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Abstract 

We developed a version of the Joanisse and Seidenberg 
(1999) past-tense model to address two issues: whether the 
model’s performance depended on the use of localist semantic 
representations, and the challenges to this account presented 
by a patient who was impaired in generating irregular past 
tenses despite apparently intact semantics. The model also 
demonstrates the frequency by regularity interaction from 
Patterson et al (2001), and shows that a single-mechanism 
connectionist model can perform realistically on the past-
tense task. 
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A Distributed Model of the English Past 

Tense Formation 
 

For more than twenty years, the process of past-tense 

formation in English has served as a battleground between 

competing theories of language processing (see Seidenberg 

and Plaut, in press, for a review).  In English, the past tense 

of a verb is usually formed by adding the inflectional 

morpheme spelled –ed to the end of the verb.  However, for 

about 180 irregular verbs, the past tense is irregular, formed 

not by adding –ed but via a vowel change or some other 

mechanism (e.g. run-ran, keep-kept, go-went).  The 

differences between regulars and irregulars are standardly 

taken as indicating that they involve different types of 

knowledge and processing mechanisms.  Regular forms are 

generated by applying a rule, whereas the irregulars are 

stored in memory.  Much evidence has been marshalled in 

support of this “dual-mechanism” account (e.g. Pinker and 

Ullman, 2002). 

An alternative viewpoint holds that past tenses are 

generated by a common lexical system encoding relations 

among phonology, semantics, and (in literate individuals) 

orthography.  The system (which underlies many lexical 

phenomena, not just verb morphology) picks up on 

statistical regularities in the mappings between codes. A 

central claim is that generating irregular forms tends to 

require greater input from semantics compared to regulars.  

This theory and its application to patients with semantic 

impairments is summarized elsewhere (McClelland & 

Patterson, 2002; Seidenberg and Plaut, in press).  The 

approach holds that the distinction between regular forms 

and irregular forms is invalid because of their overlapping 

structure, and that the past tense rule is an idealization that 

abstracts away from details of the actual processing 

mechanism. 

One of the more successful recent models of the past 

tense formation was developed by Joanisse and Seidenberg 

(1999) .  Earlier models of the past tense (e.g. Rumelhart 

and McClelland, 1986) had focused on tasks involving 

mappings between the phonological forms of the present 

and past tense. By design such models could not address 

any semantic phenomena, and thus they could not 

distinguish between homophones with different past tenses 

such as ring-ringed and ring-rang.  The Joanisse and 

Seidenberg (1999) model (hereinafter J&S) was an advance 

in two respects: it incorporated both semantics and 

phonology, and it acquired this knowledge in the course of 

performing several language functions or tasks.  These tasks 

included hearing or comprehending (mapping input 

phonemes to semantics), speaking (mapping semantics to 

output phonemes), repeating (mapping input phonemes 

directly to output phonemes) and transforming (past tense 

formation – mapping input phonemes of a verb to the output 

phonemes of the past tense of the verb).   

The J&S model was trained on the present and past tenses 

of 600 monosyllabic verbs, of which 64 had irregular past 

tenses. The repeating tasks included an additional 594 

English verbs to increase the model’s exposure to English 

phonology.  After training, the model performed quite well, 

exhibiting correct performances after training of 99.8%, 

99.5%, 98.2% and 99.3% on speaking, hearing, repeating, 

and transforming respectively. The model was tested on the 

20 nonce verbs from Ullman et al. (1997) in order to 

determine its capacity to generalize to verbs which had not 

been included in the training set.  Test performance was 

90%, and even the errors were of a type that people 

occasionally produce. 

The trained model was then lesioned in two ways, 

phonologically and semantically.  Phonological damage 

affected performance on all three types of verbs, but had the 

largest effect on nonwords.  Semantic damage also affected 

all three types of verbs, but the effect was largest for 

irregular verbs.  The conclusion from the model’s 

performance was that the “double dissociation” observed 

across patient groups can be replicated by different types of 

lesions in a system that does not include separate 'rule' and 

'exception' mechanisms (Joanisse and Seidenberg, 1999).  

Further, the model’s errors were also broadly consistent 

with the patient data. 
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Later work highlighted some of the limitations of this 

model, chiefly that it used an arbitrary localist 

representation for semantics that did not include any real 

word meaning or allow for different degrees of similarity 

among semantic representations of words.  While 

neuropsychological data on anterior lesions was interpreted 

by Pinker and Ullman (2003) as a challenge to the J&S 

model, work by Bird et al (2003) refuted Ullman’s own 

findings (Ullman et al., 1997) by identifying a confound of 

phonological complexity in the experimental materials with 

their word representations.   

