
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Sinew & Ecosystem One: two works driven by a self-regulating performance system

Permalink
https://escholarship.org/uc/item/5g64h4zq

Author
Anthony, Kevin Patrick

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5g64h4zq
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Sinew & Ecosystem One: two works driven by a self-regulating performance system

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Integrated Composition, Improvisation, and Technology

by

Kevin Patrick Anthony

 Dissertation Committee:
 Professor Mari Kimura, Chair

 Assistant Professor Lukas Ligeti
Assistant Professor Theresa J Tanenbaum

Professor Vincent Olivieri

2020

© 2020 Kevin Patrick Anthony

ii

DEDICATION

To

my dear wife and young children

in recognition of their untold sacrifices

and their unceasing love and support

iii

TABLE OF CONTENTS

Dedication ... ii
Table of Contents ... iii
List of Figures ..v
List of Tables ... vi
List of Acronyms .. vii
Vita ... viii
Abstract of the thesis .. ix

 Introduction ... 1

 Research and Literature... 4
2.1. Improvisational Freedom ...4

2.1.1. John Zorn’s Cobra (1984)... 6
2.2. Composer Authorship ..8

2.2.1. Agostino Di Scipio’s Two Pieces of Listening and Surveillance (2013) 9
2.3. A Sense of Shared Purpose ..10

2.3.1. George Lewis’ Voyager.. 11
2.4. Repulsion ...12
2.5. Theoretical Reconciliation of Improvisation and Composition ...13

2.5.1. Enactive Cognition ... 14
2.5.2. Emergence .. 18

 John Conway’s Game of Life (1970) .. 21
 Alvin Lucier’s I am Sitting in a Room (1969) ... 23
 Cornelius Cardew’s The Great Learning, Paragraph 7 (1968) 25
 Terry Riley’s In C (1964) .. 27

2.6. Technological Reconciliation of Improvisation and Composition28
2.6.1. Continuous Process... 28

 John Cage’s Reunion (1968) ... 32
 Tim Blackwell’s Swarm Music (2003) .. 34

2.6.2. The Audiovisual Element ... 35
 Noisefold’s Emanations .. 37

2.6.3. Operational Logics ... 39
 Horizontal Operational Logics in Minecraft ... 41

 Developing and Performing Self-regulating Performance Systems 47
3.1. The Self-regulating Performance System ..47
3.2. Ecosystem One (2019) ...49

3.2.1. Ecosystem One: Intrinsically Continuous .. 50
3.2.2. Ecosystem One: Conveying Cause and Effect ... 55
3.2.3. Ecosystem One: Visual Elements ... 58

iv

3.2.4. Ecosystem One: Mappings in a Self-regulating System .. 62
 Ecosystem One: Creating Self-regulating Behavior .. 64

3.2.5. Ecosystem One: Analysis ... 67
3.3. Sinew (2020) ..70

3.3.1. Impact of the COVID-19 Pandemic ... 71
3.3.2. Sinew: Operational Logics ... 73
3.3.3. Sinew: Feature Logic .. 83

 Low-level Features .. 84
 Low-level Features: Spectral Flux in Unity .. 85
 Low-level Features: Smoothing and Scaling .. 86
 High-level Features ... 88
 Mapping Tool: The Sigmoid Function .. 89

3.3.4. Sinew: Analysis .. 92

 Concluding Thoughts.. 96

References .. 99

v

LIST OF FIGURES

Figure 1 John Conway's Game of Life, the Exploder. Step 0 (left) and step 45 (right). 22

Figure 2 Screenshot of a Max patch demonstrating a discrete process. 29

Figure 3 Screenshot of a Max patch demonstrating a continuous process. 31

Figure 4 Screenshot of a Max patch used in Ecosystem One (2019) exhibiting data-centric
imagery. .. 36

Figure 5 The MUGIC™ sensor. Project led by Mari Kimura. ... 36

Figure 6 Performance of Recourse (2019). ... 37

Figure 7 From a performance of Noisefold's Emanations. ... 38

Figure 8 The initial moment of beginning a new Minecraft world. .. 42

Figure 9 Potential final experiences in a Minecraft world. Functional computer, LPG 2013 (left).
Hermitcraft season six shopping district, GoodTimesWithScar 2020 (middle).
New player punching a tree (right). .. 43

Figure 10 Quest Log from World of Warcraft Classic. .. 44

Figure 11 Piston block from Minecraft. Retracted (left) and extended (right). 45

Figure 12 Max patch displaying performance data for Ecosystem One. 52

Figure 13 Max subpatch.. 53

Figure 14 Screenshot of the Ocean Mist music visualizer in Windows Media Player. 55

Figure 15 From a performance of Ecosystem One (2019). .. 56

Figure 16 The basic state of Ecosystem One's virtual environment. .. 58

Figure 17 A state of extreme distortion in Ecosystem One. ... 60

Figure 18 Animated tree mesh built in Blender. Calm (left), turbulent (right). 61

Figure 19 “OSCsend” Max patch abstraction for OSC communication. 63

Figure 20 Mapping diagram for Ecosystem One (2019). ... 64

Figure 21 Max patch demonstrating self-regulating behavior. ... 66

Figure 22 CommonAttributes C# class for Sinew's objects and performers. 74

Figure 23 Sinew's well. Render of model (left). Unlit in performance from low energy value
(middle). Lit it performance from high energy value (right). 76

Figure 24 Energy value transfer depicted as lights flowing from a single performer to the well. 76

Figure 25 Energy value transfer depicted as lights flowing from multiple performers to the well.
... 77

Figure 26 Sinew's C# Performer class as a monobehaviour component in the Unity editor. 80

Figure 27 Three bulbs in Sinew approaching the well. .. 81

Figure 28 Spawn from a bulb in Sinew. ... 82

Figure 29 Graph of a basic sigmoid function. ... 90

Figure 30 Graph of sigmoid functions used in Sinew's flocking algorithm. 91

vi

LIST OF TABLES

Table 1 Description of the discrete process demonstrated in Figure 2. .. 30

Table 2 Description of the continuous process demonstrated in Figure 3. 31

Table 3 The fifteen key operational logics as outlined by Osborn et al., 2018 40

Table 4 Example of a catalogued operational logic (collision) as presented by Osborn et al., 2018
... 40

Table 5 Ecosystem One's sensor logic. ... 50

Table 6 Ecosystem One's influence logic. ... 53

Table 7 Ecosystem One's energy logic. ... 54

Table 8 Descriptions and interactivity of Ecosystem One's atmospheric elements. 62

Table 9 Sinew's energy logic. .. 75

Table 10 Sinew's movement logic. .. 78

Table 11 Sinew's performing logic. ... 79

Table 12 Sinew's feature logic. ... 83

Table 13 A summary of value ranges for Sinew's extracted low-level audio features. 86

Table 14 Equations demonstrating Sinew's high-level features as derived from low-level features.
... 89

Table 15 Coefficients for sigmoid functions used in Sinew's flocking algorithm 91

vii

LIST OF ACRONYMS

ADC Analog-to-digital converter
ADSR Attack, Decay, Sustain, Release
DAC Digital-to-analog converter
DSP Digital signal processing
GLSL OpenGL Shading Language
LEM Live electronic music
OS Operating system
OSC Open sound control
UCI University of California, Irvine
xMPL Experimental Media Performance Lab

viii

VITA

Kevin Patrick Anthony is a music composer, electronicist, vocalist, artist, designer, and a

pursuer of creative technologies. Currently completing a PhD at the University of California,

Irvine (2020) in Integrated Composition, Improvisation, and Technology, he has a passion for

maintaining interdisciplinary environments which promote collaborative creativity. He has

received degrees from Brigham Young University Idaho (BMA, 2015) and Brigham Young

University (MA in Music Composition, 2017). Kevin is an Assistant Professor of Commercial

Music and Composition & Theory at Brigham Young University, Provo, beginning Fall, 2020.

ix

ABSTRACT OF THE THESIS

Musical works and texts historically demonstrate a desire to reconcile composition with

improvisation. This text aims to progress the narrative of reconciliation. It outlines the polarized

relationship between composition and improvisation. This paper presents tools that aid in their

reconciliation. These tools stem from both theoretical and technological contexts. They provide a

foundation for a creative work that gives equal weight to its improvisational and compositional

components, while fostering a sense of shared purpose. This paper also introduces a new model

for interactive performance systems called the self-regulating performance system. Two

substantial compositions by the author are outlined and presented; Ecosystem One and Sinew.

These works are implementations of the newly presented model.

“Sinew & Ecosystem One: two works driven by a self-regulating performance system” is

a dissertation submitted to the University of California, Irvine in partial satisfaction of the

requirements for the degree of Doctor of Philosophy in Integrated Composition, Improvisation,

and Technology by Kevin Patrick Anthony, with Mari Kimura as committee chair.

1

Introduction

The fundamental natures of composition and improvisation as they relate to this text are

inherently in conflict with one another, often at the expense of improvisational freedoms,

composer authorship, and a sense of shared purpose. The debate surrounding the relationship

between composition and improvisation will likely never “resolve.” As long as individual artists

maintain their creative freedoms—something I wholeheartedly advocate—there will always exist

disparate definitions of both terms. This text offers insight into a theoretical and technological

reconciliation of composition and improvisation. To facilitate effective discussion, and to quell

circular arguments, I define these terms within this highly specific context. Note that I present

these definitions with the understanding that they should remain fluid and part of a living

discussion.

This paper presents my research and creative work to address the following research

questions:

1. What are the conflicting characteristics of composition and improvisation?
2. What contexts allow for dually maximized composer authorship and improvisational

freedom?
3. What theoretical and philosophical concepts are necessary for the reconciliation of

composition and improvisation?
4. What technological concepts and tools are necessary for the reconciliation of

composition and improvisation?

Musical works and texts historically demonstrate a desire to reconcile composition with

improvisation. I aim to progress the narrative of reconciliation through my research and creative

work. In this text, I outline the polarized relationship between composition and improvisation.

2

Following this is an exploration of how this relationship affects a sense of shared purpose

between performers, concert attendees, and the composer. The purpose of discussing these issues

is to preface the presentation of my solution. In this text, I describe tools that aid in the

reconciliation of composition and improvisation. The tools stem from both theoretical and

technological contexts. They provide a foundation for a creative work that gives equal weight to

its improvisational and compositional components, while fostering a sense of shared purpose.

 As a practical implementation of reconciliation, I present a performance system model

called the self-regulating performance system. The ideas encapsulated by this model are twofold,

in that they include both theoretical and technological points. Enactive paradigms and concepts

of emergence inform the theoretical points. The theoretical points then inform the model’s

technological points. I provide details of the model’s most prominent characteristics, as well as

descriptions of more nuanced attributes that evade categorization.

Following this, I will present two substantial compositions as the creative activity portion

of this research. They are Ecosystem One and Sinew. Both works are practical examples of a self-

regulating performance system. These works demonstrate how improvisational freedom and

composer authorship can be maximized using certain technologies. Though this is not a tutorial

setting, I have presented the works in such a way that will introduce relevant frameworks to

those who are interested. I also present specific tools and code-blocks that the reader can use to

mimic the processes found in this paper.

I primarily present my creative works from a technological perspective. However, they

culminate as answers to this paper’s dominant research questions. My first composition I present

is Ecosystem One. This is the first of my works which I consider to have successfully maximized

both improvisational freedom and composer authorship. Sinew is the second work that I present.

3

It is similar to Ecosystem One, but is a long-form work. Commentary on the COVID-19

pandemic’s impact on Sinew—which resulted in a redesign—prepends a discussion of the work.

The starting point for discussing these works will surround their major operational logics.

With these logics established and defined, I explain how the works are able to simultaneously

maximize improvisational freedom, composer authorship, and a sense of shared purpose.

Concepts derived from enactive cognition and emergence provide the analytical lens for how the

systems that drive these works qualify as being self-regulating.

4

Research and Literature

2.1. Improvisational Freedom

Existing literature offers various definitions of improvisation, though none appear to be

entirely unchallenged or above reproach.1 While the debate surrounding the disambiguation of

improvisation has merit, it does not progress the purposes of this text. For this reason, I focus the

discussion on improvisational freedom, which is a ubiquitous characteristic of improvisation.

Improvisational freedom refers to the notion of performing music without needing to satisfy

explicitly stated expectations.

As both a performer and a concert attendee, I have greatly enjoyed the spontaneous music

that emerges from the apparent lack of expectation. As a composer, I have enjoyed framing

improvisations throughout my works, which I use to explore spontaneous creativity. I add

improvisational elements in the hope that certain musical serendipities might occur. However, as

I continue to experiment with composition and improvisation in the world of live electronic

music, I find myself less satisfied with certain phenomena.

One phenomenon is the extremely varied levels of purposefulness from performance to

performance. Improvisers who are familiar with one another’s tendencies appear to create

meaningful, resonant moments—the opposite also seems to hold true. This, however, is not a

constant rule, and is often contradicted. Too many factors appear to be in play to determine

1 Mazierska, “Improvisation in Electronic Music—The Case of Vienna Electronica”; Bailey,
Improvisation; Blum, “Representations of Music Making”; Alperson, “A Topography of
Improvisation.”

5

which ones contribute to musical evocation of meaning and purpose. How, then, does one ensure

a sense of purpose is shared between the performers, the composer, and concert attendees?

Another phenomenon is the lack of authorship I feel when setting improvisation within a

composition. Others performing my work while I am not a participant exacerbates this lessened

sense of authorship. A seminal definition for free improvisation from Derek Bailey suggests that

it is, “established only by the sonic-musical identity of the person or persons playing it.”2 This

definition gives no place for compositional authorship outside of the improviser and their past

influences.

I take a different approach to understanding improvisation in relation to composition.

Rather than label a work—or portion of a work—as improvised or composed, it is useful instead

to evaluate its level of improvisational freedom. I evaluate improvisational freedom by

considering the magnitude of expectation from external structures. Additionally, there is a

notable difference between perceived improvisational freedom and actual improvisational

freedom. Evaluating actual improvisational freedom is akin to deeper discussions of agency and

unrelated to the purposes of this text.

By evaluating perceived improvisational freedom, we enable practical observations that

can lead to experimentation. For instance, consider a recital with a single instrumentalist

performing spontaneous musical gestures. Many hidden structures provide the expectations

driving the improviser’s actions. Socially established expectations, like beginning the

performance at a designated time, are one example. The performer’s past musical experiences

are another example. There are, no doubt, infinite hidden influences at play. As the musical

performance has no explicit instructions from obvious external sources—e.g., a score—we

2 Bailey, Improvisation.

6

perceive a high level of improvisational freedom. Here, improvisation is no longer in binary

opposition to composition. Instead, it is a component of music with varying levels of presence.

By this approach, any structures, cues, prompts, or timelines that originate from a perceived

source reduce the level of improvisational freedom. In other words, explicit external structures

diminish improvisational freedom.

2.1.1. John Zorn’s Cobra (1984)

John Zorn’s Cobra is a “game piece” for an improvising ensemble. The piece requires a

“prompter” that signals the beginning of a new event using cardboard cue cards with large

letters, numbers, and other symbols. Each performer is given a sheet describing the function of

the cards. The sheet also contains descriptions of hand gestures and their functionality. Cobra

does not have a physical score. Rather Zorn himself verbally relays the instructions to

performing ensembles. During a performance, the ensemble takes charge of the piece by

rigorously dictating which symbols they would like the prompter to display.3

Cobra explicitly defines several external structures that confine performer choice. Note

that confinement of choice within a performance is not qualitatively good or bad—it is, in fact,

very desirable in many performance settings. This confinement within Cobra’s structure reduces

the notion of perceived improvisational freedom. Zorn composed his game pieces, including

Cobra, in an effort to free the improviser. While discussing the motivation for writing his game

pieces, Zorn stated:

“For a composer to give an improviser a piece of music which said, ‘play these
melodies - then improvise - then play with this guy…’, to me, that was defeating
the purpose of what these people had developed, which was a very particular way

3 Van Der Schyff, “The Free Improvisation Game.”

7

of relating to their instruments and to each other. And I was interested in those
relationships.”4

Zorn hopes that giving performers a game-like scenario will enable them to more easily

express their personal idioms as they are given more power over structure and interaction. His

logic initially makes sense, but it does not acknowledge a vital factor: his own desire for

authorship. Zorn wants improvisers to feel free and unfettered during a live performance, which

is at odds with a composer’s paradigm of maintaining an authorial relationship with the

composition. This is apparent in the rules that govern Cobra. Players are bound by the

composer’s structures. Cobra requires performers to be intensely aware of many discrete events

that could occur at any given moment from a wide range of sources. Players can only participate

in the piece if they pay attention to a long list of tasks and responsibilities. They must mentally

traverse the rules established by the composer in order to take action.

This work has been described by improvisers as either exciting, confusing, stressful, or

fun to perform.5 Frantic attempts to subvert, communicate, and collaborate with fellow

performers create an environment of ordered chaos. Each performance is meant to be relatively

unstable because the score is mainly a framework for improvisers to follow their own creative

inclinations. However, the work remains dominated by obvious external structures. Recall that

the magnitude of obvious expectation from external structures indicates the level of perceived

improvisational freedom. Cobra’s high level of expectation imposed upon performers diminishes

the presence of perceived improvisational freedom.

4 Bailey, Improvisation.
5 Van Der Schyff, “The Free Improvisation Game.”

8

2.2. Composer Authorship

Michel Foucault describes literary authorship as the “relationship that holds between an

author and a text, the manner in which a text apparently points to this figure who is outside and

precedes it.”6 De Benedictis translates this to a musical context as, “the relationship between a

composer and a performance.”7 Within my work, as the perceived improvisational freedom

increases, my sense of authorship decreases. This leads me to question the nature of authorship,

and to explore its apparently inverse relationship with improvisational freedom.

I am not alone in experiencing the dissatisfaction of authorial decline within a work.

Luciano Berio expresses similar sentiments when commenting on performances of his work

Sequenza I (1958) for solo flute. The score employs proportional notation, having no time

signature or bar lines. Years after its publication, Berio said he intended the work’s flexibility for

rhythm and tempo to give the performer:

“…the freedom – psychological rather than musical – to adapt the piece here and
there to his technical stature. But instead, this notation has allowed many players
[...] to perpetrate adaptations that were little short of piratical. In fact, I hope to
rewrite Sequenza I in rhythmic notation: maybe it will be less ‘open’ and more
authoritarian, but at least it will be reliable.”8

Berio makes clear his desire to explore the “psychological” freedoms associated with

improvisation. However, he is ultimately displeased with the results. His republication of the

work in 1998 contains strict rhythmic notation. By removing the primary improvisational

element of the work, he solidifies his role as author and composer.

6 Foucault, “What Is an Author?”
7 De Benedictis, “Authorship and Performance Tradition in the Age of Technology.”
8 Berio et al., Two Interviews.

9

The first publication of Sequenza I suffers from a clash of desires—one for

improvisational freedom and another for composer authorship. As discussed in 2.1

Improvisational Freedom on page 4, improvisational freedom is diminished by explicit external

structures.

