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ABSTRACT OF THE DISSERTATION 

Optimal Reservoir Operation Under Inflow Uncertainty 

by 

Jinshu Li 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2021 

Professor William W. Yeh, Chair  

Stochastic programming is a mathematical model used to resolve the uncertainty of random 

variables in optimization problems. In reservoir management and operation, the reservoir inflow 

is typically regarded as a random variable as it brings most of the operation uncertainty. 

Although stochastic programming has been successfully applied to many reservoir managements 

cases, the pursuit of the improvement on its accuracy, efficiency, and applicability never ceases. 

This dissertation consists of five chapters. The first introductory presents the classical stochastic 

model and describes the challenges. Then, the second chapter develops a statistical model that 

focuses on improving the distribution fitting accuracy for the monthly average inflow as the 

random variable. The third chapter discusses a method aiming at streamflow scenario tree 

reduction, which is essential for alleviating the computational burden of a two-stage stochastic 

programming with recourse model. The fourth chapter expands the applicability of stochastic 

programming model,  by introducing a multi-objective, multi-stage stochastic programming with 
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recourse model. The final chapter offers conclusions, discussions, and potential future 

research opportunities. 
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Chapter 1 

INTRODUCTION 

Reservoir operation and management, typically referring to scheduling reservoir releases, is one 

of the most active areas of research in the field of water resources. A proper reservoir operation 

is always associated with the benefit of flood control, water supply, and hydropower generations. 

The traditional methods of reservoir operation are deterministic-based. These models assume that 

all the input factors inherited in the reservoir operation model are fixed and without uncertainty, 

such as reservoir inflow, reservoir capacity curve errors, and river flood routing errors. These 

deterministic methods can be easily implemented. However, those methods based on the 

deterministic input factors may produce sub-optimal operation strategy due to the accuracy of the 

predictions, which may incur a huge benefit loss. Hence, it is important to account the 

input uncertainty into the reservoir operation models.  

Among all the uncertainty factors, the forecasted reservoir inflow (i.e., streamflow) is 

assumed as the principal uncertainty factor in reservoir operation (Zhu et al., 2017). This is 

because that the reservoir inflow is the primary input for reservoir operation models. Due to the 

limitation of the hydrology forecasting, the deterministic forecasted inflow is not always 

accurate, sometimes even far from the actual values (Mao et al., 2000; Tucci et al., 2003). 

Because of this disadvantage, stochastic programming models have been introduced and widely 

developed in reservoir operation. In such model, the future inflows are assumed 

with uncertainties, which makes the optimal operation of reservoirs as a risk-based decision-

making problem (Xu et al., 2015). 
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The chance-constrained programming (CCP) model is a widely applied 

stochastic programming model in reservoir operation (Revelle et al., 1969; Houck, 1979; 

Yeh, 1985; Sreenivasan and Vedula, 1996), which is often used along with the linear

decision rule. For a chance-constrained model, the constraint is in a probabilistic form, as 

shown in 1.1.  
minimize ( )

. . [ ( , ) 0]

x
f x

s t P g x w  
(1.1) 

where f (x) is a deterministic function; x is the decision variable (vector); g(x,w) is a function with 

random variable w; and β is the reliability level. In a long-term reservoir operation model, f (x) 

can be the energy output function, flood risk, assurance rate, etc. The decision variable x is 

usually the water release or the decision rule parameter. The monthly average reservoir inflow is 

often regarded as the random variable.

The concept of CCP model is traditional and not complicated. However, the quality of 

CCP model is highly subject to the accuracy of the random variable distribution. This is 

because that a well-estimated distribution indicates an accurate characterization of uncertainty of 

the CCP model, thus yields an optimal operation strategy by solving the model. As discussed, for 

a long-term reservoir operation model, the random variable in the CCP model is usually the 

monthly average streamflow of each month. Therefore, it is desired to develop a method to 

better estimate the distribution of the monthly average streamflow, so that the monthly release 

decision obtained from this model can be better optimized. 

A general approach to obtain the distribution of the monthly average streamflow is via 

frequency analysis.  Frequency analysis is a widely used statistical tool, which is implemented by
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fitting an assumed probability distribution to the observed data of a random variable. In this 

dissertation, a new method for better fitting a distribution to monthly average streamflow is 

proposed. It is assumed that the monthly average streamflow follows a three-

parameter log-normal distribution (LN3). A Bayesian hierarchical model (BHM) is then 

developed for estimating the statistical parameters in LN3. The three underlying statistical 

parameters in LN3 are shift, shape, and location. When estimating a parameter, such as the 

shape, of a given month the BHM utilizes historical observations not only from the month 

under consideration but also from all other months. This is different from traditional statistical 

parameter estimation methods that only use historical observations for the month under 

consideration. Using cross-validation with test data log-likelihood as the measure of 

performance, the results show that BHM outperforms traditional estimation methods. 

Also, the new method is especially suitable for fitting the streamflow distribution where 

historical observations are limited. This method is elaborated in Chapter 2. 

Another popular stochastic programming model in reservoir operation is the two-stage 

stochastic programming with recourse model. In this model, people make 

sequential decisions, between which some of the uncertain parameters become gradually 

known (Xu et al., 2015; Gutjahr and Pichler, 2016). At the immediate stage (i.e., the 1st 

stage), the uncertain parameter w is unknown but a first decision (i.e., here-and-

now decision) has to be made. Then after the realization of uncertain parameter w 

[i.e., the future stage or the 2nd stage, and w  = ( q , J , L , h ) ], a second decision (i.e., 

wait-and-see decision) is obtained by solving a deterministic optimization problem. 

maximize ( ) [ ( , )]

. . ; ,
x

f x g x w

s t x X w

+

∈ ∈Ω

E
(1.2) 
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the generic form of this model at the 1st stage is shown in 1.2, where x is the 1st stage decision 

variable; w is the uncertain parameter; X is the set of feasible solutions (i.e., solution space); Ω 

is the set of w (i.e., sample space); E[*] is the expectation operator, and f ( x ) is a general 

function without uncertain parameter. g(x,w) is the recourse function (also known as the 

second stage value function), which is the solution of the following second stage problem 1.3. 

For the purpose of demonstrating, it is assumed that the second stage optimization problem is a 

linear programming problem. 

maximize ( )

. . ( ) ( ) ( ),

T

y
q w y

s t J w x L w y h w+ ≤
 (1.3) 

where y is the 2nd stage decision variable. The terms q, J, L, and h are the realization data of the 

uncertain parameter w.

The uncertain parameter w can be represented in many different ways, and the 

discretized scenario tree method is one of the popular ways in the literatures (Xu et al., 2015; 

Séguin et al., 2017; Li et al., 2019). In this method, w is represented as the discretized inflow 

scenario and Ω is the inflow scenario tree. An inflow scenario tree is usually generated from the 

historical inflow data by employing different methods, such as clustering, moment matching, and 

sampling. Since the generated scenario tree is used as the input to a stochastic programming with 

recourse model, the size of the tree directly impacts the dimensionality of the optimization model 

(Casey and Sen, 2005). Xu et al. (2015) showed that the CPU time of running a stochastic 

programming with recourse model drops more than 70%, if the scenario tree size is halved. 

Therefore, to improve the efficiency of the stochastic model, the number of scenarios must be 

reduced properly.  
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Compared with scenario tree generation, scenario tree reduction techniques have received 

less attention in the literature. One way for scenario tree reduction is to re-generate a scenario 

tree with a smaller tree size (Xu et al., 2015). However, the nodal values of the original full tree 

are altered under this method, which is not compatible with the definition of  scenario tree 

reduction. Dupacová et al. (2003) proposed a method for selecting a scenario subset from the 

full tree, which is achieved by minimizing probability metric between the reduced tree's 

distribution and the full tree's distribution. Nevertheless, the pursuit of matching higher-order 

moments will be at the expense of matching the more important first-order and 

second-order moments in reservoir operation. Additionally, it fails to accommodate serial and 

spatial correlations that are critical in the operation of a cascade reservoir system. To 

improve these drawbacks, this dissertation proposes a new scenario tree reduction method 

in Chapter 3, based on a variant of the Monte Carlo sampling method and regularized 

optimization. The proposed method does not alter the nodal values of the full scenario tree, 

and it focuses on matching the first two moments and co-moments that are critical in 

reservoir operation.  

The two-stage stochastic programming with recourse model can handle the inflow 

uncertainty in reservoir operation. However, it is not designed to solve the multi-

objective problem, which limits its applicability. In fact, Gutjahr and Pichler 

(2016) pointed out in their survey paper that although stochastic optimization and 

multi-objective optimization are well established in the field of operations research, 

their interaction is less developed. In reservoir operation, decision makers often need to 

satisfy different reservoir operation requirements (e.g., hydropower generation, water supply 

and flood control), thus a multi-objective optimization problem is posed (Yeh and Becker, 1982).
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Therefore, it is desired to integrate the multi-objective optimization into the two-stage 

stochastic programming with recourse model. 

A traditional and widely used way to do that is via scalarization method. That is, assign a 

weight (i.e., preference coefficient) to each objective and optimize the weighted sum of all 

the objectives. However, in the scalarization method, the weight for each objective is typically 

not easy to determine and is often based on expert experience. An even more serious 

disadvantage of the scalarization method is that the preference coefficient for each objective is 

assumed to be fixed over the entire domain, which is usually not the case in the real world.  

For instance, a high reservoir water level is usually beneficial to power 

generation but unfavorable for flood control. Suppose two conflicting objectives are 

maximizing hydropower output (economic objective, f1) and minimizing the 

reservoir water level (safety objective, f2). If the reservoir water level is low, then it is 

acceptable to increase the water level by 1m, in exchange of 100 kWh power output. In 

this case, the preference coefficient of objective f2 over f1 is 100 /1 =  100 . On the contrary, 

if the reservoir water level is already high, then a high exchange rate is required (e.g., a 

1m water level increase in exchange for 10000 kWh power output). The preference coefficient 

of objective f2 over f1 is now 10000 /1 =  10000. Therefore, it can be seen that the 

weight of each objective should changed with respect to the objective values. 

In economics, this phenomenon is known as the law of diminishing marginal rate of 

substitution (Hicks, 1939; Besada and Vázquez, 1999; Dittmer, 2005, White, 2015), 

which states that consumers are willing to give out less and less quantity of 
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one good in order to get one more additional unit of another good. This example will be re-

visited in the Chapter 4.

To improve these drawbacks and provide optimal reservoir operation strategies under 

both inflow uncertainty and conflicting objectives, this dissertation proposes a multi-objective, 

multi-stage stochastic programming with recourse model for reservoir management and 

operation in Chapter 4. A single best compromise solution on the Pareto front is selected for the 

immediate stage and the model moves forward one stage and is re-optimized over a moving 

planning horizon of fixed duration. The selection is achieved by a proposed linear spline utility 

function allied with regression, which satisfies the law of diminishing marginal rate of 

substitution. The proposed method is demonstrated on a case study of the Three Gorges 

Reservoir (TGR) in China. 

The following chapters are reprints of the published papers, which elaborate on 

the methods discussed in the introduction. Specifically, Chapter 2 has been published in 

its current form in Journal of Hydrology: Li, J., Zhou, Q. and Yeh, W.W.G., 2020. A 

Bayesian hierarchical model for estimating the statistical parameters in a three-

parameter log-normal distribution for monthly average streamflows. Journal of Hydrology, 

591, p.125265. Chapter 3 has been published in its current form in Journal of Hydrology: Li, 

J., Zhu, F., Xu, B. and Yeh, W.W.G., 2019. Streamflow scenario tree reduction based on 

conditional Monte Carlo sampling and regularized optimization. Journal of Hydrology, 577, 

p.123943. Chapter 4 is submitted and in revision with Water Resources Research in its current 

form. 
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A B S T R A C T

We develop a Bayesian hierarchical model (BHM) for estimating the statistical parameters for monthly average

streamflows. We assume monthly average streamflow can be characterized by a three-parameter log-normal

distribution (LN3). The three underlying statistical parameters are shift, shape, and location. When estimating a

parameter, such as the shape, of a given month the BHM utilizes historical observations not only from the month

under consideration but also from all other months. This is different from traditional statistical parameter es-

timation methods that only use historical observations for the month under consideration. We apply the pro-

posed BHM for parameter estimation to eight watersheds in the United States, where historical unimpaired

streamflows have been collected. We also carry out parameter estimation using traditional methods, such as the

maximum likelihood estimation, the method of moments, and the L-moment method. Using cross-validation

with test data log-likelihood as the measure of performance, the results show that BHM outperforms traditional

estimation methods. In addition, we show that as available observation data decreases, the more the proposed

method improves relative to traditional methods. Since BHM utilizes information contained in the entire data

set, it is especially suited for parameter estimation where historical observations are limited. Furthermore, we

conduct a comparative analysis between BHM and an autoregressive model to demonstrate the advantage of

BHM.

1. Introduction

Frequency analysis is a useful statistical tool in hydrology. It is

implemented by fitting an assumed probability distribution to the ob-

served data of a random variable (Stedinger, 1980; Xiong et al., 2014).

Frequency analysis has been used to estimate extreme hydrologic

events, such as maximum streamflow, and it can be used for estimating

average streamflow as well. In flood frequency analysis, maximum

streamflow is considered a random variable, while frequency analysis

for average streamflow treats the annual or monthly average stream-

flow as a random variable. The assumed probability distributions for

the two different types of frequency analysis are generally not identical.

The generalized extreme value distribution (GEV) (i.e. the generalized

form of Weibull and Gumbel distributions) and the Log-Pearson Type 3

distribution (LP3) are standard choices for flood frequency analysis

(Bobee, 1975; Rao, 1980; Hosking et al., 1985a, 1985b; Smith, 1987;

obee and Ashkar, 1991; Rosbjerg and Madsen, 1995; Stedinger and Lu,

1995; Hosking and Wallis, 1996; Vogel and Wilson, 1996; Morrison and

Smith, 2002; and Griffis and Stedinger, 2007; Singh, 2013). Compared

with flood frequency analysis, the choice of distribution for average

streamflow is more flexible. Using the chi-square goodness-of-fit sta-

tistic, Markovic (1965) compared the fit of normal (N), log-normal

(LN2), three-parameter log-normal (LN3), Gamma (GAM), and Pearson

Type 3 (P3) distributions for the annual average streamflow. The results

suggest that GAM, P3, LN2, and LN3 are all capable of fitting the dis-

tributions. Vogel and Wilson (1996) further tested the above distribu-

tions of annual average streamflow in the U.S. using an L-moment

diagram. They concluded that annual average streamflows are well

approximated by P3, LN2, or LN3 distributions.

Unlike annual average streamflows, literature dealing with the

choice of distribution for monthly average streamflow is sparse, even

though monthly average streamflow may be used more frequently than

annual average streamflow for water resource management and re-

servoir operations (Yeh, 1985; Xu et al., 2015a; Xu et al., 2015b; Li

et al., 2019). Since the time scale becomes shorter, the volatility of

monthly average streamflow would be higher than annual average

streamflow; therefore, a three-parameter distribution would be suitable

for monthly average streamflow due to its greater flexibility. Thus, both

https://doi.org/10.1016/j.jhydrol.2020.125265

Received 8 May 2020; Received in revised form 28 June 2020; Accepted 29 June 2020

⁎ Corresponding author.

E-mail address: williamy@seas.ucla.edu (W.W.-G. Yeh).

Chapter 2 

8



P3 and LN3 would be good choices for monthly average streamflow.

Furthermore, Sangal and Biswas (1970) suggested that LN3 can be

applied successfully to the frequency analysis of both annual flows and

monthly flows, and they also reported that P3 and LP3 will not be re-

liable when data are limited. Yue and Hashino (2007) demonstrated the

ability of using LN3 to fit precipitation data. Bowers et al. (2012) also

showed that river flow data are typically better fitted by a log-normal

distribution than by a power law distribution. Therefore, in this study,

we select three-parameter log normal distribution (LN3) to approximate

monthly average streamflow. We also conduct the Shapiro-Wilk nor-

mality test to ensure this approximation is valid (Shapiro and Wilk,

1965; Royston 1995; Devineni et al., 2013).

Many traditional estimation methods have been applied to estimate

LN3 parameters. Hill (1963) showed that the global maximum like-

lihood estimation (MLE) may approach infinity, which is inadmissible.

Cohen (1951) proposed the local maximum likelihood estimation

(LMLE) by equating partial derivatives of the log-likelihood function to

zero. The studies of Harter and Moore (1966), Calitz (1973), Cohen and

Whitten (1980), and Griffiths (1980) showed the validity of LMLE and

suggested that it should be considered the prime method of estimating

LN3 parameters. Method of moments estimation (MME) is a simple

method that estimates parameters by equating the first, second, and

third sample moments with the population values. However, this

method may suffer from a large sampling error, introduced by the

second and third sample moments (Cohen, 1988; Johnson et al., 1994).

Moreover, the log-normal distribution may not be uniquely determined

by its moments (Heyde, 1963). Inspired by the fact that the first order

statistic in the sample exerts much greater influence on the shift para-

meter, Cohen and Whitten (1980) proposed the modified method of

moments estimation (MMME), which is similar to MME but substitutes

a function of the first order statistic. The L-moment method (L-MOM),

first introduced by Hosking (1990), is also a popular way to estimate

parameters. It matches the linear combinations of order statistics (i.e. L

moments) for parameter estimation, which is analogous to MME but

more robust to outliers. Combining the idea of MME and MLE, Griffiths

(1980) introduced the zero-skewness method (Zeros). This method first

computes the shift parameter by equating the sample skewness of log-

transformed data to zero, then estimates the other two parameters (i.e.

the shape and location parameters) by MLE. Thus, the estimation of the

shift parameter and the other two parameters in this method are se-

parate steps (this will be utilized and further discussed in the next

section). Other popular methods for estimating LN3 parameters include

the median method (Sangal and Biswas, 1970), method of least squares

(Snyder and Wallace, 1974), and method of entropy (Singh et al., 1986;

Singh and Singh, 1987; Singh et al., 1990).

All of the above-mentioned traditional methods can be applied to

estimate LN3 parameters of monthly average streamflow for a given

month; however, they only use historical observations for the month

under consideration. It is likely that the monthly average streamflow

for different months are related, because of the time correlations of

streamflow. In other words, some useful information contained in the

other months (i.e. “between-group” information) is not utilized, since

traditional methods only can use the “within-group” information.

Therefore, the goal of this paper is to develop a new LN3 estimation

method for monthly average streamflow that uses both “within-group”

and “between-group” information.

Bayesian hierarchical models (BHMs) are a class of statistical

models known for modeling “many statistical applications involving

multiple parameters that can be regarded as related or connected in

some way by the structure of the problem” (Gelman et al., 2013). This

makes BHM a perfect model to capture the “between-group” informa-

tion when estimating the parameters of monthly average streamflow for

different months. Commonly used statistical models often face the fol-

lowing difficulty: With few parameters, the models cannot fit data ac-

curately, whereas with a lot of parameters, the overfitting problem

arises. However, as pointed out by Gelman et al. (2013): “BHMs have

enough parameters to fit data well, while using a population distribu-

tion to structure some dependence into the parameters, thereby

avoiding overfitting.”

A typical full BHM model structure is shown in Fig. 1 (1). Consider a

set of J groups of experiments. The data layer contains the data xj (or
statistics extracted from the data) for each group j, while the para-
meters layer includes the parameters that we want to estimate for all

groups. These two layers usually are linked with an implied likelihood

function. As a Bayesian method, prior distributions are needed for

parameters (parameters are modeled as random variables in Bayesian

inference), which reflect the belief ones have about the parameters.

People often choose conjugate priors to facilitate derivations (i.e. the

posterior and the prior distributions are in the same family of dis-

tributions). Assume the prior distributions are p a b( | , )j
iid

j
2
~

2 , in which

there are two additional parameters a b( , ). These parameters are called
hyperparameters and they determine the shape of the priors. Thus, we

further use a hyperprior to specify the prior distributions of the hy-

perparameters. Note that the variables of the hyperpriors are

Fig. 1. The structure difference between a full BHM (1) and an empirical BHM (2).
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hyperparameters [e.g. a b( , )], while the variables of the priors are the
parameters that we want to estimate (e.g. j

2). Therefore, the difference
between prior and hyperprior is that they are prior distributions for

model parameters ( j
2) and hyperparameters a b( , ), respectively. In

terms of the model structure, they are at different layers in the hier-

archical models.

Additionally, BHM allows flexible inference approaches that come

with many versions and variations, even though all the variations share

the same principle of using several modeling layers. There are two main

versions of BHM: 1) full Bayesian inference under the hierarchical

model [i.e. full BHM, shown in Fig. 1 (1)], and 2) empirical Bayes

method [i.e. empirical BHM, shown in Fig. 1 (2)]. The full BHM is the

complete and rigorous model that contains data parameters, hy-

perparameters, and a hyperprior. With a hyperprior in a full BHM, we

can first derive the posterior distribution of hyperparameters as

p a b x( , | ), then use the MCMC method to draw from this posterior dis-

tribution, which accounts for the uncertainty introduced from the hy-

perparameters a b( , ).
In contrast, the empirical BHM does not specify a hyperprior.

Instead, it uses a point estimate for the hyperparameters a b( , ) [e.g.
Maximum Likelihood Estimator (MLE) in Eq. (1)]

=

=

a b p x a b( , ) argmax ( | , )
a b j

J

j
( , ) 1 (1)

In other words, in an empirical BHM, the hyperparameter will be

fixed after it is estimated, which simplifies the estimating process, al-

though it loses some flexibility and uncertainties. Also, in some cases, it

is not even feasible to estimate hyperparameters by MLE, since some

optimization problems just don’t have an optimum or are very difficult

to solve.

Many BHM application studies in hydrology have been published:

the BHM of multisite daily rainfall based on the binomial distribution

and Gaussian process (Lima and Lall, 2009); the spatio-temporal BHM

for extreme precipitation based on GEV and copula (Sang and Gelfand,

2009; Ghosh et al., 2011); the BHM in assessing streamflow response to

a climate change based on GEV and generalized Pareto distribution

(GPD) (Wei et al., 2012); the spatial BHM of extreme precipitation and

extreme runoff based on GEV and GPD (Cooley et al., 2007; El Adlouni

and Ouarda, 2009; Najafi and Moradkhani, 2013; Yan and Moradkhani,

2015; Steinschneider and Lall, 2015; Bracken et al., 2016); and the

BHM of annual peak snow water equivalent (SWE), annual peak flow,

and annual peak reservoir elevation based on GEV (Bracken et al.,

2018). Renard (2011) estimated annual maximum rainfall in a regional

context by constructing a BHM based on GEV and a regression model

known as the “link function” between data and parameters. Devineni

et al. (2013) directly applied a BHM on a linear regression model to

reconstruct the average summer streamflow at five gauges in the De-

laware River basin using eight regional tree-ring chronologies. Results

of all the aforementioned studies show the advantages of BHM over

traditional methods, since information contained in the data from dif-

ferent groups (mostly locations) are combined with the help of BHM.

However, most existing BHM studies in hydrology focus on extreme

hydrological variables (i.e. maximum streamflow and rainfall). This is

because frequency analysis of extreme events is more useful than

average streamflow for designing flood control structures. For this

purpose, the most well-known BHM framework is based on the gen-

eralized extreme value distribution (i.e. BHM-GEV), which is designed

to model extreme random variables. (Cooley et al., 2007; EL Adlouni

and Ouarda, 2009; Sang and Gelfand, 2009; Ghosh et al., 2011).

However, we believe that normal events (e.g. the monthly-average

streamflow) are also very important, especially for reservoir manage-

ment and operation (Yeh, 1985; Xu et al., 2015a; Xu et al., 2015b; Li

et al., 2019). For example, a better estimation of the monthly-average

streamflow certainly will lead to better reservoir operations for the

purpose of hydropower production or water supply.

Thus, in this paper we propose a new BHM [i.e. (BHM-LN3)] for

estimating the statistical parameters for monthly average streamflows

based on LN3 distribution. The proposed BHM also can be applied to

any random variables that follow a LN3 distribution. Also, when con-

structing a full BHM, there can be two types of hyperpriors used: the

noninformative hyperprior (i.e. “flat” hyperprior) and the informative

hyperprior. A flat hyperprior is widely used when prior knowledge is

not available for hyperparameters, and most of the BHM application

studies in hydrology adopt this type of hyperprior (e.g. EL Adlouni and

Ouarda (2009), Lima and Lall (2009), Renard (2011), Ghosh et al.

(2011), Yan and Moradkhani (2015)). In contrast, the use of an in-

formative hyperprior is much less frequent, and most informative hy-

perpriors found in the literature are empirical. For example, in building

a BHM for estimating extreme precipitation, Cooley et al. (2007) as-

sume a uniform [0.001, 0.02] distribution on a hyperparameter based

on empirical information. In their BHM modeling of extreme pre-

cipitation, Bracken et al. (2016) use a weakly informative normal hy-

perprior centered at zero with an empirical standard deviation. Thus, in

our paper, we also develop a new informative hyperprior that is ex-

pected to extract information from the data skewness. The proposed

BHM under this informative hyperprior is compared with the frequently

used flat hyperprior. We employ a 4-folds cross validation (CV) to

compare the proposed BHM with traditional LN3 estimation methods.

The test data log-likelihood is used as the criterion for model selection

and comparison. The results show that our proposed BHM produces

better parameter estimates than the selected traditional parameter es-

timation methods for all data sizes (long, medium, and short). The

fewer the observation data, the more the proposed method improves

over the traditional methods.

We outline this paper as follows: Section 2.1 introduces the data

structure and the division of two seasons. Section 2.2 describes the zero-

skewness method for estimating the shift parameter. Section 2.3 pro-

poses the new BHM for estimating the shape parameter (variance BHM)

and develops a new informative hyperprior. Section 2.4 discusses BHM

for estimating the location parameter (mean BHM). Section 2.5 sum-

marizes the estimated three-parameter log-normal distribution (LN3)

based on BHM. Section 2.6 introduces log-likelihood as the goodness of

fit metric, as well as illustrates the K-folds CV and the model selection

criteria. Section 3 applies the proposed method to eight watersheds in

the United States. Section 4 compares BHM with an autoregressive

model and investigates the potential loss of uncertainty. We then pro-

vide final remarks and conclusions in Section 5.

2. Methodology

2.1. Data preparation

2.1.1. Data structure and assumed data distribution

The data used to conduct this research is the historical monthly

average streamflow and it is structured as Fig. 2:

where N is the total number of historical data series; the monthly

average streamflow xj is modeled as a random variable that follows a

f distribution (e.g. f can be a normal distribution , log-normal dis-

tribution, etc.); xij is a sample value of random variable xj; and parj is a
set of parameters of the distribution of xj [i.e. the distribution of xj is
f x par( | )j j ].

In this study, we select a three-parameter log-normal distribution

(LN3) for f , because 1) LN3 is a flexible distribution with a general
skewness that can be used successfully for analyzing hydrologic data;

and 2) LN3 is highly related to a normal distribution. By subtracting the

shift parameter γ and then taking the log transformation, a LN3 variable

can be transformed into a normal variable, which is the desired prop-

erty for constructing BHM.

