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Abstract 

Nondestructive imaging combined with recent advances in data processing techniques allows for 

minimally invasive, high-throughput, time-series analysis in both food and agriculture. The 

flexibility of neural network architectures allows for prediction of continuous output metrics, 

which may be valuable in analysis of both food and agriculture. In this work, nondestructive 

image analysis was used to demonstrate the relevance of image data to physical properties in 

food and agricultural systems as well as the potential for predictive models to increase the 

efficiency of quantitative data analysis. 

Apples undergoing in vitro gastric digestion were used as a model food system, and X-ray micro-

computed tomography data were shown to relate to peak force of apple tissue during 

compression. This relationship was probed further using a deep learning approach, where the 

compression curves of apple tissue during in vitro gastric digestion were predicted using a 

regression convolutional neural network (CNN) model. Results under cross-validation 

demonstrated strong accordance between predicted and measured compression curves, with an 

R2 of 0.939 and RMSE of 4.36 N across measured force values. This relationship declined in 

samples from a holdout set, with an RMSE of 14.3 N, although this result was influenced 

strongly by the incubation medium tested (water vs. gastric juice). 

Within the agricultural domain, the task of nondestructive yield estimation was demonstrated in 

vineyards. Images of grapevines collected using proximal sensing were associated with yield 

measured at harvest using a commercial yield monitor, allowing for a dataset  of 23,581 yield 

measurements predicted using 164,699 images to be collected. Three deep learning architectures 

were used to predict the measured yield values from the images: object detection, CNN 

regression, and a transformer regression network. Regression-based architectures were used to 
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eliminate the bottleneck of hand-labeling images. Results demonstrated that regression methods 

performed comparably to object detection methods without the need for hand labeling. Grape 

yield from within a training set, was correlated with model output at a mean absolute percent 

error of 6.4% when aggregated into 10 m regions using a transformer model. This study also 

demonstrated performance on a representative holdout set, with an error of 18% obtained using 

the same model and conditions. 

Overall, this study demonstrated the potential of deep learning combined with nondestructive 

imaging for quantitative analysis of food and agricultural systems. Results demonstrated that 

image data can be related to mechanical properties of food materials as well as yield in an 

agricultural environment. 
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CHAPTER 1. INTRODUCTION 

Throughout human history, mathematical techniques with theoretical applications have typically 

outpaced their accessibility. For example, the Radon Transform used to reconstruct computed 

tomography (CT) images was first described in 1917, but the first CT scanner was not developed 

until over half a century later, in 1972 (Kalender, 2006; Ramlau and Scherzer, 2018). Likewise, 

convolutional approaches to computer vision and pattern recognition were discussed as early as 

1980, and almost 20 years later, in 1998, the technique was only viable for low-resolution 32x32 

pixel images (Fukushima, 1980; LeCunn et al., 1998). Another 14 years passed before larger 

image sizes could be processed, demonstrated in 2012 by Krizhevsky et al (Krizhevsky et al., 

2012). Although technological innovations will continue to emerge in the near and far future, 

recent advances in availability of computational resources and development of algorithms have 

made rapid and accurate analysis of biological systems formerly too complex to assess now 

possible (Kamilaris et al., 2017). 

As an example, benchtop micro-CT instruments are now capable of resolving on the order of 10 

µm, with scans taking place in less than an hour (Dhondt et al., 2010). The accessibility of these 

benchtop instruments coupled with the benefit of a nondestructive, quantitative 3D imaging 

platform provides opportunities for applications in biological sciences, where nondestructive 

data collection helps to reduce sample preparation time and variability in time-series data 

(Bultreys et al., 2016; Schoeman et al., 2016). Specifically in the field of food analysis, 

biological variability is a challenge, and procedures such as texture analysis require extensive 

subsampling within replicate measurements to get a reliable result (M. C. Bourne, 2002). This 

practice is both time and resource intensive, due to both the raw material and labor requirements. 
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Considering the efficiency of image data collection, the prospects of quantifying information 

from cameras represents a promising direction in areas where efficiency is particularly 

important. Specifically, the agricultural domain exemplifies an area with a high volume of raw 

material, small profit margins, and a large labor requirement. This labor requirement can make 

optimal crop management cost-prohibitive. For example, due to the labor-intensive aspect of 

vineyard management, typical operations are conducted on the “block” level at the smallest 

spatial scale, where a block can be as large as 30 acres (E.J. Gallo Winery, 2020). This gap 

between the level of spatial variability and the level of management practice represents an 

opportunity for growers to optimize their crop year-to-year (Priori et al., 2013). However, before 

management decisions can be made on such a fine spatial scale, growers need large-scale, high-

resolution data. Camera sensors present an encouraging solution to this challenge. Cameras have 

become smaller and more prevalent, allowing for a data collection platform with the key 

properties of being high-throughput, minimally invasive, and inexpensive (Kwon and Park, 

2017). As such, the throughput and cost advantages of consumer camera sensors as a data 

collection platform hold promise as tools for improving efficiency. 

In both the utilization of time-series micro-CT in food analysis and implementation of a color 

imaging in agricultural environments, image analysis allows for collection of data which would 

otherwise be impractical or even impossible. While many food researchers have attempted to 

quantify changes during dynamic processes, such as digestion (Drechsler and Ferrua, 2015; 

Swackhamer et al., 2019), ripening (Volz et al., 2003), or storage (Eboibi and Uguru, 2017; 

Fortuny et al., 2003), these measurements have primarily used discrete samples for each time 

point and are manually performed. Likewise, agricultural researchers typically sample their crop 
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during the growing season to assess ripeness and quality (Hellman, 2004; Zoui et al., 2010), but 

these discrete samples are time and labor-intensive to collect.  

To mitigate those challenges, nondestructive imaging combined with recent advances in image 

processing techniques will allow for minimally invasive, high-throughput, time-series analysis in 

both food and agriculture. Some image-based interventions have been explored recently, such as 

in the nondestructive analysis of ice cream microstructure during storage (Pinzer et al., 2012), or 

the hyperspectral analysis of grapes on the vine (Aquino et al., 2018). However, recent 

advancements in the area of deep learning for image analysis have improved the robustness and 

accuracy of image analysis algorithms, and therefore hold promise in increasing the applicability 

for nondestructive image analysis (Lecun et al., 2015). Yet, a majority of image-based neural 

network tasks have revolved around image classification and object detection (Kamilaris and 

Prenafeta-Boldú, 2018). While these two tasks are useful and applicable to a wide array of fields, 

they are not typically quantitative or used to predict a continuous response variable, making them 

less suited in the measurement of food properties or the quantification of parameters important to 

the agricultural industry, such as evapotranspiration or crop yield. However, due to the flexibility 

of neural network architectures, prediction of continuous output metrics from image data inputs 

is possible, and the exploration of this use case may be valuable in the analysis of both food and 

agricultural systems (Häni and Roy, 2019). 

In summary, new techniques in image data acquisition and interpretation have the potential to 

make large impacts in both the time-series food analysis and agricultural management spaces. In 

food analysis, collection of time-series data is time and resource-intensive due to the destructive 

nature of many measurement techniques and the high variability. Moreover, measurements such 

as hardness and moisture content determination tend to be lump-sum measurements, rather than 
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spatially dependent metrics. In the agricultural domain, due in part to the technical and logistical 

challenges of data collection, current practices involve treating large regions of growing crops as 

a single unit, ignoring the differential needs of plants within that space. In both the food and 

agricultural domains, these limitations may be overcome through the use of quantitative imaging 

as a nondestructive, spatially resolved platform. 

 

In the studies to follow, novel applications of recent techniques in the field of quantitative 

imaging and machine learning are discussed. Although the studies are conducted over a range of 

length scales, from micrometers to hectares, each study follows the same general pipeline (Fig. 

1.1). Applications of micro-CT are presented first as an example of the advantages of image 

processing within a controlled experimental environment. Next, machine learning is assessed as 

a tool for analysis of CT data and quantification of continuous physical properties of food 

systems. Finally, to test the scope of applicability of image-based machine learning techniques in 

agricultural systems, novel image processing techniques applied to data collected with low-cost 

sensors in an uncontrolled agricultural environment is demonstrated. The overall objective of the 

dissertation was to demonstrate the applicability of nondestructive imaging for quantitative 

analysis to food and agriculture. In all cases, the rapid and nondestructive nature of the imaging 

Figure 1.1. General pipeline for each study. Image acquisition involves collection of raw data. Image 

processing includes operations such as resizing, cropping, scaling, or otherwise modifying the images for input 

into the model. The model itself refers to the algorithm which accepts 2D or 3D images as an input and 

produces a quantitative output variable. 
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technique was used to accelerate tasks which would formerly require extensive time or labor to 

perform. The specific objectives of this study are as follows: 

1. Assess the effectiveness of nondestructive quantitative imaging for measuring physical 

properties in food systems during biological processing. 

a. Determine whether micro-CT imaging can be used to measure biophysical 

changes during biological processing, using in vitro gastric digestion of apple as a 

model system. 

• Hypothesis: Micro-CT imaging can quantify changes in food structure 

over time, and the sensitivity will allow for significant differences between 

digestion treatments to be observed within the digestion time. 

b. Compare changes observed using quantitative micro-CT imaging with destructive 

measurements of hardness and moisture content during in vitro gastric digestion. 

• Hypothesis: Image-based metrics and destructive measurement of 

moisture content will demonstrate similar trends over the digestion time. 

2. Evaluate the synergy between quantitative imaging and machine learning for 

nondestructive prediction of mechanical properties of food systems. 

a. Leverage micro-CT imaging for calculation of spatially resolved food structure by 

way of compression curves without destruction of samples, using in vitro gastric 

digestion of apple as a model system. 

• Hypothesis: Compression profiles of apple tissue can be estimated directly 

from 3D CT data using an end-to-end machine learning approach.  

b. Explore the feasibility of machine learning as a high-throughput method for 

analyzing time-dependent trends in food processing. 
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• Hypothesis: Robust machine learning algorithms trained on 3d CT data 

will be capable of depicting time-dependent softening of apples during in 

vitro gastric digestion using. 

3. Investigate the effectiveness of nondestructive quantitative imaging in combination with 

machine learning for acceleration of human tasks in viticulture. 

a. Develop a low-cost data collection and analysis pipeline using off-the-shelf 

hardware to generate geospatially resolved image data in vineyards and use image 

data to predict grape yield nondestructively. 

• Hypothesis: Deep learning models trained on images of grapevine 

canopies will be able to use image features to predict grapevine yield, 

either by localization of grapes within the canopy or by directly predicting 

yield from an input image. 

b. Explore the practicability of using end-to-end models designed to predict yield 

directly from image data, as opposed to the more conventional object detection. 

• Hypothesis: End-to-end models will allow for higher quality yield 

predictions without the need for hand-labeling or manual model tuning. 
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CHAPTER 2. LITERATURE REVIEW 

Computational power and resource availability is beginning to outpace the complexity of 

algorithms developed for data analysis, and these advancements in accessible computing 

resources have led to rapid development of new techniques and applications (Li and Chen, 

2014). In the application of new computational methods, one of the major developments has 

been the design of tools for processing large amounts of data. One of the most impactful 

developments has been techniques which leverage graphics processing units (GPUs) for 

massively parallel computation (Raina et al., 2009). As a result, in the field of computer vision, 

datasets on the order of millions of images are widely accessible (Krizhevsky, 2009; Lin et al., 

2014; Russakovsky et al., 2015), and leveraging data on this scale is now possible. The 

accessibility of large amounts of data and the models to understand it are driving innovation in 

domains like food and agriculture, where emerging techniques such as computer vision (CV) and 

machine learning (ML) are being applied to numerous areas of interest. 

Specifically, there has recently been increased attention on the functional aspects of foods: health 

benefits such as satiety, sustained nutrient release, or enteric delivery of acid-unstable probiotics 

or nutrients (Dye and Blundell, 2002; Halford and Harrold, 2012; Mattila-Sandholm et al., 2002; 

Norton et al., 2014). The food functional properties can be diverse; thus, thorough 

characterization of food before consumption and during digestion is essential for the 

understanding of potential biological function of the food under study. While there are currently 

methods which allow for characterization of food functionality, methods for food 

characterization and analyses of the subsequent data can be made more resource and time 

efficient with CV and ML methods. 
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In addition to the potential for application of CV and ML methods in food analysis, the 

agricultural field also represents an area which may benefit from resource and time efficiency 

improvements possible with new computational resources. Historically, the agricultural sector 

has been fast to incorporate new technological advancements. Although conventional methods of 

food production had sustained humanity for thousands of years, the rising population in the 

middle of the 19th century led to the rapid adoption of technology by the food and agricultural 

sector, which has allowed crop yield per unit area to grow each year since (Borlaug, 2002). Now, 

as the global population continues to rise exponentially, the pace of development in agricultural 

technology has continued to accelerate (W. J. Chancellor, 1981), leading most recently to a 

widespread interest and adoption of CV and ML techniques (Kakani et al., 2020; Kamilaris and 

Prenafeta-Boldú, 2018). Specifically, one notable area of interest for growers is yield prediction, 

which offers considerable benefit to growers. For example, in viticulture, information about 

expected crop yield allows growers to adjust crop management via measures like cluster thinning 

to improve grape quality (De La Fuente et al., 2015). Additionally, accurate yield estimation 

allows for labor and storage considerations to be considered early, to avoid excess waste and lost 

profit (Nuske et al., 2014b). 

In this review, recent advances in computer vision and machine learning will be outlined. 

Additionally, the state of the art for quantitative analysis in food structural breakdown and 

viticultural yield estimation will be examined, along with areas where CV and ML methods may 

provide benefit. 

2.1. Recent Advances in Computer Vision and Machine Learning 

Since the inception of CV and machine learning ML, which occurred at roughly the same time 

(Frank Rosenblatt, 1958; Roberts, 1963), the power and application of these combined methods 
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has greatly expanded. Until recently, ML has been roughly divided into two complementary 

tasks. Feature extraction, where input information is processed to remove irrelevant data and 

produce explanatory numerical representations, can be followed by pattern classification, where 

features are used to produce a desired response, such as assignment of a class value to the input 

(Duda et al., 2000; Nixon and Aguado, 2002). While these steps are commonly optimized 

together, a theoretically perfect feature representation of an input would be simple to classify; 

likewise, a perfect classification algorithm would work even with low quality features (Duda et 

al., 2000). Considering these principles, a subset of ML known as deep learning (DL) follows the 

first notion in which feature extraction is the primary focus using a technique called 

representation learning. In DL, the process for representation learning is driven by the 

backpropagation method (LeCun et al., 1989), where a gradient of an objective function is 

calculated with respect to the parameters within the model used to produce the result. 

Backpropagation allows for optimization by adjustment of the parameters of an arbitrarily large 

model to generate ideal representations of input data via simple differentiation and iteration, as 

long as the model is differentiable with respect to an objective function (Lecun et al., 2015). 

While the concept of representation learning via backpropagation has existed for decades, only 

recently have these methods seen widespread use, primarily due to the design of techniques 

leveraging GPUs for efficient image processing and computation of grad ients (Krizhevsky et al., 

2012; Raina et al., 2009). Primarily, the method which has been employed most often for 

efficient computation on GPUs is the convolutional neural network, or CNN, which makes use of 

learned kernels of sizes ranging from 3x3 to 7x7 pixels applied to images via a sliding window 

approach (Szegedy et al., 2015). These kernels allow for regional information to be incorporated 

into increasing levels of abstraction. Additionally, processing of large images can be done 
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efficiently, without requiring a large number of model weights, since the same small kernel is 

applied to the entire image (Lecun et al., 2015; LeCun et al., 1989). The convolutional approach 

led to an explosion in vision-based models in the last 10 years (Dhillon and Verma, 2020) (Table 

2.1). Recently however, a new model architecture known as the transformer has emerged as a 

powerful model for vision-based tasks. The transformer model does not explicitly make use of 

convolutions, but instead uses attention mechanisms to incorporate regional-based information, 

requiring a larger amount of memory to do so as compared with a typical CNN (Carion et al., 

2020; Dosovitskiy et al., 2020; Vaswani et al., 2017). Leveraging both convolutional and 

attention-based techniques, vision-based deep learning methods have been developed for a 

variety of tasks, including image classification, object detection, image segmentation, instance 

masking, image generation, and more (Table 2.1). Of these tasks, image classification and object 

detection are some of the most common, due to their wide area of application (Guo et al., 2016). 

Image classification models are trained to output a vector representing the probability of an input 

image belonging to a set of possible classes. During training, models are generally trained by 

minimizing the negative log likelihood of predicting the correct class (Shrestha and Mahmood, 

2019). However, the negative log likelihood objective function can be replaced by a different 

objective function, such as mean squared error (MSE) for regression tasks (Fu et al., 2018). 

Additionally, removal of the final classification layer entirely leaves only the feature extraction 

stage of the model. This allows the image classification architecture to be used in more complex 

models, such as the Single Shot Detector (SSD) model, which leverages the Visual Geometry 

Group (VGG) backbone for object detection (Table 2.1) (W. Liu et al., 2016).  

SSD and other object detection models are therefore models with increased complexity as 

compared with image classification models. Most object detection models have two stages: one 
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stage for proposing regions where objects may be present, and another stage for classifying and 

more accurately localizing objects in the proposed regions (Wu et al., 2020). Classification is 

performed the same way as in image classification models, where a vector of class probabilities 

is used along with a negative log likelihood objective function. For localization, object detection 

models are trained using a regression loss function such as MSE on a vector of four values 

representing the location of the bounding box (x and y coordinates along with box dimensions, 

for example) (Ren et al., 2017). The additional complexity created by these two stages and 

multiple objective functions generally leads to models which are slower to both train and use for 

prediction. However, some approaches, such as those used by the You Only Look Once (YOLO) 

and SSD models, skip the region proposal step and simply use the same set of regions for any 

input image (Table 2.1). This leads to models with increased speed, at the expense of a small 

amount of accuracy (W. Liu et al., 2016; Redmon and Farhadi, 2018). 

Other common models include those trained for the task of segmentation. These models are 

typically trained to output a pixel mask with a height and width equal to the input image size, 

with each (x, y) pixel location represented by a vector of class probabilities, similar to a 

classification task, but at a pixel level (Minaee et al., 2021). Segmentation models are generally 

trained using an objective function which rewards each pixel for which the correct class is 

predicted and penalizes pixels where the model does not select the correct class, such as the 

Generalized Dice Loss (Sudre et al., 2017). Instance segmentation represents a particularly 

challenging subset of both general segmentation as well as object detection models, where 

models are trained to detect and classify objects in an image, and additionally output pixel-level 

masks for each distinct object (Hafiz and Bhat, 2020). These models, such as Mask R-CNN, use 
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multiple loss functions to represent the detection, classification, and masking components which 

comprise the task of instance segmentation (He et al., 2017). 

Finally, the creation of the generative adversarial network (GAN) has opened opportunities for 

the use of deep learning in the creation of images, rather than analysis alone (Goodfellow et al., 

2014). GAN models are trained using two separate networks: a generator and a discriminator 

network. The generator is trained to generate an image similar to images within a dataset and the 

discriminator is trained to operate on a set of both real images from the dataset along with 

generated images, with the goal of detecting the real and fake examples. The generator is 

penalized for producing images which the discriminator can easily pick out. Conversely, the 

discriminator is penalized for failing to spot the fake images. After training, the discriminator is 

typically not required, and the generator is used on its own to produce realistic but fake images 

which are difficult to differentiate from real-life examples. There are many examples of GAN 

models (Fei et al., 2021; Isola et al., 2017; Karras et al., 2020), but the primary novelty lies in the 

adversarial training procedure, as opposed to the specific architectural implementation. 
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Table 2.1. Notable deep learning architectures for vision-based tasks. Model performance on image classification 

tasks reflects ImageNet top-1 performance in percent (Deng et al., 2009). Performance for object detection and 

instance segmentation models is given as box AP on COCO (Lin et al., 2014). Segmentation performance listed 

represents Cityscapes mean IoU in percent (Cordts et al., 2016). Gaps in the table represent unreported values.  

Task Architecture Novelty Introduced 
Parameters 

(Millions) 
Performance References 

Image 

Classification 

AlexNet 
GPUs for training models on 

huge datasets 
60 63.3 

(Krizhevsky 

et al., 2012) 

VGG  

(Visual 

Geometry 

Group) 

Simple but very deep model 

with small (3x3 convolution) 

for high performance 

144 74.5 

(Simonyan 

and 

Zisserman, 

2015) 

GoogLeNet 

Multi-scale convolutional 

kernels learned 

simultaneously 

5 66 
(Szegedy et 

al., 2015) 

ResNet 

(Residual 

Network)  

Residual connections for 

training deeper networks 
60 78.6 

(He et al., 

2016) 

MobileNet 

Depthwise separable 

convolutions for parameter 

reduction 

5.4 75.2 

(Howard et 

al., 2019, 

2017; Sandler 

et al., 2018) 

EfficientNet 

Neural architecture search for 

network optimization via 

width and depth scaling 

120 87.3 
(Tan and Le, 

2019, 2021) 

ViT 

(Vision 

Transformer) 

Attention mechanisms in 

image classification 
304 85.3 

(Dosovitskiy 

et al., 2020) 

Object 

Detection 

R-CNN 

(Region-based 

CNN) 

Region proposal followed by 

classification using CNNs 
53 34.9 

(Girshick, 

2015; 

Girshick et 

al., 2014; Ren 

et al., 2017) 

YOLO 

(You Only 

Look Once) 

Object detection at multiple 

scales with residual 

connections and upsampling 

steps but no learned region 

proposals  

65 33 

(Redmon et 

al., 2016; 

Redmon and 

Farhadi, 

2018, 2017) 

SSD 

(Single Shot 

Detector) 

Object detection at multiple 

scales of the VGG backbone 

with no learned region 

proposals 

26.3 24.4 
(W. Liu et al., 

2016) 

DETR 

(Detection 

Transformer) 

Attention mechanisms in 

object detection 
60 44.9 

(Carion et al., 

2020) 

Segmentation 

U-Net 

Encoder-decoder for learned 

multi-step downscaling and 

upscaling with shared 

information (skip 

connections) 

7.7 -- 
(Weng and 

Zhu, 2015) 

FCN 
Encoder for information 

extraction followed by 
134 65.3 

(Long et al., 

2015) 
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(Fully 

Convolutional 

Network) 

upscaling for pixelwise 

segmentation 

DeepLab 

Deep encoder-decoder 

network with either 

conditional random fields 

applied to upscaled feature 

maps (V1 and V2) or atrous 

convolution for multi-scale 

contextualization (V3) 

60 81.3 

(Chen et al., 

2017, 2018, 

2015) 

Instance 

Segmentation 

Mask-RCNN 

Pixelwise segmentation 

within learned region 

proposals 

55 37.1 
(He et al., 

2017) 

PA-Net 

(Path 

Aggregation 

Network) 

Improvement on Mask-RCNN 

via optimization of 

information flow by 

combining abstract and low-

level features within the 

model 

-- 42 
(Liu et al., 

2018) 

YOLACT 

(You Only 

Look at 

Coefficients) 

Real-time instance 

segmentation via generation 

of whole-image masks and 

instance weights applied to 

generated masks 

-- 34.1 
(Bolya et al., 

2020, 2019) 

Image 

Generation 

GAN 

(Generative 

Adversarial 

Network) 

A class of architectures based 

around iterative optimization 

of one network to generate 

data and another to 

differentiate real from 

generated data to learn to 

generate increasingly realistic 

data  

-- -- 
(Goodfellow 

et al., 2014) 

 

2.2.  Analysis of Food Structure and its Breakdown in Digestion: Conventional Methods 

and Areas for Application of CV and ML 

One unique aspect to the study of food structure is that unlike most other physical objects in our 

daily lives, food is created with a structure which is meant to be destroyed. In this case, the 

destruction is carried out by the human digestive system, and the destruction is necessary for 

delivery of nutrients to the body. However, the rate, location, and time of delivery of nutrients is 

a key way in which foods can exhibit functionality (Norton et al., 2014). This functionality is 

driven by the interaction of food structure and composition with the human digestive system. 
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The human digestive process can be broken into four major stages: mastication, gastric digestion, 

small intestinal digestion, and large intestinal fermentation (Bornhorst and Singh, 2014). 

Mastication and gastric digestion serve to break down food materials for efficient nutrient uptake 

in the small intestine (Parada and Aguilera, 2007). Indigestible and undigested material which 

leaves the small intestine is then fermented by the resident microbiota and the remaining material 

is excreted as waste (Singh et al., 2015). 

Although most nutrient uptake occurs in the small intestine, efficient physical and chemical 

breakdown of food microstructure in the mouth and stomach is essential for releasing nutrients 

from the food matrix (Singh et al., 2015). In this context, food microstructure will be defined as 

food matrix components which exist on the order of 0.1 to 100 μm (Aguilera, 2005). Some 

examples include porous matrices such as those found in fruits, vegetables, and processed grain 

products, cell packing in natural foods, extracellular tissue structure, and emulsion composition. 

Without efficient microstructural breakdown, research has shown that nutrients will not leave the 

food matrix and cannot be taken up by the body (Grundy et al., 2016a; Parada and Aguilera, 

2007). For this reason, if nutrient delivery is a desired outcome, an understanding of food 

microstructure and its interaction with the mastication and gastric digestion processes is essential 

for both the design of functional foods and the identification of potential functional properties of 

natural foods (Capuano and Janssen, 2021; Li et al., 2021; Norton et al., 2014). As an example, 

studies showing that processing of almonds is highly related to the release of lipid from the 

cellular matrix has led some researchers to question the validity of nutrition facts labels for 

almonds (Grundy et al., 2016b; Novotny et al., 2012). Furthermore, studies focusing on the 

extent of microstructural breakdown of almonds have been used to support claims that due to 
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their minimal breakdown, almonds provide fewer calories than their current label suggests 

(Grassby et al., 2014; Grundy et al., 2016b, 2015).  

