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Abstract

One argument 1n favor of current PDP models has been that the availability of “hid-
den units” allows the system to create an internal representation of the input domain,
and to use this representation in producing output weights. The “microfeatures” learned
by sets of hidden units, it has been argued, provide an alternative to symbols for certain
reasoning tasks. In this paper we try to further this argument by demonstrating several
results that indicate that such representations are formed. We show that by using a
spreading activation model over the weights learned by networks trained via backprop-
agation, we can model certain cognitive effects. In particular, we show some results
in the areas of modeling phoneme confusions and handling word-sense disambiguation,
and some preliminary results demonstrating that priming effects can be modeled by
this activation spreading approach.

1 Introduction

A primary difference between the neural networks of 20 years ago and the current generation
of connectionist models is the addition of mechanisms which permit the system to create
an internal representation. These “subsymbolic,” semantically unnameable, features which
are induced by connectionist learning algorithms have been discussed as being of import
both in structured and distributed connectionist networks (cf. Feldman and Ballard, 1982;
Rumelhart and McClelland, 1986). The fact that network learning algorithms can create
these microfeatures is not, however, enough in itself to account for how cognition works.
Most of what we call intelligent thought derives from being able to reason about the relations
between objects, to hypothesize about events and objects, etc. If PDP models are to be
used for cognitive modeling we must complete the story by explaining how networks can
reason in the way that humans (or other intelligent beings) do.

To be able to claim that the internal representations learned by connectionist networks
can provide a substrate on which such symbolic reasoning can be performed, we must be

*Also affiliated with ¢be UM Institute for Advanced Computer Studies and the Systems Research Center.
Partial support for this work was provided by the Office of Naval Research contract N00014-88-K-0560 and
NSF grant IR1-8907890. This work was performed, in part, at the International Computer Science Institute
in Berkeley, Ca.
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able to demonstrate that this representation, when removed from an input mapping, can
allow output concepts to be related together. Thus, for example, to account for the sorts
of tasks which have motivated traditional AI models, such as natural language processing
and planning systems, a system must be able to reason about “grandma” without having
grandma (or someone who looks like her) physically available to the perceiver!. In a multi-
layer PDP network, this minimally requires the ability to abstract relationships between
the output units without directly activating input units.

In humans, this relatedness of concepts is usually tested via experimental paradigms
that are based on a model in which activation spreads through an associative network
relating concepts which are either perceptually or semantically linked. An examination
of the spread of activation through semantically related concepts has been the focus of
much work in categorization and lexical access?. Could this model, in which activation
spreads between related concepts (represented by output concepts), be realized using the
sorts of microfeature-based representations (encoded in the “hidden” units) learned by PDP
models?

In this paper, we will demonstrate some evidence that this sort of model can, in fact,
be realized in PDP models by using a direct analog of spreading activation. Essentially,
activation at the output nodes is spread through the network of weights between hidden and
output units in a three-layer network trained by the classical error back-propagation method.
Using this technique, described in more detail in the next section, we are able to demonstrate
that meaningful relationships between output units can be found. Following this we describe
three results of this work: some results in the areas of modeling phoneme confusions (section
3) and handling word-sense disambiguation (section 4), and some preliminary results in
demonstrating that priming effects can be demonstrated during this activation spreading
(section 5).

It should be noted, however, that the evidence presented in this paper should not be
taken as a direct model of human cognitive processing and activation spread. The differ-
ences between multiple-layer, back propagation trained, PDP networks and the either the
hardware of the human brain or the human cognitive apparatus are many. All we wish to
do in this paper is to demonstrate that distributed representations, such as those learned
by these networks, could account for activation spreading effects. Thus, this work (and
numerous extensions thereto) is necessary to demonstrating that a subsymbolic substrate
could implement human-like cognition; however it is far from sufficient.

2 Activation Spread

Our system starts by assuming an activation pattern is started at one or more of the output
nodes of the PDP network. This activation then spreads to the hidden unit and back to
the output units. In this way, those units which share the most “microfeatures” in common

1Similarly, one can test this effect simply by closing one’s eyes and thinking about “grandma” or any
other symbolic entity.

