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ABSTRACT OF THE DISSERTATION

Nonparametric Methods for Combining Dependent Tests and Monitoring Count Data

by

Linli Tang

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, December 2022

Dr. Jun Li, Chairperson

Combining multiple tests has many real world applications. However, most exist-

ing methods fail to directly take into account the underlying dependency among the tests.

In the first project of this dissertation, we propose a novel procedure to combine dependent

tests based on the notion of data depth. The proposed method can automatically incor-

porate the underlying dependency among the tests, and is nonparametric and completely

data-driven. To demonstrate its application, we apply the proposed combining method to

develop a new two-sample test for data of arbitrary types when the data can be metrizable

and their information can be characterized by interpoint distances. Our simulation studies

and real data analysis show that the proposed test based on the new combining method

performs well across a broad range of settings and compares favorably with existing tests.

Count data monitoring has important applications in many fields. However, most

of the existing control charts for monitoring count data are parametric. Parametric control

charts can be problematic when the underlying parametric distributional assumption does

not hold for the particular application. On the other hand, nonparametric control charts do

vii



not require such distributional assumptions, and are more desirable in real-world situations

where the underlying distribution cannot be easily described using a parametric distribution.

In the second project of this dissertation, we extend the nonparametric control chart for

continuous data monitoring in Li (2021) to count data monitoring. To guarantee a desired

in-control performance, we further adopt the bootstrap procedure from Gandy and Kvaløy

(2013) to help determine the control limit of our proposed control chart. Our simulation

studies and real data analysis show that the proposed control chart performs well across a

variety of settings, and compares favorably with other existing nonparametric control charts

for count data.
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Chapter 1

Introduction

A data depth is a measure to depict the “depth” or “centrality” of a given point

with respect to a multivariate data cloud or its underlying distribution, and it gives rise to

a natural center-outward ordering of the points in a multivariate sample. Existing notions

of data depth include: Mahalanobis depth (Mahalanobis 1936), halfspace depth (Hodges

1955; Tukey 1975), simplicial depth (Liu 1990), projection depth (Stahel 1981; Donoho

1982; Donoho and Gasko 1992; Zuo 2003), Lp depth (Zuo and Serfling 2000), zonoid depth

(Koshevoy and Mosler 1997), spatial depth (Chaudhuri 1996; Vardi and Zhang 2000), onion

depth (Barnett 1976; Eddy 1981), etc. For a more complete list of different notions of data

depth, see Mosler and Mozharovskyi (2022).

Statistical process control (SPC) is a tool that applies statistical methods to mea-

sure, monitor and control a process. SPC keeps track of the output of a process over time

and allows timely detection of abnormal variations of the process. It is a useful tool for mon-
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itoring process performance and assuring process stability. In Chapter 3 of this dissertation,

we focus on the control chart, which is the most commonly used SPC tool.

The control chart plots a statistic that measures a quality characteristic versus

time or subgroup number, so that the process variations over time can be visualized. If

the charting statistic goes beyond the predetermined control limit(s), an alarm will be

signaled, indicating the process is out-of-control (OC). Otherwise, the state of the process

is considered to be in-control (IC). The number of samples or subgroups collected before

a chart first signals is a random variable called run length. The expected value of the run

length distribution is known as the average run length (ARL).

In practice, control charts are implemented in two phases with different objectives

(see Montgomery 2020). In Phase I, process data are collected and analyzed to ensure that

the process is truly in a state of statistical control. The conventional practice for Phase

I analysis is an iterative procedure, in which trial control limits are established to filter

out possible OC samples. Through the detection of OC samples, any uncommon causes

of variation are identified and eliminated. Once the IC state is established, a clean set of

data that is representative of IC process performance is gathered. This data set is usually

called Phase I sample or reference data. If the parameters of the underlying IC process

distribution is unknown, the Phase I sample is used to estimate the IC distribution and

construct reliable control limits of the control chart for Phase II process monitoring. In

Phase II, the control chart is used to determine whether the process remains in control. At

each time point, the charting statistic calculated based on successive observations drawn
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from the process is compared to the predetermined control limit(s). An alarm will be

triggered once the charting statistic goes beyond the control limit(s).

ARL is the most popular measure of the performance of control chart procedures.

An ideal control chart would have a large IC ARL and a small OC ARL. However, this is

difficult to achieve, because that a large IC ARL would result in a large OC ARL in most

cases. In practice, quality practitioners usually fix the IC ARL at a given level, and the

control chart that achieves the smallest OC ARL would be considered optimal.

The rest of the dissertation is organized as follows. In Chapter 2, we propose a

novel nonparametric method of combining dependent tests based on data depth. We start

this chapter with an introduction of background information and a literature review. We

introduce our proposed method and its properties, and then demonstrate its application by

developing a new two-sample test for data of arbitrary types. The performance of our pro-

posed two-sample test is evaluated and compared with several existing tests in simulation

studies and a real network data example. In Chapter 3, we develop a nonparametric control

chart for detecting mean shifts for univariate count data. We firstly introduce the proposed

charting statistic and a bootstrap-based algorithm for determining the control limits. Sim-

ulation studies and a real data analysis on crime statistic are conducted to demonstrate

that the proposed control chart is more efficient than the existing nonparametric control

charts. The concluding remarks are provided in Chapter 4.
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Chapter 2

Combining Dependent Tests Based

on Data Depth with Applications

to the Two-Sample Problem for

Data of Arbitrary Types

2.1 Introduction

Statistical hypothesis testing is a formal statistical procedure to determine whether

or not to reject a given hypothesis based on data. In order to develop a powerful test, the key

step is to identify a test statistic that can be used to assess the truth of the null hypothesis

H0. However, we often encounter situations where the hypothesis testing problem of interest

is very complex and it is not easy to find an appropriate single overall test statistic. Often
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in those situations, the null and alternative hypotheses, H0 and H1, can be properly broken

down into a finite set of sub-hypotheses, H0i and H1i, i “ 1, ..., k, each appropriate for a

partial aspect of hypothesis of interest. The H0i and H1i are set up such that H0 is true if all

the H0i are jointly true, and H1 is true when at least one of the H1i is true. For each of the

sub-hypothesis testing problems, we assume that a partial test can be developed relatively

easily. Denote Ti as the test statistic of the ith partial test that can be used to test the

sub-hypothesis H0i against H1i, i “ 1, ..., k. In order to provide an overall assessment of

the original hypothesis H0 versus H1, we need combine those k partial tests based on T1,

..., Tk.

When testing a single hypothesis, the Type-I error rate is simply the probability

of a Type-I error. When testing multiple sub-hypotheses H0i versus H1i, i “ 1, ..., k, there

is a Type-I error associated with each partial test. Therefore, there can be different ways to

define the overall Type-I error rate. One of the popular choices in the multiple hypothesis

testing literature is the family-wise error rate (FWER), which is defined as the probability

of making at least one Type-I error. Another popular choice for the overall Type-I error

rate is the false discovery rate (FDR), which is defined as the expected proportion of Type-I

errors among the rejected hypotheses. As described above, our goal is to test H0 versus

H1, and a Type-I error from any of the k partial tests will lead to a Type-I error for testing

H0 versus H1. Therefore, the FWER is a more appropriate overall Type-I error rate in this

situation, and we will focus on combining the k partial tests to control the FWER in this

paper.
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When the k partial tests are assumed independent, there are many combining

methods in the meta-analysis literature to control the FWER. The following lists some

of the popular combining methods. Denote pi as the p-value calculated from the test

statistic Ti, i “ 1, ..., k. Fisher’s combining method (Fisher 1932) is based on the statistic

TF “ ´2
řk

i“1 logppiq. Lipták’s combining method (Lipták 1958) uses the statistic TL “

řk
i“1Φ

´1p1´ piq, where Φ is the standard normal cumulative distribution function (CDF).

Tippett’s combining method (Tippett 1931) is based on the statistic TT “ max1ďiďkp1´piq.

If the k partial test statistics are independent and continuous, under H0, TF follows a

chisquare distribution with 2k degrees of freedom, TL follows a normal distribution with

mean 0 and variance k, and TT has the same distribution as the largest of k independent

uniform random variables on (0,1). Based on the null distribution of the combined test

statistic, an overall rejection rule for testing H0 versus H1 can be established accordingly.

In many situations, however, it might not be reasonable to assume complete inde-

pendence among the k partial tests. In those cases, the underlying dependency among the

k partial tests is usually unknown. Pesarin (2001) proposed a nonparametric procedure to

combine those dependent tests. In his proposed procedure, Pesarin still uses the combined

test statistics that are commonly used for independent tests, such as the above TF , TL,

and TT . When the partial tests are dependent, the null distributions of those combined

test statistics no longer follow the distributions mentioned above, and they depend on the

specific dependency among the partial tests. To control the FWER, Pesarin (2001) pro-

posed using permutations to carry out the test. Although Pesarin’s procedure provides one

possible way to combine dependent tests nonparametrically, it does not incorporate the
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underlying dependency directly into the combined test statistic. This can lead to efficiency

loss of the overall test.

In the multiple hypothesis testing literature, various procedures have also been

proposed to combine multiple partial tests to control the FWER. Most of those procedures

also aim to identify which sub-null hypothesis H0i should be rejected. Since our main

objective is to determine whether or not to reject the global null hypothesisH0, we can easily

modify the existing FWER controlling procedures from the multiple hypothesis testing

literature for our setting. For example, applying Holm’s stepdown method (Holm 1979)

to our setting, it rejects H0 if min1ďiďk pi ď α{k. This is equivalent to the Bonferroni

procedure, which is known to be very inefficient. Applying the stepdown method proposed

in Romano and Wolf (2005) to our setting will lead to rejecting H0 if max1ďiďk Ti ą c,

where Ti is assumed to be large if H0i is rejected and c is the critical value. To control

the FWER, c is chosen to satisfy P pmax1ďiďk Ti ą cq “ α under H0. It is easy to see that

Romano and Wolf’s procedure also fails to incorporate the underlying dependency of the

test statistics T1,...Tk into their combined test statistic max1ďiďk Ti.

To address the above limitations of existing methods, we propose a novel way

to combine T1,...,Tk nonparametrically based on the notion of data depth. Our proposed

procedure is capable of taking into account the underlying dependency among T1,...,Tk.

Furthermore, how T1,...,Tk are combined in our proposed procedure is automatically de-

termined by their underlying dependency structure, therefore our procedure is completely

data-driven.
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To demonstrate its application, we use our proposed combining method to develop

a new test for the two-sample problem with data of arbitrary types. The two-sample problem

is a fundamental problem in statistics. However, most existing two-sample tests in the

literature have been limited to Euclidean data only. In this modern era, different types of

data (discrete, functional, textual, image, graph, tree, etc.) are frequently collected in many

disciplines. Effectively comparing samples of arbitrary types is a challenging but important

problem. Since properly defined distance metrics are usually available for those data, their

interpoint distances provide a promising approach to develop efficient two-sample tests for

data of arbitrary types. In the literature, several nonparametric tests based on interpoint

distances have been proposed for the two-sample problem, including the edge-count test

based on the minimal spanning tree (MST) proposed by Friedman and Rafsky (1979). Chen

and Friedman (2017) pointed out the lack of power in Friedman and Rafsky’s edge-count test

for detecting scale differences and further proposed a generalized edge-count test to make it

sensitive to scale differences. Chen, Chen and Su (2018) developed a weighted edge-count

test to take into account unequal sample sizes. To deal with possible ties in the distance

matrix when constructing the MST, Chen and Zhang (2013) and Zhang and Chen (2022)

proposed several modified versions of the original edge-count test and the generalized edge-

count test. As their names suggest, all the above tests are based on the number of edges in

the MST, so they do not directly use interpoint distances. Their failure to fully make use of

interpoint distances leads to significant efficiency loss as shown in our simulation studies. In

this paper, we propose a new two-sample test which utilizes all interpoint distances. In order

to develop a test powerful for detecting both location and scale differences, our strategy
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is first developing two tests, one for detecting location differences only and the other for

detecting scale differences only, and then using our proposed combining method to combine

the two tests into a single one that can be powerful for detecting both location and scale

differences. In our simulation studies, the proposed test performs well under a variety of

settings and has much better power than the existing MST-based tests for detecting both

location and scale changes.

The rest of the chapter is organized as follows. We describe our proposed combining

method in Section 2.2, and then use it to develop a two-sample test for data of arbitrary

types in Section 2.3. In Section 2.4, we report several simulation studies to evaluate the

performance of our proposed two-sample test. We demonstrate its application in a real data

example in Section 2.5. All the proofs are deferred to the Appendix A.

2.2 The Proposed Method to Combine Dependent Tests

2.2.1 Data Depth

Since our proposed combining method is based on the notion of data depth, we

use the halfspace depth to illustrate the general concept of data depth and its induced

center-outward ordering.
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Considering a random sample tX1, ...,Xnu from the distribution F in Rd (d ě 1),

the halfspace depth of x with respect to F is defined as

DF pxq “ inf
H

tPF pHq : H is a closed half-space in Rd and x P Hu

“ inf
}u}“1

PF pu1X ě u1xq,

and the halfspace depth of x with respect to tX1, ...,Xnu is then obtained by replacing F

in DF pxq by its empirical distribution Fn,

DFnpxq “ inf
H

tPFnpHq : H is a closed half-space in Rd and x P Hu

“ inf
}u}“1

#
␣

u1Xi ě u1x
(

{n.

Based on the definition, we can see that a larger depth value indicates that x lies in a more

central position with respect to the data cloud tX1, ...,Xnu or its underlying distribution,

while a smaller depth value indicates a more outlying position.

Based on the notion of data depth, we can calculate the depth values DFnpXiq’s

and then order the Xi’s according to their descending depth values. This gives rise to a

natural center-outward ordering of the sample points in a multivariate sample. Figure 2.1

helps demonstrate this feature of the depth ordering. Again we use the halfspace depth as

an example. Each plot in Figure 2.1 shows a random sample of size 500 drawn from a par-

ticular bivariate distribution and its depth contours calculated using the halfspace depth. In

Figures 2.1(a), (b) and (c), the two marginal distributions of the bivariate distribution are

both the normal distributions. In Figures 2.1(d), (e) and (f), the two marginal distributions

10



are the chisquare distribution with 2 degrees of freedom and the normal distribution. In

Figures 2.1(g), (h) and (i), the two marginal distributions are both the chisquare distribu-

tions with 4 degrees of freedom. The two variables are independent in Figures 2.1(a), (d)

and (g), positively correlated in Figures 2.1(b), (e) and (h), and negatively correlated in

Figures 2.1(c), (f) and (i). To generate a bivariate sample for the setting where the two

variables are correlated and their marginal distributions are some pre-specified non-normal

distributions F1 and F2, we first draw a sample from the bivariate normal distribution with

mean 0 and variance 1 for both variables and the correlation coefficient between the two

variables is set to be ρ. Let Φp¨q be the CDF of the standard normal distribution Np0, 1q.

We then obtain our desired bivariate sample after applying the transformations F´1
1 tΦp¨qu

and F´1
2 tΦp¨qu to the two variables of the above bivariate normal sample, respectively.

Based on the probability integral transform and inverse probability integral transform, it

is easy to see that the marginal distributions of the bivariate sample we obtain after the

transformations are F1 and F2. Since the two variables in the bivariate normal sample are

correlated, the two variables in our bivariate sample are also correlated. The correlation

coefficient ρ used in the above procedure is 0.6 for Figures 2.1(b), (e) and (h), and -0.6

for Figures 2.1(c), (f) and (i). From the depth contours in Figure 2.1, we can see that the

depth ordering is from the center outward, and the shape of the depth contours in those

plots all closely follows their underlying probabilistic geometry, indicating the completely

data-driven nature of the ordering induced by the halfspace depth.
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Figure 2.1: Depth contours for samples drawn from different bivariate distributions based
on the half-space depth.

