’s
page access weights

App Start App Stop

SPMPool Memory
Mapping

SPMPool Memory
Mapping

Memory MigrationMemory Migration

A

B

C

Figure 2.5: SPMPool Memory Manager

2.4.1 SPMPool Memory Manager

Figure 2.5 gives an overview of the SPMPool Memory Manager. We assume that each

application’s working set (set of pages accessed throughout execution) is tagged with a

memory access weight representing the number of accesses to each page (generated through

a preprocessing step).

In Phase A of Figure 2.5, the SPMPool Memory Manager is triggered by an SPMPool

Event that corresponds to the application start or stop within the runtime system. For an

application starting or stopping execution, SPMPool adjusts the internal bookkeeping to

update the memory access weights corresponding to the working set.

In Phase B of Figure 2.5, the SPMPool Memory Manager generates a new memory map-

ping to share the SPMPool resources across the active applications within the Pool-of-SPMs.

The output of Phase B is a virtual-to-physical memory map for each application with the

27

goal of reducing overall memory access latency of all applications within the Pool-of-SPMs.

Finally, in Phase C of Figure 2.5, the SPMPool Memory Manager performs memory mi-

gration for applications whose logical-to-physical address mappings have been modified. The

runtime manager sends the changes in memory mapping to the affected applications as up-

dates for their local translation tables (more details in Section 2.4.2). The Memory Manager

triggers the physical memory movement, which includes the write-back to main memory of

evicted SPM pages.

In the remainder of this section, we will explain each aspect of the SPMPool Memory

Manager in more detail.

SPMPool Event

An SPMPool event is defined as a change in the workload that triggers the runtime manager

to update the memory mapping. As previously mentioned, the event model consists of two

types: application start and application stop. When either event occurs, there are some

SPMPool-specific tasks to complete before the new memory map can be generated. In the

case of application start, the runtime manager initially assigns application threads to random

tiles with available compute resources. The manager also receives an incoming application’s

page list and stores all lists for executing applications. This SPMPool-specific information

is generated at compile-time, and is discussed later in this section. In the case of application

stop, the application’s virtual pages are de-allocated from physical SPM pages and written

back to main memory.

SPMPool needs to perform some preprocessing on application binaries to determine the

working set of memory pages and the access pattern to those pages for each application.

For every page in an application’s working set, an ordering of accesses to the given page

is created. This is done by scanning a memory trace of a sample execution for the given

28

application. In order to assign a weight to data memory in advance, some information about

that memory must be accessible. In this work, we assume that by profiling the applications

offline, we can extract access information for data memory. The shortcoming of this approach

is that by changing the inputs, control flow of the program or the address size and range of

dynamic memory allocated with malloc will be changed. This problem is the primary focus

of our current work in progress.

Using the page access information, a weight is generated for the page - in this chapter,

this weight is simply the total number of times the associated page is accessed over the

application’s entire execution. In multi-threaded applications, each thread has an individual

weight list. If a page is shared between different threads of an application, its weight will be

the aggregation of accesses from all threads. This page-weight will be included in the list of

the thread with the most number of accesses to that page and tagged as a shared page. In

the other words, we have only one entry for each shared page in the application page-weight

list. The application’s list of pages and associated weights is then passed to the SPMPool

runtime upon the application’s entry into the system.

SPMPool Memory Mapping

Here we focus on the SPMPool Memory Mapping step (Phase B of Figure 2.5) outlining exact

and heuristic formulations. The goal of SPMPool Memory Mapping is to select a subset from

the many pages of concurrently executing applications and assign them to the limited number

of on-chip SPM slots in order to minimize overall memory access latency (summation of all

memory access latencies over every application in the working set during their course of

execution). Remaining pages stay in off-chip memory. To make this selection feasible it is

necessary to characterize the memory behavior of each application for comparison. For this

work, we simplify this characterization by assigning each page its memory access weight that

represents the number of times that page is accessed.

29

The exact formulation of the SPMPool Mapping Problem can be expressed as outlined in

Optimization Problem 1. Note that for the completeness of memory mapping, main memory

is also modeled as an SPM, but with different access time. It’s noteworthy that for a shared

page, we keep the page entry only for one of the threads sharing that page. If this model

changes, the mapping formulation will be slightly different. The output is a mapping of each

application’s virtual page to one of the physical SPMs or to the off-chip memory, with the

goal of minimizing the overall memory access latency. We assume that application threads

are already mapped to tiles.

The SPMPool mapping optimization problem can be solved using Integer Linear Program-

ming (ILP). We observe that the NP-hard Knapsack Problem is reducible to the SPMPool

Mapping Problem. Therefore, SPMPool Mapping Problem is NP-hard and cannot be solved

in polynomial time. We present below the mapping between Knapsack problem and SPM-

Pool Mapping:

Assuming that the platform has C cores/SPMs, overall N pages fit in on-chip SPMs,

and task mapping is known (each application is mapped to a core), we want to create a

mapping between Knapsack problem and SPMPool Memory mapping problem. Consider

Application A is mapped to core X. If page P of this application maps to SPM i, cost of

one access from core X will be Cost(A, i) based on the distance to i; and overall cost will be

(Access(A,P)×Cost(A, i)). Page P can be mapped to any of the C SPMs in the platform.

To map this situation to Knapsack problem, we can consider each of the C mappings, one

item with weight 1 and Value of 1/(Access(A,P)×Cost(A, i)). If we create these items for

every page of every application, we will have items with weight 1 and different costs. Now,

SPMPool memory mapping problem can be transformed to finding the set of items that can

fit in a knapsack with weight N and has maximum value (minimum cost) which is called the

knapsack problem.

For the sake of completeness, we implemented this exact formulation as an ILP and ran it

30

with the CPLEX solver [67]. The ILP formulation generated results in the order of seconds

for very small configurations (less than 16 cores) but saw an exponential increase in runtime

with larger numbers of SPMs. The ILP solver ran out of memory for configurations larger

than 49 SPMs.

Optimization Problem 1: SPMPool Mapping Problem

Inputs :
APP set of executing application threads
SPM set of SPMs
PAGE set of virtual pages for each thread
Cap(i) capacity (number of pages) in SPM(i)
Cost(i,j) cost of access from APP(i) to SPM(j)
Access(i, j) number of accesses to APP(i).PAGE(j) over the execution of APP(i)

Output:
∀a ∈ APP, ∀p ∈ a.PAGE, ∀s ∈ SPM :

Map(a, p, s) =

{

1, page p in app a allocated to spm s

0, otherwise

1

minimize
∑

a∈APP,p∈PAGE,s∈SPM

Map(a, p, s) ∗ cost(a, s) ∗ access(a, p) (2.1)

subject to ∀a ∈ APP, ∀p ∈ a.PAGE :
∑

s∈SPM

Map(a, p, s) = 1 (2.2)

∀s ∈ SPM :
∑

a∈APP,p∈a.PAGE

Map(a, p, s) ≤ Cap(s) (2.3)

(2.2) guarantees a unique mapping and (2.3) is the capacity constraint.

Since the search for an optimal memory mapping is infeasible, we developed heuristic

Memory Mapping Policies to approximate the optimal mapping in polynomial time (analyzed

in Section 2.5.5, with experiments in Section 2.5). Each mapping policy attempts to prioritize

the pages with higher need for memory resources and consists of two phases:

1. Phase A – Deciding if a page should remain on-chip or go off-chip.

2. Phase B – Mapping virtual pages to physical memory locations.

These two phases encompass the entire memory placement decision process. We now describe

31

three policies: Most-accessed, Neighborhood, and Local-only. In all of these policies, input,

output and goal is same as SPMPool Mapping problem:

Most-accessed Policy mapping attempts to maintain the most accessed set of pages

(across all executing applications) within the Pool-of-SPMs. Based on the memory access

weights assigned to each page, all executing applications’ pages are compared, and the most

accessed overall are placed on-chip as close as possible to their home tile.

In Phase A (Algorithm 2), all threads’ working sets of pages are combined and sorted

based on their access weight, resulting in a sorted page list of all pages in use by executing

applications. We subsequently split this list into two sub-lists: the first N pages make up

the on-chip list, where N is the total number of on-chip SPM pages; all remaining pages

make up the off-chip list.

In Phase B (Algorithm 3), the pages in the on-chip list are assigned to SPMs: each page

in descending order of weight is assigned to the free SPM page nearest its home core (the tile

on which its owner thread is executing). All remaining pages (the off-chip list) are placed in

off-chip memory. For each core, memory manager keeps an adjacency list: list of all other

SPMs sorted based on the distance to those SPMs (how many hops are between them).

In the case of high core-contention, it is possible for the core to enter a fragmented state

where some applications’ memory is far from the home core. Our experiments in Section

2.5.2 show that even in this case, SPMPool improves over the baseline due to on-chip memory

ALGORITHM 2: Most-Accessed Policy – Phase A

1 if thread start then
2 sorted page list = Merge(Sorted page list, new pages);

3 if thread stop then
4 sorted page list = delete(Sorted page list, old pages);

5 onchip list = sorted page list[0..N-1];
6 offchip list = sorted page list [N..end];

32

accesses being generally less costly than off-chip accesses.

Neighborhood Policy mapping attempts to place an application’s pages with high mem-

ory access weights in SPMs as close as possible to its home tile by first claiming all of the

pages in its local SPM, and subsequently searching outward for free SPM space in the ”neigh-

borhood” of surrounding tiles (Algorithm 4).

Phase A and B are combined in this policy. For each page in the incoming application’s

working set, if replacing an existing page would lower the overall access latency, the new page

is assigned. If unable to place the new page, the search space for remote SPM allocation is

progressively increased. This search for a destination is done in groups of SPMs defined as

having an equal hop distance from the home tile. Once the search neighborhood is expanded

past a threshold without an assignment, the pending page and all of the entering application’s

remaining unmapped pages are relegated to off-chip memory.

Local-only Policy mapping (Algorithm 5) is the baseline that only allows each thread

to use its local SPM. All pages in a thread are sorted based on their weight and the top

Cap(i) pages are mapped to the local SPM while the other pages are mapped to off-chip

memory. Cap(i) is the number of available pages in each SPM. This emulates policies that

do not support remote SPM utilization. As a reminder, for each shared page, there is only

one entry in one of the threads sharing that page.

ALGORITHM 3: Most-accessed Policy – Phase B

1 for page in sorted page list do
2 home = home core(page);
3 for SPM in home.adjacency list do
4 if SPM.has free slot() then
5 SPM.assign(page);
6 SPM.reduce free slots();
7 break;

33

2.4.2 SPMPool Architectural Assists

Recall from Figure 2.1 that the pooling of on-chip memory resources requires hardware and

software architectural assists within each tile. To provide each application a virtual private

address space (Figure 2.6a) with data that may be physically distributed throughout the

on-chip network, SPMPool must allow the applications to both address and access remote

ALGORITHM 4: Neighborhood Policy

1 hop distance = 1;
2 for page in sorted page list do
3 home = home core(page);
4 for SPM in home.adjacency list do
5 for SPM in home.SPM list(hop distance) do
6 if SPM.has free slot() then
7 SPM.assign(page);
8 break;

9 else
10 hop distance++;

11 for SPM in home.SPM list(hop distance) do
12 if SPM.min page importance <page.importance then
13 SPM.evict(SPM.page min importance);
14 SPM.assign(page);
15 SPM.update min page importance();
16 break;

17 if hop distance >threshold then
18 break;

19 assign any remaining pages to main memory;

ALGORITHM 5: Local-only Policy

1 if thread start then
2 onchip list = thread.sorted pages[0..S-1];
3 offchip list = thread.sorted pages[S..end];
4 SPM = thread.local SPM;
5 for page in onchip list do
6 SPM.assign(page);

7 if thread stop then
8 thread.local SPM.free();

34

Virtual Page 0

Virtual Page 1

Virtual Page 2

Virtual

Address Space

Virtual Page n

(a)

Core

Other

MMU
Translation

Table

Page 0 V Addr

Page 1 V Addr

Page 2 V Addr

Page 3 V Addr

Page m V Addr

Page 0 IP Addr

Page 1 IP Addr

Page 2 IP Addr

Page 3 IP Addr

Page m IP Addr

1

2

(b)

Figure 2.6: (a) Virtual address space of a single application (b) SPMPool-specific translation
table on each tile

SPMs, and store information about the physical location of their data.

Each tile has an augmented translation table that contains SPMPool mapping information.

These SPMPool-specific translation tables specify virtual address to physical on-chip SPM

address mappings for any of the application’s pages that are stored on-chip (Figure 2.6b). In

multi-threaded applications, all the cores running different threads of the same application

should have an entry for the shared pages (if those pages are mapped on-chip). Any memory

access initially checks this translation table for the desired page. If an entry for the page

exists, a local or remote SPM access is initiated depending on the mapping indicated. If

an application’s page is not in its local translation table, the memory access defaults to a

standard main memory access. For a remote SPM access, the virtual memory management

generates an intermediate physical address (IPA) for each SPM page. In this scheme, the

SPM IPAs (held in the translation tables) can be decoded to determine where the specific

SPM page resides physically on chip. The MMU on each tile contains hardware to handle

direct SPM access requests to and from remote tiles, along with a TLB to handle standard

page access to main memory. Figure 2.7 illustrates a sample remote SPM access by an

executing application.

35

The application executing on Core 0 initiates a memory load by sending the request to

its local MMU, which contains the translation table. In this case, based on the virtual to

IPA translation of the requested address, the MMU determines that the data resides on the

remote SPM located on Tile 1. It sends a request over the NoC for the data, and that request

is received and serviced directly by the MMU on Tile 1 (red path in Figure 2.7). The data

is returned to the requesting core through the same path (green path in Figure 2.7).

2.5 Experimental Setup and Results

2.5.1 Experimental Setup

The SPMPool simulation infrastructure is designed to evaluate overall memory access latency

of user-specified workloads on a variety of many-core configurations. We developed a Java-

based simulator that implements the SPMPool runtime manager routine and calculates the

memory access latency of the workload. The simulator takes as input the memory traces

of all applications in the workload along with the access weight values of each application’s

working set. The simulator models the flow of the SPMPool Memory Manager in Figure 2.5

and tracks all memory accesses throughout execution of the workload. For our experiments,

we used a variety of benchmarks from SPEC2006 [62], MiBench [55] and PARSEC [17]

suites that have varying memory-use characteristics, and combined them to create diverse

Core 0

SPM

MMU
Transl.

Table

Interconnect Control On-Chip

Interconnect

Core 1

SPM

MMU
Transl.

Table

Interconnect Control

Tile 0 Tile 1

Figure 2.7: Example remote SPM access.

36

Table 2.2: Cost of Access in 4x4 platform
SPM #: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Off-chip
Core 0 1 6 9 12 7 9 11 14 9 12 13 16 11 13 16 18 90
Core 1 6 1 7 9 9 7 9 11 11 9 12 14 14 11 14 17 90
Core 2 9 7 1 7 11 9 7 9 14 11 9 12 16 14 11 14 90
Core 3 12 9 6 1 13 10 9 7 15 13 11 9 17 16 13 11 90
Core 4 7 8 11 14 1 6 9 11 7 9 12 14 9 11 14 16 90
Core 5 9 7 9 11 7 1 6 9 9 7 9 12 12 8 11 13 97
Core 6 12 9 6 9 9 7 1 7 12 10 7 9 13 11 9 11 96
Core 7 13 11 8 7 12 9 6 1 13 11 9 6 16 14 11 9 90
Core 8 8 11 13 16 7 9 11 14 1 6 9 12 6 8 11 13 90
Core 9 11 9 12 13 9 7 10 12 7 1 7 9 9 6 9 11 96
Core 10 14 11 9 12 11 9 7 9 9 7 1 7 11 9 6 9 96
Core 11 16 14 10 9 14 11 9 7 11 9 6 1 13 11 9 7 90
Core 12 11 13 16 18 9 11 14 16 7 9 12 14 1 6 9 11 90
Core 13 13 11 14 16 12 9 12 14 10 7 9 12 7 1 7 9 90
Core 14 16 13 11 14 13 12 9 11 11 9 7 9 9 7 1 7 90
Core 15 18 16 13 11 15 14 11 9 13 11 9 7 12 10 6 1 90

workloads. To generate each workload, benchmarks and their associated entry time were

selected randomly, all running to completion (the details are described in the following

sections). Memory traces are obtained by running benchmarks with gem5 simulator [19].

These memory traces are the inputs of SPMPool simulator. The traces were parsed by the

SPMPool analyzer to determine the memory access weight of each page for every application.

For this set of experiments the memory access weight is the number of times a page is accessed

by its application.

To calculate the latency of each memory access, we considered the time required to commu-

nicate between the source and destination tiles and the time required to access the memory

bank. Noxim [47] was used to statically obtain the NoC communication delay per-hop ac-

counting for network contention using random-injection. CACTI [92] was used to obtain

memory bank access latency. The cost of access from each core to each SPM (number of

cycles) is shown in Table 2.2. These cost numbers are obtained by adding the numbers ex-

tracted from Noxim and CACTI. Each tile is associated with a 64KB SPM. All virtual and

37

Table 2.3: List of Benchmarks
Application

Type

Combinatorial
Optimization

Artificial
Intelligence

Video
Compression

Image
Ray-tracing

Benchmark mcf gobmk h264ref povray
Number of different

input sets
1 7 3 1

physical memory is divided into 4KB pages. There are no caches present, and we assume all

data and instructions are stored in RAM. We conservatively assumed a bandwidth of 8GB/s

for on-chip communication and 160 MB/s for accessing main memory to calculate overheads

(real platforms have higher bandwidth e.g., Intel SSC supports 64GB/s [64]). Simultaneous

accesses to one memory bank is not considered in our simulations.