More challenging evidence was introduced by Miozzo 

(2003).  Miozzo presented evidence of a neuropsychological 

patient (AW) with acquired brain damage who encountered 

problems accessing phonology in speech production, but 

seemed to have intact ability to access word meaning.  In 

the context of J&S, this would mean damage to the 

phonological units, but intact semantic units.  AW was 

better able to produce the past tenses of regular verbs than 

irregular verbs, the opposite of what one would expect if 

J&S were correct.  That is, damage to semantics (posterior 

lesions) is thought to impair irregular performance more 

than regular, with damage to phonology (anterior lesions) 

affecting regulars more. 

The appearance of a selective deficit for irregulars when 

lexical access is impaired was argued to be more in line 

with a dual-mechanism account, since it specifies that 

irregular forms are specified in the lexicon while regulars 

are processed via a “rule” mechanism.  Specifically, Miozzo 

claimed that J&S could not account for such a deficit, a 

problem for the single-mechanism viewpoint. 

The critical issue about the Miozzo patient is not whether 

semantics is “intact” but rather his ability to use this 

information in performing different tasks.  The claim that 

semantics was well-preserved derived from performance on 

one type of task, word-picture matching.  This task speaks 

to properties of the mapping from phonology to semantics 

which was well-enough preserved to allow performance at a 

high level.  However, the patient was also severely anomic, 

unable to generate names of objects.  This task speaks to 

properties of the mapping from semantics to phonology, 

which was highly impaired.  The past tense generation task 

used to assess verb knowledge involves speech production; 

given the present tense as input, produce the past tense. In 

the J&S model, semantics is relevant to generating past 

tenses for irregular verbs.  The patient’s poor performance 

on irregulars follows from the inability to use semantics to 

generate phonology. 

In short, performance on irregular past tenses can be 

impaired by damage to semantic representations (as in 

semantic dementia)  or in the use of semantic information to 

compute phonology (as in anomia). The computation from 

sound to meaning is not immediately relevant to the past 

tense generation task and neither is AW’s ability to perform 

tasks involving this computation.  The computation from 

meaning to sound is highly relevant to past tense generation, 

especially for irregular words, and so is AW’s severe 

anomia. 

Although this account is consistent with the J&S model 

and later models emphasizing the roles of semantics and 

phonology in performing various tasks (e.g. Patterson et al, 

2009), it is important to determine if the model will perform 

in the expected ways when implemented, while continuing 

to account for other phenomena. 

Another interesting finding related to the past tense, is the 

frequency by regularity interaction reported by Patterson, 

Lambon-Ralph, Hodges, and McClelland (2001).  They 

found that, in patients with semantic lesions, more damage 

occurred to irregulars than regulars, and especially to lower-

frequency irregulars.  Furthermore, McClelland and 

Patterson (2003) argue that the frequency effect for 

exceptions cannot be accounted for by the dual route model, 

only by the interacting operation of a connectionist model.  

Hence, we believe this effect is central to a complete model 

of the past tense. The J&S model did not demonstrate such 

an interaction, but we believe that a similar model which 

incorporates richer semantics, thus reflecting human 

processing more accurately, should also demonstrate 

something like this frequency by regularity effect. 

Thus, in the present work, we revise and extend the J&S 

model to incorporate richer, more meaningful distributed 

semantic representations, and test it to two purposes.  One, 

this revised model should be able to demonstrate the 

alternative account of AW’s deficit, and so we will simulate 

both types of damage to our revised PT model and compare 

the results.  We expect to find no difference, and thus 

demonstrate that Miozzo’s patient is no challenge to the 

connectionist account of the past tense formation.  

Second, the model should exhibit the frequency by 

regularity interaction when subject to a posterior (semantic) 

lesion, a la Patterson et al. (2001).  This sort of effect in 

models is often dependent upon the use of a very realistic 

training set that closely mimics the language that a human is 

exposed to, and hence we will pay close attention to 

incorporating the particular stimulus sets (in this case verbs, 

matched for various dimensions such as frequency, 

phonological complexity, etc.) that have recently been used 

in human experiments (e.g. Ullman et al, 1997, Patterson et 

al, 2001, Bird et al. 2003). 

 

Method 

We attempted to extend the J&S connectionist model of 

past tense processing to the use of distributed 

representations in order to account for the findings of 

Miozzo (2003) and Bird et al (2003).  The revised model is 

shown in Figure 1.  

