
UC Irvine
ICS Technical Reports

Title
Tree decomposition with applications to constraint processing

Permalink
https://escholarship.org/uc/item/5g22r8n7

Authors
Meiri, Itay
Dechter, Rina
Pearl, Judea

Publication Date
1994

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5g22r8n7
https://escholarship.org
http://www.cdlib.org/

TREE DECOMPOSITION with APPLICATIONS
to CONSTRAINT PROCESSING

Itay Meiri
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles

Rina Dechter

Department of Information and Computer Science
University of Califomia, Irvine

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of Califomia, Los Angeles

Technical Report 94-56
September 94 (Revised)

"z".

^9f
^3
>^0, 9Y-5C,

Notice: This Materiai
may be protected
by Copyright Law
(Title 17 U.S.C.)

Abstract

This paper studies the possibility of removing redundant information from a given
knowledge base and restructuring it in the form ofatree to enable efficient problem solving
routines. We offer a novel approach that guarantees removal ofall redundancies that hide a
tree structure. We develop a polynomial-time algorithm that, given an arbitrary constraint
network, either extracts (by edge removal) a precise tree representation from the path-
consistent version of the network or acknowledges that no such tree cari be extracted. In
the event ofthe latter, the tree generated may serve as a good approximation to the original
network.

3f!!T :b:uU'>h

.'Ht. n);1;H.i : • ; VBIY!

WBJ jilOirvvU,. • \-

(.O.cUi \i :4t|T

Tree Decomposition with Applications
to Constraint Processing

Itay Meiri
Cognitive Systems Laboratory

Computer Science Department

University of California

Los Angeles, CA 90024

Rina Dechter Judea Pearl

Information k Computer Science Cognitive Systems Laboratory

University of California, Irvine Computer Science Department

Irvine, CA 92717 University of California

Los Angeles, CA 90024

Abstract

This paper studies the possibility of removing redundant information from a given
knowledge base and restructuring it in the form of a tree to enable efficient problem
solving routines. We offer a novel approach that guarantees removal of all redundan
cies that hide a tree structure. We develop a polynomial-time algorithm that, given
an arbitrary constraint network, either extracts (by edge removal) a precise tree rep
resentation from the path-consistent version of the network or acknowledges that no
such tree can be extracted. In the event of the latter, the tree generated may serve as
a good approximation to the original network.

1 Introduction

Redundancy in constraint-based re«isoning can be a mixed blessing. On one hamd, redundant
constraints can be used to explicate incompatibleassignments that otherwise would be tried
by a search algorithm. On the other hand, the presence of redundant constraints forces the
search algorithm to make additional tests. The latter case is particularly aggravating when
problems expressible in tree-structured networks are enriched with redundant constraints; If
a tree is available, the problem can be solved in a backtrack-free manner, but when a tree
is loaded with redundant information, the correct ordering of the search is obscured and
unnecessary consistency checks are required.

Theproblem addressed in this paper is as follows. Given a binary constraint network, find
whether it can be transformed into a tree-structured network without loss of information. If
the answer is yes, find such a tree; if the answer is no, acknowledge failure.

This paper develops a polynomiai-time algorithm that, given an arbitrary network, gen
erates a tree T with the following characteristics. If any tree representation can be extracted
by deleting edges (i.e., binary constraints) from the path-consistent version of the network,
T represents the network exactly. However, if no tree representation can be extracted by
such deletion, the fact is acknowledged, and T may serve as an approximation to the original
network. Furthermore, when the given path-consistent network is minimal, we can issue
the stronger guarantee that if the tree T generated by our algorithm fails to represent the
network, then no tree representation exists, even allowing for the introduction of edges that
were absent in the original path-consistent network.

The algorithm works cis follows. VVe examine all triplets of variables, identify the re
dundancies that exist in each triplet, and assign weights to the edges in accordance with

the redundancies discovered. The tree generated, T, is a maximum-spanning-tree relative to
these weights and a (polynomial-time) test is then conducted to establish whether the tree
represents the network precisely.

An added feature of the algorithm is that when the tree generated is recognized as an
approximation, it can be further tightened by adding edges until a precise representation
is achieved. This technique may be regarded «is an alternative redundancy-removal scheme,
one accompanied with polynomial complexity and performance guarantees, to the technique
proposed in [l].