The probability density function (pdf) of the LN3 distribution is

J. Li, et al.

10



=f x par
x

x( | ) 1
( ) 2

exp (ln( ) )
2

,
2

2
(2)

where x is a random variable that follows the LN3 distribution [i.e.

f x( )]; par is a set of parameters [i.e. =par ( , , )2 ]; is the shift

parameter, satisfying the constraint of < <x ; 2 is the shape

parameter, with > 0; and is the location parameter. The goal is to

estimate the distribution f x par( | )j j for the monthly average streamflow

random variable xj for each month j =j( 1, 2, ..., 12).

2.1.2. Division of data into a dry season and wet season

The advantage of BHM is that it can make use of the between

group’s information. However, if information in the two groups are

intrinsically “far away” from each other, then Bayesian analysis may

not be able to improve the results. For example, the mean value of

streamflow of July may be highly correlated with the mean value of

streamflow of August, yet it will be largely uncorrelated with the mean

value of streamflow of January. In many regions, streamflow in July

may be much lower than that of January. Therefore, to maximize the

advantage of BHM, we divide the year into two seasons: dry season and

wet season. We will construct a hierarchical model for each of the two

seasons. In our case study, we consider June to November as the dry

season and December to May as the wet season. Note that the way to

divide the data is not fixed, and this is not even required.

2.2. Zero-skewness method for estimating the shift parameter

The zero-skewness method (Griffiths, 1980; Royston, 1992) is a

traditional method for estimating LN3 parameters. It is a combination

of moment method estimation (MME) and maximum likelihood esti-

mation (MLE). Note that “zero-skewness” refers to y (i.e. the trans-
formed data) after we remove the skewness in x (i.e. the original

streamflow data). And the only assumption made is that the original

data x follows LN3. In this study, we adopt this zero-skewness method
to estimate shift parameter as follows:

1) Since the original streamflow data (i.e. x) is assumed to follow LN3

distribution, we first carry out a log-transformation on (x ). Note

here the shift parameter is unknown and will be estimated. And

the log-transformed result is y [i.e. =y xlog( )]. Then, the
transformed data y should follow a normal distribution.

2) Since the skewness for normal distribution (i.e.y) is zero, then

=Skewness y( ) 0. (3)

Using the estimator of the population skewness, Eq. (3) can be fu-

ture expressed as

=
=

=

y y

y y

( ¯)

( ¯)
0,N i

N
i

N i
N

i

1
1

3

1
1

2 3/2
(4)

where =y xlog( )i i and ȳ is the mean value of y.When estimating a
normal distribution, the skewness estimator used in Eq. (4) is unbiased

and consistent (Kendall and Stuart, 1969; Cramer, 1997; Joanes and

Gill, 1998; Doane and Seward, 2011).

3) Since Eq. (4) has only one unknown (i.e. ), solving Eq. (4) (Kowarik

0000; Millard, 2013), yields the estimate.

The reason we estimate by the zero-skewness method is because

the estimation of is independent of the estimation of and 2 in this

method. This independence provides an opportunity to improve the

estimation of and 2 with the proposed BHM.

After estimating by the zero-skewness method, we will then

construct our BHMs to estimate and 2. We first perform a log

transformation on xij j (i.e. the original samples following LN3

minus ) to get yij, as Fig. 3 shows. We now refer to our data as yij. To
ensure that yj follows a normal distribution for each month j, we con-
duct the Shapiro-Wilk normality test (Shapiro and Wilk, 1965; Royston

1995; Devineni et al., 2013). If yj passes the Shapiro-Wilk normality
test, then yj is normally distributed with parameters j and j

2, and xj
follows the three-parameter log-normal distribution.

2.3. Bayesian hierarchical model for estimating 2 (variance BHM)

2.3.1. Structure of variance BHM

A BHM is constructed for estimating the shape parameter 2, as

Fig. 2. An example of historical data structure.

Fig. 3. Log-transformation on the original data.
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shown in Fig. 4. After the log transformation, the data now are yij,
where =i N1, ..., and = =j J1, ..., 6 (6 months/groups in each

season). Our goal is to estimate the parameter j
2, which parameterizes

the distribution of yj:

=y x Nlog( )~ ( , ),j j j j j
2

(5)

where j
2 is the unknown shape parameter for month j; and j is the

unknown location parameter for month j.
A sufficient statistic is widely used in the Bayesian analysis to fa-

cilitate derivations (Fraser, 1963; Kholevo, 2001; Steel, 2007). In our

proposed BHM model, a sufficient statistic for the parameter j
2 is the

sample variance Sj2 for each group j:

=

=

S
N

y y1
1

( ¯ ) .j
i

N

ij j
2

1

2

(6)

Based on the distribution (Ross, 2006), we formulate

×d S
~ ,j

j
d

2

2
2

(7)

where =d N 1 (i.e. constant) and d
2 is the chi-squared distribution

with d (i.e. N − 1) degrees of freedom.

A conjugate prior is used for estimating j
2 (Hoff, 2009):

= =v s iid Inv v s j J| ,
~

( , ), 1, ..., 6,j
2

0
2 2

0
2

(8)

where Inv v s( , )2
0
2 is an inverse chi-squared distribution, para-

meterized by v and s02 (hyperparameters). It is also the conjugate prior
in Bayesian statistics when estimating a normal variance with unknown

mean (Raiffa and Schlaifer, 1961; Gelman et al., 2013).

Based on Eqs. (7) and (8), the conditional posterior distribution of

j
2 given the hyperparameters v s( , )02 can be derived as (see Appendix A)

+

+

+
=P v s S Inv v d

vs dS
v d

j( | , , )~ , , 1, ..., 6.j j
j2

0
2 2 2 0

2 2

(9)

If we can draw a sufficient number of posterior hyperparameter

samples [i.e. v s S( , | )0
2 2 ], then the posterior of j

2 can be obtained by
sampling from Eq. (9). Therefore, the posterior distribution of hy-

perparameters P v s S( , | )0
2 2 needs to be derived.

To perform a full Bayesian analysis, a hyperprior P v s( , )02 is needed

for P v s S( , | )0
2 2 , where S2 is the set of all Sj2 (i.e. = =S S j{ | 1, ..., 6}j

2 2 ).

For different seasons (i.e. dry and wet), we propose different hyper-

priors. For now, we assume the hyperprior is P v s( , )02 . Thus, the pos-
terior distribution of hyperparameters can be derived as (see Appendix

B)

×
+

+
P v s S P v s

Beta v d
s v

vs dS
( , | ) ( , ) 1

( /2, /2)
· ( /2)
[( )/2]

,
j

J v

j
v d0

2 2
0
2 0

2 /2

0
2 2 ( )/2

(10)

where Beta x y( , ) is the beta function [i.e.

= +Beta x y x y x y( , ) ( ) ( )/ ( )] and x( )is the Gamma function. Note
that the posterior distribution P v s S( , | )0

2 2 is conditioned on

=S S S( , ..., )J2
1
2 2 rather than a single Sj2, since information from all the

months/groups is being used to estimate hyperparameters v s( , )02 . This
is how BHM incorporates “between group” information into estimating

a certain group’s parameter j
2 (Gelman et al., 2013).

Based on the distributions in Eqs. (9), (10) and the law of total

expectation (Wolpert, 2010), we are now able to calculate the Bayesian

estimator j
B2 (superscript “B” represents “Bayesian”) by the posterior

mean of j
2:

= = =E S E E v s S S E v s S S[ | ] [ ( | , , )| ] [ ¯ ( , , )| ],j
B

j j j j
2 2 2 2

0
2 2 2 2

0
2 2 2

(11)

where ¯ j2 is the conditional posterior mean of j
2, given v s( , )02 , i.e.

= = = +

= +

+

+ + +( )
( )

v s S E v s S S

B B S

¯ ( , , ) ( | , , ) · ·

· (1 )· .

j j j
vs dS

v d
v

v d
vs
v

d
v d j

vs
v j

2
0
2 2 2

0
2 2

2
2
2 2 2

2

2
2

j0
2 2

0
2

2 0
2

2

(12)

The second equality comes from the fact that the expected value

[i.e. E v s( | , )j
2

0
2 ] of Inv v s( , )2

0
2 (i.e. the inverse chi-squared dis-

tribution) is vs v/( 2)0
2 . The ratio +v v d( 2)/( 2) is the shrinkage

factor B (0, 1)2 for this variance BHM, which indicates the magni-

tude of shrinkage from MLE (i.e. Sj2) to the prior expected value [i.e.
E v s( | , )j

2
0
2 ]. Once we have simulated a large sample

=v s k n( , ), 1, ...,k k( ) 0( )
2 , we can approximate the expectation of Eq. (11)

by Monte Carlo simulation.

We summarize the algorithm for estimating j
B2 in the following

steps:

Step 1: Draw n (a large number) samples of v s( , )k k( ) 0( )
2 from the

posterior distribution of hyperparametersP v s S( , | )0
2 2 [i.e. Eq. (10)],

based on the Metropolis-Hastings algorithm, a MCMC method

(Metropolis et al., 1953).

Step 2: For each v s( , )k k( ) 0( )
2 , calculate the expected value using Eq.

(12).

Step 3: Calculate the mean of ¯ j2: =
v s S¯ ( , , ).j

B
n k

n
j k k j

2 1
1

2
( ) 0( )

2 2

According to the weak law of large numbers, when n is sufficiently

large, j
B2 converges in probability to the Bayesian estimator E S[ | ]j

2 2

(derived from the proposed BHM model). A key advantage of our

proposed BHM is that j
B2 is estimated not only using the “within-

group” information, but also the “between-group” information. Thus, it

is expected that the results from BHM will have an expected mean

square error (MSE) that is less than or equal to the traditional MLE [i.e.

E MSE E MSE( ( )) ( ( ))j
B

j
MLE2 2 ], due to its shrinkage (Efron and

Morris, 1977; Chaloner, 1987; Berger, 2013).

2.3.2. Selection of hyperprior for variance BHM

BHM requires a hyperpriorP v s( , )02 to provide the prior knowledge

of hyperparameters [see Eq. (10)]. Though how to select this

hyperpriorP v s( , )02 is an interesting question, the choice of P v s( , )02 has

negligible impact on the results, since it merely represents the prior

knowledge of the hyperparameters. In this study, we suggest two dif-

ferent hyperpriors for the variance of BHM. The first is the “non-

informative hyperprior” (or “flat hyperprior”) and the second is the

“informative hyperprior”.

A flat hyperprior is widely used when prior knowledge is not

available for either hyperparameter v s( , )02 or parameter 2 itself. In

other words, a flat hyperprior will lead to the same possibility for every
2 value, instead of focusing on any particular 2 value. It is expected to

work well unless the number of groups J is low (Gelman, 2006). We

derive our flat hyperprior as follows:

First we assume v and s02 are independent in the prior:

=P v s P v P s( , ) ( ) ( ).0
2

0
2 (13)

Then we assume v is uniformly distributed on d(0, 15 ) where

d = N − 1. Thus we arrive at

Fig. 4. Variance BHM for estimating 2.
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P v s P s v d( , ) ( ), (0, 15 ).0
2

0
2

(14)

To make a flat hyperprior, we further assume P s( ) 10 . By a change

of variable, we can derive the flat hyperprior as

P v s
s

v d( , ) 1 , (0, 15 ).0
2

0
2

(15)

A fairly wide but finite support [i.e. d(0, 15 )] for hyperparameter ν is
specified to ensure: 1) the posterior of the hyperparameters [i.e. Dis.

(10)] is always proper (i.e. integrable to a finite value) based on the

proposed flat hyperprior [i.e. Dis. (15)] (Gelman et al., 2013); and 2)

the shrinkage factor B 2 is sufficiently large when v approaches its
maximum. This will not limit the degree of shrinkage of the model. For

example, when v approaches 15d, B (0, 1)2 will be close to 15/16,

which is sufficiently large for most applications.

Using a flat hyperprior is safe, but rather conservative. So, if some

additional information on parameter 2 can be extracted from the data

or by expertise, an informative hyperprior should be considered.

However, very few BHM applications in hydrology have developed

informative hyperpriors. In this study, we suggest a possible way of

constructing an informative hyperprior by extracting prior information

from the data skewness.

First, the skewness of LN3 is defined as skewj, and it is a function of
only one parameter j

2:

= + ×skew e e( 2) 1 .j j j
2 2

(16)

Based on the idea of MME, the sample skewness of historical

streamflow records bj (j = 1, …, 6) can be calculated by

=
=

=

b N N
N

x x

x x

1
2

·
( ¯ )

[ ( ¯ ) ]
,j

i
N

ij j

i
N

ij j

1
3

1
2
3
2

(17)

where xij is the monthly averaged historical streamflow in year i for
month j, x̄j is the mean of historical streamflow records for month j,
and N is total number of years of historical streamflow records. Eq. (17)

is also known as “the adjusted Fisher–Pearson standardized moment

coefficient”, which is adopted by Excel, SAS, and SPSS as the default

way to calculate skewness (Doane and Seward, 2011). Although it is a

biased estimator, it provides an adjustment for sample size, which

makes it closer to an unbiased estimator (Joanes and Gill, 1998; Doane

and Seward, 2011). Thus, Eq. (17) is a good skewness estimator that

can help alleviate the bias problem common to most skewness esti-

mators, as pointed out by Wallis et al. (1974). Another potential issue

for the estimators of skewness is the boundedness (Kirby, 1974); that is,

the estimators may reach bound due to smaller sample size or hydro-

climatic variability. Using the L-moment estimator would alleviate this

concern.

Letting =skew bj j (i.e. the exact moment matching with j
2 un-

known), we can obtain the prior estimate of j
2 from skewness in the

data, denoted as ~j2. Then we calculate the average of ~j2 =j( 1, ...,6):

=

=

Ave (~ ) 1
6

~ .
j

j
2

1

6
2

(18)

Now we haveAve (~ )2 as the prior knowledge of 2, and we proceed
to extract the prior information of the hyperparameters v s( , )02 (i.e.

determine hyperprior P v s( , )02 ). We want our hyperprior to reflect the
prior knowledge. Recall that our prior is an inverse chi-squared dis-

tribution:

v s Inv v s| , ~ ( , ).j
2

0
2 2

0
2

(19)

The mode and expected value of this inverse chi-squared distribu-

tion are:

=
+

Mode vs
v 2

,0
2

(20)

= >Expected value vs
v

v
2
, 2.0

2

(21)

Since we want every j
2 sampled from Eq. (19) to be close toAve (~ )2 ,

we set the mode or the expected value of (19) equal toAve (~ )2 , which
leads to

±
=

vs
v

Ave
2

(~ ).0
2

2
(22)

Reformulating Eq. (22), we arrive at

± =vs vAve Ave(~ ) 2 (~ ) 0.0
2 2 2 (23)

We expect samples from the hyperprior P v s( , )02 have a high chance

of satisfying Eq. (23). Our goal is then to find a distribution as our

informative hyperprior. This distribution should have its highest

probability density on the points v s( , )02 that satisfy Eq. (23). We suggest

a simple informative hyperprior that can achieve this goal in the form

of

±
P v s

vs vAve Ave
( , ) 1

( (~ ) 2 (~ ))
,k0

2

0
2 2 2 (24)

where k is a constant coefficient and >k 0. The choice of value for k, as
well as the choice of a positive or negative sign, is not restricted.

In this process, the hyperprior parameter ~j2 in Eq. (24) is estimated
only from the data skewness, not from any other data information (i.e.

sample variance and mean) used in the BHM model. Therefore, using ~j2

as the prior information of j
2 will not cause over-fitting (i.e. no reuse of

the same data information). After that, we calculateAve (~ )2 (i.e. the

average of six ~
j
2) and equate it to the mean/mode of the prior dis-

tribution, from which we derive Eq. (23). This step specifies the prior

information of v s( , )02 from the skewness-based estimates ~j2. Based on
that equation, we finally propose Eq. (24) as our informative hyper-

prior.

Note that the derived informative hyperprior is based on the as-

sumption that all six months’ prior information of j
2 (i.e. ~j2) can be

represented byAve (~ )2 , which requires all six ~
j
2 to be concentrated

onAve (~ )2 [i.e. Var (~ )j2 (the variance of ~j2) is small]. This requirement
may only be satisfied for the months in the wet season, since the months

in the dry season typically have high skewness, and thus large ~j2 values,
which often may lead to large Var (~ )j2 values. Therefore, although the

choice of using the “flat” or “informative” hyperprior is rather flexible,

we only use the flat hyperprior for the months of the dry season. For the

months in the wet season, we can either be conservative and use the flat

hyperprior, or adopt the informative hyperprior as proposed. In sum,

for each watershed, the following two scenarios of hyperprior will be

compared: (1) Use the flat hyperprior for both the dry and wet season;

(2) Use the flat hyperprior for the dry season and adopt the proposed

informative hyperprior for the wet season.

2.4. Bayesian hierarchical model for estimating θ (mean BHM)

Another BHM (mean BHM) is used for estimating the location

parameter , as shown in Fig. 5. This mean BHM originally was dis-

cussed in Gelman et al. (2013), where the authors assumed the true

variances j
2 are known. However, in this study, we first estimate j

B2

from section 2.3 and then build the mean BHM conditioning on j
B2 .

We first represent the data yij by its sample mean ȳj for each group j,
which is also a sufficient statistic for j:

=

=

y
N

y¯ 1 ,j
i

N

ij
1 (25)

where N is the total number of historical records in each month.

Then the likelihood function can be derived from

y N¯ | , ~ ( , ),j j j j j
2 2

(26)

where we define = N/j j
B

j
2 2 , and assume = =N N N N, ..., j1 2 for
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simplicity.

We use a conjugate prior to provide the prior information for esti-

mating j:

= =u iid N u j J| ,
~

( , ), 1, ..., 6,j
2 2

(27)

where N u( , )2 is a normal distribution, parameterized by u and 2

(hyperparameters). It is also the conjugate prior in Bayesian Statistics

when estimating the normal mean with known variance.

Based on Eqs. (26) and (27), the conditional posterior distribution of

j given hyperparameters u( , )2 can be formulated as

u y N V| , , , ~ ( , ),j j j j
2 2

(28)

where

=

+

+

=

+

+

+

= +

y u
u y B u B y

¯
· · ¯ · (1 )· ¯ ,j

j

j j

1 1

1 1

1

1 1

1

1 1
j

j j

j

j

2 2

2 2

2

2 2

2

2 2

(29)

and

=

+

V 1 .j 1 1

j
2 2 (30)

The ratio +/1 1 1

j
2 2 2 is the shrinkage factor B (0, 1) for this

mean BHM, which indicates the magnitude of shrinkage from MLE (i.e.

ȳj) to the prior expected value u [i.e. E u( | , )j
2 ].

If sufficient posterior hyperparameter samples [i.e. u y( , | ¯)2 ] are

available, then the posterior of j can be obtained by sampling from Eq.

(28). In such instances, the posterior distribution of hyperparameters

P u y( , | ¯)2 needs to be derived.

We assume the hyperprior is P u( , )2 . The posterior distribution of
the hyperparameters [i.e. P u y( , | ¯)2 ] can be formulated as

× +P u y P u N y u( , | ¯) ( , ) ( ¯ | , ),
j

J

j j
2 2 2 2

(31)

where +N y u( ¯ | , )j j
2 2 represents the probability density function

(pdf) of the normal distribution of ȳj with mean u and variance +j
2 2,

and ȳ is the set of all ȳj [i.e. =y y y¯ ( ¯ , ..., ¯ )1 6 ]. Also, for the mean BHM, we

choose the flat hyperprior because the location parameter , unlike the

shape parameter 2, often is dispersed widely for different months.

Gelman et al. (2013) derived a flat hyperprior in the mean BHM as

P u( , ) 1 .2
(32)

To improve sampling stability, we propagate P u y( , | ¯)2 in factored

form based on Bayes’ rule:

=P u y P y P u y( , | ¯) ( | ¯)· ( | , ¯).2 2 2 (33)

Compute the posterior distribution of 2 [i.e. P y( | ¯)2 ] as

=

+
+

=

=

P y P u y du

V
y u

( | ¯) ( , | ¯)

1 · · ( ) ·exp
( ¯ ^)
2( )

,u
j

J

j
j

j

2 2

1

6
2 2

2

2 2

1
2 1

2

(34)

where

=

= +

= +

u
ȳ
,

j
J

j

j
J

1
1

1
1

j

j

2 2

2 2
(35)

and

=
+

=

V 1 .u
j

J

j1
2 2

1

(36)

Then the posterior distribution of u given 2[i.e. P u y( | , ¯)2 ] also can

be calculated as

+

=

P u y P u y N y u N u V( | , ¯) ( , | ¯) ( ¯ | , ) ( , ),
j

J

j j u
2 2

1

2 2

(37)

where N u V( , )u represents the pdf of the normal distribution with mean

u and variance Vu; u and Vu are defined in Eqs. (35) and (36).
With Eqs. (34) and (37), we are able to calculate the Bayesian es-

timator j
B
(superscript “B” represents “Bayesian”) under the l2 loss

function:

= = =E y E E u y y E u y y[ | ¯] [ [ | , , ¯]| ¯] [ ( , , ¯)| ¯],j
B

j j j
2 2

(38)

where j [i.e. the conditional posterior mean of j given u( , )2 ] is given
in Eq. (29).

We summarize the above procedure of estimating j
B
with the fol-

lowing algorithm:

Step 1: Draw n (a large number) samples of k( )
2 [i.e. (k)= 1, …, n]

from the posterior distribution of 2[i.e. P y( | ¯)2 ], based on the

Metropolis-Hastings algorithm.

Step 2: For each k( )
2 , sample u k( ) based on the posterior distribution

of u given 2 [i.e. P u y( | , ¯)k( )
2 ].

Step 3: For each pair of u( , )k k( ) ( )
2 , compute u y( , , , ¯ )j k k j j( ) ( )

2 2 .

Step 4: Calculate the mean of j: =
=

u y( , , , ¯ )j
B

n k
n

j k k j j
1

1 ( ) ( )
2 2 .

According to the weak law of large numbers, when n is large en-

ough, j
B
converges to the Bayesian estimator E y[ | ¯]j . This is a clear

advantage of BHM over traditional estimators (such as MLE).

2.5. Estimated three-parameter log-normal distribution

After obtaining j
B
and j

B2 from BHM, the results of our proposed

estimating method based on BHM can be summarized as

y N~ (^ , ^ ).j j
B

j
B2

(39)

And its equivalent form:

x LN~ 3( , ^ , ^ ).j j j
B

j
B2

(40)

With the pdf:

=f x
x

x
( ) 1

( ) ^ 2
exp

(ln( ) ^ )

2^
.j

j j j
B

j j j
B

j
B

2

2

(41)

2.6. Log-likelihoods and K-folds cross validation

In this study, we choose log-likelihoods as the measure of perfor-

mance (i.e. goodness of fit metrics), because we want to evaluate the

Fig. 5. Mean BHM for estimating .
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difference between two distributions (i.e. the estimated LN3 and the

true test data distribution). Log-likelihoods is one of the most widely

used and well-acknowledged metrics for the goodness-of-fit of different

statistical models (Fisher, 1992; Edwards, 1992; Berger and Wolpert,

1988). It is especially useful for evaluating the performance of the es-

timated distributions (Myung, 2003). When new observation data is

collected, its log-likelihood value describes how well this distribution

fits this new data (or how likely this new observation data is drawn

from this distribution). Thus, the distribution with the highest log-

likelihood value can be regarded as the best distribution to explain the

observation data, and it is then the best one to characterize the variable

(monthly streamflow in this study). This is a consequence of the fact

that the Kullback-Leibler divergence (i.e. KL divergence) is minimized

when an estimated distribution is identical to the true distribution

(Kullback and Leibler, 1951; Kullback, 1997).

Most of goodness-of-fit statistics are essentially log-likelihood or

built upon log-likelihood. The well-known AIC (Akaike information

criterion; Akaike, 1998) and BIC (Bayesian information criterion;

Schwarz, 1978) also are formulated as the sum of log-likelihood and

minus penalties for complexity. Note that they are calculated with

training data (not test data) and therefore use the model complexity

penalty to approximate test data log-likelihood. In our case, we have

both the training and the test dataset, so we believe using the test data

log-likelihood as the metric is the most interpretable and standard way

to evaluate the distribution performance among different methods.

K-folds cross-validation (K-folds CV) is a widely used technique for

assessing statistical model performance (Kohavi, 1995; Refaeilzadeh

et al., 2009). Compared with the traditional hold-out method (i.e.

simply splitting the observation dataset into a training and a test set), K-

folds CV is less affected by how the observation dataset is split, since

every observation data point gets to be used as the test data exactly

once (McLachlan et al., 2005). Thus, in this study, we employ a 4-folds

CV and the steps are summarized as follows:

Step 1. Randomly divide the entire N years of observations into four

folds (i.e. each fold contains N/4 years of observations).

Step 2. For the first test (i.e. t= 1), combine folds 1, 2, and 3 as the

training dataset (i.e. the dataset that is used to estimate j
B
and j

B2 ),
while fold 4 is used as the test dataset in the test process. Since the log-

likelihood is used as the metric in the test process, for an estimated

distribution fj , the log-likelihood based on the test dataset is computed
as

= =
= ( )L f x f xlog ( ) ( ),j
t

i V
j ij

i V
j ij

1

t t (42)

where =V i i t test dataset{ | }t th . Repeat the above procedure for t= 2,

t = 3, and t = 4, where the corresponding test sets are fold 3, fold 2,

and fold 1, as Fig. 6 shows. Calculate the test data log-likelihood =Ljt 2,
=Ljt 3, and =Ljt 4.

Step 3. Compute the mean of Ljt (t= 1,2,3,4) as Lj; it is the final test
data log-likelihood for the estimated distribution fj .

Step 4. Compare the performance of different estimated distribu-

tions fj , gj ,…, and hj( j 1, ...,12), by comparing their Lj
fj, Lj

gj, and Lj
hj.

The estimated distribution with the largest Lj is considered the best for
month j.

Step 5. Compare different estimating methods f , g ,…, and h, by
comparing their cumulative test data log-likelihood over 12 months

(i.e.
=
Lj j
f

1
12 j,

=
Lj j
g

1
12 j, and

=
Lj j
h

1
12 j). The estimating method with the

largest
=
Lj j1

12
is considered the best.

The magnitude of
=
Lj j1

12
is related to the number of observation

years (i.e. number of data N). To avoid the influence of the number of

data N, when comparing two different estimating methods f and g, we
calculate the “relative improvement” (RI) using Eq. (43):

= ×
= =

=

RI
L L

L
100%,j j

f
j j

g

j j
f

1
12

1
12

1
12

j j

j
(43)

where f is selected as the base method. If RI is positive, then f is RI%
improvement overg.

3. Case study

3.1. Data information summary

We select eight watersheds in the United States for our case study.

Key information related to the selected sites is summarized in Table 1.

Fig. 7 shows the location map. We collect the last 100 years (the in-

formation may vary slightly due to availability) of historical unim-

paired monthly streamflow data from each site. All data and the site

information are collected from the USGS official website (https://

waterdata.usgs.gov/nwis/uv/?referred_module = sw).