Words were represented in various codes depending on 

the subsystem involved in the past-tense generation task: 

speech input (a phonological representation of the sounds of 

words), speech output (a similar code used in generating 
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speech), and distributed semantic representations (the 

meanings of words). In humans, speech input consists of 

continuous acoustic patterns that are recognized and parsed 

into sequences of discrete phonemes by a process of 

categorical perception.  Speech output, on the other hand, 

consists of sequences of articulatory gestures subserved by 

the motor cortex that result in the physical production of 

sound. Some have suggested that, with experience, humans 

incorporate both auditory and motor cortex representations 

of sound into a single phonemic representation. As a 

simplifying assumption, we have followed this evidence and 

used exactly the same distributed phonological code for 

both input and output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Model Architecture. 

 

These representations employed a CCVVCCC-VC 

template (C=Consonant, V=Vowel), with each phoneme 

represented via 18 binary phonological features.  Each 

words vowel was aligned with the first V [VV was used to 

represent dipthongs such as the /oy/ in (BOY)].  Initial 

consonants were aligned with the C slots from right to left, 

and following consonants were aligned with C slots from 

left to right.  The final VC was used represent the /Id/ 

syllable in words such as TASTED.  Any units in empty 

slots were set to 0.0 activation. 

As pointed out in J&S, the use of a distributed code for 

the phonological representations allowed the model to 

represent degrees of similarity between words. A knowledge 

of the similarities among words is essential to the model’s 

ability to generalize.  Units on the speech output layer were 

connected to and from a series of “cleanup” units (Hinton & 

Shallice, 1991; Plaut & Shallice, 1993).  These units 

provided a way of representing nonlinearly separable (and 

hence more complex) phonological dependencies and made 

the processing of phonological output a dynamic process in 

which the model settles into a final pattern over a series of 

time steps (McClelland and Rumelhart, 1981; Plaut, 

McClelland, Seidenberg, and Patterson, 1996; Harm & 

Seidenberg, 1999). 

In the semantic layer, each verb was represented as a 

distributed pattern of activation over a set of 254 semantic 

“features”.  These semantic representations were provided 

by David Plaut (Plaut, 2004, Personal Communication) who 

created them via an LSA-like process (e.g. Landauer, 1997).  

Of course, the semantic bits used in this sort of distributed 

semantic representation are not meaningful in themselves, 

and hence are not really “features” in the sense that, for 

example, the feature sets of Howell, Jankowicz, and Becker 

(2005) are.  The similarity of one verb to another is only 

found in the overall pattern of overlap of the 254 bits, 

including their covariance.  However, at present such 

meaningful feature sets for words have limited vocabularies, 

such as 450 words or so, and hence would not be capable of 

representing the 1300+ verbs used in the present model.  

One additional node (the 255
th
) was used in the semantic 

representations to indicate present or past tense.  The 

semantic layer was also connected to a cleanup layer of 100 

units.  This size is dramatically increased from the J&S 

model, due to the increased complexity of the semantic 

relationships in the Plaut semantic representations 

One major advantage of the J&S model was the way it 

incorporated a variety of language tasks into the learning of 

the past tense.  That is, people acquire their knowledge of 

language by using it for different purposes.  What is learned 

from one task, such as speaking, may affect the ability to 

perform other tasks, such as hearing (especially if the 

phonemic representations of the two overlap, as discussed 

above).  We approximated this aspect of human learning by 

interleaving training on three tasks.  Speaking involved 

taking the semantic representation of a present or past tense 

verb as input and generating its phonology.  This maps to a 

person with a semantic meaning in mind who then must 

articulate it.  Hearing involved taking the phonological code 

of a word as input and activating its semantic meaning.  

This is of course the opposite process to the above.  

Transforming, the task most specific to the issue at hand, 

involved taking the phonology of a verb and an indication of 

past-tense semantics (turning the past tense bit ON) as input 

and generating past tense phonology.  The model had to find 

a set of weights on its connections that allowed it to perform 

all of these tasks accurately. 

The J&S model actually incorporated a fourth task, 

repeating, which was added to give that model more 

experience with the structure of English phonology.  For the 

present model we eliminated this task, as it was less central 

than the other three, and tended to cause repetition errors on 

the past tense task.  Also, in the present model we were able 

to include all 1365 words in all three tasks, rather than 

having a large subset used only for the repeating task. 

The model was trained on the present and past tense of 

1365 monosyllabic English verbs, consisting of the 

vocabulary used in the J&S model plus the non-overlapping 

words drawn from Patterson, Lambon-Ralph, Hodges 

&McClelland (2001), and Bird et al. (2003).  These 
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additional words were included to make it possible to more 

closely map to the human data reported therein by using the 

same stimulus words.   