2.2.1. Agostino Di Scipio’s Two Pieces of Listening and Surveillance (2013)

Agostino Di Scipio’s work Two Pieces of Listening and Surveillance demonstrates how

improvisational freedom and composer authorship have trouble existing simultaneously. It is a

piece for flute and electronics, and is a slow and dramatic live performance.9 It begins silently

with a single flute in the center of the stage. Attached to it is a contact microphone that is

connected to a computer which processes the flute’s audio signal. As the piece progresses,

complex sonorities audiate from speakers placed slightly offstage. The sonorities gradually come

and go, without any visible human performer controlling them and leaving time for large gaps of

silence. The music, for the audience member, appears to arise from nothing. In reality, a

meticulously designed performance system processes the audio. A self-regulating feedback loop

inflates the resonant qualities of the flute and its complex relationship to the room’s acoustic

qualities.

Di Scipio likens the performance to Lucier’s I am Sitting in a Room (1970) but with

interactive elements introduced. Eventually, a careful performer takes to the stage, gently lifting

the flute to chest-level. As designated in the score for Two Pieces of Listening and Surveillance,

the performer proceeds to hold down the flute’s keys in a given order until all of the keys are

pressed. If resulting sonorities from the feedback system become unruly or explode in an

9 Di Scipio, “Dwelling in a Field of Sonic Relationships.”

10

“emergency situation,” the performer is instructed to execute “security procedures.” This

includes violently slamming down the keys or blowing into the flute’s mouthpiece, keyholes, and

foot joint. As they do so, the system is dampened and the explosive feedback diminishes.

In Two Pieces of Listening and Surveillance, the composer’s level of authorship

decreases mostly when the flutist satisfies the improvisatory instructions for “emergency

situations.” This is when the piece strays from the composer’s specified timeline. As the sonic

properties of the work resolve, the timeline is resumed and composer authorship increases. The

two elements struggle to exist side by side as they are attempting to occupy the same locale

within the work. The performer’s improvisational inclinations cannot fully govern performance

behavior while satisfying the expectations of an explicit score.

2.3. A Sense of Shared Purpose

The phrase “shared purpose,” simply means a common understanding of cause and effect.

Alternatively, it is a common understanding of function. These definitions are admittedly

reductive, but intentionally so as they are likely the most productive. I seek to experiment with

ways that a composer might maximize the chances of cultivating a sense of shared purpose.

Two Pieces of Listening and Surveillance (see 2.2.1) demonstrates how transparent

functionality might be embedded within a score. The work encourages a common understanding

of cause and effect when the performer interacts with the system. As they follow the score,

occasionally improvising, their actions reveal semi-predictable properties of the system. The

performer, composer, and concert attendee all glimpse portions of the system’s functionality and

intuitively learn its nature. This common understanding fosters a sense of shared purpose through

highly transparent functionality. The slow revealing of cause and effect is a core component of

the score’s timeline fully intended by the composer.

11

Cause and effect throughout a performance of Cobra (see 2.1.1) is relatively opaque and

obscured. Its functionality appears to be more difficult to locate for both performer and attendee.

The lack of apparent cause and effect add to the whimsical, chaotic nature of the work. While

this does not equate to a lack of shared purpose, it does not encourage it. Perhaps the work

encourages a sense of common understanding by way of this general chaos. However, the piece

does not seem to consider the revealing of functionality as a structural element. Instead, the

persistent ambiguity of cause and effect serves as the motivator for performer behavior.

2.3.1. George Lewis’ Voyager

George Lewis’ Voyager lays the groundwork for experimentation with embedding

composer-intended human response, which is a useful mechanism for fostering a sense of shared

purpose. Voyager is a “non-hierarchical, interactive musical environment that favors

improvisation. When performing with Voyager, improvisers engage in dialogue with a computer-

driven, interactive ‘virtual improvising orchestra.’”10 Lewis’ system invites the performer and

listener to discover purpose and function within its performances.

The research behind Voyager reflects on human tendencies and behaviors. This is a

fascinating topic to focus on with how juxtaposed it is to an autonomously performing digital

system. Music produced by Voyager exists because of the cyclic exchange of information

between the system and the performer. There appears to be a stochastic-dominance throughout

the system. Lewis did not build the machine to be predictable. He intentionally hides action and

consequence. He has intentionally built a cold system that forces performers and concert

attendees to look inward for purpose and meaning.

10 Lewis, “Too Many Notes.”

12

Voyager’s natural and organic performance behaviors encourage a sense of familiarity

and purpose. This is especially apparent as performers and concert attendees frequently

anthropomorphize the interactive system. In a panel discussion following a 2012 performance

with Vijay Iyer and George Lewis, Iyer talks of “reading [Voyager’s] mood.” 11 A commentator

discusses the system’s behavior in terms of “personality,” saying that it is timid, inspired, or “in

a funk.” When discussing how the performers adapted to a particularly timid portion of the

system’s performance, Lewis said,

“It’s hard to explain how you can feel that a computer is in a particular mood, but
that's just the way it is. You get to know something for a while and you can just tell
the thing’s not going to go a certain way.”12

Voyager establishes a precedent for composers to embed intentional human responses

within performance systems. It demonstrates how the use of archetypical gesture generates a

sense of purpose and meaning within a performance system. This concept is useful when

experimenting with designing desirable human reactions to a work, particularly when attempting

to embed within it a sense of shared purpose.

2.4. Repulsion

Having contextualized improvisational freedom, composer authorship, and a sense of

shared purpose, we can better summarize which of their qualities are repellent from one another.

Improvisational freedom diminishes composer authorship and does not inherently generate

shared purpose. Composer authorship in the form of explicit external structures restricts

improvisational freedoms and can bolster a sense of shared purpose.

11 George Lewis and Vijay Iyer in Concert.
12 George Lewis and Vijay Iyer in Concert.

13

Two Pieces of Listening and Surveillance encourages a sense of shared purpose through

the interactions of the performer. Di Scipio carefully displays cause and effect, which fosters a

common understanding between the performer, composer, and the concert attendees. This clear

communication of meaning is the result of strong external structures, at the expense of more

improvisational freedoms. Here, mechanisms generate a strong sense of purpose and repel

freedom—the mechanisms being explicitly stated external structures.

Cobra’s explicit structure creates strict expectations for the performer to satisfy. This

requires the performer to undergo anticipatory behavior, which is at odds with the ideal scenario

of reactive performance. Anticipation comes from the need to satisfy an “established

authority.”13 Thus, explicit external structure diminishes improvisational freedom.

Reconciling improvisational freedom, composer authorship, and a sense of shared

purpose is a difficult task. The scenarios previously explored in this text illustrate a precedent for

maximizing the presence of all three elements. Common practice currently offers only

fragmented solutions, as will be explored in sections 2.5 and 2.6. I have found through much

experimentation that successful reconciliation of all three elements requires alternative methods,

both theoretical and technological.

2.5. Theoretical Reconciliation of Improvisation and Composition

Composition and improvisation might be reconciled theoretically through the philosophy

of enactive cognition, as well as concepts involving emergence. These ideas enable a valid

relocation of composer authorship that satisfies the nature of both improvisation and a sense of

13 Spolin, Improvisation for the Theater.

14

shared purpose. They also establish a foundation for certain technologies to aid in the

maximizing of improvisational freedom, composer authorship, and a sense of shared purpose.

2.5.1. Enactive Cognition

The ideas surrounding enactive cognition enable a composer to design environmentally

integrated scores that are compatible with improvisational freedom. In other words, the theory

helps a composer embed a subliminal score within a performance environment. The study of

enactive cognition suggests that cognitive processes are deeply entangled in physical action and

interaction with the environment:

“Varela, Thompson, and Rosch introduced the concept of enaction to present and
develop a framework that places strong emphasis on the idea that the experienced
world is portrayed and determined by mutual interactions between the physiology
of the organism, its sensorimotor circuit and the environment.”14

“The basic idea of the enactive approach is that the living body is a self-producing
and self-maintaining system that enacts or brings forth relevance, and that cognitive
processes belong to the relational domain of the living body coupled to its
environment.”15

On the basis of enactive theory, improvisations are always informed by structures found

within the performance environment. These environmental factors do not diminish the perceived

improvisational freedom. If a composer were to inject their structures into the performance

environment in a natural and effective manner, it could theoretically enable the maximizing of

improvisational freedom and composer authorship simultaneously.

14 Wilson and Foglia, “Embodied Cognition.”
15 Thompson, “Introduction.”

15

Enactive theory stands in contrast to the Cartesian paradigm, which divides the world into

discrete elements, tasks, and events. This quantized view of experience is prevalent in my

musical upbringing and education. For instance, a musical score is clearly distinguishable as an

external object with specified properties and tasks. Each task is represented within many

distinguishable levels of detail. Sections contain phrases, and phrases contain notes. Each of

these levels contain properties. Notes have locations, durations, and expressions. Phrases have

momentum and dynamics. Sections contain texture and narrative. This framework of

individuated properties and tasks is useful and functional, but encourages the dichotomy between

improvisation and composition. It reinforces composition as an explicit external structure that

generates expectations to be satisfied by a performer.

My initial endeavors with improvisation and composition involved the integration of

improvisational prompts throughout a traditional written score. I often used timed sections of

improvisation mingled with notated passages of music. Other attempts involved interactive

systems that allowed the improviser to explore whatever musical possibilities the system

afforded. Despite not having the necessary nomenclature at the time, I perceived the conflict

between improvisational freedom and composer authorship. As each attempt was created under

Cartesian paradigms, their approaches to composition resulted in externally represented objects

that interfered with improvisation. This usually ended with either composition or

improvisation—and far too often, technology—unsatisfyingly dominating the work.

Along with compositional, improvisational, and technological elements being regularly

out of balance, the general relevance of blending these elements seems to ebb and flow

inconsistently. Enactive theory suggests that relevance is derived from the relationship between

action and the environment:

16

“In formulating the enactive approach, we drew on multiple sources: the theory of
living organisms as self-producing or “autopoietic” systems that bring forth their
own cognitive domains; newly emerging work on embodied cognition (how
sensorimotor interactions with the world shape cognition); Merleau-Ponty’s
phenomenology of the lived body; and the Buddhist philosophical idea of
dependent origination, and specifically that cognition and the experienced world
co-arise in mutual dependence.”16

Applying Thompson’s notion of mutual dependence to an improviser and their

environment reveals new possibilities for composition. It ultimately allows for composed

elements of a work to be integrated into the performance environment. As discussed in 2.1,

improvisational freedom is always informed by social and environmental factors. When the

composition is an element of the environment, it becomes less visible as an external structure.

With perceived external structures minimized, performers can then maximize their sense of

improvisational freedom.

To illustrate how enactive cognition can inform an alternative paradigm for composition,

I will describe a hypothetical scenario. Imagine a violinist improvising while alone in a small,

secluded room. There are countless factors influencing their musical choices. In this example, we

will focus on a single, immediate factor; the acoustics of the room. On some level, the room’s

acoustics are engaging with the performer’s sensori-motor system and causing perturbations

throughout their improvisational structures. Let the room now transform into a large concert hall

with highly reverberant resonant properties. This space will promote a different quality of

engagement between the violinist and the environment. The emergent music that arises has been

transformed by the environment. Now imagine the stage upon which the performer is standing

begins to shift and contract in reaction to the violin. The performer’s level of interaction with the

space is heightened. As observers, we can hear and see how the motion of the floor influences

16 Thompson.

17

the ongoing improvisations. Such control over the venue would demand a new paradigm for

composition, one where the composer must consider the possibilities surrounding the

relationship between performer and environment. Similarly, the presence of modern

technologies and their widespread availability calls for the exploration of new compositional

paradigms. Through certain technologies, a composer is effectively able to alter the rules of a

performance environment, which can in turn affect the behaviors of performers and improvisers.

An enactive approach to composition, improvisation, and technology changes

performance from the translation of ordered symbols to engaged interaction with the

environment. Additionally, the improviser is not seen as a single, independent object. Instead,

they are viewed as being tightly coupled with the environment.

“...a cognitive being’s world is not a pre-specified, external realm, represented
internally by its brain, but is rather a relational domain enacted or brought forth by
that being in and through its mode of coupling with the environment.”17

Composition under this approach, then, is not the act of imposing external, pre-specified

tasks. It is the act of thoughtfully organizing environmental interactions. Consequently, when

designing a performance environment, one would not specify events. Instead, designed

interactions are the primary compositional device. Of course, there is only so much impact a

composer can have on a natural performance environment. This is where technology plays a vital

role. It enables richly designed behaviors that can be embedded within the environment’s

properties (see 2.6 Technological Reconciliation of Improvisation and Composition).

17 Thompson.

18

2.5.2. Emergence

An understanding of emergence is vital for maximizing composer authorship and

improvisational freedom. As composed elements of a work are relocated to the performance

environment, they become less obstructive toward a performer’s sense of improvisational

freedom. However, in order for the composer to maintain authorship of the work, they must

somehow communicate desired performance behaviors. Here, it becomes necessary for the

composer to mimic the emergent process by which we interact with the environment. Emergent

phenomena may be contained and constructed by a composer to facilitate desired performance

interactions, thus maintaining unobtrusive authorship.

Under the model of an environmental score, emergence is the primary mechanism by

which a composer communicates with their performer. It is no doubt a broad term with many

acceptable interpretations. First, I will explain my own understanding of emergence. Following

this, I will compare two common perspectives of emergence—one from Timothy O’Connor, and

another from Mark A. Bedau. This discussion will include explanations of how emergence is a

powerful tool for reconciling improvisational freedom, composer authorship, and a sense of

shared purpose.

My interpretation of emergence is as follows: a phenomenon is emergent while its initial

existence is the unanticipated result of a given process. This interpretation highlights the

circumstances of the human vantage point, taking into account the progression of time. I will

reconstruct the interpretation, unpacking it as I do so. In its most basic form, it reads, “a

phenomenon is emergent when it is the result of a process.” This is inadequate. Emergence seeks

to define more puzzling phenomena. Adding more to the interpretation, we have, “a phenomenon

is emergent when it is the unpredictable result of a process.” This is closer to capturing

emergence. If a process’s components are well understood without facilitating predictable

19

results, then the results are often labelled emergent. However, once the results of a process have

been observed over time, an observer will not consider them to be unpredictable. To address this

possibility, it reads, “a thing is emergent when its initial existence is the unpredictable result of a

given process.” At this stage of the reconstruction, a glaring hypothetical question must be

considered. What if you could wholly perceive and comprehend every influential factor of a

given process as an omniscient observer? In this scenario, would the observer be able to identify

causal relationships for every phenomena, or is there true emergence? I instinctively think that a

theoretical omniscient observer would perceive a complete lineage of cause and effect. The

implication is that a hypothetical objective reality does not contain emergence. Recall that my

interpretation considers the human vantage point. We are, fortunately, not omniscient entities

and, as such, there are processes that will likely always prove to baffle us. Considering this, I

alter my interpretation, “a phenomenon is emergent while its initial existence is the unanticipated

result of a given process.”

A common understanding of emergence is presented by Timothy O'Connor. His

explanation of emergent phenomena is aligned with what may be considered to be the dominant

use of the term. According to O’Connor, a property is emergent from an object if, (1) the

property supervenes on properties of the object’s individual components, (2) the property is not

an integral or structural component of the object, and (3) the property has a direct determinative

influence on the object’s components.18

O'Connor's definition suggests that an emergent property’s influence and behavior is

irreducible and cannot be directly traced to low-level components. Essentially, the definition

claims that an object’s properties can exist spontaneously without any physical or scientific

18 O’Connor, “Emergent Properties.”

20

explanation. This view of emergence inhibits its use in empirical fields of study where a

pragmatic sense of the term could prove useful. However, in philosophical and artistic fields, it is

appropriate to muse over inexplicable phenomena. As such, emergence as described by

O’Connor is useful and legitimate to philosophers and creators who regularly deal with

perception, consciousness, and the human experience.

A second understanding of emergence is presented by Mark A. Bedau. He makes the

distinction between strong and weak emergence.19 Strong emergence is the mode described by

O’Connor. He concisely defines weak emergence in a technical manner. David J. Chalmers

paraphrases Bedau’s concept in a more accessible manner:

“We can say that a high-level phenomenon is weakly emergent with respect to a
low-level domain when the high-level phenomenon arises from the low-level
domain, but truths concerning that phenomenon are unexpected given the principles
governing the low-level domain.”20

There is only a slight difference between Chalmers’ paraphrasing of weak emergence

compared to strong emergence. He uses “unexpected” for weak emergence, and “not deducible”

for strong emergence. Weak emergence acknowledges a causal relationship between low-level

components and high-level structures. If an unexpected phenomenon is only knowable after

carrying out the process that produces it, let us say it is weakly emergent.

Strong emergence describes a process that is far too transient and inaccessible to attempt

to imitate—that is, in a way that merits pragmatic discussion. Alternatively, Bedau’s weak

emergence provides us with a template for how to design such processes. By further delving into

19 Bedau, “Weak Emergence.”
20 Chalmers, “Strong and Weak Emergence.”

21

the nature of emergence—particularly weak emergence—we can see how it is possible for

emergent phenomena to be cultivated and designed according to the desires of a composer.21

 John Conway’s Game of Life (1970)

John Conway’s Game of Life illustrates how emergent systems can be designed and

cultivated to achieve a known range of results. The Game of Life is a cellular automaton

researched and discovered by John Conway in 1970.22 Cellular automata involve sets of rules

dictating the state changes of individual “machines” aligned in a grid, each with the ability to

influence neighboring machines during subsequent state changes. The format was developed

during the 1950s by John von Neumann and Stanislaw Ulam in order to study and define self-

reproducing machines.23 Since then, many efforts have been made to define a ruleset that could

exhibit complex, sustainable patterns. If successful, it would demonstrate how such complex

patterns are generated from individual, separate, low-level components—among many other

things. Conway’s Game of Life, is one such ruleset that generates remarkably complex behavior

from four simple rules: (1) any live cell with fewer than two live neighbors dies, as if by under

population, (2) any live cell with two or three live neighbors lives on to the next generation, (3)

any live cell with more than three live neighbors dies, as if by overpopulation, and (4) any dead

cell with exactly three live neighbors becomes a live cell, as if by reproduction.

21 While this text is specific to composers, the cultivation of emergence can be said to apply to
nearly every design process.
22 Gardner, “Mathematical Games.”
23 Schiff, Cellular Automata A Discrete View of the World. 40.

22

Figure 1 John Conway's Game of Life, the
Exploder. Step 0 (left) and step 45 (right).

Conway’s Game of Life is an example of a system that produces weakly emergent

phenomena. The transparency of the system’s algorithm means that the process for any given

result can be entirely defined. It is within human capacity to manually calculate each time-step—

as was originally done by mathematicians studying cellular automata. Doing so creates a record

of causal relationships between starting parameters and any emergent, complex structures. This

process is depicted in Figure 1. Two frames are shown. The left frame shows the starting

conditions. The right frame shows the cellular automaton’s state after forty-five steps. Since step

forty-five is not anticipated and only discoverable through the carrying out of a process, its

existence is deemed to be weakly emergent.

From this example, we begin to see how emergent phenomena might be designed.