2.2.1.  Analysis of Food Structural Breakdown 

This understanding of food microstructure and its breakdown during digestion typically requires 

qualitative and quantitative characterization of food systems, which can be achieved with a wide 

variety of measurement techniques (Nielsen, 2010). Qualitative characterization has included 

observations such as visual comparison of cell wall integrity before and after digestion, (Chen et 

al., 2011; Mennah-Govela and Bornhorst, 2016a) as well the appearance of contents in food 

particles as judged via localization of selectively stained material before and after digestion 

(Chen et al., 2011; Grundy et al., 2016a). Quantitative characterization performed in digestion 

research has included measurement of physical resistance to stress (Drechsler and Ferrua, 2015; 

Kong and Singh, 2009a; Nadia et al., 2021; Olenskyj et al., 2020; Somaratne et al., 2020), 

determination of moisture uptake (Kong and Singh, 2009a; Mennah-Govela and Bornhorst, 

2016b; Nadia et al., 2021; Swackhamer et al., 2019), and measurement of specific nutrients 

before and after the digestion process (Liang et al., 2012; Luo et al., 2015; Opazo-Navarrete et 

al., 2018; Qiu et al., 2012).  

Although these methods are widely used, challenges still arise in the study of temporal processes 

such as digestion. For qualitative measurement of food microstructure, optical techniques like 

visible microscopy or confocal laser scanning microscopy (CLSM) have been used previously to 

assess cellular disruption in materials like sweet potatoes, peanuts, protein gels, and almonds 

(Chen et al., 2011; Kong and Singh, 2009a; Mennah-Govela and Bornhorst, 2016b, 2016a; 

Opazo-Navarrete et al., 2018). In these studies, other than providing a visualization of the 
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appearance of food, the microscopy offered little to no quantifiable results. Moreover, the 

procedural requirements for these imaging procedures can be extensive. In Chen et al. (2011), 

although no staining was required, the authors embedded particles in gelatin for imaging, which 

required time to set. In Mennah-Govela and Bornhorst (2016a), samples were first fixed in 

formalin for four days, then dried in ethanol and embedded in paraffin wax. Samples were then 

cut with a microtome and left in a slide incubator for up to an additional day. In addition to 

representing time consuming procedures, extensive preparation can alter the structure of the 

material, as demonstrated by Rodgers et al. (2022, 2021), in which researchers conducted similar 

steps to prepare a mouse brain for histology: formalin fixation, ethanol drying, and paraffin 

embedding. Between each step, the authors leveraged synchrotron micro-computed tomographic 

imaging, during which the 3D structure of the brain was captured in less than 30 minutes. X-ray 

images demonstrated that quantifiable tissue changes took place during sample preparation, and 

the changes were not isometric throughout the material (Rodgers et al., 2022). 

Alternatively, as opposed to focusing on microstructure, some works focus instead on bulk 

mechanical properties to draw conclusions about microstructural behavior (Drechsler and 

Bornhorst, 2018; Liu et al., 2021). In these works, changing food texture during digestion 

(softening) or rheological properties were assessed to gauge the rate of the digestion process. 

However, textural metrics like maximum force at compression are scalar values measured on 

bulk solids which can be difficult to interpret with respect to mechanisms on the micro scale. For 

example, Liu et al. (2021) used texture analysis and rheometry to analyze the hardness, 

gumminess, shear, and frequency data of protein gels, along with SDS-PAGE analysis to study 

protein hydrolysis. Using this information, the authors proposed a mechanism of gel formation 

and breakdown during digestion. However, the detailed microstructure was unable to be 
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observed directly, as the mechanical and chemical analyses performed were destructive and did 

not allow for subsequent visualization of microstructure (Liu et al., 2021). 

Table 2.2. Representative papers on analysis of microstructure of solid food during digestion and other time -series 

processes. Rows with a * represent studies which appear under multiple categories, where multiple prop erties of the 

food material were assessed. 

Category Process 
Material 

Assessed 

Instrument 

Used 

Analysis 

Output 
Reference 

Microscopy 

Gastric 

Digestion 

Almond 

Scanning 

electron 

microscopy 

Qualitative 
(Swackhamer et 

al., 2019) 

Almond 

Light 

microscopy, 

Transmission 

electron 

microscopy 

Qualitative* 
(Kong and 

Singh, 2009a) 

Peanut CLSM Qualitative 
(Chen et al., 

2011) 

Sweet potato 
Light 

microscopy 
Qualitative 

(Mennah-Govela 

and Bornhorst, 

2016a) 

Sweet potato 
Light 

microscopy 
Qualitative 

(Mennah-Govela 

and Bornhorst, 

2016b) 

Gastrointestinal 

Digestion 
Almond 

Light 

microscopy 
Qualitative 

(Grundy et al., 

2016a) 

Mastication Almond CLSM Qualitative 
(Grundy et al., 

2015) 

Mechanical 

Testing 

Aging Cheese Texture analyzer Hardness* 
(Vásquez et al., 

2018) 

Cooking Sweet potato Texture analyzer Hardness 

(Mennah-Govela 

and Bornhorst, 

2016a) 

Gastric 

Digestion 

Almond Texture analyzer 
Compression 

curve* 

(Kong and 

Singh, 2009a) 

Apple Texture analyzer Hardness* 
(Olenskyj et al., 

2020) 

Carbohydrate-

based foods 
Texture analyzer Hardness 

(Drechsler and 

Bornhorst, 2018) 

Potato Texture analyzer 

Failure strength, 

Toughness, 

Apparent 

Elasticity, 

Hardness 

(Drechsler and 

Ferrua, 2015) 
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Protein gel Rheometer 

Flow behavior, 

storage and loss 

moduli 

(Liu et al., 2021) 

Protein gel Texture analyzer Hardness 
(Somaratne et 

al., 2020) 

Wheat and rice 

products 

Texture analyzer. 

Rheometer 

Hardness, Flow 

behavior, 

Storage and loss 

moduli 

(Nadia et al., 

2021) 

Gelation Protein gels Texture analyzer Hardness 

(Opazo-

Navarrete et al., 

2018) 

Nondestructive 

Imaging 

Aging Cheese 
Hyperspectral 

camera 

Spectral 

reflectance* 

(Vásquez et al., 

2018) 

Bubble growth 

Dough 
Synchrotron X-

ray 

Image intensity, 

Porosity 

(Turbin-Orger et 

al., 2015) 

Dough X-Ray micro-CT 
Image intensity, 

Porosity 

(Trinh et al., 

2013) 

Drying Tarkhineh Color camera  
Geometry, 

Image texture 

(Ghaitaranpour 

et al., 2017) 

Foam decay Milk 
Synchrotron X-

Ray 

Image intensity, 

Porosity 

(Eggert et al., 

2014) 

Frying 
Chicken 

nugget 

Hyperspectral 

camera 
Image texture 

(Qiao et al., 

2007) 

Frying, storage 
Potato, 

Chocolate 

Color camera, 

light microscopy 
Image texture 

(Quevedo et al., 

2002) 

Gastric 

Digestion 
Apple X-Ray micro-CT 

Image intensity, 

Porosity* 

(Olenskyj et al., 

2020) 

Staling Bread Color camera  Image texture 
(Nouri et al., 

2018) 

 

For more holistic analysis of breakdown, microscopy can be coupled with quantitative metrics 

obtained via mechanical testing (Beaulieu et al., 2001; Kong and Singh, 2009a; Mennah-Govela 

and Bornhorst, 2016b), particle size analysis (Chen et al., 2011), moisture and pH measurement 

(Mennah-Govela and Bornhorst, 2016a), or chromatographic analysis (Opazo-Navarrete et al., 

2018). The interaction between macroscale mechanical properties and the microscale can be 

important, such as when disruption of food microstructure on the order of micrometers in the 
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form of moisture uptake influences a food particle’s tendency to break apart on the macro scale 

(Kong and Singh, 2009a). Conversely, in certain food systems, fracture that occurs on the macro 

scale increases surface area and therefore allows for an increased extent of reactions that occur 

on the micro scale, such as enzymatic or hydrolysis reactions, which may lead to cell rupture 

(Bornhorst et al., 2016). However, although qualitative and quantitative measurements can be 

coupled, the conventional analyses for these properties are destructive, meaning multiple 

observations cannot be made on the same sample. 

In summary, within the study of food digestion, no single measurement technique can effectively 

characterize the entire concert of processes occurring as food is digested. Still, in experiments 

which couple qualitative and quantitative metrics for a more holistic analysis of digestion, due to 

the destructive nature of each of these measurements, time-series analysis of a single sample is 

impossible. 

2.2.2.  Role of CV and ML in food analysis  

To solve the problem wherein time series analysis of a single sample is prevented due to the 

destructive nature of conventional methods, the combination of CV and ML has the potential to 

bridge the gap between qualitative and quantitative measurements, allowing for more powerful 

and efficient analysis. For example, one potential area for CV and ML to aid in research would 

be to quantify or classify food textural information from image data, allowing for both 

qualitative visual observations to be coupled with quantitative assessment. Variation in patterns 

of intensity and color within an image, known as image texture, can be a rich source of 

information about the sample under study (Nixon and Aguado, 2002). Specifically, 

quantification of image texture has been used previously to nondestructively quantify changes in 
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food materials during processes such as frying and chocolate bloom (Quevedo et al., 2002), 

bread staling (Nouri et al., 2018), bread drying (Ghaitaranpour et al., 2017), chicken frying (Qiao 

et al., 2007), and cheese ripening (Vásquez et al., 2018). In these studies, nondestructive imaging 

allowed the researchers to follow a single sample during a dynamic process and make continuous 

quantitative measurements, allowing for quality assessment without excess waste (Table 2.2). 

Similarly, application of a ML classifier to image features has enabled some researchers to 

perform tasks on food samples such as quality assessment and even food analysis (Table 2.3). In 

particular, Qiao et al. (2007) used leave-one-out cross validation to evaluate the predictive 

capacity of a model which implemented a multilayer perceptron classifier for prediction of 

mechanical properties of chicken nuggets from color imagery. The authors were able to relate 

predicted and measured properties with an R2 of between 0.62 and 0.7.  

Table 2.3. Representative studies on computer vision and machine learning in food and postharvest technology. 

Features Extracted and Classification Method columns are combined for deep learning studies, as the models are 

used for both purposes. 

Features 

Extracted 

Classification 

Method 
Task 

Material 

Assessed 

Instrument 

Used 

Predicted 

Value 
Reference 

Grey level co-

occurrence 

matrix (GLCM) 

features 

Linear 

correlation 
Food analysis Bread 

Color 

camera 

Moisture, 

Firmness, 

Springiness, 

Consumer 

rejection 

(Nouri et al., 

2018) 

GLCM features 

Multilayer 

perceptron 

(MLP) 

Food analysis 
Chicken 

nugget 

Color 

camera 

Hardness, 

Toughness, 

Energy to 

break point 

(Qiao et al., 

2007) 

GLCM features 
Linear 

correlation 
Food analysis Tarkhineh 

Color 

camera 

Moisture 

Content 

(Ghaitaranpour 

et al., 2017) 

Fast Fourier 

Transform 

(FFT), 

Histogram 

analysis 

K-nearest 

neighbor, 

MLP 

Defect 

detection 
Apple X-Ray 

Level of 

defect 

(Kim and 

Schatzki, 

2000) 

Local binary 

patterns (LBP), 

Gabor filters, 

FFT, Texture, 

Linear 

discriminant 

analysis 

(LDA), 

Quality 

assessment 
Carrot X-Ray CT 

Undesirable 

fibrous 

tissue class 

(Donis-

González et 

al., 2016) 
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Contrast, 

Intensity 

Features 

Quadratic 

discriminant 

analysis 

(QDA), 

Mahalanobis 

distance, MLP 

LBP, Gabor 

filters, Texture, 

Contrast, 

Intensity 

Features 

LDA, QDA, 

Mahalanobis 

distance, MLP 

Quality 

assessment 
Chestnut X-Ray CT 

Quality 

class 

(Donis-

González et 

al., 2014) 

Geometric, 

Elliptical, 

Fourier 

descriptors, 

Invariant 

geometric 

moments, Color, 

Statistical 

textures, Filter 

banks, Invariant 

color moments 

Multi-class 

support vector 

machine with 

radial basis 

function 

Quality 

assessment 

Corn 

tortilla  

Color 

camera 

Hedonic 

sub-class 

(Mery et al., 

2010) 

Deep learning 

(VGG) 

Classification, 

Food analysis 

Food 

photos 

Color 

camera 

Food 

category, 

calorie 

count 

(Ege and 

Yanai, 2017) 

Deep Learning  

(Faster R-CNN) 

Classification, 

Food analysis 

Food 

photos 

Color 

camera 

Food 

category, 

calorie 

count 

(Liang and Li, 

2017) 

Deep learning 

(Customized GoogLeNet) 
Classification 

Food 

photos 

Color 

camera 

Food 

category 

(C. Liu et al., 

2016) 

Deep learning 

(ResNet) 
Classification 

Food 

photos 

Color 

camera 

Food 

category 

(Kaur et al., 

2019) 

Deep learning 

(Mask R-CNN) 

Defect 

detection 
Apple 

Color 

camera 

Decayed 

tissue 

localization 

(Stasenko et 

al., 2021) 

Deep learning 

(YOLO, SSD) 

Defect 

detection 
Apple 

Color 

camera 

Defect 

category of 

image 

object 

(Valdez, 2020) 

Deep learning 

(VGG) 
Classification Date 

Color 

camera 

Ripening 

stage 

(Nasiri et al., 

2019) 

Deep learning 

(Mask R-CNN) 

Defect 

detection 
Strawberry 

Color 

camera 

Bruised 

tissue 

localization 

(Zhou et al., 

2021) 
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In addition to experimental measurements, CV and ML are extensively used in the post-harvest 

industry, where combining image textural features with classification-based machine learning 

has been implemented for categorizing foods based on quality attributes such as fluid buildup 

(Kim and Schatzki, 2000), damaged tissue (Donis-González et al., 2013), and discoloration 

(Mery et al., 2010). In particular, Kim and Schatzki made use of X-ray imaging for classification 

of watercore in Red Delicious apples into three classes to obtain a performance of over 60% 

(Kim and Schatzki, 2000). The authors utilized 2D medical X-ray imaging as a nondestructive 

method of classifying food samples that have varying properties. 

While these existing studies have demonstrated success using more conventional CV and ML 

methods, the representation learning approach offered by deep learning may allow for even more 

complex inferences to be made from image data (Table 2.3). Specifically, several food 

classification datasets composed of between 4,350 and 256,000 images categorized into between 

6 and 520 individual food classes have emerged in recent years (Kaur et al., 2019). These 

datasets permit the development of models which can be used for more efficient food journaling 

for dietary and medical purposes via classification of food based on an image. More than just 

classification, datasets which include images of food along with their caloric value have also 

been developed for similar purposes (Ege and Yanai, 2017; Liang and Li, 2017). Caloric 

prediction represents an example of a regression task (prediction of a continuous as opposed to a 

discrete value), although the flexibility of DL architectures provides multiple avenues for 

approaching the problem. For example, Liang and Li (2017) used an object detection model 

(Faster R-CNN) to locate the food and a phantom placed in the image (a coin) to estimate food 

volume. Calorie count was then estimated based on caloric content of the predicted food per unit 

volume multiplied by the predicted volume. On the contrary, Ege and Yani (2017) took a 
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different approach and trained a model end-to-end to output the caloric content of an image of 

food along with a predicted food class simultaneously. The model was then optimized based on 

an objective function which combined performance on both classification and regression tasks. 

In summary, while the study of food digestion and other time-series processes is important, the 

conventional methods used for food analysis tend to prevent repeated observations made on a 

single sample, leading to inefficient use of time and resources. However, there are numerous 

applications of CV and ML within the food and postharvest industries which extract relevant 

information from image data in a nondestructive fashion. More recently, the rise of DL has 

allowed for the creation of even more accurate predictive models with a broad range of 

applicability within the food domain. Considering the power and flexibility of techniques like 

ML and DL, there is an opportunity for these approaches to be applied towards overcoming the 

challenges of time-series analysis in the food industry, but future research is warranted. 

2.3. Yield Estimation: Conventional Methods and Areas for Application of CV and ML 

While CV and ML have extensive applicability and promise in the food and postharvest 

industries, their use in an agricultural context, before food is harvested, is also well-established. 

In particular, yield estimation is a use case which has seen extensive development in recent years 

and may also benefit from recent advances in DL. The interest in this task has been driven by 

inefficiency in current industry practice. For example, one of the most widely used methods of 

viticultural yield estimation involves manually sampling from a small percentage of crops (e.g., 

approximately 1%) and extrapolating the distribution of yield data to the entire field. However, 

although this method is popular due to its low cost and complexity, manually sampling from 

vines requires a large labor investment, and the results can still be imprecise (Liu et al., 2020). 

The American Society for Enology and Viticulture produced a set of general recommendations 
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regarding manual sampling in 1992 (Wolpert and Vilas, 1992) which include first counting the 

clusters in 10 or more vines spaced randomly throughout the field to estimate cluster count per 

vine. The second step involves individually weighing 10 or more randomly acquired grape 

clusters, followed by collection of over 200 additional clusters for weighing together. The 

authors concede that many vineyards will have to make concessions regarding the sample 

quantity, as the cost of the procedure may not be within a grower’s budget (Wolpert and Vilas, 

1992). More recently, one study on counting grape bunches demonstrated that measuring 15 

vines took 1.5 hours and led to a 5% error in measuring yield on the same 15 vines, without 

attempting to extrapolate to other vines (Wulfsohn et al., 2012). Finally, as an additional point of 

reference, in the grape industry, yield prediction error has been reported to be accurate to within 

30% using manual sampling (Sun et al., 2017). 

Due to the labor requirement and inaccuracies of the manual sampling methods, techniques such 

as remote and proximal sensing have been applied to yield estimation to help increase the 

efficiency and accuracy of the process. Remote sensing can be conducted in two primary ways: 

via satellite or via unmanned aerial vehicles (UAVs). While satellite sensing can be conducted 

rapidly over a large area due to their large field of view, the tradeoff in satellite remote sensing is 

in the resolution of the data, which is low, typically between 10 and 30 m2 (Khaliq et al., 2019). 

As a result, gaps between crop rows are typically averaged into the generated pixels of the 

resulting map. Cloud cover can also influence results, as satellites orbit at high altitude where 

clouds can occlude the ground. As opposed to satellite-based methods, remote sensing using 

UAVs can provide increased resolution, but the method requires a trained pilot to conduct the 

imaging procedure (Khaliq et al., 2019; Yang et al., 2019). In both satellite and UAV methods, 

for specialty crops with foliage such as tomatoes and grapes, the overhead angle and low 
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resolution of remote sensing images typically prevents direct visualization of the harvestable 

portion of the crop in the image data (Di Gennaro et al., 2019). Instead, vegetation indices such 

as normalized difference vegetative index (NDVI) and leaf area index (LAI) are used  for 

association with relevant agricultural parameters such as yield, grapevine vigor, or fruit quality 

(Anastasiou et al., 2018; Kazmierski et al., 2011; Sun et al., 2017).  

Remote sensing in this case is an example of nondestructive imaging, and the vegetative indices 

extracted from image data represent features extracted for modeling. Specifically, indices are 

plotted against known values of yield or other quality parameters to produce a calibration which 

can be used for estimating yield based on indices of future unseen samples. These correlative 

approaches have been shown to perform well in association of remote sensing imagery with 

quality parameters such as total soluble solids, pH, and mechanical properties of berries 

(Anastasiou et al., 2018). Additionally, in other grain crops, such as corn and soy (Johnson, 

2014) as well as cereals, wheat and barley (Panek and Gozdowski, 2021) remote sensing-based 

measurement of vegetative indices such as NDVI and land surface temperature and subsequent 

correlative modeling has been used extensively for yield estimation, with correlations 

demonstrating an R2 value of between 0.61 and 0.77 at a resolution ranging from 250 m 

(Johnson, 2014) to the entire country scale (Panek and Gozdowski, 2021). However, in 

grapevines, properties of the foliage do not always correlate well with vine yield in terms of 

mass, and remotely-sensed yield estimates are prone to error (Anastasiou et al., 2018; Sun et al., 

2017). Therefore, remote sensing studies aiming to predict yield in vineyards have had only 

limited success, with correlative R2 values from satellite-based studies ranging from as low as 

effectively 0 (Anastasiou et al., 2018) to as high as 0.59 at a 30 m resolution (Sun et al., 2017). 

UAV studies have demonstrated an increased correlation, but results were variable, with studies 
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demonstrating correlation fits with an R2 of between 0 and 0.95 (Table 2.4). Notably, the best fit 

model employed a multilayer perceptron model along with vegetation indices to increase 

performance (Ballesteros et al., 2020). Still, in most cases, the overall inconsistency in the 

performance of UAV and satellite studies likely arises from error in the relationship between 

vegetative indices and yield. Proximal imaging, on the other hand, seeks to account for this error 

by imaging the fruit directly.  

Table 2.4. Recent works on proximal, UAV, and satellite imaging for yield estimation with associated experimental 

conditions. Performance metrics listed are for prediction of mass per vine in proximal studies and either mass per 

vine or yield density (mass per unit area) in UAV and proximal studies. Ground resolution of UAV and satellite 

imaging studies are included under the Acquisition Method column. Notably, one UAV study has a resolution of 

“Proximal,” as the study used image segmentation to identify grape pixels, as opposed to vegetation indices which 

other remote sensing studies employed. In this context, VSP refers to vertical shoot positioned trellis management.  

Acquisition 

Method 
Model 

Number 

of vines / 

Field size 

Sensor Management Performance Reference 

Proximal 

Segmentation 

and linear 

correlation 

10 RGB VSP R2: 0.73 
(Diago et al., 

2012) 

Proximal 

Berry count and 

linear correlation 
950 RGB 

VSP or Split-V 

trellis, basal 

leaf removal 

R2: 0.6 – 0.73 

(Nuske et al., 

2014b, 

2014a) 

Berry count 

calibrated to 

previous harvest 

yield and linear 

correlation 

112 RGB 
Error: -2.47 – 

11.65% 

Proximal 

3D bunch 

modeling and 

linear correlation 

14 RGB VSP R2: 0.778 

(Herrero-

Huerta et al., 

2015) 

Proximal 

Berry count 

adjusted with 

Boolean model 

84 RGB VSP R2: 0.78 
(Millan et 

al., 2018) 

Proximal CNN 40 RGB VSP R2: 0.54 

(Silver and 

Monga, 

2019) 

UAV 

(Proximal) 

Segmentation 

and linear 

correlation 

68 RGB VSP 
Accuracy: 

22.2 – 91.7% 
(Di Gennaro 

et al., 2019) 
32 RGB 

VSP 

Vines with 

optimal 

R2: 0.82 

RMSE: 0.67 

kg/vine 
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conditions 

selected 

UAV 

(1 m) 

Vegetative 

indices and linear 

correlation 

0.032 ha  Multispectral 

VSP (78%) and 

Umbrella 

(22%) 

R2: 0 – 0.71 
(Carrillo et 

al., 2016) 

UAV  

(0.03 m) 

Vegetative 

indices and linear 

correlation 

0.9 ha  Multispectral 
Cordon spur-

pruned 

R2: 0.33 – 

0.80 

(Matese and 

Di Gennaro, 

2021) 

UAV 

(0.07 m) 

Vegetative 

indices and MLP 

model 

~0.28 ha  Multispectral VSP 
R2: 0.65 – 

0.95 

(Ballesteros 

et al., 2020) 

Satellite 

(1000 m) 

Vegetative 

indices and linear 

correlation 

10,000 ha Multispectral Varied 
R2: 0.73 – 

0.88 

(Cunha et 

al., 2010) 

Satellite 

(10 m) 

Vegetative 

indices and linear 

correlation 

1.4 ha Multispectral 
Double cross-

arm 
R2: 0 – 0.33 

(Anastasiou 

et al., 2018) 

Satellite  

(10 m) 

Vegetative 

indices and linear 

correlation 

56 ha  Multispectral Unspecified 
R2: 0.04 – 

0.59 

(Sun et al., 

2017) 

 

Proximal imaging conducted from the ground has seen extensive research and has demonstrated 

better relationships between predicted and measured yield values, as shown in Table 2.4 (Bargoti 

and Underwood, 2017; Gené-Mola et al., 2019; Gongal et al., 2015; Santos et al., 2020). 

However, while proximal imaging is advantageous due to the increased resolution of images 

(millimeter resolution as opposed to 10- or 30-meter resolution in remote sensing) and visibility 

of the harvestable region of fruits like grapes, issues with occlusion of fruit by foliage arise as 

proximity increases (Gongal et al., 2015; Mu et al., 2020; Nuske et al., 2014a). Occlusion poses a 

considerable problem, as most models have used conventional computer vision methods with 

geometric and color-based features to segment or count visible grapes (Table 2.4). Some studies 

have demonstrated benefit from incorporating variable grape visibility into yield estimation 

models for improving performance using statistical modeling (Millan et al., 2018; Nuske et al., 

2014b). However, these corrective procedures rely on prior information about the fruit structure 
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or past data. Nevertheless, even with the complication occlusion brings, performance of the 

models has been encouraging, with R2 values as high as 0.82 for the relationship of predicted and 

measured yield (Di Gennaro et al., 2019). That said, previous studies have been limited in scope. 