12



2.2.2 The Proposed Combining Method when all the Partial Tests are

Two-sided

Let X denote the data under consideration and define Ti “ TipXq. We first

assume that all of the k partial tests are two-sided. To test the global hypothesis H0

versus H1, most of the existing methods consider some combining function which combines

the k test statistics, T1,...,Tk, into a scalar-valued test statistic. However, as mentioned

in the Introduction, in many situations T1,..., Tk are usually not independent and their

dependency can be too complex to characterize. Therefore, finding a combining function

that can incorporate the dependency among the Ti can be extremely difficult.

To circumvent this difficulty, we take a different approach. Instead of trying to

combine T1,...,Tk into a scalar-valued test statistic, we consider T1,...,Tk simultaneously by

putting them into a vector, denoted by T “ pT1, ..., Tkq1. Then T is our proposed global

test statistic, which is vector-valued instead of being scalar-valued.

To develop a testing procedure for the global hypothesis H0 versus H1 based on

T , we only need to find an appropriate way to set up the rejection rule for T . In any

hypothesis testing procedure, there are two ways to set up the rejection rule. One of them

is called the critical value approach, in which the observed test statistic is compared with

some critical value. If the observed test statistic is more extreme than the critical value,

H0 is rejected. When the test statistic is scalar-valued, it is easy to define extremeness and

the corresponding critical value is some quantile of the null distribution of the test statistic

in order to control the Type-I error rate. When the test statistic is vector-valued, it is not

so obvious how to define extremeness since there is no natural ordering for vector-valued
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data. However, as described in Section 2.2.1, based on the data depth, the vector-valued

data can be ordered from the center outward, and data with smaller depth values are in

more outlying/extreme positions. Therefore, based on this definition of extremeness, we

can reject H0 if our test statistic T has a smaller depth value than the depth value of some

critical value. Similar to the scalar-valued test statistic case, to control the Type-I error

rate, the critical value here should be taken as some depth-based quantile of the multivariate

null distribution of T . Such multivariate quantiles can be defined as follows. Let G denote

the distribution of T under H0. For the distribution G, the level-c depth inner region is

given by

Ipc,D,Gq “ tx P Rk : DGpxq ě cu, (2.1)

and its boundary BIpc,D,Gq is called the level-c depth contour. For any 0 ď p ď 1, let

cp “ suptc : P pIpc,D,Gqq ě pu.

Then the depth-based multivariate pth quantile of the distributionG is defined asQpp,D,Gq

“ BIpcp, D,Gq. In order to control the Type-I error rate of our test based on T at the level

of α, the critical value in the rejection rule described earlier should be taken as the above

multivariate p1 ´ αqth quantile, Qp1 ´ α,D,Gq. Based on the definition of Qp1 ´ α,D,Gq,

the rejection rule for our test statistic T can be also stated as rejecting H0 if DGpT q ă c1´α.

The properties and applications of the above depth-based multivariate quantiles

have been studied in Serfling (2002a, 2002b, 2010). There have been other efforts to extend

the concept of quantile to the multivariate setting in the literature. For example, Hallin et

14



al. (2010) defined multivariate quantiles based on L1 optimization, and the inner regions

characterized by their proposed multivarite quantiles coincide with those defined in (2.1)

using the halfspace depth. Recently, Chernozhukov et al. (2017) utilized the theory of

optimal transport to define multivariate quantiles. Hallin et al. (2021) and Ghosal and

Sen (2022) further studied the properties and applications of those multivariate quantiles.

Recognizing the close relationship between the depth function and quantile function, Cher-

nozhukov et al. (2017) also introduced a new data depth, called the Monge-Kantorovich

depth, based on their proposed multivariate quantiles. The Monge-Kantorovich depth also

gives rise to a natural center-outward ordering of multivariate data, therefore it can be also

used in our proposed combining method.

Another approach to set up the rejection rule is called the p-value approach, in

which a p-value is calculated and then compared to the significance level α. Based on

its definition, the p-value is the probability of observing more extreme values of the test

statistic than the one observed assuming that H0 is true. According to the above definition

of extremeness based on data depth, the p-value for our test statistic T can be calculated

as

p “ P
´

DGpT q ď DGpT obsq

¯

, (2.2)

where T obs is the observed T . We reject H0 if p ă α. If the distribution of DGpT q is

continuous, based on the probability integral transform, the p-value defined in (2.2) follows

a uniform distribution on p0, 1q under H0. Therefore, the above testing procedure in which

H0 is rejected when p ă α is a size-α test.
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The critical value approach and p-value approach described above are equivalent

and yield exactly the same conclusion. Due to its relatively simpler form, we use the p-value

approach in the remaining of the paper.

The combining method we propose above uses the vector-valued test statistic T “

pT1, ..., Tkq1 as our global test statistic, and makes use of all the information provided by

T1,...,Tk. By using the data depth, the dependency among T1,...,Tk can be taken into

account. The ability to automatically incorporate the dependency among T1,...,Tk in our

proposed combining method can help improve the efficiency of the resulting global test. In

some cases, the improvement can be substantial and the resulting global test can be even

asymptotically equivalent to the optimal one. For example, let X1,...,Xn be a random

sample from a k-dimensional multivariate normal distribution with mean µ and covariance

matrix Σ (denoted by Nkpµ,Σqq, and one wants to test H0 : µ “ µ0 versus H1 : µ ‰ µ0.

In this setting, we know that the Hotelling’s T 2 test is the most powerful test. Instead of

directly testing H0 versus H1, we can also break it down into k sub-hypotheses, H0i : µi “

µ0i versus H1i : µi ‰ µ0i, i “ 1, ..., k, where µi and µ0i are the i-th component of µ and µ0,

respectively. To test each sub-hypothesis H0i versus H1i, we can choose the t test as our

partial test and Ti “ p sXi ´ µ0iq{
a

sii{n, where sXi and sii are the sample mean and sample

variance of the i-th component, respectively. Then the following establishes the asymptotic

optimal property of the global test based on our proposed combining method.

Proposition 1 If the data depth used in our combining method is affine invariant, the

global test for H0 : µ “ µ0 versus H1 : µ ‰ µ0 obtained by combining the above T1, ..., Tk

based on our proposed method is asymptotically equivalent to the Hotelling’s T 2 test.
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Remark 1: Many data depths, including the Mahalanobis depth, halfspace depth,

simplicial depth, projection depth, zonoid depth and onion depth, satisfy the affine invariant

requirement in the above proposition,

Remark 2: Cuesta-Albertos and Nieto-Reyes (2008) proposed an approximation

algorithm based on a finite number of randomly selected one-dimensional projections to

compute the halfspace depth. Let yHDm,Gpyq be the approximated halfspace depth of y

with respect to G using m randomly selected one-dimensional projections based on the

approximation method from Cuesta-Albertos and Nieto-Reyes (2008), and HDGpyq the

exact halfspace depth of y with respect to G. Since G is an elliptical distribution from the

proof of Proposition 1, according to Theorem 6 of Nagy et al. (2020),

sup
yPRk

|yHDm,Gpyq ´HDGpyq|
a.s.
ÝÑ 0, as m Ñ 8.

Following this uniform convergence result, we have, as m Ñ 8,

P
´

yHDm,GpT q ď yHDm,GpT obsq

¯

“ ppm
a.s.
ÝÑ p “ P

´

HDGpT q ď HDGpT obsq

¯

.

Therefore, if the approximated halfspace depth is used, Proposition 1 still holds almost

surely as m goes to 8.

In general, the null distribution of T is not easy to obtain. To circumvent this

difficulty, we can resort to the resampling method. For example, if the data X consists of

C independent random samples from distributions F1,..., FC , respectively, and the original

null hypothesis is H0 : F1 “ ¨ ¨ ¨ “ FC , then we can carry out our test using permutations.
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More specifically, we randomly permute group labels of X and denote the permuted data

from B random permutations by tX˚
r uBr“1. Define our test statistic T calculated from the

permuted data X˚
r as T ˚

r “ pT1pX˚
r q, ..., TkpX˚

r qq1, r “ 1, ..., B. Then the p-value of our test

based on the above permutations is

ppB “

1 `
řB

r“1 I
!

DG˚
B

pT ˚
r q ď DG˚

B
pT obsq

)

B ` 1
,

where G˚
B is the empirical distribution of T ˚

1 ,...,T
˚
B (Ernst 2004). Similar to other permu-

tation tests, our proposed test based on permutations can control the Type-I error rate at

the nominal level (see Ernst (2004) for the probability basis of permutation methods).

If a permutation test can not apply, we can use the bootstrap method instead.

For example, assume that the population distribution associated with X is F , and our

hypothesis testing problem involves its k population parameters, θ1,...,θk. For i “ 1, ..., k,

denote the reasonable estimator for θi by pθipXq, which is a function ofX. To test the original

null hypothesis, we assume that it is equivalent to testing the following k sub-hypotheses:

H0i : θi “ θi,0 versus H1i : θi ‰ θi,0, where θi,0 is some pre-specified constant, i “ 1, ..., k.

Suppose that we define Ti “ tpθipXq ´ θi,0u{s.etpθipXqu, where s.etpθipXqu is the standard

error of pθipXq. Denote an estimator of F based on X by FnpXq, where n is the sample

size of X. To approximate the null distribution of T “ pT1, ..., Tkq1, generate B bootstrap

resamples of X using FnpXq, and denote them by X˚
n,1,...,X

˚
n,B. Define Ti calculated from

the bootstrap resample X˚
n,r as T ˚

i,n,r “ tpθipX
˚
n,rq ´ pθipXqu{s.etpθipX

˚
n,rqu, i “ 1, ..., k, and

T ˚
n,r “ pT ˚

1,n,r, ..., T
˚
k,n,rq1, r “ 1, ..., B. Then the null distribution of T can be approximated

by the empirical distribution of T ˚
n,1,..., T

˚
n,B. As a result, the p-value defined in (2.2) can
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be approximated by

ppn,B “
1

B

B
ÿ

r“1

I
!

DG˚
n,B

pT ˚
n,rq ď DG˚

n,B
pT obsq

)

, (2.3)

where G˚
n,B is the empirical distribution of T ˚

n,1,...,T
˚
n,B.

Proposition 2 In the above bootstrap procedure, let G˚
n be the distribution of T ˚

n,r, r “

1, ..., B. If G˚
n converges weakly to G as n Ñ 8, and the data depth Dp¨q used in (2.3)

satisfies

sup
yPRk

|DG˚
n,B

pyq ´DG˚
n

pyq|
a.s.
ÝÑ 0, as B Ñ 8, (2.4)

sup
yPRk

|DG˚
n

pyq ´DGpyq|
a.s.
ÝÑ 0, as n Ñ 8, (2.5)

then ppn,B converges to the p-value defined in (2.2) almost surely, as B Ñ 8 and n Ñ 8.

Remark 3: Most of the data depths satisfy (2.4) and (2.5) under proper con-

ditions. Mosler and Mozharovskyi (2022) summarized those conditions for different data

depths. For example, the Mahalanobis depth satisfies (2.4) and (2.5) if G and G˚
n have a

regular covariance matrix. The zonoid depth satisfies (2.4) and (2.5) if G and G˚
n satisfy

some regularity condition given in Cascos and López-Dı́az (2016). The halfspace depth

satisfies (2.4) and (2.5) if G is absolutely continuous (see Nagy et al. 2019).

Remark 4: Dyckerhoff and Mozharovskyi (2016) provided a theoretical frame-

work for efficiently computing exact values of the halfspace depth. Pokotylo et al. (2020)

implemented Dyckerhoff and Mozharovskyi’s method in R-package “ddalpha” so that exact

computation of the halfspace depth is available for any dimension. If the approximated
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halfspace depth based on the algorithm from Cuesta-Albertos and Nieto-Reyes (2008) is

used in the above bootstrap procedure, in order to prove that Proposition 2 still holds, we

need the following result,

sup
yPRk

|yHDm,G˚
n,B

pyq ´HDG˚
n

pyq|
a.s.
ÝÑ 0, as m Ñ 8, B Ñ 8 (2.6)

where yHDm,G˚
n,B

pyq is the approximated halfspace depth of y with respect to G˚
n,B based

on m randomly selected one-dimensional projections, and HDG˚
n

pyq is the exact halfspace

depth of y with respect to G˚
n. Using the results from Cuesta-Albertos and Nieto-Reyes

(2008) and Nagy et al. (2020), we can prove (2.6) when G˚
n is absolutely continuous and has

a bounded support, or G˚
n is an elliptical distribution or a p-symmetric distribution (Fang

et al. 1990) with p P p0, 2s. It remains an open problem whether (2.6) is still true for other

G˚
n . We plan to investigate this further in our future research.

2.2.3 The Proposed Combining Method when Some of the Partial Tests

are One-sided

From the previous section, we can see that, in our proposed method to combine

dependent tests, we first consider the vector-valued test statistic T , which consists of the

test statistics from all the k partial tests, and then find a suitable measure of extremeness

for T so that an appropriate rejection rule can be established. In the previous section, we

consider the case where all of the k partial tests are two-sided. As we can see from the

depth contours shown in Figure 2.1, the center-outward ordering induced by the data depth

is a reasonable way to define extremeness for T in this situation. However, when some
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of the partial tests are one-sided, this definition of extremeness might not be satisfactory.

Therefore, we need to find another reasonable measure of extremeness in this situation.

To this end, we consider the halfspace depth described in Section 2.2.1. If the

halfspace depth is used, DGpT obsq is defined as

DGpT obsq “ inf
}u}“1

PGpu1T ě u1T obsq.

When k “ 1,

DGpT obsq “ inf
|u|“1

PGpu ¨ T ě u ¨ T obsq “ min
!

PGpT ě T obsq, PGpT ď T obsq

)

.

This implies that, when using the halfspace depth to define extremeness, we consider both

tails of the null distribution G. This is the reason why the extremeness defined using any

data depth is good only for a two-sided test. If the test based on T is one-sided, without

loss of generality, we assume that H0 is rejected when T is too large. Then in order to find

an appropriate measure of extremeness in this case, we should modify the above DGpT obsq

as

rDGpT obsq “ inf
|u|“1,uą0

PGpu ¨ T ě u ¨ T obsq “ PGpT ě T obsq.

To generalize this modified definition to any number of partial tests, we can use

the same projection idea as in the original halfspace depth. More specifically, if there

are k0 (k0 ď k) one-sided tests among the k partial tests, without loss of generality, we

assume that those one-sided tests are for the first k0 sub-hypothesis testing problems. Let
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u “ pu1, ..., ukq1. Then the modified halfspace depth rD
pk0q

G pT obsq is defined as

rD
pk0q

G pT obsq “ inf
}u}“1

uiě0,i“1,...,k0

PGpu1T ě u1T obsq,

where G is the distribution of T .

Similar to the original halfspace depth, we can also establish the following uniform

convergence results for the above modified halfspace depth.

Theorem 3 Given a random sample tX1, ...,Xnu from the distribution F in Rd (d ě 1),

the modified halfspace depth of x P Rd with respect to F is defined as

rD
pk0q

F pxq “ inf
}u}“1

uiě0,i“1,...,k0

PF pu1X ě u1xq,

and the modified halfspace depth of x P Rd with respect to tX1, ...,Xnu is defined as,

rD
pk0q

Fn
pxq “ inf

}u}“1
uiě0,i“1,...,k0

#tu1Xi ě u1xu{n,

where Fn is the empirical distribution of X1, ...,Xn. For any distribution F ,

sup
xPRd

| rD
pk0q

Fn
pxq ´ rD

pk0q

F pxq|
a.s.
ÝÑ 0, as n Ñ 8.