2A complete list of citations is beyond the Jength Bmit on this paper. A long discussion of spreading
activation models in Al and in psycholagy cam be found in (Hendler, 1987; Chapter 8).
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will gain the most activation3.

The spread of activation between the output and hidden units in a PDP network is
easily modeled. Consider a network, already trained, in which we have two output nodes,
7 and k. If j is activated with some energy, that energy will pass to each hidden node
in proportion to the weight between 7 and that node. Each of these nodes, in turn, pass
activation to the output nodes in proportion to the weights to those output nodes. Thus,
k will gain activation from j given by:

I
Vik = Z Wji. Wik,
=1
where v;x can be considered as a weight between output units k and ¢. In these networks,
we treat the weights as symmetric, so that vjx = vx;. Where this symmetry holds, V =
[vjk],(j,k = 1,...,N) (where N is the number of output units) is recognized to be, by
definition, the mathematical covariance matrix of the weights between the hidden layer and
the outputs. Thus, a traditional view of activation spreading, applied to these networks, is
modeled by the well-behaved mathematical relationship of covariance?

While the covariance numbers are directly related to the patterns learned by the PDP
network, they are unbounded, making them difficult to work with in modeling. As it is
preferable to handle bounded numbers, in the experiments described in this paper, we
replace the covariance matrix V by the mathematically “equivalent,” although bounded
matrix of correlation coefficients C = [cx1] computed as:

Okl

Vokk-on’
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T = 7 S (wik — wx)(wi — W),
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and, consequently:
Ckk =1
-1< e < +1.

The values ¢y are bounded and reflect the correlation, based on the parameters of the
network, between output units k and /, +1 standing for the maximum positive correla-
tion (i.e. virtually identical classes) and —1 for the maximum negative correlation (i.e.
completely different).

In the remainder of this paper, we will examine what happens when this model of
activation is applied to several specific networks. We will describe the training of the PDP

models, and describe how the correlation-coefficient modeled, activation-spreading process
can be used to show interesting aspects of the representations learned by PDP networks.

3This effect was first demonstrated im a hybrid system merging a local connectionist model and a symbolic
marker-passer. Details of that work can be found in (Hendler, 1989).

*Others have modeled the spread of activation through a semantic memory using more complex functions.
The best known of this work is the ACT* model discussed in Anderson (1983), which also presents a review
of other systems using similar techniques.
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3 Phoneme Confusion

Many phenomena needing to be explained by the cognitive scientist have their roots in the
perceptual similarities between various objects as viewed by the human cognitive apparatus.
Some examples include:

1. Categorization, where humans can classify objects as better and worse examples of
some category (for example, “sparrow” is consistently rated as a better “bird” than
“turkey”).

2. Priming where the priming occurs for perceptually similar objects. An example of
this is “rhyming priming,” reported in numerous lexical access experiments, in which
words which rhyme demonstrate priming effects.

3. Functional identification in which objects which have perceptual features in common
are used to perform functions associated with each other (for example, substituting a
rock for a hammer due to a similarity in mass).

Traditional symbolic modeling, in the Al and cognitive psychology communities, has been
unable to offer an explanation of these effects.

In the human perceptual system, one of the “earliest” places in which similarity ef-
fects can be seen is in the perception of phonemes in continuous speech. Experimentation
(Aubert, 1988) has shown that word confusions may arise from phoneme confusions oc-
curing during speech perception. Thus, for example, the phoneme for the “short a” (Ahh)
sound will be more likely to be confused with the perceptually related “short e” (ehh) sound
than with the less related “hard g” (Guh) sound. Based on experimentation, Aubert pro-
duced a matrix of confusion likelihoods (Bounded from 0 to 1) between each of 50 phonemes
he tested (thus producing a 50x50 correlation matrix between phonemes, based on human
data). In his matrix, 194 cells had values different than 0 (no confusion) or 1 (the identity
cells along the main diagonal of the matrix).