Conway’s ruleset generates complex structures and behaviors that are not directly defined by the

rules themselves. Instead, they emerge as outcomes of the process. The simulation must be

carried out for them to exist. Here we can surmise that to design the outcome of the process, one

could slowly alter its starting parameters and general structure. Over time, the nuanced behavior

of the system can become familiar to the designer—allowing for greater design potential.

23

While designing emergent systems, it is important to consider scope and complexity. It is

one thing to create a process that produces complex results. It is another thing to create a simple

process that produces complex results. Within my work, I find that the most interesting results

come from mapping simple mechanisms. Conway’s ruleset efficiently demonstrates this idea. I

do not believe that the complexity of a process reduces its ability to produce interesting emergent

art. Instead, the complexity of a process should be evaluated by its creator.24 Simple processes,

as demonstrated by many cellular automata, can easily bring about complex system behaviors;

complex processes can also bring about simple results. As a composer, I value simple processes

over complex processes. I aim to maintain a strong understanding of my performance systems. If

a system cannot be abstracted into a simple process then my understanding of its potential wanes.

Some composers may find this desirable, seeking to harness complex processes as a means of

experimentation and exploration.25 My work will certainly produce complex systems, but

attempting to maintain simple designs will allow me to effectively cultivate desirable outcomes.

 Alvin Lucier’s I am Sitting in a Room (1969)

The circular nature of Alvin Lucier’s I am Sitting in a Room is a clean example of how to

generate emergent material. The process Lucier uses is simple. Audio feedback is used to explore

the natural resonances of a room. The audio from a spoken text is recorded, then played through

24 Ulman, “Some Thoughts on the New Complexity.”
25 Fox, New Complexity.

24

loudspeakers.26 The playback of this recording is also recorded, then played/recorded again. This

process repeats until the audio gives way to the natural resonances of the room.27

Like Conway’s Game of Life, I am Sitting in a Room is a seminal example of complexity

emerging from a simple circular relationship between an object and its environment. Lucier’s

recording begins as a simple string of words that appears to be largely unaware of the sonic

properties of the room. Over time, signal processing slowly transforms the words into a

soundscape of subtle complexities shaped by the room’s sonic qualities.

I am Sitting in a Room demonstrates how emergent phenomena are a result of circular

relationships. It contains a straightforward process that magnifies the relationship between two

subjects: the room’s acoustic properties and the performer’s voice. This formula can be followed

to design emergent performance systems. For example, when designing a performance system, I

choose two subjects and map them together in a simple relationship that results in a pattern of

circular causality. This describes a situation where a subsystem’s output is repurposed as its own

input. An example of this sort of circular relationship if found in section 3.2.4. When I am

satisfied with the results, I add another subject, tethering them to either one or both of the

established subjects. Depending on the interest level of the outcomes, I may discard or continue

using the new subject. This is the process of cultivating emergence—which is, in and of itself, an

emergent process.

26 The text for Lucier’s I am Sitting in a Room (1969) is: “I am sitting in a room different from the
one you are in now. I am recording the sound of my speaking voice and I am going to play it back
into the room again and again until the resonant frequencies of the room reinforce themselves so
that any semblance of my speech, with perhaps the exception of rhythm, is destroyed. What you
will hear, then, are the natural resonant frequencies of the room articulated by speech. I regard this
activity not so much as a demonstration of a physical fact, but more as a way to smooth out any
irregularities my speech might have.”
27 Strickland, Minimalism. 281.

25

 Cornelius Cardew’s The Great Learning, Paragraph 7 (1968)

Cornelius Cardew’s The Great Learning, Paragraph 7 helps clarify the concept of

“scope” when dealing with strong and weak emergence. Its score consists of musical phrases and

written directions. Each member of the performing vocal ensemble chooses a starting note and

sings a musical fragment any number of times before continuing to the next phrase. When a

singer begins the next phrase, their pitch must be a note presently sung by a neighboring member

of the ensemble. Though the process for this improvisation is simple and straightforward, the

resulting music is complex and coherent. The initial sound mass that is built predominantly on

noise-like sonorities gives way to pleasant harmonies and coherent structures.

What this work brings to light is the infinitely variable scope that can be used to analyze

emergent behavior. For instance, if we delve deep enough into concepts of strong emergence, we

are confronted with the need to qualify any given phenomenon as emergent. Consequently,

everything we perceive can arguably be labeled as being emergent. Emergence as a term then

runs the risk of describing everything, which in turn describes nothing. To maintain its

usefulness, the term must carry with it a sense of limits.

Consider the harmonic qualities of a chord as a strongly emergent phenomenon.

Harmony emerges as the listener’s perception of the relationship between oscillating sound

waves. However, as pointed out by McCormack et al., scientific observation has not yet

discovered the exact process that results in the perception of harmony.28 This basic mode of

strong emergence is distinguishable from the weak emergence that comes from directed, rule-

based circumstances. Harmony from a generic perspective is more closely related to natural

synergetic processes that drive day-to-day perception. Harmony from a compositional

28 McCormack et al., Generative Algorithms for Making Music.

26

perspective, however, can be seen to exist in a given form as a result of a known process carried

out by the composer. For the purposes of this paper, emergence will focus on the latter

perspective. For instance, the harmonies constructed by performers during The Great Learning,

Paragraph 7 emerge—weakly—from a known process.

The strongly emergent qualities of a chord are inaccessible from a design point of view.

On the other hand, weak emergence is highly accessible. Focusing on weakly emergent

processes helps to restrict the system’s design to a manageable level of detail. Weak emergence

inherently provides limits and boundaries. In the context of composition and performance

systems, it is useful to favor weak emergence. This is because the limits that weak emergence

provides allows for a manageable frame of creative reference. For instance, suppose that a

particular state of my performance system invokes a general sense of discovery and arrival. I can

comprehend that these macrodynamics—discovery and arrival—are the unanticipated but

deducible results of the system’s microdynamics. Understanding this enables an attempt to alter

the microdynamics in order to further cultivate the desired outcome.

Additionally, Cardew’s The Great Learning, Paragraph 7 demonstrates how the

phenomena that emerge from a process somehow maintain a level of recognizability. Brian Eno,

who took part in the recording of the work, observed:

“A cursory examination of the score will probably create the impression that the
piece would differ radically from one performance to another, because the score
appears to supply very few precise (that is, quantifiable) constraints on the nature
of each performer’s behaviour, and because the performers themselves (being of
variable ability) are not ‘reliable’ in the sense that a group of trained musicians
might be. The fact that this does not happen is of considerable interest, because it
suggests that somehow a set of controls that are not stipulated in the score arise in

27

performance and that these ‘automatic’ controls are the real determinants of the
nature of the piece.”29

It is baffling and fascinating that emergent material from compositional processes can

somehow become a discrete entity. It is to the composer’s advantage that this is the case, as it

supports the notion that variability does not equate to a lack of identity. This means that a

process can be as recognizable and identifiable as a written score, and is consequently a valid

locale for composer authorship.

 Terry Riley’s In C (1964)

Terry Riley’s In C (1964) is another example of how a performance algorithm can

maintain its recognizability despite each performance being unique. The work consists of fifty-

three musically notated, independent phrases. Performers play through each phrase, skipping

phrases when desired, and repeating them each an indeterminate amount of times. The work is

aleatoric and does not dictate when a performer should begin or end playing. The score does,

however, encourage performers to maintain a two or three phrase distance from one another.

All recognizable forms of music that this piece generates (as well as many performance

behaviors) are not present in the score. They exist only when a performance is carried out. This

is due to the score’s format. Riley’s score describes a process. It does not dictate moment to

moment events. As a simple process is followed by the ensemble, then novel and compelling

musical structures emerge.

Additionally, In C illustrates the importance of iteration in relation to the composition

process. When crafting and cultivating emergent phenomena, it becomes vital for the creator to

iterate through designs and configurations. This is essentially the act of slowly and methodically

29 Eno, A Year with Swollen Appendices. 336.

28

implanting one’s artistic identity into the system. In doing this, a composer deliberately shapes

the emergent properties of performance systems and injects their inclinations—and consequently

their authorship—into the work. The original score for In C did not include a metric pulse. It was

only added after his contemporary Steve Reich suggested it to Riley. The pulse is a small

addition to the score, but it causes a major difference in the emergent structures of the piece. This

is a basic example of a composer cultivating desired emergence through iteration.

2.6. Technological Reconciliation of Improvisation and Composition

The previous section discusses how composer authorship and improvisational freedom

might be reconciled theoretically, through the philosophy of enactive cognition and the concept

of emergence. These ideas establish the foundation for exploring certain technological concepts

that will aid in the maximizing of improvisational freedom, composer authorship, and a sense of

shared purpose. The concepts discussed in the following sections include continuous process,

audiovisual elements, and operational logics.

2.6.1. Continuous Process

Section 2.5.1 Enactive Cognition establishes that embedding composer authorship

within the performance environment can allow for maximized improvisational freedom.

Communicating the composer’s expectations through the performance environment requires

emulating real-world interaction, otherwise it becomes distinguishable as an external structure.

Recall that our perceived world is enacted through a “tight coupling” with the environment (see

page 17). Thus, high-fidelity emulation of real-world interactions can only occur by simulating

continuous processes.

29

A continuous process is one that implies infinitely distinguishable variables at any given

point in time. These variables can also, “theoretically take infinitely many values in a given

range.”30 The notion of continuous phenomena can be analyzed and researched at many different

levels of detail. Some have even attempted to define the characteristics of continuous processes

at the Newtonian level.31 However, within the context of commonly available hardware, a

continuous process is evaluated by its programmed architecture. In other words, a process is

deemed continuous if its programming logic is uninterrupted and imperceptibly fast.32

Figure 2 Screenshot of a Max
patch demonstrating a discrete
process.

30 Mayya, Monteiro, and Ganapathy, “Types of Biological Variables.”
31 Parr and Friston, “The Discrete and Continuous Brain.”
32 Conrad, “Discrete and Continuous Processes in Computers and Brains.”

30

Table 1 Description of the discrete process demonstrated in Figure 2.
Step

Number Process Description Discrete or
Continuous

1 Key reports any keypress event. Discrete
2 Button reports a “bang” message when any data is received from Key. Discrete
3 Random generates a number between 0-1 when triggered by Button. Discrete
4 Sel sends a “bang” message through the outlet that corresponds with the

number received from Random.
Discrete

5 Number (float) displays the value received from Message boxes connected
to Sel outlets.

Discrete

6 Cycle produces a cosine signal with a frequency of the value received by
Number.

Continuous

7 Live.gain monitors the signal from Cycle. Continuous
8 EzDac sends the signal to the DAC. Continuous

 Figure 2 demonstrates the notion of a discrete process within a simple Max patch. Each

step of the process is described in Table 1. Along with descriptions, each step is categorized as

either being discrete or continuous. The patch produces a sine tone at one of three designated

pitches. The pitches are randomly decided following human-machine interaction. When a user

presses any button on their keyboard, the patch’s process is triggered, resulting in a potential

shift in the tone’s frequency.

Triggers, buttons, and gates are all examples of discrete events. A process is categorized

as continuous or discrete based on whether its available interactions incorporate these elements.

The overall behavior in Figure 2 is discrete in nature as interactions with the patch are inherently

distinguishable events in time and triggered through individual keypresses.

31

Figure 3 Screenshot of a Max
patch demonstrating a
continuous process.

Table 2 Description of the continuous process demonstrated in Figure 3.
Step

Number Process Description Discrete or
Continuous

1 EzAdc sends a signal from the microphone using the ADC. Continuous
2 Live.gain monitors the signal from EzDac. Continuous
3 Number (float) displays the amplitude value received from Live.gain’s final

outlet.
Continuous

4 Scale interpolates the incoming amplitude value between 400 and 4000 from
an original range of -70 and 6.

Continuous

5 Cycle produces a cosine signal with a frequency of the value received by
Scale.

Continuous

6 Live.gain monitors the signal from Cycle. Continuous
7 Ezdac sends the signal to the DAC. Continuous

Figure 3 demonstrates the notion of a continuous process. Like Figure 2, this patch

produces a sine tone. The frequency of the tone is controlled by the amplitude of an incoming

audio signal. This control signal is an uninterrupted stream of data that is imperceptibly fast. On

certain levels of detail, an audio stream is not continuous. However, the continuousness of a

process within this context is evaluated from the perspective of human perception. The speed of

32

the audio signal, commonly 48 kHz, is imperceptibly fast. As such, we perceive it to be

continuous.

Continuous processes are central to the notion of making the composer’s expectations

unobtrusive. They are what enable embedding a composer’s authorship and expectation within

the performance environment. The following sections—section 2.6.1.1 and 2.6.1.2—explore two

examples that explore discrete and continuous events, composer authorship, and improvisational

freedom.

 John Cage’s Reunion (1968)

John Cage’s Reunion shows how time plays a vital role in the overall perception of

emergent music—effectively illustrating the difference between continuous and discrete time

steps in an algorithmic environment. The work features two performers opposite a chessboard.

Each square on the chessboard is configured to trigger audio playback—using photoresistors—

when covered by a game piece. Cage recruited Lowell Cross to construct the chessboard, only

making two requests about its functionality. He first requested that Cross include contact

microphones within the board so that the player’s movements could be amplified. His second

request was that when played, the board would select and spatialize musical sounds.33 Cage’s

self-proclaimed aesthetic was driven by a strong desire to remove himself from the music.

Naturally, he was attracted to musical frameworks with emergent properties. Cage uses the

emergent nature of a chess game to remove himself from the work, allowing a distant process to

dictate the music’s structures.

33 Cross, “Reunion.”

33

A game of chess is not unlike a cellular automaton, where each game piece traversing the

grid must follow a certain class of rules. Reunion demonstrates a similar framework to Conway’s

Game of Life—discussed in section 2.5.2.1. Both projects demonstrate how a base set of rules in

a system can generate results that are not inferable from low-level components. Reunion is a

prominent model of weak emergence in music. Chess progresses in discrete steps, turn by turn,

and the triggering of sonic behaviors can easily be traced. These behaviors are not, however,

predicted or expected—qualifying them as weak emergence.

I believe the outcome that Cage ultimately prefers is the undisturbed outcome of the

process he invents—whether or not it is the outcome he inwardly hoped for. According to Cross:

“The circumstances attending Reunion permitted no correlation between Cage’s
elegantly proscribed application of his system of indeterminacy and his underlying
hope that elegant games of chess could bring forth elegant musical structures. The
games clearly were not elegant, and I, for one, held no expectation that they could
have brought forth elegant, or even interesting, musical structures.”34

Reunion certainly produced emergent musical structures, but Cross’ account confirms that they

were not the desired outcome. Cage’s ability to remain dedicated to a given process is admirable.

However, I believe the elegance he hoped for may have come through a more continuous system.

In Reunion, events are easily distinguished from one another as they are directly coupled to the

time-stepped nature of chess. Here we can see how the length of each time-step dominates the

perception of the overall process. The musical phenomena appear less emergent as

microdynamics become more apparent. From this we can learn that the length of each time-step

greatly alters the overall aesthetic and perception of an algorithmic process.

34 Cross.

34

 Tim Blackwell’s Swarm Music (2003)

The continuous nature of Tim Blackwell’s Swarm Music enables its users’

improvisational freedoms while maintaining the designer’s intended interactions. His systems

form a unique mode of emergent performance. They are interactive environments where a

performer’s musical decisions influence digital music generation. They use principles of self-

organization in the form of flocking algorithms to generate musical audio.35 Blackwell’s hope is

to connect the structures that emerge from improvising ensembles to the self-organization of

swarming behaviors found in nature. Simulating a natural swarm is typically implemented in two

or three dimensions. Rather than constraining the swarm mechanisms to three properties,

Blackwell’s systems interpret complex sound events into multidimensional abstractions. These

interpretations are mapped to granular synthesizers.

This work demonstrates that a digital computer can appropriately produce continuous

interactions suitable for creative works that approximate natural emergence. Emergent behaviors

arise despite the deterministic nature of a digital framework. The work avoids being anchored by

digital computation and provides a fluid interface with the performer. The underlying digital

processes do not interfere with human expression; rather, they enable it. Here we see a

continuous exchange of information between performer and performance system, validating the

digital world as an appropriate shell for unobtrusive composer authorship.

Nature is abundant with systems that adapt, evolve, and self-organize. Generative art that

takes advantage of modern computing powers can imitate (not duplicate) these natural systems.

However, the versatility of general purpose computing allows artists to bend natural rules. Just as

35 Blackwell and Bentley, “Improvised Music with Swarms.”

35

Blackwell repurposed swarming algorithms to drive granular synthesis, an artist can build novel

functionality—and consequently their authorship—into an interactive system.

2.6.2. The Audiovisual Element

Relocating compositional elements to the performance environment requires novel ways

of communicating the environment’s current state. It is effective to use both audio and visual

elements for communication when simulating natural environmental interaction. Such

communication must maintain the concepts of enactive cognition and emergence as a precedent.

Information should not be portrayed in a way that demands expected behavior of the performer.

This would reveal authorial intention, establishing it as an external expectation. Instead, it should

be portrayed as high-level information that is tightly coupled to the relationship between the

behaviors of the performer and the system. This method of communication maximizes both

improvisational freedom and composer authorship.

During a live performance with interactive systems, it is common for system states to be

communicated in a data-centric format. Information is portrayed in numeric, graphical, or other

formats of low-level data features. This method is useful for typical interactive circumstances.

However, it communicates information that is far too literal and data-centric to satisfy the

conditions for unobtrusive composition. It ultimately reveals the composer’s expectations,

forcing their authorship to interfere with the improviser’s sense of freedom.

An example of a data-centric display is shown in Figure 4. This Max patch conveys real-

time information of the current orientation of a MUGIC™ sensor which is shown in Figure 5.36

It converts multiple streams of data into a single point on the display. This is a form of low-level

36 Kimura, “MUGIC Sensor.”

36

feature extraction. It is data-centric because it portrays information that is secondary to the

composition.

Figure 4 Screenshot of a Max patch used in
Ecosystem One (2019) exhibiting data-centric
imagery.

Figure 5 The MUGIC™ sensor.
Project led by Mari Kimura.

My work titled Recourse (2019) demonstrates communication through high-level

abstractions, as shown in Figure 6.37 The virtual performance environment reacts to the level of

musical intensity. As intensity increases, floating objects appear on screen. As intensity

decreases, the character portrayed appears sickly and will fade out of view. Time reveals that the

37 Anthony, “Recourse.”

37

floating objects are adversarial in nature, apparently “attacking” the character portrayed at the

bottom of the screen. As they attack, they also perform intrusive musical gestures.

Figure 6 Performance of Recourse (2019).

I embed compositional intent within these performance behaviors, allowing for a

maximized sense of improvisational freedom while maintaining composer authorship. Various

degrees of intensity should drive the performance, as the performer reacts to the audiovisual

elements. The performer will theoretically work to avoid causing the character pain, which

occurs variably between too little or too much intensity. I never explicitly inform the performer

of this. Instead it emerges naturally through the portrayal of high-level abstractions. As the

performance progresses, the performer gains an awareness of how certain musical behaviors

have a causal relationship with the imagery. The improviser does not experience a need to satisfy

explicit external structures, because I deeply embed them within the performance system.