2.5.2 Experimental Results - X86

Table 2.3 lists the benchmarks and number of different sets of inputs used in our experi-

ments. To generate each workload, benchmarks and their associated entry time were selected

randomly, all running to completion. Memory traces were extracted by executing the bench-

marks on x86 architecture. We extracted the traces from gem5 simulator [19] while executing

the benchmark.

Figure 2.8 depicts the dynamic memory characteristics of the benchmarks. The graphs

show the number of accesses to the highest ranked pages of a sample execution. The varied

access patterns of these benchmarks make them good candidates for SPMPool working set.

Also it is shown by Jaleel [73] that about 50 % of all instructions in these SPEC bench-

marks are memory accesses. Hence, reducing memory access latency leads to considerable

improvement in execution time.

In the following, we discuss three sets of experiments. The first set shows the memory

access latency improvement for different utilization points of the same configuration. In the

38

0

2

4

6

8

10

12

14

1 6 11 16 21 26 31 36 41 46 51 56 61

M
il

li
o

n
s

Povray

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56 61

M
il

li
o

n
s

h264 - 1

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61

M
il

li
o

n
s

mcf

0

20

40

60

80

100

120

140

160

1 6 11 16 21 26 31 36 41 46 51 56 61
M

il
li

o
n

s

gobmk - 1

Figure 2.8: Highest accessed pages of benchmarks used in the experiments

second set, the SPMPool Memory Mapping Policies are studied. In the third set, workload

dependence of SPMPool is studied. Every simulation shown is run with a unique randomly

generated workload.

Latency improvement for different utilizations

Figure 2.9 shows the improvement in overall memory access latency achieved by the SPM-

Pool most-accessed placement policy over the local-only policy for both 4x4 (16 cores) and

8x8 (64 cores) configurations at different utilization points. Utilization is the percentage of

concurrently active cores throughout runtime. At low utilization points (≤25%), SPMPool

reduces memory access latency by more than 35% for both 4x4 and 8x8 configurations. As

the number of utilized cores increases, the advantage of SPMPool over non-sharing organi-

zations decreases. However, we still observe about 7% reduction in overall memory latency

when the 8x8 configuration is 100% utilized. In any fixed utilization, for different sets of

39

0

20

40

60

10% 25% 50% 75% 100%

Im
p

ro
v

e
m

e
n

t(
%

)

Utilization as % of cores active

Reduction of Memory Access Latency

4x4

8x8

Figure 2.9: Percentage of overall memory access time improvement achieved by the SPMPool
most-accessed placement policy over the local-only policy.

applications and scheduling, we observe a significant variation (up to 25%) between memory

access latency improvements, so we don’t necessarily observe a consistent relationship be-

tween configurations through the different utilizations. For this set of experiments, SPMPool

reduces memory access latency by up to 55% at the lowest utilization points by sharing the

vast amount of unutilized SPM resources.

Policy comparison for different configurations

Figure 2.10 includes a comprehensive comparison of the SPM mapping policies introduced

in this chapter, for different utilizations on configurations from 4x4 (16 cores) to 16x16 (256

cores). One additional placement policy studied is a simplified version of the most-accessed

policy. The most-accessed policy re-maps all on-chip memory pages every time it generates a

memory map, which can induce excess memory migration overhead. In the simplified most-

accessed policy, memory migration is limited to between on- and off-chip memory only, not

between SPMs.

To be more specific, if a page is currently assigned to one of the SPMs, and the new

memory mapping changes its location, we move that page only if it is mapped to off-chip

memory in the new mapping. By this restriction, we can reduce the overhead of memory

40

Utilization as % of total cores active

0

0.2

0.4

0.6

0.8

1

1.2

12% 25% 50% 75%

16x16 Config

0

0.2

0.4

0.6

0.8

1

1.2

10% 25% 50% 75% 100%

N
o

r
m

a
li

z
e
d

 L
a
te

n
c
y

4x4 Config

0

0.2

0.4

0.6

0.8

1

1.2

10% 25% 50% 75% 100%

8x8 Config

Figure 2.10: Scalability analysis by comparing total memory access latency normalized to
local-only policy

migration significantly. The range of utilizations simulated for 4x4 and 8x8 consisted of five

points from 10% to 100%. The 16x16 configuration was run for simulations from 12% to 75%

utilization. The threshold for neighborhood policy used was 10 hops, as we did not observe

significant improvement beyond this point. For efficiency we restrict migration to between

on- and off-chip.

We observe in Figure 2.10 that the overall memory access latency is reduced in all cases

over the local policy. The most-accessed policy yields the greatest reduction, but all SPMPool

Policies are able to reduce latency for all configuration sizes from 4x4 to 16x16, even at high

utilizations (≥50%). Also, given the trends in dark silicon [44], we can expect that 100%

utilization may not be a common use-case for beyond hundreds of cores3: hence our SPMPool

strategies can be expected to yield significant performance improvement, especially when

platform resources are not completely utilized. In the best case SPMPool reduces memory

access latency by 76%, 55%, and 48% for 4x4, 8x8, and 16x16 configurations respectively at

˜10% utilization.

Relative performance between SPMPool Policies changes as configuration size grows to

hundreds of cores (Figure 2.10). For 4x4 and 8x8 configurations, both versions of the most-

3Replacing cores with memory doesn’t solve the dark silicon problem. Although we cannot turn on all
cores simultaneously, they are useful for thermal management and aging reduction using activity migration
and other techniques

41

accessed policy outperform the neighborhood policy. However, as configuration size grows,

the severity of across-chip remote SPM access penalty increases, and as a result the neigh-

borhood policy outperforms the simplified most-accessed policy for the 16x16 configuration.

SPMPool shows promise as configuration scales to hundreds of cores: for 16x16 at 50%

utilization we observed a minimum of 18% latency reduction.

Workload Dependence

In Section 2.5.2 interdependency of system utilization and performance is studied. But the

SPMPool performance is not only dependent on the utilization, it is also highly related to

the workload (i.e., set of concurrently executing applications and their inputs) and how it

is scheduled. Even if the utilization is kept constant, a change in workload may signifi-

cantly impact memory requirements, and subsequently the performance of SPMPool. In

our experiments we observed a significant variation (up to 25%) between memory access

latency improvements for different workloads (for a fixed utilization). Figure 2.11 shows the

maximum latency improvement variation for different workloads.
emory

. Each tile is

associated with a 64KB SPM. All virtual and physical memory is

divided into 4KB pages. There are no caches present, and we

assume all data and instructions are stored in RAM. Our

n analyzer parses the

traces and determines the value of each page in every application.

For our experiments, we used a variety of C benchmarks from the

-

d behavior both between and within

simulations. The benchmarks were not annotated for any SPM

o evaluate the scalability of different

NoC

. Furthermore, each NoC Figure 12. Maximum improvement Variation (%) between

0

5

10

15

20

25

30

10% 25% 50% 75% 100%

V
a

ri
a

ti
o

n
 (

%
)

Utilization as % of cores active

4x4 Improvement Variation

Figure 2.11: Maximum improvement Variation (%) between sets of applications for 4x4
configurations.

42

Table 2.4: Off-chip memory access ratio of most-accessed policy versus local-only policy
Memory Access Ratio

Utilization 4x4 Config 8x8 Config
10% 0.142 0.232
25% 0.596 0.635
50% 0.752 0.778
75% 0.728 0.768
100% 0.817 0.849

Power consumption

Access to off-chip memory is an order of magnitude more costly than on-chip accesses in terms

of power consumption. Although SPMPool Policies primarily target the reduction of latency

as the main goal, they can also reduce the number of off-chip memory accesses significantly.

Consequently we estimate that using SPMPool improves system power consumption. Table

2.4 shows the ratio for off-chip accesses of the most-accessed policy versus the local-only

policy, demonstrating the potential for concomitant power reduction.

2.5.3 Experimental Results - ARM

Because SPMPool targets embedded systems, we must explore its effects on appropriate

architectures and workloads. Therefore, we selected different benchmarks from MiBench [55]

– an embedded benchmark suite – to execute on an ARM architecture configuration. The

selected benchmarks represent different embedded application domains. Table 3.1 lists the

benchmarks and number of different inputs used in this set of experiments. Memory traces

were extracted by executing the benchmarks with gem5 simulator on ARM architecture.

The set of benchmarks and their entry time were selected randomly.

Figure 2.12 illustrates the improvement in overall memory access latency for both 4x4 (16

cores) and 8x8 (64 cores) configurations at different utilization points. We compared the

43

Table 2.5: List of benchmarks used from MiBench suite
Application

Type
Benchmark

Number of

inputs

Application

Type
Benchmark

Number of

inputs

Consumer jpeg 2 Network dijkstra 2
Consumer typeset 2 Network patricia 2
Consumer lame 2 Telecomm fft 2
Automotive qsort 2 Telecomm gsm 2
Automotive bitcount 2 Security blowfish 2
Automotive susan 2 Office stringsearch 2

most-accessed placement policy to the local-only policy baseline. The results are compliant

with the results on X86 architecture, illustrated in Section 2.5.2. SPMPool can reduce the

memory access latency significantly in low utilization points (up to 72%). As the number

of concurrently executing tasks increases, the increased resource conflicts between different

tasks reduces the benefits of SPMPool.

0

20

40

60

80

10% 25% 50% 75% 100%

Im
p

ro
v

e
m

e
n

t(
%

)

Utilization as % of cores active

Reduction of Memory Access Latency

4x4

8x8

Figure 2.12: Percentage of overall memory access latency improvement of SPMPool (most-
accessed policy) for MiBench benchmarks on ARM architecture over the local-only policy.

2.5.4 Experimental Results for Multi-threaded applications

SPMPool supports multi-threaded applications with shared data (details in Section 2.4).

In lieu of implementing a coherence protocol in our memory architecture, SPMPool does

not support data duplication of shared memory. Instead, mechanisms are included to allow

access by multiple threads to a single copy of a shared piece of data. To exercise this use

44

Table 2.6: List of benchmarks used from PARSEC suite

Benchmark
Number of

inputs
Benchmark

Number of

inputs

blackscholes 2 canneal 2
bodytrack 2 x264 2
facesim 2 ferret 2

fluidanimate 2 freqmine 2
streamcluster 2 swaptions 2

case, we ran a set of experiments with multi-threaded workloads. The baseline policy forced

all shared data to remain in off-chip memory. Unlike previously discussed experiments,

the purpose of these experiments was primarily to demonstrate functionality, not quantify

improvements.

PARSEC, a multi-threaded benchmark suite, was used for creating the workload. Table

2.6 lists the benchmarks and number of different sets of inputs used in these experiments. To

generate each workload, benchmarks and their associated entry time were selected randomly,

all running to completion. Memory traces were extracted by executing the benchmarks with

gem5 simulator, each running 4 threads. Due to limitations in our simulator, we did not

simulate locking mechanisms for accessing the shared memory.

The overall memory access latency of SPMPool is compared to the baseline (shared data

in main memory) in Figures 2.13 and 2.14 for both 4x4 and 8x8 configurations at different

utilization points. Using a mechanism which enables bringing shared data to on-chip memory

can decrease the memory access latency significantly. In low utilization points, SPMPool

could achieve up to 86% improvement in memory access latency. In high utilization points,

this improvement is still compelling (more than 60%). As keeping coherency of data is a

major obstacle in multi and many-core systems, these results show the benefits of SPMPool

in systems without any coherency protocol.

45

2.5.5 Overhead

The sources of overhead imposed by SPMPool include communication, computation, storage,

and memory migration. Frequency of change in the system impacts the overhead; more

SPMPool events lead to more overhead. Architectural assists added to each core impose some

hardware overhead in the form of storage. Translations of virtual addresses to intermediate

physical addresses, and memory address weights must be stored on each core for its locally

executing application There is no other explicit added hardware in SPMPool. The SPMPool

Memory Manager incurs communication overhead due to the need to send memory mapping

updates to affected cores. These cores will halt the execution of their applications until

translation tables are updated and memory migration is completed. In this section, the

different overhead components of SPMPool are analyzed, demonstrating that SPMPool has

a relatively low overhead. Note that even without SPMPool, some book-keeping and memory

migration is inevitable for any SPM-based system.

Communication and Computation Overhead

The SPMPool runtime manager communicates with cores to generate a new memory map.

On application start, the application’s memory access weights are sent to the Manager. On

0

5

10

15

20

25

30

35

25% 50% 75% 100%

#
 o

f
b

il
li

o
n

 c
y

c
le

s

Utilization as % of total cores active

4x4 Memory Access Latency

with onchip sharing

without onchip Sharing

Figure 2.13: comparison of memory access latency between SPMPool and baseline (shared
data in main memory) for 4x4 platform

46

application stop, the application sends a message to the Manager to indicate its completion.

After creating a new memory map, the Manager sends messages to update the translation

table on each affected tile. Assuming N is the page capacity of all SPMs, the manager needs

to send and receive at most 2*N messages on each event, which grows linearly with the

configuration size.

We consider the most-accessed mapping policy in Section 2.4.1 for estimating the overhead

of updating the memory map (the overhead of other mapping policies can be obtained

similarly). The mapping policy first decides if a page should remain on-chip or go off-chip.

This involves merging pre-sorted lists which can be done in O(N) = O(#SPMs * #pages-per-

SPM). Next, it maps virtual pages to physical memory locations. This involves traversing

the list of all SPMs for each page and can be done in O(N * #SPMs) = O(#SPMs *

#pages-per-SPM * #SPMs). As #pages-per-SPM is a constant number, the computational

complexity of the mapping algorithm is O(#SPMs2). All overhead incurred by the SPMPool

runtime manager to this point does not require any applications to suspend execution and

therefore has a low impact on the overhead of the entire system.

0

20

40

60

80

100

120

12.5% 25% 50% 75%

#
 o

f
b

il
li

o
n

 c
y

cl
e

s

Utilization as % of total cores active

8x8 Memory Access Latency

with onchip sharing

without onchip Sharing

Figure 2.14: Comparison of memory access latency between SPMPool and baseline (shared
data in main memory) for 8x8 platform

47

0

5

10

15

10% 25% 50% 75% 100%

M
ig

ra
ti

o
n

 o
v

e
rh

e
a

d
 (

a
s

%
 o

f

a
cc

e
ss

 l
a

te
n

cy
)

Utilization as % of cores active

4x4

8x8

Figure 2.15: Memory Migration Overhead

Storage Overhead

To maintain the virtual to physical memory mapping and efficiently execute the mapping

algorithm, the Manager and each tile need to hold some SPMPool-specific information. If

the total capacity of SPMPool is N pages, the manager needs to keep the number of accesses

for #apps * N pages. To locate its data in physical memory, each tile needs to have a

translation table for any on-chip pages belonging to the application executing on its core.

This table is also necessary for non-SPMPool organizations.

For instance, in an 8x8 configuration with the characteristics mentioned in Section 2.5,

N is 64*16=1024. If each page entry in the runtime manager needs 20 bytes to store the

memory access weight, the runtime manager needs 64*20*1024 = 1.3MB of storage. 10KB

of data is sufficient for each tile to maintain its translation table.

Memory Migration Overhead

After generating a new memory map, some application pages may need to be moved between

off-chip and on-chip memory, as well as between SPMs. During this migration, affected

applications should halt their execution. Even in non-SPMPool organizations, some degree

of memory migration is inevitable. Due to the fact that SPMs are typically small (64KB

48

in this work), and interconnection networks are relatively high bandwidth, overhead due to

memory migration is low. We monitored the memory migration in our simulator for the

experiments described in Section 2.5. We computed the overall memory migration latency

and compared it to the total simulated execution time to estimate the memory migration

overhead. Our results, shown in Figure 2.15, show that for 4x4 and 8x8 configurations the

memory migration overhead is relatively small for most cases – in the range of 2 percent

to 6 percent considering the most-accessed policy. Overhead for the 8x8 configuration is

slightly higher than 4x4 configuration. For example, if we consider 25% utilization in 4x4

configuration, 1.44 billion cycles are spent for memory accesses with an overhead of 70

million cycles. In the same utilization point, the memory access latency and overhead for

8x8 configuration are 7.71B and 370M cycles respectively. This trend continues to systems

with configuration size of 16x16. The overhead increases with system configuration size due

to longer communication paths and more memory migrations.

If we account for all types of overhead outlined above, SPMPool incurs a relatively small

burden in terms of time and memory overhead for systems sized at a couple of hundred cores.

2.6 Discussion

2.6.1 Scalability and multi-agent management

As the number of cores reaches 256, the scalability of the current version of SPMPool becomes

an issue – an on-chip memory access may be more costly than an off-chip access in the most

extreme cases. Multiple pools become necessary due to severe delay accessing remote tiles

across chip. A single centralized runtime manager is no longer sufficient and we must move to

a distributed management topology. This opens up new challenges in managing distributed

pools of SPMs which will be discussed in Chapter 3.