The general issue of removing redundancies has been investigated in the literature of
relational databases [9, 2], as well as in the context of constraint networks [1]. The algorithm
proposed here is related also to the problem of decomposing a relation that was treated in
[2] and will be discussed in detail in Section 7. While the method in [2] takes as input a
relation (i.e., the set of satisfying assignments), here the relation is not given and the input
consists of an unsolved constraint network.

2 Preliminaries and nomenclature

We first review the basic concepts of constraint satisfaction [3, 7].
A network of binary constraints consists of a set of variables {Xi,...,and a set

of binary constraints on the variables. The domain of variable Xi, denoted by Dx, or Z),',
defines the set of values A", may assume. A binary constraint, Rij, on variables A,- amd
Aj, defined by Rij C Di x Dj it specifies the allowed pairs of values for Xi and Xj. If a pair
(x,y) is allowed by the constraint /?,y we denote E^j{x,y) = 1, else Rij{x,y) = 0. Thus Rij
denotes a set of pairs while Rij{x,y) is a predicate that is true iff {x,y) € Rtj.

A binary constraint R,j is tighter^ than R',j (or conversely R'̂ j is more relaxed than
R^j), denoted by Rij C 7?^, if every pair of values allowed by Rij is also allowed by 71^^. The
most relaxed constraint is the universal constraint which allows all pairs of the Cartesian
product.

An assignment of a value to each variable that satisfies all the constraunts is called a
solution. The set of all solutions to network R constitutes a relation, denoted by rel{R),
whose attributes are the variables names. Formally, rel{R) = {zi,...,i„|V i,j (x^ij) € Ri]}-
Two networks with the same variable set are equivalent if and only if they represent the
same set of solutions.

A binary constraint network is associated with a constraint graph, where node i rep
resents variable A^, and an edge between nodes i and j represents a direct constraint,
Rij, between them, which is not the universal constraint. Other constraints are induced
by paths connecting i and j. The constraint induced on i and j by a path of length m
through nodes io = i, denoted by 71,0,,, imi represents the composition of
the constraints along the path. Namely, a pair of values x 6 Z?io f ^ is allowed by
the path constraint, if there exists a sequence of values 6 79,,, ...,Um-i € such that
Ri,,i,{x,vi), 77„,.,(ui,i;2),-, and i?.„..,.„(v,„-i,y) are all evaluated to 1.

A network whose direct constraints are tighter than any of its induced path constraints
is called path consistent. Formally, a path P of length m through nodes io, ii,...,im is
path consistent, if and only if 72,o,i„ C 7?io.M ,„• Similarly, arc (i,j) is arc-consistent if for

'It should be "at least as tight but we use the shorter term "tighter" for convenience.

any value x € A, there exists a value y e Dj such that R,j{x,y). A network is arc and path
consistent if all its arcs and paths are arc and path consistent, respectively. Any network
can be converted into an equivalent arc and path consistent form in time 0{n^)^ (8, 10].

Not every relation can be represented by a binary constraint network. The best network
approximation of a given relation is called the minimal network; its constraints are the
projections of the relation on all pairs of variables, namely, each pair of values allowed by the
minimal network participates in at least one solution. Thus, the minimal network displays
the tightest constraints between every pair of variables. Being a projection of the solution
set, the minimal network is always arc and path consistent. Montanari showed that the
minimal network is unique. An equivalent definition of the minimal network is:

Definition 1 [10]. A binary network R is minimal if for any network R' equivalent to R,
R is tighter than R'.

3 Problem statement

We now define the tree decomposability problem. First, we introduce the notion of tree
decomposition.

Definition 2 A network R is tree decomposable if there exists a tree-structured network
T, on the same set of variables, such that R and T are equivalent (i.e., represent the same
relation). T is said to be a tree decomposition of R, and the relation p represented by
R is said to be tree decomposable (by T). A network R is tree reducible if it contains
a tree-structured subnetwork T such that R is decomposable by T, and for all (i,;) € T,
Tij = Rij, namely the constraints in T are taken unaltered from R.