Specifically, almost all studies use vines trained with a vertical shoot positioned (VSP) trellis and 

heavily pruned canopies (Table 2.4). This trellis type, while common in high value vineyards, is 

less common in the California Central Valley, where high heat and low humidity necessitate 

increased shading (Hayman et al., 2012). Moreover, mechanical vine management, which has 

become very common in the Central Valley, results in increased occlusion of grape clusters by 

the canopy, as mechanical trimming systems cannot selectively remove shoots obscuring grape 

clusters (Kaan Kurtural and Fidelibus, 2021). In addition to being largely limited to VSP 

trellises, the previous studies in Table 2.4 have made use of unsupervised CV and ML methods, 

where image features are pre-determined, and the images used to develop the model are the same 

images used to assess performance. More specifically, no study reported performance on a 

representative test set. So, while previous models may be viable in environments other than those 

which were specifically used for model development, the lack of a true holdout set prevents 

conclusive determination of the robustness of the existing approaches. 

Fortunately, the accessibility and performance of DL has potential to improve the predictive 

performance and robustness of yield estimation models on unseen data. Recently, researchers 

have applied more robust convolutional approaches to the task of detecting grapes in proximal 

imagery. Specifically, Santos et al. compared the performance of the Mask R-CNN and YOLO 

models in grape detection (Santos et al., 2020). Similarly, Milella et al. used a custom CNN 

approach for patch-based classification of grape regions in images (Milella et al., 2019). Both 

studies demonstrated high performance on holdout data not used for model development, but the 
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models were trained and evaluated only on their ability to localize grape clusters in proximal 

imagery, not to predict yield. This is significant, as previous research has demonstrated that 

visible fruit in imagery does not consistently correlate with yield (Millan et al., 2018; Nuske et 

al., 2014a). Notably, one previous study has demonstrated the application of a CNN regression 

approach for prediction of grape yield from image data, where a model was developed to extract 

features from an image using convolutional kernels and these features were used to predict a 

scalar, continuous value of grape yield from the original image data (Silver and Monga, 2019). 

However, unlike other recent studies (Di Gennaro et al., 2019; Millan et al., 2018; Nuske et al., 

2014a), images were not collected using a scalable method, such as image acquisition from a 

vehicle-mounted camera. Instead, images were collected manually with a smartphone. 

Additionally, vines were prepared specifically for imaging, as in Diago et al. (2012), via 

placement of a calibration marker in each frame. Finally, extensive manual processing of the 

images was required, including brightness normalization and manual cropping. Nevertheless, the 

study does provide a proof-of-concept for utilization of DL in viticultural yield estimation.  

As in the food and postharvest technology domains, the flexibility and performance of DL 

models will likely drive future research into viticultural yield estimation from proximal image 

data. Current gaps in this research include accounting for grape occlusion as well as a lack of 

studies demonstrating utilization of more performant DL models for yield estimation as opposed 

to fruit localization alone. 

2.4. Conclusions 

Developments which allow powerful and robust computer vision and machine learning tools to 

be accessed by researchers and members of industry in food and agriculture have numerous 

benefits. Nondestructive analysis in the food industry permits simultaneous visualization and 
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quantification of valuable metrics throughout a time-dependent process, requiring less time and 

material than the corresponding destructive analysis would take. Computer vision and machine 

learning based models in the field of postharvest quality assessment have also seen extensive use 

for evaluation of a large volume of food material without wasting resources. Similarly, in the 

agricultural environment, models that produce accurate predictions of specialty crop yield may 

allow growers to optimize the quality and handling of their crops without necessitating large 

investments in labor or destructive measurement on valuable crops. Although nondestructive 

quantitative imaging techniques have shown promise in food and agricultural domains already, 

the recent rise in high-performance and flexible deep learning models has the potential to 

increase the accuracy and accessibility of these techniques. However, future research into how to 

best apply generic deep learning models to these specific domains is necessary to support their 

use on a large scale.  



32 
 

CHAPTER 3. NONDESTRUCTIVE CHARACTERIZATION OF STRUCTURAL 

CHANGES DURING IN VITRO GASTRIC DIGESTION OF APPLES USING 3D TIME-

SERIES MICRO-COMPUTED TOMOGRAPHY 

3.1. Abstract 

An in-depth understanding of food structural breakdown during gastric digestion is paramount 

for development of health-promoting foods. This study presents a novel application of 

nondestructive time-series micro-computed tomography (micro-CT) to study structural 

breakdown during in vitro gastric digestion of apples (var. Granny Smith). Data collected from 

micro-CT images were compared with results from destructive analyses of apple tissue hardness 

(texture analysis) and moisture uptake during soaking in gastric juice or deionized water. Apples 

in gastric juice showed similar trends in intensity change (from micro-CT images) and hardness 

decrease (from texture analysis) over time compared with apples in water (p < 0.001). Apples in 

gastric juice or water exhibited similar changes in porosity and showed similar moisture uptake 

(p > 0.05). Overall, micro-CT imaging allows for assessment of changes along with detailed 

structural characterization of solid foods during in vitro gastric digestion. 

Published as:  

Olenskyj, A.G., Donis-González, I.R., Bornhorst, G.M., 2020. Nondestructive characterization of 
structural changes during in vitro gastric digestion of apples using 3D time-series micro-

computed tomography. J. Food Eng. 267, 109692. 
https://doi.org/10.1016/j.jfoodeng.2019.109692 
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3.2.  Introduction 

The effect of food on human health has given rise to the study of food functionality 

(McClements et al., 2009). Functionality in food systems describes food that provides basic 

nutrition as well as desirable health effects, which can include satiety, bowel regulation, and/or 

sustained energy (Lähteenmäki, 2013). These health benefits are related, as they arise due to the 

interaction between food and the body. Therefore, to optimize the potential for positive health 

impact upon consumption of a food, it is vital to understand the physical and chemical 

mechanisms behind food behavior in the body (Grundy et al., 2016a; Mezzenga et al., 2005; 

Norton et al., 2014). 

When considering solid food products, one major limiting factor behind the exertion of positive 

health effects is food structural breakdown (Bornhorst et al., 2015; Kong and Singh, 2009b). 

Food structural breakdown occurs as a result of physical and chemical stresses placed on the 

food during mastication and gastric digestion. These stresses occur over multiple length scales 

and include moisture uptake, chemical hydrolysis, erosion, and fracture (Kong and Singh, 2009a; 

Norton et al., 2014; Singh et al., 2015). Although both the physical and chemical processes 

which create these stresses are carried out simultaneously in the body, isolation of a subset of 

processes allows for a better understanding of individual aspects of digestion (Minekus et al., 

2014). As these individual physical and chemical processes cannot be separated in vivo, in vitro 

digestion techniques can be utilized to understand the fundamental mechanisms of  food 

breakdown during different stages of digestion (Hur et al., 2011). For example, in vitro gastric 

digestion can be performed such that the food does not experience mechanical stresses, allowing 

for isolation of the effects of moisture uptake and chemical hydrolysis.  
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Still, eliminating the impact of mechanical stresses using in vitro methods does not remove all 

complexity from the study of gastric digestion. Gastric digestion is a multiscale process, 

specifically with regard to food structural breakdown (Bornhorst et al., 2016; Ho et al., 2013). 

The length scales on which breakdown occurs during digestion are typically divided into 

macroscale, microscale, and nanoscale. The macroscale generally represents properties on the 

length scales of 10-3 to 1 m. Food microstructure has characteristic lengths between 10-7 to 10-3 

m, and nanoscale considerations are typically between length scales of 10-9 to 10-7 m (Aguilera, 

2005; Ho et al., 2013). Although food properties at these scales can be studied individually, 

properties at smaller length scales influence those at larger length scales, and vice versa (Ho et 

al., 2013; Mebatsion et al., 2008). Therefore, mechanistic studies of gastric digestion need to 

account for processes occurring at multiple scales (Bornhorst et al., 2016). In the context of food 

structural breakdown, previous attention has been focused on the macroscale (Drechsler and 

Ferrua, 2015; Kong and Singh, 2009b) and/or microscale (Hur et al., 2009; Kong and Singh, 

2009b; Morell et al., 2017; Shelat et al., 2014; Wooster et al., 2014) changes during digestion. 

Macrostructural properties and their changes during digestion have been surveyed using a variety 

of techniques. Texture analysis has been used to assess changes in hardness of foods subjected to 

in vitro gastric digestion (Kong and Singh, 2008; Mennah-Govela and Bornhorst, 2016b). 

Similarly, rheometry has been used to monitor bulk fluid properties of digesta during gastric 

digestion (Bornhorst et al., 2013; Shelat et al., 2014; Wooster et al., 2014). It should be noted 

that most methods of measuring macrostructural properties involve destruction of the food 

matrix such that a sample cannot be measured more than once during the process (M. Bourne, 

2002; Chen and Opara, 2013). 
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Coupled with macroscale characteristics, visualization of food microstructure during digestion is 

possible using various forms of microscopy and tomography. Optical microscopy techniques 

have been used to demonstrate changes in food cellular structure as a result of gastric digestion 

(Chen et al., 2011; Mennah-Govela and Bornhorst, 2016b). However, similar to macrostructural 

methods, samples can only be assessed once due to the destructive nature of these techniques. 

Additionally, alteration of the food matrix may occur during sample preparation, which can 

involve freeze drying, embedding, and slicing of sample tissue (Dalmau et al., 2017; Llull et al., 

2002; Mennah-Govela and Bornhorst, 2016b). For this reason, three-dimensional (3D) 

nondestructive tomographic techniques are advantageous in characterizing changes in 

microstructure without causing changes that may occur during sample preparation. Two of the 

most prevalent nondestructive techniques are magnetic resonance imaging (MRI) and X-ray 

micro-computed tomography (micro-CT) (Herremans et al., 2014a; Lammertyn et al., 2003).  

While MRI is an effective method for studying moisture transport (Gulati et al., 2015; Xu et al., 

2017), 3D MRI studies on food structure typically use voxel sizes of greater than 50 μm in-plane, 

with slice thicknesses on the order of millimeters (Bernin et al., 2014; Groß et al., 2017; Heyes 

and Clark, 2003). Furthermore, acquiring these high-resolution images requires relatively long 

acquisition times. For example, a recent study of cherry tomato with 55 μm in-plane resolution 

and 0.5 mm slice thickness required an acquisition time of over 2 hours (Groß et al., 2017). On 

the contrary, micro-CT studies of apple microstructure have utilized isotropic voxel sizes of 

below 10 μm (Herremans et al., 2013; Mendoza et al., 2007). In the context of fruit imaging, 

studies have shown that components of fruit microstructure, such as void spaces in apples, are on 

the order of 100 μm in diameter (Verboven et al., 2008; Vicent et al., 2017). Therefore, enhanced 

resolution capability demonstrates an advantage of micro-CT over MRI for imaging apples.  
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However, although obtaining this level of resolution is a major advantage of micro-CT, the time 

required for image acquisition is still a limiting factor. In micro-CT imaging, attenuation of X-

rays is measured by a detector and 2D projections are saved as 16-bit images. The amount of 

attenuation, typically measured in Hounsfield units, is directly proportional to the density of the 

object being scanned (Schoeman et al., 2016). Rotating the sample around the z-axis between 

successive measurements of X-ray attenuation allows for the reconstruction of a 3D map of 

attenuation from the 2D projections. In this 3D image, the intensity of each voxel (volume 

element) represents the density of the sample in that location (Baker et al., 2012). This density 

map can be used to distinguish between air and liquid or to assess subtle variations in density. 

Due to the iterative nature of the method, micro-CT scanning is a compromise of time, 

resolution, and quality (Schoeman et al., 2016). Acquisition time can be improved by using a 

lower resolution, which requires fewer projections. Likewise, the number of projections can be 

decreased without changing resolution, but the likelihood of image artifacts increases (Barrett 

and Keat, 2004). Some of these compromises can be overcome by using synchrotron radiation, 

but these experiments require access to a synchrotron radiation source (Verboven et al., 2008). 

Additionally, work has been done in applying iterative techniques to image reconstruction to 

obtain images with a lower number of projections (Willemink and Noël, 2019). However, these 

methods are still in exploratory stages. Nevertheless, high-resolution scans of millimeter-scale 

objects have been recorded over the course of an hour or even faster with modern desktop 

instruments (Herremans et al., 2013; Mendoza et al., 2007; Trinh et al., 2013). Studies utilizing 

distinct samples for successive scans have used CT methods to observe microstructural changes 

due to frozen storage (Ullah et al., 2014; Zhao and Takhar, 2017), frying (Alam and Takhar, 

2016; Miri et al., 2006), and extended storage (Herremans et al., 2014a, 2013).  
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Remaining conscious of its limitations, previous researchers have even been able to utilize 

micro-CT methods for 3D scanning of time dependent processes in situ. This method of analysis 

is also referred to as four-dimensional (4D) imaging, where the fourth dimension is represented 

by time (Verboven et al., 2018). 4D techniques have been applied to food in the past, such as to 

visualize milk foam decay (Eggert et al., 2014) as well as to monitor changes in ice cream 

microstructure during temperature variation (Pinzer et al., 2012). 4D methods have also been 

applied to time-dependent food processes such as gas bubble formation and growth in bread 

dough (Trinh et al., 2013; Turbin-Orger et al., 2015). Of these studies, Trinh et al. utilized a 

desktop CT source as opposed to a synchrotron source. This limitation required the authors to 

use a longer imaging time of 45 minutes to maintain acceptable image quality at a voxel size of 

about 10 μm. Still, the selection of a desktop source allowed for the study to be performed 

outside of a specialized synchrotron facility (Trinh et al., 2013). 

High-quality images and quantitative, interpretable data obtained by previous researchers in the 

past demonstrate that high-resolution micro-CT methods may be useful to characterize changes 

during food digestion processes, as these changes take place on time scales of minutes to hours 

(Drechsler and Bornhorst, 2018; Mendoza et al., 2007). As such, micro-CT is a promising 

method for 3D time-series imaging of in vitro gastric digestion to nondestructively visualize 

changes in all 3 dimensions within food microstructure that occur over a relevant time scale. 

In this study, a 4D approach was utilized where the same sample was scanned in 3D over time 

using a desktop CT instrument to characterize changes occurring in situ. The objective was to 

determine if microstructural changes during gastric digestion can be detected and quantified 

using micro-CT. Additionally, results of the micro-CT imaging study were compared with 

traditional destructive approaches such as moisture content determination and analysis of tissue 
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hardness. To gauge the applicability of micro-CT imaging for the study of digestion and its 

relation to these destructive analyses, apple was selected as a suitable model food due to its 

porous matrix (Khan and Vincent, 1993) and use in previous studies. These previous applications 

of micro-CT in apples have included visualization and quantification of damage (Diels et al., 

2017; Herremans et al., 2013), characterization of microstructure (Herremans et al., 2014b; 

Mendoza et al., 2007; Vicent et al., 2017), and description and modeling of gas exchange 

involved in apple respiration (Ho et al., 2011; Verboven et al., 2008). Compared with those 

previous studies, this current study is novel for multiple reasons. First, it represents the first 

application of time-series micro-CT imaging to the study of gastric digestion. Additionally, the 

characterization of microstructural changes from image data was paired with conventional 

destructive analysis at each individual time point, as opposed to previous time-series micro-CT 

studies, which relied on analysis of image-derived microstructural properties alone during 

processing, and did not directly couple the image data with destructive measurements. 

3.3.  Materials and Methods 

3.3.1. Raw Materials and Sample Preparation 

Two volume bushels of apples (var. Granny Smith, size 56) were acquired from a local produce 

wholesaler (General Produce, Sacramento, CA) and stored at 1ºC for up to five weeks.  

Apples with initial brix between 12 and 15ºBx were cut into 12.7 mm (½ inch) strips along the 

direction of the apple core using a potato cutter and further cut into cubes using a knife. Any 

cubes containing seeds, peel, or core were discarded. The 12.7 mm cube size was chosen to give 

a large region of interest for CT image analysis (Fig. 3.1A-B). 
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Gastric juice was formulated according to Bornhorst and Singh (2013). The media was made by 

dissolving 8.78 g/L of NaCl (Fisher Chemical, Pittsburgh, PA), 1.5 g/L type II mucin (Sigma 

Aldrich, St. Louis, MO), and 1 g/L porcine pepsin (MP Biomedicals, Santa Ana, CA) in 

deionized water adjusted to pH 1.8 with 3 M HCl. 

 

Figure 3.1. Preparation of apple cubes for micro-CT imaging (A) and destructive testing (B). Timeline 

demonstrating the times at which images were recorded by the micro-CT instrument as well as times at which 

samples were taken for destructive testing (texture analysis and moisture content), indicated by the vertical dashed 

lines (C). 

3.3.2. Experimental Design  

Apples were incubated in deionized water (pH of approximately 5.7), simulated gastric juice, or 

air (used as a control). For the air treatment, cubes were wrapped in paraffin film (Bemis, 

Oshkosh, WI) to prevent moisture loss. For water and simulated gastric juice treatments, 8.75 

mL of liquid per apple cube was used, as this was determined to be a sufficient volume to 

submerge a single cube in the micro-CT sample tube. 

Two complementary methods were used to assess physical changes in apples during incubation: 

micro-CT imaging and destructive testing (Fig. 2). 3D micro-CT imaging was performed on a 
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single apple cube continuously over a 12.6-hour incubation in either gastric juice or water. This 

length of time, while not physiologically comparable to human digestion, allowed for the 

observation of microscale changes occurring in apple tissue during incubation. Destructive 

testing of hardness and moisture content was also performed on apple cubes incubated with 

similar conditions as compared to those during micro-CT scanning (Fig. 3.1C). All trials were 

performed in triplicate.  
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Figure 3.2. An outline of procedures used to obtain data from nondestructive micro -CT imaging (A) and destructive 

analysis of moisture content and hardness (B). 
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3.3.3. Micro-CT Imaging 

3.3.3.1. Image Acquisition 

For each micro-CT scanning session, one cube from an apple was selected from the outer middle 

region of the apple (Fig. 3.1A). Cubes were placed in a 3D printed holder such that the face of 

the cube which formerly faced away from the apple core (Fig. 3.1A) was facing vertically 

upwards in the sample tube, indicated by a dark-shaded face of the apple cube in Fig. 3.1C. The 

holder was used to immobilize the cube in a cylindrical plastic tube for use in the CT scanner 

(28.85 mm inner diameter). During micro-CT scanning, the temperature directly underneath the 

sample tube was logged every 2 minutes using a temperature logger (iButtonLink, Whitewater, 

WI). 

Micro-CT scanning was performed using a Scanco uCT 35 Evaluation System (Scanco USA, 

Wayne, PA), which was maintained and calibrated weekly using hydroxyapatite phantoms by the 

UC Davis Veterinary Medicine Center. Scans were taken with a voltage of 45 kVp and an 

exposure of 159 μAs with 1000 projections recorded over 180º. A 0.5 mm aluminum filter was 

used to mitigate the effects of beam hardening. The scanned area was 2048 by 2048 pixels in the 

circular plane of the sample tube. 2D slices were reconstructed using an adapted cone-beam 

filtered backprojection algorithm (Feldkamp et al., 1984). Each reconstructed 3D image stack 

represented 4.3 mm in the axial dimension (Fig. 3.1A), providing 18.5 μm isotropic resolution, 

with a scan time of 1.05 hours per 3D stack. Data were recorded in 16-bit grayscale values.  

For the air treatment, the entire apple cube was scanned. This was done by scanning three 

contiguous 3D stacks of images. The stacks were scanned in series, with the final concatenated 

3D stack representing approximately 13 mm in the axial dimension and requiring 3.15 hours of 
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scanning time per cube. After the first scan, the apple cube was scanned sequentially three more 

times, resulting in four total scans per apple cube per session. This provided an incubation time 

of around 12.6 hours per scanning session. The air treatment was meant to serve as a control 

where changes over time were expected to be minimal when compared to samples in liquid. 

For the gastric juice and water treatments, the scanned region in the axial dimension was 

decreased to allow for an increased number of scans to be conducted within the same 12.6-hour 

time frame. This effectively increased the resolution in the time dimension. One 3D stack (4.3 

mm axial length) was selected from the middle of the apple cube to reduce edge effects (Fig 

3.1C). The region within the cube was sequentially scanned 12 times for each apple cube, with 

each scan requiring 1.05 hours to complete (Fig 3.1C). After each 12-hour scanning session, the 

sample tube was removed from the instrument. In every case, apple cubes maintained their 

position and needed to be manually removed from the holders. 

In each scan, representing one time point within a scanning session, 232 two-dimensional (2D) 

images were reconstructed in DICOM format (Digital Imaging and Communications in 

Medicine), where the x and y axes represented the circular plane and the z axis represented the 

axial dimension (Fig 3.1A). 2784 reconstructed images were collected per scanning session. 

Replicate scanning sessions were performed on three separate days for each of the three 

experimental treatments for a total data set consisting of 25,056 images from nine cubes, each 

from a different apple. 

3.3.3.2. Image Pre-Processing 

Image processing was performed in MATLAB 9.5 (Mathworks Inc., Natick, MA). Images were 

recorded with a field of view sufficient to visualize the plastic 3D-printed holder (Fig. 3.2A). 
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Small regions of the holder were assessed for intensity changes over time and these changes 

were found to average less than 0.8% intensity increase within a scanning session. As such, no 

adjustments were made to the intensity or contrast of the images. 

For all analyses, after manual straightening, each image was cropped to a 601 x 601 pixel (11.1 x 

11.1 mm) region of interest in the center of the image such that each image represented only 

apple tissue and edge effects were minimized (Rizzolo et al., 2013). The images were then 

stacked to create a single array, stored as a MAT-file, representing a 3D reconstruction. 

3.3.4. Image Analysis 

3.3.4.1. Morphological Characteristics 

Morphological analysis was conducted by assessing properties of each 3D stack and noting the 

changes that occurred over time. Specifically, 3D stacks were binarized using Otsu’s method 

(Diels et al., 2017; Herremans et al., 2014a, 2013; Rizzolo et al., 2013). The first scan in each 

scanning session of the air treatment was taken to represent unmodified apple tissue. A 

binarization threshold was calculated for each of these scans and the average threshold value (n = 

3) was then applied to all scans in all treatments. After binarization, an opening operation with a 

spherical structuring element with 1 pixel radius was conducted to remove noise (Diels et al., 

2017). The number of black voxels (voxel value equal to 0) over the total voxels represented the 

porosity, with the assumption that black voxels represented void space, and white voxels (voxel 

value equal to 1) represented tissue. Pore size was determined by first calculating the volume of 

each connected black object in the stack and solving for a diameter assuming objects were 

spherical (Alam and Takhar, 2016). For comparison of pore diameter values, the pore diameter 

threshold accounting for 50% of total volume (d50) was calculated (Herremans et al., 2013). This 
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was done by fitting the diameter to a Rosin-Rammler distribution using nonlinear least squares 

(Hutchings et al., 2011): 

 
𝑄 = 1 − 𝑒

−(
𝑑

𝑑50
)

𝑏
 ∙ ln(2)

 
(3.1) 

Where Q is the cumulative diameter (%), d is a single diameter measurement (μm), d50 is the 

median pore diameter (μm), and b is a parameter describing the distribution broadness (unitless).  

3.3.4.2. Visualization and Quantification of the Digestion Process 

 

Figure 3.3. Graphical representation of process used to generate radial intensity profiles for apples scanned in the 

micro-CT instrument. Radial profiles are shown in Figure 3.5. 

Intensity variations within apple tissue were calculated using a radial intensity profile of each 

stack (Van Wey et al., 2014). The average intensity of the voxels on the four outer faces of the 

3D stack aligned with the axial plane was taken as a single intensity value, then additional 

intensity values were calculated by advancing each face towards the center of the cube with a 

step of one voxel (Fig. 3.3). While this did not represent a true radial measurement, as the sample 
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was cubic and not cylindrical, due to the dependence of the acquired profile on distance from the 

edge of the cube as opposed to location around the cube, the analysis is referred to as a radial 

measurement. A profile was created for each 3D stack within a scanning session and plotted such 

that each time point represented a single profile. Profiles within one scanning session were 

normalized by dividing all intensity values in the profile by the first data point, representing the 

outermost ring of pixels of the first 3D stack. After normalization, profiles across replicates were 

averaged. 

To better visualize the dataset, one scanning session from each treatment was selected. 3D stacks 

from each scanning session were concatenated into a single stack (four stacks from an apple in 

air, twelve stacks from an apple in gastric juice, and twelve stacks from an apple in water). The 

3D stack was then converted into a single 2D binary image using the k-means++ clustering 

algorithm (Arthur and Vassilvitskii, 2007). In this implementation of k-means clustering, each 

(x,y) coordinate in the radial plane was taken as a distinct sample. Voxel intensities along the z-

axis were treated as a set of observations corresponding to each sample. Using these values, each 

(x,y) coordinate was categorized into one of two groups, represented by either black (0) or white 

(1). These groups are intended to represent “digested” and “undigested” tissue, though this 

discrimination cannot be validated. Nevertheless, the operation was meant to produce an 

interpretable 2D binary image. In this case, the dataset consisted of one apple per treatment. 

Within each scanning session, the average intensity value of each 3D stack was recorded . 

Although the average intensity is not a unique description of a 3D stack, the value was calculated 

as a digital equivalent of destructive determination of hardness, where an entire apple cube is 

compressed to obtain a single hardness value. Average intensity values were then normalized to 

the intensity of the first scan and plotted against incubation time. For these intensity values to be 
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comparable to destructive testing (Section 3.3.5.2), intensity increases were multiplied by (-1) 

such that normalized intensity decreased during incubation. 