3.2. Shapiro-Wilk normality test on the transformed data

After estimating the shift parameter j by the zero-skewness method,

we transform xij into yij by subtracting j and taking the log. If yj follows
a normal distribution, then our assumption that xj follows a three-
parameter, log-normal distribution is valid. Therefore, we employ the

Shapiro-Wilk normality test (Shapiro and Wilk, 1965) to determine

whether yj follows a normal distribution: First, from the 100 years of

data, we randomly sample a dataset of 75 years of observations. Then,

with a significance level = 0.05, we calculate the test statistic and p-
values for each month and each watershed. If the p-value is less than

0.05, then we reject the null hypothesis that yj follows a normal dis-
tribution. Table 2 records the data’s p-values for each month and wa-

tershed.

We see from Table 2 that in only 6 out of 96 months (12 months per

watershed) yj may not have followed the normal distribution, which is
insignificant. Therefore, we assume that the original data, , follows the

three-parameter, log-normal distribution.

3.3. Example of CV results of Schoharie watershed

Using the 100-year dataset and the flat hyperpriors for both seasons,

we plot the log-likelihood (Lj) results from the 4-folds CV for each

month in Fig. 8. We use the Schoharie watershed as an example (other

watersheds yield similar results). We compare the results from BHM

with results obtained from the following five selected traditional

parameter estimation methods: local maximum likelihood estimation

(LMLE), L-moment (L-MOM), method of moment estimation (MME),

modified method of moment estimation (MMME), and zero-skewness

(Zeros). In Fig. 8, we choose the BHM results as the baseline, and plot

Fig. 6. The 4-folds cross-validation illustrative diagram.
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the difference of log-likelihood between BHM and the other traditional

methods (i.e. L Lj
B

j
f , where B represents BHM; f represents other

traditional methods). In other words, for a traditional method, if the

difference for a given month is greater than zero, then BHM provides

better estimates.

From Fig. 8, we see that BHM outperforms all five traditional

methods, since the log-likelihood differences are positive in almost all

months. The five traditional methods behave irregularly in different

months, including the obvious outliers provided by the MME in the dry

season. The results also show that BHM is more stable. For instance, the

LMLE method behaves similarly as BHM in December, but it is clearly

worse in January. In other words, the results from BHM can be regarded

as the flat horizontal line of =y 0, which is not only below the results

from other methods, but also exhibits the lowest volatility (i.e. it can be

trusted in all months).

Kernel density estimation is a non-parametric data smoothing

technique that estimates the probability density function of a random

variable based on a finite data sample (Rosenblatt, 1956; Parzen, 1962).

In Fig. 9, we compare the LN3 density estimations from BHM and

several representative methods [i.e. Red: BHM; Cyan: MME; Purple

(outermost): Zeros-skewness] against the real test data kernel density

estimation [i.e. Green (innermost): real test data]. We see in Fig. 8 that,

in January, the log-likelihood difference for MME is 2, while the log-

likelihood difference for Zeros is around 1. In Fig. 9, we see that the

LN3 distribution estimated from BHM best fits the real data kernel

density. As the figure shows, the BHM estimation captures the peak

most accurately, followed by the Zeros estimation, while the MME es-

timation clearly deviates from the correct peak position. Furthermore,

both the left and right tails of the real data distribution are best mat-

ched by the BHM estimation, shown from the green area on both sides.

Therefore, Fig. 9 enables us to easily interpret the log-likelihood dif-

ference (i.e. Fig. 8, Table 5–7). It is also a demonstration of the

advantage of our BHM over the selected traditional methods.

In addition, we also calculate the moment information (i.e. mean

and variance) for each LN3 estimated by the BHM and Zeros methods.

The formulas used are shown in Eqs. (44) and (45) and the moment

values are shown in Tables 3.

= +
+Mean e( 2 )

2
(44)

=
+Varaince e e( 1) (2 )2 2

(45)

For most months, the variance differs significantly, and the mean is

also distinguishable. Also, these results are just the mean (i.e. first order

moment) and variance (i.e. second order moment) calculated as an

example, not to mention the larger difference in the higher order mo-

ments such as skewness and kurtosis. Therefore, the differences be-

tween the two distributions in Fig. 9 [i.e. red (BHM) and purple (Zeros)]

are significant.

Table 4 shows the estimated parameter values (i.e. j
B
and j

B2 ) from
the 4th test based on the proposed BHM and zero-skewness method

(Zeros). In addition to the point estimates, we use the equal-tail method

to calculate the 95% Bayesian interval estimation for each parameter.

We see that the difference in j
2 is larger than the difference in j. This

indicates that the proposed BHM provides more shrinkage on the shape

parameter j
2 than the location parameter j. We further investigate this

by calculating the shrinkage factors (i.e. B 2 and B ) for BHM, and the

result shows that the average B 2is 0.29, while the average B is only

0.02. On one hand, due to the relatively large average B 2value, the

result clearly explains why the shape parameter j
2 can be estimated

better by BHM. In addition, it is evident that BHM allows one to de-

termine whether there is useful “between group” information to be

extracted. If this is not the case, such as with the estimation of j in this

example, BHM automatically assigns a small shrinkage factor B that

barely shrinks the MLE results.

Table 1

Site information for the selected eight watersheds.

Site ID Site Name Drainage area (km2) Latitude Longitude State

03,069,500 Cheat River (i.e. Cheat) 1856.853 39.122884 −79.681174 WV

01,543,000 Driftwood Creek (i.e. Driftwood) 705.4974 41.413396 −78.196952 PA

03,488,000 Holston River (i.e. Holston) 578.206 36.896781 −81.746229 VA

01,548,500 Pine Creek (i.e. Pine) 1557.047 41.521736 −77.44748 PA

01,350,000 Schoharie Creek (i.e. Schoharie) 612.5148 42.319528 −74.436537 NY

01,532,000 Towanda Creek (i.e. Towanda) 553.941 41.70702 −76.484665 PA

11,266,500 Yosemite Merced River (i.e. Yosemite) 833.0817 37.716871 −119.666279 CA

08,190,000 Nueces River (i.e. Nueces) 1961.433 29.428567 −99.997287 TX

J. Li, et al.
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It is also evident that the shrinkage factor B 2of the wet season

(0.554) is much higher than B 2of the dry season (0.026). This clearly

shows that the model achieves substantial shrinkage for variance esti-

mation in the wet season, also reflected by the observation that the

Bayesian estimates across the six months in the wet season (Dec.-May)

were quite close to each other. The variances in the dry season and the

mean estimates exhibit almost no shrinkage, so they were very close to

the MLEs, confirming the notion that BHMs can achieve data-driven

shrinkage automatically.

In sum, the proposed BHM method rarely performs worse than the

traditional methods based on MLE. This is due to the fact that if

abundant “between group” information is detected, BHM will take full

advantage and shrink the MLE results (e.g. the j
2 in Table 4).

3.4. CV results of tests with different dataset sizes

To further evaluate the performance of BHM under different dataset

sizes, we choose two different datasets: the entire 100 years of ob-

servations, a large size that represents a case where the data are suffi-

cient; and the most recent 60 years of observations, a medium size that

is available for most hydrological stations. We use the flat hyperprior

for both seasons, and 4-folds CV. The cumulative log-likelihood and

relative improvement [Eq. (43) with BHM as the base model] results for

each method are shown in Table 5.

Table 5 shows, for both the 100-year and 60-year tests, that BHM

outperforms all other traditional methods in all eight watersheds (ex-

cept a similar performance of BHM and LMLE in the 100-year test). This

is evident because the cumulative log-likelihood of BHM is greater than

the traditional methods, and the relative improvements (RI) over the

traditional methods are all positive. Additionally, comparing the 60-

Table 2

P-values of the Shapiro-Wilk normality test.

Month Cheat Driftwood Holston Pine Schoharie Towanda Yosemite Nueces

Jun 0.654 0.882 0.199 0.941 0.696 0.662 0.169 0.034

Jul 0.366 0.441 0.979 0.514 0.787 0.340 0.417 0.841

Aug 0.621 0.991 0.138 0.507 0.132 0.681 0.998 0.423

Sep 0.974 0.019 0.237 0.999 0.568 0.367 0.832 0.839

Oct 0.380 0.310 0.707 0.114 0.019 0.145 0.066 0.962

Nov 0.788 0.083 0.017 0.181 0.294 0.522 0.351 0.851

Dec 0.472 0.382 0.002 0.254 0.590 0.281 0.895 0.987

Jun 0.309 0.746 0.607 0.344 0.436 0.580 0.962 0.968

Feb 0.555 0.293 0.763 0.745 0.401 0.278 0.951 0.015

Mar 0.671 0.911 0.960 0.384 0.671 0.777 0.941 0.547

Apr 0.149 0.996 0.838 0.672 0.966 0.474 0.652 0.125

May 0.397 0.763 0.372 0.315 0.566 0.873 0.729 0.542

Fig. 8. Log-likelihood difference (L Lj
B

j
f ) for different traditional methods for

(a) dry season months (b) wet season months.

Fig. 9. A density plot, using the January results from Fig. 8.

Table 3

The mean and variance of two LN3 estimated by BHM and Zeros in two seasons.

Mean (BHM) Mean (Zeros) Variance (BHM) Variance (Zeros)

Dry

Jun 338.27 336.62 147,346 141,308

Jul 176.14 174.44 77,951 75,760

Aug 115.47 113.45 46,158 44,559

Sep 222.94 221.3 354,222 355,303

Oct 326.26 326.3 309,827 307,578

Nov 529.42 519.48 174,266 143,686

Unit (cfs) (cfs) (cfs)2 (cfs)2

Wet

Dec 500.31 507.92 134,158 155,470

Jan 472.7 453.25 118,641 83,118

Feb 431.94 441.63 94,952 121,204

Mar 853.1 855.06 250,195 244,861

Apr 1098.28 1087.91 420,213 338,423

May 578.29 576.35 124,008 123,811

Unit (cfs) (cfs) (cfs)2 (cfs)2
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year test to the 100-year test, we can see the RI increases for most

watersheds. This indicates that BHM can provide more improvement

over the traditional methods in the test with a smaller data size. Fur-

thermore, comparing BHM with “Zeros” (zero-skewness), we see that

BHM produces better results for all watersheds, and the RI increases as

the data quantity decreases. This is a direct demonstration of the ad-

vantage of BHM, since Zeros has the same shift parameter estimation

as BHM, but Zeros estimates the shape and location parameters by MLE

instead of BHM.

3.5. CV results of the test with the proposed informative hyperprior

To evaluate the performance of the proposed informative hyper-

prior, we conduct the same experiments for the 100-year wet season

dataset for each watershed, where the results of the proposed in-

formative hyperprior and the flat hyperprior are compared. The para-

meter of the proposed informative hyperprior [k and the sign in Eq.

(24)] for each watershed is obtained by fine tuning. The informative

hyperpriors used for the wet season for each watershed are listed below.

For Cheat, Pine, and Towanda:

P v s
s v Ave v Ave

( , ) 1
(~ )· 2· (~ )

.0
2

0
2 2 2

(46)

For Holston, Driftwood and Nueces:

P v s
s v Ave v Ave

( , ) 1
( (~ )· 2· (~ ))

.0
2

0
2 2 2 4 (47)

For Schoharie:

P v s
s v Ave v Ave

( , ) 1
( (~ )· 2· (~ ))

.0
2

0
2 2 2 1

8 (48)

For Yosemite:

+

P v s
s v Ave v Ave

( , ) 1
( (~ )· 2· (~ ))

.0
2

0
2 2 2 3

2 (49)

We note that the proposed hyperprior parameter for each watershed

may not be optimal. That is, a better parameter may exist, but how to

find the optimal hyperprior parameter is beyond the scope of this paper.

We also note that, compared to the data, the influence of the hyperprior

on BHM is minimal.

To see the difference between the flat hyperprior and the in-

formative hyperprior, we plot the samples from the posteriors of the

hyperparameters [i.e. P v s S( , | )0
2 2 ] based on two different hyperpriors in

Fig. 10, using the 100-year Cheat watershed wet season dataset as the

example. A total of 200,000 points are sampled from each posterior,

and the first 3000 samples are dropped as the burn-in period in the

MCMC process. From Fig. 10, we see both posteriors are proper without

any outliers. And the informative hyperprior can provide a wider range

of s02 sample values than the flat hyperprior. Table 6 shows the CV re-
sults based on both hyperpriors.

Table 6 shows that first, for each watershed, results generated from

the traditional methods based on two hyperpriors are exactly the same.

This implies that changing the hyperprior will only impact the perfor-

mance of BHM, since only BHM requires a hyperprior. Second, for each

watershed, BHM performs better than the traditional methods under

both hyperpriors, as the cumulative log-likelihood values are larger.

Table 4

The estimated parameters based on two different methods and shrinkage factors.

Season Month
j
B
(BHM)

95% S 95% E B j
B2 (BHM) 95% S 95% E B 2 j (Zeros) j

2 (Zeros)

Dry Jun 5.3767 5.3678 5.3833 0.0096 0.8517 0.8336 0.8724 0.026 5.3808 0.8336

Jul 4.4867 4.4764 4.5012 0.0146 1.3036 1.2712 1.3285 4.4797 1.2975

Aug 3.8587 3.8408 3.8881 0.0181 1.6213 1.5751 1.6547 3.8384 1.6237

Sep 4.3174 4.2993 4.3442 0.0236 2.1344 2.0636 2.1840 4.3018 2.1504

Oct 5.1505 5.1390 5.1604 0.0148 1.3257 1.2924 1.3511 5.1534 1.3202

Nov 6.5501 6.5440 6.5537 0.0028 0.2458 0.2225 0.2829 6.5546 0.2116

Wet Dec 6.1652 6.1577 6.1763 0.0291 0.3491 0.3133 0.3843 0.554 6.1600 0.3862

Jan 6.2938 6.2883 6.3002 0.0227 0.2695 0.2297 0.3112 6.2928 0.2078

Feb 5.9397 5.9277 5.9596 0.0310 0.3736 0.3288 0.4230 5.9269 0.4411

Mar 6.5577 6.5465 6.5648 0.0263 0.3136 0.2872 0.3435 6.5635 0.3066

Apr 6.8921 6.8723 6.9040 0.0238 0.2827 0.2506 0.3202 6.9056 0.2375

May 6.1908 6.1842 6.2004 0.0268 0.3204 0.2929 0.3494 6.1867 0.3218

Note: 95% S represents the start of 95% Bayesian interval, while 95% E is the end of 95% interval.

Table 5

CV results of tests with different dataset sizes.

100-year dataset

LMLE L-MOM MME MMME Zeros BHM

Cumulative log-likelihood

Cheat −2539.7 −2536.2 −2542.0 −2537.9 −2535.3 −2534.2

Driftwood −2104.9 −2111.3 −2158.5 −2111.5 −2105.1 −2104.9

Holston −1798.3 −1805.9 −1830.4 −1802.3 −1799.6 −1798.6

Pine −2185.5 −2192.1 −2224.9 −2190.5 −2184.7 −2184.1

Schoharie −2282.8 −2287.1 –2332.0 −2287.5 −2281.1 −2279.3

Towanda −1963.6 −1972.8 −2022.5 −1964.2 −1959.7 −1959.5

Yosemite −1977.4 −1979.2 −2019.8 −1979.0 −1976.9 −1976.8

Nueces −1659.6 −1679.2 −1756.4 −1665.3 −1661.7 −1660.9

Relative improvement

Cheat 0.22 0.08 0.31 0.14 0.04 0

Driftwood 0.00 0.30 2.55 0.31 0.01 0

Holston −0.02 0.40 1.77 0.20 0.06 0

Pine 0.06 0.37 1.87 0.29 0.03 0

Schoharie 0.15 0.34 2.31 0.36 0.08 0

Towanda 0.21 0.68 3.21 0.24 0.01 0

Yosemite 0.03 0.12 2.13 0.11 0.00 0

Nueces −0.08 1.09 5.44 0.26 0.05 0

60-year dataset

Cumulative log-likelihood

Cheat −1465.7 −1466.4 −1474.9 −1466.0 −1465.5 −1464.3

Driftwood −1223.2 −1229.8 −1248.7 −1224.9 −1223.3 −1222.9

Holston −1136.9 −1137.2 −1153.8 −1137.1 −1136.2 −1134.5

Pine −1343.3 −1345.1 −1369.2 −1342.1 −1340.5 −1340.0

Schoharie −1247.3 −1252.9 −1276.0 −1250.0 −1246.4 −1245.5

Towanda −1152.4 −1161.9 −1183.5 −1150.5 −1148.5 −1148.0

Yosemite −1217.2 −1215.7 −1238.7 −1229.4 −1213.3 −1212.4

Nueces −1084.8 −1092.2 −1135.9 −1084.0 −1083.8 −1082.2

Relative improvement

Cheat 0.10 0.15 0.72 0.12 0.08 0

Driftwood 0.03 0.57 2.12 0.17 0.04 0

Holston 0.21 0.24 1.70 0.23 0.16 0

Pine 0.25 0.38 2.18 0.16 0.04 0

Schoharie 0.15 0.60 2.46 0.36 0.07 0

Towanda 0.38 1.21 3.09 0.21 0.04 0

Yosemite 0.40 0.27 2.13 1.38 0.08 0

Nueces 0.24 0.91 4.72 0.17 0.14 0
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Third, comparing the flat hyperprior results with the informative hy-

perprior results, we see that for each watershed, the latter’s log-like-

lihood value is a little higher than the former, but the improvements are

insignificant. This indicates that adopting the informative hyperprior

can still benefit BHM; however, compared to the data layer, the im-

provements of using different hyperpriors on BHM should be minimal.

3.6. CV results of the test with an extremely small dataset size

Not all rivers have a sufficiently long historical observation series

(i.e. 100 years or 60 years of observations). In fact, for many water-

sheds, the historical observation series is very short, and the data are

very limited. To compare BHM with the traditional methods based on a

short time series, we use the most recent 28 years (i.e. small size) of

historical observations for each watershed. Then for the most recent 60-

year and 28-year datasets, we conduct the tests for each watershed and

each method. Because the 28-year series is too short for many water-

sheds, the months in the wet season (i.e. Dec.–May) may have negative

sample skewness, which prohibits any method from estimating LN3

parameters. Thus, in this section, we use dry season months (i.e.

Jun.–Nov.) as the example for comparison. To test if BHM performs

Fig. 10. (a) Samples from the posterior of hyperparameters based on the flat hyperprior (Cheat wet season); (b) Samples from the posterior of hyperparameters based

on the informative hyperprior (Cheat wet season).

Table 6

CV test results of flat hyperprior and the proposed informative hyperprior.

Flat hyperprior (100-year wet season)

LMLE L-MOM MME MMME Zeros BHM

Cumulative log-likelihood

Cheat −1321.63 −1316.22 −1313.72 −1318.62 −1316.84 −1316.25

Driftwood −1132.10 −1132.38 −1133.90 −1131.87 −1131.92 −1131.75

Holston −984.32 −987.04 −987.96 −984.70 −984.88 −984.17

Pine −1169.71 −1170.35 −1172.73 −1170.75 −1169.21 −1168.61

Schoharie −1208.67 −1208.79 −1211.50 −1209.86 −1208.18 −1206.45

Towanda −1066.37 −1061.11 −1064.11 −1061.65 −1060.99 −1060.82

Yosemite −1036.83 −1040.38 −1052.36 −1037.55 −1036.85 −1036.72

Nueces −801.25 −804.61 −813.89 −803.90 −801.74 −801.57

Informative hyperprior (100-year wet season)

Cumulative log-likelihood

Cheat −1321.63 −1316.22 −1313.72 −1318.62 −1316.84 −1316.17

Driftwood −1132.10 −1132.38 −1133.90 −1131.87 −1131.92 −1131.70

Holston −984.32 −987.04 −987.96 −984.70 −984.88 −983.99

Pine −1169.71 −1170.35 −1172.73 −1170.75 −1169.21 −1168.56

Schoharie −1208.67 −1208.79 −1211.50 −1209.86 −1208.18 −1206.43

Towanda −1066.37 −1061.11 −1064.11 −1061.65 −1060.99 −1060.70

Yosemite −1036.83 −1040.38 −1052.36 −1037.55 −1036.85 −1036.71

Nueces −801.25 −804.61 −813.89 −803.90 −801.74 −801.56

Table 7

Relative improvement (RI) results of 28-year and 60-year tests for each method

(BHM is the base model).

LMLE L-MOM MME MMME Zeros BHM

60-year (dry season)

Cheat 0.11 0.19 1.32 0.21 0.11 0

Driftwood −0.07 1.11 4.32 0.26 0.04 0

Holston 0.36 0.26 3.37 0.41 0.27 0

Pine −0.12 0.67 4.27 0.12 0.02 0

Schoharie 0.20 0.99 4.59 0.82 0.08 0

Towanda 0.66 2.54 6.08 0.43 0.03 0

Yosemite 0.15 0.47 3.82 2.09 −0.02 0

Nueces 0.47 1.41 6.88 0.24 0.14 0

28-year (dry season)

Cheat 0.30 0.39 1.84 0.16 0.30 0

Driftwood 2.31 0.10 5.26 0.75 0.05 0

Holston 1.76 2.35 7.78 4.48 1.91 0

Pine 0.19 1.45 4.85 0.59 0.21 0

Schoharie −0.14 0.76 5.16 1.18 0.10 0

Towanda 0.26 2.02 6.98 0.76 0.07 0

Yosemite 1.25 1.73 8.05 2.04 0.39 0

Nueces 1.88 1.99 11.86 1.90 1.45 0
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better than the selected traditional methods, we calculate the relative

improvements for each method. Table 7 shows the test results. The flat

hyperprior is used in the test.

It is evident from Table 7 that most RI’s in the 28-year test are

greater than the corresponding RI in the 60-year test. This can be in-

terpreted as: 1) The base model (BHM) outperforms the selected tra-

ditional methods in most watersheds for both datasets; and 2) Com-

pared with the medium size dataset (60 years), the advantage of BHM

over the traditional methods is more noticeable in the small size data

set (28 years), particularly relative to the MME, MMME, and Zeros

methods. This is because BHM utilizes other months’ information,

which “expands” the information contained in the limited data. Thus,

BHM is especially suited for parameter estimation where historical

observations are limited.

4. Discussion

4.1. Comparison of BHM with an autoregressive model

BHMs are used to account for correlation (dependence) between

different months. It would be of interest to compare the performance of

BHM with an autoregressive (AR) model, as AR models are used to

account for temporal dependence.

Recall in our BHM that the temporal dependence is captured from

the log-transformed data y in different months [i.e. =y xlog( )]. We
therefore use the same data to build an AR model and compare results.

A typical AR(q) model can be expressed as

= + + + +y y y y· · ... · .t t t q t q0 1 1 2 2 (50)

This model only can capture linear dependence. However, our

proposed BHM is a data-driven model, which means the data itself can

decide the relation among different months and the correlation (de-

pendence) can be of any type, not limited to linear relation.

The AR model also defines a joint distribution over y y, ...1 12, and we

can compare it with our BHM by the test data likelihood. Consider the

wet season (i.e. y y, ...12 5) of a given test watershed. We propose the

following steps for a comparative analysis:

1. For simplicity, we build an AR(1) model for the wet season (i.e. Dec,

Jan,…, May) with training dataset (e.g. = + +y y·5 0 1 4 ). Assume

the error term follows N (0, )2 and the variance 2 can be esti-

mated by an unbiased estimator s2 [i.e. =s SSE N/( 2)tratin
2 , where

SSE is the sum square error and Ntrain is the number of observations
in the training dataset].

2. Based on the AR(1) model, the example conditional density dis-

tribution can be expressed as +y y N y y s| ~ ( | ^ ^ · , )5 4 5 0 1 4
2 , and similarly

for y y|12 11…y y|4 3.

3. We calculate test likelihood for the AR model using the test dataset.

For example, the test likelihood of p y y( | )5 4 is

= +p y y N y i y i s( | ) ( ( )| · ( ), )i
N

5 4 5 0 1 4
2test , where Ntest is the observa-

tion numbers in the test dataset, and similarly for p y y( | )12 11 …p y y( | )4 3
as p y y( | )5 4 .

4. We use the training data to estimate the first month in the wet

season (i.e. December) as a normal distribution [i.e. y N~ (^ , ^ )12 12 12
2
].

Note this is a marginal density distribution. We then use the test

dataset to calculate its likelihood: =p y N y i( ) ( ( )| , )i
N

12 12 12 12
2test .

5. We calculate the joint probability density p y y y( , , ..., )12 1 5 based on

the product rule: =p y y y p y p y y p y y( , , ..., ) ( )· ( | )·...· ( | )AR12 1 5 12 1 12 5 4 . This

is also the joint likelihood of the AR model.

6. From our BHM, we have obtained y N~ (^ , ^ )j j
B

j
B2
from the training

dataset for all six months. And these distributions are independent,

so their joint probability density can be calculated as

=p y y y p y p y p y( , , ..., ) ( )· ( )·...· ( )BHM12 1 5 12 1 5 . Then we use the test da-

taset to calculate the test likelihood of BHM, which is also the joint

likelihood of BHM.

7. We compare two joint (log) likelihoods between AR(1) and BHM.

The method with the larger joint log-likelihood would be a better

model.

Note that we calculate the joint likelihood for each method for

comparison because we cannot directly compare

+y y N y y s| ~ ( | ^ ^ · , )5 4 5 0 1 4
2 from the AR(1) model with y N~ (^ , ^ )

B B
5 5 5

2
from

the BHM. This is because the former is a conditional distribution, but

the latter is a marginal distribution, and they are not comparable. Thus,

we need to convert them to the joint distributions for the comparison

(i.e. as shown in steps 5 and 6).

Based on this procedure, we have calculated the joint log-like-

lihoods for AR(1) and BHM for all eight watersheds. The results are

shown in the Table 8.

From Table 8, we see that the BHM performs better than AR(1) for

most of the watersheds, because the joint log-likelihood of BHM is

larger. However, for Yosemite and Nueces, the AR(1) model has a larger

joint log-likelihood. This implies that, for these two watersheds,

monthly flows indeed follow an AR(1) model. Therefore, despite its

limitations, the AR model is indeed a good model accounting for tem-

poral dependence, and it can perform very well in some watersheds.

However, our proposed BHM is a more general data-driven model and

requires fewer assumptions.

4.2. Potential uncertainty loss due to sequential estimation

Our methodology of construing BHM follows a sequential approach.

We first estimated shift parameter and fixed it. We then estimated
2and also fixed it, and finally we estimated . A potential shortcoming

of this approach is that not all parameter uncertainties may be properly

reflected in the final estimates. A full Bayesian analysis based on the

joint posterior [i.e. P y( , , | )2 ] would be most ideal; however, it

would be very difficult to carry this out in practice.

We investigate how much uncertainty we may lose with our se-

quential approach when estimating . In the Table 9, we calculate the

90% confidence interval of estimates, using Schoharie dry season 100-

year data as an example.

Table 8

Comparison of joint log-likelihoods between AR(1) and BHM.

Model Cheat Driftwood Holston Pine Schoharie Towanda Yosemite Nueces

AR(1) −1.06 −80.23 −63.02 −106.40 −164.86 −120.96 −17.01 −108.24

BHM 1.53 −78.51 −61.90 −106.29 −163.19 −121.68 −46.34 −181.94

Table 9

90% confidence interval of estimates.