Thetree decomposability problem for networks is defined as follows. Given a network
i?, decide if R is tree decomposable. If the answer is positive find a tree decomposition of
R, else, acknowledge failure. The tree reducibility problem is defined as follows. Given
a network R, let path{R) be the network resulting from applying arc and path-consistency
to R. Decide ifpath{R) is tree-reducible. If the answer is positive find a tree reduction of
path{R), else acknowledge failure.

Example 1 Consider the network R having 4 variables A, B,C, D, with domains
Da = 2,Z Db =2,3,4: Dc =2,3,4 Do =2,6.

The constraints are indicated explicitly in Figure 1.

In any order by which we will look for a solution we will have to test all six constraints.
This network is tree-reducible. The constraints Rbc,Rcd, and Rbd are redundant and
can be deleted. By recognizing this redundancy, we generate a representation that is much
more effective; a consistent solution can be recovered by testing three constraints only. One
can easily recognize now that the constraints between Aand each of B, C, Dstands for the
requirement that the value of Adivides the values o(B,C and D, respectively. This example
can be scaled up to any number of variables, thus reducing constraint testing from 0(n) to
0(n).

^Actually, the complexity is O(n^k^), where kis the domain size; however, for simplicity, we assume the
domain size is constant.

Rab = {(2,2)(2,4)(3,3)}
Rac = {(2,2)(2,4)(3,3)}
Rad = {(2,2)(2,6)(3,6)}
Rac = {(2,2)(2,4)(4,2)(4,4)(3,6)(2,3)(3,4)}

Rcd = Rbd = {(2,2)(2,6)(4,2)(4,6)(3,6)}

Figure 1: An example of a binary network.

Example 2 Consider network R^ whose variables A, B,C, D, E, all have hi-valued domains
{0,1}. The constraint graph is given in Figure 2. The constraints are:

Rab = Rac = Rbd = Rbe = Rcd = Rce = {(0,1)(1,0)(1,1)}

^4fl = /24^ = {(0,0)(0,l)(l,l)}
In this case the tree T = {AB, AC, AD, AE) is the only tree-decomposition of this network.

The rest of the paper is organized as follows. Sections 4, 5, and 6 describe the tree
decomposition scheme, while Section 7 presents related work. Proofs of theorems can be
found in the appendix.

4 Tree decomposition schemes

Tree decomposition comprises two subtasks: searching for a skeletal spanning tree, and de
termining the link constraints on that tree. If the input network is minimal, the second
subtask is superfluous because, clearly, the link constraints must be taken unaltered from
the corresponding links in the input network, namely, decomposability coincides with re-
ducibility. We shall, therefore, first focus attention on minimal networks, and postpone the
treatment of general networks to Section 7. Our problem can now be viewed as searching
for a tree skeleton through the space of spanning trees. Since there are spanning trees
on n vertices (Cayley's Theorem [6]), a method more effective than exhaustive enumeration
is required.

The notion of redundancy plays a central role in our decomposition schemes. Consider
a consistent path P = io, ii, ...,im- Recall that in the minimal network the direct constraint

C D

(a)

C D

(b)

Figure 2; Constraint graphs for Example 2. Note that mc 5C, DE in (a) denoted universal
constraints.

Rio,i„ is tighter than the path constraint If the two constraints are identical we
say that edge is redundant with respect to path P] it is aJso said to be redundant in
the cycle C consisting of nodes {I'o, I'l, If the direct constraint is strictly tighter than
the path constraint, we say that (io, im is nonredundant with respect to P (or nonredun-
dant in C). Another interpretation of redundancy is that any instantiation of the variables
{I'o, which satisfies the constraints along P is allowed by the direct constraint
Rio.im- Conversely, nonredundancy implies that there exists at least one instantiation which
violates

Definition 3 Let T" be a tree, and let e = (t,i) ^ T. The unique shortest path in T
connecting i and j, denoted by Pri^), is called the supporting path of e (relative to T).
The cycle C7'(e) = Prie) U {e} is called the supporting cycle of e (relative to T).

Theorem 1 Let G = {V, E) be a minimal network. G is decomposable by a tree T if and
only if every edge in —T is redundant in its supporting cycle.