If the distribution F is absolutely continuous, for any sequence of distributions tF ˚
ν u8

ν“1

weakly convergent to F ,

sup
xPRd

| rD
pk0q

F˚
ν

pxq ´ rD
pk0q

F pxq| ÝÑ 0, as ν Ñ 8.
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To see what kind of ordering our modified halfspace depth induces, we draw its

depth contours in Figure 2.2 for the same bivariate samples we generate for Figure 2.1.

The modified halfspace depth we use here is corresponding to the case when one of the two

partial tests is one-sided, i.e., k0 “ 1 and d “ 2 in the above definition of our modified

halfspace depth. From the depth contours in Figure 2.2, we can see that the ordering based

on our modified halfspace depth can reflect well the nature of the two partial tests, and the

underlying probabilistic geometry automatically determines the shape of the depth contours

in those plots, a data-driven feature inherited from the original halfspace depth.

From Figure 2.2, we can also see that the ordering derived from our modified

halfspace depth can provide a reasonable measure of extremeness for the vector-valued test

statistic T when some of the partial tests are one-sided. That is, data with smaller depth

values based on the modified halfspace depth are in more extreme positions. With this

definition of extremeness, the p-value for T when the first k0 partial tests are one-sided can

be calculated as

p “ P
´

rD
pk0q

G pT q ď rD
pk0q

G pT obsq

¯

, (2.7)

where G is the distribution of T under H0.

Similar to Section 2.2.2, if a permutation test can apply, our p-value can be calcu-

lated as

ppB “

1 `
řB

r“1 I
!

rD
pk0q

G˚
B

pT ˚
r q ď rD

pk0q

G˚
B

pT obsq

)

B ` 1
,
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Figure 2.2: Depth contours for samples drawn from different bivariate distributions based
on the modified halfspace depth corresponding to the case when one of the two partial tests
is one-sided.
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where T ˚
1 ,...,T

˚
B are the test statistic T calculated from the permuted data, and G˚

B is their

empirical distribution. Again using the above ppB as the p-value can control the Type-I error

rate at the nominal level.

If the permutation test can not apply, we can use the bootstrap method as de-

scribed in Section 2.2.2 and the p-value is defined as

ppn,B “
1

B

B
ÿ

r“1

I

"

rD
pk0q

G˚
n,B

pT ˚
n,rq ď rD

pk0q

G˚
n,B

pT obsq

*

, (2.8)

where T ˚
n,1,...,T

˚
n,B are the test statistic T calculated from the bootstrap resamples, G˚

n,B

is their empirical distribution.

Proposition 4 Let G˚
n be the distribution of T ˚

n,r, r “ 1, ..., B. If G˚
n converges weakly

to G as n Ñ 8, then ppn,B in (2.8) converges to p in (2.7) almost surely, as B Ñ 8 and

n Ñ 8.

Remark 5: As mentioned earlier, Dyckerhoff and Mozharovskyi (2016) provided a

theoretical framework for efficiently computing exact values of the original halfspace depth.

However, it is not clear how to extend Dyckerhoff and Mozharovskyi’s method to our modi-

fied halfspace depth. For this reason, in order to compute our modified halfspace depth more

efficiently, we adopt the approximation algorithm from Cuesta-Albertos and Nieto-Reyes

(2008). More specifically, we approximate rD
pk0q

Fn
pxq “ inf }u}“1

uiě0,i“1,...,k0

# tu1Xi ě u1xu {n

using a large number of u’s randomly drawn from all the u’s that satisfy }u} “ 1 and

ui ě 0, i “ 1, ..., k0. When this approximated modified halfspace depth is used, if we can

carry out our test using permutations, then it can still control the Type-I error rate at the
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nominal level. If the permutation test can not apply and the bootstrap method needs to be

used, similar to (2.6) in the approximated halfspace depth case, the uniform convergence

result for the approximated modified halfspace depth remains an open problem. Therefore,

it is currently unclear whether Proposition 3 still holds when the approximated modified

halfspace depth is used in (2.8). We plan to investigate this further in our future research.

2.2.4 Differences Between Our Proposed Combining Method and Exist-

ing Combining Methods

To show the differences between our proposed combining method and existing

combining methods, we first use Fisher’s combining method as an example. Recall that

Fisher’s method uses the combined test statistic TF “ ´2
řk

i“1 logppiq, where pi is the p-

value of the i-th partial test based on the test statistic Ti. The global p-value is then defined

as

p “ PH0pTF ě T obs
F q,

where T obs
F is the observed TF . The above definition of p-value implies that, in Fisher’s

combining method, we implicitly use TF “ ´2
řk

i“1 logppiq to order the vector-valued test

statistic T “ pT1, ..., Tkq1: the larger TF is, the more extreme T “ pT1, ..., Tkq1 is. To see

what kind of ordering Fisher’s method induces for T “ pT1, ..., Tkq1, we draw the contours

based on TF “ ´2
řk

i“1 logppiq in Figures 2.3 and 2.4 for the same bivariate samples we

use for Figures 2.1 and 2.2. To draw those contours in Figures 2.3 and 2.4, for each point

T “ pT1, T2q1 P R2, we first calculate its p1 and p2. Since the bivariate sample is assumed
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to be generated from the null distribution, our pi is calculated as the proportion of the ith

component of the generated sample more extreme than Ti, i “ 1, 2. Based on those p1 and

p2, we can calculate the value of TF “ ´2
ř2

i“1 logppiq for each point T P R2. The contours

in Figures 2.3 and 2.4 are the points with the same TF values.
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Figure 2.3: Contours for samples drawn from different bivariate distributions based on
Fisher’s combining function TF “ ´2

ř2
i“1 logppiq when the two partial tests are both two-

sided.

As we can see from Figures 2.3 and 2.4, the contours across each row based on

Fisher’s combining method remain similar, indicating that the ordering of T “ pT1, ..., Tkq1

induced by Fisher’s method largely ignores the underlying dependency among the partial
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Figure 2.4: Contours for samples drawn from different bivariate distributions based on
Fisher’s combining function TF “ ´2

ř2
i“1 logppiq when one of the two partial tests is one-

sided.
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tests. As a result, the combining method based on TF “ ´2
řk

i“1 logppiq fails to incorporate

the underlying dependency, which can lead to efficiency loss. The same conclusion also holds

for Lipták’s combining method and Tippett’s combining method. In contrast, as shown in

Figures 2.1 and 2.2, our proposed combining method is capable of automatically taking

into account the underlying dependency of the partial tests, therefore provides a completely

data-driven approach for combining dependent tests.

2.3 New Two-sample Test for Data of Arbitrary Types

In this section, we demonstrate the application of our proposed combining method

by developing a new two-sample test for data of arbitrary types. We first review the two-

sample test proposed in Li (2018) for data in the Euclidean space.

Let X1, . . . ,Xm and Y 1, . . . ,Y n be two independent random samples respectively

drawn from distributions F and G, both in Rd. The two-sample problem is then to test

H0 : F “ G versus H1 : F ‰ G. Instead of testing a general distributional difference

between F and G, we focus on testing location and/or scale differences between F and G.

Even after we focus only on these two types of differences, it is still difficult to develop a test

that is efficient for both types of differences. To circumvent this difficulty, Li (2018) used

interpoint Euclidean distances to develop two tests, one for detecting location differences

only and the other for detecting scale differences only. More specifically, let }a ´ b} denote

the Euclidean distance between vectors a and b. The two test statistics proposed in Li
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(2018) are:

Tloc0 “
2

mn

m
ÿ

i“1

n
ÿ

j“1

}Xi´Y j}
2´

ˆ

m

2

˙´1 m´1
ÿ

i“1

m
ÿ

j“i`1

}Xi´Xj}
2´

ˆ

n

2

˙´1 n´1
ÿ

i“1

n
ÿ

j“i`1

}Y i´Y j}
2,

(2.9)

and

Tscal0 “

ˆ

n

2

˙´1 n´1
ÿ

i“1

n
ÿ

j“i`1

}Y i ´ Y j}
2 ´

ˆ

m

2

˙´1 m´1
ÿ

i“1

m
ÿ

j“i`1

}Xi ´ Xj}
2. (2.10)

Let µX andΣX be the mean vector and dispersion matrix of F , and µY andΣY be the mean

vector and dispersion matrix of G. It is easy to verify that EpTloc0q “ 2}µX ´ µY }2 and

EpTscal0q “ 2 ttrpΣXq ´ trpΣY qu. Therefore, Tloc0 is good for detecting location differences

and Tscal0 is good for detecting scale differences.

As mentioned in the Introduction, the recent advances in computing and data

acquisition technologies have made easy the collection of data of diverse types in all fields.

Since properly defined distance metrics are usually available for many types of data, a

promising approach for developing the two-sample test for those data is using their inter-

point distances. Let O and E represent the original space of the data and the Euclidean

space, respectively. For any r and s from O, define an appropriate distance metric be-

tween r and s to be dpr, sq. Suppose there are n objects, r1, ..., rn, from O. Define

matrix A as rAsij “ aij , where aij “ ´dpri, rjq
2{2. Define matrix B as B “ HAH, where

H “ In ´ n´11n1
1
n with In being the n-dimensional identity matrix and 1n being a vector

of n ones. As shown in Cox and Cox (2001), if matrix B is positive semi-definite of rank r,
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then there exists a mapping ϕ from O to Rr such that dpri, rjq “ }ϕpriq ´ ϕprjq} for any

1 ď i, j ď n. If matrix B is not positive semi-definite but its negative eigenvalues are small

in magnitude, a mapping ϕ from O to E can be found by ignoring those negative eigenvalues

such that dpri, rjq « }ϕpriq ´ ϕprjq} for any 1 ď i, j ď n. If the negative eigenvalues of

matrix B are large, we believe that the interpoint distances dpri, rjq, 1 ď i ă j ď n, can be

also used to characterize the underlying distribution similarly as their counterparts in E.

Based on the above connection between the interpoint distances in O and E, we

propose two test statistics for our two-sample problem in O by replacing the interpoint

Euclidean distances in (2.9) and (2.10) by their counterparts in O. More specifically, let

X1, . . . ,Xm and Y 1, . . . ,Y n be two independent random samples in O. The two test

statistics we propose for the two-sample problem in O are

Tloc “
2

mn

m
ÿ

i“1

n
ÿ

j“1

d2pXi,Y jq´

ˆ

m

2

˙´1 m´1
ÿ

i“1

m
ÿ

j“i`1

d2pXi,Xjq´

ˆ

n

2

˙´1 n´1
ÿ

i“1

n
ÿ

j“i`1

d2pY i,Y jq,

and

Tscal “

ˆ

n

2

˙´1 n´1
ÿ

i“1

n
ÿ

j“i`1

d2pY i,Y jq ´

ˆ

m

2

˙´1 m´1
ÿ

i“1

m
ÿ

j“i`1

d2pXi,Xjq.

Since Tloc and Tscal are built on Tloc0 and Tscal0, they are also good at detecting

location and scale differences respectively. Then our remaining task is to combine the two

partial tests based on Tloc and Tscal into a single test for the two-sample problem. In

Li (2018), asymptotic normality was established for the null distribution of pTloc0, Tscal0q1

when the dimension of the Euclidean data d goes to infinity. However, for low-dimensional

Euclidean data and other non-Euclidean data, the null distribution of pTloc, Tscalq
1 is not
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known any more, neither is the dependency between Tloc and Tscal. Therefore, we can use

our proposed combining method to combine the two partial tests.

According to Morgenstern (2001), when testing for location differences, we reject

H0 : F “ G only if Tloc is too large. When testing for scale differences, we reject H0 if Tscal is

too large or too small. Therefore, Tloc corresponds to a one-sided test, and Tscal corresponds

to a two-sided test. As discussed in Section 2.2.3, the modified halfspace depth should be

used to combined the two partial tests in this case. More specifically, we first calculate the

observed vector of test statistics T obs “ pT obs
loc , T

obs
scalq

1 from the X and Y samples, and then

randomly permute the observations between the two samples for B times, say B “ 1000. For

the B permuted samples, we calculate their corresponding vector of test statistics, denoted

by T ˚
1 , . . . ,T

˚
B. Then the p-value for our test is

ppB “

1 `
řB

i“1 I
!

rD
p1q

G˚
B

pT ˚
i q ď rD

p1q

G˚
B

pT obsq

)

B ` 1
,

where rD
p1q

G˚
B

p¨q is our modified halfspace depth with respect to the data cloud T ˚
1 , . . . ,T

˚
B.

We then reject H0 : F “ G if ppB is smaller than the significance level α.

2.4 Simulation Studies

In this section, we report several simulation studies to evaluate the performance

of our proposed two-sample test for data of arbitrary types. In particular, we compare

our proposed test with those proposed in Chen and Friedman (2017) and Zhang and Chen

(2022). In all the simulations, the Type-I error rate and power of each test are obtained
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based on 1000 simulations. The R-codes for carrying out all the simulations in this section

are available in our online supplementary materials.

2.4.1 Continuous Data

Our first simulation study evaluates the performance of the proposed test when

data are from continuous distributions in Rd. Since the MST is unique when distributions

are continuous, the generalized edge-count test based on the MST in Chen and Friedman

(2017) can also apply in this situation. Therefore, we follow the simulation settings used

in Chen and Friedman (2017) to compare the powers of our proposed test and Chen and

Friedman’s test.

Before we compare the powers, we firstly evaluate the Type-I error rates of the

two tests. To this end, the random samples X1, . . . ,Xm and Y 1, . . . ,Y n are generated

independently from Ndp0d, Idq, where 0d is the vector of d zeros and Id is the d-dimensional

identity matrix. We set m “ 25 and n “ 100, and take d from t2, 10, 50, 100, 200u so that

the Type-I error rates of the tests can be evaluated in various dimensions. Table 2.1 shows

the simulated Type-I error rates of Chen and Friedman’s test and our proposed test when

the nominal significance level α “ 0.05. As we can see from the table, the simulated Type-I

error rates of both tests are close to the nominal level under all the settings.

Table 2.1: The simulated Type-I error rates of Chen and Friedman’s test and our proposed
test with α “ 0.05.

The simulated Type-I errors

d 2 10 50 100 200

Chen and Friedman’s test 0.051 0.052 0.048 0.046 0.044
Proposed 0.054 0.051 0.049 0.044 0.047
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To compare the powers of the two tests, the random samples X1, . . . ,Xm and

Y 1, . . . ,Y n are first drawn from Ndp0d, Idq and Ndp∆{
?
d ˆ 1d, Idq, respectively, where

1d is the vector of d ones and ∆{
?
d is the mean shift size in all the components. The

two distributions differ in location only in this setting. In the second simulation setting

of our power comparison study, the two random samples are drawn from Ndp0d, Idq and

Ndp0d, σIdq, respectively. The two distributions differ in scale only. In the third simulation

setting, we first independently draw tX˚
1 , . . . ,X

˚
mu and tY ˚

1 , . . . ,Y
˚
nu from Ndp0d, Idq and

Ndp∆{
?
d ˆ 1d, Idq, respectively. Then we set Xi “ exppX˚

i q and Y i “ exppY ˚
i q, where

exppbq is a mapping from Rd to Rd that applies the function expp¨q to each component of b.

Therefore, Xi and Y i can be considered as being drawn from some multivariate lognormal

distributions, and the two distributions differ in both location and scale.