Confidence Interval Jun Jul Aug Sep Oct Nov

γ 90% upper bound 26.5 10.1 10.4 6.3 0 −63.6

γ estimates 7.1 5.6 8.8 3.4 −8.4 −261.3

γ 90% lower bound −12.2 1.3 7.2 4.9 −16.9 −459

100-year average

streamflow (x)

330.3 166.7 119.2 200.1 302.3 517.3

1/(x-γ_lower) 0.0029 0.0060 0.0089 0.0051 0.0031 0.0010

1/(x-γ_upper) 0.0033 0.0064 0.0092 0.0052 0.0033 0.0017

ln(x-γ_lower) 5.84 5.11 4.72 5.27 5.77 6.88

ln(x-γ_upper) 5.72 5.05 4.69 5.27 5.71 6.36
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Table 9 shows that the loss of uncertainty for is negligible, when

compared with the magnitude of each month’s real monthly-average

streamflow (i.e. x). According to the probability density function of LN3
[i.e. Eq. (2)], the potential uncertainty loss for can be measured by the

uncertainty losses of x1/( ) and xln( ). Because of the small dif-
ferences in the last four rows in Table 9, these uncertainty losses are

insignificant, especially for x1/( ). Although some uncertainty loss
indeed occurred in xln( ), the loss is minimum and negligible for

most months.

In addition, even though our sequential approach loses some un-

certainty, it doesn’t lose information on shrinkage (i.e. the shrinkage for

estimating 2 and ). In fact, the variance parameter (i.e. shape para-

meter 2) is most likely the one that needs to be stabilized. In other

words, 2 will benefit the most from the shrinkage (i.e. BHM) among all

the parameters. This is also the reason why our proposed variance BHM

is important. So, if we assume is perfectly estimated, then there is no

uncertainty loss for the 2estimation since it is first estimated in our

sequential approach (i.e. estimated before ).

5. Conclusion

In this paper, we proposed a Bayesian hierarchical model (BHM) for

estimating the statistical parameters for monthly average streamflows.

We assumed that the monthly average streamflow follows a three-

parameter, log-normal distribution (LN3). The three underlying statis-

tical parameters associated with LN3 are shift, shape, and location.

We selected eight watersheds in the United States, where historical

unimpaired streamflows have been collected. We first conducted a

Shapiro-Wilk normality test to validate the LN3 assumption. We then

developed the BHM and proposed an informative hyperprior. We used

Cross-Validation (CV) to evaluate the performance of BHM against se-

lected traditional parameter estimation method methods, including

local maximum likelihood estimation (LMLE), L-moment (L-MOM),

method of moment estimation (MME), modified method of moment

estimation (MMME), and zero-skewness (Zeros). We calculated the log-

likelihood, cumulative log-likelihood, and relative improvement for all

methods. We performed comparative analyses using different dataset

sizes and different hyperpriors.

The results show that the proposed BHM produced better parameter

estimates than the selected traditional parameter estimation methods

for all data sizes (long, medium, and short). The fewer the observation

data, the more the proposed method improves compared with the tra-

ditional methods. The two reasons that BHM produced better parameter

estimates are: 1) BHM utilizes historical observations not only from the

month under consideration but also from all other months, and 2) Due

to shrinkage, the Bayesian estimator from BHM is guaranteed to be no

worse than the MLE-based estimator. The proposed BHM is especially

suited for parameter estimation where historical observations are lim-

ited. In addition, when compared to an AR model, the proposed BHM

shows its advantage as a data-driven model with fewer assumptions.

We have demonstrated the advantages of the proposed method for

parameter estimation. A disadvantage of the method is that it takes

much longer running time to get the results (primarily due to MCMC

simulation). For example, the Zeros method may take just a few sec-

onds, while the proposed method takes around 30 min per run. The

proposed sequential estimation approach is easy to carry out in prac-

tice, but may incur loss of uncertainty. However, the loss is insignificant

and negligible.
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Appendix A

Derivation of the posterior distribution of j
2 [Dist. (9)]

From Bayes rule:

=P v s S P v s S P v s P v s P S( | , , ) ( , , , ) ( , )· ( | , )· ( | ).j j j j j j j
2

0
2 2 2

0
2 2

0
2 2

0
2 2 2

(1a)

which is equivalent to:

P v s S P v s P S( | , , ) ( | , )· ( | ).j j j j j
2

0
2 2 2

0
2 2 2

(2a)

Based on the Eq. (8) and a change of variable, we can derive:

=P S
d

S e S e( | )
( /2)

· · · · .j j

d
d

j

dS

j j

dS
2 2

2

/2

2 2 2 2 2j d j

j
d d j

j
2 ( 2 1)

2

2 ( 2 1) 2
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Then based on Eq. (2a), we have:
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which is equivalent to:
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This is exactly Eq. (9).

Appendix B

Derivation of the posterior distribution of hyperparameters P v s S( , | )0
2 2 [i.e. Eq. (10)]

Based on the Bayes rule and the fact that Sj2 are independent with each other =j( 1, ...,6), we have:
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From Eq. (3a) we already have:
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Then we claim that:
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This is because once j
2 is given, Sj2 can be determined only by j

2, so it is independent of the parameters v and s02. This condition can be
summarized as:
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which implies Eq. (3b).

Bayes rule with Eq. (3b) implies:
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Based on Eqs. (5b) and (4a), we can derive:
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Integrating j
2 out from Eq. (6b), we have:
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Substituting Eq. (7b) into Eq. (1b), we have:
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Simplifying (8b) by introducing the Beta function, we get

=

=

+

+( )P v s S P v s
Beta

s v( , | ) ( , )· 1
,

· ( /2) .
j

J

v d

v

vs dS
0
2 2

0
2

1

6

2 2

0
2 /2

( )

2
j

v d
0
2 2 2

(9b)

This is exactly Eq. (10).
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A B S T R A C T

Streamflow scenario tree reduction is essential for alleviating the computational burden of a stochastic pro-
gramming with recourse model. This paper develops a new streamflow scenario tree reduction method aimed at
preserving important statistical moment information and maintaining streamflow scenario probability.
Specifically, we first employ a neural gas algorithm for scenario tree generation, then establish a stepwise
conditional Monte Carlo sampling method for systemically reducing the number of scenarios from the full tree.
We then develop a regularized optimization model based on ridge regression and moment matching to determine
the posterior scenario probability. We apply the proposed method to the Qingjiang cascade reservoir system in
China. The results show that the reduced tree with 35% reduction level can still maintain robust moment
preservations, including the mean, variance, lag-one covariance, cross-site covariance, and scenario probability.
Additionally, the stability test indicates that the proposed conditional Monte Carlo sampling method is stable
and converges within a reasonable number of scenario combinations.

1. Introduction

Handling streamflow uncertainty is a major issue in reservoir
management and operation. Accordingly, the stochasticity associated
with long-term streamflow prediction must be considered in an ana-
lysis. However, methods based on deterministic streamflow prediction
for reservoir operations suffer from the risk of making inappropriate
release decisions, which may incur heavy losses of benefit (Li et al.,
2009; Zhao et al., 2011; Zhu et al., 2018). To account for streamflow
uncertainty, the multistage stochastic programming with recourse
model has been developed and applied to solve water resources man-
agement problems in which streamflow is modeled as a stochastic
process (Birge and Louveaux, 2011; Yeh, 1985; Zhu et al., 2017). This
model requires an input of a discretized streamflow scenario tree that
can most represent the future random streamflow and the occurrence
probability of each scenario. The goal of the model is then to minimize
the expected loss or maximize the expected benefit.

Existing scenario tree generation methods can be categorized in
three broad ways: those based on simulation, on clustering, and on
optimization. Kaut and Wallace (2007) discussed methods based on
conditional simulation that sample the nodal values or scenarios from
known distributions of random variables. These methods are im-
plemented easily and able to preserve transition probability, but they

only can generate uncorrelated random vectors and, generally, suffer
from a problem of dimensionality because of the size of the random
vector. Methods based on clustering, however, do not require random
variable distributions. Instead, these methods pursue the most re-
presentative scenarios (i.e., centroids of observation data) by clustering
observation data (Hansen and Jaumard, 1997; Šutiene et al., 2010). A
unique feature of the clustering methods is that the mean value of the
generated scenario tree always equals the mean of the observation data.
The neural gas clustering method is a neural network algorithm ori-
ginally used for vector quantization in topology (Martinetz and
Schulten, 1991; Martinetz et al., 1993). It requires a fixed pre-specified
tree structure and uses a distance-based iterative method to update
nodal values to centroids. Latorre et al. (2007) compared four popular
clustering techniques (including the conditional clustering method,
neural gas method, node clustering method, and progressive clustering
method) and conducted numerical experiments to test their perfor-
mance by calculating the quantization error for each method. The error
measures how well the resulting scenario tree fits the original dis-
tribution. Based on the results from the numerical experiments, they
concluded that the neural gas method performs best in the application
to hydro inflow. In general, a key advantage of clustering-based
methods is that the sample mean can be preserved very well, and the
computational cost is minimum. However, clustering-based methods
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usually fail to preserve other statistical moments and co-moments other
than the mean. This introduces a significant loss of important sample
information from the generated scenario tree, such as high and low
flows (Xu et al., 2015).

Methods based on optimization mostly refer to moment matching,
which aims to match different statistical moments and co-moments
between the scenario tree and historical data series (Høyland and
Wallace, 2001). In general, there are two approaches to implementing
moment matching: the sequential approach that generates the tree node
by node, and the overall approach that generates the entire tree in a
single optimization. However, both approaches have drawbacks
(Høyland and Wallace, 2001). The sequential approach requires that
the first-stage tree satisfy the first-stage statistical properties. This may
result in conditional second-stage properties that are impossible to
match, and consequently, it may produce a suboptimal tree. Also, since
the sequential approach updates the nodal values and probability at
each stage, for a large multi-stage scenario tree generation problem it
will require solving a large number of optimization problems and is
computationally expensive. In contrast, the overall approach accounts
for the entire tree’s statistical property and only requires one single
optimization for multi-stage problems. However, the degree of non-
convexity increases significantly with the scale of the optimization
problem, and it is very difficult to obtain a good match for large-scale
problems. In addition, Hochreiter and Pflug (2007) provided an ex-
ample of four distributions that coincide with the first four moments.
The results show that the moment matching method may not be able to
match the target distribution.

Despite the shortcomings of the original moment matching method,
the method has been widely applied to streamflow scenario tree gen-
eration (Vitoriano et al., 2000) and portfolio analysis (Boender, 1997;
Gülpinar et al., 2004a). Furthermore, some variants of the moment
matching method have been proposed to reduce the number of random
variables and expedite the algorithm. Høyland et al. (2003) developed a
heuristic algorithm for accelerating the original moment matching, but
convergence cannot be guaranteed. Rubasheuski et al. (2014) described
a method that combines moment matching with a forward selection
reduction technique to expedite the tree construction process. Gülpinar
et al. (2004b) introduced a hybrid method for price assessment scenario
tree generation, which combines the main ideas of clustering and mo-
ment matching. In this hybrid method, prices (the scenario nodal va-
lues) are obtained from clustering and the scenario probabilities are
determined by solving a moment matching problem. However, in the
field of streamflow prediction, the probability of a fixed nodal-values
scenario is required to be fixed, so this hybrid approach may not be
appropriate. This is because the probability of a fixed nodal-values
scenario under such a hybrid method might be subject to change, due to
the non-uniqueness of the optimization problem, if only scenario
probabilities are used as decision variables. Moreover, changes of pre-
ference coefficients for different moments also can lead to a large
probability change of the fixed nodal-values scenario. Thus, the result
of this hybrid method may yield good model parameters but they
cannot be regarded as the scenario probabilities. Note that the original
moment matching method does not suffer from this drawback, since
both the nodal value and probability are used as decision variables.

In addition to those three categories, there are other scenario tree
generation methods. Pflug (2001) presented a method that can be used
to approximate a scenario tree for a given stochastic process based on
minimizing the Wasserstein distance between the original stochastic
process and the generated scenario tree. Da Costa et al. (2006) pre-
sented a method for producing a parsimonious multivariate scenario
tree by using Principal Component Analysis (PCA), but it may en-
counter computational difficulties when generating a scenario tree with
many stages. Heitsch and Römisch (2009a) developed a theory-based
heuristic method that generates scenario trees out of an initial set of
scenarios, based on forward or backward algorithms for tree genera-
tion, including recursive scenario reduction and bundling steps. Pflug

and Pichler (2015a,b) presented a method for the dynamic generation
of a scenario tree based on random vectors, which are drawn from
conditional distributions given the past and on sample trajectories.
These two methods are both capable of generating scenario trees that
are good approximations of the historical series. However, the structure
of the generated scenario tree for both methods cannot be determined
beforehand; it is dynamically adjusted with respect to a distance cri-
terion. Dupacová et al. (2000) examined different scenario tree gen-
eration methods and concluded that the choice among these methods
should depend on specific problems and the amount of information
available.

Since the generated scenario tree is used as the input to a stochastic
programming with recourse model, the size of the tree directly impacts
the dimensionality of the optimization model (Casey and Sen, 2005). To
avoid high computation cost, the number of scenarios (size of the tree)
must be reduced properly (Pan et al., 2015; Séguin et al., 2017). The
most important issue when conducting scenario tree reduction is the
tradeoff between information loss from the full tree and the computa-
tional burden (Høyland and Wallace, 2001; King and Wallace, 2012).

Compared with scenario tree generation, scenario tree reduction
techniques have received less attention in the literature. In fact, sce-
nario tree generation and scenario tree reduction are often intertwined.
There are some common features in scenario tree generation and sce-
nario tree reduction, and some scenario tree generation techniques also
can be used for tree reduction. However, directly applying tree gen-
eration methods to scenario tree reduction is not always the best choice,
since the reduced tree will inherit the drawbacks of the selected tree
generation method. For instance, Xu et al. (2015) applied a clustering
method to reduce the scenario tree by adopting new pre-specified tree
structures with smaller sizes. This is very easy to implement, and the
mean of the full tree can be preserved very well. However, the reduced
tree cannot preserve any higher moments due to the inherent limita-
tions of the clustering method. Moreover, applying tree generation
methods to tree reduction typically involves generating a new tree of
smaller size, which cannot be classified as “reduction from a given
scenario tree” if the strict definition of our objective of scenario tree
reduction is “to determine a subset of the initial scenario tree and assign
new probability to the reduced scenarios” (Growe-Kuska et al., 2003).

Most existing scenario tree reduction methods generate the reduced
tree by minimizing the probability metric between the reduced tree’s
distribution and the full tree’s distribution, and then calculating the
new scenario probability by adding the deleted scenarios’ probabilities
according to some rules. The goal of these methods can be summarized
as follows:

min distance (distribution , distribution ),full tree reduced tree (1)

which is equivalent to minimizing the following norm:

∑ −
∞

min ||moment moment ||.
i

full tree
i

reduced tree
ith th

(2)

Dupacová et al. (2003) first proposed a “backward reduction and
forward selection” scenario reduction algorithm for distribution
matching. Heitsch and Römisch (2003) then improved the computa-
tional efficiency of the algorithm. Subsequently, many studies were
carried out focusing on either improving the algorithm or applying it to
different fields (Heitsch et al., 2005; Heitsch and Römisch, 2007;
Heitsch and Römisch, 2009a; Heitsch and Römisch, 2009b; De Oliveira
et al., 2010).

By minimizing the probability metric between the reduced tree’s
distribution and the full tree’s distribution, it is possible to generate a
reduced tree with similar distribution as that of the full tree at some loss
of information. However, for water resource planning and manage-
ment, the higher-order moments [i.e. the third-order moment (skew-
ness), the fourth-order moment (kurtosis), etc.] are not as important as
the first-order moment (mean) and the second-order moment
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(variance), particularly in reservoir management and operations (Yeh,
1985). This is because the mean streamflow is closely related to power
generation, and fluctuation around the mean is important to flood
control. Therefore, we believe the methods based on matching the
distribution may not be the best for tree reduction for reservoir op-
erations. Because of the property of scalarization of vector optimization
(Boyd and Vandenberghe, 2004), the pursuit of matching higher-order
moments (i.e. the ⩾imoment , 3ith in Eq. (2)) will be at the expense of
matching the first-order and second-order moments. Moreover,
methods based on distribution matching are not guaranteed to match
lag-one (i.e. serial) and cross-site (i.e. spatial) correlations. These cor-
relations are important in the operation of a cascade reservoir system
(Hao and Singh, 2013; Chen et al, 2015).

In our study, we propose a new scenario tree reduction method
based on a variant of the Monte Carlo sampling method and regularized
optimization. Distinct from all previous studies, our proposed method
reduces the scenario tree in a systematic way based on the prior
probability and conditional sampling. It is different from the traditional
distribution matching and is specifically designed for matching statis-
tical moments that are important to the management and operation of
hydro systems. The objective of our proposed method is to minimize the
following norm:

∑⎛
⎝
⎜ − ⎞

⎠
⎟ +

−

w λ

β β

min ·||(Co)moment (Co)moment ||

·|| ||,

i

r

i historical
i

reduced tree
i

historical reduced tree

th th

(3)

where r indicates the first rth moments selected for matching; wi is the
weighting parameter for the (Co) moment i; λ is a penalty parameter;
and β is the scenario probability vector. Comparing Eq. (3) with Eq. (2),
it is evident that our method focuses on matching the first rth important
moments. It is worth noting that our method does not alter the nodal
values of the full scenario tree. This is more compatible with the defi-
nition of “scenario tree reduction”. Moreover, we formulate a model to
optimize a weighted multiple objective function, where we can assess
the tradeoff between probability matching and moment matching. We
also test and ensure the stability of our method.

We outline this paper as follows: Section 2.1 introduces the neural
gas method and emphasizes the probability formula that we use later.
Section 2.2 illustrates the developed stepwise conditional Monte Carlo
random sampling procedure. Section 2.3 uses the established prob-
ability formula to find the “historical probability” for each reduced tree
candidate. Section 2.4 introduces five important criteria related to
moment matching. Section 2.5 applies regularized optimization to de-
termine posterior probability. Section 2.6 selects the best reduced tree.
Section 3 applies the proposed method to the Qingjiang cascade system
of reservoirs in China. We provide final remarks and conclusions in
Section 4.

2. Methodology

A flowchart of the proposed method is shown in Fig. 1. First, we
employ the neural gas clustering algorithm to generate a full scenario
tree using historical inflow series. Then, based on the prior probability
of each scenario obtained from the neural gas procedure, we apply
stepwise conditional Monte Carlo random sampling to generate a
tractable number of scenario combinations (subsets of the full tree),
serving as the reduced tree candidates for further selection. We calcu-
late the “historical scenario probability” for each reduced tree candi-
date by reusing the neural gas probability formula. Then we formulate a
regularized optimization model, which is a combination of moment
matching and modified ridge regression. The model generates the
posterior scenario probability for each reduced tree candidate. Lastly,
we evaluate all the reduced tree candidates and select the one that
performs best under different subjective preferences. Each procedure
will be elaborated in the following subsections.

2.1. Neural gas method for scenario tree generation

There are many ways to represent a stochastic process, and a sce-
nario tree is widely used to model streamflow stochasticity. A scenario
tree consists of a finite number of outcomes and their corresponding
probabilities at each stage. Each scenario is basically a path from the
root outcome to the leaves outcome, and its probability is the product of
the outcomes’ probabilities on that path. Specifically, a streamflow
scenario tree is a tree generated from the historical observed stream-
flow series.

We use the notation ∈S i P{ }, [1, ..., ]i to define a streamflow scenario
tree in which Si is the scenario i and P is the total number of scenarios. βi
is defined as the scenario probability of scenario i. We let t be the stage
and T be the total number of stages. Then we define a sequence of nodes

∈ ∈N i P t T, [1, ], [1, ]i t, , which consists of the scenario Si from stage 1
(root node) to stage T (leaves node). Note that =N N *i t i t, , if scenario Si
and scenario S *i have a common node Ni t, (or N *i t, ) at stage t, in which
case they are interchangeable. Moreover, the nodal value can be a
vector instead of a scalar, which means

= ∈N N N N N j M( , , , ..., ) , [1, ]i t j i t i t i t i t M
T

, , , ,1 , ,2 , ,3 , , , and M is the length of the
node vector, which, in the case of a streamflow scenario tree, is the total
number of reservoirs in a reservoir system. Fig. 2 is an example of a
three-stage streamflow scenario tree with four scenarios, in which

=N N1,2 2,2 and =N N3,2 4,2 (even though N2,2and N3,2 are not shown in
Fig. 2).

The neural gas method, a well-known artificial neural network al-
gorithm, generates the representative vectors from the known vector
sets (Martinetz and Schulten, 1991; Martinetz et al., 1993). It is a
probabilistic generalization of the k-means algorithm in which each
vector is assigned a probability of being in each cluster that is pro-
portional to its distance from that cluster's mean. It has been shown that
the neural gas method outperforms other clustering methods when
generating a streamflow scenario tree for hydro inflows data (Latorre
et al., 2007), so we adopt the neural gas algorithm for streamflow
scenario tree generation. The neural gas method extracts several re-
presentative sequences from historical streamflow series as different
scenarios to form a streamflow scenario tree. The steps for performing
the neural gas method are detailed in previous studies (Latorre et al.,
2007; Melato et al., 2007; Xu et al., 2015). However, we outline some
key steps below.

2.1.1. Pre-specified scenario tree structure
The neural gas method requires a pre-specified scenario tree struc-

ture to determine a) the number of scenarios in the scenario tree; and b)
the nodal structure of the tree. The tree structure can be described by a
scenario tree nodal partition matrix. The column vector of a partition
matrix represents a scenario. The element value of the partition matrix
has no meaning, but if two scenarios share one node, the element values
of that node in each scenario should be the same. For example, the
partition matrix of the tree structure in Fig. 2 can be
[1,1,1,1;2,2,3,3;4,5,6,7]. Because every scenario in the tree shares the
common root node in the tree, the first-row elements of the partition
matrix must be the same. Similarly, the last-row elements of the par-
tition matrix must be different from each other, since the leaves node
cannot be the shared node. Latorre et al. (2007) suggested that the
initial tree structure “should be wide enough not to limit how the
scenario tree represents the series, ignoring whether the resulting tree
will be too large or not”.

2.1.2. Nodal value initialization
We initialize the nodal value of each scenario in the scenario tree by

randomly selecting a historical streamflow series (i.e., an observed
sample vector):

= ∈ ∈N H i P t T[1, ], [1, ],i t rand t, , (4)

where Hυ t, is the streamflow value of historical streamflow series υ at
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stage t, ∈υ K[1, ]; rand is a random integer within 1 to K; and K is the
total number of historical streamflow series (each series is a set period,
in this case a year, and stage t corresponds to month).

Then we average the values of the node shared by two or more
scenarios (i.e., the nodes with the same partition matrix elements). This
step is for accelerating the convergence:

=N N N NAverage ( , , ..., ).i t i t j t z t, , , , (5)

2.1.3. Iteration to update nodal values
Altering nodal values to match the historical data series is an im-

portant step of the neural gas method, which involves the following
operations:

1) Select a series ξ randomly from the historical data series set before
each iteration and calculate the Euclidean distance between this
series and every initialized scenario in the tree. Then sort the dis-
tances in array D in an ascending order and generate an array O to
record the distance rank of each scenario:

∑∑= − ∈D H N i P( ) , [1, ],i ξ
t

T

m

M

ξ t m i t m, , , , ,
2

(6)

=O order D( ), (7)

where Di ξ, is the Euclidean distance between scenario i and randomly
picked series ξ ; Hξ t m, , is the nodal value of randomly picked series ξ at
stage t for reservoir m; and Ni t m, , is the nodal value of scenario Si at
stage t for reservoir m.

2) Define the iteration step size functionsε j( ), λ j( ), and adaptation
function h O λ j( , ( ))i :

=ε j ε ε ε( ) · ( / ) ,f
j j

0 0
/ m (8)

=λ j λ λ λ( ) · ( / ) ,f
j j

0 0
/ m (9)

= ∈−h O λ j e i P( , ( )) [1, ],i
O λ j( / ( ))i (10)

where ε0 and εf are step size parameters to reduce from ε0 to εf after
each iteration; j represents the iteration time from 0 to the maximum
iteration time jm ; λ0 and λf are the adaptation parameters; Oi is the
distance rank of scenario Si; ε(j), λ(j) and h O λ j( , ( ))i are used to change
the nodal values at each iteration, as described in Step 3; ε j( ) is the step
size function (a.k.a. “learning rate”) that decides the general step size
for every scenario’s change; and λ j( ) is another step size function (a.k.a.
“adaptation radius”) that determines the step size of change for each
individual scenario. Both step size functions decrease as the iterations
proceed to convergence. As a learning algorithm, the convergence
parameters ε0, εf , λ0, λf , and jm can be determined by fine-tuning for
each case. However, in this study, we adopt the values suggested by
Latorre et al. (2007) and Xu et al. (2015) as follows: maximum iteration
time =j 3000m ; step size parameters =ε 0.50 and =ε 0.05f ; and adap-
tation parameters =λ 100 and =λ 0.01f . The adaptation function,
h O λ j( , ( ))i , provides the adaption value for each scenario, based on its
distance order to the randomly picked series.

3) Reduce the distance between the historical data series and the

Fig. 1. The flowchart of the proposed method.

Fig. 2. An example of three-stage streamflow scenario tree structure (t is the
stage; Si is the scenario i; βi is the probability of scenario i).

Fig. 3. Schematic diagram of the Qingjiang reservoir system.
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scenarios by changing the node value of Ni t, by NΔ i t, , where NΔ i t, is
determined by Eq. (11):

∑ ∑= −
= ∈ = ∈

( )N ε j h O λ j H NΔ ( )· ( *, ( ))· / 1,i t
i N S

P

i ξ t i t
i N S

P

,
* 1|

, *,
* 1|i t i i t i, * , * (11)

∈ ∈i P t T[1, ], [1, ].

Note that the notation = ∈i P N S* 1, 2, ..., | i t i, *refers to every index i*
whose corresponding scenario Si* consists of the node Ni t, .

Update the nodal value:

= ++N N NΔ .i t
j

i t
j

i t,
1

, , (12)

Return to procedure 1) until =j jm.
By iterating on nodal values, the scenario tree is moved toward the

selected series. The closer a scenario is to the picked series, the more
significant change this scenario will experience. Specifically, Eq. (11)
indicates that the change of a given node is determined both by step
size and the weighted average distance from every scenario that con-
tains this node to the picked series. The entire scenario tree gradually
will move and finally converge to the centroid of the historical
streamflow series set. We provide an illustrative figure (Fig. 5) in the
case study section. The centroid is a set of P scenarios within the pre-
specified tree structure (i.e. a scenario tree with P scenarios) in the
higher-dimensional space, with minimum total distances to each his-
torical streamflow series.

2.1.4. Determine the probability of each scenario
The probability of scenario Si is proportional to the number of his-

torical flows whose closest scenario is Si. This is described mathema-
tically by Eq. (13):

= ′ ∈ ′ = ∈′
′∈

′ ′β Count ζ K ζ D D K i P{ [1, ], | min { }}/ , [1, ],i i ζ
i P

i ζ,
[1, ]

, (13)

where βi is the probability of scenario Si ; ′ ′Di ζ, is the Euclidean distance
between scenario ′Si and historical series ′ζ , and Count{} is the counting
function. The probability calculated by Eq. (13) is based on the like-
lihood of occurrence in the history.