49

2.6.2 Sensitivity to Application Mapping

Relative assignment of applications to cores in NUMA many-cores affects the memory access

latency of the system. For all experiments discussed to this point, we assumed each appli-

cation upon dispatch is randomly mapped to an available core without any knowledge of

current programs executing. To quantify the degree of impact application placement has on

a memory placement technique such as SPMPool, we re-evaluated a subset of the previous

experiments while employing an alternative application mapping strategy. This placement

strategy searches for a chip region with memories that are accessed least by existing cores.

The SPMs in this region potentially have the minimum amount of conflicts with other cores

in terms of memory accesses, and contain the least critical data on-chip for existing appli-

cations.

All the experiments have been performed for moderately sized many-cores (less than 100

cores) and as shown in Figures 2.16a and 2.16b, the impact of using an intelligent task

placement policy, such as our minimum conflict policy, on overall memory access latency is

negligible for any memory placement strategy discussed in this chapter. Large sized many-

cores should be studied separately for the effects of task mapping tied with memory mapping

on the overall SPMPool performance.

0

50

100

150

200

250

300

350

10% 25% 50% 75%

#
 o

f
b

il
li

o
n

 c
y

cl
e

s

Utilization as % of total cores active

4x4 Task Placement Impact

Random Placement

Minimum Conflict

Placement

(a)

0

100

200

300

400

500

600

700

800

10% 25% 75% 100%

#
 o

f
b

il
li

o
n

 c
y

cl
e

s

Utilization as % of total cores active

8x8 Task Placement Impact

Random Placement

Minimum Conflict

Placement

(b)

Figure 2.16: Memory access latency for the same workload using different task placement
policies.

50

2.7 Conclusion

In this chapter, we presented SPMPool, a strategy for sharing SPMs across multiple simul-

taneously executing applications on a many-core platform. To the best of our knowledge,

SPMPool is the first approach to provide dynamic runtime memory management for unpre-

dictable workload supporting SPM sharing. SPMPool reacts to unpredictable workloads by

dynamically updating the memory mapping at runtime as the set of concurrently executing

applications changes. We demonstrated that SPMPool can achieve 48% reduction in over-

all memory access latency for a 256-core platform by sharing underutilized SPM resources

among concurrently executing applications. Analysis of our implementation indicated that

the observed SPMPool benefits could be achieved at a relatively low overhead.

In a platform with hundreds of cores, a central memory management is very inefficient.

In Chapter 3, we propose different schemes to manage platforms with hundreds of cores in a

distributed manner. Also in this chapter, we assumed that applications are profiled offline.

Moreover, SPM re-mapping routine is only triggered when applications start or stop their

execution. These assumptions help to introduce the concept of SPMPool, but are not realistic

or efficient in real systems. In Chapter 4, we propose an online memory phase detection

scheme in order to increase the adaptivity of memory management to application changes

which also addresses the quantification of memory requirements without offline profiling.

51

Chapter 3

Auction-Based Memory Mapping in

Many-core Systems

3.1 Introduction

Growing computing resources on a chip is commonly exploited in the form of multi and

many-core platforms and the increase in the number of cores is projected to continue for the

near future (Chapter 1). Many-core platforms provide the opportunity to execute a dynamic

and unpredictable workload where many applications –with different resource requirements–

can be executed concurrently.

Concurrently running applications compete for the available resources. A competent run-

time management mechanism is required to fulfill applications requirements, efficiently use

resources, increase the performance of the entire system, meet power and thermal require-

ments, and resolve the conflicts between competing applications. The resource management

problem becomes more complicated in many-core platforms, due to higher number of re-

sources and competing applications.

52

A central management scheme can govern a small platform with a few number of cores

efficiently [18, 96, 49, 103]. When platform size approaches hundreds of cores, a central

manager becomes incapable of administering the entire system with a reasonable overhead

due to:

• Increased communication distance: more time and energy is needed to send data to or

receive it from the manager.

• Network congestion and creation of a hotspot: every sensing, monitoring, or command

is directed to or originates from the manager. This creates a thermal and communica-

tion hotspot.

• Increased storage requirement: for bookkeeping of applications and their data, the

manager needs to store all applications’ information which increases excessively with

high number of resources and applications.

• Increased computation: the number of computations for the resource assignment prob-

lem is dependent on the size of problem and imposes a huge overhead in presence of

hundreds of cores and applications.

• Single point of failure: the manager’s failure can stop the entire system from functioning

which is an important dependability concern.

Therefore, using a central manager degrades system performance significantly and makes any

management system unscalable. To solve this problem, a distributed management scheme

should be employed to increase the efficiency of resource management in many-core systems.

Several approaches have been introduced to govern many-core platforms in a distributed

manner. In most of these approaches, the entire platform is divided into different clusters

and an agent manages each cluster. These clusters might be fixed-size or determined by a

central manager at arrival time of applications ([4, 5]) or might expand and shrink based on

53

completely distributed mechanisms through local communication mechanisms ([46, 34, 79,

129]). The majority of proposed approaches only target task to core mapping.

Some management systems use market-based algorithms to tackle resource assignment

problems. In these systems, some agents try to maximize their benefit by obtaining resources

(objects) of the system. Auction is one of the oldest mechanisms used in trading and com-

merce. It has been shown that exploiting principles of an auction mechanism is a successful

approach to assigning resources to agents [77, 14, 16, 15, 132, 86, 42, 45, 88, 137, 87, 134, 35]).

Most required computations for auction-based assignment mechanisms can be performed in

parallel and executed with central or distributed management – with or without shared

memory.

We have proposed SPMPool (Chapter 2) as a platform to share SPM resources in many-

core platforms. In SPMPool, memory resources are assigned to applications based on appli-

cations’ requirements. Performance of SPMPool is dependent on the efficiency of memory

mapping policies and overhead of memory management. The management scheme intro-

duced in Chapter 2 is a central scheme and has the above-mentioned limitations when moving

toward hundreds of cores. Thus, using a distributed management for SPMPool is inevitable

to manage the resulting complexity.

The efficiency and flexibility that auction based algorithms provide make them good can-

didates for memory mapping in many-core systems. In this chapter, we model the memory

mapping problem of SPMPool using an auction mechanism and propose a two layer man-

agement approach for platforms with hundreds of cores. In this approach, the platform is

divided into different pools and each pool has a local manager that acts as an agent. Agents

use the distributed auction mechanism to claim the resources in other pools.

The rest of this chapter is organized as follows: Section 3.2 reviews the existing distributed

resource management schemes and auction based resource assignment methods. Section 3.3

54

outlines the memory mapping problem of SPMPool as an auction mechanism. In Section 3.4,

a two layer distributed approach for managing SPMPool is proposed. Experimental setup

and results are discussed in Section 3.5.

3.2 Related Work

Runtime resource management of multi and many-core architectures becomes very challeng-

ing in the face of increasing available resources and abundant number of applications with

variable requirements. To fulfill the growing demand for adaptivity, numerous runtime man-

agement schemes have been proposed which can be categorized in two general class of central

and distributed management. Central management schemes are effective for relatively small

platforms. The ACTORS approach [18] allocates virtual platforms to each application and

the manager maps virtual resources to available physical resources. Nollet et al. [96] used

A runtime task migration based on an NOC resource management heuristic. A feedback

control and optimization is used by Fu et al. [49] to minimize the power consumption by

monitoring CPU utilization of cores and applying core-level DVFS. Sabin et al. [103] used

an iterative approach to assign proper number of cores to parallel jobs.

A centralized scheme is incapable of managing many-core platforms with hundreds of

cores. Accordingly, several distributed schemes have been proposed to manage many-core

platforms. Anagnostopoulos et al. [4, 5] propose a central manager which analyzes incoming

applications and dispatches them to local managers. An agent based distributed mapping,

called ADAM, is used by Al Faruque et al. [46]. It implements a cluster negotiation algorithm

to form virtual clusters at runtime and a heuristic algorithm is in charge of task mapping

inside each cluster. An enhanced re-clustering technique for task mapping is proposed by

Cui et al. [34].

55

In the invasive computing paradigm [59] an application may dynamically expand on par-

allel cores or retreat based on the possible/required parallelism. A runtime management for

this paradigm, called DistRM, is introduced by Kobbe et al. [79]. In DistRM, each agent

is associated with an application and autonomously tries to increase the speedup of its ap-

plication by searching for cores on the chip. A hierarchical and multi objective distributed

resource management is proposed by Bellasi et al. [13]. Weichslgartner et al. [129] proposed

a decentralized scheme for mapping of tree-structure application. Each application initiates

mapping autonomously and each process embeds its succeeding tasks only with local view of

neighbor nodes. Also different distributed thermal management schemes have been used in

many-core platforms (e.g., Ge et al. [51] and Sartoti et al. [105]). To the best of our knowl-

edge, no viable distributed solution for memory mapping has been proposed in many-core

systems.

Market based resource allocation algorithms such as auction-based algorithms have been

studied for many years. Auction is a basic mechanism in markets in which some bidders

try to acquire some objects. If an object (with predefined initial price) is desirable for some

bidders, they try to obtain the object by bidding on it and each bid increases the price of the

object. This process ends when the price is so high that it’s not desirable for other bidders

and the highest bidder gets hold of the object. In auction based algorithms, some agents try

to maximize their benefits by bidding on and obtaining the resources of the system. Different

variations of auction algorithms such as open and sealed bid, ascending-bid, descending bid,

first-price sealed-bid, and second-price sealed bid auction have been proposed and discussed

in auction theory [77]. The initial work to use auction as a mechanism for resource assignment

goes back to the late 1970s in which Bertsekas [14] proposed an auction mechanism to solve

the basic assignment problem when the number of agents and bidders are equal. Bertsekas

[16] also outlined parallel synchronous and asynchronous variations of this mechanism. An

asynchronous auction algorithm without accessing shared memory is presented by Zavlanos

et al. [132]. In this mechanism, each agent bids on objects based on the current view of the

56

prices. Some prices might be outdated at any particular time, but the view of the system

will be updated eventually after passing the information between agents.

Auction algorithms have been used to solve assignment and optimization problems in

different fields of computer science. The distributed nature of this algorithm makes it a viable

solution for distributed task allocation in different domains such as wireless sensor networks

([86, 42]), peer to peer networks ([45]), and multi-robot environments ([88, 137]). Resource

allocation is a critical part of cloud computing and variations of the auction mechanism has

been used to optimize it (e.g., Lin et al. [87]). Zhang et al. [134] used auction mechanism

for resource allocation in mobile cloud computing systems. Also it is a popular method

for scheduling tasks in grids ([35, 52, 117]). Network resource allocation systems has also

benefited from market-based algorithm. For instance, Sun et al. [118] used auction algorithm

for wireless channel allocation.

To the best of our knowledge, ours is the first work to manage the memory mapping of

a many-core system in a distributed manner, using the auction mechanism. Despite all the

efforts in using auction-based resource management, it has not been exploited and evaluated

in SPM mapping.

3.3 Auction Mechanism for Central Management of

SPMPool

The auction algorithm is one of the important methods to solve the assignment problem.

In this section we illustrate how the auction algorithm can be exploited to solve the SPM

mapping problem of SPMPool, introduced in Section 2.4.1. As a reminder, SPMPool memory

manager uses a central management scheme and some heuristics to solve this problem. We

show how to solve the same problem more efficiently using an auction algorithm.

57

In a generic assignment problem, n objects are assigned to n persons (one object each).

Assume object j has price pj and person i will be benefited aij by obtaining object j ; so the

net benefit of obtaining object j for person i is aij − pj. The objective of the assignment

problem is to find a one-to-one assignment that maximizes the total benefit: max
∑n

i=1 aiji−

pji .

Bertsekas [15] showed that assignment problem is equal to the economic equilibrium prob-

lem and formulated an auction algorithm to obtain economic equilibrium in which each

person acts as an economic agent and tries to maximize its own benefit. We use this auction

algorithm to model the SPM mapping problem.

3.3.1 SPM Mapping Problem Modeling

SPMPool Memory Mapping, introduced in Section 2.4.1, selects a subset from the numerous

pages of concurrently executing applications and assigns them to the limited number of

on-chip SPM slots in order to minimize overall memory access latency. In this section, we

propose a solution to SPMPool memory mapping using the auction scheme.

To model memory mapping as an auction mechanism, we need to specify objects and their

initial prices, bidders and their potential benefits by obtaining each object, and the auction

algorithm. Figure 3.1 demonstrates the model to represent the SPM mapping in many-core

systems as an auction mechanism:

1. Objects: each SPM and Main Memory page is an object. All SPM pages have the

same price and all Main Memory pages have the same price at the beginning.

2. Bidders: each application page is a bidder. The number of objects should be at least

equal to the number of bidders. Application pages (bidders) usually outnumber the

available SPM pages; therefore, objects representing main memory pages should be

58

A1

SPM 0Core 0

A1 SPM 3Core 3

Page

SPM 2Core 2
Page

App

SPM 1Core 1

Page

Page

App
Page

Page

Page

Page
App AApp B

App B
Page B0 1000

Page B1 900

Page B2 900

Page B3 1000

App A
Page A0 75

Page A1 100

Page A2 50

Page A3 5

O7 O8

Page B4 500 Page A4 25

O5 O6

O1 O2 O3 O4

Bidder7

Bidder8

Bidder9

Bidder10

Bidder11

Bidder1

Bidder2

Bidder3

Bidder4

Bidder5

MM

Page

Page

Page B5 100Bidder6

Page

O9 O10 O11

Benefit =

f(access, #distance)

Figure 3.1: Modeling SPM mapping problem with auction mechanism

added to make the number of bidders and objects equal. The benefit of obtaining each

object (memory page) should be defined based on the distance between the bidder

(application page) and the object (memory pages), and also the number of accesses to

the bidder.

3. Final assignment: executing the action algorithm maps each application page (bidder)

to a SPM or Main Memory page (object).

Auction Algorithm

To illustrate capabilities of the auction scheme to solve the memory mapping problem, an

auction algorithm with central management is presented in this section. The runtime system

maps incoming applications to unutilized cores. Incoming applications send a list of their

pages, alongside with the number of accesses, to the manager. The manager is responsible for

creating objects and bidders –based on the above-mentioned model– and also for performing

the auction algorithm. The basic auction algorithm, proposed by Bertsekas [15], is used to

perform the auctioning. The auction algorithm used to determine SPMmapping is illustrated

in Algorithm 6. In the beginning of this process, the manager creates objects and bidders of

59

the auction process based on number of accesses to each application page and the distance

between application pages and SPM pages (Lines 1-6). In an iterative process, all unassigned

bidders bid on the objects that maximize their benefits (Lines 7-16).

Assume memory page j (called object j from this point on) has price pj and application

page i (called bidder i from this point on) will be benefited aij by obtaining object j. So

the net benefit of obtaining object j for bidder i is aij − pj and every bidder tries to get the

maximum benefit by receiving object maxi (Line 11):

aimaxi
− pmaxi

= max
j=1..n

{aij − pj} (3.1)

By receiving maxi, bidder i is happy and the system is in equilibrium if everybody is happy.

The following process which finds the equilibrium for the entire system is called auction

ALGORITHM 6: Auction algorithm to determine SPM mapping

Input: all SPM pages with initial price, all application pages with number of accesses, placement
of SPM pages and application pages on the platform;

Output: application page to SPM page mapping
1 objects = new set();
2 bidders = new set();
3 for sp in SPM pages do
4 objects.add(create object(sp));

5 for ap in application pages do
6 bidders.add(create bidder(sp));

7 while unassigned bidder do
8 bids = new set();
9 for i in bidders do

10 if unassigned(i) then
11 aimaxi

− pmaxi
= max

j=1..n
{aij − pj};

12 maxi = argmax
j=1..n

{aij − pj};

13 vi = aimaxi
− pmaxi

;
14 wi = max

j 6=maxi

{aij − pj};

15 pmaxi
= pmaxi

+ (vi − wi);
16 bids.add(create bid(maxi, pmaxi

));

17 evaluate(bids);

60

algorithm.

The auction algorithm is an iterative routine. At the beginning of each iteration, if all

bidders are happy, the auction algorithm will be terminated. Otherwise, all unhappy bidders

try to maximize their benefit by bidding on their desired objects. Some unhappy bidder, for

example bidder i, finds the best object maxi which maximizes the benefit (Line 12):

maxi = argmax
j=1..n

{aij − pj} (3.2)

By obtaining maxi, the net benefit of bidder i will be (Line 13):

vi = aimaxi
− pmaxi

(3.3)

Bidder i also finds the net benefit of obtaining second best object (Line 14):

wi = max
j 6=maxi

{aij − pj} (3.4)

Bidder i acquires object maxi –takes it from the previous owner– and increases the price

of object maxi such that the net benefit of obtaining maxi becomes equal to obtaining the

second best objects. The new price of object maxi will be (Line 15):

pmaxi
= pmaxi

+ (vi − wi) (3.5)

This can be viewed as an auction process in which bidder i bids on the object maxi with the

value of vi − wi. The manager performs this process for all unhappy bidders.