 Noisefold’s Emanations

Transdisciplinary group Noisefold (Cory Metcalf and David Stout) merges interactive

visuals, animation, and synthesized sound through the lens of cybernetics and mathematics.38

38 Stout, “Performance.”

38

Their project Emanations is an example of how all of these elements lead to the practice of data

dramatization. Their compelling geometric visuals are based upon data-centric models of

artificial life systems. Metcalf and Stout engage in a sort of game where they interact with bio-

mimetic structures in complex environments. They examine the nature of control while trying to

tame explosive populations or revive dwindling organisms.

Figure 7 From a performance of Noisefold's Emanations.

Noisefold describes the audio component of their system as being a direct sonification of

generated visuals. However, it is clear that the audio is mapped through certain abstractions, not

unlike their visuals. Intensely literal data sonification of a moving image tends to be sporadic

noise. This is not observed in Noisefold 2.0, which generates sustained tonal structures as well as

noise. While it likely does not include direct sonification, it is apparent that their system attempts

to sonify the data using relatively low-level software abstractions. Ironically—and

intentionally—this results in highly abstract imagery, which is open to a vast range of possible

interpretations. Such abstract visuals suggest that the system was designed with a spirit of

exploration and experimentation. This holds a demeanor similar to the strict algorithmic

compositions of the twentieth century, where systematized compositions were carried out with a

respectful come-what-may attitude (see 2.6.1.1 John Cage’s Reunion (1968) on page 32). As a

result, “...the audience must...work to assign significance or not to the emergent audio and visual

39

codes at play within the performance.”39 By using abstract visualizations of low-level properties,

Noisefold deliberately avoids revealing the functionality of their interfaces. Consequently, there

is no effort made to foster a shared sense of purpose.

2.6.3. Operational Logics

A useful technological tool to aid in the reconciliation of improvisation and composition

is a concept from the field of game studies called operation logics. In its most simple form, an

operational logic is the general description of an abstract process and its underwriting

computation.40 The total collection of a game’s operational logics form what Noah Wardrip-

Fruin and Michael Mateas describe as a playable model. 41 These are similar to simulations.

However, unlike a simulation, playable models 1) require deeply responsive interactions with its

user, and 2) support actionable mental models which “provide affordances for making gameplay

choices that induce agency.” Extending the method of operational logics to the context of live

electronic performance provides the composer with practical design methods for maintaining

authorship while enabling performer freedom.

When a composer understands the concept of an operational logic, it is a powerful

authorial tool for developing interactive systems. A basic example of operational logic in the

context of video games is “collision logic.” The operational logic for object collisions then

encompasses extensive descriptions of high-level verbal abstractions in relation to its lower-level

computational processes. Table 3 shows fifteen key operational logics identified by Osborn et

39 Stout.
40 Mateas and Wardrip-Fruin, “Defining Operational Logics.”
41 “Michael Mateas on Façade, Part 1.”

40

al.42 Describing its communicative role, abstract process, abstract operations, and presentation—

shown in Table 4—is a method of evaluation. This design method improves the accuracy of

evaluation and analysis while developing and testing a system, allowing for greater authorial role

and a better understanding of the behaviors which emerge from them. When extended to live

performance systems, this translates to greater composer authorship.

Table 3 The fifteen key operational logics as outlined by Osborn et al., 2018
Camera Chance Character-State
Collision Control Game Mode
Linking Persistence Physics
Progression Recombinatory Resource
Selection Spatial Matching Temporal Matching

Table 4 Example of a catalogued operational logic (collision) as presented by Osborn et al., 2018
Collision Logic

Communicative role Virtual objects can touch, and these touches can have consequences.

Abstract process Detection of overlaps between subsets of entities and the automatic triggering of
reactions when these occur.

Abstract operations Determine or alter which entities may collide with each other. Determine which
entities are overlapping. Determine or alter the size of an entity. Separate the
positions of two or more entities such that they do not overlap. Whenever one of
the above predicates is or becomes true or false, trigger an operation of this or
another logic.

Presentation Shapes, images, or 3-D models for each entity whose dimensions match those of
the corresponding entity, projected on a plane. Audiovisual effects when a
collision occurs. The presence or absence of text indicating whether two entities
are in physical contact.

Operational logic is a useful tool for designing and implementing procedural systems that

produce a clearly defined range of emergent interactions. There are many tools an artist can use

to create interactive systems, but these tools may or may not inherently encourage sensible or

useful design methods. Consider Cycling 74’s Max software. The Max environment allows for

immense freedoms for constructing interactive performance environments. It has no inherited

42 Osborn, Wardrip-Fruin, and Mateas, “Refining Operational Logics.”

41

systems of checks and balances as an artist develops their patches. This is what makes Max so

appealing to creators. Its unbridled programming environment unlocks the powerful capabilities

of custom logics without steep learning curves required by other frameworks. As expected,

however, these great freedoms come at a cost. Poorly implemented processes can introduce

uncertain outcomes and a poor sense of composer authorship. By using operational logics as a

design and analytical tool, composers can build emergent performance environments with a

greater sense of purpose and with deeply responsive interactions.

Operational logics can be oriented vertically or horizontally, which informs the overall

experience of the player. Vertical orientations create player expectations while horizontal

orientations promote player freedoms. The section below will explore Minecraft, a game which

consists of horizontal operational logics. Minecraft creates interactions that maintain authorship

of the designer while simultaneously promoting a sense of freedom for the player.

 Horizontal Operational Logics in Minecraft

Minecraft is an example of how operational logics can enable a seemingly infinite range

of possible interactions within an expected milieu.43 It is primarily developed by Mojang Studios

using the Java programming language, and Xbox Game Studios using the C++ programming

language. It runs on most available desktop and mobile platforms, and can boast a reported 126

million monthly players.44 It is one of the most popular video games in recent years, and has

proven to be a compelling interactive experience.

A particularly desirable quality of Minecraft is its ability to simultaneously support both

developer authorship and player freedom. A player’s interactions are carried out with the mindset

43 Duncan, “Minecraft, Beyond Construction and Survival.”
44 Chiang, “Minecraft.”

42

of, “What can I do?” rather than, “What am I supposed to do?” Minecraft’s playable model

consists of several parallel operational logics that result in a dizzying level of potential

interactions. A Minecraft world is essentially a three-dimensional cellular automaton where each

cell consists of a block with its own operational logic (see 2.5.2.1 John Conway’s Game of Life

(1970)). Each block’s logic includes interactions with the player and their current state, taking

into account the current item being held. A player begins the game with an empty inventory and

without any prescribed objectives, as seen in Figure 8.

Figure 8 The initial moment of beginning a new Minecraft
world.

At this point, the virtual environment offers a very limited range of affordances. The player can

interact with the core movement logic of the game which simulates walking, jumping, and

swimming. They can use their hand to interact with any block, which allows them to slowly and

inefficiently begin collecting them as resources. The affordances of the world evolve as the

player crafts various tools, blocks, consumables, and wearable items. Normally it would be

appropriate at this point to summarize the player’s experience by describing their end-state.

However, the playable model for Minecraft is such that operational logics truly allow for infinite

emergent experiences; it has no designated ending. As depicted in Figure 9, the last moment of a

43

player’s experience in a Minecraft world can be anything from building a functional in-game

computer45, to participating in an emergent multiplayer economy46, to punching a tree.

Figure 9 Potential final experiences in a Minecraft world. Functional computer, LPG 2013 (left).
Hermitcraft season six shopping district, GoodTimesWithScar 2020 (middle). New player
punching a tree (right).

Minecraft’s operational logics exhibit two main qualities that contribute to the discussion

of reconciling composition and improvisation through technology. They are 1) the avoidance of

scripted interactions, and 2) emergent player progression. This section will first explore the

implications of avoiding scripted interactions when designing operational logics. This will then

be followed by a discussion of how player progression might be embedded into non-scripted

interactions.

If an interaction is scripted, it means that it follows a highly specified chain of events and

portrays a specific meaning.47 Scripted interactions inherently result in a vertical orientation of

its underwriting logics. These sorts of interactions are commonly used when telling a narrative or

progressing through a linear gameplay model. The operational logics surrounding a scripting

interaction are typically focused on the user interface and intended character progression. A

simple example of this can be found in the massively multiplayer online role-playing game

45 LPG, Minecraft: Redstone Computer.
46 GoodTimesWithScar, My ULTIMATE Hermitcraft Season 6 Tribute.
47 “Michael Mateas on Façade, Part 1.”

44

World of Warcraft. The leveling logic in this game involves players being required to complete

quests with designated objectives. This can be seen in Figure 10 for the quest titled “Selling

Fish.” To complete this quest, a player must travel to one of two prescribed locations to collect

ten of the correct variety of fish. When a quest is complete, a known reward is endowed along

with general statistical upgrades for the character.

Figure 10 Quest Log from World of Warcraft
Classic.

This vertical style of scripted gameplay experience objectively reduces the player’s sense of

freedom. Their actions are motivated by a desire to meet explicitly stated expectations. In

contrast, Minecraft’s horizontal operational logics do not include scripted interactions, and the

result is a vastly different experience; one that allows improvisational gameplay.

45

Consider the operational logic that drives the piston block, shown in Figure 11. Pistons

have become a central component for highly complex behaviors and are a go-to block for

building custom player interactions. Piston logic, like most other blocks, accounts for a basic

collection of interactions. It is a mechanical block that extends its head when powered with a

redstone component.48 When powered, the piston will push up to twelve blocks. Initially, the

piston block is unremarkable and does not appear programmed with any particularly interesting

interactions. This changes dramatically when paired with the logic of other blocks. For instance,

combining a piston with an observer block enables automated sugar cane farming. When

combined with slime and honey blocks, pistons enable elevators, large doors, automatic wall

builders, and flying machines. The developers have not directly programmed or intended any of

these contraptions and their accompanying interactions. Rather, the interactions emerged as a

result of horizontally oriented operational logics.

Figure 11 Piston block from Minecraft.
Retracted (left) and extended (right).

48 The redstone logic in Minecraft enables the creation of custom logic designed by the player.
This is primarily done by creating redstone circuits which can activate and control various
mechanisms. They can be designed to act autonomously or through player interactions.
Additionally, they might respond to general world logics such as mob movement, item drops, or
plant growth. Redstone circuits enable functionality at many levels of complexity, ranging from
simple light switches to elevators or in-game computers.

46

 Minecraft inherently encourages player progression, and yet its operational logic is

predominantly horizontal. This presents us with a tantalizing conundrum. How does progression

inherently emerge from operational logics that avoid scripted interactions? In other words,

without scripted interactions, how does Minecraft motivate a player to act?

The game’s survival logic motivates a player’s initial actions. The virtual character will

lose health if they grow hungry or if attacked by antagonistic mobs. When a player dies, all of

their items drop and the character respawns elsewhere. The user’s motivation to avoid harm is

intrinsic motivation, meaning potential consequences for the virtual-self propel the player’s

interactions.49 This motivates the player to build some form of shelter and acquire a source of

food. Additionally, by acquiring the correct resources a player can eventually shield and defend

themselves with various weapons and armor. Eventually, a player can reach a point in their

world where survival is an afterthought. Interaction with the world then becomes an

improvisational expression motivated by their personal creative inclinations. Minecraft does not

prescribe the player’s methods for survival, and yet the survival logic is nevertheless the spring

board for any number of emergent interactions. Ultimately, intrinsic motivation provided by

survival logic initializes action. Then, by horizontal logics, the player is able to improvise

progression through unscripted, emergent interactions. As a result, Minecraft’s developers retain

authorship, and its users experience maximized freedom of interaction.

49 Reid, “Motivation in Video Games.”

47

Developing and Performing Self-regulating Performance Systems

3.1. The Self-regulating Performance System

As established in Chapter 2, typical methods for communicating a composer’s

expectation are incompatible with the notion of improvisational freedom. The discussion of

reconciling these elements declare the need for new paradigms. The goal of a self-regulating

performance system is to effectively communicate the desires of the composer through emergent,

environmental avenues. I use the term self-regulating is to contrast typical paradigms of

performance systems that might be deemed composer-regulated. A composer-regulated

performance system would encompass explicitly stated expectations, making the composer the

dominant driver of scripted interactions. Opposite of this is the self-regulated paradigm, where

the performance environment is the dominant driver of emergent interactions. Theories of

enactive cognition have informed us of the role the environment plays in our experience. As

such, the environment becomes an unobtrusive location from which to express composer

authorship. Additionally, the concept of weak emergence has outlined the mechanism for

environmental communication. Modern technology facilitates these concepts by way of widely

available hardware devices, as well as through various well-established software development

frameworks. The self-regulating performance system employs these concepts and technologies to

maximize improvisational freedom, composer authorship, and a sense of shared purpose.

It becomes necessary to enumerate the elements that characterize a self-regulating

performance system. A self-regulating performance system:

1. Expresses the composer’s intended interactions through cultivated emergence.
2. Avoids conveying explicit expectations.
3. Is intrinsically continuous.

48

4. Implicitly conveys cause and effect.
5. Is underwritten by horizontal operational logics.

This list details the most prominent features of a self-regulating performance system.

There are, however, more nuanced characteristics expressed by the model which merit

discussion. For instance, the process of cultivating emergent properties for a performance system

tends to form a system that produces repeated, recognizable characteristics. This quality of

emergent systems is ubiquitous in natural systems. A popular example is the termite mound,

which emerges as a macro result of the microsensory architecture of the insect.50 In this example,

the mound is produced through horizontal operational logics; the logics in this case being each

individual termite and its intrinsic motivation to relocate material. Despite there being no

overseer of events, the structure is still able to emerge as a recognizable termite mound.

I am impressed by any process that can integrate the quasi-random behavior of things

while remaining recognizable. Human behavior can either help or hinder this recognizability. If

an improviser naturally pushes the boundaries of a general interactive system, then a

performance’s recognizability might waver. If an improviser is particularly rigid, then a lack of

variation robs the performance of any sublime interest. Here is where the concept of a self-

regulating performance system proves useful, in that it exhibits intrinsic motivation to act

according to the composer’s design.

The ideal scenario for a self-regulating performance system would have no need to

consider a beginning or end. However, a pragmatic point of view will concede that musical

performances tend to be confined to specified lengths of time. This implies that starting

conditions need to be set. Facilitating these conditions requires assigning a role to each

50 Johnson, Emergence.

49

performer interacting with the system. This role will motivate their actions, but it will not

prescribe them. Recall the intrinsic motivation implemented by Minecraft’s survival logic. When

beginning a new Minecraft world, interactions are informed by the well-being of the virtual self.

Players are essentially given the role of survivalist. These starting conditions are necessary, as

interactions are initially limited to a few logics. This is when the game most resembles a vertical

playable model. As the player progresses and affordances expand, survival becomes a

background element and operational logics become horizontal. The player ultimately accepts the

survival logic as an environmental element, rather than as something generating highly specified

expectations. In the case of the self-regulating performance system, this takes the form of an

ambiguous role designated by the composer. The performer is then required to interpret how the

assigned role translates to action. This exploration initializes the epistemic process of learning

the performance environment through interaction. The nature of a performer’s role in this system

is reviewed within the coming examples.

3.2. Ecosystem One (2019)

My composition Ecosystem One is an example of live electronic music performance

driven by a self-regulating performance system. It premiered in the Experimental Media

Performance Lab at UCI in December of 2019. In this work, two improvisers are given an

ambiguous role to fulfill; one to soothe and one to disrupt. The soother is Performer One and the

disrupter is Performer Two. These performers are entangled in a complex relationship. The

soother’s goal requires motion to quell positive audio feedback, but this motion contributes to the

disruptor’s potential for control. The system resists change, and requires concerted effort from

both improvisers. Performers experience a high sense of improvisational freedom, as I have not

explicitly prescribed events and tasks. They are able to inject their own improvisational

50

inclinations into the performance as they interact with the environment I have cultivated. The

sections below will discuss Ecosystem One’s prominent components. This will be followed by a

discussion of the work using the analytical lens established in Chapter 2.

3.2.1. Ecosystem One: Intrinsically Continuous

To facilitate the continuous nature of a self-regulating performance system, Ecosystem

One uses unbroken data streams for control input. Both performers have a microphone, and

Performer One interacts with a MUGIC™ sensor. The sensor attaches to a mobile instrument,

which was a kamancheh for the 2019 performance.51 As the improviser performs, the sensor

captures motion data from their instrument. The system’s sensor logic manages this data, as

catalogued in Table 5.

Table 5 Ecosystem One's sensor logic.
Sensor Logic

Communicative role Performer can interact with audio feedback and virtual camera position.

Abstract process Transforms the position of the virtual camera as mapped to the MUGIC™
sensor’s orientation data.
Affects the filter coefficients within the feedback subsystem.

Visual presentation Indicates varying camera angles in accordance with the position of the sensor.

Audio presentation Manifests as varying aesthetic qualities of feedback, enabling a wide range of
improvisation.

Performative Outcome Performer can explore a wide range of musical interactions involving the
variable filter configurations. Greater control over this is established through
camera position.

The first component controlled by the MUGIC™ sensor’s orientation data is the center

frequency and resonance coefficients for the project’s central filter. The audio feedback

subsystem for Ecosystem One runs through a bandpass filter. Performer One’s instrumental

51 The kamancheh is an Iranian bowed string instrument used in Persian, Azerbaijani, and Kurdish
music. The kamanchech is related to the rebab which is the historical ancestor of the kamancheh
and the bowed Byzantine lyra. It is played upright using a variable-tension bow.

51

motions determine the width and frequency of the filter. Leaning their instrument to the left or

right changes the center frequency. Any motion forward or backward alters the filter’s

resonance. Their audio signal routes through the filter-feedback system, resulting in a tightly

coupled relationship between their performance and the aesthetic of the feedback. Over time, the

performer intuits the relationship between the audio feedback and their improvisations. After

gaining some familiarity, not only can the performer control the pitch of a singular feedback

tone, they are able to craft complex multiphonic feedback.

The second component controlled by the MUGIC™ sensor’s data is the real-time

position of the camera in the virtual environment. This virtual camera permanently keeps focus

on the foremost spherical object within the virtual space, as seen in Figure 16. When Performer

One moves their instrument, the camera mimics their motion. The motion control is not a one-to-

one translation of position and rotation. Instead, the camera remains angled toward the foremost

orb. This mechanism creates a parallax effect between the orb and the background elements. In

perceiving this effect, Performer One is able to intuit the system’s perception of their

instrument’s motions.

The combination of camera control and filter control enable a continuous exchange of

audiovisual information between the performer and the system. The performer understands this

information through intuition as the system does not contain explicitly stated compositional

expectation. Consider an alternative method for portraying the same information in a more data-

centric format. Depicted in Figure 12 is the main Max patch that displays data from Ecosystem

One’s major subsystems. Both the bandpass graphic and the MUGIC™ graph—more closely

depicted in Figure 4—convey the same data as the camera position and sonified feedback. The

difference between these two methods of communication illustrates one of the primary points in

52

this text; that is, in order for compositional intent to remain unobtrusive to a performer’s

improvisational freedom, it must organically emerge from within the performance environment.