3.3.4.3. Statistical Analysis of Image Data 

The effect of incubation time (scan 1-12 over 12.6 hours) and experimental treatment (air, gastric 

juice, water) on overall intensity, porosity, and mean pore diameter was determined in SAS 9.4 

(SAS Institute, Cary, NC) using a mixed model with time as a repeated measure for each 

scanning session. Tukey’s multiple comparison test was used to compare mean values where 

main effects were significant. All values are reported as mean ± standard error of the mean (n = 

3) unless indicated otherwise. 

3.3.5. Static Incubation 

3.3.5.1. Static Incubation Experimental Setup 

Apples were cut into cubes as described in Section 3.3.1. Property measurements were conducted 

initially (before incubation), and at time points of 0.53, 1.60, 2.67, 3.73, 4.80, 5.87, 6.93, 8.00, 

9.07, 10.13, 11.20, and 12.27 hours of incubation in simulated gastric juice or water. These times 

corresponded with the time that each of the 12 scans recorded in the micro-CT scanner were 

half-way completed (Fig. 3.1C). For each time point, 12 cubes were placed in a 250 mL beaker 

containing 105 mL (8.75 mL per cube) of either gastric juice or water (Fig 3.1B). Soft plastic 

mesh was placed over the cubes to keep cubes submerged in liquid during incubation in a low-

temperature incubator (VWR, Radnor, PA) at 33ºC. Although this temperature is lower than 

typically utilized for in vitro digestion (37ºC), it was selected based on the recorded temperature 

within the micro-CT scanner during scanning. Preliminary trials showed that apples wrapped in 
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paraffin film did not show significant physical property changes over 12.27 hours at 33ºC. 

Therefore, static incubation was not performed for the air treatment. 

3.3.5.2. Physical and Chemical Property Measurements 

At each time point, a single beaker was removed from incubation and the 12 cubes were 

removed from the liquid using a strainer. To provide information on the environment in which 

the apples were incubating, pH and brix of the incubation medium was determined  using a digital 

pH meter (Fisher Scientific, Pittsburgh, PA) and digital refractometer (Hanna Instruments, 

Woonsocket, RI). Brix of the initial gastric juice (1.6 ºBx) was subtracted from all brix values 

collected in the gastric juice treatment. Moisture content of the apple tissue was determined 

gravimetrically by drying two apple cubes to constant mass at 70ºC under approximately 0.85 

bar vacuum for 24 hours (AOAC, 2000). Hardness of the 10 remaining cubes was measured 

using a TA.XT2 Texture Analyzer (Texture Technologies Corp., Hamilton, MA) with a 45 mm 

cylindrical probe and a 50 kg load cell. Samples were compressed to 50% strain at 1 mm/s (Paula 

and Conti-Silva, 2014), and the peak force during compression was used as a measure of 

hardness (Texture Technologies Corp., Hamilton, MA). Within each replicate digestion, 

hardness values were normalized by dividing by the hardness of the undigested sample 

(Drechsler and Bornhorst, 2018). 

3.3.5.3. Statistical and Data Analysis of Static Incubation Trials 

Changes in hardness over incubation time were fit to a modified two-parameter Weibull model: 

 𝐻𝑡

𝐻0

 = 𝑒−(𝑘𝑡)𝛽
 

(3.2) 
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Ht represented hardness at time t in hours and H0 signified initial hardness. The scale parameter k 

(h-1) and shape factor β (dimensionless) were estimated from nonlinear least squares fitting. This 

model was selected based on its previous application to fitting of hardness decrease over 

digestion time (Bornhorst et al., 2015; Drechsler and Bornhorst, 2018) as well as its utilization in 

solid loss during digestion (Kong and Singh, 2011). 

The effect of experimental treatment on Weibull model parameters was determined using a two-

tailed Student’s t-test. The effect of experimental treatment (simulated gastric fluid or water) and 

treatment time (0 – 12.27 h) on pH, brix, moisture content, and hardness was determined with a 

two-way completely randomized analysis of variance computed using SAS 9.4 (SAS Institute, 

Cary, NC). A mixed model was implemented with replicate as a random factor. All values are 

reported as mean ± standard error of the mean (n = 3) unless indicated otherwise. 
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3.4.  Results and Discussion 

3.4.1. Image Acquisition and Analysis 

 

Figure 3.4. Reconstructed images taken from the center of each 3D stack. 2D images are displayed without contrast 

or intensity adjustment. 3D renderings from the final scan in each treatment have been histogram equalized for 

clarity. 

Prior to conducting this study, preliminary trials (results not shown) demonstrated that a 1-hour 

acquisition time with 1000 projections provided adequate resolution to visualize differences over 

the scan time selected. With these parameters, artifacts like blurring or shifting of the tissue 

during incubation were not observed. Reconstructions and 3D renderings for each treatment are 

included in Fig. 3.4. Although 12.6 hours is a longer time than typically studied in the context of 

digestion, results demonstrate that the reduced temperature of 33ºC in this system slowed the 

digestion process to allow for appropriate comparisons to be made with a shorter experiment 

conducted at 37 ºC. Based on a previous study, Granny Smith apples digested for 4 hours at 37ºC 

decreased to 28% of their initial hardness (Olenskyj et al., 2020). This value is very similar to the 
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value obtained in this study (27%) after 8 hours of digestion at 33ºC. Therefore, the increased 

image acquisition time was accounted for by the reduced digestion time caused by the lower 

temperature, and high-quality time-series images could be captured. 

3.4.1.1. Apple Morphological Characteristics 

Apple porosity was calculated from 3D image stacks for each scan (Fig. 3.5). Incubation time 

was the only main effect shown to have a significant effect on porosity (F-value = 23.81, p < 

0.001). However, the interaction between treatment and incubation time was found to be 

significant (F-value = 2.31, p = 0.0156). 

Porosity of apples in air was found to be 

21.99 ± 1.57% for the first scan and did 

not change significantly over the 

scanning time as assessed by post-hoc 

analysis (p > 0.05). Due to the larger 

voxel size used in this study as compared 

with previous studies on apple porosity, 

some error may be expected in the 

determined porosity value (Mendoza et 

al., 2007). However, as the objective of this study was to quantifying changes over time and 

between treatments, the resolution was sufficient to resolve these differences. Any error resulting 

in the voxel size would be present in all measurements, but still allows for comparisons to be 

made directly between different data sets collected in the current study. Moreover, two previous 

studies implementing micro-CT imaging on apples determined the porosity of Jonagold apples to 

Figure 3.5. Porosity of apples incubated in air (■), water (●), or 

gastric juice (x) over incubation time calculated from micro-CT 

stacks. Error bars represent standard error of the mean (n = 3). 
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be 23%, which is similar to the result obtained in this study (Verboven et al., 2008; Vicent et al., 

2017). 

Apples in both gastric juice and water showed a decreasing porosity over incubation time (p < 

0.001) from an initial porosity of 20.62 ± 1.35% for apples in gastric juice and 20.71 ± 1.67% for 

apples in water. Porosity for apples in gastric juice and water after 12.27 hours of incubation was 

16.18 ± 0.56% and 17.26 ± 2.44% respectively. Although apples in liquid media showed 

significant porosity decreases over time, neither of the liquid treatments was significantly 

different from apples in air at any time point (p > 0.05). This was likely due to the large variation 

seen in porosity of the apples in air. The gradual reduction in porosity for the apples incubated in 

gastric juice or water was likely due to moisture filling void spaces in the tissue. A similar 

phenomenon was observed in a micro-CT and MRI study of watercore disorder in apple tissue, 

in which free water filled voids, reducing the measured porosity (Herremans et al., 2014a). The 

lower initial porosity for apples in liquid relative to apples in air was likely due to moisture 

influx, which was occurring during the first scan. The lack of significant differences between 

gastric juice and water treatments (p > 0.05 at all time points) suggests similar moisture uptake 

for both treatments, which was confirmed using destructive measurements (Section 3.4.2.1). 

Pore diameter (d50) was calculated along with porosity for each scan. Overall statistical analysis 

showed treatment, incubation time, and their interaction exerted significant effects on pore 

diameter (F-values = 711.39, 2.66, and 6.47, respectively; p < 0.001 for the treatment and 

interaction effect and p = 0.0092 for the time effect). Median pore diameter for the central stack 

in the axial dimension of apples in air was 173.53 ± 3.98 μm for the first scan and 181.20 ± 4.71 

μm for the final scan. This difference was found to be significant by Tukey’s multiple 

comparison (p < 0.0001). This may have been due to a small amount of moisture migration out 
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of the apple into the space between the apple tissue and the inside surface of the paraffin film. 

Initial pore diameter for apples in gastric juice and water was 65.40 ± 1.50 μm and 64.19 ± 2.34 

μm, respectively. The smaller pore diameter may have been due to swelling of the tissue in the 

aqueous media. Pore diameter was not found to increase significantly over time for either gastric 

or water treatments (p > 0.05). 

Previously calculated average pore diameter of apples has been similar to those found here for 

Granny Smith apples in air, with 220 and 100 μm pore diameters found for Braeburn and Verde 

doncella apples, respectively (Herremans et al., 2014a, 2013). The variation in pore diameter 

from the previous studies compared to the current study may be because apples have different 

morphological characteristics depending on their variety (Vincent, 1989).  

3.4.1.2. Visualization of Changes to Apple Tissue during the Digestion Process 

 

Figure 3.6. Radial intensity profiles along the x-y plane over incubation time for apples in (A) air, (B) gastric juice, 

and (C) water. Intensity profiles represent intensity values averaged over the z axis and averaged again over all 

biological replicates, then divided by the first intensity value of the first profile such that all sets start from a 

normalized value of 1. Numbers adjacent to curves represent the scan number in the scanning session from which 

the curve is derived. 

The nondestructive nature of CT imaging allowed for differences in radial intensity profile over 

time to be visualized (Fig. 3.6). These radial profiles also give insight into the underlying 

mechanisms behind diffusion and reaction of gastric juice and water with apple tissue. For the air 

treatment (Fig. 3.6A), minimal change over time shows a lack of moisture migration or reaction 
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in the samples. The overall lack of changes for apples in air during incubation also suggests that 

any changes seen in the gastric juice and water treatments were due to the action of the 

incubation liquid itself, and not the micro-CT scanner or changes in the apple tissue that occurred 

during scanning. 

 For the gastric juice treatment (Fig. 3.6B), radial profiles along the first 1 mm from the outside 

of the cube have high intensity, perhaps due to some sample disruption due to cutting the edge of 

the apple tissue. However, past this 1 mm boundary, radial profiles show curves characteristic of 

Type II diffusion (Hopkinson et al., 1997), where gradual penetration of gastric juice causes an 

increase in normalized intensity from approximately 0.87 in unmodified apple tissue to 

approximately 0.95 after the tissue is fully saturated with gastric juice. Further support for the 

mechanism of Type II diffusion can be found in the measured moisture content over time 

(Section 3.4.2.1), which showed a linear increase in g water/g dry matter over the incubation 

time (Peterlin, 1965). This behavior suggests that diffusion of solutes in digested tissue may 

occur much faster than in undigested tissue. Radial profiles for apples in water (Fig. 3.6C) do not 

display as clear of a trend, with a gradual overall decrease in intensity over the profile for all 

scans, even for unmodified apple tissue. However, these data demonstrate potential for 

nondestructive imaging methods to be used for modeling of diffusion processes during digestion 

in future studies. 

In addition to the radial profiles, binarized image stacks, shown as 2-D representations of the 

incubation process in air, gastric juice and water, are displayed in Fig. 3.7. These images support 

the radial intensity plots (Fig. 3.6), with apples in air showing little change, apples in gastric 

juice demonstrating high density tissue in the center by the end of incubation (shown by white 

pixels), and apples in water showing a region in the center of the cube which remained 
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unchanged (in black). Both the radial profiles and binary images indicate that the digestion of 

apples is diffusion-limited, with outer regions of apple tissue showing changes before inner 

regions. This phenomenon is supported by previous work on visualization of digested almonds, 

where the outer layers of tissue are affected first by the digestion medium (Ellis et al., 2004; 

Mandalari et al., 2008). Similarly, carrots and cheese in dyed acidic water demonstrate a front of 

dye penetrating the tissue from the outer edges inwards (Kong and Singh, 2009b; Van Wey et al., 

2014), highlighting the diffusion-limited mechanism. Although these results provide mechanistic 

insight on the digestion of apples, future work in this area is needed to model this process and to 

determine the impact of digestion on the physical structure of the tissue. Future studies could 

also examine the properties of food that exert the most influence over the magnitude of diffusion 

within digested tissue, as well as examine the impact of structural changes that occur during 

digestion on diffusion of solutes and enzymes into food matrices.  

3.4.1.3.Quantification of Overall Changes in Apple Tissue during the Digestion Process 

 

 

Figure 3.7. Binarized 2D images representing k-means clustering of 3D stacks collected during incubation. White 

pixels represent brighter (higher density) regions of the original stacks and black pixels represent darker (lower 

density) regions. Images shown are from one replicate of each treatment as representative examples. The listed 

times are the times at which each scan was 50% complete. Borders around each 2D image from each time point 

were added after clustering. 
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One of the key advantages of micro-CT image acquisition in the context of digestion is the 

ability to nondestructively probe the local distribution of densities as well as changing density 

over time within a food sample (Schoeman et al., 2016). However, in addition to requiring 

unique samples for each measurement, destructive measurements like analysis of hardness and 

moisture content assess macroscale properties, where the entire food sample contributes to a 

single numerical value (Ho et al., 2013; Mebatsion et al., 2008). For this reason, the 3D images 

collected in this study were also analyzed in a way that would be comparable to a measurement 

of moisture or texture by assessing the average intensity of the 3D stacks over time (Fig. 3.8).  

Raw data shown in Table 3.1 show that 

the 3D images demonstrated an increase 

in average intensity over time. Due to the 

relationship between intensity and density 

inherent in CT images (Lim and Barigou, 

2004), it was hypothesized that data 

collected from micro-CT images would 

correlate best with moisture uptake during 

incubation. However, unlike the moisture 

uptake, the increase in intensity was not a 

linear increase, and the trend was not 

equivalent for both gastric juice and water. For this reason, the data were normalized to the initial 

intensity value of each scanning session (similar to how the hardness data were reported) and 

reported as decreases for the purpose of visualization. When the data are presented in this 

manner, the trend in intensity change is similar to the trend seen in hardness (Section 3.4.2.1), 

Figure 3.8. Intensity of each 3D stack for apples incubated in 

air (■), water (●), or gastric juice (x) over time, expressed as 

averages ± standard error of the mean. Intensity values are 

normalized to the intensity of the first stack in each scanning 

session of each treatment. Stars represent significant 

differences between values for gastric juice and water 

treatments (p < 0.05). 
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where all apples show nonlinear changes over the incubation time, and apples in gastric juice 

show a greater degree of change as compared with apples in water. This relationship suggests 

that either destructive testing of hardness during gastric digestion or nondestructive assessment 

of intensity change using micro-CT may be able to characterize overall changes to tissue during 

gastric digestion. 

Table 3.1. Average intensity of 3D stacks collected from the micro-CT instrument over time for all treatments (n = 

3). Intensity values were recorded as 16-bit signed integers (range of -32,768 to 32,767). 

Time (h) 
Average Intensity (CT units) 

Air Gastric Water 

0.53 -- 2861 ± 53.7 2858 ± 64 

1.6 2796 ± 30.3 2907 ± 60.5 2915 ± 70 

2.67 -- 2968 ± 47.9 2948 ± 61 

3.73 -- 3011 ± 37.6 2960 ± 55.1 

4.8 2825 ± 32.2 3038 ± 32.4 2990 ± 49.5 

5.87 -- 3063 ± 21.4 2994 ± 48.3 

6.93 -- 3080 ± 21.4 2997 ± 55.6 

8 2818 ± 32.5 3099 ± 19.9 2999 ± 53.8 

9.07 -- 3117 ± 24.8 3004 ± 59.6 

10.13 -- 3120 ± 19.8 3007 ± 73.6 

11.2 2821 ± 28.4 3131 ± 17.4 3004 ± 89.5 

12.27 -- 3118 ± 18.2 3001 ± 97.5 

 

Overall statistical analysis showed treatment, incubation time, and their interaction exerted 

significant effects on intensity (F-values = 77.66, 49.53, and 8.11, respectively; p < 0.001 for all 

effects). Under post-hoc analysis, apples in air showed no significant change in intensity 

throughout the incubation. However, 3D stacks of apples in water and gastric juice both showed 

significant intensity difference from initial intensity after 2.67 hours (p < 0.05). Starting from a 

normalized intensity of 1.00, the normalized intensity of apples in gastric juice and water 
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decreased to 0.963 ± 0.0050 and 0.969 ± 0.0021 respectively after 2.67 hours. After 4.8 hours of 

incubation, the gastric juice and water samples were significantly different than the air samples 

(p < 0.001). Apples in air remained at an intensity of 0.989 ± 0.0012, and normalized intensity of 

apples in gastric juice and water decreased to 0.938 ± 0.0096 and 0.954 ± 0.0064 after 4.8 hours, 

respectively. After 8 hours of incubation, the intensity values from gastric juice and water 

treatments were significantly different from each other (p < 0.05), with apples in gastric juice 

showing a greater intensity change at all incubation times from 8 – 12 hrs. At the end of the 

incubation, apples in gastric juice had an intensity of 0.910 ± 0.014, whereas normalized 

intensity for apples in water was 0.951 ± 0.013. 

This greater intensity change over the incubation time for apples in gastric juice relative to 

apples in water contrasted with the porosity changes over time in both treatments, i.e. porosity of 

apples in gastric juice and water were similar throughout the incubation (Section 3.4.1.1). The 

discrepancy between these two measurements may be due to the binary nature of the porosity 

measurement. When binarizing an image, any given voxel is either tissue (1) or void (0). With 

similar moisture uptake, a lack of significant difference between the two treatments is expected. 

However, measurement of mean intensity provides additional information, wherein 

microstructural changes due to prolonged contact with gastric juice may have been reflected by 

an increase in intensity of a given voxel over the incubation time. This increase in intensity is not 

captured in the porosity measurement, as the binarized voxel would be represented by a (1) 

regardless of the raw intensity value. 
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3.4.2. In Vitro Incubation and Destructive Physical Property Measurement 

3.4.2.1. Quantification of Hardness and Moisture Changes in Apple Tissue during 

Incubation 

Overall statistical analysis showed treatment, incubation time, and their interaction exerted 

significant effects on hardness (F-values = 578.09, 521.52, and 46.48, respectively; p < 0.001 for 

all effects). Apple initial hardness was 70.6 ± 0.48 N. Hardness decreased significantly over 

incubation time for both treatments (p < 0.001), though apples incubated in water had a 

significantly higher hardness averaged over all time points (p < 0.001). The interaction between 

incubation liquid and incubation time was significant (p < 0.001), demonstrating that the 

incubation liquid affected the change in hardness over time. Parameters from the modified 

Weibull model, k (h-1) and β (dimensionless) were 0.148 ± 0.00503 h-1 and 1.09 ± 0.110 for 

apples incubated in gastric juice and 0.0356 ± 0.0097 h-1 and 0.486 ± 0.0680 for apples incubated 

in water, respectively. Curve fits were found to be in good accordance with experimental data 

(Fig. 3.9A), with R2 values of 0.981 ± 0.010 and 0.957 ± 0.025 for gastric juice and water, 

respectively. Both model parameters were significantly different between gastric juice and water 

(p < 0.01).  

Hardness curves (Fig. 3.9A) demonstrate that hardness of apples incubated in water decreases at 

a similar rate (p > 0.05) to apples in gastric juice for the first 3.73 hours of incubation, with an 

average hardness of 45.6 ± 4.3 N for both treatments after 3.73 h incubation. However, at times 

greater than 3.73 h, apples incubated in water had significantly higher (p < 0.001) hardness 

compared to apples in gastric juice. After 12.27 hours of incubation, apples incubated in water 

had a hardness of 37.3 ± 7.9 N compared to those incubated in gastric juice, which had a 
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hardness of 7.74 ± 4.1 N. These data align 

well with the mean intensity results 

(Section 3.4.1.3), where apples in gastric 

juice showed a greater degree of change 

throughout the incubation relative to 

apples in water. This relationship between 

image and hardness data suggests that the 

overall intensity of the 3D images can be 

used as an indicator of sample hardness in 

the case of Granny Smith apples. 

Treatment and incubation time exerted 

significant effects on moisture content (F-

values = 15.81 and 423.48, respectively; p 

< 0.001 for both effects). The interaction 

between main effects was not found to be 

significant. Interestingly, although the 

overall effect of incubation medium was 

significant, the lack of significance in the 

interaction between treatment and 

incubation time suggests that although apples in water generally had more moisture, the 

treatment did not influence the change in moisture content over the incubation time. The average 

moisture content of apples from both treatments before incubation was 5.66 ± 0.52 g water/g dry 

matter and increased to an average of 15.7 ± 0.8 g water/g dry matter after incubation for both 

Figure 3.9. Measured normalized hardness of apple cubes in 

water (●) or gastric juice (x) with modified Weibull model fits 

(solid lines) (A) and measured moisture content (points) over 

incubation time (B). Error bars in both plots represent 

standard error of three biological replicates for each 

treatment. Stars represent significant differences between 

values for gastric juice and water treatments (p < 0.05). 
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treatments (n = 6; Fig. 3.9B). The lack of differences in moisture uptake between gastric juice 

and water treatments aligns well with porosity changes (Section 3.4.1.1), in which a lack of 

significant differences between treatments over time was also observed. 

The overall trends of hardness decrease and moisture increase during incubation in simulated 

gastric fluids are similar to previous digestion studies. Previous work on digestion of apples has 

demonstrated that raw apples increase in moisture content during digestion (Dalmau et al., 2017). 

Additionally, hardness decrease of apples in the current study was similar to other carbohydrate-

rich foods, where hardness was seen to decrease over time when incubated in gastric juice 

(Drechsler and Bornhorst, 2018). The differences observed between hardness of apples in water 

compared to gastric juice aligns with previous work on carrots, where carrots incubated in acidic 

water for one hour showed lower hardness compared to carrots incubated in neutral water after 

only one hour (Kong and Singh, 2009b). 

Weibull model parameters k and β for apples incubated in water were both less than those of 

apples incubated in gastric juice. This means that hardness of apples incubated in water 

decreased slower (k) but with greater curvature (β) than apples incubated in gastric juice. 

Compared with values from previous work on modeling food hardness during digestion, the k 

value determined in this study for apples incubated in gastric juice, 0.148 h-1, is similar to that of 

couscous (0.12 h-1) (Drechsler and Bornhorst, 2018). Previous work has shown that Granny 

Smith apples digested in gastric juice at 37ºC for four hours had a k value of 0.339 h-1 and a β 

value of 0.8 (Olenskyj et al., 2017). This β value can be compared to a value of 1.09 found in this 

study with 12.27 hours of incubation at 33ºC. Comparing both k and β values obtained at 33 and 

37ºC, there appears to be a marked effect of lowering temperature. Specifically, apples digested 

in gastric juice at 37ºC decrease in hardness faster and with greater curvature relative to apples at 
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33ºC. In this study, the lower temperature was used due to a limitation of the CT instrument. The 

instrument was not temperature-controlled, and temperature profiles taken during scanning 

showed a temperature plateau at 33ºC. Therefore, 33ºC was chosen for benchtop analyses. 

Nevertheless, the assumption in this study is that the mechanisms behind the breakdown of food 

structure are conserved and are merely slowed down by the reduced temperature. 

These moisture uptake and hardness results, along with the non-destructive imaging analyses, 

suggest that decrease in hardness of apple tissue during gastric digestion is not only due to water 

uptake; incubation in gastric juice resulted in significantly lower hardness and greater intensity 

change compared to soaking in water alone. Specifically, the discrepancy between gastric juice 

and water samples suggest an effect of acid and/or enzyme was responsible for the differences 

between treatments. Typically, gastric secretions serve to break down food through the 

proteolytic pepsin enzyme as well as the low pH environment, which can promote pepsin activity 

(Kondjoyan et al., 2015; Piper and Fenton, 1965; Pletschke et al., 1995) and lead to further 

hydrolysis and degradation of food material (Bornhorst and Singh, 2014). Due to the limited 

amount of protein found in apples (0.26% according to the National Agricultural Library 

(2018)), enzymatic hydrolysis by pepsin was likely not the dominant mechanism in this system. 

Instead, this difference between gastric juice and water was likely due to pectin solubilization in 

the gastric juice samples due to the low pH. This mechanism has been shown to alter tissue 

microstructure in digestion of carrots and almonds (Kong and Singh, 2009b, 2009a). Pectin is a 

large component of apple tissue, comprising 10-15% of apple pomace (Herbstreith & Fox, 2000), 

and pectin from apple pomace is typically extracted using high heat and HCl solutions at a pH 

similar to the pH of gastric juice used in this study (approximately pH 1.5) (Wang et al., 2007). 
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This supports the thought that pectin solubilization may be the cause of the difference in 

hardness at the end of incubation in gastric juice compared to incubation in water. 

3.4.2.2. Incubation Medium Brix and pH Changes during Incubation 

 

Figure 3.10. A) Brix of incubation medium over incubation time in water (●) or gastric juice (x). Stars represent 

significant differences (p < 0.05) between values for gastric juice and water treatments. B) pH of incubation 

medium over incubation time in water (●) or gastric juice (x). Significant differences (p < 0.001) were observed at 

each time point. Error bars in each plot represent S.E. of three biological replicates for each treatment.  