Similar to our Type-I error study, we set m “ 25 and n “ 100, and take d from

t2, 10, 50, 100, 200u in all the three settings so that the powers of the tests can be evaluated

and compared in various dimensions. Since the two distributions F and G are continuous

in Rd, the Euclidean distance is used as dp¨, ¨q in our Tloc and Tscal as well as in building

the MST for Chen and Friedman’s test. The significance levels of all the tests are set at

α “ 0.05. Figure 2.5 shows the powers of Chen and Friedman’s test and our proposed test

for detecting different types of distributional differences.

As we can see from Figure 2.5, our proposed test outperforms Chen and Friedman’s

test in all the settings. As mentioned in the Introduction, Chen and Friedman’s test is based

on the number of edges in the MST, so it does not fully make use of interpoint distances.
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Figure 2.5: The simulated powers of Chen and Friedman’s test ( ) and our proposed test
( ) at α “ 0.05 for detecting location differences, scale differences, and both location and
scale differences.
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This explains its inferior performance comparing with our proposed test which directly uses

interpoint distances.

2.4.2 Preference Ranking Data

In our second simulation study, we consider the preference ranking data used in

Zhang and Chen (2022). In the preference ranking data, each observation is the rankings

of multiple objects by some subject. Let N be the number of objects and Ξ be the set of all

permutations of t1, ..., Nu. Then the preference ranking data are drawn from Ξ according

to some probability model. A commonly used probability model to generate the preference

ranking data is the following Mallows model (Mallows 1957):

Pθ,ηpζq “
1

ψpθq
expt´θdpζ, ηqu, ζ, η P Ξ, θ P R.

where dp¨, ¨q is a distance metric suitable for the ranking data and ψpθq is a normalizing

constant. In this Mallows model, there are two parameters (η, θ). The parameter η can be

considered as the “center” of the distribution, while the parameter θ controls the “spread”

of the distribution – the larger θ is, the less the distribution spreads.

In this simulation study, the random samples X1, . . . ,Xm and Y 1, . . . ,Y n are

generated by the above Mallows model with parameters (η1, θ1) and (η2, θ2), respectively.

For both samples, N “ 6, so the two samples are rankings of six objects by two groups

of subjects. By testing the equality of their underlying distributions F and G, we can

determine whether the two groups have the same preference over the six objects. In our

simulations, following Zhang and Chen (2022), we choose dp¨, ¨q to be Spearman’s distance.
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To evaluate the Type-I error rate of our proposed two-sample test, we set η1 “ η2 “ η and

θ1 “ θ2 “ θ and consider the following four settings for (η, θ).

‚ Setting 1:

η “ t1, 2, 3, 4, 5, 6u, θ “ 4.

‚ Setting 2:

η “ t1, 2, 3, 4, 5, 6u, θ “ 5.5.

‚ Setting 3:

η “ t1, 2, 5, 4, 3, 6u, θ “ 4.

‚ Setting 4:

η “ t1, 2, 5, 4, 3, 6u, θ “ 5.5.

To compare the powers of our proposed test with the ones based on the MST, we consider

the following settings for (η1, θ1) and (η2, θ2).

‚ Setting 1 (Location difference):

η1 “ t1, 2, 3, 4, 5, 6u, η2 “ t1, 2, 5, 4, 3, 6u, θ1 “ θ2 “ 5.

‚ Setting 2 (Scale difference with θ1 ą θ2):

η1 “ η2 “ t1, 2, 3, 4, 5, 6u, θ1 “ 5.5, θ2 “ 4.

‚ Setting 3 (Scale difference with θ1 ă θ2):

η1 “ η2 “ t1, 2, 3, 4, 5, 6u, θ1 “ 4, θ2 “ 5.5.

‚ Setting 4 (Location and scale differences with θ1 ą θ2):

η1 “ t1, 2, 3, 4, 5, 6u, η2 “ t1, 2, 5, 4, 3, 6u, θ1 “ 5.5, θ2 “ 4.
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‚ Setting 5 (Location and scale differences with θ1 ă θ2):

η1 “ t1, 2, 3, 4, 5, 6u, η2 “ t1, 2, 5, 4, 3, 6u, θ1 “ 4, θ2 “ 5.5.

We also use Spearman’s distance as the distance metric in our Tloc and Tscal as

well as in building the MST. However, by doing so, it is common to have ties in the distance

matrix for the above preference ranking data, which can lead to multiple solutions when

constructing the MST. To address this issue, Zhang and Chen (2022) proposed several two-

sample tests based on either the statistics from the union of all MSTs or the average of the

statistics from all MSTs. Therefore, in our simulations, we compare our proposed test with

their tests, which are based on the test statistics Spaq, Mpaqp1.14q, Spuq and Mpuqp1.14q.

Table 2.2 shows that the simulated Type-I error rates for Zhang and Chen’s four

tests and our proposed test under different settings when the nominal significance level

α “ 0.05. As we can see from the table, the simulated Type-I error rates of all the five tests

are close to the nominal level under all the settings.

Table 2.2: The simulated Type-I error rates of the four tests from Zhang and Chen (2022)
and our proposed test under different settings with α “ 0.05.

Setting Sample Size Spaq Mpaqp1.14q Spuq Mpuqp1.14q Proposed

1
n1 “ n2 “ 50 0.054 0.068 0.045 0.058 0.046

n1 “ 25, n2 “ 100 0.052 0.065 0.050 0.068 0.036

2
n1 “ n2 “ 50 0.037 0.053 0.047 0.058 0.050

n1 “ 25, n2 “ 100 0.043 0.048 0.053 0.054 0.041

3
n1 “ n2 “ 50 0.048 0.053 0.040 0.045 0.053

n1 “ 25, n2 “ 100 0.057 0.066 0.057 0.066 0.038

4
n1 “ n2 “ 50 0.040 0.052 0.053 0.056 0.046

n1 “ 25, n2 “ 100 0.059 0.062 0.059 0.065 0.041

Table 2.3 shows the simulated powers of different tests under various settings.

Again the significance levels of all the tests are set at α “ 0.05. As we can see from Table
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2.3, in the settings considered here, Zhang and Chen’s tests based on Spuq and Mpuqp1.14q

are generally better than their Spaq and Mpaqp1.14q counterparts. However, they are still

significantly outperformed by our proposed test. Again this is because Zhang and Chen’s

tests are all based on the number of edges in the MST, while our proposed test is constructed

directly on interpoint distances.

Table 2.3: The simulated powers of the four tests from Zhang and Chen (2022) and our
proposed test at α “ 0.05 under different settings.

Setting Sample Size Spaq Mpaqp1.14q Spuq Mpuqp1.14q Proposed

1
n1 “ n2 “ 50 0.464 0.539 0.488 0.545 0.698

n1 “ 25, n2 “ 100 0.373 0.437 0.386 0.449 0.589

2
n1 “ n2 “ 150 0.112 0.140 0.425 0.421 0.591

n1 “ 200, n2 “ 400 0.134 0.179 0.726 0.729 0.833

3
n1 “ n2 “ 150 0.097 0.130 0.421 0.427 0.551

n1 “ 100, n2 “ 500 0.138 0.163 0.495 0.506 0.674

4
n1 “ n2 “ 50 0.476 0.530 0.552 0.586 0.760

n1 “ 50, n2 “ 100 0.573 0.642 0.637 0.675 0.858

5
n1 “ n2 “ 50 0.481 0.542 0.548 0.581 0.764

n1 “ 25, n2 “ 75 0.345 0.404 0.456 0.452 0.690

2.4.3 Haplotype Association Data

Our third simulation study uses the haplotype association data considered in Chen

and Zhang (2013). The data consists of haplotypes of 400 subjects at 11 single nucleotide

polymorphisms (SNPs). For each subject, their haplotypes at these 11 SNPs are coded as

an 11-dimensional binary vector. As a result, there are 211 “ 2048 possible haplotypes.

The haplotype data are binary vectors in nature, and the Hamming distance is a popular

choice for measuring the interpoint distances. Therefore, we use it as the distance metric to

construct our Tloc and Tscal as well as the MST. Again, there are ties in the distance matrix
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when constructing the MST. As a result, the MST is not unique. Similar to the previous

simulation study for the preference ranking data, we compare our proposed test with the

four tests from Zhang and Chen (2022) in our simulations.

Before we compare the powers of the five tests, we first conduct a simulation study

to assess their Type-I error rates. For this purpose, the haplotypes of 400 subjects are

uniformly generated from the 2048 possible haplotypes in each simulation run. Regardless

of his or her haplotype, we assume that each subject has a 30% chance of getting a certain

disease. Subjects are then separated into the “patient” group and the “normal” group

depending on whether they get the disease. Our proposed test along with Zhang and

Chen’s four tests are applied to the resulting haplotype data to see if there is a difference

between the two groups. Since getting the disease is independent of the haplotype in this

setting, the haplotypes of the “patient” group have the same distribution as those of the

“normal” group. Therefore, we can use this setting to evaluate the Type-I error rates of the

five tests. Table 2.4 presents the simulated Type-I error rates of the five tests at different

nominal levels. As we can see from the table, the simulated Type-I error rates of the five

tests are all close to their corresponding nominal levels.

Table 2.4: The simulated Type-I error rates of the four tests from Zhang and Chen (2022)
and our proposed test.

The simulated Type-I errors

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Spaq 0.005 0.025 0.029 0.057 0.048 0.063 0.070 0.087 0.084 0.110

Mpaqp1.14q 0.011 0.026 0.035 0.053 0.054 0.054 0.072 0.089 0.091 0.112

Spuq 0.007 0.017 0.038 0.054 0.061 0.070 0.067 0.084 0.081 0.106

Mpuqp1.14q 0.014 0.026 0.035 0.059 0.054 0.074 0.080 0.096 0.089 0.116

Proposed 0.011 0.023 0.026 0.034 0.044 0.048 0.063 0.090 0.100 0.104
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To compare the powers of the five tests, we assume that among the 11 SNPs, four

are informative and seven are non-informative. The probability of the subject getting the

disease is determined by the number of the four informative SNP positions at which the

subject’s haplotype agrees with a target haplotype, that is,

P pDiseaseq “ 0.3 ` 0.1 ˆ (Number of positions in agreement).

Again, in each simulation run, the haplotypes of 400 subjects are uniformly generated

from the 2048 possible haplotypes. Subjects are divided into the “patient” group and the

“normal” group according to the above disease model. Our proposed test along with Zhang

and Chen’s four tests are then applied to the resulting haplotype data to see if they are able

to detect the differences between the two groups. Figure 2.6 shows the simulated powers of

different tests as the significance level α changes. As we can see from Figure 2.6, although

Mpuqp1.14q is the best among the four MST-based tests from Zhang and Chen (2022), our

proposed test has significantly better power than Mpuqp1.14q. The reason is the same as

those in the previous two simulation studies.

From all the simulations presented in this section, we can see that the failure to

fully utilize the interpoint distances in the MST-based tests can lead to significant efficiency

loss. Our proposed test which makes good use of both the interpoint distances and the

underlying dependency between Tloc and Tscal has the best performance in all the simulation

settings considered here.
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Figure 2.6: The simulated powers of our proposed test ( ), and the four tests from Zhang
and Chen (2022) (Spaq ( ), Spuq ( ), Mpaqp1.14q ( ) and Mpuqp1.14q ( )).

2.5 A Real Data Example

In this section, we demonstrate the application of our proposed test on a real

phone-call network data set, which was collected by the MIT Media Laboratory and is

available at http://realitycommons.media.mit.edu/realitymining.html. The data set

contains call logs from 106 students and staff in an institute from July 2004 to June 2005

(Eagle et al. 2009). During that period of time, there were 31 days when no call was

made among the 106 subjects, therefore those days are removed from our analysis. For the

remaining 299 days, 19 subjects did not made any calls with the 106 subjects, therefore are

also excluded from our analysis. For the remaining data, one question of interest is whether

phone call patterns on weekdays are different from those on weekends.
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To answer this question, we first construct a directed phone-call network for each

day with the 87 subjects as nodes and a directed edge pointing from subject i to subject j

if subject i made at least one call to subject j on that day. We then divide the networks

into two groups according to whether the day is a weekday or weekend. Then our task

is essentially to compare the underlying distributions of the phone-call networks between

these two groups.

To apply our proposed test to this setting, we need to find an appropriate distance

metric dp¨, ¨q for the phone-call network data. For this purpose, we follow Zhang and Chen

(2022) and use the number of different directed edges between two directed networks as

our distance metric dp¨, ¨q. When this distance metric is used, there are many ties in the

distance matrix, making the MST non-unique. Therefore, in the following, we compare the

performance of our proposed test to that of the four tests from Zhang and Chen (2022) on

this phone-call network data.

If we use the whole data set, all the five tests yield significant results at the

significance level 0.05. To show the superior performance of our proposed tests over Zhang

and Chen’s tests, we randomly sample subsets of different sizes from the whole data set,

keeping the proportions of observations from the two groups as close as they are in the

original data set, and then use them to test the differences between the two groups based

on the five tests. We repeat this procedure 100 times. The simulated powers of the five

tests based on the 100 replicates using subsets of different sizes are shown in Figure 2.7. As

we can see from Figure 2.7, our proposed test has significantly higher power than Zhang

and Chen’s four MST-based tests, which once again shows the substantial efficiency gain
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Figure 2.7: Powers of our proposed test ( ), and the four tests from Zhang and Chen
(2022) (Spaq ( ), Spuq ( ), Mpaqp1.14q ( ) and Mpuqp1.14q ( )) for comparing phone-
call patterns on weekdays and on weekends at α “ 0.05.

of our proposed test due to its capability of fully utilizing the information contained in the

interpoint distances.
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Chapter 3

Nonparametric Control Chart for

Count Data

3.1 Introduction

Count data monitoring arises from various applications across many industries,

including defect detection in manufacturing, fraud detection in financial services, disease

outbreak surveillance, network traffic monitoring and others. In the statistical process

control (SPC) literature, many parametric control charts have been proposed to monitor

count data. See, for example, Woodall (1997) for an overview on this topic. The binomial

distribution and Poisson distribution are two classic probability distributions to model count

data. The binomial distribution is usually used when people are interested in monitoring

the proportion of nonconforming or defective items observed in a sample. Besides the most

widely used Shewhart p-chart and np-chart, many other control charts have been developed
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for monitoring binomial data. See, for example, Gan (1990, 1993), Khoo (2004), Wu et

al. (2008). When control charts are needed to detect a change in the rate of occurrence

of an event, we deal with count data that represent the number of times an event occurs

in a given time interval. In such situations, the Poisson distribution is commonly used

for describing data of this type. There is a considerable literature on control charts for

monitoring independent and identically distributed Poisson random variables, for example,

the traditional Shewhart c-chart and u-chart, the CUSUM charts developed in Lucas (1985),

Lai (1995) and White and Keats (1996), and the EWMA charts from Gan (1990).

Parametric control charts introduced above are based on the assumption that the

underlying process follows a particular discrete probability distribution. In practice, these

assumptions may not be valid. Many researchers have investigated the impact of viola-

tions of such assumptions and offered their solutions. For instance, when data exhibit

over-dispersion (i.e., the variance is greater than the mean), which is a violation of the equi-

dispersion (i.e., the variance equals the mean) assumption for the Poisson distribution, the

false alarm rate will be higher than the nominal level. To overcome this drawback of con-

trol charts developed from the Poisson distribution, Sheaffer and Leavenworth (1976) and

Kaminsky et al. (1992) proposed control charts based on the negative binomial distribu-

tion or its special case, the geometric distribution. Sellers (2012) developed the generalized

version of the traditional Shewhart charts by using the Conway-Maxwell-Poisson distribu-

tion, which is flexible enough to model count data that are either over- or under-dispersed.

Other researchers considered compound distributions such as the Poisson-gamma mixture
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(Cheng and Yu (2013)) and the shifted (or zero-truncated) generalized Poisson distribution

(Famoye (1994)) to develop control charts for count data.