If this patch were to replace the virtual environment, the performer would receive this

information as symbolically represented abstractions. This sort of mental process is located at the

forefront of cognition, and ultimately detracts from improvisational freedom.

Figure 12 Max patch displaying performance data for
Ecosystem One.

The third major component directly affected by the MUGIC™ sensor’s data is the

influence that Performer Two has on the system. Ecosystem One’s influence logic manages the

influence value, catalogued in Table 6.

53

Table 6 Ecosystem One's influence logic.
Influence Logic

Communicative role Performers can interact with audiovisual components at different times.

Abstract process Calculates influence values according to the actions of all performers.

Visual presentation Indicating influence levels with the global particle system and other interactive
atmospheric elements.

Audio presentation Indicating influence levels by the severity and/or lack of distorted synthesis
inserted into the feedback subsystem.

Performative Outcome Performers are incentivized to pace their interactions so as not to exhaust their
influence. It creates a repetition of musical structure with individual sections
being roughly two or three minutes.

Performer Two—the disrupter—can interject audiovisual distortions into the work at any time.

However, the level of potential distortion is dependent on their current level of influence. This is

represented in Figure 20 as the “influence factor” square. The motion data from the MUGIC™

sensor generates this value, which the Max patch accumulates over time. Figure 13 show the

subpatch that displays the amount of accumulated energy from the sensor. The left image shows

zero accumulated influence, and the right image shows how the patch appears after it

accumulates. This is typically a few minutes into a performance. Essentially, Performer Two’s

influence grows as Performer One soothes the unresting feedback. Here the performers engage in

a never ending cycle of influence over the aesthetic, oscillating between calm or violent milieus.

Figure 13 Max subpatch.

Performer One’s motion also generates an energy value, which reflects the intensity of

motion at any given point in time. Ecosystem One’s energy logic manages the energy value,

catalogued in Table 7. It impacts the rate at which Performer Two’s influence grows. It also

54

alters the visual renderings discussed in section 3.2.3 Ecosystem One: Visual Elements. The

value processes through a smoothing function, meaning on a technical level, some may not

consider it a real-time interaction. However, the response-delay resulting from the smoothing

function is in a range of twenty to thirty milliseconds. For the purposes of this writing we can

consider the energy value as reflecting the magnitude of motion in real-time—or at least as

having a fast rate of response.

Table 7 Ecosystem One's energy logic.
Energy Logic (Performer One)

Communicative role Performer can interact with the audio feedback logic at various magnitudes and
aesthetics.

Abstract process Calculates a level of intensity according to magnitude of physical motion while
performing.

Visual presentation Indicating intensity by the level of shader distortion on the foremost orb.

Audio presentation Manifest as aural distortion over time as managed by the influence logic.

Performative Outcome Performer can manage their level of intensity to balance the demands
communicated by the audio feedback logic and the influence logic.

Performer Two interfaces with the performance environment through a microphone.

They perform using a sledgehammer and a large pallet of wood placed on the ground. They are

free to produce noise using whatever actions they deem appropriate. As described above, their

noise has the potential to disrupt the stability of the audio feedback, but only at a magnitude

determined by their current level of influence. Functions that analyze spectral content process

Performer Two’s audio. Noises from the hammer and pallet—and potentially from vocalizations

if they are so inclined—route through a subsystem that resynthesizes the signal into heavily

distorted audio based on the analyzed spectral data. The signal feeds into the audio feedback

loop. This causes perturbations throughout the system that heavily distorts every audio and visual

element in the system. If they patiently wait until their level of influence is at its maximum

value, their injected distortions will have a loud, intense, and prolonged effect.

55

3.2.2. Ecosystem One: Conveying Cause and Effect

Using high-level abstractions to control logics of audiovisual elements allows a composer

to guide the interpretations of observers. In doing so, the composer can design the perceived

cause and effect of a self-regulating performance system. However, this presents the composer

with the responsibility to successfully communicate purpose. Consider the most direct form of

music visuals like those found on iTunes or Windows Media Player. It is difficult to “fail” when

directly visualizing audio. This style of audio visualization exhibits very simple behaviors that

minimally react to little more than the low-level data from the computer’s audio buffer. The

Ocean Mist music visualizer in Windows Media Player, depicted in Figure 14 likely derives

abstractions of frequency magnitude through a Fast Fourier Transform. These low-level

abstractions are straightforward and behave in a predictable manner. Mapping this data to lengths

of lines does not leave much room for “failure.” It is easy to see that the visualizer has fulfilled

its function.

Figure 14 Screenshot of the Ocean Mist music visualizer in Windows Media Player.

By contrast, Ecosystem One requires that visual behaviors are handled with much greater

delicacy. The visual elements seen in Figure 15 must communicate many things, as outlined by

their operational logics. A few of these communications include which performer has the most

control over the system, when other players can take control, how much disruption can occur, the

56

state of the feedback system, and the state of the primary biquad filter. Failing to accurately

communicate these elements to the performers would result in general confusion, performer

frustration, and a lacking sense of shared purpose.

Figure 15 From a performance of Ecosystem One (2019).

The high-level abstractions inform and govern visual behaviors, including the field of

view, vertex displacement noise, floating particle density and turbulence, camera object tracking,

image saturation and brightness, general shader properties (e.g., ambient occlusion, and global

illumination), etc. If a single mapping is too powerful, the entire visual system can fail to

communicate. I present this as a disadvantage, but in reality it is equally advantageous. It is a

difficult balance, but successfully wielding high-level visual abstractions can create a powerful

performance experience that exhibits the core characteristics of a self-regulating performance

system.

Additionally, using high-level abstractions means that the visual elements can have non-

disruptive, asynchronous relationships with the audio elements. This is because the mapping

between their operational logics is not a direct, one-to-one translation of data from one

dimension to the other. Instead, there is another level of abstraction at which the visuals, audio,

and interactions are mapped. This liminal mapping level allows for the existence of quasi-

autonomous entities within the visual space. Their fundamental behaviors can be completely

57

independent of audio data. They can be driven by other abstractions or by unrelated logics like

direct performer interaction. There is also the option of mapping their independent behaviors to

affect audio parameters. This asynchrony is not present within systems akin to music visualizers

where low-level abstractions drive visual behavior. However, this liminal mapping level

introduces the risk of incoherent chaos.

Developing high-level abstractions and their relationships requires a lot of time and

iteration. It is easy to grasp the implications of a single mapping between logics, but the clarity

of a system’s functionality can become obscured as early as the second and third mapping. The

optimal way to understand the system is to take the time to observe what it produces. Otherwise,

careless mapping is emphasized by incoherent results and the loss of any communicative

properties. Again, as stated above, this disadvantage is duly a great advantage when approached

correctly.

Asynchrony lends itself to emergent expression of composer intention. With the visual

and audio components being independently formed, I can express two contradictory forces

simultaneously. For example, Ecosystem One contains a mapping that allows the instrumentalist

to quell any major noise disruptions caused by the second performer. She must engage complex

noise structures with vigorous improvisations. In doing so, she slowly regains control of the

system and returns it to a calmer state. In this example, there are two distinct timescales at play.

The first is the system’s long timescale. It takes anywhere from thirty to sixty seconds to calm

the system. The second is the smaller, quicker timescale that contains microstructures emerging

from the instrumentalist’s improvisations. The interactions for both of these timescales take

place separately between the audio and visual domains. Her improvisation is primarily reflected

in the audio, while the system’s stubbornness is reflected in the visuals. As a result, two pertinent

58

domains of expression are emphasized, not cancelled out. If the communicative properties of

their governing logics accumulated in a single domain—audio or visual—these separate

timescales lose their significance. Through a separation of domain, the operational logics for

Ecosystem One can take advantage of this domain-asynchrony and simultaneously express these

multiple timescales.

3.2.3. Ecosystem One: Visual Elements

The virtual environment for Ecosystem One consists of a single scene that dynamically

shifts between states according to the interactions of the performers. I designed the environment

using the Unity framework. Each visual element contributes to a general communication of

available interactions at any given point in the piece. I categorize these elements into three visual

locales: the foreground, the background, and the atmosphere. Figure 16 depicts these elements in

their basic state.

Figure 16 The basic state of Ecosystem One's virtual
environment.

At the foreground of the environment is a spherical object. For the majority of the work,

this object remains in focus while the rest of the scene is obscure. A custom distortion shader

using Unity’s shader graph workflow facilitates interaction with this and other objects. This

59

method allows for fast iteration cycles during the development phase, as opposed to

programming custom shaders with GLSL. A C# script that manages information from the

abstraction in Figure 19 control the shader’s elements. Specifically, a noise map factors into the

positions of the orb’s vertices at a magnitude informed by. This serves as visual feedback for the

performer, informing them of the system’s perception of the real-time magnitude of their

movement. From Performer One’s perspective, the more they cause the orb to distort, the greater

the potential for Performer Two to disrupt the system’s equilibrium. This causes Performer One

to pace themselves while soothing the audio feedback. If they are too active or aggressive in

quelling the feedback, it will sooner enable Performer Two’s disruptions. Their actions are thus

inherently restricted to a particular range of intensity; they must perform within a range of

momentum that soothes the audio feedback but simultaneously hinders the inevitable disruptions.

The background elements of the scene include two spherical objects visible on either end

of the frame and a plant-like object between them. The background orbs share the same shader as

the foremost, mimicking the same vertex distortions caused by Performer One. These are out of

focus and contribute primarily to the overall reactivity of the visual scene. Additionally, they

emphasize Performer Two’s disruptions due to their large size. The objects remain in frame at

the peak of the disrupted state depicted in Figure 17 because their scale factor is ten. The

dramatic shifting in the camera’s field of view during a major disruption shrinks the foremost orb

into a small portion of the screen. Without the large background orbs, much of the image would

consist of the near-featureless skybox texture.

60

Figure 17 A state of extreme distortion in Ecosystem One.

The plant-like object centered in the background of the frame is a custom tree mesh

developed using Blender.52 The purpose of the tree is to help emphasize the emotional state of

the scene. To facilitate this, I created two animations. The first animation is of the tree blowing

slowly and peacefully. The second animation portrays the extreme opposite, as if the tree

thrashes in threateningly fast gusts of wind. Figure 18 depicts the model of the tree as affected by

the animations. Typical animation workflows involve triggering various animations as informed

by events. However, a self-regulating performance system does not include discrete events—

meaning I must place these animations in a continuous relationship with its control signal. To

accomplish this, I continuously blend two discrete animations at various magnitudes. This results

in a dynamic animation that is compatible with the rest of the performance system. The tool

enabling this animation blending is found in the animation framework available in Unity—

specifically the feature called “blend tree.”

The tree is obscure and out of focus in the virtual environment. I do not intend it to

portray a literal tree. Rather, I want it to subliminally evoke the aesthetic of a tree or plant—as

depicted in Figure 16. I map the interpolation value that blends its animations to Performer

52 “Blender - Free and Open 3D Creation Software.”

61

Two’s influence logic. As a result, the tree’s animation indicates Performer Two’s current

potential for disruption.

Figure 18 Animated tree mesh built in Blender. Calm
(left), turbulent (right).

The atmospheric elements of the scene include volumetric fog, a global particle system,

and post-processing effects on the final render. Some of these elements simply improve the

perceived quality of the visual render, while others are included as interactive elements of the

system. I provide general descriptions of these in Table 8. Note that I use the term atmospheric

in this context descriptively, and not in reference to Unity’s virtual atmosphere—though in the

case of the volumetric fog and the particle system, both uses of the term confusingly collide. I

find it appropriate to discuss post-processing effects as atmospheric elements because of the

pronounced influence they can have on the emotional tone of the environment.

62

Table 8 Descriptions and interactivity of Ecosystem One's atmospheric elements.
Atmospheric Element Description Interactive

Volumetric fog Simulates the interaction of lights with fog, enabling
realistic rendering of crepuscular rays (colloquially
referred to as “god rays”).

No

Global particle system Generates up to 200,000 particles throughout the virtual
scene. The behaviors of the particles are designed using
a visual effect graph.

Yes

Post-processing effect: Anti-aliasing Smooths jagged or pixelated edges on curved lines and
diagonals that are originally considered to be artefacts of
the rendering process.

No

Post-processing effect: Bloom Creates graduated light that surpasses the borders of
bright areas in an image.

Yes

Post-processing effect: Vignette Darkens (typical) or desaturates the edges of an image
with respect to the center. Often simulated in a subtle
manner to increase the photorealism of a render.

Yes

Post-processing effect: Film grain Randomly simulates the noise typical of small particles
on photographic film. Grain is typically considered
qualitatively undesirable, but can help add realism to a
simulated image.

Yes

3.2.4. Ecosystem One: Mappings in a Self-regulating System

Mapping typically involves the connection between some sort of gesture and an audible

result in a musical performance.53 Ecosystem One extends the concept of mapping to incorporate

the connection between any two operational logics in a way that facilitates self-regulating

behavior. This differs from the practices typically found in algorithmic composition, which is

often the process of designing a gesture and then “applying a mapping process to turn that

structure of the conceptual domain into sound which may display the original conception in some

way.”54 This algorithmic approach to mapping seeks to ensure that the gesture is embodied and

perceptible in the music as an end result. This approach more closely relates to vertical logic

orientations, while self-regulating behavior results from horizontally oriented logic. The

traditional vertical approach to mapping does not facilitate emergent behaviors. In contrast to

53 Doornbusch, “A Brief Survey of Mapping in Algorithmic Composition.”
54 Doornbusch.

63

this, the mapping in a self-regulating performance system fosters circular causality and seeks to

generate emergent musical phenomena as cultivated by the composer (see 2.5.2 Emergence).

This circular causality is apparent in Figure 20.

A communication subsystem handles interaction with Ecosystem One’s virtual

environment. This subsystem transfers information from a Max patch to the visual software

using the OSC protocol. This subsystem is what connects each of the system’s operational logics.

Rather than reprogramming the same process for each connection between logics, I created a

reusable abstraction. Before delivering, I use the Max abstraction in Figure 19 to appropriately

scale each stream of data. Using this tool the OSC address, OSC port, and scaling parameters can

be easily set for multiple control signals. A communication workflow between different logics

becomes quite tedious to develop as data streams increase in number. Cultivating emergence

exacerbates the tedium, which is a process that requires hundreds—if not thousands—of

iterations through system configurations. Using general purpose tools like this abstraction greatly

optimizes the development process and helps to ensure successful expression of composer

authorship.

Figure 19 “OSCsend” Max patch
abstraction for OSC communication.

64

Figure 20 displays a generalized diagram of the mappings for Ecosystem One. The

influence of each component and subcomponent link to any other. Additionally, all audio signals

can be both sonic data and control data. Essentially, the signal is both the musical content and the

controller that drives it. The overall process of Ecosystem One takes place in a continuous loop

of circular causality. Each component of the system’s structure both begins and ends the process.

 Ecosystem One: Creating Self-regulating Behavior

Figure 20 Mapping diagram for Ecosystem One (2019).

Self-regulating behaviors are facilitated through circular causality. Its implementation

involves circular relationships through and between the system’s operational logics. This

produces emergent behavior informed by the notion of weak emergence. A small example of this

is Ecosystem One’s filter subsystem, which produces emergent musical structures as a result of

its circular mapping. Essentially, the filter becomes aware of itself by reinterpreting its output as

65

one of its own control signals. Figure 21 is a simplified version of the filter subsystem used in

Ecosystem One. In Figure 20, this is visualized in the components surrounding the “Biquad

Filter” square of the diagram. Designating a starting point is contrary to the circular nature of the

system’s structure, but it intuitively makes sense to begin an explanation with the incoming

audio signal. This signal is fed through a biquad filter to three destinations. The first destination

is the loudspeakers within the performance venue. The second destination is through a time delay

and then back into its originating biquad filter. The third destination is through a scaling

component which interpolates the signal’s decibel value to a number between one and zero. The

relationship is inverted, meaning the louder the signal, the lower the value between zero and one.

After this value is inversely scaled, it is used as a control signal for the gain coefficient of the

biquad filter. Without this mapping, the filter would blow up as a result of its feedback-inducing

architecture. However, the circular mapping produces self-regulating behaviors that manage the

feedback. In tandem with Performer One’s control from the MUGIC™ sensor, this results in

emergent performance structures.

66

Figure 21 Max patch demonstrating self-regulating
behavior.

It is important to note that designing self-regulating behavior with computer software

requires the manual insertion of weight and resistance. The mapping shown in Figure 21 is self-

regulating in that it seeks an equilibrium between several components. Without any forced

resistance, the computer will find this equilibrium very quickly—often instantaneously. From a

compositional point of view, this creates uninteresting behavior and does not provoke performer

response. In a way, the parameters become too clean and thin. Without resistance, the system

fails to capture a certain heaviness that comes with interacting with our environment. In Figure

21, a simplified example of manually inserting resistance is seen with the slide object. This

prevents instantaneous calculation of the system’s immediate equilibrium. The result is a

continuous performance component with composed interactions that are reminiscent of the

physical world.

67

3.2.5. Ecosystem One: Analysis

Ecosystem One effectively maximizes a sense of authorship within the composer. As the

composer, I am certainly incentivised to make this claim. Unfortunately, there is no way for me

to be entirely objective in relating my experiences. To instill confidence that my claim is earnest,

I direct the reader to the analysis of Sinew in section 3.3.4. There, I express a level of

dissatisfaction in my sense of composer authorship for that work—a dissatisfaction that exists in

part because of my perceived success with Ecosystem One’s authorship. In light of this, I assure

the reader that I am honest in expressing a strong personal sense of authorship.

My heightened sense of authorship in Ecosystem One is a result of the musical structures

that emerge. A performance begins with Performer One delicately interacting with audio

feedback. She interfaces with the system through her audio input, as well as the MUGIC™

sensor attached to her instrument. Her gestures and interactions inform her given role, which is

the soother. When the feedback subsystem is relatively steady, her improvisations are soft and

delicate. When tones inevitably become unruly, her improvisations grow in intensity—soothing

the feedback. As a direct result of maintaining this balance, Performer Two’s potential to disrupt

grows. When he feels inclined to do so, he dramatically smashes his sledge hammer onto his

wooden pallet. This results in a severe unbalancing of the system’s component relationships,

manifesting as powerful audiovisual distortions. The echoes of this distortion slowly dissipate,

allowing Performer One to regain control of the system. At this point, Performer Two’s influence

is spent. He can only regain it through Performer One’s balancing act.

There are two prominent musical structures described above. The first involves the

overall form of the work. The form consists of two conjoined sections of material. The first

section is Performer One’s attempts to balance the audio feedback. The second section is

Performer Two’s disruption. Performer One regaining control serves as transitional material that

68

leads to another repetition of these two sections. These sections repeat roughly three times within

the context of an eight- to ten-minute performance.

Another musical structure that emerges during Ecosystem One’s performance involves

the general intensity of the performer’s improvisations. I designed the audio feedback system to

become more difficult to balance for Performer One as Performer Two’s influence grows. This

means that Performer One’s interactions begin with gentle musical gestures that eventually

become quite dramatic. As this happens, there is a tangible increase of tension that builds toward

Performer Two’s intense moment of disruption. Following the disruption, Performer Two’s

improvisations mirror the previous material. Instead of improvising with increasing levels of

intensity, Performer Two’s gestures slowly dissipate in reaction to his waning influence.