Overall statistical analysis showed that treatment and incubation time influenced the brix of the 

incubation medium (F-values = 140.04 and 86.98, respectively; p < 0.001 for both effects). The 

interaction between the main effects was not found to be significant. Both treatments showed 

brix increase over the incubation time. After subtracting the brix of the gastric juice before 

incubation (1.6 ºBx), gastric juice samples increased from an initial value of 0 to 1.3 ± 0.1 ºBx 

after 12.27 hours. Water samples increased from 0 to 1.77 ± 0.1ºBx (Fig. 3.10A). Interestingly, 

although image analysis and tissue hardness both showed an increased influence of gastric juice 

on apple samples relative to water, brix of the incubation medium in the water treatment was 

significantly higher than that of the gastric juice treatment (p < 0.001). The higher brix in the 

water treatment may have been due to the decreased osmotic pressure of water relative to the 

gastric juice. However, the effect of osmotic pressure was likely small and limited to increased 
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brix change in the surrounding media of the water treatment. Based on the amount of salt in the 

gastric juice, (8.78 g/L or 0.3 M total ions) both the gastric juice and deionized water media were 

hypotonic relative to the apple, which requires 0.65 M total ions in solution for isotonic media 

(Oey et al., 2006). As such, significant influence of osmotic pressure on apple hardness was 

unlikely. 

pH of the incubation medium was significantly affected by treatment, time, and their interaction 

(F-values = 8763.94, 92.69, and 151.96, respectively; p < 0.001 for all effects). For samples 

incubated in gastric juice, pH of the incubation medium increased over incubation time from 1.8 

to 2.14 ± 0.0087 after 12.27 hours, while pH of the deionized water decreased from 5.7 to 3.46 ± 

0.014 (Fig. 3.10B). The magnitude of the difference in pH between gastric juice and water for 

the entirety of the incubation time supports a conclusion that acid concentration may have been 

responsible for the discrepancies between the two samples, considering apples in gastric juice 

experienced a significantly lower pH environment compared to apples in water. 

3.5. Conclusion 

X-ray micro-CT imaging allows for the nondestructive characterization of gastric digestion of 

apple tissue. When analyzed directly, changes shown by micro-CT demonstrate trends similar to 

those observed in destructive analysis of apple tissue, including hardness and moisture content. 

Apples in gastric juice showed both significantly increased softening (measured destructively) 

and significantly different mean intensity (measured nondestructively) when compared with 

apples in water. In addition, moisture content increase (measured destructively) and porosity 

decrease (measured nondestructively) over incubation were both not significantly affected by 

incubation treatments. These suggest that moisture influx is likely not the driving force for 

changes seen in texture and micro-CT images and that the differences in hardness and image 
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analysis results between treatments are due to structural breakdown of the apple tissue in gastric 

juice. 

Overall, this study has demonstrated the effectiveness of X-ray micro-CT imaging for assessing 

changes to a porous, high-moisture food matrix during simulated gastric digestion. Future 

considerations include improving the spatial and time resolution with an alternate imaging 

method such as synchrotron radiation micro-CT scanning or magnetic resonance imaging. These 

improvements may allow for finer or more frequent non-invasive visualization of changes to 

determine digestion kinetics on the microscale for in-depth computational simulation of gastric 

digestion.  
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CHAPTER 4. END-TO-END PREDICTION OF UNIAXIAL COMPRESSION 

PROFILES OF APPLES DURING IN VITRO DIGESTION USING TIME-SERIES 

MICRO-CT IMAGING AND DEEP LEARNING 

4.1. Abstract 

Machine learning is a promising technique to develop models, which extract relevant 

information from image data. This study applies convolutional neural networks trained end -to-

end to predict the mechanical properties of apples (var. Granny Smith) from micro-CT image 

data collected during in vitro gastric digestion. Models were trained to directly output 

compression curves, allowing for representation of complex curve shapes, which changed 

throughout the digestion process. Models evaluated using 3-fold cross-validation demonstrated 

high predictive performance, with RMSE of 4.36 N and R2 of 0.939 compared to measured data. 

This performance was decreased to an RMSE of 14.3 N and R2 of 0.296 when applied to an out-

of-distribution dataset. Saliency mapping used to interpret model output demonstrated a 

mechanistic link between typical biophysical tissue changes and model attention. Overall, the 

end-to-end deep learning approach represents a promising method for rapid, nondestructive 

evaluation of mechanical properties during food processing and digestion. 

4.2. Introduction 

Structural and mechanical features of food materials are known to influence their functional 

properties, such as shelf-life and nutritional benefits (Michel and Sagalowicz, 2008). Although 

microscopy and other imaging methods allow for visualization and analysis of structure using 

several metrics, such as porosity, cell wall thickness, and cell counting (Verboven et al., 2018), 

image properties are not easily mapped to mechanical properties of the bulk solid. However, 

techniques to assess food structure and mechanical properties, including microscopy, stress-
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strain testing, and rheometry, typically involve sample destruction (M. Bourne, 2002; Kaláb et 

al., 1995; Tabilo-Munizaga and Barbosa-Cánovas, 2004). The nature of destructive methods 

prevents repeated analysis on the same sample, which introduces between-sample variability and 

requires extensive sample preparation and large quantities of raw material (Chen and Opara, 

2013; Mennah-Govela and Bornhorst, 2016b; Minekus et al., 2014; Opazo-Navarrete et al., 

2018). Therefore, noninvasively assessing structural and mechanical properties is important in 

processes such as food digestion and drying, where changes in both attributes are significant 

(Bornhorst and Singh, 2014; Wang and Martynenko, 2016).  

To overcome some of the previously stated limitations, tomographic imaging techniques such as 

micro-computed tomography (micro-CT) and magnetic resonance imaging (MRI) can be 

implemented (Verboven et al., 2018). Micro-CT and MRI have the advantages of generating 3-

dimensional (3D) representations of food structure without significant tissue destruction, even 

allowing for nondestructive time-series analysis (Eggert et al., 2014; Olenskyj et al., 2020; 

Turbin-Orger et al., 2015). However, tomographic methods are limited in their ability to 

represent mechanical properties of solid foods, as the relationship between visible microstructure 

and mechanical properties is complex and typically non-linear (Aguilera and Lillford, 2008; Li et 

al., 2019). 

Recent advances in machine learning techniques, such as convolutional neural networks (CNNs), 

have allowed for the generation of models that directly map varied, complex image data in 

biological systems to independently measured biophysical attributes. For example, machine 

learning techniques including CNNs have been applied to microstructural images of plant and 

animal tissue, to classify images according to disease state (Hamidinekoo et al., 2018), or 

segment images into tissue types (Earles et al., 2018; Théroux-Rancourt et al., 2020). These 
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advances have allowed for rapid, and accurate analysis of biological samples, which would have 

otherwise required extensive time or resource investment. Recent research has also demonstrated 

the ability of CNNs to relate images of inorganic material, such as heterogeneous rock and 

simulated composites, to a continuous mechanical property value, including elastic modulus and 

Poisson’s ratio (Li et al., 2019; Yang et al., 2018; Ye et al., 2019). In these studies, predictions 

made on unseen data required a relationship to be mapped between the pixels of an image to a 

measurement of a continuous scalar quantity. In addition to studies involving scalar prediction 

from 2D or 3D samples, Herriot and Spear (2020) predicted 2D maps of effective yield strength 

using a 3D CNN, demonstrating the flexibility of the CNN approach. 

Extending on the progress made in mechanical measurement of inorganic samples, biological 

materials are often complex material composites, and describing them mechanically can be more 

precisely done by examining an entire stress-strain curve as opposed to a single scalar value. 

Previous research has demonstrated the ability of CNNs to predict stress-strain curves from 

microscopy images of collagenous tissue (Liang et al., 2017). However, as opposed to end-to-

end model development, destructive curves were decomposed with principal component analysis 

(PCA), then these curve fit parameters were predicted using a CNN trained with a combination 

of unsupervised and supervised learning. Although this approach led to high performance within 

the tested dataset, prediction of fit parameters limits a model’s robustness on samples not 

described by the underlying relationship of the fitted model. 

Building on previous research in predicting mechanical properties from image data, it was 

hypothesized that CNNs may be able to directly relate food microstructure and mechanical 

properties.  To demonstrate this technique, time-series 3D micro-CT images during in vitro 

digestion were used to predict independently measured uniaxial compression curves. The novelty 
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of the present study lies in both the application of nondestructive mechanical property prediction 

in solid foods during in vitro gastric digestion as well as the unconstrained nature of the 

modeling approach. As opposed to prediction of a scalar value, such as elastic modulus or 

hardness, or a set of fit parameters for a curve, the tomographic images were used to predict 

entire apple tissue compression curves at varying digestion times and incubation conditions 

(simulated gastric juice and deionized water) via an end-to-end approach. The lack of constraint 

to a scalar value or set of parameters within a curve was hypothesized to permit the model to 

predict entire curves of nonspecific shapes, leading to more accurate predictions which have 

increased utility over scalar values alone. 
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4.3. Materials and Methods 

 

Figure 4.1. Collection of image and destructive data. A) Apples for both the training and variability sets were cut 

into cubes and placed in a cylindrical container for CT imaging. The side of the apple cube shown in green was 

placed such that it was facing vertically upwards in the sample holder for imaging. B) For collection of compression 

curves, apples were cut and placed into beakers for digestion in a temperature-controlled incubator for times up to 

12 hours for both the training and variability sets. C) Micro-CT scans and concurrent digestion occurred over a 

span of approximately 12 hours, with either a single apple cube scanned repeatedly (training set) or multiple apple 

cubes scanned in series (variability set). The samples taken for texture analysis were selected at the mid-point time 

of each successive micro-CT scan. 

4.3.1. Raw Materials 

Data were derived from two sets of apples. The first set of apples was used to create a predictive 

model and is referred to as the training set. Raw materials and unprocessed data collected from 

the materials in the training set is described in Section 3.3.1. A second set of apples referred to as 

the variability set, which has not been previously described, was collected to validate the 

performance of the predictive model. 
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4.3.1.1. Training Set Raw Materials 

Two volume bushels of size 56 apples (var. Granny Smith) were acquired from a local produce 

wholesaler. Apples were stored at 1 °C for up to five weeks. Simulated gastric juice was 

formulated according to Bornhorst and Singh, 2013. 

4.3.1.2. Variability Set Raw Materials 

Apples (var. Granny Smith) of varying sizes were acquired in small batches from a local produce 

vendor. Apples were stored at 1 °C for up to five weeks. Simulated gastric juice used for 

incubation was formulated as described Section 3.3.1. 

4.3.2. 4.3.2. Data Collection 

4.3.2.1. Sample Preparation and Data Collection for Training Set Data 

Detailed sample preparation and data acquisition methods can be found Section 3.3. Briefly, a 

single cube of apple tissue was cut into a 12.7 mm cube and placed in a 3D-printed holder within 

a plastic tube (Fig. 4.1A). Immediately before image acquisition, 8.75 mL of either simulated 

gastric juice or deionized water was added to the sample tube.  

Images were acquired with a Scanco uCT 35 Evaluation System (Scanco USA, Wayne, PA). 

Each 3D image required approximately 1.05 h to complete, after which the same region of the 

apple was scanned 11 more times for a total of 12 scans (Fig 4.1C).  Reconstructed and cropped 

images represented a 11.1 × 11.1 × 4.3 mm section from the center of the apple cube in 18.5 um 

isotropic resolution (x y z = 601 × 601 × 232 px) and 16-bit depth. Scanning was performed in 

triplicate for each treatment for a total of 6 apples. 
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For collection of compression data, apples were subjected to similar conditions to those inside 

the CT instrument. A single beaker of 12 cubes was incubated at times representing the midpoint 

of each CT scan at 33 °C (Fig. 4.1C). After each incubation time, 10 of the 12 cubes in a given 

beaker were individually compressed at 1 mm/s to 50% strain. Incubations in simulated gastric 

fluid and water were each performed in triplicate. 

In addition to the CT scans of apples submerged in liquid, scans of undigested apples were also 

recorded. These scans were not used for model training, but the apples were taken from the same 

batches used for the training set scans. Scans were performed in triplicate, using three unique 

apples. Compression data corresponding to these scans was collected from apples immediately 

after cutting. 

4.3.2.2. Sample Preparation and Data Collection for Variability Set Data 

Sample preparation in the variability set closely follows Section 3.3.1, with minor modifications 

to increase the biological variability present in the dataset. 

For collection of image data, four cubes of apple tissue taken from four distinct apples were 

placed in an individual 3D printed holders within a sample tube, and the tube was filled with 35 

mL of liquid (simulated gastric juice or deionized water), representing 8.75 mL per cube (Fig. 

4.1A). Samples were scanned using the same imaging parameters as the training dataset (Fig. 

4.1C). However, instead of 12 time-series scans from the center region of a single apple cube, the 

center sections of each of the four unique apple cubes were scanned at times corresponding with 

the 2nd, 5th, 8th, and 11th scans in the training set (Fig. 4.1C). Scans for each treatment were 

conducted in triplicate. Therefore, 24 apples in total were scanned in the variability set (3 
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replicates of 4 apples in 2 treatments). Triplicate scans of undigested apple cubes were also 

recorded from the variability set. 

Compression profiles were collected from apples within the variability set at times corresponding 

with the midpoint of each of the four scans (1.60, 4.80, 8.00, and 11.20 h), using the same 

method as described in Section 4.3.2.1. Likewise, incubations were performed in triplicate for 

each simulated gastric juice and deionized water. 

4.3.3. Data Processing 

 

Figure 4.2. A) Sampling strategy used on each scan of an apple to augment image data and provide additional 

samples for model training. Each scan of apple tissue was divided into four quadrants in the x -y plane and 8 slices 

along the z-axis. These 32 resulting digital sections were associated with a single compression curve and treated as 

distinct samples for the purpose of model training. B) Model architecture. One digital section from an apple scan 

was used as the input image. A ResNet34 network modified to accept 29-channel images was used as a feature 

extractor, after which the features were sent to the regression head for prediction of a 50 -length vector. This final 

vector represented the predicted compression curve. Dimensions below the labels represent the size of the data 

coming into and out of each step. 
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4.3.3.1. Pre-Processing 

Before model training, the data were arranged such that a given scan of an apple cube 

corresponded with a single compression curve. This was done by matching each replicate of 

scanned apple tissue with its corresponding replicate of destructively tested apple cubes. Within 

a replicate, each 3D scan corresponded to approximately 10 compression curves from the same 

set of apples. These compression curves were converted to a single curve by taking the median 

force value at each distance up to 5.524 mm, representative of the minimum distance to which all 

compressions were performed. To minimize the size of the predicted curve while maintaining 

sufficient resolution, the curves were down-sampled from 1105-length (200 Hz) to 50-length 

vectors (9 Hz). After processing, the training set uniaxial compression data consisted of 72 

compression curves, one corresponding to each of the 72 scans from 2 treatments, 12 time points, 

and 3 replicates. 

Given the relatively small training dataset size in this study, data augmentation was used to 

increase training data variability and reduce the likelihood of overfitting (Simard et al., 2015; 

Yaeger et al., 1997). Augmentation was accomplished by digitally sectioning the 3D image from 

each scan, producing additional samples for training. Specifically, each 601 × 601 × 232 px 3D 

image was split into 32 sections representing 300 × 300 × 29 px digital sections with the 

assumption of axisymmetric tissue changes over the course of incubation (Fig 4.2A). This 

assumption was made based on the geometry of the experimental setup, in which the apple cube 

was in contact with the incubation liquid on all sides. Each of these 32 digital sections for each 

scan was associated with the same 50-length compression curve. Therefore, after data 

augmentation, the training dataset consisted of 2,304 digital sections, which were associated with 

72 compression curves.  
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Data were handled the same way within the variability set as well as the undigested samples, 

where each scan was matched with a median compression curve. Data augmentation was also 

similarly performed. Therefore, the variability dataset consisted of 768 digital sections derived 

from 2 treatments, 4 scans, and 3 replicates, which were associated with 24 compression curves. 

The undigested samples from each of the training and variability sets consisted of 96 digital 

sections (32 digital sections per scan, 1 scan per replicate). These 96 digital sections per dataset 

were associated with compression curves collected from apples immediately after slicing. 

Undigested samples were not used to train the model, and association of image and compression 

data was done for performance assessment only. 

4.3.3.2. Model Architecture and Training 

A CNN was designed to accept 300 × 300 × 29 px input images and output a 50-length vector 

representing the compression curve (Fig. 4.2B). This was accomplished by first modifying the 

input layer of a ResNet34 model (He et al., 2016). Additionally, two linear layers were added in 

place of the classification layer, each followed by a rectified linear unit (ReLU) nonlinearity 

(Nair and Hinton, 2010) and a 20% dropout layer (Srivastava et al., 2014). The final 50-length 

vector was taken as the predicted compression curve, and loss values for training via 

backpropagation were calculated as the mean squared error between the final vector and the 

measured curve. 

Models were trained using the PyTorch framework (Paszke et al., 2019). During training, input 

images were further augmented using random vertical and horizontal flips across the x-y plane, 

as well as a random number of 90-degree rotations.  
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4.3.4. Saliency Mapping for Interpretation of Model Results 

Saliency mapping was performed using the technique of Gradient-weighted Class Activation 

Mapping (Grad-CAM) with some modifications to gain an understanding of the regions of the 

images the model used to make predictions (Selvaraju et al., 2016). This technique is typically 

used to generate a map representing regions of the input image with proportionally high attention 

given by the model for classification of the image into a specific class. However, in the current 

study, the entire output compression curve is meaningful. As a result, the value used for saliency 

mapping was selected to be the peak value of force in the curve. This value was also referred to 

as sample hardness (Drechsler and Bornhorst, 2018; Kong and Singh, 2008). As an additional 

change from the cited method, the ReLU transformation used to eliminate negative values in the 

original work was not used. 

Visualization of the saliency maps was accomplished by generating a map for each of the 32 

digital sections for a given scan. Output maps were rotated around the z-axis according to their 

original position and concatenated in the x-y plane. The 8 sections along the z-axis were 

averaged, producing a single saliency map for each scan, with pixel values comprised of average 

feature map weight x activation values, representing relative attention of the model in different 

regions of the input image (Selvaraju et al., 2016). Saliency maps were additionally produced for 

the variability set and arranged in the same fashion.  

4.3.5. K-means clustering for image visualization 

Following the procedure in Olenskyj et al. (2020), 3D scans were binarized using k-means 

clustering (Arthur and Vassilvitskii, 2007). Clustering was performed using the z-axis vector at 

each (x,y) location assigning each (x,y) pixel to one of two groups. This process was performed 
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for visualization purposes and for comparison with saliency maps for the training and variability 

set images.  

4.3.6. Image Analysis of Training and Variability Set Data 

To quantify potential differences between the training set, variability set, and undigested apples, 

the intensity, porosity, and median pore diameter (d50) were calculated as described in Section 

3.3.4.1 for each digital section within each dataset and compared across the datasets.  

4.3.7. Performance Assessment 

All listed performance values are represented by mean ± standard deviation unless otherwise 

noted. Model performance on the training set was assessed via 3-fold cross-validation across the 

three replicates (Guo et al., 2017) of both image and compression data, using root mean squared 

error (RMSE), mean average percent error (MAPE), and R2. RMSE, MAPE, and R2 were 

calculated between the median of all 50-point curves generated from each digital section within a 

scan and the median 50-point curve from all compressions at the treatment × time combination 

within a replicate. 

For the training set data, performance on each replicate was determined after training with the 

two remaining replicates. From the two replicates used for training, data were randomly placed 

in training and validation sets using a 70/30 split. The held-out replicate was treated as the 

testing set for performance evaluation. This method of performance assessment resulted in the 

generation of three sets of model weights. Evaluation on the undigested samples and the 

variability set was performed using an ensemble approach, where predictions from all three sets 

of weights were averaged to obtain a single predicted compression curve for each sample. This 

was possible since no images of these apples were used in model training. 
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In addition to evaluation of the compression curves in their entirety, the hardness (peak force) 

value was extracted from each predicted curve and compared with the peak force of the 

measured compression curve. Hardness was extracted from the predicted compression curve 

from each of the 32 digital sections within each scan, which were considered subsamples for 

each treatment × time × replicate combination. Likewise, hardness was extracted from each 

measured compression curve, where the 10 compressions performed for each time within each 

replicate were treated as subsamples. This comparison between measured and predicted data was 

analyzed by fitting the curve to a modified Weibull model (Eqn. 3.2). However, unlike in Section 

3.3.5.3, in addition to the k (h-1) and β (dimensionless) values, H0 (N) was fit as well. 

To improve model fits, hardness from the first scan was adjusted to 0 h to become the initial 

hardness and other values of time were translated accordingly by subtracting the first x-value 

(0.53 h for the training and 1.60 h for the variability set) from all x-values. Therefore, in Eqn. 

3.2, H0 is an estimate of the hardness of the first measured time point. 

From the fit curves, 95% prediction intervals were calculated using nlpredci in MATLAB for 

both measured and predicted curves. Prediction intervals from measured and predicted data were 

used to calculate the intersection over union (IOU) between the prediction intervals at each time 

point, where 1 represents perfect accordance and 0 represents non-overlapping intervals. 

Hardness values were also extracted from the variability set images and compared with their 

destructive values. Subsamples within both the image and measured data of the variability set 

were handled the same way as in the training set. 
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4.4. Results and Discussion 

4.4.1. Model Performance within the Training Set (Cross-Validation) 

4.4.1.1.Compression Curve Prediction 

Model performance at each time point is shown in Figure 4.3. Notably, the model can accurately 

predict both the sigmoidal shapes of the water and gastric time points at < 4.80 h, as well as the 

more complex curves with multiple points of inflection, such as the 11.20 h curve in the first 

replicate of the gastric treatment. The capability of the model to express various curve shapes 

demonstrates one of the advantages of predicting the entire curve, rather than fit parameters or 

scalar values of force. 

Overall RMSE of cross validation within the training set was 4.36 N (5.04 and 3.55 N for gastric 

and water samples, respectively). Overall MAPE of cross validation across all treatments was 

26.4 % (39.7 and 13.0 % for gastric and water samples, respectively). The R2 calculated on all 

points in all curves was 0.939 (0.919 and 0.956 for gastric and water samples, respectively). 
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Figure 4.3. Measured compression curves and corresponding predicted curves. All curves represent compression to 

5.524 mm via a 50-point down-sampled vector. Each row within gastric and water treatments represents a replicate 

(3 replicates/treatment). Predicted curves for a given replicate were generated using a model trained on data from 

the other two replicates (cross-validation). Curves represent the median, with the shaded areas representing the 25 th 

and 75th percentile of 32 digital sections or 10 compressions for predicted and measured curves, respectively. 
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The consistency of RMSE across time is expected (Fig. 4.4), due to the mean squared error 

objective function used to train the models. Specifically, the model was trained to minimize 

squared error across all samples, which were treated independently. However, MAPE was 

magnified in gastric samples at later time points due to the low values of force (Fig. 4.3). 

Specifically, within the first four time points (t ≤ 4.8 h) MAPE of the gastric samples was 13.2 % 

on average, while MAPE of the water samples at the same time points was similar at 10.9 %. 

However, within the last four time points (t ≥ 9.07 h) MAPE of the gastric samples rose to 56.5 

%, while the water samples only increased to a MAPE of 17.8 %. 

 

Figure 4.4. RMSE (A) and MAPE (B) values for predicted vs. measured compression curves. Each RMSE and 

MAPE value represents the total error between a ground truth 50-length vector represented by the median of all 

compressions within a time point of a replicate and a predicted vector represented by the median of predictions 

from all 32 digital sections of a scan within a replicate. Predicted curves for each replicate were generated using a 

model trained on the two other replicates. Error bars represent standard deviation between replicates (n = 3).  

The effect of force magnitude on performance can be further localized by the level of 

displacement within the curves (Table 4.1). At the highest level of displacement (4.5 – 5.5 mm), 

force in the water treatment demonstrated a 34.1 N difference between the lowest and highest 

measured values. On the other hand, gastric treatments demonstrated a range of 64.3 N. The 

range of force in the gastric treatment was consistently greater than the water treatment at all 

levels of displacement, indicating greater variation between measured force during incubation in 

simulated gastric juice. This increased range may have led to the systematic overprediction of 

force values in gastric time points > 5.87 h, as well as underprediction in both treatments in time 

points < 4.80 h (Fig. 4.3). Similarly, the consistently low values of force at low levels of 
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displacement likely led to lower error compared with the later segments of the curves, due to the 

small variation between samples in the first part of each compression curve (Table 4.1). Within a 

displacement < 1.1 mm, the measured force used for model training showed a range of 20.1 N 

across all gastric samples and 19.0 over all water samples (n = 36 each). Within all curve 

segments after the first, the range of force values was larger (34.1 to 64.9 N across both 

treatments). 

In a work similar to the current study, Liang et al. (2017) predicted stress-strain vectors from 

microscopy images of collagenous tissue. As opposed to the end-to-end prediction used in this 

work, the authors first parameterized measured curves using PCA to obtain a compact 

representation, then trained a CNN to predict three fit parameters. The approach allowed for 

comparatively low prediction error (10.9 - 12.6%), which is similar to the error in the water 

treatment and early gastric time points (t ≤ 4.8 h) in this study (13.0 and 13.2 %, respectively). 

However, the results are not directly comparable due primarily to differences in study design. 