If multiple bidders are equally interested in multiple objects, there might be a situation

in which bidders exchange the objects without increasing the price of those objects. In that

case, the auction process never terminates. To fix this problem, Bertsekas [15] proposed

61

a variation of auction algorithm inspired by real auctions. In this variation of auction

algorithm, bidder i is almost happy if the net benefit of assigned object is within ǫ of its

maximal net benefit:

aimaxi
− pmaxi

≥ max
j=1..n

{aij − pj} − ǫ (3.6)

The auction process will terminate when all agents are almost happy. To incorporate this

change, each bid value should be at least ǫ, in the other words, each bidder should raise the

price of the desired object by vi − wi + ǫ:

pmaxi
= pmaxi

+ (vi − wi + ǫ) (3.7)

By termination of this process, each application page (bidder) is mapped to an object

(memory pages) and the SPM mapping is complete.

Auction Modeling Challenges

Although auction algorithms are proven to be very efficient in resource assignment problems,

some factors can affect the efficiency of this model significantly.

1. Defining Benefit Function:

The auction algorithm tries to maximize the benefit for all bidders. Each bidder

(application page) should define a benefit value for obtaining an object (SPM or main

memory page) which should determine the relative preference of application pages for

SPM pages. SPMs are more beneficial for application pages with higher number of

accesses, so those application pages should have higher benefit values. Applications

prefer to obtain closer SPM pages because the access latency is lower (ideally, everyone

tries to get its local SPM). Therefore, closer SPMs should have higher benefit for

62

applications.

Considering the above mentioned characteristics of benefit values, we propose and use

the following benefit function for every pair of bidder-object:

Benefit(bidder, object) = f(#access, distance) = (−1)×#access×distance (3.8)

In this equation, #access is the number of accesses to the application page represented

by the bidder and distance is the distance between the application page’s home core

and the SPM represented by the object.

2. Long Execution time:

Applications might be consist of a large number of pages which translates to excessive

number of bidders (and objects) in the auction mechanism. Higher number of bid-

ders and objects results in more number of iterations to settle the assignments and

prices. The increase in platform size exacerbates this problem: the potential number

of concurrently running applications increases; as a result, a highly utilized many-core

platform cannot obtain the SPM mapping in a timely manner.

We use two techniques to reduce the execution time of the auction mechanism:

(a) Increasing the minimum bid: the prices of objects become expensive with a higher

rate and therefore other bidders become less interested in already-mapped objects.

This persuades bidders (application pages) not to insist on a desired object (SPM

Page) for a long time. Although this solution degrades the efficiency of SPM

mapping, it can reduce the number of iterations significantly.

(b) Grouping similar objects into a set: it reduces the number of objects significantly.

Before starting the auction iterations, all SPM pages of a core have same price

and benefit for applications. So we can group them in an object set. Each object

set has only one price – representing the price of all objects in that set. Bidders

63

A1

SPM 0Core 0

A1 SPM 3Core 3

Page

SPM 2Core 2
Page

App

SPM 1Core 1

Page

Page

App
Page

Page

Page

Page
App AApp B

App B
Page B0 1000

Page B1 900

Page B2 900

Page B3 1000

App A
Page A0 75

Page A1 100

Page A2 50

Page A3 5

O7 O8

Page B4 500 Page A4 25

O5 O6

O1 O2 O3 O4

Bidder7

Bidder8

Bidder9

Bidder10

Bidder11

Bidder1

Bidder2

Bidder3

Bidder4

Bidder5

MM

Page

Page

Page B5 100Bidder6

Page

O9 O10 O11

Object Set 1 Object Set 2

Object Set 3 Object Set 4

Object Set 5

One price for

the entire set

Figure 3.2: Using object sets to reduce number of objects

should bid on sets instead of objects. Figure 3.2 depicts this model.

The efficacy of auction-based model in solving SPM mapping problem is shown in

Section 3.5.2.

3.4 Distributed Management of SPMPool

When platform size approaches hundreds of cores, a single central manager becomes inca-

pable of managing the entire system with a reasonable overhead due to increased commu-

nication distance, network congestion, overhead of keeping data for every application, com-

putation, etc. Therefore, using central management for memory mapping degrades system

performance significantly and makes any management system unscalable. Auction mecha-

nism as a distributed management system can be used to overcome this problem.

In this section we propose a two-layer distributed management scheme which divides the

entire platform into multiple regions (Figure 3.3). The Global Manager assigns an arriving

application to a region. Each region has its own Local Manager and pool of SPMs. The local

manager is responsible for task and memory mapping inside its region. We first explore a

64

basic scheme where applications only can access SPMs inside their region (Section 3.4.1). In

Section 3.4.2 we propose an auction-based management scheme to manage SPMPool memory

mapping. Each region creates some bidders and is capable of bidding and obtaining SPM

resources in other regions. This auction mechanism is managed in a distributed manner.

The efficiency of the proposed management schemes are quantified in Section 3.5.

R R R R R

R R R R R

R R R R R

R R R R R

Application 1 Application 2 Application 3 Application n

SPMPool Global

Manager
Runtime Manager

Application

Scheduler

Region 1

R

R

R

R

R R R

R R R

R R R

Core

Other

SPM
Physical Page

Physical Page

SPMPool

Architectural Assists

R

R

R

R

R

R

R

R

R R R R R

R R R R R

R R R R R

R R R R R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R R R

R R R

R R R

R

R

R

R

R

R

R

R

R

Region 3

Region 4Region 2

Figure 3.3: System view of distributed management

3.4.1 Non-communicative Distributed Pool Management

Figure 3.3 shows the system view of multi-region management for SPMPool. In this scenario,

a pool of SPMs is composed of the aggregate on-chip SPMs of all cores in a defined region.

Any executing application’s memory can only be assigned to an SPM in the same region as

the executing core; in the other words, no application can borrow on-chip memory from other

regions. The regions that compose the pools of SPMs are determined at design time and

fixed throughout the execution. In this section we demonstrate the two-level management

65

of SPMPool.

Global Manager

The Global manager is responsible for Mapping tasks to regions. The manager maintains

a list of all application-region mappings and updates it upon stopping or starting of each

application. Here, the global manager, as part of the runtime system, assigns the incoming

applications to the region with the least number of applications. The advantage of this

scheme is its simplicity but it does not consider the memory requirement of each application.

The Global manager notifies the selected local manager about the incoming application.

Likewise, when an application leaves the system, local manager signals the general manager.

Local Managers

Local managers are responsible for mapping the incoming tasks to cores within their region

and also virtual to physical memory mapping of all applications assigned to the region. The

local manager in this new scheme acts as a central manager for a single pool, introduced in

Section 2.4.1. There is no need for local managers to communicate with each other, but they

should communicate with the Global Manager. We implemented the described scheme for a

16x16 platform (details in Section 3.5.1). This platform is divided into four 8x8 regions. As

a result, one global manager and four local managers are needed to supervise the SPMPool

memory mapping. In Section 3.5.3, results of distributed management are compared to

central management in terms of performance and overhead. The results show more than

75% reduction in memory migration overhead in some cases. Fixed size pools reduce the

memory mapping overhead, but borrowing SPM resources from other regions can reduce

memory access latency when memory resources of a pool are heavily used. Sharing memory

resources between different pools cannot be managed with a central manager. In Section

66

3.4.2 a distributed approach for SPM sharing between different regions is proposed.

3.4.2 Auction-based Distributed Pool Management

In Section 3.4.1 a multi-pool scheme is introduced to manage SPMPool when the platform

size reaches hundreds of cores. This two-layer management scheme is more efficient than

central management (Section 3.5.3), but it does not exercise the full capacity of the plat-

form. For example, if the applications mapped to pool A require significantly more memory

resources than applications mapped to the neighbor pool B, applications of pool A will

suffer from poor memory mapping. The ability to share SPM resources between different

regions can potentially increase the memory mapping performance. To avoid the drawbacks

of a central management, a distributed scheme should be exploited to improve the memory

mapping.

The capability of running the auction mechanism in a distributed manner, makes it a good

candidate for SPMPool management. Figure 3.4 shows the system view of distributed multi-

region management for SPMPool. The basics of this management scheme can be described

as follows:

• The entire platform is divided into multiple regions. These regions are fixed; the cores

forming a region are determined at design time. Each region has a local manager.

• One global manager and multiple local managers (one manager per region) create a

two layer management scheme. The global manager assigns an arriving application to

a region. The local manager is responsible for task and memory mapping inside its

region. Local managers are connected through a virtual mesh network.

• The aggregate of on-chip SPMs assigned to the applications running in a region, com-

poses the pool for that region. SPMs located inside a region are divided into two

67

groups: exclusive SPMs and shared SPMs; exclusive SPMs are only used by the appli-

cations inside the region while shared SPMs can be used by any application in local or

neighbor regions.

• To avoid starvation and provide a minimal performance for each region, half of the

SPMs inside a region are exclusive and half of them can be shared with another region.

In this work, while we used half of all SPMs for exclusive access, of course other

fractions could be used and investigated as well. All shared SPMs of each region is

considered as one group and can be assigned to only one neighbor region. For example,

assume region A is in vicinity of regions B and C; all shared SPMs of region A can be

used locally –by applications inside region A– or can be used by applications in region

B or region C exclusively, and not by all A, B, and C at the same time.

• Each local manager of a region is the corresponding agent for all applications and

SPMs inside that region. Each agent generates one object representative of all shared

SPMs inside its region and creates bidders on behalf of applications inside its region.

These bidders can bid on the local object and also on the remote objects – represented

by neighbor agents. A distributed auction mechanism assigns objects (shared SPMs)

to bidders (regions).

In the following section a distributed auction mechanism is proposed to reshape pools of

SPMs based on memory requirement of each region.

Agent Negotiation Using Distributed Auction

All local managers, which we call agents henceforth, need to generate the SPM mapping for

the applications running in their region. The set of SPMs assigned to each region (pool of

SPMs) should be determined before generating any SPM mapping algorithm. In this work,

68

R R R R R

R R R R R

R R R R R

R R R R R

R

R

R

R

R

R

R

R

R

R

R

R

R R R R R

R R R R R

R R R R R

R R R R R

R

R

R

R

R

R

R

R

R

R

R

R

R R

R R

R R

R

R

R

R

R

R

R R

R R

R

R

R

R

R R R R RRRR

R R

R R

RR

RR

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Agent iAgent x

Agent y

Agent z

RR

RR

Exclusive

SPMs

Shared

SPMs

Object

Bidder2

Bidder1

Bidder0

Figure 3.4: System view of distributed pool management. The platform is divided into
different regions. Each region has a local manager which behaves as an agent. Half of the
SPMs in each region can be shared. They form a single object. Agents can bid on objects
to obtain the SPM resources in other regions. The auction mechanism is managed in a
distributed manner.

we adopt a basic distributed auction mechanism, introduced by Zavlanos [132], and propose

a mechanism to alter SPM pools based on variable requirements of each region.

In the system illustrated by Figure 3.4, we assume all agents are connected through a mesh

network with diameter d (d=4 here). If the memory usage of one pool changes significantly

(by entering, exiting, or phase change of applications), the corresponding agent starts a new

auction process. The common routine in agent i can be described as Algorithm 7.

At setup time, agent i creates objects Oi0 (Lines 4-5, representative of shared SPMs in

region i) and Oi1, Oi2, and Oi3 (Lines 6-8, representative of offchip memory which helps to

terminate the auction process). Agent i should keep the price and highest bidder for all

69

objects in every neighbor agent (x, y, and z).

We allow each agent to obtain the shared SPMs (objects) of local and neighbor regions.

In other words, each agent can obtain shared SPMs of #neighbors + 1 regions (4 for agent

i). Therefore, agents need to create bidders for maximum attainable objects (4 bidders for

agent i) and specify a benefit function for them. Each bidder represents a set of application

memory pages: to create a bidder, we sort the application pages inside the region based on

ALGORITHM 7: Distributed Auction algorithm executed in Agent i

Input: all objects, their prices (p), and the maximum bidder (b) for each object: from local
agent and all neighbors agents; all applications and their pages in region i; assignment of
local bidders (α)

Output: object to bidder mapping
1 if setup then
2 local objects = new set();
3 local bidders = new set();
4 Oi0 ← Object(initial SPM price);
5 local objects.add(Oi0);
6 for j = 1..3 do
7 Oij ← Object(initial Offchip price);
8 local objects.add(Oij);

9 app pages⇐ concatenate
applications in region i

{application pages};

10 sorted pages = sorted(app pages);
11 for j= 0.. 3 do
12 bij ← Bidder(sorted pages[k(i+ 1)..k(i+ 2)− 1]);
13 local bidders.add(bij);

14 setup = false;

15 for j in objects do
16 pj(t+ 1) = max

received from all paths
{pj(t)};

17 index = pathmax
received from all paths

{pj(t)};

18 bj(t+ 1) = path index.bj(t);

19 for ix in local bidders do
20 if bαix(t)(t+ 1) 6= ix then

21 αix(t+ 1) = argmax
j=1..n

{a(ix)j − pj(t+ 1)};

22 bαix(t+1)(t+ 1) = ix;

23 pαix(t+1)(t+ 1) = pαix(t+1)(t) + (vix − wix + ǫ);

24 Send assignments to all neighbors();

70

the number of accesses to them and choose a block of those pages. Every block of pages

corresponds to a bidder. If region i contains k exclusive SPM pages and k shared SPM

pages, we can presume that the top k pages go to the private SPMs, so we can define the

bidders as in Equation 3.9 (Lines 9-13):

app pages⇐ concatenate
applications in region i

{application pages}

sorted pages = sorted(app pages)

bi0 ← Bidder(sorted pages[k..2k − 1])

bi1 ← Bidder(sorted pages[2k..3k − 1])

bi2 ← Bidder(sorted pages[3k..4k − 1])

bi3 ← Bidder(sorted pages[4k..5k − 1])

(3.9)

In Equation 3.9, the ”Bidder” function creates a bidder using the input pages. The benefit

of obtaining an object is a function of distance and number of access to that object. For

example, if object Oxp is representative of shared SPMs in region x, the benefit of receiving

Oxp by bidder bi0 is: f(
∑2k−1

j=k sorted pages[j], distance(i, x)).

Assume in agent i, {Ox0, Ox1, ..., Oi0, Oi1, ..., Oz3} are the objects in local and neighbor

agents. At the beginning of the tth iteration, pj(t) ≥ 0 is the price of object j, bj(t) is the

highest bidder for object j, and αix(t) are the assigned objects to all bidders created by agent

i. All agents have their own local view of objects and bidders; upon updating any price, each

agent sends its local updates to its neighbors. After receiving new updates, agent i at time

t executes this routine:

1. Agent i updates prices and highest bidders for all objects (Lines 15-18). Agent i might

get prices from different paths, the highest received price will be the price for each

71

object:

pj(t+ 1) = max
received from all paths

{pj(t)} (3.10)

index = pathmax
received from all paths

{pj(t)} (3.11)

bj(t+ 1) = path index.bj(t) (3.12)

2. if bαix(t)(t+1) == ix, the assignment has not been changed, so αix(t+1) = αix(t) and

this iteration stops here. Otherwise, we go to the next step.

3. if bαix(t)(t + 1) 6= ix, it means that bidder ix is no longer assigned to αix(t) and it

should find the object which maximizes its net benefit (Line 21):

αix(t+ 1) = argmax
j=1..n

{a(ix)j − pj(t+ 1)} (3.13)

4. Set bαix(t+1)(t+ 1) = ix and increase the price for object αix(t+ 1) (Lines 22-23):

pαix(t+1)(t+ 1) = pαix(t+1)(t) + (vix − wix + ǫ) (3.14)

where vix and wix are obtained by equations (3.3) and (3.4).

Agent i sends the new prices to its neighbors. Every agent performs this process locally

and the process continues until reaching stable prices for all objects. If objects’ prices do

not change for d iterations (d is the diameter of the network), prices have been stable and

the process can be stopped. If bi0, bi1, bi2, and bi3 are the bidders created by agent i, the

collection of objects assigned to these bidders determines the pool of SPMs for agent i. The

memory mapping for region i can be changed after the termination of this process. With this

72

algorithm, the auction mechanism can be implemented without any global synchronization

and shared memory.

3.5 Experimental Setup and Results

3.5.1 Experimental Setup

The SPMPool simulation infrastructure (described in Section 2.5) is updated to include

auction-based memory mapping (Section 3.3) as one of the memory mapping policies in

SPMPool in addition to existing policies. The SPMPool simulator is changed to support

multi-pool memory management as described in Section 3.4. To support multi-pool man-

agement, the Global Manager initially creates regions, associated agents, and a virtual mesh

network of these agents. The Global Manager also assigns incoming applications to the re-

gion with the least number of executing tasks. Each agent administrates the SPM mapping

for all applications inside its local region and also negotiates with other agents to borrow

additional SPM resources. All information related to the auction mechanism (objects, bid-

ders, etc.) is stored in each agent. A buffer in each agent keeps the latest assignment data

(objects/prices/bidders) received from all neighbor agents. A software routine in each agent

executes the distributed auction algorithm (Algorithm 7).