Theorem 1 gives a method of testing whether a network G is decomposable by a given
tree T. The test takes O(n^) time, as there are O(n^) edges \n E —T, and each redundancy
test is 0{n).

Illustration: Consider Example 1. Tree Ti = {AB, AC, AD) is a tree decomposition, since
edges BC, BD and CD are redundant in triangles {A,B,C}, {A,B,D} and {A,C,D},
respectively. On the other hand, Tj = {AD, BD,CD} is not a tree decomposition since edge
AB is nonredundant in triangle {A, B, D} (indeed, the tuple (A = 2,5 = 3, C = 3, D = 6)
is a solution of Tj, but is not a solution of the network).

An important observation about redundant edges is that they can be deleted from the
network without affecting the set of solutions; the constraint specified by a redundant edge
is already induced by other paths in the network. This seems to suggest the following
decomposition scheme. Repeatedly select an edge redundant in some cycle C, delete it from
the network, and continue until there are no cycles in the network or there are no redundant
edges. Algorithm Brute-force decomposition (BFD) is depicted in Figure 3.

Algorithm Brute-force Decomposition (BFD)

1. iV ^

2. while there are redundant edges in N do
3. select aji edge e which is redundant in some cycle C, and set

N N-{e}
4. if N forms a tree then G is decomposable by N
5. else G is not tree decomposable;

Figure 3: BFD —A brute-force algorithm for tree-decomposition.

Theorem 2 Let G be a minimal network. Algorithm BFD produces a tree T if and only
if G is tree-decomposable by T.

To prove Theorem 2, we must show that if the network is tree decomposable, any sequence
of edge removals will generate a tree. A phenomenon which might prevent the algorithm from
reaching a tree structure is that of a stiff cycle, i.e., one in which every edge is nonredundant
(e.g. cycle {B, D,C, E} in Example 2). It can be shown, however, that one of the edges in
such a cycle must be redundant in another cycle when the network is tree decomposable.

The proof of Theorem 2 rests on the following three lemmas, which also form the theo
retical bcisis to Section 5.

Lemma 1 Let G be a path consistent network and let e = (io,im) be an edge redundant
in cycle C = {I'o, ti, //C" = {io,ii, •..,ik,ik+l, '•s an interior cycle created by
chord {ik,ik+i), then e is redundant in C'.

Lemma 2 Let G be a minimal network decomposable by a tree T, and let e ^ T be a tree
edge redundant in some cycle C. Then, there exists an edge e' € C, e' ^ T, such that e is
redundant in the supporting cycle of e'.

Lemma 3 Let G be a minimal network decomposable by a tree T. If there exist e G T and
e' ^ T such that e is redundant in the supporting cycle of e', then G is decomposable by
r = r - {e}U {e'}.

Algorithm BFD, though conceptually simple, is highly inefficient. The main drawback is
that in Step 3 we might need to check redundancy against an exponential number of cycles.
In the next section we show a polynomial algorithm which overcomes this difficulty.

5 Tree, triangle and redundancy labelings

In this section we present a new tree decomposition scheme, which can be regaurded as an effi
cient version of BFD, whereby the criterion for removing an edge isessentially precomputed.
To guide BFD in selecting redundant edges, we first impose an ordering on the edges, in
such a way that nonredundant edges will always attain higher ranking than redundant ones.
Given such ordering, we do not remove edges of low ranking, but apply the duail method
instead, and construct a tree containing the preferred edges by finding a maximum weight
spanning tree (MWST) relative to the given ordering. This idea isembodied in the following
scheme.

Algorithm TD
Input: a minimal network R,
Output: a tree decomposition of R if one exists.

1. tz; < —romana tree labeling of G\
2. T < —romanMWST of Groman w.r.t. w,
3. test whether G is decomposable by T;
4. if the test fails G is not tree decomposable; else return the tree T.

Figure 4: TD - k family of tree decomposition algorithms.

Definition 4 Let G = {V, E) be a minimal network. A labeling w of G is an assignment
of weights to the edges, where the weight of edge e £ E is denoted by w{e). w is said to be
a tree labeling if it satisfies the following condition. If G is tree decomposable, then G is
decomposable by tree T if and only ifT is a MWST of G with respect to w.