Liang et al. (2017) used 48 independent samples imaged on a smaller length scale using confocal 

laser scanning microscopy. The stress-strain curves used for prediction were consistent in shape, 

and therefore they were more easily parameterized. Additionally, the imaged samples were 

identical to the samples used to generate ground truth mechanical testing data. On the other hand, 

the present study included time-series data on fewer biological samples (6), but a greater number 

of ground truth compression curves (72). Furthermore, ground truth data from this study was not 

collected from the same samples as the images. Additional differences include variations in 

model development (unsupervised learning with supervised regression as opposed to fully 

supervised end-to-end prediction in this work), as well as the evaluation method (leave-one-out 

cross validation, as opposed to the 3-fold cross validation in this work). 
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Table 4.1. MAPE and RMSE of cross validation on different regions of the curve. Predicted 50-point curves were 

split into five segments of 10 points each, and error was calculated within each segment. Values represent 

comparisons between destructive and image curves, calculated by taking the median value at each level of 

displacement over all digital sections and compressions, respectively, of all scans within each replicate. 

Performance in MAPE and RMSE is represented by mean ± standard deviation of all 12 time points across all 3 

replicates (n = 36). 

 

In an additional study on prediction of non-scalar mechanical properties from images using deep 

learning, Herriot and Spear (2020) used a 3D CNN architecture to predict 2D maps of effective 

yield strength in simulated heterogeneous samples of metals. The 3D CNN demonstrated high 

prediction performance on a holdout set (R2 of 0.95). However, to achieve this result, the model 

inputs were coupled with input volume auxiliary information. Still, the performance compares 

well to the R2 values of cross validation obtained in this work, equal to 0.919 and 0.956 for 

gastric and water samples, respectively. 

Treatment 
Displacement 

(mm) 

Avg. Measured Force 

(N) 

Measured Range 

(N) 

MAPE 

(%) 
RMSE (N) 

Gastric 

0 – 1.1 
2.10 ± 1.85 20.1 17.0 ± 11.9 

0.438 ± 

0.457 

1.2 – 2.2 11.6 ± 11.6 53.7 25.8 ± 22.0 2.31 ± 1.96 

2.3 – 3.3 19.9 ± 18.7 60.7 50.6 ± 55.5 4.76 ± 3.02 

3.4 – 4.4 23.9 ± 19.2 64.9 58.3 ± 76.5 5.34 ± 3.8 

4.5 – 5.5 26.3 ± 17.8 64.3 47.0 ± 66.8 5.43 ± 3.84 

Water 

0 – 1.1 
2.42 ± 1.75 19.0 16.9 ± 9.65 

0.555 ± 

0.612 

1.2 – 2.2 14.7 ± 10.3 51.9 15.4 ± 12.3 2.22 ± 2.17 

2.3 – 3.3 27.7 ± 13.5 50.0 13.0 ± 12.2 3.28 ± 2.75 

3.4 – 4.4 35.3 ± 11.0 43.4 10.6 ± 8.70 3.55 ± 2.40 

4.5 – 5.5 39.4 ± 8.36 34.1 9.02 ± 5.40 3.57 ± 1.97 
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4.4.1.2. Comparison of measured and predicted hardness from compression curves 

 

Figure 4.5. Hardness of gastric (A) and water (B) treatments predicted from image data and measured by 

destructive testing. Hardness from image data is averaged across all 32 digital sections within each scan of a 

replicate. Hardness from destructive testing is averaged over all compressions within each time point in a replicate. 

Data points represent the mean and error bars represent standard deviation between replicates for both image and 

destructive data (n = 96 and n=30, respectively). Solid lines represent model fits to Eqn. 3.2. Dotted lines represent 

95% prediction intervals. Measured values are shown with lighter shading compared to predicted values that are 

shown with darker shading for both gastric and water treatments.  

Predicted and measured hardness values are shown along with Weibull model curve fits (Eqn. 

3.2) in Fig. 4.5. Although the fit curves were not identical between treatments (Table 4.2), 

overlapping prediction intervals at each time point in both gastric and water treatments 

demonstrate the similarities between predicted and measured hardness values. Specifically, IOU 

for the gastric and water treatments were 0.878 ± 0.146 and 0.512 ± 0.031, respectively (mean ± 

SD, n = 12).  
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Table 4.2. Fit parameters for measured and predicted values in gastric and water treatments in the training set. All 

values represent mean ± SEM of fit parameters for curves fit to all points within a treatment × dataset for each 

measured and predicted sets. 

 

 

Gastric Water 

 Measured Predicted Measured Predicted 

T
r
a

in
in

g
 S

e
t 

H0 (N) 66.1 ± 1.03 53.1 ± 0.539 62.1 ± 1.31 52.0 ± 0.378 

k (h-1) 0.151 ± 3.37×10-3 0.115 ± 1.50×10-3 2.89x10-2 ± 4.03×10-3 3.16x10-2 ± 1.47×10-3 

β (-) 1.05 ± 4.05×10-2 1.27 ± 4.02×10-2 0.570 ± 6.12×10-2 0.668 ± 2.67×10-2 

R2 0.889 0.823 0.490 0.719 

V
a

r
ia

b
il

it
y

 S
e
t 

H0 (N) 54.6 ± 1.38 50.0 ± 1.19 53.8 ± 1.10 55.3 ± 0.496 

k (h-1) 0.179 ± 8.94×10-3 3.01×10-2 ± 1.08×10-3 2.69x10-2 ± 9.49×10-3 3.34x10-2 ± 4.02×10-3 

β (-) 1.09 ± 0.113 0.758 ± 0.184 0.581 ± 0.122 0.693 ± 5.84×10-2 

R2 0.869 0.207 0.655 0.707 

 

The RMSE for predicted hardness over all time points was 6.41 N for gastric and 6.89 N for 

water samples. MAPE was 23.0 and 13.4 % for gastric and water samples, respectively. Similar 

to the full curves, within the gastric treatment, early time points (t < 4.8 h) were underpredicted, 

whereas later time points tended to be overpredicted. In contrast, the water samples were 

systematically underpredicted. The reason for this is unclear, although since gastric and water 

samples were both included equally in training, the lower hardness values in the gastric samples 

may have negatively influenced the predicted hardness of the water samples. 

Compared to previous works in prediction of scalar bulk material properties from images of 

materials, the error values in the current study are higher, with previous studies demonstrating 

below 5% error (Li et al., 2019; Yang et al., 2018; Ye et al., 2019). However, previous studies 

explored simpler datasets. Specifically, input images were constrained to contain either two 

material classes with consistent, known material properties derived from simulated data (Yang et 
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al., 2018; Ye et al., 2019) or five material classes derived from a parameterization of measured 

samples (Li et al., 2019). Contrarily, the present study consisted of unmodified images of 

biological tissue. Additionally, the model in this work was trained to predict the entire 

compression curve, potentially limiting scalar prediction performance. Finally, although time 

series analysis and data augmentation increased the number of training samples, the biological 

variability in the present study was limited to four unique apples (two per treatment) used for 

each fold of cross-validation. After training on only four apples, the model predicted 

compression curves for two unseen apples. In comparison, the previous studies mentioned above 

used between 5,000 and 20,000 synthetically generated samples in training to achieve low error 

values. Due to the difficulty involved in sample preparation for food analysis, the performance of 

the model in the current study shows potential for application in a wide range of foods and for 

processes where limited data may be available. 
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4.4.2. Saliency mapping with Grad-CAM 

 

Figure 4.6. Saliency maps produced with Grad-CAM. Each row within a treatment represents a replicate 

incubation. Binary maps positioned below each set of saliency maps represent a visualization of pixelwise 

differences between z-axis vectors in the x-y plane (Olenskyj et al., 2020). Pixels within each saliency map represent 

weight × activation values (relative attention). Saliency maps are derived from all 32 digital sections of a scan 

within a replicate, where sections are averaged along the z-axis. The color bar (right) applies to all averaged maps 

within the training set. 

Saliency maps produced with Grad-CAM (Fig. 4.6) showed similar trends across all replicates 

and treatments. The relative attention of the model with respect to prediction of a higher 

maximum force value was evenly distributed across the x-y plane of the input image for the early 

scans (e.g. 0.53, 1.60, and 2.67 hours). With increasing incubation time, saliency maps 
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demonstrated more prominent attention in the center of the apple cube, with less dependency on 

the outer edges of the cube for prediction of a higher maximum force value. This trend suggests 

that the more important region of the image for predicting hardness is found closer to the center 

of the apple cube as time increases, which can be explained based on the diffusion-limited nature 

of digestion (Kong and Singh, 2009b; Olenskyj et al., 2020). Specifically, the material on the 

outer edges of the sample interacts with the incubation medium before the inner regions of tissue. 

Since this interaction results in a softening of the food matrix, as incubation time increases, the 

exterior layers of the sample contribute less to increasing the maximum force. 

Visualization of this same dataset using k-means clustering as a method of binarization across 

the x-y plane shows a similar trend to the saliency maps using only intensity-based information 

from the micro-CT scans (Fig. 4.6). This relationship between image intensity and tissue 

hardness was demonstrated previously at the entire cube scale (Olenskyj et al., 2020). However, 

this previously established relationship was not specifically presented to the CNN. Instead, the 

end-to-end approach used to train the model caused this pattern of attention to emerge, 

suggesting that the model was able to converge to a mechanistic representation of the system 

from which physically meaningful parameters can be extracted. 

4.4.3. Performance on out-of-distribution data 

4.4.3.1. Characterization of Images from Different Datasets 

Comparison of intensity and morphology parameters across the training and variability datasets 

for the gastric and water treatments did not reveal many systematic differences between the 

datasets (Table 4.3). However, the undigested samples from both the training and variability set 

demonstrated considerably lower median intensity values (2728 ± 172 and 2775 ± 227, 
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respectively) when compared with the first scan of the training set (2871 ± 191). Median pore 

diameter was also substantially higher in the undigested samples (180.9 ± 34.6 and  170.3 ± 27.5 

µm in the training and variability sets, respectively) as compared with the training set (89.24 ± 

13.19 µm). This discrepancy may have been due to rapid water absorption by the food matrix 

into large pore spaces. Alternatively, the incubation medium (air vs. liquid) has been shown to 

significantly influence attenuation values of calibration phantoms, which may account for 

differences between undigested samples and samples in liquid (Nazarian et al., 2008). 

Table 4.3. Comparison of intensity and morphology measures from micro-CT images from different datasets. Values 

represent Median ± IQR (75 th – 25th percentile value). 

Metric Training Set (Scans 2, 5, 7, 11) Variability Set 

Gastric (n = 384 in both sets) 

Intensity (CT Value) 3062 ± 166 3010 ± 219 

Porosity (Percent) 16.92 ± 3.38 17.01 ± 4.40 

Median Pore Diameter (µm) 88.72 ± 7.95 82.44 ± 22.1 

Water (n = 384 in both sets) 

Intensity (CT Value) 2986 ± 195 3011 ± 233 

Porosity (Percent) 17.53 ± 4.59 16.10 ± 5.70 

Median Pore Diameter (µm) 72.53 ± 9.58 78.86 ± 15.7 

Metric 
Training Set (Scan 

1; n = 192) 

Undigested Samples 

from Training Set (n = 

96) 

Undigested Samples 

from Variability Set (n 

= 96) 

Intensity (CT Value) 2871 ± 191 2728 ± 172 2775 ± 227 

Porosity (Percent) 20.15 ± 4.62 21.77 ± 5.12 20.25 ± 6.04 

Median Pore Diameter (µm) 89.24 ± 13.19 180.9 ± 34.6 170.3 ± 27.5 
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Although few systematic differences between datasets were observed in the selected image 

features, current research efforts in understanding the features used by CNNs is ongoing 

(Barredo Arrieta et al., 2020), and future improvements in dissecting these models should allow 

for a more detailed analysis of the relationship between specific image features and performance. 
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4.4.3.2. Prediction on samples incubated in simulated gastric juice or water from the 

variability set 

 

Figure 4.7. For each replicate of each treatment, the first row represents saliency maps produced with Grad -CAM. 

Individual maps are derived from all 32 digital sections of a scan within a replicate and averaged across all three 

models ensembled to make predictions on the variability set. Sections are averaged along the z-axis. Pixels within 

each map represent weight × activation values (relative attention). The colorbar (right) applies to all averaged 

maps within the variability set. Binary maps shown in the row below each set of saliency maps represent a 

visualization of pixelwise differences between z-axis vectors in the x-y plane (Olenskyj et al., 2020). Measured 

compression curves and corresponding predicted curves are shown in the row below the binary maps for eac h 
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treatment. All curves represent compression to 5.524 mm via a 50-point down-sampled vector. Predicted curves for 

a given replicate were generated by ensembling predictions from the three sets of model weights used for the 

training set. Curves represent the median of 32 digital sections or 10 compressions for predicted and measured 

curves, respectively, with shaded regions representing the 25 th and 75th percentile values. Measured values are 

shown with lighter shading compared to predicted values that are shown with darker shading for both gastric and 

water treatments. 

The RMSE for prediction on the variability set was 14.3 N across all replicates, treatments, and 

times (n = 24). MAPE was 129% and R2 was 0.296 across all replicates. 

Within the variability set (Fig. 4.7), performance in the water treatment was improved over the 

gastric treatment. RMSE was 18.5 N in the gastric treatment and only 8.14 N in the water 

treatment. MAPE was 214 % and 44.4 % in gastric and water treatments, respectively (n = 12 for 

comparisons within a treatment). Performance broken down across time points is displayed in 

Fig. 4.8. Notably, predicted curves appeared similar between treatments, with predicted gastric 

curves appearing similar to measured water curves at each time point. This similarity between 

treatments suggests that the out-of-distribution tissue structure in the variability set reduced the 

ability of the model to discriminate between tissue changes due to gastric juice or water, even 

though limited differences were observed in the intensity and morphology parameters between 

the training and variability set images (Table 4.3). 

 

Figure 4.8. RMSE (A) and MAPE (B) values for predicted vs. ground truth texture curves within the variability set. 

Each RMSE and MAPE value represents the total error between a ground truth 50 -length vector calculated based 

on the median of all compressions within a time point (scan) of a replicate and a predicted vector calculated ba sed 

on the median of all predictions from all 32 digital sections of a time point (scan) within a replicate. Predicted 

curves for each replicate were generated using the average of curves predicted from all three models trained on the 

training set data. Error bars represent differences between replicates (95% CI, n = 3). 
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The overall error in the variability set was driven primarily by poor predictive performance on 

gastric samples. This performance drop was expected, since the variability set was composed of 

smaller batches of apples from a different source compared to the training set. Saliency maps 

with Grad-CAM provided insight into attention of the network during prediction (Fig. 4.7). As 

demonstrated by the saliency maps, model attention did not shift inwards for the later incubation 

times, in contrast to the observed trends in the training set (Fig. 4.6). Attention in the gastric 

treatment was consistently even across the input images in replicates 2 and 3. However, model 

attention did shift inwards over time for the first replicate in the gastric treatment. This shift in 

attention is likely responsible for the improved performance in replicate 1 of the gastric samples 

(Fig. 4.7).  

On the other hand, performance on the water samples was considerably higher, although error 

was still increased relative to the training set. However, the water samples within the training set 

contained only three apples, while the water samples in the variability set came from 12 apples 

from a different commercial source and over a larger potential range of harvest and storage 

conditions. Within that context, performance on the water samples in the variability set 

demonstrated the robustness of the CNN approach, which would likely be improved with an 

increased amount of training data.  
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Figure 4.9. Hardness of gastric (A) and water (B) treatments predicted from image data and measured by 

destructive testing. Hardness from image data is averaged across all 32 digital sections within each time point of a 

replicate. Predictions from each digital section are derived from ensembling all three sets of model weights trained 

on the training set. Hardness from destructive testing is averaged over all compressions within each scan in a 

replicate. Error bars represent standard deviation between replicates for both image and destructive data (n = 96 

and n=30, respectively). Solid lines represent model fits to Eqn. 3.2. Dotted lines represent 95% prediction 

intervals. Measured values are shown with lighter shading compared to predicted values that are shown with d arker 

shading for both gastric and water treatments. 

Hardness values extracted from the predicted compression curves in the variability set further 

demonstrated decreased predictive performance of the model (Table 4.2) on the gastric treatment 

of the variability set (Fig. 4.9). The wide prediction interval in the gastric samples, suggests that 

the model was unable to map the out-of-distribution input to the correct value of hardness. IOU 

for the gastric and water treatments was 0.407 ± 0.171 and 0.846 ± 0.034, respectively (mean ± 

SD, n = 4). Notably, while the IOU for the gastric samples within the variability set was reduced 

as compared with the training set (0.407 vs. 0.846, respectively), the IOU for the water treatment 

was higher in the variability set compared to the test set (0.512 vs. 0.846, respectively).  

The overall RMSE for predicted hardness over all time points was 18.54 N for gastric and 4.04 N 

for water samples. MAPE was 102.4 and 8.57 % for gastric and water samples, respectively. In 

contrast to the gastric samples, water samples in the variability set demonstrated a higher 
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performance in hardness prediction, compared to the training set. Unlike studies which focus on 

cross-validation metrics or performance on a holdout set from the same data source, this study 

makes use of two distinct sets of materials. For comparison, Li et al. (Li et al., 2019) used 

synthetically generated mesoscale images for training and real images for testing, while 

predicting effective modulus of shale samples. Percent error in their study increased from 0.55 to 

0.97 % between cross-validation and test sets, echoing the performance decrease seen in this 

study in the gastric samples. 

Future development of this CNN-based approach with a wider variety of model foods is 

necessary to elucidate the specific attributes in the input images, which may impact model 

performance. 

4.4.3.3. Curve Prediction in Undigested Samples 

 

Figure 4.10. Measured and predicted compression curves from undigested samples in the training (A) and 

variability (B) sets. Predictions were generated via an ensemble approach by predicting the curve for each digital 

section using all three sets of model weights from the training set, then averaging the three curves to create a single 

50-point vector for each of the 96 digital sections from images from undigested apples. The central curve for both 

predicted and measured sets was generated by taking the median of all d igital sections and compression curves, 

respectively.  Shaded regions represent the 25 th and 75th percentile within predicted and measured curves. Measured 

values are shown with lighter shading compared to predicted values that are shown with darker shadin g. 

The overall RMSE for prediction on undigested samples in the training set was 12.10 N between 

the averaged predicted curve after ensembling and the average of the destructive curves collected 
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on undigested apple cubes. This value was considerably higher than the performance under 

cross-validation (4.36 N). R2 on the undigested apples from the training set was 0.683, which 

represents a performance decrease from an R2 of 0.939 in the corresponding incubated apples. 

Contrarily, MAPE on the undigested training set samples was 25.8 %, which is similar to the 

value found under cross-validation (26.4 %). The RMSE for the undigested apples from the 

variability set was 16.98 N, MAPE was 35.0 %, and R2 was 0.449.  

Like the trends seen in the incubated samples from the training set, underprediction in the 

undigested samples may have been driven by the high hardness in these samples. Additionally, 

within the undigested samples, the lack of incubation liquid present while imaging likely affected 

the intensity values of the images due to reduced attenuation of the X-ray beam, which 

influenced the image properties (Table 4.3). Difference in mean intensity may be avoided by 

normalizing input images, which is common practice in training deep learning models (Sudeep 

and Pal, 2017). However, preliminary trials suggested that scaling input intensity values 

negatively impacted model performance under cross-validation. In this case, due to the 

relationship between CT intensity value and density (Baker et al., 2012), maintaining raw CT 

values likely allowed the model to use overall intensity differences between samples to guide 

predictions. 

Despite differences in acquisition method, visual comparison of the compression curves (Fig. 

4.10) demonstrates that the micro-CT imaging and CNN prediction model was able to yield a 

similar curve shape to the measured hardness data. This result further suggests promise for future 

application of this approach to characterize food mechanical properties across different foods, 

during processing or digestion processes. 
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4.5. Conclusions 

The combination of nondestructive micro-CT imaging with rapid prediction via CNNs can be 

employed to analyze time series data, such as data collected during in vitro gastric digestion, 

with minimal raw materials and experiment time. Within a model incubation system representing 

in vitro gastric digestion of apples, a CNN model designed to predict compression curves from 

3D image inputs demonstrated high performance under cross-validation. The relationship 

between predicted and measured uniaxial compression curves had an R2 value of 0.939 and 

RMSE of 4.36 N. Outside of the cross-validation dataset, predictive performance declined, with 

an R2 of 0.296 and RMSE of 14.3 N. Nevertheless, high predictive performance was maintained 

on compression curves from water samples. Analysis of model attention using saliency maps 

within the cross-validation data demonstrated that model attention aligned with expectations 

based on mechanistic properties of the dynamic system, wherein structural breakdown 

progressed from the outer faces of the sample inwards. This trend was not observed on out-of-

distribution data in the gastric samples, which aligned with the reduced model performance. 

Overall, the direct prediction of uniaxial compression curves from micro-CT image data using 

CNNs is a promising technique which may be applicable to a variety of time-series food 

processes. Future research is necessary to validate this approach in more food systems and food 

processing steps, as well as to improve the robustness of the approach on new data. 
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CHAPTER 5. END-TO-END DEEP LEARNING FOR DIRECTLY ESTIMATING 

GRAPE YIELD FROM GROUND-BASED IMAGERY 

5.1. Abstract 

Yield estimation prior to harvest is a powerful tool in vineyard management, as it allows growers 

to fine-tune management practices to optimize yield and quality. However, yield estimation is 

currently performed using manual sampling, which is time-consuming and imprecise. This study 

demonstrates the applicability of nondestructive proximal imaging combined with deep learning 

for yield estimation in vineyards. Continuous image data collection using a vehicle-mounted 

sensing kit combined with collection of ground truth yield data at harvest using a commercial 

yield monitor allowed for the generation of a large dataset of 23,581 yield points and 164,699 

images. Moreover, this study was conducted in a commercial vineyard which was mechanically 

managed, representing a challenging environment for image analysis but a common set of 

conditions in the California Central Valley. Three model architectures were tested: object 

detection, CNN regression, and transformer models. The object detection model was trained on 

hand-labeled images to localize grape bunches, and detections were either counted or their pixel 

count was summed to obtain a metric which was correlated to grape yield. Conversely, 

regression models were trained end-to-end to directly predict grape yield from image data 

without the need for hand labeling. Results demonstrated that both a transformer model as well 

as the object detection model with pixel area processing performed comparably, with a mean 

absolute percent error of 18% and 18.5%, respectively on a representative holdout dataset. 

Saliency mapping was used to demonstrate the attention of the CNN regression model was 

localized near the predicted location of grape bunches, as well as on the top of the grapevine 

canopy. Overall, the study demonstrated the applicability of proximal imaging and deep learning 
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for prediction of grapevine yield on a large scale. Additionally, the end-to-end modeling 

approach was able to perform comparably to the object detection approach while eliminating the 

need for hand-labeling. 

5.2. Introduction 

Yield estimation is a valuable tool for crop management and precision agriculture. Estimation of 

crop yield in advance of harvest allows growers to make more informed decisions in negotiating 

pricing contracts or allocating quantities of crop for sale, and may also inform crop management 

decisions (Diago et al., 2012; Nuske et al., 2014). There are many approaches which can be 

taken towards estimating crop yield, the most common method involving manually sampling 

from a very small percentage (e.g., approximately 1%) of plants and extrapolating the yield data 

to the entire field. While this process is comparatively low-cost, it can be both time-consuming 

and imprecise (Liu et al., 2020; Wulfsohn et al., 2012). As opposed to manual sampling, remote 

sensing can capture information from an entire field in a short period of time, whether via 

satellite or via unmanned aerial vehicles (UAVs). The advantages of satellite-based remote 

sensing are speed, coverage, and a lack of requirement for manual labor. However, the resolution 

of publicly available satellite-based remote sensing is poor, typically between 10 and 30 m2 

(Khaliq et al., 2019). Atmospheric conditions can also be an issue as clouds, smoke, and haze 

can obscure the area of interest. Additionally, data collection cannot be scheduled, due to the 

regular orbit of the satellite. Remote sensing images acquired using UAVs can provide increased 

resolution, but requires a trained pilot (Khaliq et al., 2019; Yang et al., 2019). Additionally, for 

specialty crops where fruit is located beneath vegetative cover, such as tomatoes and grapes, the 

overhead angle of images creates difficulties in imaging, especially when foliage is dense (Di 

Gennaro et al., 2019). 
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Proximal imaging, referred to here as imaging from ground-based equipment, has also been 

extensively explored for yield estimation (Gongal et al., 2015). Proximal sensing using imagery 

can be advantageous, as high-resolution images from a lateral perspective can be collected from 

underneath a canopy. However, like UAV imaging, proximal imaging requires specialized 

equipment. Additionally, while the resolution and perspective of proximal imagery can allow for 

direct visualization and quantification of fruit, occluded fruits can lead to inaccuracy in the 

estimation (Dunn and Martin, 2004; Mu et al., 2020; Wang et al., 2021). Nevertheless, there has 

been extensive work in image-based proximal sensing for fruit detection and counting (Gongal et 

al., 2015).  

Recently, modeling techniques incorporating vision-based machine learning, which have 

demonstrated success in numerous fields, have seen considerable use in fruit detection and 

counting via proximal imaging (Bargoti and Underwood, 2017; Gené-Mola et al., 2019; Santos 

et al., 2020). Much of the previous work has been performed in orchard crops, such as apples 

(Bargoti and Underwood, 2017; Häni and Roy, 2019; Wulfsohn et al., 2012), oranges 

(Maldonado and Barbosa, 2016), and mangos (Payne et al., 2014). Studies in other specialty 

crops, including tomatoes (Mu et al., 2020; Rahnemoonfar and Sheppard, 2017) and grapes (Liu 

et al., 2017; Liu and Whitty, 2015; Santos et al., 2020) have also been conducted. In vineyards, 

much of the existing literature in yield estimation from proximal imagery have consisted of 

methods leveraging feature engineering and computer vision to count individual grape berries 

(Millan et al., 2018; Nuske et al., 2014; Rose et al., 2016), although pixel count has also been 

related to grapevine yield (Diago et al., 2012). 