For our experiments, we used a variety of benchmarks from the MiBench suite [55] to

execute on an ARM architecture configuration and combined them to create diverse work-

loads. The selected benchmarks represent different embedded application domains that have

varying memory-use characteristics. To generate each workload, benchmarks and their as-

sociated entry time were selected randomly, all running to completion. Table 3.1 lists the

benchmarks and number of different data sets in the experiments. Memory traces were

extracted by executing the benchmarks with the gem5 simulator [19].

73

Table 3.1: List of benchmarks used from MiBench suite
Application

Type
Benchmark Data Sets

Application

Type
Benchmark Data Sets

Consumer jpeg 2 Network dijkstra 2
Consumer typeset 2 Network patricia 2
Consumer lame 2 Telecomm fft 2
Automotive qsort 2 Telecomm gsm 2
Automotive bitcount 2 Security blowfish 2
Automotive susan 2 Office stringsearch 2

3.5.2 Central Auction-Based Memory Mapping

To evaluate the efficiency of auction-based memory mapping, introduced in Section 3.3, we

compared it to the other heuristics previously used in SPMPool memory mapping (Section

2.4.1). Figures 3.5 and 3.6 illustrate the comparison of memory access latency between

most-accessed, simplified most-accessed, and auction-based mapping policies in different

utilization points for 4× 4 and 8× 8 platforms respectively. These results are normalized to

the simplified most-accessed policy.

0

0.2

0.4

0.6

0.8

1

1.2

10% 25% 50% 100%

N
o

rm
a

li
ze

d
 a

cc
e

ss
 L

a
te

n
cy

Utilization as % of active cores

4x4 Platform

Simplified Most Accesed most-accessed Auction

Figure 3.5: Comparison of total memory access latency of different mapping policies, nor-
malized to the simplified most-accessed policy for 4x4 platform

At very low and very high utilization points (10% and 100%), auction-based policy does

not show a significant improvement. But at medium utilization points, auction-based policy

74

0

0.2

0.4

0.6

0.8

1

1.2

10% 25% 50% 75% 100%

N
o

rm
a

li
ze

d
 A

cc
e

ss
 L

a
te

n
cy

Utilization as % of active cores

8x8 Platform

Simplified most-accesed most-accessed Auction

Figure 3.6: Comparison of total memory access latency of different mapping policies, nor-
malized to the simplified most-accessed policy for 8x8 platform

outperforms other policies by up to 12%. Although auction-based memory mapping improves

the memory access latency, for larger platform sizes, the execution time of this method

becomes intolerable.

3.5.3 Distributed Multi-Pool Management

We implemented the distributed management schemes as described in Section 3.4 for 16x16

platform using both non-communicative and auction-based schemes. The entire platform

is divided into four regions. The Global manager maps each task to the region with the

minimum number of running tasks. Each region has a Local manager and tasks are mapped

to a randomly selected core within each region. Other experimental setup is similar to the

setup described in Section 3.5.1.

Figure 3.7 illustrates the overall memory access latency of Non-Communicative (NC) and

Auction-based distributed management in different utilization points. In the low utilization

point (10%), the auction-based approach slightly improves the total memory access latency,

but in the medium utilization points (25% to 75%), the auction-based approach outperforms

75

the non-communicative approach by up to 24%. Moving toward 100% utilization, none of

these approaches can improve the performance significantly.

0

0.2

0.4

0.6

0.8

1

1.2

10% 25% 50% 75%

N
o

rm
a

li
ze

d
 M

e
m

o
ry

 L
a

te
n

cy

Utilization as % of cores active

Memory Access latency

Distributed-NC Distributed-Auction

Figure 3.7: Memory access latency, using different distributed management schemes

To investigate the sensitivity of auction-based memory management to the region size,

we first divided the entire platform to four 8 × 8 regions. We repeated the experiment

for sixteen 4 × 4 regions. Figure 3.8 depicts the memory access latency of auction-based

distributed management schemes for different region sizes. In all utilization points, higher

number of regions result in a better memory access latency because of more optimization

opportunities. Higher number of regions also increases the communication overhead of the

management scheme which is studied in Section 3.5.4.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

10% 25% 50% 75%

N
o

rm
a

li
ze

d
 M

e
m

o
ry

 L
a

te
n

cy

Utilization as % of cores active

Memory Access latency

4 regions 16 regions

Figure 3.8: Comparison of memory access latency in auction-based distributed management
for different region sizes

76

3.5.4 Overhead

Communication, memory migration, and storage are some sources of overhead imposed by

SPMPool memory management schemes. Figure 3.9 compares the communication overhead

of Non-Communicative (NC) and Auction-based distributed management schemes. This

overhead accounts for the number of packets sent only for management purposes, between

applications and agents or between neighbor agents. It is assumed that each packet is 256

bytes. The auction-based scheme improves the memory access latency significantly and has

a negligible communication overhead compared to the non-communicative scheme.

0

0.2

0.4

0.6

0.8

1

1.2

10% 25% 50% 75%

N
o

rm
a

li
ze

d
 s

e
n

t
m

e
ss

a
g

e
s

Utilization as % of cores active

Communication Overhead

Distributed -NC Distributed Auction

Figure 3.9: Communication overhead of distributed management, measured as the num-
ber of packets sent for management purposes between application-agent or agent-agent.
Auction-based distributed scheme endures up to 3% more overhead over non-communicative
distributed scheme

A comparison of communication overhead for different region sizes in auction-based dis-

tributed management of 16×16 platform is shown in Figure 3.10. In 100% utilization point,

communication overhead of 16 regions is 10% higher than the communication overhead of 4

regions.

After any change in memory mapping, memory migration is inevitable. Figure 3.11 shows

the total number of pages transferred between off-chip and on-chip memory. Memory migra-

tion overhead of distributed management is far less than that of central management. When

utilization increases, memory migration overhead jumps with a higher rate in distributed

management because the mapping becomes more similar to the central management scheme.

77

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

10% 25% 50% 75%

N
o

rm
a

li
ze

d
 s

e
n

t
m

e
ss

a
g

e
s

Utilization as % of cores active

Communication Overhead

4 regions 16 regions

Figure 3.10: Comparison of communication overhead for different region sizes in auction-
based distributed management. Communication overhead is measured as the number of
packets sent for management purposes.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

10% 25% 50% 75%

#

Utilization as % of cores active

memory migration between offchip and onchip

Central Distributed N-C Distributed Auction

Figure 3.11: Memory migration overhead – Number of pages transferred between off and on
chip

In non-communicative distributed management, the storage overhead of memory mapping

policies increases linearly with the number of pools. To implement most accessed policy in

this work, storage overhead of non-communicative distributed management is 75% less than

that of central management (Figure 3.12). To conclude, our initial investigations show that

the distributed management makes SPMPool approach scalable since it imposes far less

overhead than the central management scheme.

78

0

0.2

0.4

0.6

0.8

1

1.2

Central Management Distributed N-C Management

Storage overhead of managers

Figure 3.12: Storage overhead comparison of central and non-communicative distributed
management

3.6 Conclusion

In this chapter, we proposed different auction-based schemes for memory management in

many-cores systems. After showing the advantages of auction-based algorithms in solving

memory mapping problem, we proposed a distributed management scheme based on auc-

tion algorithm. In this scheme, the entire platform is divided into different regions and

a distributed auction mechanism is used to share the SPM resources between different re-

gions. Our preliminary experiments on a 16 × 16 platform executing different benchmarks

from Mibench suite show that auction-based distributed management achieves up to 24%

improvement in memory access latency over non-communicative distributed management

with a negligible increase in communication overhead. The distributed schemes proposed in

this chapter provide a scalable solution for memory management of many-core platforms by

mitigating the overheads of central management scheme.

For experiments in this chapter, we assumed that half of the SPM resources in each region

are exclusive to that region. This assumption helps to introduce the concept of auction-based

distributed management. A sensitivity analysis of the fraction of exclusive SPMs and also

the placement of shared SPMs are subjects of ongoing research.

79

Chapter 4

Memory Phasic Behavior

4.1 Introduction

High processing capability is a crucial requirements for modern systems. Technology scaling

and low power design have enabled modern devices to deploy an ever-increasing amount of

hardware resources integrated on a single chip, in the form of multi- and many-core platforms.

These platforms are expected to support workloads consisting of numerous concurrently

executing applications with varying resource requirements. Memory is a critical resource,

and is often the bottleneck for applications. To efficiently manage and effectively allocate

limited memory resources both within and between applications, we should be able to extract

the memory usage information of all applications.

Memory requirements may vary highly between different multimedia applications. When

sharing memory resources, the ability to prioritize each individual memory page –accessed by

running applications– enables us to assign memory resources to each application proportional

to the memory requirement of that application. Moreover, it can guide us to the efficient

memory mapping in the presence of Non Uniform Memory Access (NUMA).

80

Memory

Phase 1

Memory

Phase 2

Program Phase 1 Program Phase 2

Memory

Phase 2

Memory

Phase 1
Memory Phase 3

Figure 4.1: Memory Phases and Program Phases for the same code snippet (Multimedia
Source Code 8).

Applications have very dynamic behavior and the memory requirements of each individual

application varies over time throughout the course of execution. For instance, rendering high-

motion scenes needs more memory resources than rendering still scenes. Most applications

can be divided into different phases. Repetitive, or phasic, behavior of applications has been

the subject of research for several years. Typically the phasic behavior is investigated with

respect to the structure of applications (i.e., application’s basic blocks and control flow)

or execution working set. Although these efforts have proven useful, detecting patterns in

the execution of an application by tracking instructions (or Basic Blocks) does not always

capture the memory phases of the application. Typical program phasic behavior extraction

techniques do not differentiate between program and memory behavior [9, 40, 110], and thus

miss opportunities for more aggressive memory management in the face of high memory

demands.

For example, consider Figure 4.1 which compares the memory and program phases ex-

tracted from a sample routine (Multimedia Source Code 8) that accesses a multidimensional

array. This routine represents array computations typically present in many multimedia ap-

81

plications. In this example, the memory usage of the application is not aligned with the

instruction-based program phases – program phases don’t represent changes in memory us-

age. Using such program phases may lead to poor memory management. Therefore, there

exists a need for detection of memory phasic behavior based on the memory usage.

Previous research efforts have been made to detect application phases based on memory

accesses. These efforts include capturing cache miss rate, detecting reuse distance, etc.

Although these works inherently try to find memory phases, they’re unable to predict and

prioritize individual pages in the working set of applications.

In this work we present an online memory-phase detection scheme with the ability to

prioritize the memory working sets of concurrently running applications [120]. The rest of this

chapter is organized as follows: Section 4.2 will go over the research efforts on phasic behavior

of applications and the motivation for detecting and using memory phases. Section 4.3 defines

memory phases and proposes an offline method to capture memory phases of applications.

Section 4.4 will present an online method to detect and classify memory phases at runtime.

A use case of memory phases in SPMPool is presented in Section 4.5. Experimental results

of memory phasic behavior is discussed in Section 4.6. Section 4.7 ends this chapter with

some concluding notes.

4.2 Related Work and Motivation

The repetitive nature of program behavior has been investigated for several years. Pro-

gram phase detection techniques are used for diverse purposes including power reduction,

simulation, micro-architectural adaptation, etc. [70, 56, 112, 106].

Some Program-Instruction-Based methods have been proposed for detecting phases. These

methods monitor control flow and executed instructions of a program in intervals. Sherwood

82

et al. [110] uses Basic Block Vectors (BBVs) to find out if there is a considerable change in

the executing basic blocks of a program during an interval. Lau et al. [80, 81] enhance this

method. Instead of capturing all basic block transitions, Ratanaworabhan et al. [101] propose

to track only Critical Basic Block Transitions. Dhodapkar et al. [38] define a program phase

by the set of instructions observed in an interval (labeled as instruction working set). Cho

et al. [27] use wavelet-based analysis to differentiate between phases. Balasubramonian et

al. [9] use conditional branches as a metric to detect program phase changes.

In spite of these efforts, tracking instructions (or basic blocks) does not always capture the

memory phases of applications. A single instruction in an application1 commonly accesses

different data throughout the course of execution. For example, if the inputs change prior

to entering a memory intensive block, no program phase change will be detected while the

application may experience a significant change in memory working set. Alternatively, the

executing instructions of an application might change while working on the same set of data.

An example of this behavior is shown in Multimedia Source Code 8 which is typical of kernel

computations in multimedia applications.

Multimedia Source Code 8: Example

1: for (int k =0; k < 3; k ++){

2: for (int j = 0; j < 5; j ++){

3: for (int i =0; i < 10000; i=i+5){

4: sum += arr1[k][i +j];

5: }

6: }

7: }

8: for (int k =2; k >=0 ; k --){

9: for (int j = 0; j < 5; j ++){

10: for (int i =0; i < 10000; i=i+5){

11: sum += arr1[k][i +j];

12: }

13: }

If we divide this code into phases by its basic blocks, each inner for loop (Lines 3-5, 10-

1In this work, we define an application as a single thread assigned to a core, and use the terms application
and program interchangeably.

83

12) would make up a single phase. However, the outer for blocks (Lines 1-2, 8-9) impact

the index of the array being accessed (Lines 4, 11). This means that all accesses to each

respective array occur within a single program phase. This concept is illustrated in Figure

4.1. Memory phases capture changes in the memory working set of the program much more

accurately than program phases in this case.

Some phase change detection techniques are based on observed performance statistics of

applications (e.g., cache miss/hit rate, IPC, etc) [9, 40]. These techniques can be used

for optimizations such as cache reconfiguration, but are highly sensitive to architectural

parameters of the platform (e.g., cache size).

Phase-driven optimizations have also been used in many cache tuning schemes. While

most of these schemes rely on instruction-based phase detection techniques, some try to

monitor memory related characteristics of the program. Shen et al. [109] and Huffmire et

al. [65] monitor memory accesses and use the memory reuse distance for phase detection.

Although these techniques have some indication of memory phases, they are offline profiling

methods that analyze sample executions. In addition, they do not capture the memory

working set of an application and do not provide sufficient information to prioritize different

applications in the context of shared memory in multi-cores.

Compile-time static analysis and offline profiling are not sufficient for determining the

memory usage patterns of an application. Also, the source code of applications is not always

readily available. For instance, smartphone users download many applications every day

without having any analysis of those applications. Additionally, the input dependence of

memory accesses and dynamic allocation necessitates runtime adaptation even in the pres-

ence of prior knowledge about the application. Therefore a useful memory phase detection

scheme must observe and extract memory behavior at runtime.

This chapter presents a runtime memory phase detection technique that discovers similar-

84

ities and changes in the memory requirements of an application over time during execution

and provides information to improve the efficiency of dynamic memory mapping without

relying on any offline profiling, static analysis, or other additional information. We provide

an importance measure for different memory pages that indicates the relative utilization of

each page both within and between applications.

4.2.1 Contributions

• We define memory phases and propose offline and online methods for detection and

prediction of memory phases in multimedia systems.

• We present a scheme for inter-application prioritization of data memory using the

extracted approximate working set information.

• We illustrate the efficacy of memory-phase driven memory mapping in managing single-

and multi-core platforms equipped with Software Programmable Memories (SPMs).

Preliminary experiments show the potential efficacy of exploiting memory phasic be-

havior by up to 45% improvement in memory access latency of executing Mibench

benchmarks on these platforms.

4.3 Memory Phases

Due to the time-varying memory requirements of an application, using the metrics that

represent average behavior of that application can be inefficient in any memory-related opti-

mization. For example, tracking the total number of accesses to each memory page is not a

good representative of access patterns, because access locality changes over time. Our goal

is to find periods of execution within an application that have a similar memory working set,

85

whether these periods are consecutive or not. In this section we define the notion of memory

phases and propose an offline method to detect memory phases of an application.

4.3.1 Memory Phase Definition

The working set of an application is the collection of memory pages being accessed during a

certain period of time. To be precise, the working set of an application at time t will be the

set of memory pages accessed during the period of [t− τ, t], for a predefined time period τ .

A memory phase is the period of time in which the working set of an application within that

period is similar (obviously, without defining similarity, this definition is not complete).

In the working set, not all pages are utilized equally. Assume that during the period of

[t1 − τ, t1], page X has been accessed n1 times and page Y has been accessed m1 times and

n1 ≫ m1. Also, during the period of [t2− τ, t2], page X has been accessed n2 times and page

Y has been accessed m2 times and n2 ≪ m2. In this case, although the working sets consist

of the same pages, these working sets are not similar.

To incorporate the number of accesses to each page when considering similarity, we define

the Weighted Working Set (WWS) at time t as in Equation 4.1.

WWS[t] = {(page,#access)jforpagesaccessedin[t− τ, t]}. (4.1)

From now on, WWS is used to define memory phases instead of working set.

We define a memory phase as a period of time in which the weighted working set through-

out the period is similar – with a predefined similarity metric. In other words, each appli-

cation has a WWS at each point in time during its execution and we want to cluster those

WWSs into similarity groups. With this definition, the behavior of an application from a

memory access pattern point of view is nearly uniform during a memory phase. Any memory

86

phase change marks a significant change in the application’s memory access pattern.

4.3.2 Offline Memory Phase Detection

To detect memory phases offline, a clustering technique suitable for the WWS data should

be used. In the offline method, all the data accessed throughout the course of execution can

be obtained by profiling and there is no time or storage constraints. Our offline approach to

the clustering problem is summarized in the following steps:

1. Memory profiling: In the first step, the set of all memory accesses of an application

is obtained by profiling. Using the memory accesses, WWS for each point in time can

be calculated (throughout the entire course of execution).