To see whether the activation spreading model described in section 2 would produce
a similar matrix of phoneme confusions, an experiment was run in which a PDP network
(with input, hidden, and output units) was trained to do phoneme identification. Using a
technique developed by Bourlard, Morgan, and Wellekens (1989), a data base consisting of
100 sentences were used for training the network to recognize phonemes. Vector-quantized
(132 prototypes) mel cepstra were used as acoustic vectors. To simplify the representation
of the input data, each vector was replaced by its index coded by a simple binary vector
with only one bit “on”. Multiple frames were used as input to provide context (9 frames)
to the network. Thus, the input field contained 9 x 132 = 1188 units, and the total of
possible inputs was equal to 132°. The size of the output layer was kept fixed at 50 units,
corresponding to the 50 phonemes to be recognized. There were 26,767 training patterns
representing only a small fraction of the possible inputs. A network with five hidden units
was trained on this set, thus the network had 1188 inputs, 5 hidden, and 50 output units.

We compared the matrix of correlation coefficients (i.e. the confusion matrix C) to
Aubert’s phoneme confusion matrix. For the 194 cases where the hand generated matrix
contained non-zero values, the correlation was p = 0.365. Using the entire confusion matrix
except for the identity cases, the correlation coefficient was p = 0.285. In both cases, there
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is a statistically significant (P >0.001) correlation between the hand-generated confusion
matrix and the one obtained from the PDP network by the spreading activation model.

4 Word Sense Disambiguation

At a “later” level of cognition, word sense disambiguation models have been proposed to
account for lexical access data found in psychological experiments (cf. Swinney, 1979). One
such model is a structured connectionist model developed by Gary Cottrell at the Univer-
sity of Rochester (Cottrell, 1985). Cottrell, using weights derived by hand, demonstrated
that a structured connectionist network could distinguish both word-sense and case-slot
assignments for ambiguous lexical items, in a manner consistent with experimental results.
Presented with the sentence “John threw the fight” the system would immediately activate
both meanings of “throw,” but in a short time would settle in an activation pattern in
which a node corresponding with only one of the meanings would remain on. Presented
with “John threw the ball” it settle on another meaning. The nodes of Cottrell’s network
included words (John, Threw, etc.), word senses (John1, Propel, etc.) and case-slots (TAGT
(agent of the throw), PAGT (agent of the Propel), etc.).

To duplicate Gary’s network via training, we used back propagation to train a network,
using a training set in which distributed patterns, very loosely corresponding to a “dictio-
nary” of word encodings® were associated with a vector representing each of the individual
nodes which would be represented in Cottrell’s system, but with no structure. Thus, a
typical element in the training set could be, for example, a 16 bit vector (representing a
four word sentence, each word as a 4 bit pattern), associated with another 16 bit vector
representing the nodes:

Bob1 John1 Propel Threw Fightl Balll Pagt Pobj Tagt Tobj Bob John Threw The Fight
Ball
For this example, the system was trained on the encodings of the four sentences:

1. John threw the ball.
2. John threw the fight.
3. Bob threw the ball.

4. Bob threw the fight.

with the output set high for those objects in the second vector which were appropriately
associated. '

Upon completion of the learning, the activation spreading algorithm was used to derive a
table of connectivity weights between the output units. These weights were then transferred
into the Rochester Connectionist Simulator (Goddard, et.al., 1987), the same simulation
method used by Cottrell, and the activation spreading model was used to examine the
results. Using the activation spreading method described in section 2, results similar in
time-course and behavior to those produced by Cottrell’s model were seen. Thus:

®In a realistic , these would be replaced by actual signal processing outputs or other representations of
actual word pronunciation forms. This technique of using a random encoding is based on the work of Jeff
Elman (1988).
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1. Activation from the nodes corresponding to john, throw, the, and fight cause a positive
activation at the node for “Throw” and a negative activation at the node for “Propel.”

2. Activation from john throw the ball spread positively to “Propel” and not to “throw.”
3. Activation at TAGT and TOBJ spreads positive activation to Throw and not to Propel.
4. Activation at PAGT and POBJ causes a spread to Propel but not to Throw.

(We have also used this approach to test more complex sentences, still within the framework
of Cottrell’s system. Similar results have consistently been obtained.)