The manifestation of these forms in a practical performance setting created a very strong

sense of composer authorship. I cultivated the ebb and flow of influence through the highly

iterative compositional process necessary for designing a self-regulating performance system. I

fully intend for these structures to emerge as a result of carefully designed component

relationships.

As established in Chapter 2, strong composer authorship typically indicates a higher

potential for a sense of shared purpose, and a decreased level of improvisational freedom.

Ecosystem One avoids this pattern by expressing compositional intent through the performance

environment. Typically, the intention for such improvisational structures might take the form of

a written timeline—similar to Agostino Di Scipio’s Two Pieces of Listening and Surveillance.

However, for Ecosystem One, I do not explain these structures to the improvisers. Instead, they

are discovered through the intrinsic motivation established by the ambiguity of their given

roles—the soother and the disrupter. Improvisers interact with the environment according to their

69

personal improvisational inclinations, resulting in strongly perceived improvisational freedom.

Following the 2019 premiere of the work, I queried Performer One regarding the general

performance experience. She replied:

“I have never performed something like this. There was structure…[I] could tell
there was a musical form, but I did not have to look for cues or wait to be told to
do another section. [I] can just perform.”

It is interesting to note that this experienced improviser had a difficult time describing the

simultaneity of improvisational freedom and composer authorship. What she and I experienced is

atypical of prevalent paradigms, and made possible by the model for a self-regulating

performance system.

 Chapter 2 establishes that reviewing the patency of cause and effect throughout a

performance is a practical method for evaluating its potential to foster a sense of shared purpose.

As detailed in section 3.2.2, Ecosystem One tightly couples the improvisational interactions with

audiovisual expressions. This means that audiovisual behaviors are easily seen and heard to be

related to the physical and musical gestures of the performers. As such, the performers’ struggle

for control over the system is made obvious and apparent. It is true that a sense of shared purpose

is inherently only an ideal, and is not necessarily assured by any method. However, a strong

display of cause and effect—like the one expressed by Ecosystem One—allows observers and

performers alike to interpret the work from the same understanding of component relationships.

This greatly increases the potential for fostering a sense of shared purpose.

 Following the premiere of Ecosystem One, I was approached by several individuals who

freely offered to me their interpretation of the work. The purpose of these exchanges seemed to

be for them to receive validation that their theory was correct. Though it is a less practical

method for evaluating shared purpose, I saw this as a general indicator that concert attendees

70

sensed a motivating purpose behind the work. To my delight, each of the interpretations

described a personal setting of the archetypical balance of control and freedom. One individual

described the ebb and flow of weather and the climate; another, the struggle of a codependent

relationship. I validated each interpretation, pointing out the underwritten war between control

and freedom with each exchange.

 Ecosystem One successfully maximizes improvisational freedom by expressing

compositional intent through the performance environment. As intended interactions and musical

structures emerge from the performer’s improvisations, my sense of composer authorship is

heightened. The similarity of interpretive narratives offered to me by observers indicate that

patent cause and effect enabled a prevalent sense of shared purpose. Ecosystem One successfully

accomplishes all of this by satisfying the demands of a self-regulating performance system.

3.3. Sinew (2020)

Sinew is a stand-alone application for interactive electronic music performance. A self-

regulating performance system drives interactions with the software. To facilitate a post-COVID

environment, the work premiered as a streamed performance with four improvisers on June 25th,

2020. This work presents the performance by way of a video production as well as a recording of

the streamed premiere.

A performance of Sinew involves interacting with various on-screen objects through

audio input. A performer periodically sees a prompt assigning an ambiguous role that establishes

intrinsic motivation. Given this role, the performer is able to interpret Sinew’s virtual habitat

according to their own inclinations. Each virtual object performs musical improvisations based

on their relationship to a given improviser.

71

Moving forward, the following section will discuss how the COVID-19 pandemic

informed Sinew’s creation. After this, I will present in detail the architecture of its underwriting

self-regulating performance system.

As per the requirements of emergent, non-scripted interactions, the operational logics for

Sinew are oriented horizontally. Each logic acts according to its present circumstances.

Additionally, each logic supports interaction with other designated logics. In using the concept of

operational logics, I was able to design and cultivate emergent behaviors according to my artistic

inclinations. The key logics for Sinew are feature logic, movement logic, energy logic, and

performing logic. I catalogue each of these logics below using a method similar to the

cataloguing presented by Osborn et al. However, I accommodate this musical context by altering

the cataloguing method to include descriptions of visual presentation, audio presentation, and

performative outcome. Following each logic is a presentation of related tools, as well as an

overview of its role within the performance system.

3.3.1. Impact of the COVID-19 Pandemic

The COVID-19 pandemic had a transformative impact on Sinew’s development and

performance. Sinew’s premiere run was originally scheduled to take place on May 9th and 10th of

2020 as live performances in the Experimental Media Performance Lab (xMPL) at the

University of California, Irvine. On March 12th, students and faculty with scheduled

performances were notified that in efforts to mitigate the spread of a novel coronavirus, COVID-

19, no audiences would be allowed for any performances or exhibitions in the xMPL.

Fortunately, plans were made to support the streaming of all performances in the venue in lieu of

live audiences. On March 16th, however, only four days later, we received a brief message: “The

xMPL Theatre is now closed and unfortunately, you will not be able to put on your project.” No

72

context was given, and none was needed. In a very short window, the number of COVID-19

cases at this point had risen to nearly 180,000 and spread to over 155 countries.55 At the time of

this writing, cases are in excess of 17.2 million, with more than 670,000 deaths worldwide.

In response to the grave uncertainty that came from the impending threat of COVID-19,

students were encouraged to return to their place of permanent residence. After an unsuccessful

outing to purchase groceries, my wife and I decided it was best to relocate ourselves and our

three young boys. Three hours after making this decision, we were on the freeway headed north

to my in-laws’ farm.

The many prominent social and political events surrounding the COVID-19 pandemic

have led me to contemplate the nature and purpose of my work. Music serves countless

functions: calming anxiety, providing focus, being a welcome distraction, encouraging the

downtrodden, lifting those who are mourning, reconciling differences, and accompanying the

isolated. Through present circumstances, I have come to the firm conclusion that musicians are

the medics in a psychological war between facts and fear.

This conclusion greatly motivated the continuation of my work and research. Without the

possibility of a live performance, I decided to redesign Sinew in a way that was compatible with

a post-COVID environment. My goal was to make it widely accessible. Originally, Sinew used a

similar framework to Ecosystem One, which used a substantial Max project to process audio and

Unity to render the visual elements. Such a setup is difficult to distribute to performers and other

users remotely, as I cannot be present to assist with any issues specific to one individual’s

hardware. I needed Sinew to be a stand-alone software that did not require manual configuration

55 “Covid-19 Situation Report #9, March 16, 2020 - World.”

73

for machines on an individual basis. It also needed to be compatible with both Windows and

Apple operating systems.

Naturally, I chose Unity as the ideal tool for developing such a piece of software.

However, the typical Unity workflow does not natively include many options for advanced audio

processing. This obstacle necessitated the creation of several new tools and methods for musical

interactions within Unity. I present these in this paper along with a streamed performance of the

work.

The COVID-19 pandemic certainly proves to have been highly transformative toward

Sinew in its present form. Had the pandemic not been a factor, Sinew’s performance would have

come and gone, satisfying the requirements for my dissertation. This would have been easier and

much less complicated. However, the circumstances of the pandemic forced my work to consider

more important—and I feel, much less frivolous—aspects of music and its relationship to us as

humans. The new tools and methods that emerged from the altered development process stand as

useful contributions that would not exist otherwise. I offer Sinew as a reflection of how we

engage with our environment and those around us, and I offer it to the public in the hope that it

generates meaningful musical experiences.

3.3.2. Sinew: Operational Logics

Before exploring Sinew’s operational logics, it will be beneficial to explain the common

attributes class attached to every object. Figure 22 depicts the class as a monobehaviour

component in the Unity editor. This class is a container for an object’s attributes. Its name

correctly implies that every object shares the same attributes, including the improvisers. The

significance of this is that despite being internally the same, content-wise, each object still

behaves in a distinguishable and recognizable matter. This is because their behaviors are

74

emergent in nature, originating from the relationships formed by Sinew’s underwriting logics.

Understanding this will help further the discussion of Sinew as a self-regulating performance

system.

Figure 22 CommonAttributes C# class for
Sinew's objects and performers.

Each of Sinew’s objects interact with an energy value in a specific way. The operational

logic that manages energy is a natural starting point, as it affects all other logics. Along with

describing the objects encountered while performing Sinew, this section will review their

underwriting operational logics. It makes sense to begin with energy logic, as it influences every

logic in the system.

75

Table 9 Sinew's energy logic.
Energy Logic

Communicative role Each object is dependent on a source of energy, whether it is audio input or the
energy of other objects. Each object is attracted to their preferred energy source
as they need it.

Abstract process The proximity of objects either increments or decrements energy levels
according to their preferred energy source. Can also transfer energy
altruistically.

Audio presentation Indicated through descriptive audio performance as energy transfer occurs.

Visual presentation Indicated by particle systems flowing in the direction of an energy transfer

Performative Outcome Performers are incentivized to perform in a manner that benefits certain game
objects according to that object’s expressed energy.

Energy transfers within Sinew are not discrete events. Every single transfer is constantly

occurring. However, proximity is a major factor in the transfer equation. The distance value

between objects transferring energy passes through a sigmoid function (see section 3.3.3.5). This

results in a specifically crafted s-curve between zero and one which factors into the equation for

energy transfer. This allows for continuous mappings while designating some form of limitation.

For instance, I automatically map any two spheroids together with a continuous relationship.

Through this relationship, they continuously balance their values. If their distance is too great,

the attempt is minimalized and almost non-existent.

Performing Sinew is a similar experience to that of Ecosystem One. However, for Sinew,

the system gives performers their roles dynamically according to their performance behaviors.

Their interactions with on-screen objects also impact which new roles are given. At the outset of

the performance, a performer can receive the prompt, “Inform them.” Further along in the

performance, they might see, “Listen to them.” These prompts are displayed through on-screen

text. They generate intrinsic motivation for the performer to interact with what they see. The

ambiguity allows for interaction informed by their own improvisational inclinations, as well as

by my embedded compositional intentions.

76

Figure 23 Sinew's well. Render of model (left). Unlit in performance from low energy value
(middle). Lit it performance from high energy value (right).

The first object that performers encounter is the well, depicted in Figure 23. This well

does not immediately exhibit any obvious affordances. The well offers new interactions as an

ambiguous prompt informs the performer’s improvisations. Their audio input generates lights

that flow into the well. This light appears to accumulate, and the more they perform, the brighter

the well becomes. Figure 24 depicts this interaction. After enough accumulation, the well

extinguishes its light and produces a floating spheroid. This process repeats, producing more and

more spheroids over the course of a performance.

Figure 24 Energy value transfer depicted
as lights flowing from a single performer
to the well.

77

Figure 25 Energy value transfer
depicted as lights flowing from multiple
performers to the well.

The floating lights that accumulate in the well are a visual abstraction of an energy value

transfer. Each object contains an individual energy level as a common attribute. As the performer

improvises, they increment their energy value. This energy then transfers to the well according to

its current state. The transaction is not a complete one-to-one transfer of value. The well’s

reception of energy is dependent on its current disposition. The poorer the well’s disposition, the

less efficient the energy transfer. The well’s disposition is dependent on the state of the objects in

the environment as well as the behaviors of the performer. For example, if the well’s energy

level is very low, this has a negative impact on its disposition. Additionally, if the objects in the

scene exhibit low energy values, this also has a negative impact. The inverse of this is also true,

where higher energy levels equate to the well exhibiting a more favorable disposition.

The spheroid object that is produced by the well begins with an energy level that is

equivalent to the well. Its movements, interactions, and performance behaviors are all motivated

by a need for energy. For the spheroid, the energy value might be representational of its general

health. Without energy, the spheroid will return and dissolve back into the well.

Immediately after being produced by the well, a spheroid searches for energy sources, of

which there are only two. The first is an improviser. As a spheroid approaches a performer—

visually represented by movement toward the virtual camera—it has a greater opportunity for a

78

value transfer. Upon finding the performer, they do not force a value transfer. In a sense, they

“request” it. The spheroid attempts to adopt the same aesthetic parameter values as the

performer—see Figure 22 on page 74. In doing so, it achieves parity with the performer and can

more efficiently receive their energy.

The second source of energy for a spheroid is other spheroids. The value transfer between

spheroids is similar to the process just described, though I have designed the spheroids to be

inherently altruistic. As spheroids approach one another, they attempt to balance an equal share

of energy between them. The effectiveness of their energy transfer results from their level of

aesthetical parity. To increase their chance of a fair outcome, they will simultaneously attempt to

balance their aesthetic values along with their energy levels. The overall effectiveness of this

process is determined by their total levels of energy. The higher their collective energy levels,

the more efficient this transfer becomes.

Table 10 Sinew's movement logic.
Movement Logic

Communicative role The disposition of objects evolve according to their interactions with the
performer and other objects.

Abstract process Calculates motion patterns according to the disposition of the object as
determined by energy logic.

Audio presentation Indicates the flow of motion in tandem with sound production produced by
performing logic.

Visual presentation Emotes a particular level of energy and responsiveness through a change in
position and blended animation.

Performative Outcome Performers are incentivized to interact sonically with nearer objects, motivated
by the objects particular disposition.

Initially, a spheroid is limited to movement within a very narrow turning radius. They

can, however, move forward and backward, making slight turns as they do so. Their turning

radius increases as their level of energy increases. Additionally, their need for energy informs

their target destination. As mapping in Sinew is continuous, they are individually aware of their

79

closest source of energy. Reaching this source might necessitate great effort. With low energy,

their movements appear sporadic, as if lost. As their energy increases, their movements appear

more determined along with their performance behaviors.

Table 11 Sinew's performing logic.
Performing Logic

Communicative role Performers can influence the performative expressions of various objects
through improvising different musical aesthetics.

Abstract process Performs musical gestures in a format and style informed by the performer.
Gathers and analyzes audio using feature logic.
Performs according to gathered features and features of a targeted performer.

Audio presentation Indicates aesthetical preference and experiences through various modes of
performing logic

Visual presentation Indicates aesthetical preference through various expressions of color.

Performative Outcome Performers are incentivized to produce various aesthetics according to its long-
term effects on various audiovisual elements.

Along with transferring energy and aesthetic values, spheroids also transfer audio. When

a spheroid first receives energy from an improviser, it also records their audio signal. This

becomes the primary material with which that spheroid performs. When in close proximity,

spheroids will listen to each other’s performance behaviors. When the spheroids achieve parity,

they perform with similar emergent behaviors.

 When improvising music, a spheroid does not simply playback the recorded audio. They

perform using a dedicated audio performance system of my design. I implement this using the

performer class depicted in Figure 26. There are two performance modes. While these modes

indicate a discrete split in the operational logic, they ultimately blend in and out of one another.

The synth mode uses the object’s recorded audio clips as material for granular synthesis.

I map the ADSR of the synthesizer to the spheroid’s aesthetic values, and its energy informs the

length of a note. The interactivity of this performance mode comes from its source of pitch,

which is the current pitch of the spheroid’s preferred improviser. Notice in Figure 22 that one of

80

the common attributes is a “player focus.” This focus designates a favorite improviser, which the

system typically assigns as the one that most closely matches its aesthetic values. If a spheroid is

favoring the synth performance mode, they often perform in unison with this improviser. This

unison is not constant, however. The spheroid’s true performance behavior is a blending between

both modes. The second mode is recorded mode, which generates improvisations by

reorganizing and processing its acquired audio recordings. The blending of these two modes

results in a sort of circular causality between the performer and the spheroid. The line blurs in

terms of who is following which improvisation. As a performer engages in unisons with the

spheroid, they both simultaneously inform each other’s newly improvised elements.

Figure 26 Sinew's C# Performer class
as a monobehaviour component in the
Unity editor.

81

Figure 27 Three bulbs in Sinew approaching the
well.

Another object that performers eventually encounter is a bulb, three of which are depicted

in Figure 27. Bulbs are large, slow, organic-looking objects with openings at their base. They are

not highly expressive and they do not exhibit many behaviors. Their pulsing musical gestures are

very low in pitch, with increased intensity as they move closer to the well. They are attracted to,

and repelled by, the aggregate energy of the objects in the scene. While in close proximity to the

well, they force energy away from all objects in the scene, including the performers. The bulbs

use this energy to produce and release their spawn. After expelling their energy, a bulb will

retreat for a time.

82

Figure 28 Spawn from a bulb in
Sinew.

The spawn that bulbs leave behind are visibly antagonistic objects—shown in Figure 28.

Unlike the seeking behaviors of the spheroids and the bulbs, spawn move in a stochastically

dominated manner. This helps to reinforce a notion of recklessness and danger. They

indiscriminately drain energy from the spheroids, the performers, and the well. Their musical

performance behaviors are similar to that of the spheroids. However, their attribute values reflect

their recklessness, which causes unpleasant and distorted improvisations. After filling their

energy values, they retreat from the scene as if in search of more energy.

83

3.3.3. Sinew: Feature Logic

Table 12 Sinew's feature logic.
Feature Logic

Communicative role Performers can influence the audio and visual expression of various objects
through improvising various musical aesthetics.

Abstract process Derives magnitudes of several musical features according to the aesthetic of the
improviser’s audio input.

Audio presentation Indicates aesthetical preference through various modes of performing logic

Visual presentation Indicates aesthetical preference through various expression of color.

Performative Outcome Performers are incentivized to produce various aesthetics according to its long-
term effects on various audiovisual elements.

Sinew’s feature logic introduces new tools for feature extraction for the Unity

development platform. The extracted musical features serve as abstractions that allow the system

to be aware of performance aesthetics. Prominent features used in Sinew separate into low- and

high- levels of abstraction. Low-level features include frequency, decibel level, and spectral flux.

High-level features include steadiness, intensity, and legato. It is through these core performance

features that improvisers interact with the system, as described in Table 12.

Unlike Ecosystem One, Sinew does not take advantage of any proprietary sensors and

custom devices built by myself or others. If the software is to be accessible to a general user-

base, it could not require such devices. Instead, it demands compatibility with commonly owned

hardware and their respective frameworks. For this reason, the microphone is the single sensing

interface used by the performer. The MUGIC™ sensor used in Ecosystem One proved to be a

very immersive method for connecting performers to the virtual performance system. How could

Sinew attempt to create a similarly immersive interfacing using a single microphone? I solve this

issue by extracting features from available audio data, which requires custom tools within Unity

framework.

84

 Low-level Features

The Unity scripting API provides limited access to the engine’s low-level audio data and

behaviors. This is intentional, as managing audio data at a scripting level is fickle and

unpredictable. The API’s audio function primarily used in Sinew is

AudioSource.GetSpectrumData56. The GetSpectrumData() function provides an

array of floating-point values representing the frequency magnitudes of current audio data

output. The length of the array must be a power of two. A similar function call in an audio-

centric development environment might occur in successive data chunks, processing every audio

sample. As Unity is a visual-centric development environment, GetSpectrumData() does

not account for which samples have or have not been returned. The result is an asynchronous

stream of data that may or may not be processed. Performing an inverse Fourier transform on the

array and readying it for audio playback is possible, but this does not produce clean audio for the

reasons described above.