2.2. Search for scenario subsets based on conditional Monte Carlo sampling

After applying the neural gas algorithm, we obtain P scenarios with
corresponding probabilities in the full scenario tree. The full scenario
tree refers to the scenario tree without reduction. By sampling the
scenario from the full tree, Cscenario combinations (i.e., subsets) are
generated, and each combination contains R scenarios <R P( ). This
sampling is based on the full tree scenario probability obtained from the
neural gas algorithm.

2.2.1. Define the reduction level, combination size R and total combination
number C

Suppose the full tree contains P scenarios and the associated prob-
abilities are denoted by ∈β i P, [1, ]i . The reduction level for the re-
duced tree is defined as − ×P R P( )/ 100%, where R is the number of
scenarios in the reduced tree. A scenario combination is the combina-
tion of the sampled R scenarios. Therefore, a scenario combination also
can be regarded as a reduced tree candidate with R scenarios.

The number of combinations is represented by the total combina-
tion number C . The reason that we specify this number C , instead of
going through all possible combinations, is that the number of all
possible combinations can be extremely large. For example, if we
sample 24 scenarios from a full tree with 48 scenarios, then the number

of all possible combinations is ≈ ×( )48
24 3.22 1013, which is intractable.

This motivates us to find an efficient sampling strategy to form scenario
combinations that are most likely to occur (namely Ccombinations and

≪ ( )C P
R ).

2.2.2. Sample and formulate scenario combinations
We use the prior scenario probability obtained from the neural gas

algorithm to formulate scenario subsets by multi-steps conditional
Monte Carlo sampling.

1) Prior probability distribution d0

Before sampling a scenario from the full scenario tree, the prior
probability distribution is known, since the neural gas algorithm cal-
culates the probability of each scenario in the full tree. Let d0 be a
discrete probability distribution that dictates the probability for each
scenario in the full tree. The Probability Mass Function (PMF) of d0 can
be written as

= = ∈S S β i PPr ( ) , [1, ],d i i0 (14)

where βi are the prior probabilities obtained from the neural gas
algorithm.

2) The first step sample and the first conditional probability distribu-
tion d1

Under the d0 distribution, we sample one scenario from the full tree,
∼ dSample1 0, so the probability distribution from which it is selected

needs to be updated from d0 to d1. Suppose scenario Su is selected. Then
the PMF of d1 can be written as

= =
−

=
∑

∈ ≠S S
β
β

β

β
i P i uPr ( )

1
, [1, ], ,d i

i

u

i

i
P u

i
/{ }1

(15)

where P u/{ } indicates all scenarios except the selected scenario Su. This
equation basically indicates that when Su is picked-out, we delete βu
from d0 and adjust other scenarios’ probabilities to form d1.

3) The second step sample and the second conditional probability
distribution d2

Under the d1 distribution, we sample the second scenario from the
remaining scenarios (i.e., the full tree scenarios with Sudeleted),

∼ dSample2 1. Suppose scenario Sl is selected. Then the second condi-
tional probability distribution d2 can be expressed as

= =
− −

=
∑

∈ ≠S S
β
β β

β

β
i P i u lPr ( )

1
, [1, ] , .d i

i

u l

i

i
P u l

i
/{ , }2

(16)

4) The R step sample and Rstep conditioned probability distributiondR

Follow the same procedure and keep sampling scenarios from the
remaining scenarios until sampling-out the Rscenario, under the −R 1
conditioned probability distribution −dR 1, ∼ −dSampleR R 1. The R con-
ditional probability distribution dR can be written as

= =
∑

∈ ≠S S
β

β
i P i u l vPr ( ) , [1, ], , . .. ,d i

i

i
P u l v

i
/{ , ... }R

(17)

where =u l v RCount{ , . .. } , with R the combination size. Now the
sampling procedure over R stages for this combination is terminated,
resulting in one scenario combination, = S S SComb { , , ..., }u l v1 . Repeat
the procedures C times to obtain Ccombinations.

Back to the original prior probability distribution d0, we implement
the same method to sample R scenarios for one combination. Repeat
Ctimes to form Ccombinations. These scenario combinations serve as
candidates for the final reduced tree’s scenarios, and new probabilities
for each scenario in each combination will be determined.

As demonstrated above, this proposed stepwise sampling method is
developed to find a tractable number of scenario combinations that are
most likely to occur. Since the sampled combination will serve as the
reduced tree candidate, so it is required that the sampled combination
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only contains different scenarios. The proposed sampling method en-
sures that the sampled scenarios are different, and the sampling process
is always based on the prior scenario probability distribution.
Additionally, the proposed sampling procedure is guaranteed to ter-
minate in R steps.

2.3. The “historical probability” of the sampled scenario for each
combination

After sampling R scenarios from the full tree, the original prob-
abilities of the sampled scenarios obtained from the neural gas algo-
rithm no longer can be used. It is necessary to determine the scenario
probability for each of scenario combinations (reduced tree candi-
dates).

In this step, we still use the probability formula of the neural gas
method to re-compute the probability of each scenario in each reduced
tree candidate. In other words, we re-calculate the distance array D in
Eq. (6) and then reuse probability Eq. (13) to determine the prob-
abilities of the scenarios for each combination. This probability, cal-
culated by reusing the neural gas probability formula Eq. (13), is named
“historical probability”, or “βhist”. Note that the probability is calculated
based on the distance to the historical data series, so it represents the
likelihood of occurrence in the history. This βhist should be preserved for
each scenario in each reduced tree candidate. However, since we take
some scenarios out of the full tree, if this βhist is used as the scenario
probability in the reduced tree candidates, the statistical moments of
the reduced tree candidates will be different from the full tree. The
extent of moment deviation depends on the scenario combination in
each reduced tree candidate. Therefore, for the reduced tree candidate
k, it is preferable to find another posterior scenario probability “β k”,
which is sufficiently close to βk hist and, at the same time, minimizes the
deviation of statistical moments between the reduced tree and full tree.
We then assign this posterior probability as the scenario probability of
the reduced tree k.

2.4. Five criteria to evaluate the statistical moment deviation

We define five criteria to measure the statistical moment deviation:
Total Mean Deviation Squared (TMDS), Total Variance Deviation
(TVD), Total Lag-one Co-Variance Deviation (TLCVD), Total Cross-site
Co-Variance Deviation (TCCVD), and Mean Squared Error (MSE).
TMDS, TVD, TLCVD, and TCCVD are used in the optimization step, but
MSE serves as a reference. These criteria are explained below.

2.4.1. Total mean deviation Squared (TMDS)
This subsection describes the calculation of the mean values for

different scenario trees and the historical data series. The definition of
TMDS also is provided.

Mean value of the reduced tree k for reservoir m at stage t :

∑=
=

μ N β· .m t
k

i

R

i m t
k

i
k

,
1

, ,
(18)

Mean value of the historical data series for reservoir m at stage t :

∑=
=

μ H K/ .m t
historical

i

K

i m t,
1

, ,
(19)

Mean value of the full tree for reservoir m at stage t :

∑=
=

μ N β· ,m t
fulltree

i

P

i m t
fulltree

i
fulltree

,
1

, ,
(20)

where βi
fulltree is the probability of scenario i of the full tree; βi

k is the
probability of scenario i of the reduced tree k; Ni m t

k
, , is the node value of

scenario i in the reduced tree k for reservoir m at stage t ; Hi m t, , is the
value of historical data series i for reservoir m at stage t ; Ni m t

fulltree
, , is the

node value of scenario i in the full tree for reservoirm at stage t ; R is the
combination size (i.e., the number of scenarios in a reduced tree); K is
the total number of historical data series; P is the number of scenarios in
the full tree; C is the total number of reduced tree candidates; M is the
length of the node vector (i.e. the total number of reservoirs in a re-
servoir system); and ∈ ∈ ∈m M t T k C[1, ], [1, ], [1, ].

Total Mean Deviation Squared (TMDS) of reduced tree k
The term TMDS is used to evaluate the deviation from the reduced

tree’s mean from the historical series’ mean across all reservoirs and
stages. A low TMDS value for a reduced tree indicates a good match
between a reduced tree’s mean and the historical mean, which is de-
sirable. TMDS can be summarized as

∑ ∑= −
= =

TMDS γ μ μ· ( ) ,k
m

M

m
t

T

m t
historical

m t
k

1 1
, ,

2

(21)

where γm is the weight assigned to reservoir m.

2.4.2. Total variance deviation (TVD)
This subsection describes the calculation of the variance values for

different scenario trees and the historical data series. The definition of
TVD also is provided.

Variance of the reduced tree k for reservoir m at stage t :

∑= −
=

σ N μ β( ) · .m t
k

i

R

i m t
k

m t
k

i
k

,
2

1
, , ,

2

(22)

Variance of the historical data series for reservoir m at stage t :

∑= − −
=

σ H μ K( ) /( 1).m t
historical

i

K

i m t m t
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,
2

1
, , ,

2

(23)

Variance of the full tree for reservoir m at stage t :

∑= −
=

σ N μ β( ) · .m t
fulltree

i

P

i m t
fulltree

m t
fulltree

i
fulltree

,
2

1
, , ,

2

(24)

Total Variance Deviation (TVD) of reduced tree k:
The term TVD represents a criterion that estimates the deviation of

the reduced tree’s variance from the historical series’ variance across all
reservoirs and stages. A low TVD value for a reduced tree implies that
the reduced tree reproduces the historical variance well and is able to
capture the historical extreme values. TVD can be written as

∑ ∑= −
= =

TVD γ σ σ· | | .k
m

M

m
t

T

m t
historical

m t
k

1 1
,

2
,

2

(25)

2.4.3. Total Lag-one Co-Variance deviation (TLCVD)
The serial correlation between two consecutive stages in the his-

torical streamflow series can be represented by the lag-one covariance.
Lag-one Co-Variance of the reduced tree k for reservoirm at stage t :

∑= − × −
=

− −Cov N μ N μ β{( ) ( )}· .m t
k

i

R

i m t
k

m t
k

i m t
k

m t
k

i
k

,
1

, , , , , 1 , 1
(26)

Lag-one Co-Variance of the historical data series for reservoir m at
stage t :

∑= − × − −
=

− −Cov H μ H μ K{( ) ( )}/( 1).m t
historical

i

K

i m t m t
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i m t m t
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,
1

, , , , , 1 , 1

(27)

Lag-one Co-Variance of the full tree for reservoir m at stage t :

∑= − × −
=

− −Cov N μ N μ β{( ) ( )}· .m t
fulltree

i

P

i m t
fulltree

m t
fulltree

i m t
fulltree

m t
fulltree

i
fulltree

,
1

, , , , , 1 , 1
(28)

Equations (26) and (28) are valid for ⩾t 2. For historical data, we
assume =Cov 0m

historical
,1 .

Total Lag-one Co-Variance Deviation (TLCVD) of the reduced tree k:
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The term TLCVD represents the similarity of the serial correlation
between the reduced tree and the historical data series. Generally, the
smaller the TLCVD the better, since it means the reduced tree has a
similar serial correlation as the historical data series. This criterion can
be defined as

∑ ∑= −
= =

TLCVD γ Cov Cov· | | .k
m

M

m
t

T

m t
historical

m t
k

1 1
, ,

(29)

2.4.4. Total Cross-site Co-Variance deviation (TCCVD)
The spatial correlation between two reservoirs in the historical

streamflow series can be represented by the cross-site covariance.
Cross-reservoir Co-Variance of the reduced tree k between reservoir

mand n ≠m n( ) at stage t :

∑= − × −
=

Cov N μ N μ β{( ) ( )}· .m n t
k
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i m t
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m t
k

i n t
k

n t
k

i
k

, ,
1
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(30)

Cross-reservoir Co-Variance of the historical data series between
reservoir mand n ≠m n( ) at stage t :
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Cross-reservoir Co-Variance of the full tree between reservoir mand
n ≠m n( ) at stage t :

∑= − × −
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Total Cross-reservoir Co-Variance Deviation (TCCVD) of the re-
duced tree k:

The term TCCVD represents the similarity of the cross-site correla-
tion between the reduced tree and the historical data series. Like
TLCVD, the lower the TCCVD the better, since it indicates the reduced
tree has a similar cross-site correlation as the historical data series. This
criterion can be defined as

∑ ∑= −
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2.4.5. Mean Squared error (MSE)
MSE is a commonly used index to evaluate the Euclidian distance

between two data series. Here it is used to describe the distance be-
tween the reduced tree and the historical data series. The MSE of the
reduced tree k is
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2.5. Regularized optimization for determining posterior scenario probability

As discussed in Section 2.3, it is desirable to keep the smallest de-
viation of statistical moments between the reduced tree and full tree,
while making each scenario probability stable. In this section, we apply
the technique of regularized optimization, which combines the mod-
ified ridge regression and moment matching.

2.5.1. Ridge regression and the modified assumption
Ridge regression is a widely used biased estimating technique in

statistics for multiple linear regression that suffers from multi-
collinearity (Hoerl and Kennard, 1970). It is similar in form to the or-
dinary least square (OLS) estimator but adds another regularization
term. Thus, a traditional ridge linear regression can be generalized as

the following optimization problem:
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where yi are dependent variables; xij are independent variables; ωj are
regression coefficients; λ is the ridge parameter; and Ω and Ψ are the
total number of observations and regressors, respectively.

From the Bayesian point of view, the OLS estimator is identical to
the maximum likelihood estimator (MLE) under the normality as-
sumption for the error terms. In contrast, the Ridge Linear Regression
(Ridge LR) is identical to the maximum a posteriori (MAP) under the
normality assumption for the error terms and coefficients terms. This
condition can be expressed as

∑= + = + ∼ ∼
=

y ω x ε Xω ε ε σ ω τ, N (0, ), N (0, ),
j

j j
T

i j
1

Ψ
2 2

(36)

where εi is the error term and ωj is the coefficient term, both of which
have a Gaussian distribution with zero mean. Compared with the OLS
estimator, the Ridge LR utilizes the prior information that the coeffi-
cient term ω has a Gaussian distribution with zero mean. Based on these
assumptions, the optimized coefficient ω will be close to zero if a very
large value is assumed for the ridge parameter λ.

However, as illustrated in Section 2.3, it is desirable to make the
scenario probability as close to βhist as possible. Therefore, instead of
assuming all the coefficient terms in Gaussian distributions with zero
mean, we assume that the coefficient terms have Gaussian distributions
with mean values of βhist; that is, ∼ ∼ε σ ω β τN(0, ), N( , )i j j

hist2 2 , where
βhist is obtained as in Section 2.3.

Based on the assumption and the MAP principle, the modified Ridge
LR can be expressed as
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2.5.2. Regularized optimization for scenario tree reduction
Since matching the statistical moments between observed data (i.e.

historical data series) and the reduced tree is very important, we con-
duct regularized optimization that combines the modified ridge re-
gression and moment matching. In this study, we consider matching the
first order moment (mean), the second order moment (variance), lag-
one covariance, and cross-site covariance. Thus, the general form of the
optimization model can be expressed as

∑+ + + + −
=

Minimize

w TMDS w TVD w TLCVD w TCCVD λ β β

:

[ · · · · ] · ( ) ,

β

i
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i i
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1 2 3 4
1

2

i

(38)

where w w w, ,1 2 3, andw4 are the weighting parameters for TMDS, TVD,
TLCVD, and TCCVD, respectively; βi

hist is the historical probability of
scenario i in a reduced tree candidate; and βi, the decision variable, is
the probability of scenario i in the final reduced tree. The weighting
parameter values sum to one and should be specified by decision ma-
kers, depending on their preference.

After substitution, the optimization model can be written as
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subject to:
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where K is the total number of historical streamflow series and λ is the
ridge parameter. The decision variable in the optimization model is the
reduced tree probability βi

k for the reduced tree k. Note that Eq. (39),
subject to constraint (40), is a nonlinear and constrained optimization
problem. We solve it with the interior point method, via the MATLAB
optimization toolbox (Byrd et al., 1999, 2000).

2.5.3. Determine the optimal value of ridge parameter λ
Ridge parameter λ controls the magnitude of preservation of βhist. A

larger λvalue encourages the solution of βi to be closer to βi
hist . The

value of λ determines the tradeoff between matching the statistical
moments and matching the historical probabilities. We use the Ridge
Trace method suggested by Hoerl and Kennard (1970) to determine the
optimal λ value (λoptimal):

1) Plot a figure that shows the optimal βi values as a function of λ.
These functions in the plot are considered ridge traces for each βi;

2) View the ridge traces and pick values of λ for which all βi values
have stabilized. It is common that βi will fluctuate very widely for
small values of λ and then become stable;

3) Choose the smallest λ value after all βi have approached constants.
The smallest value is the optimal λ value, namely, λoptimal. We pro-
vide an illustrative figure (Fig. 6) of this method in the case study
section.

2.5.4. Measure total probability deviation by total probability error (TPE)
TPE measures the total probability deviation from the historical

scenario probability βhist . It is apparent that TPE decreases as the ridge
parameter λincreases. The acceptable tolerance of TPE is subject to the
decision maker. The TPE of the reduced tree k is

∑= −
=

TPE β β| | .k
j

R

j
k

j
k hist

1 (41)

2.6. Selection of the final reduced tree

Since we have Cdifferent reduced tree candidates, we select the
reduced tree with the smallest objective function value in Eq. (39) as
our final reduced tree, under the specified value of ridge parameter λ.

3. Case study

Our study area is the Qingjiang cascade reservoir system, located in
the middle part of the Yangtze River, China. The system produces hy-
dropower to supplement the energy demand in Hubei province. It
consists of three reservoirs: Shuibuya (the most upstream reservoir),
Geheyan (the middle reservoir), and Gaobazhou (the most downstream
reservoir), respectively, as shown in Fig. 3.

In Fig. 3, Q1 is the streamflow into Shuibuya reservoir; Q2 is the
lateral streamflow between Shuibuya and Geheyan; andQ3 is the lateral
streamflow between Geheyan and Gaobazhou. For this case study, we
assume equal weights for all three reservoirs, i.e., = = =γ γ γ 11 2 3 . We
have 59 years of monthly historical streamflow data series available,
from Jan. 1951 to Dec. 2009. Each set of historical streamflow series
consists of 12 stages (i.e. 12months) and each stage has three

Fig. 4. Tree structures of the full tree (a) and 50% reduced tree structure (b).

Fig. 5. Historical series value and full tree scenario (i.e. centroids) nodal values
of the Shuibuya reservoir.
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streamflow values, which can be vectorized as Q Q Q[ , , ]T1 2 3 .

3.1. Generation of the full streamflow scenario tree

We use historical data and the neural gas algorithm to generate the
full streamflow scenario tree. The step size and adaptation parameter
values in Section 2.1.3 are used. The pre-specified structure for the full
tree is shown in Fig. 4 (a) and contains 48 scenarios. We also provide
Fig. 4(b) to show an example of the reduced scenario tree structure with
a 50% reduction level.

The results from the neural gas algorithm are the 48 representative
scenarios, including their nodal values and probabilities. Also, these
nodal values at different stages can be interpreted as the “centroids” of
the historical data series. These results are shown in Fig. 5, using the
Shuibuya reservoir as an example.

As computed by the neural gas method, 11 scenarios of the full
scenario tree have a zero probability. Because of the limited historical
series sets (59) and relatively large number of scenarios in the full tree
(48), it is highly possible that for a specific scenario Si, there is no
historical series whose closest scenario is Si, which leads to zero prob-
ability of that scenario. In our analysis, the zero probability scenarios
are discarded. Hence, our full tree is a scenario tree with 37 (i.e.
48–11= 37) non-zero probability scenarios.

Note that our study focuses on scenario tree reduction for a given a
full tree. Therefore, any method can be used to generate the full tree.
We use the neural gas algorithm because it has been shown that the
generated scenario tree performs best for hydro inflow applications
(Latorre et al., 2007).

3.2. Test ridge parameter λ

Ridge parameter λ will impact the optimization problem. Its op-
timum value should be determined prior to optimization. In this sec-
tion, we use a 35% reduction level as an example, (i.e. the 37-scenario
full tree is reduced to 24 scenarios), and the weighting parameters are
assumed to be as follows: =w 0.981 , =w 0.022 , and = =w w 03 4 (i.e.
mean–variance optimization), with the total combination number
=C 100 (i.e., the number of reduced tree candidates generated). We

first employ the Ridge Trace method to determine the optimal value of
ridge parameter λ, then conduct a tradeoff analysis to validate the value
of λoptimal.

3.2.1. Ridge Trace method for determining λoptimal
Using the specified parameter values, we solve the optimization

model. Then we randomly select reduced tree #15 and its associated

scenario probabilities (i.e., optimized coefficients) and plot the ridge
trace diagram shown in Fig. 6. The results show that all the coefficient
values remain almost constant when ⩾λ 106. Therefore, we adopt

=λ 10optimal
6.

3.2.2. Validate λoptimalvalue based on a tradeoff between weighted moment
deviation and TPE

In Eq. (38), the two competing objectives are the weighted moment
deviation ( + + +w w w w·TMDS ·TVD ·TLCVD ·TCCVD1 2 3 4 ) and TPE.
By varying the λ value, a tradeoff between these two objectives can be
determined, as shown in Fig. 7. This makes it possible to select a
compromise solution. Fig. 7 shows that =λ 106 yields the best com-
promise solution in that both optimized values are low. This validates
the Ridge Trace method as suggested by Hoerl and Kennard (1970).

3.3. The mean–variance preservation of the reduced trees

In this section we demonstrate the mean–variance preservation of
the reduced tree using the weighting parameters ( =w 0.981 , =w 0.022 ,
and = =w w 03 4 ), total combination number =C 100, optimal ridge
parameter =λ 10optimal

6, and 35% reduction level. Additionally, we test
four different reduction levels (10%, 35%, 50% and 70%) to evaluate
the effect of the reduction level on the reduced tree’s moment matching.

Before the optimization process, the scenario probabilities for each
scenario combination (reduced tree candidate) are βhist (i.e., historical
probability). As the scenario combinations are generated by conditional
Monte Carlo sampling, some scenario combinations may be able to

Fig. 6. Ridge Trace of optimization coefficients of reduced tree #15.

Fig. 7. Weighted moment deviation & TPE vs. ridge parameter λ
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capture the extreme scenarios in the full tree. Extreme scenarios are
those scenarios containing extreme nodal values, thus typically with
low probabilities. If extreme scenarios are selected in some reduced tree
candidates, then those candidates may be good candidates for the final
reduced tree.

After the optimization process, the posterior scenario probabilities
βi are calculated. Based on the reduced tree selection rule, the best
reduced tree is selected. This best reduced tree is defined as the “re-
duced tree” in short. The “historical probability tree” is then defined as
the reduced tree candidate that has the same scenarios as the “reduced
tree”. The difference between the historical probability tree and the
reduced tree is their scenario probabilities, which are βi

hist and βi, re-
spectively.

Fig. 8 shows the mean and variance for the historical data series and
different scenario trees, using Shuibuya reservoir as the example. Also,
the total moment deviations and MSE for each tree are calculated and
summarized in Table 1. The results reveal that the mean value of the
full tree is preserved because of the nature of the neural gas algorithm,
and the mean value of the reduced tree is also very close to the his-
torical data mean due to the optimization. However, the historical
probability tree has almost more than two times TMDS than both the
full tree and the reduced tree, since it is not optimized. As for the
variance, although the variances of both the full tree and reduced tree
are not preserved when compared with the historical variance, the
variance of the reduced tree deviates less than the full tree, which
implies that the reduced tree matches the variance better than the full
tree when using historical variance as the reference. This is because the
full tree is generated by the neural gas method, which does not preserve
higher order moments, while the reduced tree is based on the optimi-
zation, where the higher moments are optimized. In addition, the MSE
value between the reduced tree and the historical series is very close to
that between the full tree and the historical series, which indicates that

the absolute nodal value deviation from the historical series also is
maintained after the reduction.

We then test four reduction levels: 10%, 35%, 50% and 70%, based
on the full tree with 37 non-zero probability scenarios (i.e., P=37),
also using =λ 10optimal

6 and =C 100. Their corresponding combination
sizes are: =R 33, =R 24, =R 18, and =R 11, and these numbers are
also the number of scenarios left in the reduced trees. Generally, the
higher the reduction level the larger the information loss. Fig. 9 shows
the mean and variance values for trees with different reduction levels,
using the Shuibuya reservoir as an example. Note that results obtained
for other reservoirs are similar. Also, the total moment deviations and
TPE of those trees are summarized in Table 2.

We arrive at several results. First, under =λ 10optimal
6, the TPE of all

reduced trees is acceptable (less than 0.1). Second, the variance de-
viations of all reduced trees are smaller than the full tree, as indicated
by TVD in Table 2.

Third, the trees with 10% and 35% reduction levels perform better
than the full tree regarding variance, and their mean deviations are
both quite close to the full tree. However, for the 50% and 70% re-
duction level cases, the means deviate significantly from historical
series because of the large information loss, and the variance deviations
also increase as the reduction level goes up. Among the four different
reduction levels, the 35% reduction level is the most ideal. At this level
of reduction, a considerable number of scenarios are eliminated, and
the mean and variance are well preserved.

3.4. Preservation of covariances and sensitivity analysis of weighting
parameters

In addition to mean–variance optimization, in this section we also
account for covariances. Accordingly, we first use weighting coeffi-
cients of =w 0.961 , =w 0.022 , =w 0.023 , and =w 04 , total combination
number =C 100, optimal ridge parameter =λ 10optimal

6, and a 35%
reduction level to include lag-one covariance in the analysis. Fig. 10
demonstrates the comparisons of mean (a), variance (b) and lag-one
covariance (c) for the two test cases.

Compared with the “No covariance optimized” case
= = = =w w w w( 0.98, 0.02, 0)1 2 3 4 , the “Lag-one covariance opti-

mized” case = = = =w w w w( 0.96, 0.02, 0.02, 0)1 2 3 4 produces a
better match of the lag-one covariance but worsens the match of

Fig. 8. The mean (a) and variance (b) of different trees for Shuibuya (35% reduction level); (“Historical probability” represents the historical probability tree)

Table 1
The total moment deviations and MSE for different trees.

full tree 35% reduced tree historical probability tree

TMDS (m3/s)2 386 452 979
TVD (m3/s)2 ×3.08 105 ×2.30 105 ×2.81 105

MSE (m3/s)2 ×5.33 107 ×5.33 107 ×5.34 107
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variance, as shown in Fig. 10. To avoid the random error, 50 experi-
ments are conducted for both cases and their means are computed.
Table 3 and Fig. 10 show the similar results. Table 3 also indicates that
the “weighted TMDS and TVD” (defined as +w w·TMDS ·TVD1 2 ) of the

Fig. 9. The mean (a) and variance (b) of trees with different reduction levels

Table 2
The total moment deviations and TPE for different reduced trees.