5 Priming Effects

A consistent effect observed in experimentation with humans has been the priming effects
that are largely responsible for the belief in an autonomic activation-spreading system®.
Such effects, however, are not exhibited in even the recurrent PDP models. One partic-
ular aspect of these effects is the ability for “semantic” expectations to prime recognition
and categorization tasks. For example, when expecting a “vowel,” e will be more quickly
recognized as a letter than if primed to expect a “number.” Thus, an activation spreading
method should allow prior activation of a concept to facilitate recognition of an example of
the concept (vowel/e, etc.). This facilitation can appear both in a shortened time course
to recognition, or in a preference for a recognition of an ambiguous signal based on an
expectation.

We have recently begun experimention which shows that priming effects may be induced
via the activation spreading method described in section 2. That is, given a previous
activation at a particular node, we may cause some other node to “win” more activation
energy, faster, than it would if the previous activation was either missing or was on some
other node.

To demonstrate this effect, we trained a 12-4-12 auto-associative network” to recognize
a training set in which the twelve inputs corresponded to the numbers 0 through 9, and two
extra inputs, one of which was on when an odd number was presented, the other on when
an even number was presented (we’ll call these nodes even and odd for simplicity). Thus,
the numeral 3 would be represented as 0’s in positions corresponding to other numbers and
to even, and 1’s in the positions corresponding to the number itself and to odd, that is “0
001000000 10.” After training, on the encodings of all 10 numerals, the covariance
coefficients were computed and transferred into the Rochester Connectionist Simulator, as
in the previous section.

To test for the ability to simulate priming, ambiguous activation patterns were used to
observe network behavior. Thus, the system might have the output corresponding to the
numeral 3 activated at a strength of .4, and the numeral 6 represented at a value of .6. As
the system settled, one or the other of these nodes would become positive, while the other

A good discussion of these effects and related experiments can be found in Anderson and Bower (1983).
"that is, one in which the inputs and outputs in the training set were identical
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would become negative. Where no other activation was introduced, the node with higher
activation would win out over the other®.

Priming effects are introduced in these networks by first activating either the node odd
or the node even for a short time, followed by the presentation of the ambiguous input. In
this situation, the following sorts of behaviors are seen:

1. Where the direction (odd or even) and the number with the larger activation are the
same, that number gains ascendancy (becomes more positive while the other node
becomes negative) more quickly than where no prior activation is used.

2. Where the direction and the item with less activation (.4) are different, the item with
less activation will end up in ascendancy (as opposed to becoming negative as happens
without the presence of the priming activation).

Thus, this activation does correspond well with priming effects. It should be noted that
as this technique has only been used on quite small data sets, there is a question as to
whether the results will scale for more significant trials. Experimentation in this direction
is currently underway.

6 Conclusions

In this paper, we have presented some evidence that the sorts of representations learned,
via training, by connectionist networks, may have the necessary properties to be able to
demonstrate several effects known to occur in human cognition. Using a spreading activa-
tion model over the PDP network, we have shown evidence for the ability to model a simple
recognition of perceptually related items (the phoneme confusions) and linking of semanti-
cally related items (the lexical items in Cottrell’s model). In addition, we’ve discussed some
preliminary evidence that priming effects, a robust phenomena in the activation spread-
ing literature, can be shown in this spreading-activation model. Thus, we have presented
evidence demonstrated that distributed representations, such as those learned by these net-
works, could possibly account for activation spreading effects as is required to account for
many known psychological results.

As noted in the introduction, however, the evidence presented in this paper should not
be taken as a direct model of human cognitive processing and activation spread. The differ-
ences between multiple-layer, back propagation trained, PDP networks and the either the
hardware of the human brain or the human cognitive apparatus are many. Thus, the work
presented in this paper, and numerous extensions thereto, are necessary to demonstrating
that a subsymbolic substrate could implement human-like cognition; however it is far from
sufficient. We are currently examining the use of this technique in more complex networks
that simple feed-forward, completely connected networks, and believe that similar effects
must be shown if these networks are to be taken seriously as models underlying human
cognition.

#We should note, however, that these networks often fail to stabilize, and thus all weights go to 0 after a
relatively short time. This is the main reason why we categorize these results as “preliminary.”
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