In very recent years, studies on proximal imaging for fruit detection have moved away from 

hand-crafted feature and algorithm development towards deep learning methods (Gené-Mola et 



101 
 

al., 2019; Milella et al., 2019; Santos et al., 2020). Deep learning methods used for fruit detection 

reduce the bias involved in model development via their flexibility in learning both the optimal 

features and optimal relationships between features to converge to the desired result. However, 

while these methods are robust to a small amount of occlusion, they cannot account for 

completely occluded fruits (Gongal et al., 2015; Mu et al., 2020). In an effort to overcome the 

issue of occlusion, previous research in grape yield estimation has demonstrated some benefit of 

incorporating variable grape visibility into yield estimation models for improving performance 

using statistical modeling (Millan et al., 2018; Nuske et al., 2014). However, these approaches 

have involved tuning the model to the specific dataset, either by incorporating previous years’ 

data or specifying expected properties of the image data, such as mean berry area. 

While previous yield estimation methods have focused primarily on semantic segmentation, 

object detection, and object masking used for fruit detection, deep learning methods have also 

been used to map image data directly to more abstract outputs, such as image captions, 

monocular depth estimates (Hu et al., 2019), scalar values of food calories (Ege and Yanai, 

2017), subject age (Othmani et al., 2020), and more (Zakir Hossain et al., 2019). Once training is 

completed, these deep learning models map relationships from semantically complex 

combinations of image features to accurate predictions in unrelated modalities. This “end -to-end 

learning” approach can be applied to yield estimation by directly relating images and desired 

yield information, as opposed to the use of vegetative indices or models for detection or 

masking. This hypothesis was tested with promising results in the field of UAV-based yield 

estimation, in which a convolutional neural network (CNN) trained to forecast rice grain yield 

directly from high-resolution RGB images outperformed an NDVI-based approach (Yang et al., 

2019). End-to-end learning has also been demonstrated in the context of grape yield estimation 



102 
 

from proximal imagery, where a regression CNN model was used to directly predict yield in 

mass from images (Silver and Monga, 2019). However, images from that previous study were 

collected individually with a smartphone, which did not represent a scalable method. 

Additionally, vines were prepared specifically for imaging via placement of a calibration marker 

in each frame. Finally, extensive manual processing and cropping of the images was performed. 

Nevertheless, the study represents a proof-of-concept for utilization of DL in viticultural yield 

estimation. Like the improvements garnered by deep learning-based methods in learning 

features, as opposed to relying on prior assumptions, end-to-end methods used to directly relate 

images and yield may also be able to learn features from images other than solely those which 

contribute to fruit localization. For example, information such as canopy structure, fruit position, 

or other features may be relevant for the purpose of calibrating the yield estimate to account for 

occluded fruit. In addition to the above advantages garnered by end-to-end modeling, end-to-end 

models do not require labeling of objects in image data. Hand-labeling is a universal bottleneck 

in object detection studies and eliminating the labeling step can allow for the use of more data. 

In this study, three different deep learning methods were compared in their ability to estimate 

yield in vineyards at varying levels of spatial resolution. Yield values in metric tons per hectare 

(t/ha) acquired during harvest were predicted using a fruit detection model as well as two end -to-

end networks trained to predict yield directly from images: a CNN and a transformer network. 

The transformer architecture has recently been shown to perform well on a wide range of tasks, 

including natural language processing, as well as many vision-based tasks such as classification, 

segmentation, and object detection (Carion et al., 2020; Dosovitskiy et al., 2020; Vaswani et al., 

2017; Xie et al., 2021). Considering the design of the transformer architecture in accepting 

sequences of data, such as words or image patches, this flexible architecture was applied to this 
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dataset to allow for a set of neighboring images recorded near a ground truth yield measurement 

to be accounted for in the estimation.  

In addition to demonstrating the application of novel modeling techniques, this study also 

incorporated a uniquely large dataset. Previous datasets used for model development have 

consisted of as few as 10 vines (Diago et al., 2012) to up to 1,212 vines (Nuske et al., 2014). 

Yield data collected by hand-weighing grapes is typically used as a ground truth measure. 

However, yield monitors which generate high-resolution yield data as crops are harvested are 

commonly used by growers to map yield on a large scale. These monitors have been used 

previously in conjunction with remote sensing studies for yield estimation in crops such as 

sorghum and cotton (Yang et al., 2004; Yang and Everitt, 2002) as well as grapes (Sun et al., 

2017). However, proximal imaging studies on larger datasets of grape yield are still lacking, 

primarily due to the expensive nature of data collection. In this study, models were trained and 

evaluated on a dataset containing 23,581 yield values measured at harvest using a yield monitor. 

To the best of the authors’ knowledge, this study is novel, as it represents the first application of 

end-to-end modeling using minimally processed images collected from a moving platform for 

grape yield estimation. Additionally, this study represents the first application of vision 

transformers in direct yield estimation from image data. Furthermore, the scale of the yield data 

considered in the present work was an order of magnitude greater than in previous studies. 

Finally, the data in this work were derived from a commercial, mechanically managed vineyard, 

as opposed to previous studies conducted in vineyards with manual management. Mechanized 

vineyards generally consist of increased occlusion, whereas manual management allows for 

better targeting of specific shoots and leaves as compared with machine implements. 
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5.3. Materials and Methods 

5.3.1. Field Layout 

Data were collected in a commercial grape vineyard (Vitis vinifera L. cv. Cabernet Sauvignon) 

within the California Central Valley region in September 2020. Image data were collected 

approximately three weeks before harvest, while ground truth data was collected during harvest. 

The vineyard was divided into four blocks representing differences in management and/or trellis 

type (Fig 5.1). For the purposes of this study, block was not considered during the training of any 

model. However, data are presented as separated by block to demonstrate the effect of 

management on model performance. Vines in most blocks were trained on a quadrilateral trellis 

with sprawling canopies, although one block contained grapevines with a single bilateral trellis. 

Grapevine rows were arranged in an East-West configuration for all blocks. 

 

Figure 5.1. Yield points used in this study, colored according to their split in training, validation, and testing sets. 

Points located between validation and testing sets were labeled as unassigned and not used in the training process 

to minimize similarity between training and validation set images to the test set. The scale bar is applicable within 

each set of points bounded by a dashed line, but not between bounded regions, which have been positioned in the 

figure according to increasing block number for clarity. 
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5.3.2. Data Acquisition 

5.3.2.1. Image Data 

Image data acquisition was performed using a low-cost sensing kit with two RealSense D435i 

cameras (Intel, Santa Clara, CA) vertically oriented opposite each other, perpendicular to the 

direction of travel. Location data was collected using a Piksi Multi RTK GPS module and 

antenna (Swift Navigation, San Francisco, CA). In addition to the sensing modules, two 120W 

LED arrays on each side of the kit were included to illuminate the environment (Nilight, 

Englewood, NJ). All components were managed by a Jetson Xavier NX single board computer 

(NVIDIA, Santa Clara, CA) using the ROS platform. This sensing kit was attached to the back of 

an agricultural utility vehicle and powered by a deep cycle battery during data acquisition. 

Imaging was performed at night to control illumination consistency. RGB and depth image data 

were collected simultaneously from both cameras at 15 Hz frequency, although only the RGB 

imagery was used for this study. Images were compressed using JPEG compression to reduce 

storage requirements. Satellite-based augmentation system corrected GPS data was collected at 

10 Hz, representing approximately 0.38 m spatial resolution along a row. Image georeferencing 

was performed based on timestamp matching. 

5.3.2.2. Ground Truth Data 

Grapes were mechanically harvested using a commercial harvester fit with a load cell along with 

a GPS unit for yield monitoring (Advanced Technology Viticulture, Adelaide, Australia). Force 

data from the load cell were recorded at 1 Hz and the harvester was driven at an average speed of 

~1 m/s. Data were collected continuously and the yield monitor was calibrated with a scalar time 
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offset such that the location recorded for each yield value best represented the locat ion where the 

grapes were grown. 

5.3.3. Data Handling 

5.3.3.1. Ground Truth Data 

Yield monitor data was first processed manually to remove outliers, defined as yield points from 

gaps in rows where recorded yield was artificially lowered, spurious GPS points from outside of 

the rows, and rows in which the frequency of yield points was erroneously low. Values were then 

filtered further to remove points more than 1.5 interquartile range values away from the first and 

third quartiles (Tukey, 1977). Next, data from the yield monitor was calibrated based on the total 

yield from each vineyard as weighed by the receiving winery. Yield density was calculated by 

dividing the mass of grapes per block (tons) by the area of each block (hectares). All yield points 

within each block were then scaled proportionally such that the mean value was equivalent to the 

mean yield density measured in each block using a commercial scale as part of routine 

operations. 

5.3.3.2. Image Data 

The total ground-imagery dataset before filtering and data association consisted of 274,944 

images. Image data were filtered to remove poor quality images, which consisted of images 

where a shoot extending into the inter-row space obscured the camera, images recorded during 

turns between rows, and excessively blurred images where individual grape clusters could not be 

seen clearly. This was done by randomly selecting 3,000 images from the dataset and manually 

labeling them with binary labels (“keep” and “toss”). This subset of labeled data was split into 

training, validation, and test sets with 1800, 600, and 600 images, respectively, and a 
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MobileNetV2 model was trained to filter images (Sandler et al., 2018). The trained model 

achieved an accuracy of 91.2% on the test set and was used to filter the rest of the dataset. 

5.3.3.3. Association of Image and Yield Monitor Data 

 

Figure 5.2. Data handling and model architectures. a) Images in object detection and CNN models were associated 

with their closest yield point (three yield points shown with image-yield associations, where the images associated 

with each point are shown in different colors). b) The YOLO model was applied to individual frames and detections 

were processed to calculate yield values at each point. YOLOv5 was used without modification (Jocher et al., 

2021b). c) The CNN architecture was applied to a pair of images, one from each side of the vine. The model 

contained an unmodified ResNet feature extractor with a custom set of linear layers add ed in series. The final linear 

output of the model represented the predicted yield. No softmax or other post -processing was performed. d) The 

transformer model was trained to associate a 10-meter window of image points with each yield point, such that 

images may be associated with multiple yield points (two yield points shown with image-yield associations in 

different colors). Positional information consisting of positional and orientation (north and south) encodings was 

extracted based on relative location of image and yield points. e) The transformer architecture was designed to 

accept any number of images up to 128 (first and last two shown). Each image was passed through the same ResNet 

feature extractor (weights were shared during training). When used, positional encoding was represented as vectors 

with the scalar encoded value repeated such that a vector the same size as the feature vector from the ResNet 

extractor was produced. Positional encoding was integrated using a learned weighted average for eac h image input 

(weights were shared during training). The transformer encoder was composed with a depth of 2 layers and 8 

attention heads. The class token was used to generate a prediction, as it represented the entire input sequence.  

Yield data was collected during harvest, and each yield point was marked directly over the 

grapevine row, with a different spatial resolution as compared with image data. Therefore, 
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association of yield and image data was necessary (Fig. 5.2). For association of each image with 

a corresponding yield measurement, a distance matching algorithm was designed to match each 

image with its closest yield point, considering the orientation of the camera (North or South) for 

each image. For training the transformer model (Section 5.3.4.3), all measured yield points with 

at least one North-facing and at least one South-facing image within 5 m to the east or west of 

the measured yield point were kept. Any yield point without images from both the North and 

South side of the vine were discarded. This set of measured yield points was further pruned for 

training the CNN model (Section 5.3.4.2), where yield points were only retained if they were 

associated with at least one image from each side of the vine that was not closer to an adjacent 

yield point (Fig. 5.2a). In total, this left 23,581 yield points in the dataset used to train the 

transformer model, and 14,302 yield points in the dataset used to train the CNN model. After 

removing poor quality images, images far away from yield points, and images associated with 

yield points for which both sides of the vine were not accounted for, these yield points were 

associated with 164,699 and 80,009 images in the transformer and CNN model sets, respectively. 

5.3.3.4. Dataset splitting for model development 

Yield values were split into training, validation, and testing sets according to their location, such 

that no training or validation data was adjacent to a point in the test set. This was performed to 

reduce the influence of spatial autocorrelation on model performance (Fig. 5.1).  

Within the dataset used to train the transformer model, this resulted in 15,024 yield points in the 

training set, 3,354 in the validation set, and 4,529 in the test set. For the CNN and object 

detection models, this resulted in 9,509 yield points in the training set, 1,855 in the validation set, 

and 2,587 in the testing set. 
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5.3.4. Model Architectures and Training Procedures 

5.3.4.1. Object Detection 

The object detection model required labeled bounding boxes around grape clusters visible within 

a subset of images. Specifically, 150 images were selected at random from the training and 

validation sets of the dataset. Grape bunches in these images were labeled with bounding box 

labels. Care was taken to only label bunches on the near side of the vine, in the event that 

bunches from the far side of the canopy were visible in the image. For vines trained with 

quadrilateral trellises, grapes on the near side were defined as grapes on the closer set of cordons. 

For vines trained with bilateral trellises, the cordons were used as a dividing plane, where grape 

bunches on the near side of the cordons were selected. These 150 images were divided into 

training, validation, and testing sets of 98, 24, and 28 images respectively, considering the 

distribution of images from each management block. 

The object detection model was trained with YOLOv5 (Jocher et al., 2021b). Images were 

resized to 640 x 640 pixels and augmentation was performed using the mosaic method (Jocher et 

al., 2021a), along with variation of hue, saturation, and luminance values representing the default 

augmentations. The model was trained for 300 epochs. The best model was determined using a 

weighted average of a) 0.9 times mean average precision (mAP) averaged over intersection over 

union (IOU) values of 0.5:0.95 in increments of 0.05 and b) 0.1 times mAP at an IOU of 0.5 

only. This evaluation metric was computed on the validation set after each epoch. 

Bounding box count (i.e. bunch count) and bounding box area per image were used in yield 

estimation. For each location with yield data, mean bunch count or mean summed bounding box 

area was determined for all images on each side of the vine. The two sides were then summed to 
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obtain the final estimate of bunch count or area (px2). Bunch count and area were then correlated 

with the yield values in all training set images from the full dataset. A simple linear regression 

with the intercept fixed at the origin was used to relate bunch count and area with yield. 

Evaluation on the test set was conducted by first obtaining mean count or summed area over both 

sides of the vine, then converting the value to yield with the corresponding linear fit. 

5.3.4.2. Convolutional Neural Network Model Architecture 

For the CNN model, the ResNet18 architecture (He et al., 2016) was adapted to a regression 

approach (Fig. 5.3a). The 1000-length final linear layer of the architecture was replaced with a 

regression head composed of two 1024-length linear layers, each followed by a ReLU and 20% 

dropout step (Nair and Hinton, 2010; Srivastava et al., 2014). A final linear layer of size 1 was 

used to represent the yield corresponding with the input. Weights for the model were randomly 

initialized. Input data consisted of one frame from each side of the vine concatenated 

horizontally (Fig 5.2c). Since multiple frames on either side of the row were associated with a 

given yield point, the North side and South side image used in the input were randomly selected 

from the available images associated with each point during training. The validation set consisted 

of seeded random selection of frames, such that the North and South frames were consistent 

between epochs.  

The model was trained using an adaptive loss function (Barron, 2019) for 1.97M steps of batch 

size 12, which were divided into 25 epochs. North and South frames were augmented separately 

using random horizontal flips, and random median blurring. The North image was always on the 

left side of the input. For inference on the test set, all combinations of North and South image 

pairs were input to the model for each yield point, and the average predicted yield was taken. 
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Model weights were saved and a validation score was computed after each epoch. The model 

with the lowest validation loss was selected for performance evaluation. 

5.3.4.3. Transformer Model Architecture 

While concatenation of two images was used to increase the context of the data with respect to 

the location at which yield data were measured by providing two views of the vine in the CNN 

approach, concatenating additional frames would quickly exceed available GPU memory or 

require substantial image downscaling leading to information loss. The vision transformer 

architecture employed in this study accounts for this limitation by accepting a sequence of 

images as its input. Additionally, due to the attention mechanisms in the model architecture, the 

influence of each input image to the final predicted value is allowed to vary (Dosovitskiy et al., 

2020; Vaswani et al., 2017). This was of particular importance in this work, due to the use of a 

mechanical yield monitor in lieu of hand counting or weighing fruit. While the yield monitor 

allowed for generation of a uniquely large dataset, both the magnitude as well as the positional 

accuracy of the yield measurements were compromised by the continuous nature of data 

collection. Specifically, harvested grapes were measured with a load cell after a small delay, 

during which the grapes were conveyed from the vine to the instrument. While this time was 

accounted for with a scalar offset in this study, other factors such as the mass flow rate of fruit in 

and out of the harvester machinery have been shown to affect this value slightly (Searcy et al., 

1989). As such, the yield values reported in this study were more appropriately derived from a 

distribution of vines surrounding the marked position. Therefore, a model with the capacity to 

accept data from areas surrounding the location of the measured yield point was particularly 

well-suited to the present task.  
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To take advantage of the flexibility of the transformer architecture, a window of 5 m to the east 

and west of each yield point was considered, and all images within that window were used as 

inputs to the model for the purpose of predicting yield in that location (Fig. 5.2d). This was done 

to account for any mixing which may have occurred in the harvester as yield was being recorded, 

potentially allowing adjacent vines to influence the recorded yield in a given location. 

The transformer model was based on the Vision Transformer (ViT) architecture (Dosovitskiy et 

al., 2020) with modifications (Fig. 5.2e). Instead of linearized image patches, token vectors input 

to the encoder were represented by ResNet34 features. Each image passed through the ResNet 

model, and the final set of activation maps was used for feature extraction. Maps were averaged 

along the filter dimension, then linearized to generate a 256-length feature vector for each image. 

In addition to the token representation, the positional encoding was also modified from its 

original format. Typically, positional encoding consists of sinusoidal or learned embeddings 

(Vaswani et al., 2017), which have been shown to be effective for inputs derived from uniformly 

cut patches of an image or language inputs. However, for both patch and word-based input, the 

spacing between inputs is consistent and only the relative location between inputs is important. 

In this application, the relevant positional information consisted of the distance between the 

measured yield point and the image location, as well as the orientation of the camera with respect 

to the vine. As a result, the prior information regarding the distance between each frame and the 

yield point, as well as the side of the vine represented by each image was used as the positional 

embedding. Setting the location of yield point at 0.5, locations 5 m to the east and west were 

scaled to 0 and 1, respectively. This scalar was assigned to each input image and represented its 

position relative to the center frame at 0.5. Likewise, each input image was assigned either 0.5 to 

represent an image from the South side of the vine, or 1 to represent the north side. Finally, as 
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opposed to the typical summation of a positional vector with the token vector, a 1D 

convolutional layer was added to allow for a linear combination of each value in the 256-length 

feature vector with each of the scalar positional values to be learned and used to improve 

performance. The inclusion of this positional metadata was performed to allow the model to 

selectively attend to images based on both their content as well as their position. To determine 

the influence that this added positional information had in an agricultural system, the model was 

trained both with and without information regarding position and orientation of each image 

frame (this optional step is represented in a dashed box in Fig. 5.2). 

The remainder of the model architecture was minimally changed from the ViT architecture. The 

encoder was designed with a depth of 2 encoding blocks and 8 attention heads. The multilayer 

perceptron decoder used for classification was modified to output a single value to serve as the 

scalar prediction of yield. The model was trained with a mean squared error objective function 

for 50,000 steps and a batch size of 6, with gradient accumulation across every two batches for 

an effective batch size of 12. Training was divided into 20 epochs. Model weights were saved 

and validation performance was measured after each epoch. The weights with the lowest 

validation error were kept for performance evaluation. 

5.3.5. Performance Evaluation 

Object detection performance within the labeled dataset was measured using area under the 

precision-recall curve (AP) at an intersection over union of 0.5, as well as R2 and root mean 

squared error (RMSE) between labeled and predicted bunch counts and bounding box area. 

Performance of each model on the test set was evaluated using RMSE, mean absolute percent 

error (MAPE), and R2 metrics between predicted and measured data. In order to compare all 
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models, only the yield points represented in the test set of the CNN model were used for 

evaluation (Section 5.3.3.3). Therefore, all models were evaluated on a test set of 2,737 yield 

points. Additionally, due to the tendency for some of the trained models to predict values closer 

to the mean, as opposed to higher and lower yield values seen less frequently, the range 

expressed by each approach was also calculated using Eqn. 5.1: 

 
max(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑦𝑖𝑒𝑙𝑑) − min (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑦𝑖𝑒𝑙𝑑)

max(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑦𝑖𝑒𝑙𝑑) − min (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑦𝑖𝑒𝑙𝑑)
 𝑥 100 (5.1) 

Finally, to compare performance with remote sensing-based studies, post-hoc analysis was 

performed after model inference by spatially aggregating yield points and associated ground 

truth and predicted data into 10- or 20-meter square bins within each block. This was done by 

dividing the test dataset into separate zones that were densely populated with yield points, then 

binning points in the zones into grids of either 10- or 20-meter length, beginning at the lower left 

point of each zone. Within the test set, 179 bins were used at 10 m spacing, and 47 bins were 

used at 20 m spacing. 

5.3.6. Saliency Mapping and Model Visualization 

To gain insight into the features of the image used by the model to predict yield, the technique of 

Gradient-Based Class-Activation Mapping (Grad-CAM) was leveraged for the CNN model 

(Selvaraju et al., 2016). Typically used for classification tasks, this technique allows for 

visualization of the regions of the input image which contribute most strongly to increasing the 

value of an output class. As the model only outputs one value, the predicted yield, the 

visualization can be interpreted as the regions of the input image which contribute to raising the 

predicted yield value. While these regions are hypothesized to be localized in regions of input 
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images with visible grape bunches, other features of the input, such as canopy density or shoot 

position, may also be relevant.  

The Grad-CAM approach was used on all images in the train set as well as the test set (all 

combinations of images from each side of the vine) to produce heatmaps scaled from 0 to 1. 

These maps were then averaged within each yield point, then averaged again over the entire 

dataset, giving equal weight to all yield points regardless of the number of associated images. 

For comparison with the Grad-CAM visualization, a heatmap was generated in a similar fashion 

for the train and test sets of the object detection model, where detected clusters in each image 

were assigned a value of 1 on a blank canvas of a size equal to the image size. These images, like 

the Grad-CAM heatmaps, were averaged within each yield point separately for the north and 

south sides of the vine, then averaged over all yield points to generate a similar heatmap to the 

CNN Grad-CAM plot. 

Finally, in addition to visualization of model outputs, the scale of the dataset in this work was 

sufficient to produce yield maps. Maps were generated by aggregating yield points spatially at 10 

m resolution, then plotting the aggregated regions on a map colored by yield value. 
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5.4. Results and Discussion 

5.4.1. Object Detection Approach 

5.4.1.1. Internal Validation 

Within the 28 labeled test images, the 

model achieved an AP score of 0.56, 

an R2 of 0.55, and a RMSE of 3.5 

bunches in prediction of the number 

of grape bunches in each image (Fig 

5.3). Prediction of summed bounding 

box area demonstrated an R2 of 0.94.  

While many previous studies have focused on berry counting, Santos et al. (Santos et al., 2020) 

previously demonstrated an application of CNNs in grape detection in vineyards, including the 

YOLOv3 object detection and Mask-RCNN segmentation models. The AP score achieved by the 

researchers for YOLOv3 at 0.5 IOU was 0.39, which is considerably lower than the YOLOv5 

score in this study, although the YOLOv2 model in the previous work achieved a score of 0.48, 

which is similar to this study. In this previous study, Mask-RCNN achieved an AP of 0.72, 

representing a considerable improvement. However, Mask R-CNN is a much more 

computationally expensive network than YOLOv5. 

Figure 5.3. Internal validation of YOLOv5 model on A) box count and 

B) summed box area hand-labeled test set of 28 images. The red line 

represents the linear fit to the data and the dashed black line represents 

1:1 accordance. 
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Figure 5.4: Example images with predicted (yellow) and labeled (green) grape bunches. Only bunches on the near 

side of the vine were labeled. Quantitative measures of grape yield in bunch count and area are displayed below 

each frame. a) In this frame, missed bunches in the lower-left as well as additional bunches near the top of the frame 

are demonstrated relative to ground truth label. b) In this frame, the predicted count is much higher than the labeled 

count, but the predicted area is approximately equal to the labeled area. c) Likewise, in this frame, the predicted 

count is less than the labeled count, but the predicted area is also very close to the labeled area. 

While the AP metric is a valuable indicator of model performance, it may not represent 

performance relevant to yield estimation. Notably, inconsistencies in bunch counts amounted to 

an RMSE of 3.46 bunches, primarily due to overcounting in the model. However, the degree of 

counting error was inconsistent, leading to an R2 of 0.55. This inconsistency may have been due 

to clustering of bunches, resulting in multiple bunches classified as one, which is a common 

issue (Di Gennaro et al., 2019; Liu et al., 2017). Moreover, additional grape bunches missed 

during labeling were detected by the model in some instances (Fig 5.4). These bunches may have 

constituted those on the far side of the vine (Section 5.3.4.1), such as in Fig. 5.4b. However, 
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although the raw value of bunch counts was not always accurately predicted, the correlation 

between measured and predicted summed box area is strong, with an R2 of 0.94 (Fig 5.3b). With 

an area-based approach, two labeled bunches counted as one as well as one labeled bunch split 

into multiple individual bunches may not influence the predicted area, even when the count is 

affected. These results suggest that in the case of box area, the object detection model is 

consistent with human-labeled fruit annotations. 