Reduction level full tree 10% 35% 50% 70%

TMDS (m3/s)2 386 418 452 706 1163
TVD (m3/s)2 ×3.08 105 ×2.33 105 ×2.30 105 ×2.55 105 ×2.85 105

TPE 0.00 0.08 0.08 0.07 0.10

Fig. 10. The mean (a), variance (b) and lag-one covariance (c) of trees with and without lag-one covariance optimization

Table 3
Two different test cases, both of 50 experiments.

Type of the tree Full tree No covariance
optimized

Lag-one
covariance
optimized

TMDS (m3/s)2 386 453 402
TVD (m3/s)2 307,649 229,166 244,788

+w TMDS w TVD· ·1 2 (m3/s)2 6523 5027 5281
TLCVD (m3/s)2 72,497 70,136 53,980
MSE (m3/s)2 ×5.3362 107 ×5.3365 107 ×5.3362 107

TPE 0 0.076 0.067
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“Lag-one covariance optimized” case is greater than that of the “No
covariance optimized” case.

We conduct another experiment, named “Cross-site covariance op-
timized,” to include the cross-site covariance in the optimization. We
use the following weighting coefficients: =w 0.941 , =w 0.022 ,

=w 0.023 , and =w 0.024 in Eq. (38). A comparison of moment pre-
servations is shown in Fig. 11, for both the “Lag-one covariance opti-
mized” case and the “Cross-site covariance optimized” case. The results
show that the former case can better preserve the mean and lag-one
covariance. However, the variance and cross-site covariance are better
matched in the latter case.

Also, we can see that unlike the mean value, the reduced tree’s
variance and covariance are not very close to the historical variance
and covariance in the first three stages. This is caused by the pre-de-
termined tree structure that has very few nodes in the first few stages.
This problem can be corrected by pre-specifying a different tree struc-
ture that has more nodes at the first few stages. However, the historical
mean value can be preserved very well regardless of the tree structure,
since the nodal values obtained from the neural gas algorithm are the
centroids of the historical series at each stage.

We conduct sensitivity analysis on the reduced tree’s weighting
coefficients w w w w( , , , )1 2 3 4 , under a 35% reduction level. The results
of moments matching, based on the reduced trees with seven different
sets of weighting coefficients, are listed in Table 4.

As Table 4 shows, the full tree does not preserve the historical

second-order moments very well (i.e. variance, lag-one covariance, and
cross-site covariance), since it is generated by a clustering method that
considers only matching the mean value. With the assigned weighting
parameter values for Case 1, the mean and variance are well preserved
when compared with the full tree. The lag-one covariance is included in
Case 2. Case 3 and Case 4 are designed to find the best weighting
parameter values for cross-site covariance. Case 4 has a worse cross-site
preservation than Case 3, although Case 4′s w4 value is larger. This is
because the w2 value of Case 4 is smaller than that of Case 3, which
indicates the w2 value may have a higher influence on the optimization
of cross-site covariance than the w4 value. To test this hypothesis, Case 5
and Case 6 are included. Comparing Case 3 with Case 5, we see that
under the same w2 values, cross-site covariance preservation can be
improved by simply increasing the w4 value. Comparing Case 4 with
Case 5, the positive effect of w2 on cross-site covariance preservation
can be detected. Case 6 shows that w1 does not have much effect on
covariances. Case 7 tests the range of the w1 value for obtaining an
acceptable TMDS value and indicates that w1 should be at least 0.9.

The weights represent the preference of the decision maker.
However, sensitivity analysis can be used to determine the influence of
the weights on the objective function and help select the appropriate
values. It is also important to know the difference in magnitude of each
moment in choosing weights. In Table 4, the weights are varied sys-
tematically, and the corresponding objective function values calculated.
The results should help the decision maker to select the appropriate

Fig. 11. The mean (a), variance (b), lag-one covariance (c), and cross-site covariance (d) of trees with and without cross-site covariance optimization

Table 4
Different test cases, all of 50 experiments.

Weighting coefficients Full tree Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

w1 / 0.98 0.96 0.94 0.94 0.94 0.95 0.9
w2 / 0.02 0.02 0.02 0.01 0.02 0.01 0.05
w3 / 0 0.02 0.02 0.02 0.01 0.02 0.02
w4 / 0 0 0.02 0.03 0.03 0.02 0.03
TMDS (m3/s)2 386 468 365 476 390 642 337 1012
TVD (m3/s)2 ×3.08 105 ×2.30 105 ×2.47 105 ×2.33 105 ×2.47 105 ×2.16 105 ×2.56 105 ×1.92 105

TLCVD (m3/s)2 ×7.25 104 ×6.93 104 ×5.37 104 ×5.77 104 ×5.38 104 ×6.77 104 ×5.09 104 ×7.40 104

TCCVD (m3/s)2 ×9.98 104 ×7.47 104 ×8.01 104 ×7.55 104 ×8.02 104 ×7.02 104 ×8.31 104 ×6.31 104

MSE (m3/s)2 ×5.336 107 ×5.337 107 ×5.336 107 ×5.337 107 ×5.336 107 ×5.338 107 ×5.336 107 ×5.340 107

TPE 0.000 0.079 0.066 0.083 0.066 0.093 0.060 0.130
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values for the weights.
For the Qingjiang reservoir case study, we suggest the following: for

mean–variance preservation, use Case 1 parameter values; for including
lag-one covariance, adopt Case 2 parameter values; for also including
cross-site covariance preservation, select Case 3 or Case 5 parameter
values. Admittedly, for a different case study, the best parameter values
may be different.

3.5. Stability test of the total combination number Cand computation time
report

In the above tests, we conducted all the experiments under total
combination number =C 100. In this section, we test the stability of the
reduction method under various total combination numberC and find a
number of Cat which the solutions of this method converge.

We conduct a numerical experiment to test the stability of the
conditional Monte Carlo sampling method by systematically increasing
the C value (C=10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000). We use the following parameter values: =w 0.981 , =w 0.022 ,
and = =w w 03 4 ; optimal ridge parameter =λ 10optimal

6; and a 35%
reduction level. Fifty numerical experiments are conducted for each
Cnumber. The mean of the results for the weighted moment deviation
( + + +w w w w·TMDS ·TVD ·TLCVD ·TCCVD1 2 3 4 ) is plotted in Fig. 12.
Additionally, we report the computational time for the reduction
method under each Cnumber.

Fig. 12 reveals that, generally, the weighted moment deviation stops
decreasing at =C 700. We conduct the significance test showing that
after =C 700, the weighted moment deviation has no significant linear
relationship with the total combination number under the 95% con-
fidence interval. Therefore, at =C 700, the proposed method converges,
and the small fluctuation after 700 is due to random errors. On the
other hand, the computational time increases almost linearly as the
total combination number rises. Therefore, if we trade-off between the
weighted moment deviation and the computational time, a total com-
bination number =C 400 would be considered ideal. This is because at
=C 400 both weighted moment deviation and computational times are

low.

4. Conclusion

In this paper, we presented a new scenario tree reduction method,
based on stepwise conditional Monte Carlo sampling and regularized
optimization. The proposed method is particularly suited for reducing a
streamflow scenario tree that consists of many stages for three reasons.
(1) This method does not require updating nodal values at each stage. It
is consistent with the definition of scenario tree reduction, i.e., “to
determine a subset of the initial scenario tree and assign new prob-
ability to the reduced scenarios” (Growe-Kuska et al., 2003). (2) This
method stabilizes the reduced tree scenario’s probability, and the

physical meaning of the streamflow scenario probability is interpreted
easily. (3) This method does not rely on the probability metric but takes
advantage of the basic moment matching technique to provide a direct
moment matching between the historical data series and the reduced
tree.

In the Qingjiang reservoir case study, we determined the optimal
ridge parameter λoptimalusing the ridge trace method and confirmed this
value through the tradeoff between the weighted moment deviation
and TPE. We tested the moment preservation of the reduced tree with
different reduction levels and under “mean–variance” optimization,
finding that even with a high level of reduction (such as 35%), the
reduced tree still can moment-match well with historical series. We also
examined the covariance, showing that it can be preserved well while
other moments are not significantly impacted. Also, the stability test
showed that the proposed method is stable and approximately con-
verges when the total combination number =C 700, which is a small
sample size compared with all possible combinations of sampling.
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Key Points: 

• Proposes a general multi-stage stochastic multi-objective optimization framework for

reservoir operation

• Develops a linear spline utility function for selecting the most preferred solution on the

Pareto front

• Evaluates the performance of the proposed optimization framework with a real-world case

study

Abstract 

We propose a multi-objective, multi-stage stochastic programming with recourse model for 

reservoir management and operation, where we use utility theory to select the best compromise 

solution from the Pareto front. A multi-stage streamflow scenario tree is generated first by the 

neural gas method. Then the Pareto front at each stage is produced by a modified constrained 

NSGA-II. A single best compromise solution on the Pareto front must be selected for the 
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immediate stage and the model moves forward one stage and is re-optimized over a moving 

planning horizon of fixed duration. The selection is achieved by a proposed linear spline utility 

function allied with regression. Our proposed utility function has the following advantages: 1) it 

satisfies the law of diminishing marginal rate of substitution, 2) it does not rely on the pre-specified 

weight or goal, and 3) it selects the best compromise solution that is likely to fall in the “knee 

regions” of the Pareto front. We apply the proposed optimization model to the Three Gorges 

Reservoir (TGR) in China. The two conflicting objectives are 1) maximizing the total expected 

energy output in the planning horizon, and 2) maximizing the average expected ecological benefits 

in the planning horizon. The results show that the proposed model produces the optimal water 

release policy successfully under different hydrological scenarios, when considering both the 

inflow uncertainty and the tradeoff between the two conflicting objectives. 

 

Keywords: Stochastic multi-objective optimization; Stochastic programming with recourse; 

Reservoir operation; Utility function; Three Gorges Reservoir 

 

1. Introduction 

In a survey paper, Gutjahr and Pichler (2016) pointed out that stochastic optimization and multi-

objective optimization are well established in the field of operations research, but their interaction 

is less developed. Many real-life decision-making problems frequently involve multiple objectives 

and stochastically represented uncertainty simultaneously. For example, in reservoir management 

and operation, the multiple objectives include hydropower generation, water supply and flood 

control, etc. The uncertainty of reservoir inflows is represented by a stochastic process. When 
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optimizing the operation of a reservoir system, we simultaneously must consider both multiple 

objectives as well as the stochastically represented uncertainty of inflows. 

Stochastic programming (SP) has been developed to resolve the uncertainty of random 

variables. The simplest SP problem can be expressed as follows (Shapiro and Philpott, 2007): 

 
maximize [ ( , )]

. . ; ,

x
f x w

s t x X w 

  E
  (1) 

where x is the decision variable (vector); w is the uncertain parameter; X is the set of feasible 

solutions (i.e., solution space);   is the set of { }iw , 1,2,...,i I=  (i.e., sample space); [ ]E  is the 

expectation operator; and ( , )f x w  is a general function associated with the uncertain parameter w. 

There are different ways to represent the uncertain parameter w, and the scenario tree method is 

one of the popular ways in the literature (Xu et al., 2015a; Séguin et al., 2017; Li et al., 2019). For 

reservoir management and operation, w is the discretized inflow scenario and   is the inflow 

scenario tree. The methods of generating an inflow scenario tree are detailed in previous studies 

(Li et al., 2019); most of them require available historical inflow data. 

In practice, people are more likely to make sequential decisions, between which some of 

the uncertain parameters gradually become known (Pflug and Pichler, 2014; Gutjahr and Pichler, 

2016). Thus, another practical version of stochastic programming is two-stage stochastic 

programming. That is, at a given time point (i.e., the immediate stage or the 1st stage) before the 

realization of the uncertain parameter w, a first decision (i.e., here-and-now decision) must be 

made. Then, after the realization of uncertain parameter w [i.e., the future stage or the 2nd stage, 

and ( , , , )w q J L h= ], we make a second decision (i.e., wait-and-see decision) by solving a 

deterministic optimization problem. The generic form of a two-stage stochastic optimization 

problem is  
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maximize ( ) [ ( , )]

. . ; ,

x
f x g x w

s t x X w

+

 

E
  (2) 

where g, the recourse function, is the solution of the following second stage problem  

 
maximize ( )

. . ( ) ( ) ( ),

T

y
q w y

s t J w x L w y h w+ 
  (3) 

where x is the 1st stage decision (here-and-now decision) and y is the 2nd stage decision (wait-and-

see decision). Recent studies based on this model include a two-stage stochastic model for supply 

chain design (Schütz et al., 2009) and a similar model for reservoir operation (Ortiz-Partida, 2019). 

Koppa et al. (2019) developed a stochastic programming with recourse model based on ensemble 

forecasts for hydropower optimization.  

In addition to the inflow uncertainty, decision makers frequently encounter multiple 

objectives that conflict. For example, minimizing flood risk and maximizing hydropower output 

are typically two conflicting objectives. A general form of multi-objective optimization is 

 
1 2maximize ( ( ), ( ),..., ( ))

. . ,

m
x

f x f x f x

s t x X
   (4) 

where m is the number of objective functions ( 2)m  , and 1( ,..., )mf f  is the vector of objective 

functions.  

  Pareto optimal solutions (Moore, 1907) typically are pursued in multi-objective 

optimization problems. In general, solution methods can be classified into the following two 

categories: 1) priori methods aimed at producing one single Pareto optimal solution, and 2) 

posterior methods aimed at producing the Pareto front, or a subset of all Pareto optimal solutions 

(Wang et al., 2017). The three most widely used methods in the first category are the scalarizing 

method (also known as the weighting method), the ε-constraint method, and the goal programming 
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method. The methods in the second category focus on Pareto front generation. Mathematical 

programming techniques (such as linear programming and nonlinear programming) and 

evolutionary algorithms (such as the genetic algorithms) are used to generate the Pareto front. 

However, when the optimization problem is nonconvex and non-differentiable, mathematical 

programming techniques may encounter difficulties in finding the true Pareto front.  

Evolutionary algorithms (EAs) are used widely for Pareto front generation, because they 

often can generate a more complete Pareto front (Deb, 2011). Most EAs apply Pareto-based 

ranking schemes, and the most widely used algorithm is Non-dominated Sorting Genetic 

Algorithm-II (i.e., NSGA-II), developed by Deb et al. (2002). Other popular multi-objective EAs 

include SPEA2 (Kim et al., 2004), ε-NSGA-II (Kollat and Reed, 2005), ε -MOEA, AMALGAM 

(Vrugt and Robinson, 2007), and BORG (Hadka and Reed, 2013). Maier et al. (2014) reviewed 

the development and application of EAs and other meta-heuristics for the optimization of water 

resource systems. Reed et al. (2013) summarized popular EAs and concluded that BORG 

performed best in complex water resources problems. Recent studies on multi-objective models 

include models for portfolio optimization (Roman et al., 2007) and for water system design and 

operation (Foued and Sameh, 2001; Reddy and Nagesh Kumar, 2007; Dittmann, et al., 2009; Liu 

et al., 2011; Wang et al., 2012; Ramos et al., 2014; Zhao and Zhao, 2014; Giuliani et al., 2016a; 

Giuliani et al., 2016b; Giuliani et al., 2017; Yang et al., 2017; Yu et al., 2017, Tarebari et al., 2018; 

Wang et al., 2018; Yang et al., 2019).  

 Stochastic multi-objective programming (SMOP) should consider both uncertainty and 

multiple objectives. Common ways to incorporate the uncertainty include 1) stochastic constrained 

methods that assume a distribution for the uncertain parameter, and 2) scenarios-related methods, 

which use discretized scenarios for the uncertain parameter (Abdelaziz, 2012). Multi-criteria 
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decision-making (MCDM) methods can be used to select the preferred non-inferior solution from 

the Pareto front in which the decision makers choose criteria and calculate the priority score or 

rank for each alternative based on the assumed weight for each criterion (Dhiman and Deb, 2020). 

Common methods under MCDM include the Simple Additive Weighting (SAW) method (Hwang 

and Yoon., 1981), which is essentially an application of the scalarization; Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) (Yang et al., 2018), whose principle is similar 

to goal programming; and Stochastic Multicriteria Acceptability Analysis-2 (SMAA2), which 

considers the uncertainties in the criteria but requires a good choice of utility function. (Lahdelma 

and Salminen, 2001; Zhu et al., 2017a). 

Recent studies on SMOP have emerged in different fields. Abdelaziz et al. (2007) 

developed a SMOP for portfolio selection, using the stochastic constrained method and goal 

programming. Azaron et al. (2008) developed a similar model based on scenarios and goal 

programming for supply chain design. Fonseca et al. (2010) proposed a stochastic bi-objective for 

reverse logistics planning, based on discretized scenarios and scalarization. Bath et al. (2010) 

applied a similar approach in a SMOP for a thermal power generation schedule. Gutjahr and Reiter 

(2010) set up a bi-objective project portfolio selection model under uncertainty by sampling 

random scenarios via an adaptive Pareto sampling technique. Hnaien et al. (2010) developed a 

SMOP for inventory control, using a stochastic constrained method and a scalarization algorithm. 

Tricoire et al. (2012) developed a bi-objective stochastic model for covering a tour problem based 

on discretized scenarios and the ε-constraint method. Rath et al. (2016) proposed a similar SMOP 

model for disaster relief operations. Despite these existing studies across many fields, however, 

the literature on SMOP in the field of water resources planning and management is sparse. One of 

the few examples is Zhu et al (2017b), who developed a multi-objective stochastic programming 
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with recourse model for optimal flood control operation with an emphasis on risk assessments and 

propagation. They used SMAA-2 to select the best compromise solution.  

 Distinct from all existing studies in SMOP, this study develops a multi-objective, multi-

stage stochastic programming with recourse model for reservoir management and operation. 

Within this proposed framework, we develop a modified constrained NSGA-II to produce the 

Pareto front, and propose a linear spline utility function with regression method for selecting the 

“best compromise” Pareto optimal point.  

Since the desired model is not only multi-objective, but also multi-stage stochastic, a 

unique optimal release policy must be identified for each stage, so that the initial state of the 

reservoir at the following stage can be determined, and then the rolling horizon technique can be 

applied. In other words, at each stage, how to select the best compromise Pareto optimal solution 

among all noninferior alternatives is regarded as the most important task in the proposed model. 

As discussed, the scalarization method, which essentially evaluates different alternatives by their 

weighted sum objectives, may provide the simplest solution to this task. However, in the 

scalarization method, the weight for each objective is typically not easy to determine. Other 

methods, such as goal programming and ε-constraint, also require pre-specifying parameter values. 

In addition to this problem, most existing MCDM methods suffer from an even more serious 

disadvantage. In these methods, the preference coefficient for each objective is assumed to be fixed 

over the entire domain, which is usually not the case in the real world. For example, a high 

reservoir water level is usually preferable for power generation but unfavorable for flood control. 

So, suppose we have two conflicting objectives of maximizing hydropower output (economic 

objective, F1) and minimizing the reservoir water level (safety objective, F2). When the reservoir 

water level is low, we would like to increase the water level by 1m, in exchange of 100 kWh power 
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output. In this case, the preference coefficient of objective F2 over F1 is 100 /1 100= . However, 

when the reservoir water level is high, then we would require a high exchange rate (e.g., a 1m 

water level increase in exchange for 10000 kWh hydropower output). The preference coefficient 

of objective F2 over F1 is now 10000 /1 10000= . Therefore, we can see that the weight of each 

objective should change with respect to the objective values. In economics, this phenomenon is 

called the law of diminishing marginal rate of substitution (Hicks, 1939; Besada and Vázquez, 

1999; Dittmer, 2005, White, 2015), which states that consumers are willing to part with less and 

less quantity of one good in order to get one more additional unit of another good.  

The marginal rate of substitution (MRS) is a feature of utility theory. In this theory, utility 

is the total satisfaction received from consuming a good or service. A utility function is a numerical 

representation of agent preferences over different objectives (Debreu, 1954; Hanemann, 2006; 

Zhao et al., 2013). Indifference curves are the level sets of a utility function (Marshall, 2009). The 

slope of the indifference curves measures the rate at which the agent is willing to substitute one 

good for another, which is equal to MRS (Baldwin, 1948). MRS is different from Marginal Utility 

(MU), as MRS is equal to the ratio of the marginal utilities. In general, MU describes the change 

in utility (happiness) when the amount of one good changes a small amount while the amount of 

other goods remains constant, which can be utilized to derive optimal operating rules for decision 

making in hydropower scheduling (Zhao et al., 2015). However, MRS measures the exchange rate 

of two goods, which can be used to assist in reaching a compromise resolution between two or 

more conflicting objectives. According to the law of diminishing MRS, the slope of the 

indifference curve should vary among different regions for an objective. However, it can be shown 

that scalarization-related methods (including SWE) are equivalent to using a linear utility function, 

whose slope (i.e., objective preference) is fixed in the entire domain of any objective. The goal 
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programming related methods (including TOPSIS) limit the representation of the utility function 

due to the fact that the implied dissatisfaction increases linearly with the deviation away from the 

goal (Tamiz et al., 1995). In economics, an extensively used utility function is the quadratic utility 

function (Levy and Markowitz, 1979; Johnstone and Lindley, 2011), which satisfies the law of 

diminishing MRS. But since the slope of its indifference curve (MRS) changes in every position, 

the underlying preference for each objective from this utility function is not clear.  

 A literature review indicates little attention has been paid to developing an appropriate 

utility function that can be used in tradeoff analysis among different objectives in reservoir 

operation, even though many decision-making methods, such as SMAA-2, require decision makers 

to choose a good utility function (Lahdelma and Salminen., 2001). Thus, in our framework, we 

propose a linear spline utility function method based on utility theory. There are advantages to this 

method. First, it satisfies the law of diminishing MRS, and the preference coefficients are fixed in 

each segment with clear interpretations. Second, it does not rely on the specified weight of each 

objective or any pre-specified parameters, if used along with the proposed regression method. 

Instead, it finds such information from the Pareto front. Third, the tradeoff solution from this 

method is likely to be the “knee point” of the Pareto front, which is usually the preferred solution 

for a decision maker (Branke et al., 2004; Deb and Gupta, 2011).  

In sum, in this study we propose a multi-stage stochastic, multi-objective optimization 

framework that is suitable for reservoir management and operation. Within this proposed 

framework, we develop a modified constrained NSGA-II to produce the Pareto front, and propose 

a linear spline utility function with regression method for selecting the “best compromise” Pareto 

optimal point. We outline this paper as follows: Section 2.1 introduces the streamflow scenario 

tree and the neural gas method. Section 2.2 presents the general framework of the multi-objective, 
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multi-stage stochastic programming with recourse model, based on the generated scenario tree and 

the rolling horizon technique. This is followed by an application of the model to reservoir operation. 

Section 2.3 develops the linear spline utility function method to find the best compromise Pareto 

optimal point on the Pareto front for each stage, based on the utility theory. Section 3 applies the 

proposed SMOP model to the Three Gorges Reservoir in China. We then provide final remarks 

and conclusions in Section 4. 

 

2. Methodology 

Fig. 1 shows a flowchart of the proposed methodology. 

 

Figure 1. The flowchart of the proposed method 

2.1 Streamflow scenario tree and the neural gas algorithm 

A scenario tree is used to represent the stochastic process in stochastic programming. The tree is 

composed of a finite number of outcomes and their corresponding probabilities at each stage. Each 

scenario is a path from the root outcome to the leaves outcome, and its probability is the product 

of the outcomes’ probabilities on that path. (Li et al., 2019). 

 In this study, we generate a multi-stage streamflow scenario tree from the historical 

observed streamflow series, and it is defined as { }iw , 1,2,...,i I= , in which iw  is the scenario i 
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and I is the total number of scenarios. In addition, ( )iP w  is defined as the scenario probability of 

scenario i. We designate t as the stage and T as the total number of stages. Note that 
, *,i t i tw w=  if 

scenario iw  and scenario *iw  have a common node 
,i tw (or 

*,i tw ) at stage t. Fig. 2 is an example of 

a three-stage streamflow scenario tree with four scenarios, in which 
1,2 2,2w w=  and 

3,2 4,2w w=  

(even though 
2,2w and 

3,2w  are not shown in Fig. 2). 

 

Figure 2. An example of the three-stage streamflow scenario tree structure 

 The neural gas algorithm is one of the clustering methods that used originally for vector 

quantization in topology (Martinetz and Schulten, 1991; Martinetz et al., 1993). It requires a fixed 

pre-specified tree structure and uses a distance-based iterative method to update nodal values to 

centroids. Latorre et al. (2007) showed that the neural gas algorithm outperforms other clustering 

methods when generating a streamflow scenario tree for hydro inflows data. Thus, in this study, 

we employ the neural gas algorithm for streamflow scenario tree generation. We adopt five 

algorithm parameter values suggested by Xu et al. (2015) and Li et al. (2019) as follows: maximum 

iteration time 20,000mj = ; step size parameters 0 0.5 = and 0.05f = ; and adaptation 
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parameters 0 10 =  and 0.01f = . The steps for performing the neural gas algorithm are detailed 

in previous studies (Melato et al., 2007; Li et al., 2019).   

 

2.2 The proposed SMOP model for reservoir operation 

2.2.1 The general form 

Our proposed optimization model is a multi-objective stochastic optimization model based on a 

multi-stage scenario tree. It has a general form as follows: 

 

1maximize { ( , ),..., ( , )}

. .

,

mf x w f x w

s t x X

w





  (5) 

where x is the decision variable and X is the solution space; w is the scenario and   is the set of 

{ }iw , 1,2,...,i I=  (i.e., scenario tree); and if  is the 
thi objective function. 

We further simplify the general form into a two-stage stochastic multi-objective 

optimization form: 

 
1 1maximize {( ( ) [ ( , )]),..., ( ( ) [ ( , )])}

. . ; ,

m m
x

f x g x w f x g x w

s t x X w

+ +

 

E E
  (6) 

where ig  is the 
thi  recourse function. Note that all objectives in Eqn. (6) depend on the decisions 

in both the 1st stage and 2nd stage. Gutjahr and Pichler (2016) pointed out in their review paper of 

stochastic multi-objective optimization that most existing studies of stochastic multi-objective 

optimization assume a bi-objective situation, where one of the two objectives only depends on the 
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1st stage decision (i.e., deterministic objective). Under this assumption, the multi-objective two-

stage stochastic optimization can be simplified into a single-objective two-stage stochastic 

problem. The ε-constraint method, which imposes additional ε-constraints on the deterministic 

objective in the 1st stage problem, often is used for this simplification (Laumanns et al., 2005). 

However, the parameter ε is difficult to choose since it represents the tradeoff between two 

objectives.  

  The general form above can be transformed into a series of two-stage multi-objective 

stochastic programming with recourse models. This can be achieved via the idea of rolling horizon. 

There are two different versions of rolling horizon. The first is to move the entire planning horizon 

as a moving window (Zhao et al., 2012), while the second is to move only the starting time point 

and keep the ending time point (boundary) fixed (Yeh, 1985; Xu et al., 2015a; Zhu et al., 2017b). 

In this study, we adopt the second version. For example, we first construct a two-stage stochastic 

multi-objective optimization for the planning horizon of [1, T] and obtain its 1st stage decision. 