2. Reducing data size: There exists a WWS for each point in time. Based on the value

of τ , a single WWS may contain many accesses. To reduce the execution time and

required memory, the WWS data should be reduced. There are two ways to reduce

WWS data: 1) In any WWS, pages with the most accesses are the main representatives

of that working set. To reduce data, we only maintain a list of k pages with the highest

number of accesses. After this reduction, each WWS consists of information for only k

pages. 2) There is no need to compute WWS for every point in time. We can compute

the WWS every m seconds. This reduces the required storage by a factor of m. In the

following steps, all calculations will be on the reduced data.

3. Creating a vector representation of each WWS: If during the course of execution,

total number of P distinct pages are held in all weighted working sets, each WWS can

be represented by a vector with P dimensions. Within the WWS, if page p is accessed

n times, the value of pth dimension in the representative vector will be n.

87

4. Clustering WWS vectors and determining phases: In this step, similar WWS

vectors are clustered in one group. Therefore, it is necessary to quantify the similarity

between two vectors. All vectors consist of positive numbers (number of accesses),

therefore we can use the dot product of vectors to find the angle between two vectors:

A.B = |A| × |B| × cosθ ⇒

cosθ =
A.B

|A| × |B|
⇒

cosθ =

∑P

i=1 aibi
|A| × |B|

cosθ is the similarity metric for our clustering mechanism. If cosθ = 1, the angle

between two vectors is zero and they have the maximum similarity. If cosθ = 0, the

angle between two vectors is 90 degrees and they have the minimum similarity.

Using this similarity metric, we execute a hierarchical clustering algorithm (HCA) [53]

on WWS vectors. As opposed to k-means clustering [89], this method does not require

the number of clusters.

Each WWS group represents a phase: if WWS of two periods of time are in the same

group, those periods belong to the same phase.

The efficiency of this offline memory phase detection technique is presented in Section 4.6.3.

4.4 Online Detection of Memory Phases

The offline phase detection method requires a considerable amount of memory and execution

time and therefore is not feasible to incorporate in runtime software. More importantly, due

88

Figure 4.2: Timeline of a single application with memory phase detection. Memory accesses
are monitored throughout each epoch, and at the end of each epoch we determine if a phase
change has occurred.

to the input dependence of memory accesses, the complete memory profile of an application

is not available prior to execution, creating the need for an online method. In this section,

we present a simplified online adaptation of the offline method with reduced overhead to

detect and use memory phases at runtime.

4.4.1 Memory Phase Detection Scheme

Figure 4.2 illustrates the timeline of the light-weight runtime phase detection scheme in rela-

tion to an executing application. Memory accesses are captured throughout fixed observation

periods, or epochs (details in Section 4.4.1), and a phase-change-detection routine runs at

the end of each epoch (details in Section 4.4.1). Phases span multiple epochs.

To reduce overhead, the only memory access information maintained for phase change

detection is an approximation of the weighted working set of the most accessed pages for

both the current epoch and the current phase. At the end of each epoch, the intersection

of these two lists is used to determine whether a phase change has occurred. If no phase

change is detected, this continues for the next epoch. If a phase change is detected, the phase

signature is computed and stored. The weighted working set lists are reset for capturing

memory accesses in the next epoch.

In the online approach, capturing memory accesses (Section 4.4.1) is an approximation

89

for the first three steps of the offline approach. The captured memory accesses are used to

detect the phase change and find the similarity to the previous phases (Sections 4.4.1 and

4.4.1) which is an approximation for the clustering step (step 4) in the offline approach.

Capturing Memory Accesses

In our runtime phase detection technique, we identify phases by the memory locations that

are accessed the most. Therefore we must identify the memory pages with the highest

number of accesses in each phase. This is accomplished by maintaining weighted working

sets consisting of the most accessed pages in each epoch.

Finding the k pages with the highest number of accesses during a period of time is analo-

gous to finding the k most frequently occurring numbers in a series of numbers. If n different

numbers appear in a series of numbers during an observation period, it can be proven that

finding the k most frequent numbers requires O(n) storage [32]. In this instance, n repre-

sents the number of unique pages accessed during an epoch, which can be unmanageably

large. Therefore, finding the exact k pages with the highest number of accesses is impossible

at runtime.

Although finding the exact solution is infeasible due to storage overhead, approximate

solutions exist that can find effective solutions with limited storage. In this work we use an

approximate solution to find the k most frequently occurring numbers in a series of numbers

and adapt it to find the k pages with the most number of accesses during an epoch. In our

case, the approximate solution is formulated in Algorithm 9.

Existing algorithms solve variations of this approximate problem [32, 25]. The Frequent

Algorithm [32] tries to find all items in a sequence whose frequency exceeds a 1/k fraction

of the total counts. We propose an algorithm to capture the most accessed pages during an

epoch by adapting the Frequent Algorithm (Algorithm 10). In this algorithm, k counters

90

ALGORITHM 9: Capturing memory accesses – approximate solution

Inputs :
Given a stream of n accesses a1, a2, ..., an
Frequency of an access is fi = |{j|aj = i}|

Output:
The accesses occurring with a frequency ≥ φ percent of all accesses.
The exact φ− frequent = {i|fi > φn}
The approximate φ− frequent = {i|fi > (φ− ǫ)n}

are paired with k unique memory addresses. Upon each memory access, the address of the

access is compared to all saved addresses. If a match is found, its corresponding counter

will be incremented (Lines 3-9). If the new access is not matched with any of the existing

addresses and all k pairs are not yet occupied, a pair will be initialized with counter value

1 (Lines 11-15). If all k pairs are allocated to distinct memory addresses, all the counters

are decremented by 1. In this case, if one of the counters becomes zero, the corresponding

pair will be initialized with the new address and counter value of 1 (Lines 17-24). Memory

access monitoring and profiling can be implemented in either software or hardware. Figure

4.3 shows the hardware implementation of our Frequent Algorithm adaptation. Compared

to software implementation, this implementation imposes some area overhead, but increases

the performance of this routine significantly. Using the adapted Frequent Algorithm, it

is possible to approximate the k most accessed pages with only k storage elements and k

counters. As expected, in some cases, this approximate algorithm cannot produce the exact

result: a few of the detected pages might not be among the actual k most accessed pages. In

Section 4.6.4 we show that the accuracy of this approximate algorithm is comparable to the

precise solution. Therefore this approximate algorithm can be used to find the top k most

accessed pages, using limited storage.

91

ALGORITHM 10: Frequent Algorithm

Input:

accesses -- sequence of memory accesses

Output:

Page[] -- k pages with most frequent accesses

Counter[] -- k counter values associated with

each page

0: access = new_memory_access

1: while (access){

2: Found = False;

3: for (int j = 0; j < k; j++){

4: if (access == Page[j]){

5: Counter[j]++;

6: Found == True;

7: Break;

8: }

9: }

10: if (!Found){

11: empty = FindEmptySpace();

12: if (empty != -1){

13: Page[empty] = access;

14: Counter[empty] = 1;

15: }

16: else{

17: for (int j = 0; j < k; j++){

18: Counter[j] --;

19: if (!Found && Counter[j] == 0){

20: Page[j] = access;

21: Counter[j] = 1;

22: Found = True;

23: }

24: }

25: }

26: }

27: access = new_memory_access

28: }

92

Reg 1Load 1
Comparator

addr

Q1

Reg 2Load 2
Comparator

addr
addr

Q2

CE1

CE2

UP/Down 1

UP/Down 2

Counter 1
CE1

Up/Down 1

C1

Zero1

Counter 2
CE2

C2

Priority

Encoder

Zero2

Decoder

Lo 1

Lo 2

Load_signal0: No match

1: There is a match

If more than one counter is zero,

only one of them should be replaced

If there is a match, increment that counter
If there is no match, decrement all counters

addr

1

1

Empty 2

e 1

e2

load

MUX
e1

lo1

has_empty

Load_signal

MUX
e2

lo2

has_empty

Load_signal

has_empty

e2

0

Empty 1
load

e1

0

If there are unused registers, use only one of them

If all used, load if there is any zero counter
New access (Addr) is compared to

all saved addresses (Qn)

CE = Count Enable - Counters have separate load signals
Zero = 1 means that

the counter is zero

UP/Down 2

Lo = 1 shows which register

should be loaded

Empty =1 shows an

unused register

e =1 means that this empty

register is selected to be used

has_empty =1 shows that there is an unused register

Load 1

Load2

Figure 4.3: Hardware implementation of capturing memory accesses for working set size of
2. To expand the working set, Counter/Reg 2 should be replicated.

Phase Change Detection

At the end of each epoch, we use the captured memory access information to detect whether

or not a phase change has occurred. Due to memory and time restrictions at runtime, we

cannot realistically employ the clustering technique used in the offline method. Therefore

we make the following simplifications:

• To compute the similarity between two Weighted Working Set vectors, we use the

Manhattan distance instead of dot product.

• The WWS vector for each epoch is only compared with the current phase’s WWS —

we must maintain the WWS of the current phase.

This routine is outlined in Algorithm 11 and is sensitive to the number of counters k, threshold

τ , and epoch length. In this work we only consider stable phases — a phase change is not

triggered unless the length of the new phase is more than one epoch. This reduces overhead,

especially for the case when an application does not have any stable phase. The threshold

to trigger a phase change can be application specific. The programmer/compiler can set this

93

threshold explicitly, or it can be adaptive. In this work, we used a fixed threshold –found

empirically– for each application. As the phase change detection scheme is triggered at the

end of each epoch, a short epoch can impose a considerable overhead and should be avoided.

ALGORITHM 11: Phase Change Detection

Inputs :
Previous epoch WWS: Pages with the most accesses in the previous epoch,
A1, ..., Ak, and the number of accesses to those pages n1, ..., nk

Normalized current phase WWS: Pages with the most accesses in the current
phase, X1, ..., Xk, and the number of accesses to those pages m1, ...,mk divided by
number of epochs in the current phase.

Output:

if
∑

Ai 6=Xj
(ni or mi) +

∑

Ai=Xj
|ni −mj |

Epoch Length
> τ

then

⇒ Phase Change = True

Weighted Working Set Prediction

For most memory optimization methods, simply detecting a phase change is not sufficient

— we also must be able to predict the weighted working set of an application in the new

phase. One solution is to choose the first epoch of the new phase as the representative of

that phase. However, this might not be representative of the entire phase as phases span

multiple epochs.

If a memory phase change is detected, two possibilities for the new phase exist: 1) it is a

completely new phase, and 2) the application has experienced this memory phase in the past

and it is returning to that memory phase again. This can be used for a better prediction of

WWS in the new phase.

94

Address Counter

add cntoffset

Figure 4.4: Tuple of (add, cnt) is the representative of each page in WWS.

In this work, we exploit a history-based prediction scheme to anticipate the WWS of the

new phase. The intuition can be described as follows: if the application is experiencing a

new phase for the first time, the weighted working set in the preceding epoch is a sufficient

estimate of the weighted working set in the new phase. On the other hand, if we are

returning to a phase, we use historic information to find the WWS of the phase from its

previous execution.

To implement the history-based prediction scheme, we need to store the WWS of previous

phases. Each page in the weighted working set is stored as a 2-tuple containing page address

and weight: (add, cnt) in Figure 4.4. The signature of weighted working set of a phase is

then defined by all 2-tuples of k pages in the WWS.

To distinguish between a returning phase and a completely new phase, the WWS signa-

ture of the previous epoch is compared with the stored signatures of previous phases. If the

Manhattan distance between signatures of the previous epoch and one of the phases is within

a threshold, a returning phase is detected and the stored WWS for that phase is used as the

predicted WWS of the current phase. Otherwise, the phase is considered as a completely

new phase.

95

4.4.2 Overhead of Online Phase Detection

Storage overhead

Storage overhead is incurred by our online technique for storing k pages of WWS for both

the current phase and epoch. A page entry in WWS can be stored as a (add, cnt) pair.

Assuming 64-bit addresses and 4KB pages, 64 − 12 = 52 bits are required to store a page

address. Using 20 bit counters, we need 20 + 52 = 72 bits (or 9 bytes) to keep any (add,

cnt) pair. With k = 16, 9× 16 = 144 bytes are required to store all information of a WWS.

This storage requirement can be reduced by using a smaller k value. In the history-based

prediction scheme, the maximum number of max-h weighted working sets are stored for

comparison with the current phase (max-h = 5 in this work). Total number of max-h×k× 9

bytes are required to implement this scheme. This is reasonable – in Section 4.2 we show

that small values of k and max-h can be effective.

Computation Overhead

Computation overhead is incurred at runtime by capturing memory accesses and the phase

change detection routine. Using the hardware depicted in Figure 4.3, capturing memory

accesses are feasible in few cycles. Computation overhead of phase change detection routine

is proportional to k2 – where k is the number of pages in WWS. For predicting the weighted

working set upon a phase change, the current phase should be compared to max-h stored

phases and the required time is proportional to k2×max-h. Both k and max-h are very small

numbers. Furthermore, none of these routines are in the critical path of the application.

Therefore the computational overhead of our phase detection scheme is not significant.

96

4.5 Memory Phase driven SPM Mapping: a Use Case

We now illustrate the opportunity to exploit memory phases through a use case for software

controlled memory mapping. Multicore platforms enable concurrent running of different

applications in emerging mobile devices like smart-phones and tablets. These devices can

execute multimedia and non-multimedia applications simultaneously. With the ability to

extract the phasic memory behavior of applications at runtime, we can exploit the informa-

tion to effectively assign application data to memory resources for unpredictable workloads.

Memory phase detection allows us to capture the temporal variation in memory requirements

of different applications. It can be used to handle the dynamic nature of multimedia applica-

tions. We discuss this challenge in the context of multi-core systems containing distributed

on-chip Software Programmable Memories (SPMs).2

Figure 4.5 illustrates the system level view. Each core has SPM as on-chip memory and

contains necessary components to enable sharing and utilization of all on-chip SPM space.

Moreover, cores are equipped with the memory phase detection scheme. Note that the

Runtime Manager has a Memory-Phase-Aware SPM manager that maps application data to

the SPMs in the underlying tiled multi-core hardware platform.

In complex workloads, applications can start and stop at any time. The Runtime Manager

is responsible for application mapping and scheduling, as well as SPM mapping: deciding

what application data should reside on chip and what resides in main memory. An SPM

mapping is determined based on memory phase information provided by each core. The

weighted working set of each memory phase can be obtained and used to prioritize application

pages at runtime. The SPM mapping routine is performed periodically when applications

start or stop, and possibly when they change memory phase – updating the SPM mapping

for every phase change of every application is excessive. The goal of our SPM mapping

2The optimization approaches discussed can apply to any NUMA management.

97

Figure 4.5: System level view of memory phase driven SPM mapping in multi-core systems.

scheme is to reduce the average memory access latency of the entire workload, which in turn

can reduce energy consumption due to reduction in off-chip memory accesses.

The phase change detection routine executes on each active core, and the Runtime Man-

ager receives messages indicating phase changes. These messages include the estimated

working set of the new memory phase. The benefits of an updated mapping is estimated by

the Runtime Manager, and if the potential performance improvement exceeds a threshold,

the SPM mapping will be changed.

4.5.1 Compute New SPM Mapping

Each application maintains a weighted working set of its current memory phase. The weight

of each page in WWS, which is the estimated number of accesses to that page, can be used

to prioritize different pages of applications. When triggered, the Runtime Manager executes

the mapping algorithm.

98

The mapping algorithm maps application pages to on-chip SPM slots with the goal of

achieving the lowest overall memory access latency. In Section 2.4.1, we showed that this

optimization problem is NP-hard and finding optimal solution for this problem is infeasible

at runtime, therefore we developed a heuristic for the memory mapping policy.

The simplified description of this policy –called Most-Accessed Mapping policy– is specified

in Algorithm 12. This mapping policy compares WWS of all executing applications and keeps

pages with the highest weights on chip (Lines 1-6). The pages array contains all the pages

in the executing applications (Lines 1-3). After sorting these pages based on their weights

(Line 4), the first N pages with the highest weights will be assigned to onchip list (Line 5)

and the rest will be assigned to offchip list (Line 6).

Most-Accessed Mapping policy tries to map those pages in SPMs as close as possible to

their home core (Lines 8-14). For each page in the onchip list, if the page’s home core has

an empty slot, it will be mapped to the home core (Lines 7-10). Otherwise, the closest core

with an empty SPM slot will be found (Line 12) and the page will be mapped to that core

(Line 13). All the pages in offchip list will be mapped to off-chip memory.

The proposed scheme is a first attempt at solving the problem. In a better implementation

of this scheme, overheads of re-mapping should be estimated. If the benefits do not outweigh

the overheads, a re-mapping should not be triggered. This modification is left for future work.

The memory phase detection scheme can extract the access pattern of applications. There-

fore, benefits of this scheme is not limited to SPM mapping. For example, in a system with

a data cache, if only a portion of a large data block is important, recurring accesses to that

block –much larger than cache size– leads to a poor performance; the memory phase detec-

tion scheme can be used to extract the memory access pattern and improve the data caching

performance.