Though the audio data available within the Unity scripting API is unreliable for

resynthesis, it remains useful for general feature extraction. Calculating frequency, decibel level,

and spectral flux remain adequately accurate despite being asynchronous from the system’s core

dsp. For Sinew’s audio input, frequency and decibel level are calculated using existing open

source C# libraries57. The implementation for calculating spectral flux is novel to this project.

56 Technologies, “Unity - Scripting API.”
57 “Pitch Detection - C# Library - 3y3.Net.”

85

 Low-level Features: Spectral Flux in Unity

Sinew introduces a simple method for calculating spectral flux natively in C# within the

Unity monobehaviour framework. I offer this as an alternative to bulkier solutions that require

proprietary libraries for individual target platforms:

float previousData;
float currentFlux;

void CalculateFlux()
{

float[] spectrumData =
audioSource.GetSpectrumData(

spectrumData,
channel,
FFTWindow.BlackmanHarris);

float[] variation =

new float[spectrumData.Length];

for (int i = 0; i < spectrumData.Length; i++)
{

variation[i] =
Mathf.Abs(

spectrumData[i] - previousData[i]);

}

currentFlux = variation.Sum();

previousData = spectrumData;

}

This method retrieves spectrum data through GetSpectrumData. It then calculates

frequency variations by taking the absolute value of the difference of the current and previous

array values. These values are summed using the LINQ method extension Sum() for simplicity.

Overall, the process is computationally inexpensive. Specific to Sinew, accessing the same

spectrum data used for calculating pitch detection and decibel level further optimizes the

function.

86

 Low-level Features: Smoothing and Scaling

Each low-level feature exists within a wide range of values as seen in Table 13. Added to

this group of features is the unique pitch count—the amount of entries in a list of unique pitches

detected over the previous ten seconds. These values are analyzed as MIDI values received from

open source pitch detection libraries58. In order to design meaningful derivations through various

combinations of these features, it becomes necessary to scale them. Using the minimum and

maximum values shown in Table 13, each data stream is scaled and clamped between zero and

one.

Table 13 A summary of value ranges for Sinew's extracted low-level audio features.
Feature Minimum Value Maximum Value

Frequency 140 1400
Decibel level -30 6
Spectral flux 0 .001
Unique pitch count 0 13

Smoothing is applied to the low-level data streams by averaging all values received

within a given timeframe. For Sinew, this time frame is roughly two seconds. Processing low-

level audio features in the Unity scripting environment requires a time-centric approach to the

smoothing function. This is because different hardware will achieve varying frame rates. One

performer’s computer may produce sixty low-level values per second while another may produce

upwards of two hundred. Sinew introduces a time-centric C# class for smoothing low-level

feature values while accounting for disparate frame rates:

 public class TimedAverage
 {
 public List<float> times;
 public List<float> values;

 public float timeLimit;

 public TimedAverage(float _timeLimit)
 {

58 “Pitch Detection - C# Library - 3y3.Net.”

87

 UpdateTimeLimit(_timeLimit);
 times = new List<float>();
 values = new List<float>();
 }

 public void UpdateTimeLimit(float _timeLimit)
 {
 timeLimit = _timeLimit;
 }

 public float AddValue(float _value)
 {
 if (times.Count > 0

&& (Time.time - times[0]) > timeLimit)
 {
 values.RemoveAt(0);
 times.RemoveAt(0);
 }

 values.Add(_value);
 times.Add(Time.time);

 return values.Average();
 }
 }

 The time limit for TimedAverage can be set using the class constructor. Its primary

function—AddValue()—returns the average value of all values received within the designated

limit. I process all of Sinew’s low-level features through the TimedAverage class before using

them to derive high-level features. Use of a type integer variant in Sinew’s final build further

optimizes this class. I use the integer variant for unique pitch count, which also has a longer time

limit of roughly five seconds.

Smoothing adds a base level of resistance for Sinew’s feature logic. Without this

resistance, the computer’s perception of each feature becomes noisy and less usable for my

purposes. Smoothing helps the computer perceive more data over time, each point having a

longer impact within the data stream. I do this to reduce the unrelatable perfection of

computation, and to more closely mimic natural processes. By including resistance in the feature

logic, I encourage a tighter coupling between improvisers and Sinew’s environment.

88

Recall the discussion of Zorn’s Cobra from section 2.1.1. In Cobra, very little is done to

prevent an improviser from dominating the performance if they so choose.59 The balance

between affordances, actions, and consequences seems to be largely out of the composer’s

control. The structures that emerge are volatile. To manage potential chaos within a self-

regulating performance system, I establish greater resistance between the forces that drive state

changes. Mechanisms within the system provide momentum and the pooling of energy. The

relationships I build between parameters are heavy and stable, mimicking the enormous force of

many natural processes. A performer’s influence is dampened and requires persistence. The

software does not include discrete abstractions such as toggles, switches, or buttons. As a result,

my systems do not often exhibit discrete state changes. Any events in my work that appear

discrete are still implemented within a continuous structure. The overall result is a performance

experience that is weighted by resistant forces.

 High-level Features

The high-level features derived through Sinew’s feature logic are used to communicate

with other logics. These features are steadiness, intensity, and legato. Each of these values come

from relationships between the logic’s low-level features. These relationships are shown in Table

14 in the form of equations. Note that all features written in Table 14 are scaled between zero

and one using the ranges shown in Table 13. Intensity and legato are straightforward derivations

of their implied meaning. This is not the case for calculating steadiness, a highly nuanced quality

of performance.

59 Van Der Schyff, “The Free Improvisation Game.”

89

Table 14 Equations demonstrating Sinew's high-level features as derived from low-level features.
Feature Equation

Steadiness

𝑀𝑀𝑀𝑀𝑀𝑀 �0, �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2
��

Intensity

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗
(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

2

Legato

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Designing an equation that expresses a level of steadiness proves difficult. Steadiness

describes levels of perceived variation within the performer’s musical behaviors. For Sinew’s

feature logic, this was ultimately calculated using two main low-level features: spectral flux and

unique pitch count. When these values are low, the value for stability needs to increase. Inverting

the value appears to be a valid solution, knowing that all feature values are clamped between one

and zero. However, the system must take into account performer silence. Thus, stability is

derived as the difference between decibel level and the average value of flux and pitch count. If

the performer’s scaled decibel value is 0.5, and the flux-pitch average is 0.1, steadiness has a

value of 0.4. The relationship between decibel level and the flux-pitch average favors louder

stability. Quiet sustains will have lower steadiness values than loud sustains. To balance this

bias, I process the resulting steadiness value through a sigmoid function (see 3.3.3.5 Mapping

Tool: The Sigmoid Function on page 89).

 Mapping Tool: The Sigmoid Function

In the early stages of Sinew’s development, it became very clear that the methods

frequently used in a scripting environment were incompatible with the project’s core principles.

Programming in C# relies on several discrete tools—most commonly being if-then and switch

90

statements. I say these tools are incompatible because they often create forks in the programming

logic. Under such circumstances, a value must be processed through one path or another with no

options for in-between. Instead, Sinew requires tools that enable data streams to flow freely

between multidimensional states.

The sigmoid function is highly compatible with Sinew’s ideals for continuousness. It is a

hyperbolic, logistic function that is able to constrain values to a known range without the need

for limits or comparator checks. The function is written in Equation 1 and graphed in Figure 29

where 𝑘𝑘 = 1, 𝑎𝑎 = 0, and 𝑏𝑏 = −5.

�
𝑘𝑘

(1 + (𝑒𝑒)(𝑎𝑎+𝑏𝑏𝑏𝑏))�

Equation 1 Sigmoid function

Figure 29 Graph of a basic sigmoid function.

The sigmoid function replaces discrete statements in many of Sinew’s systems, one of

which is its flocking behaviors. A basic flocking algorithm contains three main subsystems:

separation, alignment, and cohesion.60 Early implementations of Sinew’s flocking algorithm

gated the influence of these three subsystems using if-then statements. For instance, if two

60 Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model.”

91

objects were at a distance of less than one unit from each other, only then would the separation

subsystem influence those objects’ final positions. The sigmoid function changes this model

from gated subsystems to continuous processes. Rather than using the if-then statements, the

sigmoid function allows the flocking logic to run continuously. Every flocking object is

continuously affected by all three subsystems, resulting in more natural behaviors.

Figure 30 Graph of sigmoid functions used in Sinew's
flocking algorithm.

Table 15 Coefficients for sigmoid functions used in Sinew's flocking algorithm
Subsystem 𝒂𝒂 𝒃𝒃 𝒌𝒌

Separation -5 2.4 20
Alignment -10 1 10
Cohesion -10 1 10
Target 3 -.5 1

92

Figure 30 shows the s-curves of three functions. These curves demonstrate the amount of

weight each subsystem has on the position and rotation of a flocking object. Table 15 contains

the coefficients for each of the functions (see Equation 1 Sigmoid function).

Consider the separation curve in Figure 30. As an object’s distance from other objects

decreases, the separation subsystem’s weight increases. This results in a greater repellent force

between the objects. As the distance diminishes to less than two units, the repellent force has a

greater weight than the aligning and cohesive forces. Notice that each force has a continuous

influence on the objects, but shift in weight according to their respective positions. This method

is highly compatible with the goals of a self-regulating performance system, and is not exclusive

to only the flocking algorithms. I use multiple parallel sigmoid functions are form dynamic

mappings between performer behaviors and the performance environment.

3.3.4. Sinew: Analysis

Sinew exhibits all of the key characteristics of a self-regulating performance system. In

doing so, it helps to resolve the conflict between improvisational freedom, composer authorship,

and a sense of shared purpose. However, as expressed in section 3.2.5, I am in some ways

dissatisfied with the patency of some of these characteristics. This section will analyze Sinew

using the key characteristics of a self-regulating performance system, starting with the points I

see as most successful. Following these points will be a discussion of what can be learned by its

less successful points.

Sinew avoids conveying explicit expectations. The most explicitly expressed instruction

given to performers is the on-screen text of an ambiguous role. The ambiguity of these roles is

akin to the starting conditions that enable horizontal operational logic. They provide intrinsic

motivation for the performer. They do not qualify as explicit instructions. All other expectations,

93

as previously described, take the form of emergent environmental interactions. This avenue for

communication is in line with the explored concepts of enactive cognition and emergence.

Sinew is intrinsically continuous. In a programming environment, it is difficult to

construct a highly continuous system. The development of Sinew resulted in many tools and

techniques for facilitating continuous data streams. There are circumstances that require discrete

programming techniques. However, instances of this were made continuous by the dynamic

blending of discrete elements.

Sinew is underwritten by horizontal operational logics. All value transfers between

objects are continuous, unscripted occurrences. Tools, like the sigmoid function, allow for the

horizontal interactions of objects, including the human performer. Observing the programming

logic will not reveal the interactions that take place, because none are scripted. Instead, Sinew’s

logics, including the mappings between primary logics, are entirely horizontal.

Sinew expresses my intended interactions through cultivated emergence. Emergence in

this work is generated in the relational domain between performer interactions and self-

regulating objects. As the composer, I was able to embed intended ranges of interactions by

delicately crafting the mappings between operational logics. The improvisational behaviors of

human performers are informed by the interactions of my design. Through the emergence I have

cultivated, I successfully expressed my intended interactions. This leads me to ask, “Why is my

sense of composer authorship slightly lacking, despite checking all of the boxes for a self-

regulating performance system?”

Analysis of the work using the lens established in Chapter 2 reveals that Sinew’s

timescale is the primary contributor toward a diminished sense of composer authorship. Many of

the intended interactions can take place over a long period. A significant length of time for one

94

interaction can result in incongruous perceptions of moment-to-moment improvisations and the

overall gestures that contain them. For example, consider when a performer is focused on

interactions with the well and its spheroids. Performers can playfully interact with the transfer of

energy, visually indicated by lights flowing from the performer to the well. The well will

eventually produce a spheroid that takes on the performative characteristics of a favored

performer. As the spheroid occasionally displays a loss of energy, the performer is incentivized

to assist by improvising its preferred aesthetic. Overall, this interaction takes place over a five- to

fifteen-minute period. This long stretch of time diminishes the patency of its intended relevance

to musical structures. From the perspective of the system-design, I retain a strong sense of

composer authorship. However, from the perspective of realized interactions, my sense of

composer authorship is obscured.

Another unintended consequence of Sinew’s stretched timescale is the smearing of

interaction domains. For example, the interaction described above eventually overlaps itself as

more spheroids are brought into the scene. Additionally, these interactions persist as others are

introduced—for instance, interactions with bulbs and their spawn. The overall interactivity of the

scene can at times become busy and unfocussed. As a result of these two main issues—a

timescale that is too broad, and smearing interactions—a performance of Sinew appears to favor

improvisational freedom over composer authorship.

Related to the issue of timescale is Sinew’s potential to foster a sense of shared purpose.

Sinew implicitly conveys cause and effect. When performing Sinew, an improviser is able to

slowly and intuitively discover their general impact. Particle systems, shaders, and performance

logics were implemented to express the attitude of every interaction. As performers observe each

object’s behavior, they are able to intuit the impact of their interactions. Consequently,

95

performers and observers alike can derive meaning from the same underlying causalities. The

understanding of these causalities are not as strong as they might be with a more manageable

timescale—a smaller timescale. So, in addition to a diminished sense of composer authorship,

Sinew’s large timescale lessens the potential for a sense of shared purpose. My experience

following the work’s premiere was similar to that of Ecosystem One, where individuals contacted

me with their interpretations. This indicated that Sinew successfully exhibited an underlying

purpose. The interpretations offered to me indicated that the display of cause and effect was not

as clear as my previous work.

It is important to note that these issues are not unique to self-regulating performance

systems. In general, the timescale and scope of musical gestures is a common element of

composition as a craft. What Sinew’s diminished sense of shared purpose and lessened composer

authorship demonstrates is that the self-regulating performance system and its accompanying

paradigms are not an alternative to composition. Rather, effective implementation of a self-

regulating performance system entails using well-established principles of music composition.

96

Concluding Thoughts

In this text, I outlined a conflict between improvisational freedom and composer

authorship. I also reviewed how a sense of shared purpose links to this conflict. I addressed this

conflict by presenting theories of enactive cognition and concepts surrounding emergence.

Enactive cognition aids in validating the environment as an appropriate location for composer

authorship. I present emergence as the mechanism by which a composer can unobtrusively

express their intent to an improviser. I showed these two theoretical tools to be a foundation for a

creative work that gives equal weight to its improvisational and compositional components.

Additionally, they provided a pragmatic context for discussing composer intended relevance.

Collectively, these two topics informed the technological concepts explored in this paper.

I reviewed relevant technological concepts that aid in the reconciliation of improvisation

and composition. I described how continuous processes are an essential factor in relocating

composer authorship. Concepts surrounding audiovisual elements progressed the exploration of

pragmatic tools for such relocation. Importantly, I present operational logics as a vital tool for

designing, implementing, and analyzing interactive software. I show how the orientation of these

logics affect user interactions and elements of emergence. Specifically, horizontal orientations of

operational logics proved to be a necessary tool for crafting emergent interactions.

Following discussions of research and literature, I presented the self-regulating

performance system. I offer the model for this system as a practical implementation of the

previously established concepts. The model’s key characteristics are:

1. Expresses the composer’s intended interactions through cultivated emergence.
2. Avoids conveying explicit expectations.
3. Is intrinsically continuous.

97

4. Implicitly conveys cause and effect.
5. Is underwritten by horizontal operational logics.

I presented two substantial compositions as the creative activity portion of this research.

They are Ecosystem One and Sinew. Both works follow the established model of a self-

regulating performance system. In keeping to this model, they attempted to maximize

improvisational freedom and composer authorship while promoting a shared sense of purpose. I

explained useful tools and processes that outline successful implementation of the performance

model. I catalogued the prominent operational logics of these works, and showed that they

exhibit a horizontal orientation. Additionally, both works demonstrated how to better maximize

improvisational freedom, composer authorship, and a sense of shared purpose. Following an

analysis of both works, I concluded that the self-regulating performance model should be

implemented while maintaining well-established principles for composition.

Moving forward, I intend to continue the use of tools and concepts found in this paper. I

believe modern technologies have required composers to rethink current practices. Specifically, I

intend on future research and creative works investigating remote performance. This current

project uses Unity as both a dedicated visual renderer, and a hybrid audiovisual performance

environment. At the time of this writing, Unity is developing new networking tools for online

interaction. I am particularly interested in the idea of using these tools to build a persistent online

environment for music improvisation. The concepts laid down in this paper provide the

necessary theoretical framework for such a project.

In conclusion, I am pleased with the outcome of this research and its creative activity. I

reiterate that the debate surrounding the relationship between composition and improvisation will

likely never resolve. My approach to the conversation is in the spirit of progression, and with the

98

hope that my writing and my music will aid the efforts of another creator. I offer this research in

the hope that it challenges readers with new ideas and motivates the creation of new things.

99

References

Alperson, Philip. “A Topography of Improvisation.” The Journal of Aesthetics and Art Criticism
68, no. 3 (August 8, 2020): 273–80.

Anderson, Christine. “Dynamic Networks of Sonic Interactions: An Interview with Agostino Di
Scipio.” Computer Music Journal 29, no. 3 (September 2005): 11–28.
https://doi.org/10.1162/0148926054798142.

Anthony, Kevin. “Recourse | Kevin Anthony.” Performance, September 6, 2019.
https://www.youtube.com/watch?v=ATO7UFYFkN0.

Armstrong, Newton. An Enactive Approach to Digital Musical Instrument Design Theory,
Models, Techniques. Saarbrücken: AV Akademikerverlag, 2012. http://nbn-
resolving.de/urn:nbn:de:101:1-201205252060.

Bailey, Derek. Improvisation: Its Nature and Practice in Music. New York: Da Capo Press,
1993.

Bedau, Mark A. “Weak Emergence.” In Mind, Causation, and World, Vol. 11. Philosophical
Perspectives. Oxford, Eng.; New York, N.Y.: B. Blackwell, 1997.

Minecraft Wiki. “Bedrock Edition,” n.d. https://minecraft.gamepedia.com/Bedrock_Edition.

Bello, Juan Pablo. “Low-Level Features and Timbre,” n.d., 31.

Berio, Luciano, Rossana Dalmonte, Bálint András Varga, David Osmond-Smith, and Luciano
Berio. Two Interviews. New York: M. Boyars, 1985.

Bertolani, Valentina, and Friedemann Sallis. “Live Electronic Music.” In Routledge
Encyclopedia of Modernism, 1st ed. London: Routledge, 2016.
https://doi.org/10.4324/9781135000356-REM577-1.

Blackwell, T.M., and P. Bentley. “Improvised Music with Swarms.” In Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), 2:1462–67.
Honolulu, HI, USA: IEEE, 2002. https://doi.org/10.1109/CEC.2002.1004458.