The verbs were presented to the model with a probability 

equal to their logarithmic frequency.  Task probabilities 

were set at: Speaking, 20%, Hearing, 40%, Transforming 

(present-past), 40%).  Other simulations indicated that the 

model’s performance was not highly sensitive to the exact 

proportion of trials of each type.  The network was trained 

using the backpropagation-through-time algorithm 

(Williams and Peng, 1990) and the MikeNet simulator 

created by Mike Harm.  Each trial began with the random 

selection of an item (verb) and a task.  The input appropriate 

for a given task was presented, and activation was 

propagated throughout the network for seven time steps.  

Weights were then adjusted based on the discrepancy 

between the observed and the expected patterns.  Initial 

(pre-training) weights were randomized to small values 

between -0.01 and 0.01.  The learning rate was set to 0.001, 

a smaller value than used in J&S which seemed to allow for 

smoother settling in this more complex model.  A logistic 

activation function was used, and error was calculated using 

the cross-entropy measure (Hinton, 1989). 

 

Results 

Training was halted after 1.7 million training trials, at the 

point where overtraining seemed to be becoming an issue.  

At this point the accuracy of the trained network was 

assessed on all three tasks (Speaking, Hearing, and 

Transforming), over all of the words in the training set.  For 

the Speech Input and Speech Output layers, words were 

scored phoneme by phoneme, using a Euclidian Distance 

metric to select the phoneme closest to the network’s output.  

If the closest phoneme differed from the target phoneme, it 

was scored as incorrect.  If any of a word’s several 

phonemes were incorrect, the entire word was scored as 

incorrect.  Semantically, the word closest to the network’s 

output was selected via the same Euclidian Distance metric.  

If this selected word differed from the target word, it was 

scored as incorrect.  Accuracy on all tasks on the training set 

was quite good: Speaking, 1288 correct out of 1365, or 

94.4%; Hearing, 1289 correct of out 1365, or 94.4%; and 

Transforming, 658 correct out of 685, or 96.1%.  Note that 

there are fewer trials (685) for the Transforming task, since 

only present tense verbs can be transformed into the past 

tense.  However, each trial uses a present tense verb as 

phonological input, and the past tense as phonological 

output, so all 1365 words are still being used in all tasks. 

The ability of the model to generalize and produce the 

past tense for words on which it had not been trained was 

assessed (as in J&S) using the 20 nonce words from Ullman 

et al (1997).  As these are meaningless nonwords without 

semantics, the model was given only the phonological code 

of the nonce verb as input, and the past-tense semantics bit 

as input (indicating the model should perform the 

transformation task).  Using the same scoring criteria as 

above, the network generated acceptably ‘correct’  past 

tenses on 17 of the 20 nonce verbs, or 85% correct.  

Accuracy on a variety of other test sets was also 

calculated.  First, two sets of test words (Regulars and 

Irregulars) that were NOT included in the training set were 

presented to the model.  These verbs differ from the Ullman 

nonce verbs above in that they have actual semantic 

representations attached, but the model simply hasn’t been 

trained on producing their past tense, only on the two other 

tasks.  Thus, unlike with the nonce verbs, it is possible that 

semantic similarity between these novel verbs and other, 

known, verbs could influence the formation of the past tense 

form, in addition to phonological similarity as for the nonce 

verbs. 

Performance on the Regular test was perfect (20/20 

correct; 100%), demonstrating that the model has acquired 

the add –ed “rule” and is able to generalize well to novel 

regular verbs. Performance on the Irregular test set was 

good (13/16 correct; 81.2%), but understandably not as 

good as for the Regulars.   

 

Irregular Deficits with Intact Semantics 

To demonstrate that the kind of deficit that Miozzo’s patient 

exhibited can be produced by damage to either semantic 

representations themselves, or to the connections from 

semantics to phonology, we performed two different lesions 

to the model and tested it under both conditions. 

First, the semantic units themselves were lesioned 

(Semantic Layer lesions or SL) by adding a varying amount 

of noise to degrade their operation.  This proportion was 

gradually increased to illustrate the progression of damage 

under lesions of varying severity.  As expected, irregulars 

were hit hardest by this type of lesion (see Figure 2), which 

would in humans have corresponded to damage to the 

semantic association area in temporal cortex. 

 

Figure 2:  Performance after Semantic Lesion (SL) 
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Secondly, we tested the model after lesioning only the 

connections from the semantic layer to the hidden layer (SH 

lesions), and leaving the semantic layer’s units intact.  This 

would correspond to a patient with intact semantics (as in 

Miozzo’s patient) who nonetheless had difficulty with 

retrieving the form of a word to go with a meaning (lexical  

retrieval deficit).  Again, regular verbs and nonwords were 

largely intact even at high levels of damage, but irregular 

verbs showed a severe impairment that increased with the 

level of damage (See Figure 3).   