99

ALGORITHM 12: Most-Accessed Mapping Policy

Input:

WWS[] -- WWS of m executing applications

Output:

SPM Mapping

1: pages = []

2: for (i = 0; i < m; i++)

3: pages = pages.append(WWS[i])

4: sorted_page_list = sort(pages, key=page_weight)

5: onchip_list = sorted_page_list[0..N-1]

6: offchip_list = sorted_page_list [N..end]

7: for (page: onchip_list){

8: home = home_core(page)

9: if (home.has_empty_SPM_slot())

10: home.assign(page)

11: else{

12: remote = home.closest_non_full_core()

13: remote.assign(page)}

14: }

4.6 Experimental Setup and Results

4.6.1 Experimental Setup

We developed a Java and Python-based simulation infrastructure to extract phases and sim-

ulate workloads at memory operation level. It uses a software implementation of Algorithm

10. The simulator is capable of extracting memory phases both off- and on-line, and program

phases offline. The workloads are simulated given the memory and instruction traces of all

applications. Our memory-phase simulation infrastructure is capable of evaluating overall

memory access latency of user-specified workloads on a variety of configurations in multi-core

platforms.

For our experiments, we used a variety of multimedia and non-multimedia benchmarks

from the MiBench [55] suite that have varying memory-use characteristics. Table 4.1 lists

the benchmarks and number of different data sets used when capturing traces. We also used

100

Table 4.1: List of benchmarks from MiBench suite [55]
Benchmark Number of data sets

Multimedia
Applications

jpeg 2
susan 2
lame 2
fft 2

typeset 2

Non-Multimedia
Applications

qsort 2
dijkstra 2
bitcount 2

a variety of synthetic benchmarks with different memory behavior, and combined them to

create diverse workloads. A combination of these benchmarks are used to evaluate the phase

driven SPM Mapping. To generate each workload, benchmarks and their associated entry

time were selected randomly, all running to completion.

Memory and instruction traces are obtained by executing each benchmark using the gem5

simulator [19] for the x86 architecture. The memory traces serve as inputs to our simulator.

The simulator has configurable parameters for the system under test — we evaluate platforms

from 1 to 16 cores. For all of our experiments, we assume all virtual and physical memory

is divided into 4KB pages, and each core has 16KB of local SPM. There are no data caches

present. CACTI [92] was used to obtain memory bank access latency, and Noxim [47] was

used to calculate on-chip communication latency.

4.6.2 Experimental Goals

We conducted experiments to 1) highlight the difference between program and memory

phases and 2) illustrate the potential advantage of memory phases over program phases

in multimedia applications. We also evaluate the effectiveness of our approximate online

memory capture method.

101

4.6.3 Program Phase vs Memory Phase

As stated in Section 4.2, the method proposed by Sherwood et al. [110] is one of the most used

Program-Instruction-Based methods, proposed to detect phasic behavior of applications.

This method captures Basic Block Vectors (BBVs) of an application in some defined intervals.

The size of BBVs is reduced by linear projection and k-means clustering is used to group

similar intervals into a phase.

To illustrate the difference between memory phases and program phases, we implemented

this program phase method and compared it with our memory phase detection scheme

proposed in Section 4.3. To find the BBVs, the structure of the application must be known,

in contrast with our method that does not require structure or instruction information. Also

by using hierarchical clustering, we do not need to make an assumption about the number

of clusters.

As an example, Figure 4.6 shows memory and program phases for a snapshot of the qsort

benchmark. Every point in this plot represents a memory access. The dashed lines show the

boundaries of program phase changes and solid lines show the boundaries of memory phase

changes (blocks labeled with m1 to m5 show distinct memory phases of the application).

While memory phases successfully capture the phasic behavior of this application, program

phases are incapable of finding a meaningful change in the memory access pattern. Because

memory phases are only detected when observation periods (epochs) end, memory phase

boundaries may not be totally aligned with memory access pattern changes. In another

example, Figure 4.1 illustrates memory and program phases for the code shown in Source

Code 8. Similar to qsort, program phases do not correspond to the memory access pattern

of the program.

To quantify the benefits of using memory phases, we execute four benchmarks individually

on a single core with SPM as on-chip memory. We use both program and memory phases to

102

m1 m2m2 m3 m4 m5

Time

A
d
d
r
e
s
s

Figure 4.6: Memory Phases (red vertical bars) vs Program Phases (black dashed vertical
bars) in qsort benchmark.

trigger allocation of the SPM, assuming the most accessed data is automatically allocated

into the SPM every time it is triggered. Total memory access latency of these three different

allocation triggers is compared in Figure 4.7:

• No phase detection (application has one phase)

• Memory phases

• Program phases

To maintain fairness, we tried to assign the parameters such that the number of distinct

phases in both methods is similar. Note that the overhead of executing the phase change

detection scheme is not considered in these results.

By using memory phases, up to 45% improvement in memory access latency is achieved,

compared to the case without using any phasic information. The nature of memory phases

is to detect drastic change in memory working set, which would indicate the most beneficial

103

0

0.2

0.4

0.6

0.8

1

Sample FFT Typeset Qsort

N
o

rm
a

li
ze

d
 L

a
te

n
cy

Benchmarks

One Phase Program Phase Memory Phase

Figure 4.7: Memory access latency improvement using Program- and Memory-triggered SPM
mapping normalized to static mapping.

time to update the contents of on-chip memory. More results can be found in our technical

report [119].

4.6.4 Accuracy of Capturing Memory Accesses

The modified frequent algorithm –which we use when capturing memory accesses at runtime–

is an approximate algorithm, and its accuracy in finding the most accessed memory pages

significantly impacts the ability of online phase detection scheme. We compare the ability of

this algorithm (implemented using limited storage) with the precise algorithm (implemented

using unlimited storage) in finding k = 8 pages with the highest number of accesses through-

out an epoch. At the end of each epoch, we compare the two algorithms’ lists and keep track

of matches and mismatches. The accumulation of these numbers throughout the execution

of each benchmark provide us with an accuracy measure. Figure 4.8 shows the percentage of

correct results generated by the modified frequent algorithm through the course of execution:

%Correct Results =
#matches

#matches+#mismatches
(4.2)

104

Figure 4.8: Percentage of correct answers generated by frequent algorithm in finding top-8
most accessed pages of all epochs throughout the course of execution.

In all cases we have more than 78% accuracy and in the Jpeg benchmark accuracy is

near 100%. These results show the efficacy of the frequent algorithm in capturing the most-

accessed pages.

4.6.5 Latency Reduction of phase driven SPM Mapping

In this section we show the efficacy of memory phase driven SPM mapping introduced in

Section 4.5. Memory phase driven mapping is compared with this scenario: one phase for the

entire execution of applications –not considering phasic behavior. Without a memory phase

detection scheme, we have no information about memory usage of applications at runtime.

So we ideally assume the weighted working set of applications are known.

Figure 4.9 shows the memory access latency of different utilization points for 4× 4 multi-

core platform. Different applications from Table 4.1 and synthetic benchmarks are combined

to form the workload.

As these graphs indicate, memory phase driven SPM mapping has better results in all

105

Figure 4.9: Memory access latency for different SPM mapping methods in 4× 4 platforms.

cases (up to 50%), even though the non-phasic case is ideal and cannot practically be imple-

mented at runtime. This shows us that the memory phase change detection and signatures

successfully identify beneficial pages to place in SPM at appropriate times and WWS of ap-

plications –obtained by our memory phase detection scheme– can prioritize different pages

efficiently. More results can be found in our technical report [119].

4.7 Conclusion

Many-core platforms allow concurrent execution of multiple applications that enter and exit

at unpredictable times. Since each application has temporal variation in its memory usage

and working set, these memory footprint variations need to be captured and exploited in

order to allow for effective use of the limited on-chip memory resources. In this chapter, we

first presented the notion of memory phases and distinguished them from program phases.

We presented a light-weight online memory phase detection scheme that can be integrated

into the runtime system to enable exploitation of memory phasic behavior. We then showed

how this memory phase detection scheme can be used for effective sharing of distributed on-

chip software controlled memories (SPMs) for multi-core platforms, by developing a memory-

phase-driven SPM mapping scheme.

106

Our experiments on workloads with varying intra- and inter-application memory-intensity

shows that using phase detection schemes can reduce memory access latency up to 45% for

configurations up to 16 cores. This access latency reduction originates from accessing onchip

memories instead of going offchip, which also results in the reduction in power and energy

consumption.

107

Chapter 5

Concluding Notes and Future

Directions

The number of transistors on a chip have increased steadily over the past decades. Smaller

and faster transistors have led to higher power densities which cease the frequency increase of

the processors. This frequency stall, along with hitting the power and ILP wall, put an end

to single-core processors. it has been projected that in 10 years, there will be more than 30

CPU and 200 GPU cores in mobile devices, and more than 100 CPU cores in micro-servers.

With these developments, memory subsystems in many-core platforms will face different

challenges.

Keeping the coherency of shared data becomes very expensive when moving towards hun-

dreds of cores, and coherence protocols can be the major barrier for scalability of many-core

platforms. Central memory management schemes also become very inefficient which is due

to increased communication distance, increased computation and storage, and network con-

gestion, to name a few.

Generally, memory requirements for different applications vary significantly from one an-

108

other. In addition to this between application memory variation, each individual application

over the course of execution, also exhibits temporal variation of its memory requirement.

Any effective memory management system on a many-core platform should assign available

onchip memory resources to numerous concurrently executing applications based on their

memory requirements. To address these issues, we introduced a comprehensive runtime

solution for memory management of many-core systems.

5.1 Main Contributions

The use of Software Programmable Memories (SPMs) alleviates the need for coherence proto-

cols in many-core systems. However, it introduces new challenges to the memory subsystem

of many-cores. We proposed a runtime memory management of SPM resources in many-core

platforms in the presence of unpredictable workloads. The key contributions of this work

are listed as follows:

• SPMPool: A runtime memory management that shares SPM resources of many-core

platforms based on the memory requirement of applications. Onchip SPM resources,

which form a pool of SPMs, are mapped to executing applications by a runtime man-

ager.

• Auction-based memory management: A distributed scheme to improve scalability of

SPMPool approach. Many-core platform is divided into different regions. The SPM

pool of each region can expand or shrink using a distributed auction mechanism.

• Memory phases: A distinction from program phases which can capture temporal change

in memory requirement of a single application. We proposed different offline and online

mechanisms to detect and use memory phases in many-cores.

109

5.2 Future Research

The runtime management schemes proposed in this dissertation can be expanded in different

directions:

• To exploit the benefits of SPMs and caches, their co-existence is very likely in future

architectures. It may prove helpful to study the interplay of cache and SPM to find

mechanisms that maximize the power and performance benefits of the system when

both resources are available on the platform.

• In the auction-based distributed memory management, we assumed that task mapping

is fixed and the main focus was on memory management. There is potential to enhance

the overall performance of the system by incorporating task mapping, task migration,

and memory management.

• We simulated the proposed schemes in this thesis at the memory trace level. A full

system implementation of these schemes will provide more details understanding of the

actual overhead of these methods on the system. A detailed implementation of SPM

and operating system support for SPM is an ongoing subject of research.

• Although memory phases are used to manage SPM mapping in this thesis, the concept

of memory phases can be applied to other domains of memory management such as

data prefetching or cache management. A detailed study of memory phases in these

domains would be an interesting research topic.

110

Bibliography

[1] D. Abts, S. Scott, and D. J. Lilja. So many states, so little time: verifying memory
coherence in the cray x1. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, 2003.

[2] W. Ahmed, M. Shafique, L. Bauer, and J. Henkel. mrts: Run-time system for reconfig-
urable processors with multi-grained instruction-set extensions. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, 2011.

[3] W. Ahmed, M. Shafique, L. Bauer, and J. Karlsruhe. Adaptive resource management
for simultaneous multitasking in mixed-grained reconfigurable multi-core processors. In
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2011 Proceedings
of the 9th International Conference on, 2011.

[4] I. Anagnostopoulos, A. Bartzas, G. Kathareios, and D. Soudris. A divide and con-
quer based distributed run-time mapping methodology for many-core platforms. In
Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’12,
2012.

[5] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris. Distributed run-time
resource management for malleable applications on many-core platforms. In Proceed-
ings of the 50th Annual Design Automation Conference, DAC ’13, 2013.

[6] F. Bachmann and L. Bass. Managing variability in software architectures. In Pro-
ceedings of the 2001 Symposium on Software Reusability: Putting Software Reuse in
Context, 2001.

[7] K. Bai and A. Shrivastava. Automatic and efficient heap data management for limited
local memory multicore architectures. In Proceedings of the Conference on Design,
Automation and Test in Europe, 2013.

[8] K. Bai, A. Shrivastava, and S. Kudchadker. Stack data management for limited local
memory (llm) multi-core processors. In Application-Specific Systems, Architectures and
Processors (ASAP), 2011 IEEE International Conference on, 2011.

[9] R. Balasubramonian et al. Memory hierarchy reconfiguration for energy and perfor-
mance in general-purpose processor architectures. In MICRO, 2000.

111

[10] M. Banikazemi, D. Poff, and B. Abali. Pam: a novel performance/power aware meta-
scheduler for multi-core systems. In High Performance Computing, Networking, Stor-
age and Analysis, 2008. SC 2008. International Conference for, 2008.

[11] L. A. D. Bathen, N. D. Dutt, D. Shin, and S.-S. Lim. Spmvisor: Dynamic scratchpad
memory virtualization for secure, low power, and high performance distributed on-chip
memories. In Proceedings of the Seventh IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, 2011.

[12] N. Beckmann and D. Sanchez. Jigsaw: Scalable software-defined caches. In Proceed-
ings of the 22Nd International Conference on Parallel Architectures and Compilation
Techniques, 2013.

[13] P. Bellasi, G. Massari, and W. Fornaciari. A rtrm proposal for multi/many-core
platforms and reconfigurable applications. In Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, 2012.

[14] D. P. Bertsekas. A distributed algorithm for the assignment problem”. In Lab. for
Information and Decision Systems Working Paper, M.I.T.,Cambridge, MA., 1979.

[15] D. P. Bertsekas. Auction algorithms. In Encyclopedia of Optimization, 2002.

[16] D. P. Bertsekas and D. A. Castanon. Parallel synchronous and asynchronous imple-
mentations of the auction algorithm. Parallel Computing, 1991.

[17] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
2011.

[18] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E. Arzen, V. Romero,
and C. Scordino. Resource management on multicore systems: The actors approach.
IEEE Micro, 2011.

[19] N. Binkert, B. Beckmann, and Black. The gem5 simulator. SIGARCH Comput. Archit.
News, 2011.

[20] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but effective techniques for numa
memory management. SIGOPS Oper. Syst. Rev., 1989.

[21] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris,
and N. Zeldovich. An analysis of linux scalability to many cores. In Proceedings of the
9th USENIX Conference on Operating Systems Design and Implementation, 2010.

[22] R. Braithwaite, P. McCormick, and W.-c. Feng. Empirical memory-access cost models
in multicore numa architectures. Virginia Tech Department of Computer Science, 2011.

[23] J. A. Carballo, W. T. J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath. Itrs 2.0:
Toward a re-framing of the semiconductor technology roadmap. In 2014 IEEE 32nd
International Conference on Computer Design (ICCD), 2014.

112

[24] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip multiprocessors. In
Proceedings of the 21st Annual International Conference on Supercomputing, 2007.

[25] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
In ICALP, 2002.

[26] W. Che, A. Panda, and K. Chatha. Compilation of stream programs for multicore pro-
cessors that incorporate scratchpad memories. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, 2010.

[27] C.-B. Cho and T. Li. Complexity-based program phase analysis and classification. In
PACT, 2006.

[28] D. Cho, S. Pasricha, I. Issenin, N. Dutt, M. Ahn, and Y. Paek. Adaptive scratch pad
memory management for dynamic behavior of multimedia applications. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 2009.

[29] S. Cho and L. Jin. Managing distributed, shared l2 caches through os-level page
allocation. In Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture, 2006.

[30] J. Choi, H. Oh, S. Kim, and S. Ha. Executing synchronous dataflow graphs on a spm-
based multicore architecture. In Proceedings of the 49th Annual Design Automation
Conference, 2012.

[31] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The
scalable commutativity rule: Designing scalable software for multicore processors. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
2013.

[32] G. Cormode and M. Hadjieleftheriou. Methods for finding frequent items in data
streams. The VLDB Journal, 2010.

[33] H. Corporaal. Ttas: Missing the ilp complexity wall. J. Syst. Archit., 1999.

[34] Y. Cui, W. Zhang, and H. Yu. Decentralized agent based re-clustering for task map-
ping of tera-scale network-on-chip system. In 2012 IEEE International Symposium on
Circuits and Systems, 2012.

[35] A. Das and D. Grosu. Combinatorial auction-based protocols for resource allocation
in grids. In 19th IEEE International Parallel and Distributed Processing Symposium,
2005.

[36] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Lger, B. Orgogozo, J. Reybert, and
T. Strudel. A distributed run-time environment for the kalray mppa-256 integrated
manycore processor. Procedia Computer Science, 2013.