Despite the availability of various discrete probability distributions, Wang and Qiu

(2018) argued that it is usually very difficult to find a proper parametric distribution to

model count data in real-world settings. This is partly due to the fact that count data

can be easily affected by confounding factors that are possibly unknown or unmeasurable.

Motivated by the above limitation, Wang and Qiu (2018) developed two nonparametric

CUSUM charts for detecting mean shifts for count data. In their proposed procedure,

count data are firstly categorized, and then the Pearson’s Chi-squared test and likelihood

ratio test are used to develop two CUSUM charts for monitoring the resulting categorical

data. However, their control charts are directly based on the categorized data, which fail

to preserve the ordering information of the original data. As a result, as shown in our

simulation studies, their control charts can suffer efficiency loss when detecting mean shifts.

Additionally, Wang and Qiu (2018) proposed to use a bisection searching algorithm based

on bootstrap to find the control limits. Based on some simulation studies that we conducted,

their bootstrap algorithm requires a substantial amount of Phase-I sample to achieve the

desired in-control performance.

To address the above limitations that the existing control charts have, we introduce

a new nonparametric control chart for detecting mean shifts for count data. Our proposed

control chart is also based on the idea of data categorization similar to the one used in

Wang and Qiu (2018), but borrows the idea from Li (2021) to incorporate the ordering

information of the original data, which leads to significant gain in efficiency as shown in our
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simulation studies. In order to ensure a desired in-control performance with modest amount

of Phase-I sample, we adopt the bootstrap procedure from Gandy and Kvaløy (2013) to

help determine the control limit of our proposed control chart. Our simulation studies and

real data analysis show that the proposed control chart performs well across a variety of

settings, and significantly outperforms the two nonparametric CUSUM charts developed in

Wang and Qiu (2018).

The remainder of the chapter is organized as follows. In Section 3.2, we introduce

our proposed nonparametric control chart and describe the procedure to determine its

control limit. The performance of the proposed control chart is evaluated and compared

with the two nonparametric CUSUM charts fromWang and Qiu (2018) in several simulation

studies and a real data example in Section 3.3 and Section 3.4 respectively.

3.2 Methodology

3.2.1 The Proposed Nonparametric Control Chart

The typical setup we consider in this project is the following. There are m inde-

pendent and identically distributed Phase-I count data, denoted by X´m`1, . . . , X0 from

some in-control process. Let X1, X2, . . . be the Phase-II count data collected over time

from the process. Denote the support of Xi by S. Then the probability mass functions of

the in-control (IC) and out-of-control (OC) distributions of Xi are denoted by p0,Xpxq and

p1,Xpxq, respectively, x P S, At any time t, the task of any control chart is to determine

whether the process has changed from the IC distribution p0,Xpxq to the OC distribution

p1,Xpxq based on all the available observations X1, ..., Xt. This is equivalent to a test of the
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following hypothesis:

H0 : X1, . . . , Xt follow p0,Xpxq, x P S

versus

H1 : D τ P r1, ts such that X1, . . . , Xτ´1 follow p0,Xpxq and Xτ , . . . , Xt follow p1,Xpxq, x P S,

where τ is the change point.

If we assume that the IC and OC distributions p0,Xpxq and p1,Xpxq are both

completely known, to test the above hypothesis, the charting statistic based on the likelihood

ratio method is St “ max1ďτďt
řt

i“τ logtp1,XpXiq{p0,XpXiqu, and it can be also computed

recursively by:

St “ max

ˆ

0, St´1 ` log

"

p1,XpXtq

p0,XpXtq

*˙

. (3.1)

To implement the above CUSUM chart, both p0,Xpxq and p1,Xpxq need to be

completely specified. However, in our nonparametric setting, both p0,Xpxq and p1,Xpxq are

unknown. To get around this difficulty, we use the same data categorization idea in Wang

and Qiu (2018) to categorize the data so that any unknown p0,Xpxq and p1,Xpxq can be

converted into a multinomial distribution. More specifically, let 0 ă q1 ă q2 ă . . . ă qd´1 ă

8 be d ´ 1 boundary points, and then the support of Xi, S, can be partitioned into the

following d intervals,

A1 “ r0, q1q, A2 “ rq1, q2q, . . . , Ad “ rqd´1,8q.
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Let

Yt,j “ IpXt P Ajq, for j “ 1, . . . , d,

where Ipuq is the indicator function that takes the value of 1 if u is true and the value of 0

otherwise. In other words, Yt,j indicates whether Xt falls within the interval Aj , j “ 1, ..., d.

Let Y t “ pYt,1, ..., Yt,dq1. It is easy to see that Y t follows a multinomial distribution with

n “ 1 and category probabilities cj “ P pXt P Ajq, j “ 1, . . . , d, denoted by Multi(1;

c1, . . . , cd). Therefore, based on the above data categorization, the original count data Xt

with any arbitrary distribution is converted into the multinomial random variable Y t, and

detecting a mean shift in Xt can be achieved by detecting a mean shift in Y t.

We denote the IC distribution of Y t by Multi(1; c
p0q

1 , . . . , c
p0q

d ), and the OC dis-

tribution by Multi(1; c
p1q

1 , . . . , c
p1q

d ), where
řd

j“1 c
p0q

j “
řd

j“1 c
p1q

j “ 1 and pc
p0q

1 , . . . , c
p0q

d q ‰

pc
p1q

1 , . . . , c
p1q

d q. Replacing the IC and OC distributions of Xt in (3.1) with the ones of Y t,

the charting statistic becomes

St “ max

˜

0, St´1 `

d
ÿ

j“1

Yt,j log
!

c
p1q

j {c
p0q

j

)

¸

.

As pointed out in Li (2021), the above charting statistic is constructed based on

the multinomial distributions Multi(1; c
p0q

1 , . . . , c
p0q

d ) and Multi(1; c
p1q

1 , . . . , c
p1q

d ), which do

not make use of the ordering information of the d intervals, A1,...,Ad. This loss of or-

dering information can lead to efficiency loss when detecting mean shifts in Y t. In order

to incorporate the ordering information of A1,...,Ad, following the approached proposed in

Li (2021), we construct cumulative unions of the d intervals and then develop a charting
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statistic based on cumulative sums of Yt,j , j “ 1, . . . , d. This is similar to what is usually

done to incorporate the ordering information of the categories in the ordered logistic regres-

sion (versus the regular multinomial logistic regression). More specifically, we define the

cumulative unions of the intervals A1, . . . , Ad as follows,

A1, A1 YA2, A1 YA2 YA3, . . . , A1 Y . . .YAd.

and denote the cumulative sums of Yt,1, ..., Yt,d as

Zt,j “

j
ÿ

l“1

Yt,l, for j “ 1, . . . , d,

where Zt,j indicates whether Xt falls within the interval A1 Y . . .YAj . It is easy to see that

Zt,j , j “ 1, ..., d ´ 1, is a Bernoulli random variable and the log-likelihood ratio based on

Zt,j is

Zt,j log

˜

řj
l“1 c

p1q

l
řj

l“1 c
p0q

l

¸

` p1 ´ Zt,jq log

˜

1 ´
řj

l“1 c
p1q

l

1 ´
řj

l“1 c
p0q

l

¸

.

Similar to the ordered logistic regression, if we use an appropriate test statistic based on

all Zt,j , j “ 1, ..., d´ 1, in our charting statistic, the ordering information of A1,..., Ad can

be incorporated. Following Li (2021), to incorporate all Zt,j , j “ 1, ..., d´ 1, we consider a

weighted sum of the above log-likelihood ratios from each Zt,j , j “ 1, ..., d ´ 1, as the test

statistic and the resulting test statistic is

d´1
ÿ

j“1

ωpjq
!

Zt,j log

˜

řj
l“1 c

p1q

l
řj

l“1 c
p0q

l

¸

` p1 ´ Zt,jq log

˜

1 ´
řj

l“1 c
p1q

l

1 ´
řj

l“1 c
p0q

l

¸

)

,
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where ωpjq is the weight function, and following Li (2021), we choose ωpjq “ pj{dq´1p1 ´

j{dq´1 to give more weights to the tail areas. Using the above test statistic based on all

Zt,j , j “ 1, ..., d´ 1, our proposed charting statistic is given by

St “max

˜

0, St´1 `

d´1
ÿ

j“1

d2

jpd´ jq

#

Zt,j log

˜

řj
l“1 c

p1q

l
řj

l“1 c
p0q

l

¸

`p1 ´ Zt,jq log

˜

1 ´
řj

l“1 c
p1q

l

1 ´
řj

l“1 c
p0q

l

¸+¸

. (3.2)

To implement the control chart based on the above charting statistic, we need

to first choose the boundary points tq1, q2, ..., qd´1u. As mentioned earlier, through data

categorization, we detect a mean shift in Xt by detecting a mean shift in Y t, which is

equivalent to detecting a change in pc
p0q

1 , . . . , c
p0q

d q. To help detect changes in pc
p0q

1 , . . . , c
p0q

d q,

research in the categorical data analysis literature suggests to choose tq1, q2, ..., qd´1u such

that c
p0q

1 , . . . , c
p0q

d are roughly the same (see, for example, Agresti (2002), Section 1.5).

Following this suggestion, we choose tq1, q2, ..., qd´1u such that the estimated IC category

probabilities based on the Phase-I sample, pc
p0q

1 , ...pc
p0q

d , are as close to one another as possible.

Once we have chosen the boundary points tq1, q2, ..., qd´1u as described above,

next we need to determine the IC and OC category probabilities, cp0q “ pc
p0q

1 , . . . , c
p0q

d q1 and

cp1q “ pc
p1q

1 , . . . , c
p1q

d q1 used in (3.2). Similar to Wang and Qiu (2018), we use the estimated

IC category probabilities based on the Phase-I sample, pc0 “ ppc
p0q

1 , ...pc
p0q

d q1, to substitute

cp0q “ pc
p0q

1 , . . . , c
p0q

d q1 in (3.2).

To find the OC category probabilities cp1q, if we know the change point τ , we can

simply use the observations collected after the change point τ to estimate cp1q. However,
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the change point τ is usually unknown in practice. When both the IC and OC distributions

are the normal distributions but with different means, to achieve the optimal performance

of the standard CUSUM chart, the OC mean also needs to be estimated. Sparks (2000)

proposed using an exponentially weighted moving average of all the past observations to

estimate the OC mean and simulation studies have shown that this method of estimating

the OC mean works well. Following the same idea, we also propose to estimate the OC

category probabilities cp1q by the exponentially weighted moving average of all the past

observations. More specifically, the estimate of cp1q “ pc
p1q

1 , . . . , c
p1q

d q1 at time t is given by

pc
p1q

t “ ppc
p1q

t,1 , ...,pc
p1q

t,d q1, and for t ą 1,

pc
p1q

t “ λY t´1 ` p1 ´ λqpc
p1q

t´1, (3.3)

where pc
p1q

1 “ pc0 and λ P p0, 1s is a weighting parameter.

Substituting cp0q “ pc
p0q

1 , . . . , c
p0q

d q1 and cp1q “ pc
p1q

1 , . . . , c
p1q

d q1 in (3.2) by their

respective estimates described above, the charting statistic in (3.2) becomes,

St “max

¨

˝0, St´1 `

d´1
ÿ

j“1

d2

jpd´ jq

$

&

%

Zt,j log

¨

˝

řj
l“1 pc

p1q

t,l
řj

l“1 pc
p0q

l

˛

‚

`p1 ´ Zt,jq log

¨

˝

1 ´
řj

l“1 pc
p1q

t,l

1 ´
řj

l“1 pc
p0q

l

˛

‚

,

.

-

˛

‚.

Then our proposed control chart is to plot the above St over the time t and it raises an

alarm if St ą h, where h is the predetermined control limit. In the next section, we describe

how to determine h to guarantee certain IC performance.
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3.2.2 Determining the Control Limit

As described in the previous section, in the charting statistic of our proposed

control chart, the unknown IC category probabilities cp0q “ pc
p0q

1 , . . . , c
p0q

d q1 are estimated

by the Phase-I sample, X´m`1, . . . , X0. The resulting average run length (denoted by

ARL) of our proposed control chart is a random variable whose distribution depends on the

estimated IC category probabilities pcp0q
“ ppc

p0q

1 , ...pc
p0q

d q1 from the Phase-I sample, therefore

it is usually referred to as the conditional ARL. In the SPC literature, control limits are

often determined to control the unconditional IC ARL (the average of the conditional IC

ARL over a large number of Phase-I samples) at the nominal level. However, as shown in

the literature (see, for example, Jensen et al. (2006), Psarakis et al. (2014), Saleh et al.

(2016), Capizzi and Masarotto (2020)), when we only consider controlling the unconditional

IC ARL at the nominal level, the conditional IC ARL can be much lower than the nominal

level in a large proportion of cases. To avoid this undesirable consequence, Jones and

Steiner (2012) and Gandy and Kvaløy (2013) proposed to find the control limit so that a

large proportion of the conditional IC ARL is close to the nominal level. Since this new

criterion can guarantee the desired performance of the conditional IC ARL, we will adopt

this criterion in determining our control limit h. More specifically, denote condi-ARL0phq

as the conditional IC ARL of our proposed control chart using control limit h, and ARL0

as the nominal level of the unconditional IC ARL. Then we want to find h so that

Prob
´

condi-ARL0phq ą ARL0

¯

“ 1 ´ α, (3.4)

where α is some small tolerance selected by users.
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To find h to satisfy the above requirement, we resort to the bootstrap method

proposed in Gandy and Kvaløy (2013). Recall that p0,X is the IC distribution of Xi, and

pcp0q
“ ppc

p0q

1 , ...,pc
p0q

d q1 are the estimated IC category probabilities of Y t based on the Phase-

I sample X´m`1, . . . , X0. Given the Phase-I sample X´m`1, . . . , X0, the conditional IC

ARL of our proposed control chart depends on (i) pcp0q, since the charting statistic of our

proposed control chart involves pcp0q; and (ii) p0,X , since the future IC count data X1, X2,...

are drawn from p0,X . Due to this dependence, we define gph;pcp0q, p0,Xq as the conditional

IC ARL of our proposed control chart based on the control limit h and the Phase-I sample

X´m`1, . . . , X0. Then its inverse function g´1pARL0;pc
p0q, p0,Xq ” qpARL0;pc

p0q, p0,Xq gives

the desired control limit such that the conditional IC ARL of our proposed control chart

based on the Phase-I sampleX´m`1, . . . , X0 is ARL0. However, p0,X is unknown in practice,

so qpARL0;pc
p0q, p0,Xq can not be easily obtained. To circumvent this difficulty, we can use

the popular plug-in principle, i.e, replace the unknown p0,X by its estimate based on the

Phase-I sample X´m`1, . . . , X0, denoted by pp0,X . Since pcp0q and pp0,X are both known for the

given Phase-I sample, by applying some numerical algorithm (e.g. the bisection searching

algorithm), we can find qpARL0;pc
p0q, pp0,Xq.

Based on qpARL0;pc
p0q, pp0,Xq, the 100p1 ´ αq% lower one-sided confidence interval

for qpARL0;pc
p0q, p0,Xq can be constructed as

´

´ 8, qpARL0;pc
p0q, pp0,Xq ´ pα

¯

, where pα

satisfies

Prob
´

qpARL0;pc
p0q, pp0,Xq ´ pα ą qpARL0;pc

p0q, p0,Xq

¯

“ 1 ´ α. (3.5)

According to (3.5), if we set our control limit at h “ qpARL0;pc
p0q, pp0,Xq ´ pα, then (3.4)

will be automatically satisfied. Therefore, our remaining task is to find the above pα.
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To this end, we first notice that (3.5) can be written as

Prob
´

qpARL0;pc
p0q, pp0,Xq ´ qpARL0;pc

p0q, p0,Xq ą pα

¯

“ 1 ´ α.