Then we move the planning horizon to [2, T]. Based on this new planning horizon and the 

previously obtained 1st stage decision, we construct another two-stage stochastic multi-objective 

optimization model and obtain its 1st stage (immediate stage) decision as the recourse action. This 

procedure is continued until we reach the fixed boundary condition (i.e., the planning horizon is 

[T-1, T]). Note that, for reservoir operation, the initial storage and final storage conditions typically 

are fixed.  

2.2.2 An application to reservoir operation 

We apply the proposed optimization framework to the operation of a multi-purpose reservoir 

operation system. The two conflicting objectives are 1) maximizing the total expected energy 
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output in the planning horizon, and 2) maximizing the average expected ecological benefits 

(represented by the ecological assurance rate) in the planning horizon (Becker and Yeh, 1974; Liu 

et al., 2011; Zhang et al., 2020).  

Assume we have a T-stage scenario tree with a total number of I  scenarios. As we 

mentioned earlier, we want to transfer the original multi-stage multi-objective optimization 

problem into a series of two-stage stochastic multi-objective models with a rolling horizon. Thus, 

at each stage t, we construct a two-stage stochastic multi-objective model for the planning horizon 

[t, T], and obtain its immediate stage decision. We define the model-stage for the planning horizon 

as stg ( 1,..., ,...,stg t T= ).  For example, the 1stg =  model is built for horizon [1, T] to obtain the 

decision for stage 1. In this model, the immediate stage is stage 1, and the future stages are 

2,...,t T= . We then proceed with the 2stg =  model, whose planning horizon is [2, T]. For the 

entire planning horizon, we construct T-1 two-stage stochastic multi-objective models (i.e., 

1,..., 1stg T= −  models) and one deterministic multi-objective model (i.e., stg T= model). We 

illustrate this procedure as follows. 

 For the 1stg = model, the two objectives 1f  and 2f  can be shown as 

 

1 1
,

1 2

2 1
,

1 2

maximize E ( ) E

1
maximize [ ( ) ],

i i
t t

i i
t t

I T
i

t i t
R SP

i t

I T
i

t i t
R SP

i t

f P w

f P w
T

=

= =

=

= =

= + 

=  +  

 

 
   (7) 

where i

tR  is the power release in the period beg end[ , ]t t  for scenario i; i

tSP  is the non-power release 

in the period beg end[ , ]t t  for scenario i; Ei

t
 is the energy output during the period beg end[ , ]t t  for 

scenario i; begt  and endt  are the beginning and the end of stage t, respectively; I  is the total number 
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of scenarios and T is total number of stages; ( )iP w  is the probability of scenario i; and i

t  is the 

ecological assurance rate of stage t for scenario i.  

The term 1f  is the total energy production objective and 2f  represents the ecological 

benefit from the reservoir. As ecological benefit has gained more attention in reservoir 

management and operation, this objective requires a minimum water release to downstream that is 

essential for natural ecosystems. It conflicts with the energy production objective that encourages 

maintaining a higher reservoir water level. The ecological assurance rate can be approximated by 

a piecewise function as follows (Zhang et al., 2020): 

 

,min

,min
,min ,

, ,min

,

0

,

1

eco

t t

eco
eco eco prot t

t t t teco pro eco

t t

eco pro

t t

if Q Q

Q Q
if Q Q Q

Q Q

if Q Q

 


−
 =  

−
 

  (8) 

where ,mineco

tQ  is the minimum ecological streamflow for the period beg end[ , ]t t ; and ,eco pro

tQ  is the 

appropriate ecological streamflow for the period beg end[ , ]t t . They are determined using the month-

by-month frequency calculation method (Chen, 2005): 90% for the dry period (Dec.-Mar.), 70% 

for the normal period (Apr. Oct. and Nov.), and 50% for the wet period (other months). The term 

tQ  is the total reservoir discharge in the period beg end[ , ]t t . 

Other constraints for the 1stg =  model include the following:  

1. Water balance equations: 
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where i

tR  and i

tSP  are defined as before; t  is the time duration between each stage; i

tV  is the 

ending reservoir storage of stage t (i.e., the reservoir storage at endt ) for scenario i (for example, 

OctoberV is the reservoir storage at the end of October). InitialV  is the initial reservoir storage (i.e., the 

reservoir storage at the beginning of the first stage); and i

TV  is the ending reservoir storage of the 

entire planning horizon (i.e., the reservoir storage at endT ) for scenario i, which is set to be equal 

or greater than the initial reservoir storage; i

tW  is the inflow in the time period of beg end[ , ]t t  for 

scenario i; and tD  is the deterministic forecasted inflow during the period of beg end[ , ]t t . Note that 

tD  is available only when we have reached the model-stage stg t= . For example, for the 1stg =  

model, 1D  is available. And in this model, we first use 1D  to replace 
,1iw  (i.e. the scenario tree 

node value at stage 1 for all scenarios 1,...,i I= ), then 
1

iW  equates with 1D .  For other stages (i.e., 

1t  ), i

tW  is equal to the original scenario tree node value 
,i tw  (Xu et al., 2015a).  

2. Power and energy output equations: 
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where t

iN  is the power output during the period beg end[ , ]t t  for scenario i; i

tH  is the gross average 

water head during period beg end[ , ]t t  under scenario i, which is the difference between average 

forebay water level and tailrace water level; 1FN  and 2FN are the functions of forebay water level 

and tailrace water level (Xu et al., 2015a); and K is the comprehensive output coefficient for the 

reservoir (Liu et al., 2011; Yang et al., 2017; Yang et al., 2018). 

3. Storages and power output limits: 

 ,min ,max ,i

t t tV V V    (11) 

 
min max ,i

tN N N    (12) 

where 
,mintV and 

,maxtV  are the lower and upper bounds of the reservoir storage at each stage t, which 

include flood control reservation. The terms minN  and maxN are the minimum and maximum limits 

of power output. Those are all constants, 1,...,t T =  and 1,..., .i I =  

4. Release limits: 

 
min max ,i

tR R R       (13) 

  
min max ,i

tSP SP SP     (14) 

54



where minR  and maxR are the lower and upper bounds of the power release; and minSP  and maxSP are 

the lower and upper bounds of the non-power release, 1,...,t T =  and 1,..., .i I =   

5. Uniqueness of decision variables: 

 1 2 1 2

1 2, , 1 2; if , , [1, ].
i i i i

t t t t i t i tR R SP SP w w i i I= = =     (15) 

These constraints basically state that decision variables (i.e., i

tR  and i

tSP ) shared by more than 

one scenario should be the same.   

We employ NSGA-II to solve the above optimization problem. In terms of constraint 

handling, Constraints (9), (10) and (15) are hard equality constraints that can be encoded in the 

algorithm. Constraints (13) and (14) are the initial ranges of decision variables that can be specified 

at the beginning. Thus, only the storage and output limit constraints [i.e., Constraints (11) and (12)] 

will be given specific consideration. The original constrained NSGA-II’s approach is to ensure 

that any feasible solution has a better nondomination rank than any infeasible solution. It works 

well for problems with a small number of constraints. However, in practice, we find it is not 

efficient for our proposed model, since our model has many more constraints than an ordinary 

multi-objective model. For example, if the scenario tree has 50 scenarios with 10 stages, then we 

will have 50 10 2 2 2000   =  constraints for Constraints (11) and (12). With such a very large 

number of constraints, it is very difficult for the original method to generate sufficient feasible 

offspring, and most of the initialized individuals will be stuck in the infeasible zone.  

To overcome this problem, we developed a modified constrained NSGA-II. Specifically, 

we slightly modify the approach of constraint handling in the original NSGA-II by proposing an 

additional “adjustment” step to every offspring solution. This “adjustment” step is added before 
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each round of the non-domination sorting step in the NSGA-II. Unlike the original constrained 

NSGA-II that makes infeasible solutions inferior in non-domination sorting and removes them by 

tournament selection, our “adjustment” step eliminates the infeasible solutions before sorting by 

adjusting the decision variable values to satisfy the constraints. To implement this, we need to set 

up an adjustment strategy for each type of constraint. Fig. 3 shows the adjustment strategies for 

Constraints (11) and (12) in this model. These strategies also are detailed in Appendix B.  
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Figure 3. Flowchart of the adjustment strategies for Constraints (11) and (12) 
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Our modified constrained NSGA-II with the adjustment step aims at transforming an 

infeasible solution to a guaranteed feasible one before each round of non-domination sorting. This 

method is highly efficient for models that have a large number of upper and lower bounds. For 

example, Constraint (11) (e.g., ,min

i

t tV V ) incorporates 500 constraints but they are all in the same 

form. Furthermore, each constraint [e.g., for 1 1( , )t i ] only contains two decision variables: 

1 1 1 1 1

1 1 1 1 1 1,min 1 ( )
i i i i i

t t t t t tV V V W R SP t− = + − −  , where only 1

1

i

tR  and 1

1

i

tSP  are involved. This property 

makes the strategy possible: if ending storage is below the limit, then we first want to reduce non-

power release i

tSP . If i

tSP  is reduced to minSP , then we adjust power release i

tR  to satisfy the 

constraint. The ideas for other steps are similar. Thus, to formulate the adjustment step, it is 

necessary to build a strategy for each type of constraint. But once we set it up, it can be used for 

all constraints of the same form. In general, our proposed adjustment step offers another way to 

handle constraints in NSGA-II and is most efficient for models with simple constraints.  

The modified constrained NSGA-II will provide a Pareto front for the immediate stage. To 

proceed with our rolling horizon procedure, we need to select one Pareto optimal point on the 

generated Pareto front for decision making for the immediate stage. How to select this “best 

compromise” solution will be discussed in section 2.3. For now, we assume that the “best 

compromise” point has been selected. This point is the solution (or the output) of the 1stg = model 

(i.e., i

tR  and i

tSP , 1,...,i I= and 1,...,t T= ). Since we will update 
2

i

tR 
 and 

2

i

tSP
 when moving 

forward, we only keep 
1

i

tR =
 and 

1

i

tSP=
. Also, since the scenario tree node values at stage 1 are 

replaced by 1D  (i.e. all scenarios have the identical stage 1 value as 1D ), then 1 2

1 1 1 1... IR R R R= = =  
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and 1 2

1 1 1 1... ISP SP SP SP= = = . These 1R  and 1SP  are the actual power and non-power releases we 

will adopt for stage 1. 

Next, similarly, we proceed into horizon [2, T] and build the 2stg =  model. The objective 

functions are slightly modified as 
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  (16) 

where the definition of each variable is the same as the 1stg =  model. The constraints are identical 

except that 2,...,t T= . The outputs of the 2stg =  model are 2R and 2SP , which are the power and 

non-power releases to be adopted.  

We then construct and solve models for 3stg =  to stg T= . And we can obtain 3R  and 

3SP ,…, TR  and TSP . The last model (i.e., stg T=  model) is a deterministic model, since all 

scenario shares only one node of deterministic forecast value (i.e., TD ). Therefore, to obtain all 

the release solutions (i.e., 1,..., TR R  and 1,..., TSP SP ), we construct T-1 stochastic multi-objective 

models and one deterministic multi-objective model in a series, with a rolling horizon.  Fig. 4 

illustrates the recourse procedure, exemplified through a three-stage problem (i.e., T=3). Starting 

with the 1stg = model, we first update the generated streamflow scenario tree by replacing the t=1 

node value 
1,1w  with 1D  (i.e., the deterministic forecasted inflow in the first period). Then, 

combining the updated scenario tree with the initial state information of the 1stg = model, we 

solve the proposed SMOP, yielding 1R  and 1SP . With 1R  and 1SP , the initial state information of 
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2stg =  can be identified. We then proceed to the 2stg =  model and follow the same procedure 

until the end. 

 

Figure 4. An illustrative diagram of an example problem (T=3) 

2.3 Linear spline utility function method 

We propose a new method based on utility theory to select the “best compromise” solution at each 

stage. 

 Utility is a widely accepted concept in economics that describes the satisfaction (or 

happiness) of decisionmakers (Levy and Markowitz, 1979). Thus, how to allocate resources in 

order to maximize utility is the central question in the utility maximization problem. The utility 

function expresses the utility with each option  , and is denoted by ( )U  (Debreu, 1954; 

Hanemann, 2006). A utility function ( )U   represents a decisionmaker’s preferences if  

 ( ) ( )U U   if and only if .    (17) 
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 Furthermore, a decisionmaker’s indifference curve is defined as the set of products that 

yield a constant level of utility (Marshall, 2009). 

 Indifference Curve { | ( ) .}.U Const = =   (18) 

Each indifference curve corresponds to a different level of utility. So, if we want to maximize 

utility, we need to find the corresponding indifference curve. This idea is the basis of many Pareto 

optimal point selection methods. For example, the scalarization method selects the “best 

compromise” point by assigning a weight for each objective. Consider there are two objectives 1f  

and 2f . This bi-objective optimization problem can be transformed into a scalar optimization 

problem as follows: 

 1 2 1 2maximize ( , ) 0.6 0.4U f f f f= +   (19) 

where 0.6 and 0.4 are the pre-specified weights; 1 2( , )U f f  is the utility function. From the utility 

theory perspective, the indifference curve can be derived by assuming that utility is a constant, 

such as 

 1 2. 0.6 0.4U Const f f= = + .   (20) 

And it is equivalent to  

 1 2

0.4

0.6 0.6

U
f f= − + .   (21) 

The 2 1( , )f f  points on the same indifference curve will provide an identical utility value, and this 

utility value can be represented by the intercept term of the indifference curve (i.e., 0.6U ). Since 
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our goal is to maximize utility, the intercept term is to be maximized. Based on the Pareto front 

obtained, the intercept term is maximized when Eqn. (21) is tangent with the Pareto front. This is 

illustrated in Fig. 5(a). Fig. 5(b) shows another example of maximizing objective 1f while

minimizing objective 2f . The idea and procedure are identical. That is, maximum utility (i.e., 

maximum intercept) occurs when the indifference curve is moved tangent to the Pareto front. 

Figure 5. Utility maximization examples: (a) Maximize both 1f and 2f ; (b) Maximize 1f and minimize

2f

Although the scalarization method is easy to implement, we see that the underlying 

assumption for this method is to use a simple linear utility function for the entire domain. This 

assumption is not always valid. To confirm that, we introduce the concept of marginal utility as 

the incremental increase in utility that results from consumption of one additional unit, and the 

ratio of two marginal utilities of two different objectives is defined as the marginal rate of 

substitution (MRS). In the bi-objectives case, MRS is the slope of the indifference curve.   
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There is an important law in economics, the law of diminishing MRS, which states that as 

more of one good is consumed, people prefer to give up fewer units of a second good to get 

additional units of the first good (Hicks, 1939; Besada and Vázquez, 1999). For example, say we 

want to maximize power generation (i.e., 1f ) and minimize flood risk (i.e., 2f ). When the flood 

risk is very low, then we are willing to increase a certain amount of flood risk, in exchange for 

even a small increase of power generation. This preference can be described by a small MRS of

2f  for 1f , or a mild slope of the indifference curve. In contrast, when flood risk is already very 

high, then each amount of further increase of flood risk must be able to exchange for a significantly 

high increase of power generation. This preference can be described by a large MRS, or a steep 

slope of the indifference curve. Therefore, we see that the gradient (or slope) of the indifference 

curve should vary within the range of selected objectives. 

 To consider gradient variation of the indifference curve, we propose a linear spline utility 

function. Our proposed method uses a linear spline as the utility function. The gradients of linear 

spline vary in the different regions (i.e., segments) of the selected objectives. The procedure of this 

method is explained in the following steps: 

Step 1: Select one objective (e.g., 1f ) as the reference objective (
reff ). This objective is preferably 

a non-safety-concerned objective (e.g., an economic objective), such as maximizing power 

generation. It acts as a compromise indicator. The tradeoff relationship among other non-reference 

objectives can be evaluated by comparing the magnitude of their preference coefficients with the 

reference objective. This reference objective will serve as the y-axis (in a bi-objective problem), 

or the z-axis (in a three-objective problem) of the Pareto front. We name other objectives as non-

reference objectives. 
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Step 2: Segment the domain of non-reference objectives with knots. The knot positions can be 

determined by expert preference or simply using percentiles of the domain. Then construct the 

linear spline utility function by assigning each segment a different preference coefficient (or 

gradient). The general form of the linear spline utility function is as follows: 

 
1 2

1 1 2 2

1 2

0 1 2

1 1 1

( ) ( ) ... ( ) ,
n

n n

n

dd d

ref k k k k k n k

k k k

f f f f      + + +

= = =

= + − + − + + −     (22) 

where 
1 11 1( ) max(0, )k kf f +− = − ; there are 1m n= +  objectives with 

reff  as the reference 

objective; 1,..., nk k  are the segments for different non-reference objectives 1( ,..., )nf f ; 0  is 

equivalent to the utility, so maximizing the utility is equivalent to maximizing 0 ; 1,..., nd d  are 

the total number of knots for each non-reference objective in the Pareto front plot; 
1
,...,

nk k  are 

the knots for each non-reference objective; and 
1
,...,

nk k   are the increments of preference in each 

segment of each non-reference objective. Fig. 6 shows a bi-objective ( 2m = ) example.  

 

Figure 6. A bi-objective example of the linear spline utility function method 
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 The value of the increments of preference 
1
,...,

nk k   (i.e., equivalent to the preference 

coefficients) can be determined by expert preference and experience. However, we further develop 

a “regression method” to automatically determine 
1
,...,

nk k   without consulting expert experience. 

In a bi-objective example, for each segment 1k , we conduct a linear regression by using Pareto 

optimal points {e.g. 1 1

1( [ ], [ ])
k k

reff i f i } and obtain the linear regression coefficient 
1

ˆ
kb  for each 

segment 1k : 

 1 1

1 1 1 1 1
ˆ ˆˆ [1, ]

k k

ref k kf a b f k d= +   .   (23) 

If 1

1 1

1ˆ ˆd

k kb b , then sort the linear regression coefficients from low to high:  

 1

1 1 1

1

(1) (2) ( )
ˆ ˆ ˆ ˆ ˆ... .

d

k d kb b b b b=    =   (24) 

 If 1

1 1

1ˆ ˆd

k kb b , then sort the linear regression coefficients from high to low. The idea is to ensure that 

the sorted regression coefficients (i.e., 
1(1) (2) ( )

ˆ ˆ ˆ, ,..., db b b ) are always in the reverse magnitude order 

of all the original linear regression coefficients 
1

ˆ
kb (for the convex Pareto front case), or at least 

1

1ˆ
kb  

and 1

1

ˆd

kb  (for the non-convex Pareto front case). These sorted regression coefficients (i.e., 

1(1) (2) ( )
ˆ ˆ ˆ, ,..., db b b ) will be assigned as the preference coefficient in each segment, which ensures 

satisfaction of the law of diminishing MRS for the proposed utility function. Fig. 7 provides an 

illustrative diagram using a bi-objective problem as an example. 
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Figure 7. Diagram of the regression method 

Lastly, assign those sorted regression coefficients as the preference coefficients for the 

segments in order, and calculate the increments of preference 
1k , using the bi-objective example 

in Fig. 6 as an example: 

 1 (1) 1 2 (2) 1 2 3 (3)
ˆ ˆ ˆ; ( ) ; ( ) .b b b     = + = + + =   (25) 

 For a three-objective problem, the procedure is the same. But we need to perform a multiple 

linear regression: 

 1 2 1 2

1 2

,

1 2 1 1 2 2
ˆ ˆ ˆˆ [1, ], [1, ].

k k k k

ref k kf a b f b f k d k d= + +      (26) 

Then sort each partial regression coefficient 
1

ˆ
kb  and 

2

ˆ
kb . The preference coefficient increments

1k and
2k then can be deduced accordingly.  

This regression method does not require any information from expert experience. Instead, 

it assumes that the preference is related to a linear relationship of the two objectives in the Pareto 
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front. It also satisfies the law of diminishing MRS. In addition, under the regression method, the 

tangent point (i.e., the “best” point) is most likely to occur in the “knee region” of the Pareto front. 

A knee point is characterized as the farthest solution from the extreme line/plane defined by the 

extreme solutions, as Fig. 8 shows (Bechikh et al., 2010; Bechikh et al., 2011). It is usually 

regarded as one of the “best compromise” points on a Pareto front (Branke et al., 2004; Deb and 

Gupta, 2011). For example, in Fig. 8, the knee point is at the edge of a significant 
reff  decrease 

while keeping the minimum 1f  value, which is the most preferable compromise. The “knee region” 

consists of multiple points that are close to the knee point. We can assume these points have similar 

advantages as the knee point.  

 

Figure 8. The knee point on a Pareto front 

If the Pareto front can be assumed as convex, the knee point is typically unique. Then under 

the regression method, the linear spline utility function is constructed in such a way that it has 

large slope differences with the Pareto front on both sides of the knee region. So, the tangent point, 

a point required to have the same first derivative on both curves, only can appear in the knee region. 

From another perspective, the knee point also is defined as the point with the largest curvature 
fK
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(Satopaa, et al., 2011). It can be simplified further to be the point with a very large second 

derivative 
''f [

'' '2 1.5| | /(1 )fK f f= + ]. A large second derivative indicates that the slope in the knee 

region is changing rapidly. So, the regression slope of this region is far from any extreme slopes 

that appear on both sides of this region. This enables some points in the knee region to be tangent 

with the linear spline utility function. In the case where the Pareto front is non-convex, the knee 

points and knee regions are not unique. The tangent point may appear in any knee region, 

depending on the different knot pre-settings. But the advantage of the method remains. 

Of course, if expert experience is available, then using the empirical preference coefficients 

is easier and more preferred. We provide both a three-objective example and a bi-objective 

example with their spline utility functions in Fig. 9. 

 

Figure 9. (a) A three-objective example with different views (a1, a2, and a3); (b) A bi-objective 

example 
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Step 3: Maximize the utility 0  by finding the tangent point between the linear spline utility 

function and the Pareto front. The generated Pareto front is composed of many Pareto optimal 

points. Denote the Pareto optimal points as 
1( [ ], [ ])reff i f i . We develop a linear programming 

problem to find the tangent point, demonstrated by using Fig. 6 as an example: 

 

0

0 1 1 1 1 1 1 2

0 1 1 2 2 1 2 1 1 2 3

0 1 1 2 2 3 3 1 2 3 1 1 3

1

minimize

. .

( ) [ ] [ ] [ ] [ , ]

( ) ( ) [ ] [ ] [ ] [ , ]

( ) ( ) [ ] [ ] [ ] [ , ]

( [ ], [ ]) Pareto front,

ref

ref

ref
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s t

f i f i f i

f i f i f i

f i f i f i

f i f i



     

        

          

− +   

− − + +   

− − − + + +    +



  (27) 

where 0  is the decision variable (also the utility), and 1 2 3, ,    are known. Once the optimal 0  

is found, the tangent indifference curve is determined, and the tangent point is identified.  

 Compared with the scalarization method, our proposed linear spline utility function method 

offers key advantages. First, it allows decision makers to specify different preference coefficients 

among the range of objectives. Second, it satisfies the law of diminishing MRS, which is more 

likely to be the case in reality. Also, unlike other popular utility functions such as the quadratic 

utility function, whose slope keeps changing, our proposed linear spline utility function keeps the 

preference coefficient (i.e., the slope of utility function) fixed in each segment. This is often 

preferable because the compromise relationship between each objective is much clearer. Third, it 

does not require expert input on preference coefficients if the regression method is used.  

 

3. Case study 
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Our case study is the Three Gorges Reservoir (TGR), located in the Yichang City of Hubei 

Province in China. The TGR project has produced many benefits, including flood control, 

hydropower generation, navigation, and tourism. In general, flood control and hydropower 

generation are the two main purposes of the TGR. For power generation, the TGR is the largest 

hydropower station in the world, with an installed capacity of 22,500 MW (32 sets of 700 MW 

and 2 sets of 50 MW generators).  

The storage capacity of the TGR is 
10 33.93 10 m . The normal pool level and flood limited 

water level of the TGR are 175 m and 145 m, respectively. For each year, starting from October 

(the end of flood season), the conventional TGR operating rule is first to gradually refill the 

reservoir to the normal water level (175m). Then the reservoir begins gradually to empty its water 

storage until reaching the flood limited water level (145m) by the beginning of the flood season 

(around the end of June). During the flood season (June-Sept.), the reservoir water level is required 

to be maintained at the flood limited water level (145m) (Liu et al., 2015; Zhang et al., 2020).  

 In this study, we are interested in finding the optimal release of the TGR under the 

proposed stochastic multi-objective reservoir operation model. The two objectives are maximizing 

the total expected hydropower output (
reff ) and maximizing the average expected ecological 

benefits ( 1f ). The planning horizon of the monthly model is one year and has 12 stages, where 

each month is a stage. We first generate an inflow scenario tree using the historical inflow data. 

3.1 Streamflow scenario tree generation 

In this section, we generate a streamflow scenario tree by the neural gas method. 

Specifically, we first collect the historical TGR monthly streamflow data from 1956-2009 (54 

years). We then pre-specify a scenario tree structure that consists of 24 scenarios, as Fig. 10(a) 

70



shows. Note our model starts from October, which is also stage 1. The generated scenario tree 

consists of 24 representative scenarios, including their nodal values and probabilities. Fig. 10(b) 

and Table 1 show these results. We see from Fig. 10(b) that the highest inflows to TGR usually 

occur during the flood season (Jun.-Sep., or stage 9-12). 

 

Figure 10. (a) The tree structure of the 24-scenario inflow scenario tree; (b) Historical series value and 

scenario (i.e., centroids) nodal values 

Table 1. The probability of each scenario in the scenario tree 

Scenario Probability 

#1 0.02 #7 0.02 #13 0.02 #19 0.04 

#2 0.00 #8 0.02 #14 0.04 #20 0.06 

#3 0.07 #9 0.04 #15 0.06 #21 0.06 

#4 0.04 #10 0.06 #16 0.06 #22 0.04 

#5 0.04 #11 0.04 #17 0.04 #23 0.06 

#6 0.06 #12 0.09 #18 0.02 #24 0.06 

 

3.2 Produced Pareto front and the optimal solution 

We apply the proposed SMOP reservoir operation model to the TGR. Some constraint parameter 

values in the model are selected as follows: 10 32.9 10initialV m=  ; min 0N = , max 22500MWN = ; 
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min 0R = , 4 3

max 2.5 10 /R m s=  ; and min 0SP = , 4 3

max 9.8 10 /SP m s=  . To comply with the 

reservoir operating rule for the non-flood season (Oct.-May), the reservoir storage limits are  

10 3

,min 1.71 10tV m=  and 
10 3

,max 3.93 10tV m=  , corresponding to reservoir water levels of 145m 

and 175m, respectively. For the flood season (Jun.-Sep.), we set 
10 3

,min 1.71 10tV m=  and

10 3

,max 1.76 10tV m=  , except that the ending storage of Sept. is set to be greater than or equal to 

the initial storage initialV . The comprehensive output coefficient (i.e., K) for the TGR has a value of 

8.8 (Liu et al., 2011; Yang et al., 2018). Fig. 10(a) shows the inflow scenario tree used in the 

model. To run the stochastic programming with recourse model with a rolling horizon, a 

deterministic inflow forecast is needed for the immediate stage (1st stage), and beyond the 

immediate stage the inflow stochasticity is modeled by the scenario tree. 