Finding a tree labeling essentially solves the tree decomposability problem, simply fol
lowing the steps of algorithm Tree-decomposition (TD) shown in Figure \. TD stands for a
family of algorithms, each driven by a different labeling w. Steps 2-4 can be implemented in
O(n^): Step 2 can use any MWST algorithm, such as the one by Prim, which is O(n^) (see
[6]); Steps 3-4, deciding whether G is decomposable by T, are O(n^) as explained in Section
4 (Theorem 1).

We now turn our attention to Step 1, namely computing a tree labeling. This will be
done in two steps. We first introduce a necessary and sufficient condition for a labeling to
qualify as a tree labeling, and then synthesize an O(n^) algorithm that returns a labeling
w satisfying this condition. As a result, with this labeling the total running time of TD is
bounded by O(n^).

Definition 5 Let G = (V, E) be a minimal network. A labeling w of G is called a redun
dancy labeling, if it satisfies the following condition. For any tree T and any two edges,
e' 6 E —T and e € T, such that e is on the supporting cycle of e', ifG is decomposable
by T then

(i) w{e') < w{e). (1)

(it) e is redundant in Crie) whenever u>(e') = tz;(e). (2)

Lemma 4 Let w be any labeling of a minimal network G. w is a tree labeling if and only if
w is a redundancy labeling.

Having established this equivalence, the next step is to construct a labeling that satisfies
conditions (1) and (2).

Definition 6 A labeling w of network G is a triangle labeling, iffor any triangle t =
{61,62,63} the following conditions are satisfied.
(i) If e\ is redundant in t then

w(ei) < w{e2), u'(ei) < u;(e3). (3)

(ii) If e\ is redundant in t and ej is nonredundant in t then

iv{ei) < w{e2).

Conditions (3) and (4) will be called triangle constraints.
Illustration: Consider the minimal network of Example 2. Analyzing redundancies relative
to all triangles leads to the triangle constraints depicted in Figure 5. Each node in the
figure represents an edge of the minimal network, and an arc ei —> ej represents the triangle
constraint w(ei) < w(e2) (for clarity, all arcs from bottom layer to top layer were omitted).
It so happens that only strict inequalities were imposed in this example. A triangle labeling
to can be easily constructed by assigning the following weights:

w{AB) = w{AC) = w{AD) = w{AE) = 3,

w{BD) = w{BE) = w{CD) = w{CE) = 2

and w{BC) = tv{DE) = 1.

Note that the tree T = {AB,AC,AD,AE}, which decomposes the network, is a MWST
relative to these weights, a property that we will show to hold in general.

Figure 5: Triangle constraints for Example 2.

Clearly, conditions (3) and (4) are easy to verify as they involve only test on triangles. In
Lemma 6 we will indeed show that they are sufficient to constitute a redundancy labeling,
hence a tree labeling. Moreover, a labeling satisfying (3) and (4) is easy to create primarily
because, by the following Lemma 5, such a labeling is guaranteed to exist for any path
consistent (hence for any minimal) network. Note that this is by no means obvious, because
there might be two sets of triangles imposing two conflicting constraints on a pair (a, b) of
edges; one requiring w{a) < w{b), and the other w{a) > w{b).

Lemma 5 Any path consistent network admits a triangle labeling.

Algorithm TL
Input: An arc and path-consistent network R,
Output: A triangle labeling w.

1. create directed graph Gi = {Vi,Ei) with V\ = E and Ei =
2. for each triangle t = {e,, ej,ei} in G do

if edge is redundant in t then add arcs e, ej and Ci —• to Gi',
3. set G2 = {^2, E2) as the superstructure of G\\ V2 —{Ci,Cg}.
4. compute a topological ordering w for Vj;
5. for I := 1 to IVj] do
6. for each edge e in C, do

u;(e) w{C,y,

Figure 6: TL- an algorithm for constructing a triangle labeling.

The idea behind triangle labelings is that all redundancy information necessary for tree
decomposition can be extracted from individual triangles rather than cycles. By Lemma 1,
if an edge is redundant in a cycle, it must be redundant in some triangle. Contrapositively,
if aji edge is nonredundant in all triangles, it cannot be redundant in any cycle, and thus
must be included in any tree decomposition. To construct a tree decomposition, we must
therefore include all those necessary edges (note that they attain the highest ranking) and
then, proceed by preferring edges which are nonredundeint relative to others. The correctness
of the next lemma rests on these considerations.