This implies that pα is actually the α-th quantile of the sampling distribution of qpARL0;pc
p0q, pp0,Xq´

qpARL0;pc
p0q, p0,Xq. However, the sampling distribution of qpARL0;pc

p0q, pp0,Xq´qpARL0;pc
p0q, p0,Xq

is usually unknown. Gandy and Kvaløy (2013) proposed to approximate it by bootstrap.

More specifically, let X “ pX´m`1, . . . , X0q1. Randomly generate B bootstrap resamples

of X, and denote them by X˚
1 , . . . ,X

˚
B. Let pp˚

0,X,r and pcp0q˚
r be the counterparts of pp0,X

and pcp0q, respectively, calculated from the bootstrap resample X˚
r , r “ 1, . . . , B. Then the

sampling distribution of qpARL0;pc
p0q, pp0,Xq ´ qpARL0;pc

p0q, p0,Xq can be approximated by

the empirical distribution of qpARL0;pc
p0q˚
r , pp˚

0,X,rq ´ qpARL0;pc
p0q˚
r , pp0,Xq, r “ 1, . . . , B. As

a result, we can use the α-th quantile of this empirical distribution, denoted by pp˚
α, to esti-

mate pα. Following the results from Gandy and Kvaløy (2013), if we set our control limit

at h “ qpARL0;pc
p0q, pp0,Xq ´ pp˚

α, then (3.4) will hold asymptotically.

As suggested by Gandy and Kvaløy (2013), replacing qpARL0; ¨, ¨q by its log trans-

formation at each step of the above procedure can help improve the coverage probability.

Following this suggestion, we summarize below the details of the algorithm we use for finding

the control limit h of our proposed control chart.

1. Obtain pp0,X and pcp0q using the Phase-I sample X´m`1, . . . , X0.

2. Find qpARL0;pc
p0q, pp0,Xq using some numerical algorithm (e.g., the bisection searching

algorithm), and calculate log
´

qpARL0;pc
p0q, pp0,Xq

¯

.
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3. Randomly generate B bootstrap resamples X˚
1 , . . . ,X

˚
B from the Phase-I sample

X “ pX´m`1, . . . , X0q1. For the bootstrap resample X˚
r , r “ 1, . . . , B, first calculate

pp˚
0,X,r and pcp0q˚

r , the counterparts of pp0,X and pcp0q, respectively. Then use the same nu-

merical algorithm used in Step 2 to find qpARL0;pc
p0q˚
r , pp˚

0,X,rq and qpARL0;pc
p0q˚
r , pp0,Xq,

and compute log
´

qpARL0;pc
p0q˚
r , pp˚

0,X,rq

¯

´ log
´

qpARL0;pc
p0q˚
r , pp0,Xq

¯

. Then calcu-

late pp˚
α, the α quantile of the empirical distribution of log

´

qpARL0;pc
p0q˚
r , pp˚

0,X,rq

¯

´

log
´

qpARL0;pc
p0q˚
r , pp0,Xq

¯

, r “ 1, . . . , B.

4. Finally, the control limit h that can guarantee the desired performance of the condi-

tional IC ARL as in (3.4) is calculated as exp
!

log
´

qpARL0;pc
p0q, pp0,Xq

¯

´ pp˚
α

)

.

3.3 Simulation Studies

In this section, we present several simulation studies to evaluate the performance of

our proposed control chart. In particular, we compare our control chart with the two existing

nonparametric CUSUM charts for count data, the P-CUSUM and L-CUSUM charts, from

Wang and Qiu (2018). Following the simulation settings used in Wang and Qiu (2018), we

consider the following four discrete distributions throughout our simulation studies:

‚ Binomial distribution: Suppose there are n independent Bernoulli trials, and the

probability of a success is constant from trial to trial, denoted by p. The random

variable X which represents the number of successes obtained in the n trials follows

a binomial distribution with parameters n and p, denoted by Bin(n, p).
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‚ Negative binomial distribution: Suppose there are a sequence of independent Bernoulli

trials. The probability of a success for each trial is equal to p. The random variable X

which represents the number of failures until the rth success has a negative binomial

distribution, denoted by NB(r, p).

‚ Discrete uniform distribution: Let r be a specified integer. The random variable X

which takes any integer value in t0, 1, 2, ..., ru with equal probability 1{pr ` 1q has a

discrete uniform distribution, denoted by DU(r).

‚ Generalized Poisson distribution: If X is a random variable following a generalized

Poisson distribution with parameters η and θ, denoted by GP(η, θ), then the proba-

bility mass function of X is given by:

ppx; η, θq “

$

’

’

’

’

&

’

’

’

’

%

ηpη ` θxqx´1e´η´θx{x!, x “ 0, 1, 2, . . . ,

0, for x ą m if θ ă 0,

where η ą 0 and maxp´1,´η{mq ď θ ă 1, and m ě 4. When θ ă 0, m is the largest

positive integer that satisfies η`mθ ą 0. It is easy to see that, if θ “ 0, then GP(η, 0)

reduces to the standard Poisson distribution with mean λ “ η.

In the literature, the IOD is defined as the ratio of the variance to the mean, and is

commonly used to measure the dispersion of count data. Poisson distribution is one of the

most widely used distributions for count data. With identical mean and variance, Poisson

distribution has the IOD value of 1, so it is said to be equi-dispersed. If the IOD of a

distribution is smaller than 1 (i.e., the variance is smaller than the mean), the distribution
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is said to be under-dispersed. If the IOD is larger than 1 (i.e., the variance is larger than the

mean), the distribution is considered to be over-dispersed. For some distributions, the IOD

could be either less than or greater than 1, depending on the value of the parameters, then

they are considered as being mixed-dispersed. Table 3.1 lists the IOD and type of dispersion

as well as the mean and variance for the above four distributions. In reality, count data often

exhibit under-dispersion or over-dispersion compared to the standard Poisson distribution.

From Table 3.1, we can see that the four distributions considered in our simulation studies

cover a variety of under-dispersion and over-dispersion scenarios for count data.

Table 3.1: The mean, variance, IOD and type of dispersion for the four distributions used
in our simulation studies.

Distribution Mean Variance IOD Type of dispersion

Bin(n, p) np npp1 ´ pq 0 ă 1 ´ p ă 1 under-dispersed

NB(r, p) rp1´pq

p
rp1´pq

p2
1
p ą 1 over-dispersed

DU(r) r
2

rpr`2q

12
r`2
6 mixed-dispersed

GP(η, θ) η
1´θ

η
p1´θq3

1
p1´θq2

mixed-dispersed

3.3.1 IC Performance Evaluation

In this section, we evaluate the IC performance of our proposed control chart. We

also assess the IC performance of the P-CUSUM and L-CUSUM charts to ensure a fair

comparison of OC performance among those control charts in the subsequent section.

Since the P-CUSUM and L-CUSUM charts involve tuning parameters kP and kL

respectively, we first discuss how these parameters are chosen in our simulation studies.

According to Hawkins and Olwell (1998), the IC run-length distribution of a control chart
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is considered to be satisfactory if it is close to the geometric distribution. Based on the

properties of the geometric distribution, in order for the control chart to have satisfactory

IC performance, we should expect the average and standard deviation of IC run-length

(denoted by IC ARL and IC SDRL, respectively) to be roughly the same. In Wang and

Qiu (2018), they recommended choosing kP in the range of 0.001 to 0.01 for the P-CUSUM

chart. According to some simulation study we conducted, the IC SDRL of the P-CUSUM

chart or L-CUSUM chart is significantly different from their respectively IC ARL when kP

or kL is very small. Therefore, to have a fair comparison, we try different choices of kP and

kL for the P-CUSUM and L-CUSUM charts and choose the ones that yield similar IC ARL

and IC SDRL. The smallest value of kP and kL that satisfy this criteria is 0.3. To help

detect relatively large mean shifts, we also consider kP “ 0.5 and kL “ 0.5. To study how

λ (the weighting parameter used in (3.3)) affects the performance of our proposed control

chart, we consider the following choices for λ: λ “ 0.05, 0.1 and 0.2. They are popular

choices for λ in practice and also satisfy the criteria given in Hawkins and Olwell (1998).

Following Wang and Qiu (2018), we consider the following four IC distributions in

our simulation studies: Binp20, 0.75q, NBp20, 0.75q, DUp10q, GPp5, 0.25q. We standardize

the data generated from GPp5, 0.25q, so that the IC distribution has mean 0 and standard

deviation 1. For each distribution, we randomly generate m “ 500 identically and indepen-

dently distributed Phase-I count data. For all the control charts, the number of categories d

is chosen to be 5. For each control chart, we apply the procedure described in Section 3.2.2

to find the control limit so that its conditional IC ARL satisfies (3.4) with ARL0 “ 200 and

α “ 0.1. When implementing the procedure from Section 3.2.2 to find the control limit,
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we set B “ 1000 and calculate all the conditional ARLs by averaging over 1000 sample

paths. After obtaining the control limit for each control chart, the true conditional IC ARL

of each control chart is calculated by averaging over 10000 sample paths. In order to eval-

uate the distribution of the conditional IC ARL over different Phase-I samples, the above

procedure is repeated over 500 Phase-I samples. The boxplots of the 500 conditional IC

ARLs from those 500 Phase-I samples for different distributions are displayed in Figure 3.1,

and the proportions of the conditional IC ARL values that are greater than ARL0 “ 200

are presented in Table 3.2. Both Figure 3.1 and Table 3.2 show that approximate 90% of

the conditional IC ARLs are at least the nominal level (ARL0 “ 200) for all the control

charts under various settings. This indicates that, using the control limits obtained by the

approach described in Section 3.2.2, all the control charts can satisfy (3.4) under all the

settings considered here.

Table 3.2: The simulated proportions of the conditional IC ARLs that are at least the
nominal level (ARL0 “ 200) for the P-CUSUM chart, L-CUSUM chart, and our proposed
control chart.

P-CUSUM L-CUSUM Proposed
Distribution kP “ 0.3 kP “ 0.5 kL “ 0.3 kL “ 0.5 λ “ 0.05 λ “ 0.1 λ “ 0.2

Bin(20,0.75) 0.922 0.926 0.898 0.910 0.896 0.890 0.890

NB(20,0.75) 0.924 0.918 0.900 0.904 0.908 0.904 0.898

DU(10) 0.908 0.926 0.896 0.906 0.900 0.896 0.896

GP(5,0.25) 0.904 0.914 0.890 0.884 0.892 0.886 0.902

3.3.2 OC Performance Comparison

In this section, we report the results of simulation studies that are conducted to

compare the detection power of our proposed control chart with the P-CUSUM and L-
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Figure 3.1: The boxplots of the conditional IC ARLs from 500 Phase-I samples of the
P-CUSUM chart, L-CUSUM chart, and our proposed control chart. The boxplots show
the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the conditional IC ARL
distribution.
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CUSUM charts for detecting mean shifts. Similar to Section 3.3.1, we assume that each

Phase-I sample consists of m “ 500 identically and independently distributed count data

drawn from one of the four discrete distributions considered in Section 3.3.1, and for each

Phase-I sample, the control limits for our proposed control chart, the P-CUSUM and L-

CUSUM charts are determined by the procedure from Section 3.2.2 so that their conditional

IC ARLs all satisfy (3.4) with ARL0 “ 200 and α “ 0.1.

To evaluate the detection power of different control charts for mean shifts, we need

to simulate a certain type of mean shifts in Phase-II count data. To this end, we set the

change point τ “ 50. For each simulated sample path, X1, . . . , Xτ´1, the Phase-II obser-

vations collected before time τ , are generated from the IC distribution, and Xτ , Xτ`1, . . .,

the observations collected after time τ , are generated from some OC distribution. The OC

distributions of Bin(20, 0.75) and NBp20, 0.75q are chosen to be Bin(20, p) and NBp20, pq

respectively, with p ranging from 0.70 to 0.80 in increments of 0.01. For the OC distribution

of DUp10q, the sample space remains as t0, 1, 2, . . . , 10u, but the probability associated with

each outcome is replaced by P pX “ iq “ pi ` 1q{66, i “ 0, . . . , 10. For the OC distribution

of GPp5, 0.25q, we simply add a shift of δ to the count data simulated from the standardized

GPp5, 0.25q after the change point τ , with δ ranging from -1.0 to 1.0 in increments of 0.2.

Under the above settings, the conditional OC ARL of each control chart for a

particular Phase-I sample is calculated by the average run length from 10000 sample paths.

This procedure is repeated over 500 Phase-I samples and the average of the 500 conditional

OC ARLs is the simulated unconditional OC ARL. Tables 3.3 - 3.6 show the simulated

unconditional OC ARLs along with their corresponding standard errors (in parentheses)
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for the P-CUSUM, L-CUSUM charts and our proposed control chart under different OC

settings. The smallest OC ARL value in each row, representing the best detection power

under each setting, is marked in bold. From Tables 3.3 - 3.6, we can see that, consistent

with EWMA-type control charts, our proposed control chart is more powerful in detecting

small mean shifts when small values of λ are used, and is more powerful in detecting large

mean shifts when large values of λ are used. Comparing our proposed control chart with the

P-CUSUM and L-CUSUM charts, we can see that our proposed control chart significantly

outperforms the P-CUSUM and L-CUSUM charts in all the scenarios except for the case

when the IC distribution is GPp5, 0.25q and the OC observations experience an upward

mean shift with magnitude 0.2. However, all the control charts seem to be ineffective in

detecting such a small mean shift in this scenario, and the slightly better performance of

the L-CUSUM chart might be due to its smaller unconditional IC ARLs as shown in Figure

3.1.

From both the IC and OC performance reported above, it is clear that our proposed

control chart can achieve the desired control of the conditional IC ARL under different

distributions, and is more efficient than the two existing nonparametric control charts, the

P-CUSUM and L-CUSUM charts, for detecting various mean shifts.

3.4 Real Data Application

In compliance with the Jeanne Clery Act, the website of the University of Florida

Public Safety at https://publicsafety.ufl.edu/clery/ maintains the Crime Log and
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Table 3.3: The simulated unconditional OC ARLs along with their corresponding standard
errors (in parentheses) for the P-CUSUM, L-CUSUM charts and our proposed control chart
when the IC distribution is Bin(20, 0.75).

P-CUSUM L-CUSUM Proposed
p kP “ 0.3 kP “ 0.5 kL “ 0.3 kL “ 0.5 λ “ 0.05 λ “ 0.1 λ “ 0.2

0.70
54.75 68.32 39.12 42.38 26.15 25.94 28.90
(0.79) (1.11) (0.32) (0.39) (0.22) (0.21) (0.24)

0.71
83.11 100.52 54.80 61.03 35.48 36.59 42.18
(1.28) (1.62) (0.53) (0.63) (0.35) (0.36) (0.41)

0.72
127.19 143.52 82.52 92.15 53.27 56.85 66.49
(1.88) (2.03) (0.89) (1.01) (0.65) (0.67) (0.74)

0.73
182.99 191.34 129.16 140.18 92.28 98.45 112.19
(2.17) (2.09) (1.36) (1.43) (1.38) (1.30) (1.31)

0.74
235.41 232.74 189.89 196.83 174.16 174.03 183.54
(1.90) (1.74) (1.47) (1.44) (2.25) (1.84) (1.66)

0.76
246.71 246.34 188.05 198.24 170.20 171.41 182.24
(1.87) (1.77) (1.45) (1.44) (2.24) (1.88) (1.74)

0.77
197.57 211.38 124.84 139.51 87.04 93.87 108.14
(2.25) (2.27) (1.29) (1.42) (1.25) (1.24) (1.30)

0.78
136.09 160.37 77.22 88.70 49.04 52.58 61.88
(2.02) (2.33) (0.80) (0.98) (0.57) (0.60) (0.69)

0.79
85.12 109.38 49.84 56.51 32.06 33.04 37.93
(1.36) (1.89) (0.45) (0.58) (0.30) (0.31) (0.36)

0.80
52.85 70.26 34.86 37.87 23.31 23.02 25.28
(0.77) (1.24) (0.26) (0.33) (0.18) (0.18) (0.20)
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Table 3.4: The simulated unconditional OC ARLs along with their corresponding standard
errors (in parentheses) for the P-CUSUM, L-CUSUM charts and our proposed control chart
when the IC distribution is NBp20, 0.75q.