 

 

Figure 3: Performance after Semantic-Hidden Lesion 

 

Frequency by Regularity Interaction 

We simulated a semantic lesion by randomly severing 

connections from the semantic layer to the hidden layer with 

a probability of 0.2.  After lesioning, the model was tested 

again, this time with a set of known words (words that had 

been included in the training set) that were derived from the 

test set used in Patterson et al. (2001).  These verbs are 

divided into five lists, as discussed previously, and matched 

as closely as possible on phonological characteristics: low 

frequency regulars, high frequency regulars, low frequency 

irregulars; high frequency irregulars, and very high 

frequency irregulars.  On this test set, the differential effect 

of the lesion can be clearly seen (Figure 4).  

For regular verbs, there is no significant difference 

between low frequency and high frequency items.  

However, for irregular verbs, the low frequency items suffer 

the most after lesioning, with the high frequency items 

being more spared and the very high frequency items being 

even less affected.  The difference between the irregular low 

frequency items and the irregular high frequency items is 

significant (t(18), p = 0.03), as is the difference between 

irregular high frequency items and irregular very high 

frequency items (t(18), p < 0.001).  This matches the 

frequency by regularity interaction in the human data 

reported in Patterson et al., and suggests our model is 

capturing something even closer to the human experience 

than did the J&S model, thanks to its distributed semantics. 

 

 

Figure 4: Performance after Semantic lesion, by regularity 

and frequency 

 

Discussion 

The J&S model (Joanisse and Seidenberg, 1999) of past 

tense performance was a significant advance, showing that a 

connectionist model could exhibit accurate, human-like 

performance on the past tense task while accounting for a 

variety of neuropsychological evidence.  Furthermore, it did 

this at a subsymbolic level, simply by learning the statistical 

regularities between input phonology, output phonology,  

and semantics.  However, its artificial localist representation 

of semantics prevented the J&S model from making use of 

semantic similarity in the past tense task, something that 

humans certainly could.  Thus in the present model we used 

richer, distributed semantics. It is important to note that 

Woollams, Joanisse and Patterson (2009) have, since this 

present work was conducted, also developed an extension of 

the original J&S model that incorporates distributed 

semantics, replicating and extending earlier findings.  

 First, thanks to the richer, distributed semantics 

incorporated in this model, semantic similarity could now 

exert its effects, if any, on the past tense task.  Second, the 

possession of richer semantics allowed the model to account 

for the patient data that was argued by Miozzo (2003) and 

Pinker and Ullman (2003) to be a challenge to the 

connectionist account of the past tense.  For these tasks, we 

demonstrated that a lesion to the semantic representations 

themselves (posterior lesion), or to the semantic-to-lexical 

connections (perhaps some anterior lesions), will both result 

in a deficit for irregulars in the past tense task.  Perhaps 

what Miozzo has demonstrated, however, is the importance 

of additional patient testing to determine where in the 

process the lesion has occurred.  For example, if semantic 
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access is intact (as in AW), but word production is not, then 

the lesion is likely along the neural pathways from 

semantics to phonology, rather than in semantic cortex. 

Patients like AW do require us to emphasize what we 

believe to be the central tenet of the connectionist approach 

to the past tense, at least insofar as it contrasts with the dual-

route approach.  That is, the connectionist approach 

emphasizes that there is a single mechanism or process that 

the brain uses to compute the past tense.  That this process 

might be distributed and involve multiple physical “routes” 

should come as no surprise to those familiar with neural 

networks. Several areas of the brain (e.g. auditory 

phonological representations, articulatory phonological 

representations, semantic representations.) might be 

involved in the neural network that subserves this task, and 

they might be located in separate areas of cortex (e.g. 

auditory cortex, motor cortex, semantic association cortex, 

etc.) where it is possible that they will be damaged 

separately, and that component’s contribution impaired.  

However, this is not damage or impairment of a distinct 

route, but rather of a part of the mechanism, and it will 

affect the processing of all words, regular, irregular, novel 

or nonword.   

We believe that the difference is between a focus on 

delineated, non-interacting, modular or symbolic processes 

on the one hand (dual route), and a distributed, multiply-

interacting, subsymbolic and statistical process on the other 

hand (connectionist).  This is not a division that is specific 

to the past tense debate, but it is perhaps where the most 

obvious battleground has been.  The present model provides 

additional evidence that the connectionist approach can 

continue to account for data that is argued by some to 

require the other approach.  
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