[37] N. Deng, W. Ji, J. Li, and Q. Zuo. A semi-automatic scratchpad memory management
framework for cmp. In Proceedings of the 9th International Conference on Advanced
Parallel Processing Technologies, 2011.

113

[38] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via dynamic
working set analysis. SIGARCH CAN, 2002.

[39] S. Dighe, S. R. Vangal, P. A. Aseron, S. Kumar, T. Jacob, K. A. Bowman, J. Howard,
J. Tschanz, V. Erraguntla, N. Borkar, V. K. De, and S. Borkar. Within-die variation-
aware dynamic-voltage-frequency-scaling with optimal core allocation and thread hop-
ping for the 80-core teraflops processor. J. Solid-State Circuits, 2011.

[40] Dropsho et al. Integrating adaptive on-chip storage structures for reduced dynamic
power. In PACT, 2002.

[41] C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Computer,
2009.

[42] N. Edalat, C.-K. Tham, and W. Xiao. An auction-based strategy for distributed task
allocation in wireless sensor networks. Computer Communications, 2012.

[43] B. Egger, J. Lee, and H. Shin. Scratchpad memory management in a multitasking
environment. In Proceedings of the 8th ACM International Conference on Embedded
Software, 2008.

[44] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. SIGARCH Comput. Archit. News, 2011.

[45] L. Fan, P. Trinder, and H. Taylor. Deadline-driven auctions for npc host alloca-
tion in p2p mmogs. Int. J. Adv. Media Commun., 2010.

[46] M. A. A. Faruque, R. Krist, and J. Henkel. Adam: Run-time agent-based distributed
application mapping for on-chip communication. In Design Automation Conference,
2008. DAC 2008. 45th ACM/IEEE, 2008.

[47] F. Fazzino, M. Palesi, and D. Patti. Noxim: Network-on-chip simulator. URL:
http://sourceforge. net/projects/noxim, 2008.

[48] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M. Mendias.
An integrated hardware/software approach for run-time scratchpad management. In
Proceedings of the 41st Annual Design Automation Conference, 2004.

[49] X. Fu and X. Wang. Utilization-controlled task consolidation for power optimization
in multi-core real-time systems. In 2011 IEEE 17th International Conference on Em-
bedded and Real-Time Computing Systems and Applications, 2011.

[50] L. Gauthier, T. Ishihara, H. Takase, H. Tomiyama, and H. Takada. Minimizing inter-
task interferences in scratch-pad memory usage for reducing the energy consumption of
multi-task systems. In Proceedings of the 2010 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, 2010.

[51] Y. Ge, P. Malani, and Q. Qiu. Distributed task migration for thermal management in
many-core systems. In Proceedings of the 47th Design Automation Conference, DAC
’10, 2010.

114

[52] J. Gomoluch and M. Schroeder. Market-based resource allocation for grid computing:
A model and simulation. In Middleware Workshops, 2003.

[53] G. Guan, C. Ma, and J. Wu. Hierarchical Clustering Techniques, chapter 7, pages
109–149. SIAM, 2007.

[54] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar, S. Mitra, A. Nico-
lau, T. S. Rosing, M. B. Srivastava, S. Swanson, and D. Sylvester. Underdesigned and
opportunistic computing in presence of hardware variability. Trans. Comp.-Aided Des.
Integ. Cir. Sys., 2013.

[55] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In Pro-
ceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International
Workshop, 2001.

[56] G. Hamerly et al. SimPoint 3.0: Faster and More Flexible Program Analysis. In
Journal of Instruction Level Parallelism, 2005.

[57] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive nuca: Near-optimal
block placement and replication in distributed caches. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, 2009.

[58] M. A. Heinrich. The performance and scalability of distributed shared-memory cache
coherence protocols. dissertation, Stanford University, 2002.

[59] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hbner, R. K. Pujari, A. Grudnitsky,
J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe. Invasive manycore architectures.
In 17th Asia and South Pacific Design Automation Conference, 2012.

[60] J. Henkel, V. Narayanan, S. Parameswaran, and J. Teich. Run-time adaption for
highly-complex multi-core systems. In Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), 2013 International Conference on, 2013.

[61] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., 5th edition, 2011.

[62] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News, 2006.

[63] H. Hoffman. Seec: A Framework for Self-aware Management of Goals and Constraints
in Computing Systems (Power-aware Computing, Accuracy-aware Computing, Adap-
tive Computing, Autonomic Computing). PhD thesis, Massachusett Institute of Tech-
nology, 2013.

[64] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,
V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and

115

T. Mattson. A 48-core ia-32 message-passing processor with dvfs in 45nm cmos. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE In-
ternational, 2010.

[65] T. Huffmire and T. Sherwood. Wavelet-based phase classification. In PACT, 2006.

[66] IBM. The cell project. http://researcher.watson.ibm.com/, 2005.

[67] IBM. IBM ILOG AMPL. http://ampl.com/, 2010.

[68] Intel. Single-chip cloud computer. http://intel.com/, 2009.

[69] Intel Lab. The SCC programmers guide, March 2014.

[70] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring and prediction
on real systems with application to dynamic power management. In MICRO, 2006.

[71] ITRS. Executive report. http://www.itrs2.net/, 2015.

[72] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu, and
S. Reinhardt. Qos policies and architecture for cache/memory in cmp platforms. In
Proceedings of the 2007 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, 2007.

[73] A. Jaleel. Memory Characterization of Workloads Using Instrumentation-Driven Sim-
ulation A Pin-based Memory Characterization of the SPEC CPU2000 and SPEC
CPU2006 Benchmark Suites. Technical report, Intel, 2007.

[74] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer. Adaptive
insertion policies for managing shared caches. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, 2008.

[75] W. Ji, N. Deng, F. Shi, Q. Zuo, and J. Li. Dynamic and adaptive spm management
for a multi-task environment. J. Syst. Archit., 2011.

[76] D. Kaseridis, J. Stuecheli, and L. John. Bank-aware dynamic cache partitioning for
multicore architectures. In Parallel Processing, 2009. ICPP ’09. International Confer-
ence on, 2009.

[77] P. Klemperer. Auction theory: A guide to the literature. Journal of Economic Surveys,
1999.

[78] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os observations to
improve performance in multicore systems. IEEE micro, 2008.

[79] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel. Distrm:
Distributed resource management for on-chip many-core systems. In Proceedings of the
Seventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS ’11, 2011.

116

http://researcher.watson.ibm.com/
http://ampl.com/
http://intel.com/
http://www.itrs2.net/

[80] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for variable
length intervals and hierarchical phase behavior. In Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, 2005, 2005.

[81] J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification and prediction.
In HPCA, 2005.

[82] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation. In Proceed-
ings of the Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[83] H. Lee, S. Cho, and B. Childers. Stimuluscache: Boosting performance of chip multi-
processors with excess cache. In High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, 2010.

[84] H. Lee, S. Cho, and B. Childers. Cloudcache: Expanding and shrinking private caches.
In High Performance Computer Architecture (HPCA), 2011 IEEE 17th International
Symposium on, 2011.

[85] T. Li and L. K. John. Adirpnb: A cost-effective way to implement full map directory-
based cache coherence protocols. IEEE Trans. Comput., 2001.

[86] Y. Li, Z. Gao, Y. Yang, Z. Guan, X. Chen, and X. Qiu. A cluster-based negotiation
model for task allocation in wireless sensor network. In 2010 International Conference
on Network and Service Management, 2010.

[87] W. Y. Lin, G. Y. Lin, and H. Y. Wei. Dynamic auction mechanism for cloud resource
allocation. In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, 2010.

[88] L. Liu and D. A. Shell. Optimal market-based multi-robot task allocation via strategic
pricing. In Robotics: Science and Systems, 2013.

[89] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Statistics. University of California Press, 1967.

[90] A. Marongiu and L. Benini. An openmp compiler for efficient use of distributed scratch-
pad memory in mpsocs. Computers, IEEE Transactions on, 2012.

[91] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious scheduling for energy efficiency
on multicore processors. In Proceedings of the 5th European conference on Computer
systems, 2010.

[92] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A tool to model
large caches. HP Laboratories, 2009.

[93] O. Mutlu. Memory systems in the many-core era: Challenges, opportunities, and
solution directions. In Proceedings of the International Symposium on Memory Man-
agement, 2011.

117

[94] O. Mutlu. Memory scaling: A systems architecture perspective. In 2013 5th IEEE
International Memory Workshop, pages 21–25, 2013.

[95] S. R. Nassif. Modeling and analysis of manufacturing variations. In Custom Integrated
Circuits, 2001, IEEE Conference on., 2001.

[96] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y. Mignolet. Centralized run-
time resource management in a network-on-chip containing reconfigurable hardware
tiles. In Design, Automation and Test in Europe, 2005.

[97] A. Pabalkar, A. Shrivastava, A. Kannan, and J. Lee. Sdrm: Simultaneous determina-
tion of regions and function-to-region mapping for scratchpad memories. In Proceedings
of the 15th International Conference on High Performance Computing. Springer Berlin
Heidelberg, 2008.

[98] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of scratch-pad memory
in embedded processor applications. In Proceedings of the 1997 European Conference
on Design and Test, 1997.

[99] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchitecture, 2006.

[100] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural support for operating
system-driven cmp cache management. In Proceedings of the 15th International Con-
ference on Parallel Architectures and Compilation Techniques, 2006.

[101] P. Ratanaworabhan and M. Burtscher. Program phase detection based on critical basic
block transitions. In ISPASS, 2008.

[102] K. Rupp. 40 years of microprocessor trend data.
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data.
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte,
O. Shacham, K. Olukotun, L. Hammond, C. Batten. New plot and data collected for
2010-2015 by k. Rupp.

[103] G. Sabin, M. Lang, and P. Sadayappan. Moldable parallel job scheduling using job
efficiency: An iterative approach. In Proceedings of the 12th International Conference
on Job Scheduling Strategies for Parallel Processing, JSSPP’06, 2007.

[104] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.
Varius: A model of process variation and resulting timing errors for microarchitects.
IEEE Transactions on Semiconductor Manufacturing, 2008.

[105] J. Sartori and R. Kumar. Distributed peak power management for many-core archi-
tectures. In 2009 Design, Automation Test in Europe Conference Exhibition, 2009.

[106] A. Sembrant et al. Phase guided profiling for fast cache modeling. In CGO, 2012.

118

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data

[107] M. Shafique, L. Bauer, W. Ahmed, and J. Henkel. Minority-game-based resource
allocation for run-time reconfigurable multi-core processors. In Design, Automation
and Test in Europe Conference and Exhibition, 2011. Proceedings, 2011.

[108] A. Sharifi, S. Srikantaiah, M. Kandemir, and M. Irwin. Courteous cache sharing: Being
nice to others in capacity management. In Design Automation Conference (DAC), 2012
49th ACM/EDAC/IEEE, 2012.

[109] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. SIGPLAN Not., 2004.

[110] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering and
exploiting program phases. IEEE Micro, 2003.

[111] A. Shrivastava, N. Dutt, J. Cai, M. Shoushtari, B. Donyanavard, and H. Tajik. Au-
tomatic management of software programmable memories in many-core architectures.
IET Computers Digital Techniques, 10(6), 2016.

[112] T. Sondag and H. Rajan. Phase-based tuning for better utilization of performance-
asymmetric multicore processors. In CGO, 2011.

[113] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive set pinning: Managing shared
caches in chip multiprocessors. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems, 2008.

[114] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning program and data
objects to scratchpad for energy reduction. In Design, Automation and Test in Europe
Conference and Exhibition, 2002. Proceedings, 2002.

[115] V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization
and task scheduling for mpsoc architectures. In Proceedings of the 2006 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems, 2006.

[116] V. Suhendra, A. Roychoudhury, and T. Mitra. Scratchpad allocation for concurrent
embedded software. In Proceedings of the 6th IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis, 2008.

[117] A. Sulistio and R. Buyya. A time optimization algorithm for scheduling bag-of-task
applications in auction-based proportional share systems. In 17th International Sym-
posium on Computer Architecture and High Performance Computing (SBAC-PAD’05),
2005.

[118] J. Sun, E. Modiano, and L. Zheng. Wireless channel allocation using an auction
algorithm. IEEE Journal on Selected Areas in Communications, 2006.

[119] H. Tajik, B. Donyanavard, and N. Dutt. Detecting and Using Memory Phases. Tech-
nical report, CECS TR 16-05, University of California, Irvine, 2016.

[120] H. Tajik, B. Donyanavard, and N. Dutt. On detecting and using memory phases in
multimedia systems. In Proceedings of the 14th ACM/IEEE Symposium on Embedded
Systems for Real-Time Multimedia, ESTIMedia’16, 2016.

119

[121] H. Tajik, B. Donyanavard, J. Jahn, J. Henkel, and N. Dutt. Spmpool: Runtime spm
management for memory-intensive applications in embedded many-cores. ACM Trans.
Embed. Comput. Syst., 2016.

[122] H. Takase, H. Tomiyama, and H. Takada. Partitioning and allocation of scratch-pad
memory for priority-based preemptive multi-task systems. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2010, 2010.

[123] Techcrunch. Digital media consumption report. https://techcrunch.com/, 2015.

[124] Tilera. gx family. http://www.tilera.com/, 2010.

[125] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Trans. Embed. Comput. Syst., 2006.

[126] R. F. van der Wijngaart, T. G. Mattson, and W. Haas. Light-weight communications
on intel’s single-chip cloud computer processor. SIGOPS Oper. Syst. Rev., 2011.

[127] M. Verma, S. Steinke, and P. Marwedel. Data partitioning for maximal scratchpad us-
age. In Proceedings of the 2003 Asia and South Pacific Design Automation Conference,
2003.

[128] J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J. Kircher, B. L. Krauter,
P. J. Restle, B. A. Zoric, and C. J. Anderson. The circuit and physical design of the
power4 microprocessor. IBM Journal of Research and Development, 2002.

[129] A. Weichslgartner, S. Wildermann, and J. Teich. Dynamic decentralized mapping of
tree-structured applications on noc architectures. In Networks on Chip (NoCS), 2011
Fifth IEEE/ACM International Symposium on, 2011.

[130] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the obvious.
SIGARCH Comput. Archit. News, 1995.

[131] Y. Xie and G. H. Loh. Pipp: Promotion/insertion pseudo-partitioning of multi-core
shared caches. In Proceedings of the 36th Annual International Symposium on Com-
puter Architecture, 2009.

[132] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas. A distributed auction algorithm
for the assignment problem. In Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on, 2008.

[133] L. Zhang, M. Qiu, W.-C. Tseng, and E. H.-M. Sha. Variable partitioning and schedul-
ing for mpsoc with virtually shared scratch pad memory. Journal of Signal Processing
Systems, 2010.

[134] Y. Zhang, D. Niyato, and P. Wang. An auction mechanism for resource allocation in
mobile cloud computing systems. In Proceedings of the 8th International Conference
on Wireless Algorithms, Systems, and Applications, 2013.

120

https://techcrunch.com/
http://www.tilera.com/

[135] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Amarasinghe. Dy-
namic cache contention detection in multi-threaded applications. In Proceedings of
the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments, 2011.

[136] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource contention
in multicore processors via scheduling. In Proceedings of the Fifteenth Edition of AS-
PLOS on Architectural Support for Programming Languages and Operating Systems,
2010.

[137] R. M. Zlot. An auction-based approach to complex task allocation for multirobot teams.
PhD thesis, Georgia Institute of Technology, 2006.

121

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Emerging Many-core Systems
	Memory Subsystem Challenges in Many-core platforms
	Variability
	Thesis Overview

	SPMPool: Runtime SPM Management in Embedded Many-Cores
	Introduction
	Motivation
	Key Contributions of SPMPool

	Related Work
	SPMPool
	SPMPool Memory Manager
	SPMPool Architectural Assists

	Experimental Setup and Results
	Experimental Setup
	Experimental Results - X86
	Experimental Results - ARM
	Experimental Results for Multi-threaded applications
	Overhead

	Discussion
	Scalability and multi-agent management
	Sensitivity to Application Mapping

	Conclusion

	Auction-Based Memory Mapping in Many-core Systems
	Introduction
	Related Work
	Auction Mechanism for Central Management of SPMPool
	SPM Mapping Problem Modeling

	Distributed Management of SPMPool
	Non-communicative Distributed Pool Management
	Auction-based Distributed Pool Management

	Experimental Setup and Results
	Experimental Setup
	Central Auction-Based Memory Mapping
	Distributed Multi-Pool Management
	Overhead

	Conclusion

	Memory Phasic Behavior
	Introduction
	Related Work and Motivation
	Contributions

	Memory Phases
	Memory Phase Definition
	Offline Memory Phase Detection

	Online Detection of Memory Phases
	Memory Phase Detection Scheme
	Overhead of Online Phase Detection

	Memory Phase driven SPM Mapping: a Use Case
	Compute New SPM Mapping

	Experimental Setup and Results
	Experimental Setup
	Experimental Goals
	Program Phase vs Memory Phase
	Accuracy of Capturing Memory Accesses
	Latency Reduction of phase driven SPM Mapping

	Conclusion

	Concluding Notes and Future Directions
	Main Contributions
	Future Research

	Bibliography