P-CUSUM L-CUSUM Proposed
p kP “ 0.3 kP “ 0.5 kL “ 0.3 kL “ 0.5 λ “ 0.05 λ “ 0.1 λ “ 0.2

0.70
36.17 42.31 30.77 32.89 21.02 20.40 21.90
(0.44) (0.61) (0.22) (0.29) (0.16) (0.15) (0.17)

0.71
56.95 67.03 43.09 48.84 28.52 28.77 32.37
(0.82) (1.07) (0.38) (0.51) (0.25) (0.25) (0.30)

0.72
96.09 109.71 66.86 78.29 42.98 45.24 52.86
(1.49) (1.79) (0.70) (0.90) (0.47) (0.49) (0.58)

0.73
161.85 173.88 112.66 129.21 76.37 81.91 95.36
(2.26) (2.41) (1.25) (1.43) (1.07) (1.08) (1.19)

0.74
240.08 242.95 182.89 195.34 158.78 160.81 173.20
(2.33) (2.30) (1.56) (1.56) (2.20) (1.88) (1.78)

0.76
241.90 242.35 179.77 193.36 159.61 161.35 177.15
(2.52) (2.72) (1.58) (1.54) (2.23) (1.88) (1.79)

0.77
168.93 176.38 109.29 127.07 75.96 81.17 97.33
(2.43) (2.63) (1.22) (1.40) (1.06) (1.05) (1.18)

0.78
103.81 114.65 63.99 76.10 42.44 44.17 53.06
(1.64) (1.87) (0.67) (0.87) (0.45) (0.46) (0.57)

0.79
61.46 71.42 40.77 46.71 28.04 27.78 31.86
(0.91) (1.13) (0.35) (0.47) (0.24) (0.23) (0.28)

0.80
37.82 44.70 28.88 30.91 20.62 19.52 21.12
(0.47) (0.63) (0.20) (0.26) (0.15) (0.14) (0.15)

Table 3.5: The simulated unconditional OC ARLs along with their corresponding standard
errors (in parentheses) for the P-CUSUM, L-CUSUM charts and our proposed control chart
when the IC distribution is DUp10q.

P-CUSUM L-CUSUM Proposed
kP “ 0.3 kP “ 0.5 kL “ 0.3 kL “ 0.5 λ “ 0.05 λ “ 0.1 λ “ 0.2

53.28 69.41 30.84 34.57 22.11 21.60 24.44
(0.77) (1.14) (0.21) (0.31) (0.16) (0.16) (0.20)

67



Table 3.6: The simulated unconditional OC ARLs along with their corresponding standard
errors (in parentheses) for the P-CUSUM, L-CUSUM charts and our proposed control chart
when the IC distribution is GPp5, 0.25q.

P-CUSUM L-CUSUM Proposed
δ kP “ 0.3 kP “ 0.5 kL “ 0.3 kL “ 0.5 λ “ 0.05 λ “ 0.1 λ “ 0.2

-1.0
9.47 9.16 13.53 11.19 9.31 8.08 7.42
(0.07) (0.07) (0.05) (0.05) (0.05) (0.04) (0.03)

-0.8
14.45 14.85 17.42 15.68 12.56 11.27 10.91
(0.12) (0.14) (0.08) (0.08) (0.08) (0.06) (0.06)

-0.6
14.45 14.84 17.42 15.67 12.55 11.26 10.91
(0.12) (0.14) (0.08) (0.08) (0.08) (0.06) (0.06)

-0.4
29.65 33.25 28.30 29.06 20.43 19.53 20.56
(0.34) (0.47) (0.19) (0.23) (0.15) (0.14) (0.15)

-0.2
105.42 116.74 77.86 88.33 53.00 55.68 63.21
(1.71) (2.01) (0.84) (1.01) (0.64) (0.64) (0.69)

0.2
265.74 257.83 221.62 225.51 241.06 227.57 230.06
(1.70) (1.53) (1.15) (1.16) (1.62) (1.20) (1.25)

0.4
137.13 148.93 76.18 93.12 51.79 56.71 71.75
(1.96) (2.08) (0.80) (1.09) (0.63) (0.68) (0.90)

0.6
40.89 52.53 26.84 29.25 19.41 18.65 20.62
(0.54) (0.82) (0.17) (0.25) (0.14) (0.13) (0.16)

0.8
40.87 52.47 26.85 29.26 19.40 18.65 20.61
(0.54) (0.81) (0.17) (0.25) (0.14) (0.13) (0.16)

1.0
17.56 19.95 17.01 15.33 11.92 10.66 10.32
(0.15) (0.22) (0.07) (0.08) (0.07) (0.06) (0.05)
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Fire Log to record criminal incidents and fires within residential housing reported to the

University of Florida. To demonstrate the application of our proposed control chart, we

consider monitoring the daily counts of narcotics violations. Based on the data provided

at https://publicsafety.ufl.edu/clery/, the mean daily counts of narcotics violations

between 2016 to 2017 is 0.49, and it decreases to 0.30 in 2018, which indicates that there is

a downward mean shift in 2018. Therefore, we use the observations from January 1st, 2016

to December 31st, 2017 as our Phase-I sample, and use the ones from January 1st, 2018 to

December 31st, 2018 for Phase-II monitoring. Our proposed control chart along with the

P-CUSUM and L-CUSUM charts from Wang and Qiu (2018) are applied to this data set

to evaluate the efficiency of those control charts in detecting the downward mean shift.

Since our proposed control chart, the P-CUSUM and L-CUSUM charts all re-

quire choosing the boundary points q1, ..., qd´1. In Section 3.2.1, we recommend choosing

q1, ..., qd´1 such that the estimated IC category probabilities are as uniform as possible.

Following this recommendation, for this data set, we set d “ 3 and choose the boundary

points to be t1, 2u. Similar to our simulation studies reported in Section 3.3, the control

limits for our proposed control chart, the P-CUSUM and L-CUSUM charts are all deter-

mined by the procedure from Section 3.2.2 so that their conditional IC ARLs satisfy (3.4)

with ARL0 “ 200 and α “ 0.1.

Figure 3.2 shows the P-CUSUM chart, the L-CUSUM chart and our proposed

control chart when they are applied to monitor the narcotics violation data in 2018. In

each plot, the curve represents the charting statistic of one given control chart and the

horizontal dashed line denotes the given control chart’s control limit. In all the plots, when
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the curve is below the corresponding horizontal line, it implies that the underlying process

is in control. When the curve crosses the corresponding horizontal line, the given control

chart signals an alarm, indicating that the underlying process has changed. As we can see

from Figure 3.2, when kP “ 0.3 and kL “ 0.5, the P-CUSUM and L-CUSUM charts fail to

detect the mean shift. In contrast, our proposed chart with different choices of λ can all

successfully detect the mean shift.

Among the control charts that can detect the mean shift, the time when the alarm

first goes off (referred to as the first alarm time) varies. The earlier the first alarm time, the

more sensitive the corresponding control chart is to the change. Table 3.7 shows the first

alarm time for all the control charts. As we can see from Table 3.7, our proposed control

chart detects the mean shift much faster than the P-CUSUM and L-CUSUM charts. This is

consistent with the simulation results reported in Section 3.3 and demonstrates once again

the superiority of our proposed control chart over the P-CUSUM and L-CUSUM charts.

Table 3.7: The first alarm time of different control charts for monitoring the narcotics
violation data

P-CUSUM L-CUSUM Proposed
kP “ 0.3 kP “ 0.5 kL “ 0.3 kL “ 0.5 λ “ 0.05 λ “ 0.1 λ “ 0.2

— 278th 120th — 69th 67th 67th
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Figure 3.2: Different control charts for monitoring the narcotics violation data. The P-
CUSUM chart with (a) kP “ 0.3, (b) kP “ 0.5; the L-CUSUM chart with (c) kL “ 0.3, (d)
kL “ 0.5; the proposed chart with (e) λ “ 0.05, (f) λ “ 0.1, (g) λ “ 0.2. The horizontal
dashed line in each plot denotes the control limit.
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Chapter 4

Concluding Remarks

4.1 Concluding Remarks for the Nonparametric Method of

Combining Dependent Tests Based on Data Depth

In Chapter 2, we propose a novel nonparametric combining method for dependent

tests. Through the use of data depth, our proposed method can automatically incorporate

the underlying dependency among the partial tests. When all the partial tests are two-

sided, any data depth can be used to combine the tests in our proposed method. Similar to

other applications of data depth, when different data depths are used, different results may

arise. In our case, the resulting global tests using different data depths may have different

performance. In general, we recommend using the data depth that can follow closely the

true geometry of the underlying distribution, since it can better incorporate the dependency

among the partial tests. In our online supplementary materials, we show the depth contours

based on different data depths for the same bivariate samples used in Figure 1. As we can
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see there, the depth contours generated from the halfspace depth, simplicial depth, zonoid

depth and onion depth can reflect better the underlying probabilistic geometry of the data

than the other data depths. For other considerations when deciding which data depth to

use, including their computational feasibility, we refer to Mosler and Mozharovskyi (2021)

for a thorough discussion on this topic.

When some of the partial tests are one-sided, in principle our proposed combining

method can also use any data depth instead of our modified halfspace depth. However, as

pointed out in Section 2.2.3, if we combine those partial tests using any regular data depth,

it implies that we use two-sided tests for the partial tests that are supposed to be one-

sided. This will lead to some efficiency loss. To demonstrate this point, we also carry out

all the simulations in Section 2.4 and real data analysis in Section 2.5 using the halfspace

depth, simplicial depth, zonoid depth and onion depth. The results using those regular

data depths are reported in our online supplementary materials. As we can see there, our

proposed combining method can still control the Type-I error rates at the nominal level if

the regular data depth is used. However, the powers of those tests are mostly lower than

the powers of our test based on the modified halfspace depth. This is because one of the

partial tests is based on Tloc, which is one-sided.

In comparison with the existing combining methods, our proposed method has

higher computational cost due to the computation of data depth. However, in the last few

years, efficient algorithms have been developed for computing exact and approximate values

of many data depths and several software packages which implement those algorithms have

been made available to practitioners (see Mosler and Mozharovskyi (2021) for a survey
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of those existing software packages). Although we only deal with two partial tests in the

application of our combining method in Section 2.3, with today’s computing power and

efficient software packages, it is still computationally feasible to implement our method

when the number of partial tests gets larger.

4.2 Concluding Remarks for the Nonparametric Control Chart

for Count Data

In this project, we develop a nonparametric control chart for detecting mean shifts

for count data. It can be used to monitor count data generated from any distributions. By

adopting the bootstrap procedure from Gandy and Kvaløy (2013) to determine its control

limit, our proposed control chart can guarantee a desired performance of the conditional IC

ARL. Our simulation studies and real data application show that the proposed control chart

significantly outperforms the two existing nonparametric control charts, the P-CUSUM and

L-CUSUM charts, for detecting various types of mean shifts. All these properties make our

proposed control chart a flexible and efficient monitoring tool for count data.

Our proposed control chart, the P-CUSUM and L-CUSUM charts all use the same

idea of data categorization. However, as described in Section 3.2.1, our proposed control

chart is capable of incorporating the ordering information of the data into its charting

statistic. In contrast, the P-CUSUM and L-CUSUM charts are both directly based on

the categorized data and their multinomial distributions. As a result, both of them fail to

make use of the ordering information of the data. Therefore, the results from our simulation
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studies and real data application show the importance of preserving the ordering information

of the data when designing nonparametric control charts through data categorization.
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Appendix A

Proofs

Proof of Proposition 1: As n Ñ 8, it is easy to see that T “ pT1, ..., Tkq1

asymptotically follows Nkp0,Rq under H0, where R is the correlation matrix corresponding

to Σ. Since Nkp0,Rq is an elliptical distribution, if the data depth DGptq is affine invariant,

DGptq “ hpt1R´1tq for some nonincreasing function h (see, Mosler and Mozharovskyi 2021).

Then

DGpT q ď DGpT obsq ðñ T 1R´1T ě pT obsq1R´1T obs.

Let ĎX and S be the sample mean and sample covariance matrix of X1,...,Xn. The

Hotelling’s T 2 test statistic is defined as T 2
Hotelling “ npĎX ´ µ0q1S´1pĎX ´ µ0q. It is not

difficult to see that, as n Ñ 8, T 1R´1T and T 2
Hotelling are equal. Therefore, the p-value cal-

culated from (2.2) is equal to the p-value calculated from the Hotelling’s T 2 test as n Ñ 8.

This completes the proof.

Proof of Proposition 2: Since the data depth Dp¨q used in (2.3) satisfies (2.4)

and (2.5), the conditions of Lemma 6.1 from Liu and Singh (1993) are satisfied. Based on
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the proof of Lemma 6.1 in Liu and Singh (1993), we can conclude that

ppn,B
a.s.
ÝÑ ppn “ P pDG˚

n
pT ˚

nq ď DG˚
n

pT obsqq, as B Ñ 8,

where T ˚
n is a random vector drawn from G˚

n, and

ppn
a.s.
ÝÑ p “ P pDGpT q ď DGpT obsqq, as n Ñ 8.

This completes the proof.

Proof of Theorem 1: For any x,u P Rd, let Hu,x denote the half-space ty P

Rd : u1y ě u1xu. For any measurable set S Ă Rd, define F pSq “ P pX P Su and FnpSq “

#ti : Xi P Su. Note that

sup
x,uPRd

uiě0,i“1,...,k0

|FnpHu,xq ´ F pHu,xq| ď sup
x,uPRd

|FnpHu,xq ´ F pHu,xq|.

According to the result in Donoho and Gasko (1992) (p. 1816), for any distribution F ,

sup
x,uPRd

|FnpHu,xq ´ F pHu,xq|
a.s.
ÝÑ 0, as n Ñ 8.

Therefore,

sup
x,uPRd

uiě0,i“1,...,k0

|FnpHu,xq ´ F pHu,xq|
a.s.
ÝÑ 0, as n Ñ 8.
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Based on the definitions of rD
pk0q

F pxq and rD
pk0q

Fn
pxq, we have the following inequality:

sup
xPRd

| rD
pk0q

Fn
pxq ´ rD

pk0q

F pxq| ď sup
x,uPRd

uiě0,i“1,...,k0

|FnpHu,xq ´ F pHu,xq|.

This implies that, for any distribution F ,

sup
xPRd

| rD
pk0q

Fn
pxq ´ rD

pk0q

F pxq|
a.s.
ÝÑ 0, as n Ñ 8.

Define H “ tHu,x : x,u P Rd, ui ě 0, i “ 1, ..., k0u. Note that H Ă A for A being a

collection of sets defined in the proof of Corollary 2 in Dümbgen (1992). Based on the

proof there, if F is absolutely continuous, for any sequence of distributions tF ˚
ν u8

ν“1 weakly

convergent to F ,

sup
Hu,xPH

|F ˚
ν pHu,xq ´ F pHu,xq| ÝÑ 0, as ν Ñ 8.