5.4.1.2. Yield Estimation using Object Detection  

 

Figure 5.5. Yield estimation on data from the test set using the object detection model with both a) box count and b) 

summed box area approach. The first pane represents the calibration performed using the training set data to 

translate either bunch count or box area to ground truth yield value in tons per hectare (t/ha). The red line in each 

pane represents the fit linear model to all data points in the pane. Each dashed line represents the model fit to eac h 

block of corresponding color. Black dotted lines represent the 1:1 line. The level of spatial aggregation is shown 

above each column after the calibration results (first column). 

To predict yield with the object detection model, correlations were made between bunch count 

and ground truth yield as well as boxed area and ground truth yield (Fig. 5.5). Using the training 

set, the linear relationship between count and t/ha demonstrated a poor fit, with an R2 of -0.11. 

Consequently, use of the bunch count model with this relationship showed poor accordance with 

yield in the test set with a RMSE of 6.27 t/ha and MAPE of 34% (Table 1). This result is similar 
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to previous work, as studies incorporating bunch detection steps have typically used the bunch 

counts along with berry counts due to the variance in size between bunches (De La Fuente et al., 

2015; Nuske et al., 2014b) or used pixel area to express the difference between bunch sizes (Di 

Gennaro et al., 2019). 

Table 5.1. Performance summary for each architecture on test set data only. Between the three levels of spatial 

aggregation, “None” is represented by 2587 yield points, 10 m by 179 yield points, and 20 m by 47 yield points. 

Architecture Details 

Spatial 

Aggregation 

(m) 

RMSE 

(t/ha) 

MAPE 

(%) 
R2 

Range 

Expressed 

(%) 

Fit 

Line 

Slope 

Fit Line 

Intercept 

(t/ha) 

Object 

Detection 

Bunch 

Count  

None 6.27 34.0 0 71.3 0.04 17.7 

10 4.75 29.4 0.013 49.7 0.21 14.0 

20 4.00 22.1 0.081 74.5 0.42 9.64 

Box Area  

None 5.39 27.5 0.117 79.7 0.53 8.98 

10 3.32 18.5 0.446 62.2 1.01 0.32 

20 2.46 12.2 0.577 86.3 1.0 0.17 

CNN -- 

None 5.06 26.9 0.136 44.7 0.87 2.81 

10 3.16 18.7 0.510 49.0 1.3 -5.15 

20 2.78 15.1 0.501 63.2 1.2 -4.13 

Transformer 

No 

Metadata 

None 5.26 28.0 0.096 56.5 0.61 7.37 

10 3.47 19.6 0.376 57.7 0.97 0.54 

20 3.07 16.5 0.371 79.9 0.97 -0.20 

Position, 

Orientation 

Information 

None 5.12 27.1 0.149 60.0 0.64 6.72 

10 3.24 18.0 0.460 63.8 0.91 1.73 

20 2.89 15.2 0.430 80.5 0.85 2.42 

 

Like in the bunch count approach, yield estimates using bounding box area require a relationship 

to be mapped between area and yield on the training set. This linear fit performed better than the 

bunch count results, but was still a poor fit overall, with an R2 of 0.054 (Fig. 5.5b). This value is 

still lower than previously reported correlations between pixel count and grape yield, with Diago 

et al. (2012) reporting an R2 of 0.76. However, the field layout used in this previous study was 

comparatively simple, with a white background placed behind each vine to avoid influence from 
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adjacent rows, increased image resolution, and a vertical shoot positioned (VSP) trellis system in 

which cluster occlusion was reduced. In comparison, the quadrilateral cane trellis system 

featured primarily in this work exhibited increased occlusion, and the images were collected 

without compensation for adjacent rows (see Section 5.4.3 below).  

Interestingly, although the relationship between summed area and yield is poor, the internal 

validation results demonstrated good accordance with labeled data (Fig. 5.3b), demonstrating 

that the relationship between observed bunches and yield value is inconsistent. Detection of  

grape bunches on the far side of the vine may have influenced the yield estimation, although this 

was not the case in the labeled test set (Fig. 5.3b). Therefore, the results indicated that even if a 

model were to accurately label all grape bunches as well as a human, the relationship to yield 

may still be poor. This suggests the amount of fruit present on the vine but invisible to the 

camera lens was not consistent throughout rows, as is sometimes assumed for the sake of 

modeling occlusion (Bargoti and Underwood, 2017).  

Still, even with poor performance in relating area to yield, for predictions on the test set, 

performance using the box area approach was improved over the bunch count approach at all 

levels of spatial aggregation. Performance at the 10 m level aggregation demonstrated an R2 of 

0.45 and RMSE of 3.32 t/ha. This increase in performance over the bunch count model was most 

likely due to accounting for variability in bunch size. Additionally, while the bunch count model 

was only able to express 49.7% of the range of values at 10 m aggregation, the box area model 

increased this to 62.2%. Moreover, looking at the slope and intercept of the linear fit to the test 

data (Table 1), the relationship is close to a 1:1 accordance, with a slope of 1.01 and intercept of 

0.32 t/ha. 
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In addition to the high levels of occlusion in vines imaged in this study relative to previous 

works, one potential reason for decreased performance relative to existing object detection 

approaches is the small number of labeled images. Only 150 images were labeled, with 98 

images used to train the model, representing 2630 total labeled bunches, and 1696 labeled 

bunches in the training set. For comparison, the Wine Grape Instance Segmentation Dataset 

(WGISD) published by Santos et al. (2020) contains 300 images with 4432 clusters. However, 

the dataset in the present work was distinct as the vineyards were mechanically managed, and 

therefore the occlusion level was much higher. Additionally, the WGISD was created as an 

instance segmentation dataset, as opposed to the object detection dataset used in this work. Even 

so, labeling images for the present study represented a considerable amount of labor as well as a 

bottleneck in model development. This has been noted in previous works (Rahnemoonfar and 

Sheppard, 2017; Santos et al., 2020), in which the laborious nature of image labeling was 

specifically noted. This labeling effort becomes increasingly burdensome as the variability of 

images conditions increases, pointing to a need for more data efficient methods for labeling, such 

as in Fei et al. (2021). In this work, the requirement for labeling was sidestepped in the 

regression approach. 
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5.4.2. Regression Approaches 

 

Figure 5.6. Yield estimates on test data using the regression models: a) CNN regression network; b) transformer 

model without positional; and c) transformer model with positional information encoding frame position relative to 

yield point (scaled from 0 - 1) and orientation (North/South). The red line in each pane represents the fi t linear 

model to all data points in the pane (fit parameters shown in Table 1). Each dashed line represents the model fit to 

each block of corresponding color. Black dotted lines represent the 1:1 line. Each pane represents an increasing 

amount of spatial aggregation. 

Unlike the object detection approach, each of the regression models were trained end -to-end on 

yield from images as input, which resulted in an output of yield in units of t/ha. Additionally, no 

manual labeling was required after alignment of yield points with image locations (Fig. 5.2). 

Relative to the object detection models, the CNN model further increased performance in yield 

estimation at 10 m spatial aggregation (Fig. 5.6a), with an RMSE of 3.16 t/ha, MAPE of 18.7%, 
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and R2 of 0.51 (Table 1). However, the model was only able to express 49% of the measured 

range at 10 m aggregation. Additionally, the line of best fit demonstrates bias, with a slope of 1.3 

and intercept of -5.15 t/ha. 

The transformer model without included metadata demonstrated similar performance to the CNN 

model (Fig. 5.6b), with an R2 of 0.38, MAPE of 19.6%, and RMSE of 3.47 t/ha at 10 m 

aggregation (Table 1). While the R2 and other error metrics were lower, the line of best fit 

represented close to 1:1 accordance, with a slope of 0.97 and an intercept of 0.54 t/ha. 

Additionally, range expressed by the transformer model demonstrated a slight improvement over 

the CNN approach, with 58% vs. 49% in the CNN. This flexibility to predict values at the 

extents of the measured range may be a result of the increased context of the input data 

combined with the attention mechanism of the model architecture. However, it is notable that the 

box area model achieved an increased level of range expressed compared to the CNN and 

transformer model without positional metadata, with the box area model showing 62.2% range 

expressed compared with 49% and 58% expressed by the CNN and transformer models, 

respectively. 

However, when positional metadata was added to the transformer input, range expressed as well 

as MAPE was improved over all other architectures (Fig. 5.6c), with an R2 of 0.46, MAPE of 

18.0%, and RMSE of 3.24 t/ha at 10 m aggregation (Table 1). However, the line of fit was 

slightly further away from 1:1, with a slope of 0.91 and intercept of 1.73 t/ha. However, the 

range expressed by the model increased over the other end-to-end approaches, with 64% 

expressed at 10 m aggregation. Since the only modification relative to the other transformer 

model was the addition of positional metadata, this data likely allowed the model to better attend 

to the input data and selectively map the inputs to higher and lower yield values. The addition of 
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positional metadata to deep learning models in the agricultural domain has been previously 

demonstrated by Bargoti and Underwood (2015, 2017) in the study of image segmentation in 

apple orchards. Along with input image patches, these previous models were designed to accept 

metadata including pixel positions, row numbers, and solar position. This additional information 

was shown to improve performance of a multi-scale multi-layered perceptron (MLP) 

segmentation model, but negligibly impacted performance of a CNN model. This may have been 

due to the interaction between the added data and the model architectures. In the present work, 

the metadata included with the transformer model was added before the transformer encoder 

layers, as opposed to the CNN model in the previous work, which added metadata in one of the 

last layers (Bargoti and Underwood, 2017). 

Of all models, the best performance by MAPE (as well as range expressed) at 10 m aggregation 

was achieved by the transformer model with positional metadata, with an MAPE of 18% and 

63.8% range expressed. However, at 20 m aggregation, the box area model achieved the best 

results, with a MAPE of 12%. Range expressed by the box area model was also the highest of all 

models at 20 m aggregation, with 86%. However, it should be noted that the box area model 

could only be trained after labeling 150 images of grape clusters, whereas the end -to-end models 

required no labeling. Moreover, the architecture of the end-to-end model is flexible towards the 

addition of metadata, which increases the potential for integration of proximal imagery models 

with other data sources, such as remote sensing data, for the improvement of predictive 

performance. 

5.4.3. Performance Relative to Previous Works 

The model performance at varying spatial aggregation values can be compared with previous 

remote sensing studies, such as Sun et al. (2017), in which vineyard yield in a location in the 
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California Central Valley, similar to the one in this work was predicted at 30 m using NDVI and 

LAI. In their work, they achieved up to 5.9 – 14.8% error, although the authors did not split the 

data into training and testing sets, so the error is correlation error instead of prediction error. 

Additionally, that value represented the best possible correlation among many possible 

combinations of cumulative vegetation index maps created across the season, which the authors 

noted cannot be known a priori.  

At 20 m spatial aggregation (selected as the most similar aggregation level to 30 m satellite 

models), the regression models in this study performed well, with the transformer model with 

positional metadata demonstrating 2.89 t/ha RMSE and 15% error. However, performance 

evaluated without spatial aggregation was worse, with an RMSE of 5.12 t/ha and 27.1% error 

(Table 1). The values achieved without spatial aggregation are considerably lower than those of 

previous works, with Nuske et al. (2014b) demonstrating a relationship between detected berry 

count and yield with an R2 of between 0.6 and 0.73 on an individual vine level. Other authors 

have obtained similar results with vine-level relationships with R2 values > 0.7 (Diago et al., 

2012; Millan et al., 2018). However, previous studies on yield estimation have focused on 

unsupervised computer vision techniques, such as use of keypoint detection (Nuske et al., 2014b) 

or distance-based metrics performed on color data (Millan et al., 2018). In these previous 

approaches, models were developed based on the appearance of images which were also used to 

generate performance metrics, as opposed to this study, which implemented a representative 

holdout test set. For example, one previous study on yield estimation from UAV imagery of 

grape canopies used images from one harvest year to estimate yield in the following year. 

However, according to the authors, images used for performance evaluation were selected as 

those with the best conditions, as opposed to a representative sample (Di Gennaro et al., 2019). 
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Notably, the previous end-to-end modeling study for grape yield estimation evaluated 

performance using 5-fold cross-validation between the 40 vines included in the study (Silver and 

Monga, 2019). However, the authors did not account for similarities in vines due to proximity in 

space. Therefore, a better comparison with correlative remote sensing as well as unsupervised 

proximal imaging approaches may be the performance achieved on data used to train the model 

(Table 2). In that context, models in the current work perform very well, with the transformer 

model with positional metadata achieving an R2 of 0.91 at 20 m spatial aggregation. Notably, 

however, results without spatial aggregation are still low, with an R2 of 0.54 in the same 

transformer model. 

Table 5.2. Performance summary for each architecture on training set data only. Between the three levels of spatial 

aggregation, “None” is represented by 9509 yield points for the object detection and CNN models and 15024 yield 

points for the transformer models. 10 m is represented by 577 yield points for the object detection and CNN models, 

and by 617 for the transformer models. Finally, 20 m is represented by 171 yield points for the object detection and 

CNN models, and 182 points for the transformer models. 

Architecture Details 

Spatial 

Aggregation 

(m) 

RMSE 

(t/ha) 

MAPE 

(%) 
R2 

Range 

Expressed 

(%) 

Fit 

Line 

Slope 

Fit Line 

Intercept 

(t/ha) 

Object 

Detection 

Bunch 

Count  

None 6.12 34.2 0.044 96.7 0.35 11.65 

10 4.05 20.3 0.242 58.3 0.79 4.17 

20 3.62 16.8 0.254 57.2 0.66 6.62 

Box Area  

None 5.64 30.7 0.129 104 0.57 7.75 

10 3.36 15.5 0.477 74.6 0.95 1.41 

20 2.74 12.4 0.520 79.9 0.91 1.91 

CNN -- 

None 4.73 27.2 0.342 55.2 1.15 -2.59 

10 2.49 12.5 0.732 55.0 1.26 -4.63 

20 2.01 9.2 0.761 59.0 1.22 -3.99 

Transformer 

No 

Metadata 

None 3.93 23.1 0.568 84.4 1.04 -0.71 

10 1.40 6.3 0.908 87.3 1.06 -0.86 

20 1.13 4.8 0.932 86.2 1.07 -0.90 

Position, 

Orientation 

Information 

None 4.09 23.4 0.535 95.3 0.93 1.15 

10 1.49 6.4 0.893 87.8 0.97 0.67 

20 1.23 4.9 0.910 90.7 0.99 0.49 
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However, in addition to the lack of a holdout set, previous studies were conducted in very 

different environmental conditions as compared with this work. Almost all previous studies on 

grape yield estimation have been performed with VSP trellis configurations and manual 

defoliation. As an example of the effect that trellis configuration has on proximal imaging, one 

previous study of image-based methods for grape phenotyping noted that in point cloud 

classification of grape pixels, precision and recall dropped by 39% and 6%, respectively, 

between vines trained with a VSP trellis and semi-manual pruned hedge (SMPH) trellis (Rose et 

al., 2016). The SMPH trellis configuration seen in that work is more similar to the quadrilateral 

trellis featured primarily in the present study as opposed to the VSP trellis. Additionally, Di 

Gennaro et al. (2019) separated vine images into conditions based on vigor as well as occlusion 

and found the true positive rate of pixel classification was reduced by 45 and 73% in high and 

low vigor vines, respectively, between good conditions representing minimal occlusion and poor 

conditions representing occlusion and shading. On the contrary, this work was performed in a 

commercial vineyard within the California Central Valley, where due to the heat and dry 

conditions, fruit shading is extremely important, and VSP trellis configurations and defoliation 

would be detrimental to grape quality. Moreover, vines in this study were mechanically trimmed 

and harvested, which is becoming more common in the wine grape industry (Kaan Kurtural and 

Fidelibus, 2021). As a result, robust models which work reliably in vineyards managed 

mechanically will become more important in the future. Additionally, previous work has relied 

on hand-weighed yield data collected at the vine level, which is typically not implemented by 

commercial growers on a large scale. Instead, yield monitor data is more commonly used 

(Bramley and Hamilton, 2004), which allows for a larger dataset but also introduces additional 

sources of error into the yield estimates due to both the continuous nature of data collection as 
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well as the influence of yield monitor geometry and mass flow on the measurement (Searcy et 

al., 1989). 

5.4.4. Visualization and Saliency Mapping 

 

Figure 5.7. (a) Example input image to the CNN model. (b) Heatmap representing localization of predicted grape 

bunches using the object detection model across the train set and c) test set. (d) Grad -CAM heatmap representing 

areas averaged over all test set yield points with high influence on increasing predicted yield in the train set and e) 

test set. 

Figure 5.7 contains an example input image to the CNN model, along with heatmaps 

representing the position of detected grapes on the vine in the training (Fig. 5.7b) test set (Fig 

5.7c) as well as the average Grad-CAM response from the CNN network for the training and test 

sets (Fig 5.7d-e). In this visualization, although grape clusters are localized in the center of the 

image frame, the regions of the image with the strong contribution to predicted yield include the 

center of the frame as well as the top of the frame, potentially representing the density of the vine 

canopy at the top of the frame, where in some images, dark background is visible through the 

canopy. The fact that the CNN model was free to use these features of the input, whereas the 

object detection model was constrained to regions with grape bunches, may have contributed to 

the increased performance of both the CNN and transformer models over the object detection 

models. Alternatively, the attention on the top edge may also be a result of overfitting to the 

dataset by relating spurious image features with yield. This behavior was seen in both the 

training and test sets (Fig. 5.7d-e), suggesting that the attention was learned by the model, and 

not due to differences between the datasets. 
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Figure 5.8: Yield maps from the test set (represented by dark points in Fig. 5.1). Maps were generated by 

aggregating data to 10m. Numbers in each pane represent block numbers, as in Fig. 5.1.  

Yield maps generated from measured and predicted data demonstrate how the models tend to 

predict values close to the center of the distribution of values (Fig. 5.8). This is a visual 

representation of the range expressed results in Table 1, which demonstrate that no predicted 

dataset was able to achieve the same range of values as the measured data (< 100% range 

expressed). Nevertheless, visual trends from the measured plots can be seen in the predicted 

maps. Most notably, block 3 is represented on all maps with the lowest yield values. Likewise, 

the pattern shown in block 2 by both transformer models is similar to that of the measured data. 

Future work will involve collecting more data from more contiguous regions such that more 

detailed maps may be generated with the proximal imaging approach used in this work. 
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5.5. Conclusions 

Three different models for prediction of grape yield from proximal imagery were trained based 

on image data collected from a vehicle-mounted sensing kit against ground truth yield data 

collected from a mechanical yield harvester. The object detection model, which is most similar to 

previous methods of yield estimation from proximal imagery, demonstrated poor performance 

when the size of grape bunches was not accounted for (MAPE of 29.4% when aggregated to 10 

m blocks). Performance improved with use of grape bunch area as opposed to bunch count, with 

a MAPE of 18.5% at 10 m spatial aggregation.  

Regression-based deep learning models trained end-to-end on yield prediction from input 

imagery demonstrated similar performance to the best object detection approach (grape bunch 

area). Regression CNN and transformer architectures were utilized, with an MAPE of up to 18% 

at 10 m spatial aggregation achieved with a transformer architecture after the addition of encoded 

positional metadata. Moreover, these regression architectures eliminate the need for hand -

labeling images, removing a considerable bottleneck from the model development process. 

While the performance on the test set in this work is lower than some previous studies, previous 

works have primarily been performed in vineyards trimmed by hand with vertical shoot 

positioned trellis configurations. This study represents an application of yield prediction in 

challenging conditions for image collection, with high occlusion, dense foliage, and a 

quadrilateral trellis configuration, common to the California Central Valley. Additionally, this 

study assessed performance on a holdout test set, which is more representative of unseen data. 

Future work in this area will encompass yield forecasting from earlier in the season, at times 

prior to veraison, where accurate yield estimates are difficult to obtain but highly valued. 

Additionally, while the image data in this work were collected specifically for this study, the 
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low-cost, vehicle-mounted sensing kit used for imaging may allow for automated data collection 

during routine management operations in the future, if the kit is mounted on existing equipment. 

Finally, due to the flexibility of the regression-based approach, data fusion techniques where 

proximal imagery is supplemented with remote sensing data represents a promising area for 

exploration in which coarse resolution satellite data may be used to improve performance of 

models trained on ground-based imagery. 
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CHAPTER 6. OVERALL CONCLUSIONS 

This research consisted of acquisition and analysis of nondestructive image data in food and 

agricultural systems. Overall, the following conclusions were reached: 

1. Micro-CT images collected during time-series 3D imaging of apples during in vitro 

digestion demonstrated significant changes over time. Images of apples in water and 

gastric juice both showed significant intensity differences from their initial intensity after 

2.67 hours (p < 0.05). Additionally, the intensity of images of apples in gastric juice and 

water were significantly different from each other (p < 0.05) at all measured time points 

after 8 hours of incubation. 

2. Analysis of micro-CT images allowed for quantification of changes in food structure 

over time during in vitro digestion, which were similar to changes observed in 

destructive measurement of hardness. Moisture uptake in apples during in vitro 

digestion, measured destructively, was similar between the two treatments tested: gastric 

juice and water. However, the destructively measured hardness of apples incubated in 

gastric juice decreased faster than apples in water. k (h-1) was 0.15 ± 0.005 h-1 and 0.036 

± 0.01 h-1 for apples incubated in gastric juice and water, respectively (Eqn. 3.2). 

Correspondingly, the image-derived intensity of apples incubated in gastric juice changed 

at a faster rate than apples incubated in water. 

3. Custom convolutional neural networks trained in an end-to-end fashion were able to 

directly predict compression profiles from 3D image data of food during in vitro 

gastric digestion collected with micro-CT. A well-known convolutional architecture, 

ResNet, was modified to accept 3D image data and output a vector of force values, 

representing the compression profile during mechanical testing. Moreover, the model was 
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trained to convergence with known compression curves in vector format, allowing for 

model prediction on unseen samples. Under cross-validation, the model trained on micro-

CT images of apple tissue during in vitro digestion in gastric juice or water was able to 

predict compression curves for 3D images with a mean absolute percent error of 26.4% 

(39.7 and 13.0 % for gastric and water, respectively). The overall R2 of the model 

predictions was 0.939, signifying good accordance with measured data. 

4. Compression curves predicted from micro-CT images of apples incubated in gastric 

juice and water can be analyzed to extract accurate time-dependent trends in tissue 

softening. Extraction of peak force from compression curves assessed using cross-

validation allowed for generation of time-dependent hardness profiles from the tested 

samples. These profiles could be fit to a Weibull model (Eqn. 3.2) with R2 for the model 

fit of 0.82 and 0.72 for apples in gastric juice and water, respectively. Under cross-

validation, the hardness profiles matched well with destructive data, with a mean absolute 

percent error of 23 and 13.4% for apples in gastric juice and water, respectively. 

However, when an out-of-distribution variability set was assessed, the performance was 

inconsistent, with a mean absolute percent error of 102.4 and 8.57% for apples in gastric 

juice and water, respectively. 

5. Large-scale grape yield-monitor observations were accurately predicted from RGB 

image data collected with consumer cameras in a mechanically managed 

commercial vineyard setting after aggregation to 10 m spatial bins. Three deep 

learning architectures: object detection, convolutional neural network regression, and a 

transformer network were all able to predict grape yield from image data to within 

varying degrees of accuracy, with a mean absolute percent error of yield estimation of as 
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low as 18% when image and yield data were aggregated to 10 m regions. Notably, this 

result was achieved on a representative holdout set within a mechanically managed 

vineyard, which contrasts with previous studies in the field that have concentrated on 

correlation results in vineyards with sparse, hand-trimmed canopies. 

6. End-to-end modeling for regression tasks allowed for similar predictive 

performance of large-scale yield-monitor datasets collected in a commercial 

vineyard in comparison to object detection-based models without the need for hand-

labeling. Performance achieved by the end-to-end models in terms of mean absolute 

percent error (MAPE) was slightly better than performance achieved by analysis of object 

detection results, depending on the extent to which the yield data was spatially 

aggregated. At 10 m of spatial aggregation, the transformer model demonstrated slightly 

higher performance than the object detection model, with a 18% for the transformer 

model and 18.5% for the object detection model. These results for the end-to-end models 

were achieved without the need for hand-labeling, reducing the human labor required for 

incorporating data into yield estimation models. 
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CHAPTER 7. FUTURE WORK 

Future work in this field will involve the collection and analysis of more data in more settings to 

determine the robustness of the approach described throughout this work, namely, nondestructive 

imaging for quantitative analysis using deep learning. In foods, micro-CT images of apples 

during in vitro digestion represented an effective combination of imaging modality, food system, 

and time-dependent process. However, additional imaging modalities such as color, 

hyperspectral, or magnetic resonance imaging represent promising areas for exploration with a 

wider array of food materials. Additionally, due to the nondestructive nature of the approach 

described in this work, processes such as food drying, freezing, and storage represent avenues for 

future exploration. In the agricultural domain, prediction of yield from images of grapevines 

collected shortly before harvest represented an important first step in determining the feasibility 

of the nondestructive approach. However, prediction of yield from earlier in the growing season 

would be more useful for growers, so management may be altered during the growing season, 

instead of between seasons. Additionally, specialty crops other than grapevines, such as almonds 

or strawberries, may benefit from a similar approach. Finally, the nondestructive and rapid nature 

of analysis may allow for utility in the field of crop phenotyping, where manual assessment of 

plant properties in the field represents a significant bottleneck in the development of new 

varieties of food crops.  
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