“Blackwell.Pdf.” Accessed July 31, 2020. http://axon.cs.byu.edu/~dan/673/papers/blackwell.pdf.

blender.org. “Blender - Free and Open 3D Creation Software,” n.d. https://www.blender.org/.

Blum, Stephen. “Representations of Music Making.” In Musical Improvisation: Art, Education,
and Society, edited by Gabriel Solis and Bruno Nettl, 239–62. Urbana: University of
Illinois Press, 2009.

100

Borio, Gianmario, ed. “‘Live Is Dead?’: Some Remarks about Live Electronics Practice and
Listening.” In Musical Listening in the Age of Technological Reproduction. Musical
Cultures of the Twentieth Century. Burlington: Ashgate, 2015.

———, ed. Musical Listening in the Age of Technological Reproduction. Musical Cultures of
the Twentieth Century. Burlington: Ashgate, 2015.

Chadabe, Joel. “Interactive Composing: An Overview.” Computer Music Journal 8, no. 1
(1984): 22. https://doi.org/10.2307/3679894.

Chalmers, David J. “Strong and Weak Emergence.” In The Re-Emergence of Emergence, 244–
54. Oxford University Press, 2008.
https://doi.org/10.1093/acprof:oso/9780199544318.001.0001.

Chiang, Helen. “Minecraft: Connecting More Players Than Ever Before.” Xbox Wire (blog),
May 18, 2020. https://news.xbox.com/en-us/2020/05/18/minecraft-connecting-more-
players-than-ever-before/.

Clark, Andy, and David J. Chalmers. “The Extended Mind.” In The Extended Mind, edited by
Richard Menary, 26–42. The MIT Press, 2010.
https://doi.org/10.7551/mitpress/9780262014038.003.0002.

Clarke, Eric F., and Mark Doffman, eds. Distributed Creativity. Vol. 1. Oxford University Press,
2017. https://doi.org/10.1093/oso/9780199355914.001.0001.

Collins, Karen, Bill Kapralos, Holly Tessler, and Tim van Geelen. “New Tools for Interactive
Audio, and What Good They Do.” In The Oxford Handbook of Interactive Audio, edited
by Karen Collins, Bill Kapralos, and Holly Tessler. Oxford University Press, 2014.
https://doi.org/10.1093/oxfordhb/9780199797226.013.033.

Collins, Nick, Margaret Schedel, and Scott Wilson. Electronic Music. 1. publ. Cambridge
Introductions to Music. Cambridge: University Press, 2014.

Conrad, Michael, ed. “Discrete and Continuous Processes in Computers and Brains.” In Physics
and Mathematics of the Nervous System: Proceedings of a Summer School Organized by
the International Centre for Theoretical Physics, Trieste, ... Held at Trieste, August 21 -
31, 1973. Lecture Notes in Biomathematics 4. Berlin: Springer, 1974.

“COVID-19: Housing, Student Life, and Commencement Updates | UCI.” Accessed July 30,
2020. https://uci.edu/coronavirus/messages/200313-student-life-updates.php.

Johns Hopkins Coronavirus Resource Center. “COVID-19 Map.” Accessed July 30, 2020.
https://coronavirus.jhu.edu/map.html.

ReliefWeb. “Covid-19 Situation Report #9, March 16, 2020 - World,” n.d.
https://reliefweb.int/report/world/covid-19-situation-report-9-march-16-2020.

101

Cross, Lowell. “Reunion : John Cage, Marcel Duchamp, Electronic Music and Chess.” Leonardo
Music Journal 9 (December 1999): 35–41.
https://doi.org/10.1162/096112199750316785.

Dannenberg, Roger B. “Interactive Visual Music: A Personal Perspective.” Computer Music
Journal 29, no. 4 (December 2005): 25–35.
https://doi.org/10.1162/014892605775179964.

De Benedictis, Angela Ida. “Authorship and Performance Tradition in the Age of Technology.”
In Live Electronic Music: Composition, Performance, Study, 195–216. Routledge
Research in Music. Abingdon, Oxon ; New York, NY: Routledge, 2018.

Di Scipio, Agostino. “Dwelling in a Field of Sonic Relationships.” In Live Electronic Music:
Composition, Performance, Study, 17–45. Routledge Research in Music. Abingdon,
Oxon ; New York, NY: Routledge, 2018.

———. “Sound Is the Interface: From Interactive to Ecosystemic Signal Processing.” Organised
Sound 8, no. 3 (December 2003): 269–77. https://doi.org/10.1017/S1355771803000244.

Doornbusch, Paul. “A Brief Survey of Mapping in Algorithmic Composition.” ICMC, 2002.

Dreyfus, Stuart E. “The Five-Stage Model of Adult Skill Acquisition.” Bulletin of Science,
Technology & Society 24, no. 3 (June 2004): 177–81.
https://doi.org/10.1177/0270467604264992.

Duncan, Sean C. “Minecraft, Beyond Construction and Survival,” October 23, 2019.
https://doi.org/10.1184/R1/10029221.v1.

Emmerson, Simon, and Denis Smalley. Electro-Acoustic Music. Vol. 1. Oxford University Press,
2001. https://doi.org/10.1093/gmo/9781561592630.article.08695.

Eno, Brian. A Year with Swollen Appendices. London: Faber and Faber, 1996.

Foucault, Michel. “What Is an Author?” In Language, Counter-Memory, Practice: Selected
Essays and Interviews, edited by Donald F. Bouchard and Sherry Simon, 1. printing,
Cornell paperbacks, [Nachdr.]. Cornell Paperbacks. Ithaca, NY: Cornell Univ. Press,
1980.

Fox, Christopher. New Complexity. Vol. 1. Oxford University Press, 2001.
https://doi.org/10.1093/gmo/9781561592630.article.51676.

Fujibayashi, Hidemaro, Satoru Takizawa, and Takuhiro Dohta. “Breaking Conventions with The
Legend of Zelda: Breath of the Wild.” Game Developers Conference, March 10, 2017.
https://www.youtube.com/watch?v=QyMsF31NdNc.

Gardner, Martin. “Mathematical Games.” Scientific American 223, no. 4 (October 1970): 120–
23. https://doi.org/10.1038/scientificamerican1070-120.

102

George Lewis and Vijay Iyer in Concert. Stream, 2012.
https://www.youtube.com/watch?v=IBPJ2HAmsc8.

GoodTimesWithScar. My ULTIMATE Hermitcraft Season 6 Tribute. GoodTimesWithScar,
2020. https://www.youtube.com/watch?v=GQpAJBUGW9Y.

Green, Owen. “Audible Ecosystemics as Artefactual Assemblages: Thoughts on Making and
Knowing Prompted by Practical Investigation of Di Scipio’s Work.” Contemporary
Music Review 33, no. 1 (January 2, 2014): 59–70.
https://doi.org/10.1080/07494467.2014.906698.

Hill, Peter. “Xenakis and the Performer.” Tempo, no. 112 (March 1975): 17–22.
https://doi.org/10.1017/S0040298200018830.

Johnson, Steven. Emergence: The Connected Lives of Ants, Brains, Cities, and Software. New
York: Scribner, 2001.

Key, Susan, Larry Rothe, Michael Tilson Thomas, and San Francisco Symphony Orchestra, eds.
American Mavericks. San Francisco, Calif. : Berkeley, Calif: San Francisco Symphony ;
Published in cooperation with the University of California Press, 2001.

Kimura, Mari. “MUGIC Sensor.” MARI KIMURA - violinist/composer, n.d.
http://www.marikimura.com/mugic-sensor.html.

Krishnamurthy, Kapil. “Generation of Control Signals Using Pitch and Onset Detection for an
Unprocessed Guitar Signal,” n.d., 5.

Lewis, George E. “Too Many Notes: Computers, Complexity and Culture in Voyager.”
Leonardo Music Journal 10 (December 2000): 33–39.
https://doi.org/10.1162/096112100570585.

Linson, Adam, and Eric F. Clarke. “Distributed Cognition, Ecological Theory and Group
Improvisation.” In Distributed Creativity: Collaboration and Improvisation in
Contemporary Music, edited by Eric F. Clarke and Mark Doffman. Studies in Musical
Performance as Creative Practice 2. New York, NY: Oxford University Press, 2017.

LPG. Minecraft: Redstone Computer (V1.0) (Interactive PC, Calculator, Day/Night Controller).
LPG, 2013. https://www.youtube.com/watch?v=GQpAJBUGW9Y.

Mateas, Michael, and Noah Wardrip-Fruin. “Defining Operational Logics.” UC Santa Cruz, June
18, 2018. https://escholarship.org/uc/item/3cv133pn.

Mayya, Shreemathi S., Ashma D. Monteiro, and Sachit Ganapathy. “Types of Biological
Variables.” Journal of Thoracic Disease 9, no. 6 (June 2017): 1730–33.
https://doi.org/10.21037/jtd.2017.05.75.

103

Mazierska, Ewa. “Improvisation in Electronic Music—The Case of Vienna Electronica.” Open
Cultural Studies 2, no. 1 (December 1, 2018): 553–61. https://doi.org/10.1515/culture-
2018-0050.

McCormack, Jonathan, Alice Eldridge, Alan Dorin, and Peter McIlwain. Generative Algorithms
for Making Music: Emergence, Evolution, and Ecosystems. Oxford University Press,
2011. https://doi.org/10.1093/oxfordhb/9780199792030.013.0018.

McDonough, Richard, ed. “Emergence and Creativity: Five Degrees of Freedom.” In Creativity,
Cognition, and Knowledge: An Interaction, 284–320. Perspectives on Cognitive Science.
Westport, Conn: Praeger, 2002.

Meric, Renaud, and Makis Solomos. “Analysing Audible Ecosystems and Emergent Sound
Structures in Di Scipio’s Music.” Contemporary Music Review 33, no. 1 (January 2,
2014): 4–17. https://doi.org/10.1080/07494467.2014.906690.

YouTube. “Michael Mateas on Façade, Part 1.” Video Streaming Service, August 25, 2013.
https://www.youtube.com/watch?v=LRUvHV7_fXk.

Monson, Ingrid T. Saying Something: Jazz Improvisation and Interaction. Chicago Studies in
Ethnomusicology. Chicago: University of Chicago Press, 1996.

Mooney, Chris. “Multiplicative Design.” Goblin Artisans (blog), August 27, 2018.
http://goblinartisans.blogspot.com/2018/08/multiplicative-design.html.

O’Connor, Timothy. “Emergent Properties.” American Philosophical Quarterly 31, no. 2 (1994):
91–104.

Osborn, Joseph C., Noah Wardrip-Fruin, and Michael Mateas. “Refining Operational Logics.” In
Proceedings of the International Conference on the Foundations of Digital Games - FDG
’17, 1–10. Hyannis, Massachusetts: ACM Press, 2017.
https://doi.org/10.1145/3102071.3102107.

Parr, Thomas, and Karl J. Friston. “The Discrete and Continuous Brain: From Decisions to
Movement-And Back Again.” Neural Computation 30, no. 9 (2018): 2319–47.
https://doi.org/10.1162/neco_a_01102.

Payling, Dave. “Approaches to Composition in Visual Music: An Artist’s Reflection on Three
Original Pieces.” Leonardo Music Journal 29 (December 2019): 62–66.
https://doi.org/10.1162/lmj_a_01065.

Pitch Detection - C# Library. “Pitch Detection - C# Library - 3y3.Net,” n.d. http://www.3y3.net/.

Reid, Gavin. “Motivation in Video Games: A Literature Review.” The Computer Games Journal
1, no. 2 (November 2012): 70–81. https://doi.org/10.1007/BF03395967.

Reynolds, Craig W. “Flocks, Herds, and Schools: A Distributed Behavioral Model.” Computer
Graphics 21, no. 4 (July 1987): 25–34.

104

Roads, Curtis. Microsound. 1. pbk. ed. Cambridge, Mass.: MIT Press, 2004.

———. “The Second STEIM Symposium on Interactive Composition in Live Electronic
Music.” Computer Music Journal 10, no. 2 (1986): 44. https://doi.org/10.2307/3679484.

Rudi, Jøran, and Neal Spowage. “Editorial: Sound and Kinetics – Performance, Artistic Aims
and Techniques in Electroacoustic Music and Sound Art.” Organised Sound 23, no. 3
(December 2018): 219–24. https://doi.org/10.1017/S1355771818000122.

Ryan, Kevin, and Andrea Schiavio. “Extended Musicking, Extended Mind, Extended Agency.
Notes on the Third Wave.” New Ideas in Psychology 55 (December 2019): 8–17.
https://doi.org/10.1016/j.newideapsych.2019.03.001.

Sallis, Friedmann, Valentina Bertolani, Jan Burle, and Laura Zattra, eds. LIVE ELECTRONIC
MUSIC: Composition, Performance, Study. Place of publication not identified:
ROUTLEDGE, 2019.

Schiff, Joel L. Cellular Automata A Discrete View of the World. New York, NY: John Wiley &
Sons, 2011. http://nbn-resolving.de/urn:nbn:de:101:1-201412309226.

Schröder, Julia H. “Emergence and Emergency: Theoretical and Practical Considerations in
Agostino Di Scipio’s Works †.” Contemporary Music Review 33, no. 1 (January 2, 2014):
31–45. https://doi.org/10.1080/07494467.2014.906722.

“Sol LeWitt: A Wall Drawing Retrospective | MASS MoCA.” Accessed July 8, 2020.
https://massmoca.org/event/sol-lewitt-a-wall-drawing-retrospective/.

Solomos, Makis. “Agostino Di Scipio: Audible Ecosystems.” Contemporary Music Review 33,
no. 1 (January 2, 2014): 2–3. https://doi.org/10.1080/07494467.2014.906673.

Spolin, Viola. Improvisation for the Theater: A Handbook of Teaching and Directing
Techniques. 3rd ed. Evanston, Ill: Northwestern University Press, 1999.

Stout, David. “Performance.” Noisefold, June 14, 2012. http://noisefold.com/performance.

Strickland, Edward. Minimalism: Origins. 2. [ed.], corr.rev. Version. Bloomington: Indiana
Univ. Press, 2001.

Tahiroğlu, Koray, Juan Carlos Vasquez, and Johan Kildal. “Facilitating the Musician’s
Engagement with New Musical Interfaces: Counteractions in Music Performance.”
Computer Music Journal 41, no. 2 (June 2017): 69–82.
https://doi.org/10.1162/COMJ_a_00413.

Technologies, Unity. “Unity - Scripting API: AudioSource.GetOutputData,” n.d.
https://docs.unity3d.com/ScriptReference/AudioSource.GetOutputData.html.

Thompson, Evan. “Introduction.” In The Embodied Mind: Cognitive Science and Human
Experience, 8. print. Cambridge, Mass.: MIT Press, 2000.

105

Thurlow, Jeremy. “Intervention On the Conundrum of Composing an Improvisation.” In
Distributed Creativity, edited by Eric F. Clarke and Mark Doffman, Vol. 1. Oxford
University Press, 2017. https://doi.org/10.1093/oso/9780199355914.001.0001.

Ulman, Erik. “Some Thoughts on the New Complexity.” Perspectives of New Music 32, no. 1
(1994): 202. https://doi.org/10.2307/833163.

Unemi, Tatsuo, and Daniel Bisig. “Playing Music by Conducting BOID Agents.” In Artificial
Life IX: Proceedings of the Ninth International Conference on the Simulation and
Synthesis of Living Systems, edited by Jordan Pollack, Mark A. Bedau, Phil Husbands,
Richard A. Watson, and Takashi Ikegami. The MIT Press, 2004.
https://doi.org/10.7551/mitpress/1429.001.0001.

Van Der Schyff, Dylan. “The Free Improvisation Game: Performing John Zorn’s Cobra.”
Journal of Research in Music Performance 0, no. 0 (May 5, 2013).
https://doi.org/10.21061/jrmp.v0i0.726.

Varela, Francisco J., Evan Thompson, and Eleanor Rosch. The Embodied Mind: Cognitive
Science and Human Experience. 8. print. Cambridge, Mass.: MIT Press, 2000.

Wardrip-fruin, Noah, Michael Mateas, Steven Dow, and Serdar Sali. Agency Reconsidered, n.d.

Wilson, Robert A., and Lucia Foglia. “Embodied Cognition.” In The Stanford Encyclopedia of
Philosophy, edited by Edward N. Zalta, Spring 2017. Metaphysics Research Lab,
Stanford University, 2017. https://plato.stanford.edu/archives/spr2017/entries/embodied-
cognition/.

Zattra, Laura. “Points of Time, Points in Time, Points in Space. Agostino Di Scipio’s Early
Works (1987–2000).” Contemporary Music Review 33, no. 1 (January 2, 2014): 72–85.
https://doi.org/10.1080/07494467.2014.906699.

	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Vita
	Abstract of the thesis
	Chapter 1. Introduction
	Chapter 2. Research and Literature
	2.1. Improvisational Freedom
	2.1.1. John Zorn’s Cobra (1984)

	2.2. Composer Authorship
	2.2.1. Agostino Di Scipio’s Two Pieces of Listening and Surveillance (2013)

	2.3. A Sense of Shared Purpose
	2.3.1. George Lewis’ Voyager

	2.4. Repulsion
	2.5. Theoretical Reconciliation of Improvisation and Composition
	2.5.1. Enactive Cognition
	2.5.2. Emergence
	2.5.2.1. John Conway’s Game of Life (1970)
	2.5.2.2. Alvin Lucier’s I am Sitting in a Room (1969)
	2.5.2.3. Cornelius Cardew’s The Great Learning, Paragraph 7 (1968)
	2.5.2.4. Terry Riley’s In C (1964)

	2.6. Technological Reconciliation of Improvisation and Composition
	2.6.1. Continuous Process
	2.6.1.1. John Cage’s Reunion (1968)
	2.6.1.2. Tim Blackwell’s Swarm Music (2003)

	2.6.2. The Audiovisual Element
	2.6.2.1. Noisefold’s Emanations

	2.6.3. Operational Logics
	2.6.3.1. Horizontal Operational Logics in Minecraft

	Chapter 3. Developing and Performing Self-regulating Performance Systems
	3.1. The Self-regulating Performance System
	3.2. Ecosystem One (2019)
	3.2.1. Ecosystem One: Intrinsically Continuous
	3.2.2. Ecosystem One: Conveying Cause and Effect
	3.2.3. Ecosystem One: Visual Elements
	3.2.4. Ecosystem One: Mappings in a Self-regulating System
	3.2.4.1. Ecosystem One: Creating Self-regulating Behavior

	3.2.5. Ecosystem One: Analysis

	3.3. Sinew (2020)
	3.3.1. Impact of the COVID-19 Pandemic
	3.3.2. Sinew: Operational Logics
	3.3.3. Sinew: Feature Logic
	3.3.3.1. Low-level Features
	3.3.3.2. Low-level Features: Spectral Flux in Unity
	3.3.3.3. Low-level Features: Smoothing and Scaling
	3.3.3.4. High-level Features
	3.3.3.5. Mapping Tool: The Sigmoid Function

	3.3.4. Sinew: Analysis

	Chapter 4. Concluding Thoughts
	References