To test our proposed model, we obtain synthetic deterministic inflow forecast series of a 

dry year, a normal year, and a wet year from inflow data of years 2010, 1986, and 1973, 

with small perturbations. We then test our proposed method against all three different 

hydrological year inflow series. Note that in real-time operation, a deterministic 

inflow forecast should be made available for the immediate stage. 

Starting from stage 1 (Oct.) with the deterministic inflow forecast, we produce the Pareto 

front using the modified constrained NSGA-II. The front shows the tradeoff between the two 

conflicting objectives: maximizing the total expected hydropower generation E and maximizing 

the average expected ecological assurance rate Λ. Next, we employ the proposed linear spline 

utility function with regression to select the best compromise Pareto optimal point. Once we 

have selected the best compromise Pareto optimal point for stage 1, the optimal water release for 

stage 1 can be determined accordingly. Then the initial state of stage 2 (Nov.) can be determined, 
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and the planning window moves to [2, T], given the deterministic stage 2 inflow forecast. This 

procedure continues until the water release of the final stage T is obtained. Fig. 11 shows the 

results (i.e., the Pareto front and the best compromise solution) of selected stages [stage 1 (Oct.), 

stage 2 (Nov.), stage 3 (Dec.), and stage 6 (Mar.)], using the dry year test series as an example. 

Other stages and test series yield similar results. 

Figure 11. Pareto optimal points and linear spline utility function for different stages under the dry year 

test series: (a) Stage 1 in Oct.; (b) Stage 2 in Nov.; (c) Stage 3 in Dec.; and (d) Stage 6 in Mar. 

From Fig. 11, we see that the proposed modified NSGA-II with the adjustment step works 

as expected. It produces a relatively complete Pareto front at each stage by searching with a wide 
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range of Pareto optimal points. Second, for each stage, the “best compromise” Pareto optimal point 

is selected (in red) based on the proposed linear spline utility function with regression. Without 

relying on expert experience on preference coefficients 
1k , we gain information about the 

preference coefficients directly from the Pareto front itself. The Pareto fronts in Fig.11(b) and (c) 

approximately can be assumed to be convex, and both of their “knee points” are captured under 

the proposed utility function. While the Pareto fronts in Fig.11(a) and (d) are more non-convex, 

our tangent points still fall into their “knee regions,” even though the “knee regions” may not be 

unique. This clearly shows the advantage of our proposed utility function. That is, the selected 

tangent point is likely to occur in the preferable “knee region” of the generated Pareto front, 

regardless of its convexity, and it satisfies the law of diminishing MRS. 

Also, Fig. 11(a) shows the “best compromise” solution for stage 1, so it reflects the 

compromise between the total expected hydropower output and the average assurance rate for the 

entire planning horizon. According to its selection, we say the total expected hydropower output 

is approximately 
108.2 10 kWh, with the average expected assurance rate for each month as 0.87. 

Note these are the expected values at the beginning of the entire one-year planning horizon, not 

the actual values. The actual values will depend on the actual forecasted inflow as well as the 

compromise solutions selected in the ensuing stages. 

3.3 Comparisons among utility functions on the optimal Pareto point selection 

Using different utility functions will generally yield different Pareto optimal point selections. As 

demonstrated in section 2.3, adopting the traditional linear utility function is equivalent to using 

the traditional scalarization method to handle conflicting objectives, which assigns a constant 

weight for each objective. In this section, we compare the proposed linear spline utility with the 
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traditional linear and quadratic utility, where we can see the difference among these methods on 

the optimal Pareto point selection. The Pareto front at stage 6 in the dry year is used to demonstrate 

the results, shown in Fig. 12.  

 

Figure 12. Comparison among different utility functions: (a) Linear utility favored on  ; (b) Linear 

utility fairly weighted; (c) Linear utility favored on E; (d) Quadratic utility. 

First, it is difficult to determine the weight for each objective in the traditional linear and 

quadratic utility function. People usually need to set the preference coefficients (i.e., weights) 

based on experience. Fig. 12(a) – (c) show three traditional linear utility functions with various 

preference coefficients on the assurance rate, from the highest value to the lowest value. We see 

that the optimal Pareto point selections based on these linear utility functions highly depend on the 

weights, thus the quality of the selection relies on these weight assignment accuracies. In contrast, 
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our proposed linear spline utility with the regression method does not require any information from 

expert experience to set up the preference coefficients. Instead, it assumes that the preference is 

related to a linear relationship of the two objectives in the Pareto front, as discussed in section 2.3. 

Second, the traditional linear utility function has the inherent drawback that it does not 

satisfy the law of diminishing MRS, since the preference coefficient is fixed in the entire domain 

of each objective. Therefore, the selection based on this approach is not consistent with standard 

economic theory. On the contrary, our linear spline utility and the quadratic utility do not have this 

problem, since their preference coefficients can change in each segment of the non-reference 

objective’s domain. However, a disadvantage of using a quadratic utility function is that its 

preference coefficient changes frequently, which leads to an unclear interpretation of the tradeoff 

relationship between the two objectives. Third, although the “knee point” may not necessarily 

always be the right choice, it is usually regarded as one of the “best” compromise points on a 

Pareto front (Branke et al., 2004; Deb and Gupta, 2011). It is usually difficult to select the point in 

the “knee region”, for both traditional linear and quadratic utility functions. However, with our 

proposed regression method, the linear spline utility function is constructed in such a way that it 

is likely to select the optimal point in the “knee region” of a Pareto point, as shown in Fig. 12. 

3.4 Optimal water release and reservoir storage for different inflow test series  

The optimal water release corresponds to the selected optimal Pareto point. At each stage, once 

the optimal Pareto point is selected, the values of the corresponding decision variables [i.e., water 

release for all stages in the planning horizon] are determined. Then the water release for the stage 

under consideration can be obtained. In this section, the optimal Pareto point of each stage is 

selected by our proposed linear spline utility function. Fig. 13 shows the obtained releases and the 

corresponding reservoir storages for all three different hydrological year inflow test series. 
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Figure 13. Different hydrological years comparison: (a) Inflow forecasts; (b) Power release; (c) Spill 

water; (d) Reservoir ending storage 

Fig.13(a) shows the test inflow forecast data used for the dry year, normal year, and wet 

year. The most significant inflow difference among these three hydrological years occurs around 

the flood season (i.e., May-Sept.). The dry year inflow is around half of the inflow of the normal 

year and the wet year in the flood season, but it has slightly higher inflow than the normal year 

and wet year in the non-flood season (Dec.-Mar.). The wet year has more inflow than the normal 

year, mainly in pre-flood (i.e., May) and post-flood (i.e., Sep. and Oct.) seasons. These inflow 

series serve as the deterministic inflow forecasts for the immediate stage of the model. Important 

model results are then shown in Fig. 13(b), (c), and (d).  

Fig. 13(b) shows the obtained power releases. The power releases depend on the 

compromise at each month, the inflow forecast, and the reservoir storage limit. This can be further 
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analyzed through the reservoir ending storage at each month, as shown in Fig. 13(d). In general, 

we see that the power release reveals a similar pattern with the inflow forecasts for different 

hydrological years. That is, the higher the inflow forecast for a given month, the more power 

release. For example, the normal year inflow forecast is slightly lower than the dry year during 

January to April, which leads to a lower power release of the normal year than the dry year in this 

period.  

Fig. 13(c) shows that there are no spills (non-power releases) during the entire planning 

horizon for the dry year. This is because all water released in the dry year is used to produce 

hydropower, which aligns with one of the model objectives, maximizing hydropower output. For 

the normal and wet year, spills occur in the flood season, as the inflow forecasts exceed the upper 

power release limit.  

The reservoir ending storage results are shown in Fig. 13(d). For the dry year and the wet 

year, we see that the reservoir slowly refills to its normal pool level by the end of March, but with 

a storage decrease between October and November. This reflects the multi-objective compromise: 

A single power output maximization objective would prefer a sharp water level increase to the 

normal pool level and maintain this water level until the flood season (demonstrated below in Fig. 

15). However, the ecological objective requires a certain amount of water release during each 

month, which prevents the reservoir from quickly refilling to the maximum storage. For example, 

the decrease in reservoir storage during October indicates the need for water release for ecological 

purposes during that month. For the normal year, the inflow forecasts are too low in the non-flood 

period, especially from January to April, which prevents the reservoir from refilling to the normal 

pool level.  
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For all three hydrological years, starting from April, the reservoir begins to gradually empty 

the storage by the beginning of the flood season. During the flood season (June-Aug.), the reservoir 

water level is maintained at the flood control level. The ending storage (Sept.) is greater than the 

initial storage. In sum, reservoir storage variation depends on water release choices at each stage, 

which further depend on the compromise made between the two objectives at each stage. But in 

general, we see that the proposed model can produce reasonable optimal solutions when dealing 

with two conflicting objectives for all three different hydrological scenarios. 

Also, according to the obtained water release and reservoir storage from our method, we 

calculate the power output and ecological assurance rate in each month for the three different 

hydrological years. Fig. 14 shows the results. 

 

Figure 14. (a) The power output result for each month; (b) The assurance rate result for each month 

As Fig. 14 shows, power output and the assurance rate are in general negatively correlated, 

which indicates the conflicting goals. The minimum power output, which is around 4,900MW, 

occurs in the non-flood season for all three testing series. In general, the power output is positively 

correlated with the power release and the gross average water head. Thus, the higher the reservoir 

water level (reservoir storage), the more power can be generated. For example, the dry year and 
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the normal year have almost identical power releases in April [as shown in Fig. 13(b)]. However, 

the average reservoir storage in April for the dry year is higher than the normal year, which leads 

to a slightly higher power output in April for the dry year than the normal year. 

For the assurance rate, ecological needs can be satisfied for most months for all three testing 

years, as these values are close to one. The wet year has the highest annual assurance rate, due to 

its abundant inflow forecasts. For the dry year, a zero assurance rate in July occurs as an outlier. 

This is because 1) the inflow forecast in July of the dry year was lower than the minimum 

ecological streamflow ,mineco

tQ , and 2) during the flood season the reservoir water level was 

required to be maintained at the flood-limited water level (145m). Similarly, a low assurance rate 

in September was due to the fact that the reservoir was required to be refilled at least to initialV , thus 

not enough water could be provided to ensure a high ending ecological assurance rate.  

3.5 Comparisons with traditional single-objective stochastic models 

To demonstrate the utility of our proposed stochastic approach for tradeoff analysis between two 

conflicting objectives, we compare our proposed model with traditional single-objective stochastic 

programming. Specifically, we solve two single-objective stochastic programming with recourse 

models, with the objective of 1) only maximizing the total expected energy, and 2) only 

maximizing the average expected ecological benefits. Note that our proposed multi-objective 

stochastic model maximizes utility and also can be considered a single-objective utility-

maximizing stochastic model, in which utility is defined by the proposed linear spline utility 

function. Fig. 15 compares the models and shows the results, exemplified by the dry year inflow 

test series. 
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Figure 15. Model result comparisons: (a) Power output; (b) Assurance rate; (c) Reservoir ending storage; 

(d) Power release 

Fig. 15(a) shows the power output comparison. It clearly can be seen that the energy-

maximizing model generates the highest power output for most stages, followed by the utility-

maximizing model, and finally the eco-benefits-maximizing model. This result is consistent with 

the reservoir storage result shown in Fig. 15(c): In the energy-maximizing model, water level is 

kept at a higher level for most stages, since a high water level is beneficial to hydropower 

production. In contrast, the water level for eco-benefits maximizing is generally kept at a lower 

level, since this model only aims at satisfying the downstream assurance rate requirement so that 

it tends to release water to downstream instead of retaining in the reservoir. The utility-maximizing 

model water level is in the middle, due to the compromise made between two conflicting objectives. 

81



The assurance rate comparison is shown in Fig. 15(b). In general, the results follow the 

inverse pattern of Fig. 15(a). That is, the eco-benefits-maximizing model provides the highest 

assurance rate for most stages, followed by the utility-maximizing model, and finally the energy-

maximizing model. The power release for the eco-benefits maximizing model is shown in Fig. 

15(d). It is lower than the other two models as the eco-model does not have any energy goal, and 

part of its release water is in the form of the spill water rather than the power release. We also 

calculate the total annual energy output and assurance rate results by summing up the results over 

all stages for the three models, as shown in Table 2. We observe that results from the utility-

maximizing model are between the results in terms of both energy output and ecological benefits. 

The energy-maximizing model generates 91.7 10  kWh more annual energy than the utility model, 

and the eco-benefits-maximizing model has 0.7 more annual assurance rate over the utility model. 

Table 2. Total annual energy output and assurance rate results for three different models  

  Total annual energy output (
1010 kWh) Total annual assurance rate 

Energy-maximizing 7.69 7.89 

Eco-benefits-maximizing 4.25 9.68 

Utility-maximizing  7.52 8.98 

 

4. Conclusion 

In this paper, we proposed a multi-objective, multi-stage stochastic programming with recourse 

model for reservoir management and operation. The model simultaneously considers both multiple 

objectives and stochastically represented uncertainty. The stochasticity of the reservoir inflow is 

represented by the generated scenario tree. Using the concept of a rolling horizon for real-time 

reservoir operation, we converted the original model into a process of solving a sequence of two-

stage stochastic programming with recourse problems. Typical of a stochastic programming with 

recourse model, the inflow forecast for the first stage (immediate stage) is deterministic, and, from 
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the second stage onward, inflow branches out into a scenario tree. The Pareto front for the 

immediate stage is generated by a modified constrained NSGA-II. To handle a large number of 

constraints and to ensure feasibility, we made the modification by adding an “adjustment” step 

that consists of several strategies to ensure feasibility. 

After obtaining the Pareto front, we selected a single tradeoff point (the best compromise 

solution) using the proposed linear spline utility with regression method. Our proposed utility 

function has the following key advantages. First, it satisfies the law of diminishing MRS, and the 

weights are fixed in each segment with clear interpretations. Second, it does not necessarily rely 

on the specified weight of each objective or any pre-specified parameters if used along with the 

proposed regression method. Instead, it finds such information from the Pareto front. Third, it 

selects the best compromise solution that is likely to fall in the “knee regions” of the Pareto front. 

In the TGR case study, we applied the proposed framework considering two conflicting 

objectives: 1) maximizing the total expected energy output in the planning horizon, and 2) 

maximizing the average expected ecological assurance rate in the planning horizon. The results 

show that the proposed model successfully produces the optimal water release, considering both 

inflow uncertainty and the tradeoff between the two conflicting objectives.  
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Appendix A 

Table 3. Symbol descriptions 

Symbol Description 

E [*] Expectation operator 

x Decision vector 

X  Solution space  
( , )f x w A general function associated with the uncertain parameter w  

w Uncertain parameter; Scenario 

g Recourse function 

q, J, L, h Realization of uncertain data at the second stage 

1f , 2f The first and second objective 

m The number of objective functions 

I Total number of scenarios in the scenario tree 

t The scenario stage (i.e., stage); 

begt The beginning of stage t 

endt The end of stage t 

beg end[ , ]t t The time period during stage t 

t The time duration between each stage 

T Total number of stages in the scenario tree 

,i tw The node of scenario i at scenario tree stage t 

E i

t
The energy output in the time period beg end[ , ]t t (i.e., during the stage t) for scenario i 

i

tR The power release in the time period beg end[ , ]t t for scenario i 

i

tSP The non-power release (spill water) in the time period beg end[ , ]t t for scenario i 

( )iP w The probability of scenario i 
i

t The ecological assurance rate of stage t for scenario i 

,mineco

tQ The minimum ecological streamflow for the time period beg end[ , ]t t

,eco pro

tQ The appropriate ecological streamflow for the time period beg end[ , ]t t

tQ The total reservoir discharge in the time period beg end[ , ]t t

stg Model-stage; The start of the rolling horizon; 
i

tV The ending reservoir storage of stage t for scenario i 
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  InitialV The initial reservoir storage 

TV The ending reservoir storage of the entire planning horizon 

 
i

tW The inflow in the time period of beg end[ , ]t t for scenario i 

tD The deterministic inflow forecast during period of beg end[ , ]t t

t

iN The power output during the period beg end[ , ]t t for scenario i 

i

tH The gross average water head during period beg end[ , ]t t under scenario i 

1FN , 2FN The functions of forebay water level and tailrace water level 

K The comprehensive output coefficient for the reservoir 

,mintV , ,maxtV The lower and upper bounds of the reservoir storage for each stage t 

minN , maxN The minimum and maximum limits of power output 

minR , maxR The lower and upper bounds of the power release 

minSP , maxSP The lower and upper bounds of the non-power release 

U Utility function; utility 

reff The reference objective 

n The number of non-reference objectives 

1,..., nk k The segments for each non-reference objective 

0 Equivalent to the utility 

1,..., nd d The number of knots for each non-reference objective 

1
,...,

nk k  The knots for each non-reference objective 

1
,...,

nk k  The increments of preference in each segment of each non-reference objective 

1

ˆ
kb The linear regression coefficient of Pareto points for each segment 1k

(1)b̂ ,
(2)b̂ ,

(3)b̂ Sorted linear regression coefficient 

1 1

1( [ ], [ ])k k

reff i f i Pareto points in segment 1k

Appendix B 

The adjustment strategies for Constraints (11) and (12) are shown in Fig. 3 and outlined in the 

following: 

Phase I: Check Constraint (11) ( ,min ,max

i

t t tV V V  ): 
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Step 1. Upon obtaining an original offspring solution, check if this solution satisfies 

Constraint (11). If yes, directly go to Phase II. If not, proceed to either Step 2 (fix the left constraint 

violation) or Step 3 (fix the right constraint violation). 

Step 2. Check for ,i t , if ,min

i

t tV V . If it is true for some i and t, then let 

,min 1_ ( ) /i i i i

t t t t tSP new W V V t R−= − −  − , where i

tR  is the power release in the original offspring 

solution. If 
min_t

iSP new SP , then only update t

iSP  with _t

iSP new , with no update on i

tR . By 

doing so, we ensure ,min

i

t tV V=  for this particular i and t.  If 
min_i

tSP new SP , then we further let 

min_i

tSP new SP=  and also let ,min 1 min_ ( ) /i i i

t t t tR new W V V t SP−= − −  − . Update t

iSP  with 

_i

tSP new , and i

tR  with _i

tR new , respectively. By doing so, we also ensure ,min

i

t tV V= .  

Step 3. Check for ,i t , if ,max

i

t tV V . If this is true for some i and t, then we let 

,max 1_ ( ) /i i i i

t t t t tR new W V V t SP−= − −  − , where i

tSP  is the non-power release in the original 

offspring solution. If 
max_i

tR new R , only update i

tR  with _i

tR new , with no update on i

tSP . By 

doing so, we ensure ,max

i

t tV V=  for the particular i and t. If 
max_i

tR new R , then we further let 

max_i

tR new R= , and also let ,max 1 max_ ( ) /i i i

t t t tSP new W V V t R−= − −  − . Update i

tSP  with 

_i

tSP new , and i

tR  with _i

tR new , respectively. By doing so, we also ensure ,max

i

t tV V= . 

Step 4. Once updating i

tR  and i

tSP  is complete, for ,i t , calculate i i i

t t tQ R SP= + , which 

is the total outflow for each i and t that satisfies Constraint (11); i

tQ  will be fixed in the next Phase. 

Note that once i

tQ  is fixed, i

tV  is determined given i

tW  and 
1

i

tV −
. 
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Phase II: Check Constraints (12) (
min max

i

tN N N  ): 

Step 5. Use the updated solution after Step 1-4. Check if this solution satisfies Constraint 

(12). If it does, jump to Step 8. If not, proceed to either Step 6 or Step 7. 

Step 6. Check for ,i t , if 
min

i

tN N . If this is true for some i and t, then we let 

min_ / ( )i i

t tR new N K H=  . Then _ _i i i

t t tSP new Q R new= − , where i

tQ  is calculated at Step 4. By 

doing so, we make 
min

i

tN N=  for the specific i and t. Update i

tSP  with _i

tSP new , and i

tR  with 

_i

tR new , respectively. 

Step 7. Check for ,i t , if 
max

i

tN N . If this is true for some i and t, then we let 

max_ / ( )i i

t tR new N K H=  . Then _ _i i i

t t tSP new Q R new= − . By doing so, we will have 
max

i

tN N=  

for the particular i and t. Update i

tSP  with _i

tSP new , and i

tR  with _i

tR new , respectively. 

Step 8. If, after Step 1-7 updates for ,i t , i

tR  and i

tSP  are in the feasible range of i

tR  and 

i

tSP  (e.g. between minR  and maxR ); the original infeasible solution is guaranteed to have mutated 

to a new feasible solution that satisfies Constraints (11) and (12). Now it can be used for non-

domination sorting, tournament selection, and cross-over. If for some i  and t, i

tR  or i

tSP  are not 

in the feasible range anymore, then this infeasible solution is discarded, which only happens in 

very rare cases. The entire procedure also is illustrated in Fig. 3. 
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Chapter 5 

CONCLUSION, DISCUSSIONS, AND FUTURE RESEARCH 

This dissertation aims at improving the accuracy, efficiency, and applicability of the traditional 

stochastic programming models in reservoir operation, so that a better optimized releasing 

strategy can be obtained under the uncertain inflow. In particular, three underlying 

drawbacks of the traditional stochastic programming model are studied and optimized: 1) 

increasing the parameter estimation accuracy when fitting the inflow distribution; 2) 

improving the efficiency of the multi-stage stochastic programming with recourse model 

by proposing a scenario tree reduction method; and 3) expanding the applicability of the 

stochastic programming model by integrating with multi-objective programming. This 

dissertation tests the proposed methods on different case studies, including eight watersheds 

across the U.S., Qingjiang cascade reservoir system in Yangtze River, China, and the Three 

Gorges Reservoir in China.  

Specifically, in Chapter 2, a Bayesian hierarchical model (BHM) is proposed for 

estimating the statistical parameters for monthly average streamflows. It is assumed that the 

monthly average streamflow follows a three parameter, log-normal distribution (LN3). When 

estimating a distribution parameter of a given month, the proposed BHM utilizes historical 

observations not only from the month under consideration but also from all other months. This is 

different from traditional statistical parameter estimation methods that only use historical 

observations for the month under consideration. Cross-Validation (CV) method and the log-

likelihood are selected to evaluate the performance of BHM against selected traditional parameter 

estimation method methods, including LMLE, L-MOM, MME, MMME, etc.
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In the case study, this dissertation selects eight watersheds across the United 

States, where historical unimpaired streamflows are collected. A Shapiro-Wilk normality 

test is employed to validate the LN3 assumption. The results show that the proposed BHM 

produced better parameter estimates than the selected traditional parameter estimation 

methods for all data sizes (long, medium, and short). The fewer the observation data, the 

more the proposed method improves compared with the traditional methods. The two 

reasons that BHM produced better parameter estimates are: 1) BHM utilizes historical 

observations not only from the month under consideration but also from all other months, and 

2) Due to the shrinkage, the Bayesian estimator from BHM is guaranteed to be no 

worse than the MLE based estimator. The proposed BHM is especially suited for 

parameter estimation where historical observations are limited. In addition, when compared 

to an auto-regression model, the proposed BHM shows its advantage as a data-driven model 

with fewer assumptions.  

The proposed method in Chapter 2 increases the accuracy of stochastic 

programming models, especially for the chance-constrained model. This method can also be 

used to better estimate parameters of any random variables that follow LN3 distribution. Some 

potential future research opportunities for this method include: 1) reduce the potential parameter 

uncertainty loss by switching the currently applied sequential estimation approach to a full 

Bayesian analysis based on the joint posterior. 2) investigate on the choices of the 

informative hyperprior and evaluate their impacts. 
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In Chapter 3, a novel scenario tree reduction method is developed based on a stepwise 

conditional Monte Carlo sampling and regularized optimization. A neural gas algorithm is 

first employed for scenario tree generation, then a stepwise conditional Monte Carlo 

sampling method is established for systemically reducing the number of scenarios from the 

full tree. A regularized optimization model based on ridge regression and moment 

matching is further developed to determine the posterior scenario probability. The developed 

method is aimed at improving the efficiency of the multi-stage stochastic programming with 

recourse model, and it is particularly suited for reducing a streamflow scenario tree for reservoir 

operations. This is because: 1) this method does not require updating nodal values at each 

stage. Therefore, it is consistent with the definition of scenario tree reduction, which is known 

as determining a subset of the initial scenario tree and assigning new probability to the reduced 

scenarios (Growe-Kuska et al., 2003); 2) this method stabilizes the reduced tree scenario’s 

probability, and the physical meaning of the streamflow scenario probability can be interpreted 

easily; 3) this method does not rely on the probability metric but takes advantage of the basic 

moment matching technique to provide a direct moment matching between the historical data 

series and the reduced tree.  

Qingjiang cascade reservoir system is used as the case study. The results show that the 

reduced tree with 35% reduction level can still maintain robust moment preservations, 

including the mean, variance, lag-one covariance, cross-site covariance, and scenario probability. 

The stability test indicates that the proposed conditional Monte Carlo sampling method is 

stable and converges within a reasonable number of scenario combinations. Potential future 

studies may include evaluating the quality of the reduced scenario tree obtained by the 

proposed method from the optimization solution perspective (Felten et al., 2002). 
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In Chapter 4, a multi-objective, multi-stage stochastic programming with recourse model 

is proposed for reservoir management and operation, where the utility theory is adopted to select 

the best compromise solution from the Pareto front. This proposed model is aimed at expanding 

the applicability of stochastic programming model by integrating with multi-objective 

programming. Specifically, a multi-stage streamflow scenario tree is first generated by the neural 

gas method. Then the Pareto front at each stage is produced by a modified constrained NSGA-II. 

A single best compromise solution on the Pareto front must be selected for the immediate stage 

and the model moves forward one stage and is re-optimized over a moving planning horizon of 

fixed duration. The selection is achieved by a proposed linear spline utility function allied with 

regression. Our proposed utility function has the following advantages: 1) it satisfies the law of 

diminishing marginal rate of substitution, 2) it does not rely on the pre-specified weight or goal 

if used along with the regression method, and 3) it selects the best compromise solution that is 

likely to fall in the “knee regions” of the Pareto front.  

The proposed optimization model is applied to the Three Gorges Reservoir (TGR) in 

China. The two conflicting objectives are 1) maximizing the total expected energy output in the 

planning horizon, and 2) maximizing the average expected ecological benefits in the planning 

horizon. The results show that the proposed model successfully produces the optimal water 

release policy under different hydrological test inflow scenarios, when considering 

both the inflow uncertainty and the tradeoff between the two conflicting objectives. As 

discussed in Chapter 4, one of the most important tasks for constructing a stochastic multi-

objective model is to find a way for selecting the “best compromise” solution on the Pareto 

front. Thus, besides the proposed linear spline utility function method, other utility functions that 

satisfy the economic theory can be explored for future research. 
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Overall, this dissertation improves the accuracy, efficiency, and applicability of the 

traditional stochastic programming model. With such an improved stochastic programming 

model, a better optimized reservoir operation strategy can be obtained when considering the 

uncertain inflow. The topics discussed in this dissertation are also expected to provide 

insights for the future research in other fields of water resource management and operations. 
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