Again based on the definitions of rD
pk0q

F pxq and rD
pk0q

F˚
ν

pxq, we have

sup
xPRd

| rD
pk0q

F˚
ν

pxq ´ rD
pk0q

F pxq| ď sup
Hu,xPH

|F ˚
ν pHu,xq ´ F pHu,xq|.

Therefore,

sup
xPRd

| rD
pk0q

F˚
ν

pxq ´ rD
pk0q

F pxq| ÝÑ 0, as ν Ñ 8.
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Proof of Proposition 3: If G is absolutely continuous, based on Theorem 1, our

modified halfspace depth satisfies (2.4) and (2.5). If the bootstrap distribution G˚
n converges

weakly to G, following Proposition 2, ppn,B
a.s.
ÝÑ p, as n Ñ 8 and B Ñ 8.
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Appendix B

Supplementary Materials for

Combining Dependent Tests Based

on Data Depth with Applications

to the Two-sample Problem for

Data of Arbitrary Types

B.1 Depth Contours Based on Different Data Depths

Here we show the depth contours based on the Mahalanobis depth, L2 depth,

simplicial depth, simplicial volume depth, zonoid depth, spatial depth, lens depth, onion

depth and projection depth for the same bivariate samples used in Figure 2.1. For the
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definitions of those data depths, see Mosler and Mozharovskyi (2022). As we can see from

Figures B.1 - B.9 and Figure 2.1, the depth contours generated from the halfspace depth,

simplical depth, zonoid depth and onion depth can reflect better the underlying probabilistic

geometry of the data than the other depths.
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Figure B.1: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are both the normal distri-
butions. The two variables are independent.
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Figure B.2: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are both the normal distri-
butions. The two variables are positively correlated.
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Figure B.3: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are both the normal distri-
butions. The two variables are negatively correlated.
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Figure B.4: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are the chisquare distribution
with 2 degrees of freedom and the normal distribution. The two variables are independent.
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Figure B.5: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are the chisquare distribution
with 2 degrees of freedom and the normal distribution. The two variables are positively
correlated.
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Figure B.6: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are the chisquare distribution
with 2 degrees of freedom and the normal distribution. The two variables are negatively
correlated.
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Figure B.7: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are both the chisquare
distributions with 4 degrees of freedom. The two variables are independent.
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Figure B.8: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are both the chisquare
distributions with 4 degrees of freedom. The two variables are positively correlated.
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Figure B.9: Depth contours for a random sample drawn from a bivariate distribution based
on nine notions of data depth. The two marginal distributions are both the chisquare
distributions with 4 degrees of freedom. The two variables are negatively correlated.
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B.2 Additional Simulation Results

Here we report the additional simulation results when we carry out all the simula-

tions in Section 2.4 and real data analysis in Section 2.5 using the simplicial depth, zonoid

depth, onion depth and halfspace depth. As we can see from Tables B.1 -B.9, our proposed

combining method can still control the Type-I error rates at the nominal level if the regular

depth is used. However, the powers of those tests are mostly lower than the powers of our

test based on the modified halfspace depth.

Table B.1: The simulated Type-I error rates with α “ 0.05 for data from continuous
distributions.

The simulated Type-I errors

d 2 10 50 100 200

Chen and Friedman’s test .051 .052 .048 .046 .044
Simplicial depth .048 .061 .057 .040 .050
Zonoid depth .044 .053 .054 .041 .053
Onion depth .035 .046 .040 .036 .046
Halfspace depth .042 .046 .049 .038 .050
Proposed .054 .051 .049 .044 .047
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Table B.2: The simulated powers for detecting location differences at α “ 0.05 for data
from continuous distributions.

Location differences (d “ 2)

∆ .40 .55 .70 .85 1.00

Chen and Friedman’s test .127 .175 .333 .465 .661
Simplicial depth .166 .302 .568 .755 .902
Zonoid depth .166 .328 .607 .786 .924
Onion depth .148 .309 .573 .766 .917
Halfspace depth .161 .323 .599 .781 .922
Proposed .252 .429 .689 .859 .962

Location differences (d “ 10)

∆ .60 .75 .90 1.05 1.20

Chen and Friedman’s test .119 .161 .276 .431 .584
Simplicial depth .220 .345 .591 .770 .905
Zonoid depth .226 .369 .614 .789 .924
Onion depth .214 .348 .592 .769 .911
Halfspace depth .223 .361 .609 .785 .922
Proposed .282 .454 .677 .843 .952

Location differences (d “ 50)

∆ .90 1.05 1.20 1.35 1.50

Chen and Friedman’s test .107 .135 .241 .304 .405
Simplicial depth .231 .368 .568 .738 .851
Zonoid depth .247 .386 .587 .751 .853
Onion depth .227 .351 .560 .736 .843
Halfspace depth .240 .374 .581 .749 .850
Proposed .307 .472 .656 .811 .898

Location differences (d “ 100)

∆ 1.10 1.25 1.40 1.55 1.70

Chen and Friedman’s test .109 .150 .189 .281 .362
Simplicial depth .273 .393 .551 .718 .826
Zonoid depth .292 .403 .576 .728 .836
Onion depth .260 .372 .546 .700 .822
Halfspace depth .276 .398 .569 .714 .834
Proposed .347 .465 .642 .785 .880

Location differences (d “ 200)

∆ 1.30 1.50 1.70 1.90 2.10

Chen and Friedman’s test .106 .152 .208 .314 .417
Simplicial depth .280 .444 .611 .792 .911
Zonoid depth .297 .457 .622 .814 .924
Onion depth .266 .424 .598 .781 .920
Halfspace depth .291 .439 .614 .800 .921
Proposed .363 .539 .686 .850 .947
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Table B.3: The simulated powers for detecting scale differences at α “ 0.05 for data from
continuous distributions.

Scale differences (d “ 2)

σ 1.50 1.70 1.90 2.10 2.30

Chen and Friedman’s test .173 .272 .374 .482 .589
Simplicial depth .234 .415 .603 .724 .831
Zonoid depth .263 .472 .656 .794 .866
Onion depth .238 .429 .617 .756 .834
Halfspace depth .255 .456 .630 .774 .859
Proposed .274 .478 .651 .793 .879

Scale differences (d “ 10)

σ 1.20 1.26 1.32 1.38 1.44

Chen and Friedman’s test .275 .409 .533 .644 .762
Simplicial depth .298 .475 .623 .762 .868
Zonoid depth .309 .504 .657 .788 .889
Onion depth .285 .477 .633 .767 .869
Halfspace depth .297 .493 .639 .770 .879
Proposed .323 .516 .671 .790 .885

Scale differences (d “ 50)

σ 1.08 1.11 1.14 1.17 1.20

Chen and Friedman’s test .264 .433 .579 .731 .862
Simplicial depth .298 .498 .725 .844 .937
Zonoid depth .310 .508 .748 .867 .949
Onion depth .284 .479 .721 .845 .939
Halfspace depth .302 .492 .734 .859 .945
Proposed .301 .510 .738 .858 .952

Scale differences (d “ 100)

σ 1.06 1.08 1.10 1.12 1.14

Chen and Friedman’s test .308 .439 .614 .784 .877
Simplicial depth .318 .509 .745 .865 .952
Zonoid depth .327 .537 .754 .878 .966
Onion depth .302 .498 .725 .860 .954
Halfspace depth .317 .516 .744 .873 .960
Proposed .319 .518 .755 .882 .960

Scale differences (d “ 200)

σ 1.04 1.05 1.06 1.07 1.08

Chen and Friedman’s test .290 .376 .500 .614 .735
Simplicial depth .307 .442 .607 .711 .837
Zonoid depth .324 .445 .630 .726 .856
Onion depth .295 .417 .598 .702 .834
Halfspace depth .315 .440 .617 .711 .842
Proposed .322 .433 .614 .731 .838
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Table B.4: The simulated powers for detecting both location and scale differences at α “

0.05 for data from continuous distributions.

Location and scale differences (d “ 2)

∆ .50 .70 .90 1.10 1.30

Chen and Friedman’s test .148 .294 .492 .760 .925
Simplicial depth .160 .315 .588 .808 .918
Zonoid depth .204 .393 .640 .843 .926
Onion depth .164 .339 .592 .822 .919
Halfspace depth .189 .380 .631 .840 .927
Proposed .316 .513 .748 .897 .968

Location and scale differences (d “ 10)

∆ .70 .90 1.10 1.30 1.50

Chen and Friedman’s test .242 .388 .545 .709 .847
Simplicial depth .228 .435 .618 .764 .901
Zonoid depth .249 .452 .629 .782 .900
Onion depth .235 .428 .611 .770 .888
Halfspace depth .247 .444 .620 .779 .902
Proposed .347 .542 .706 .841 .941

Location and scale differences (d “ 50)

∆ .90 1.15 1.40 1.65 1.90

Chen and Friedman’s test .275 .420 .583 .704 .837
Simplicial depth .218 .429 .566 .756 .885
Zonoid depth .232 .432 .577 .765 .889
Onion depth .209 .418 .565 .756 .879
Halfspace depth .224 .426 .565 .763 .887
Proposed .285 .519 .651 .817 .928

Location and scale differences (d “ 100)

∆ .90 1.20 1.50 1.80 2.10

Chen and Friedman’s test .256 .424 .551 .711 .826
Simplicial depth .194 .365 .541 .725 .867
Zonoid depth .205 .367 .555 .744 .884
Onion depth .190 .350 .527 .726 .883
Halfspace depth .197 .362 .542 .738 .884
Proposed .256 .431 .615 .789 .902

Location and scale differences (d “ 200)

∆ 1.20 1.50 1.80 2.10 2.40

Chen and Friedman’s test .341 .468 .609 .750 .831
Simplicial depth .286 .417 .600 .783 .904
Zonoid depth .297 .435 .610 .786 .912
Onion depth .273 .409 .591 .767 .902
Halfspace depth .282 .421 .601 .777 .905
Proposed .345 .492 .654 .830 .930
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Table B.5: The simulated Type-I error rates with α “ 0.05 for the preference ranking data.

Setting 1 Setting 2

Sample Size
n1 “ 50, n1 “ 25, n1 “ 50, n1 “ 25,
n2 “ 50 n2 “ 100 n2 “ 50 n2 “ 100

Spaq .054 .052 .037 .043

Mpaqp1.14q .068 .065 .053 .048

Spuq .045 .050 .047 .053

Mpuqp1.14q .058 .068 .058 .054

Simplicial depth .050 .041 .057 .038
Zonoid depth .051 .037 .054 .041
Onion depth .041 .037 .054 .038
Halfspace depth .047 .036 .053 .037
Proposed .046 .036 .050 .041

Setting 3 Setting 4

Sample Size
n1 “ 50, n1 “ 25, n1 “ 50, n1 “ 25,
n2 “ 50 n2 “ 100 n2 “ 50 n2 “ 100

Spaq .048 .057 .040 .059

Mpaqp1.14q .053 .066 .052 .062

Spuq .040 .057 .053 .059

Mpuqp1.14q .045 .066 .056 .065

Simplicial depth .050 .047 .058 .045
Zonoid depth .049 .051 .055 .040
Onion depth .046 .044 .048 .036
Halfspace depth .046 .050 .053 .038
Proposed .053 .038 .046 .041
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Table B.6: The simulated powers at α “ 0.05 for the preference ranking data.

Setting 1 Setting 2

Sample Size
n1 “ 50, n1 “ 25, n1 “ 150, n1 “ 200,
n2 “ 50 n2 “ 100 n2 “ 150 n2 “ 400

Spaq .464 .373 .112 .134

Mpaqp1.14q .539 .437 .140 .179

Spuq .488 .386 .425 .726

Mpuqp1.14q .545 .449 .421 .729

Simplicial depth .584 .481 .512 .764
Zonoid depth .595 .497 .532 .791
Onion depth .579 .475 .496 .762
Halfspace depth .591 .488 .510 .780
Proposed .698 .589 .591 .833

Setting 3 Setting 4

Sample Size
n1 “ 150, n1 “ 100, n1 “ 50, n1 “ 50,
n2 “ 150 n2 “ 500 n2 “ 50 n2 “ 100

Spaq .097 .138 .476 .573

Mpaqp1.14q .130 .163 .530 .642

Spuq .421 .495 .552 .637

Mpuqp1.14q .427 .506 .586 .675

Simplicial depth .494 .597 .660 .786
Zonoid depth .509 .611 .677 .803
Onion depth .475 .588 .642 .775
Halfspace depth .491 .599 .665 .788
Proposed .551 .674 .760 .858

Setting 5

Sample Size
n1 “ 50, n1 “ 25,
n2 “ 50 n2 “ 75

Spaq .481 .345

Mpaqp1.14q .542 .404

Spuq .548 .456

Mpuqp1.14q .581 .452

Simplicial depth .653 .533
Zonoid depth .664 .555
Onion depth .647 .523
Halfspace depth .654 .540
Proposed .764 .690
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Table B.7: The simulated Type-I error rates for the haplotype association data.

The simulated Type-I errors

α .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Spaq .005 .025 .029 .057 .048 .063 .070 .087 .084 .110

Mpaqp1.14q .011 .026 .035 .053 .054 .054 .072 .089 .091 .112

Spuq .007 .017 .038 .054 .061 .070 .067 .084 .081 .106

Mpuqp1.14q .014 .026 .035 .059 .054 .074 .080 .096 .089 .116

Simplicial depth .012 .023 .032 .036 .044 .060 .071 .082 .097 .101
Zonoid depth .012 .023 .031 .040 .049 .072 .073 .080 .101 .097
Onion depth .008 .012 .029 .026 .042 .051 .062 .074 .093 .089
Halfspace depth .011 .015 .030 .033 .039 .064 .064 .075 .100 .093
Proposed .011 .023 .026 .034 .044 .048 .063 .090 .100 .104

Table B.8: The simulated powers for the haplotype association data.

The simulated powers

α .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

Spaq .291 .353 .380 .428 .482 .476 .500 .517 .522 .559

Mpaqp1.14q .359 .439 .462 .508 .561 .544 .572 .593 .591 .634

Spuq .318 .380 .403 .434 .496 .506 .520 .544 .552 .573

Mpuqp1.14q .399 .463 .485 .541 .572 .567 .587 .618 .619 .657

Simplicial depth .346 .444 .491 .502 .587 .613 .642 .663 .677 .701
Zonoid depth .347 .459 .492 .527 .593 .612 .652 .658 .676 .698
Onion depth .297 .380 .455 .475 .575 .585 .639 .641 .661 .683
Halfspace depth .334 .397 .464 .513 .589 .611 .643 .661 .674 .703
Proposed .463 .540 .591 .637 .687 .695 .745 .759 .766 .787
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Table B.9: The simulated powers for comparing phone-call patterns on weekdays and on
weekends at α “ 0.05.

The simulated powers

Proportion .1 .2 .3 .4 .5 .6 .7 .8 .9

Spaq .11 .16 .17 .36 .30 .35 .43 .36 .57

Mpaqp1.14q .12 .19 .21 .38 .38 .40 .53 .56 .80

Spuq .10 .17 .16 .32 .31 .33 .37 .37 .58

Mpuqp1.14q .11 .18 .20 .37 .39 .42 .49 .57 .81

Simplicial depth .06 .15 .34 .43 .70 .86 .92 1.00 1.00
Zonoid depth .07 .15 .31 .48 .69 .88 .96 1.00 1.00
Onion depth .06 .13 .30 .46 .66 .85 .94 1.00 1.00
Halfspace depth .06 .12 .32 .49 .70 .87 .97 1.00 1.00
Proposed .14 .19 .38 .57 .76 .91 .98 1.00 1.00
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