Lemma 6 Let G be a minimal network. If w is a triangle labeling of G then it is also a
redundancy labeling.

We can conclude that:

Theorem 3 Let G be a minimal network and assume TD uses a triangle labeling w of G.
G is tree-decomposable iff TD finds a tree-decomposition of G.

From here on we will assume that the labeling w computed by TZ) in step 1 is a triangle
labeling. What remains to be shown is that, given any minimal network G = (V, E), a
triangle labeling can be formed in 0{n^) time. .Algorithm Triangle labeling {TL), shown in
Figure 6, accomplishes this task.

Let us consider the TL algorithm in detail. First, it constructs a graph, Gi, that displays
the triangle constraints. Each node in Gi represents an edge of G, and arc u —* v stands
for a triangle constraint w{u) < w{v) or w{u) < w{v). The construction of Gi (Steps 1-3)
takes 0{n^) time, since there are O(n^) triangles in G, and the time spent for each triangle
is constant.

Consider a pair of nodes, u and v, in Gi. It can be verified that if they belong to
the same strongly-connected component (i.e., they lie on a common directed cycle)^, their
weights must satisfy w{u) = w(v). If they belong to two distinct components, but there exists
a directed path from u to v, their weights must satisfy w(u) < w(v). These relationships

strongly connected component of a directed graph is a maximalset of node U such that for every pair
A and B in U, there is a directed cycles containing .4 and B.

can be effectively encoded in the superstructure of Gi [6]. Informally, the superstructure
is formed by collapsing all nodes of the same strongly-connected component into one node,
while keeping only arcs that go across components. Formally, let Gj = be the
superstructure of G\. Node Ci € Gj represents a strongly-connected component, and a
directed arc Ci —> Cj implies that there exists an edge u —> u in Gi, where u ^ C, and
V6 Cj. Identifying the strongly connected components, and consequently constructing the
superstructure (Step 4), takes G(n^) (a time proportional to the number of edges in Gj [6]).

It is well-known that the superstructure forms a DAG (directed acyclic graph), moreover,
the nodes of the DAG can be topologically ordered, namely they can be given distinct weights
w, such that if there exists an arc i j then w{i) < w{j). This can be accomplished (Step
4) in time proportional to the number of edges, namely O(n^). Finally, recall that each node
in G2 stands for a strongly-connected component, Ci, in Gi, which in turn represents a set
of edges in G. If we assign weight u;(C,) to these edges, w will comply with the triangle
constraints, and thus will constitute a triangle labeling. Since all steps are O(n^), the entire
algorithm is G(n^).

These considerations are summarized in the following theorem.

Theorem 4 given a path-consistent network R, algorithm TL generates a triangle labeling
of R in O(n^) steps. •

Corollary 1 Tree-decomposability of a minimal network G can be decided in O(n^) steps.
Furthermore, if it exists, a tree decomposition of G can be generated in O(n^).

6 Tree decomposition of arbitrary networks

Given an arbitrary network R (not necessarily minimal), we wish to determine whether R is
tree decomposable. If it were the case that any tree-decomposable network becomes minimal
by enforcing path-consistency, then our algorithm TD preceded by path-consistency would
have offered a solution for the general case. This property of tree-decomposable networks
was not proven in general, nor could we find a counter example. We believe this property to
be correct hence we pose it in a form of a conjecture:

Conjecture 1 Any path consistent network that is tree-decomposable is minimal.

Even assuming that this conjecture is false, our method can still accomplish the decompo
sition task in those cases where path consistency is known to produces the minimal network.
This is accomplished by supplementing TD with a preprocessing routine that enforces path-
consistency (which takes G(n^) steps). Call the augmented algorithm TD'. Theorem 3 leads
to the following observation:

Theorem 5 Algorithm TD* is complete for the following classes of networks:

1. Tree reducible networks

2. Path-conistent Row-convex networks

3. Binary (D, 1) networks
4. Distributive networks

Row-convex networks involve constraint matrices having consecutive sequences of Ts [12].
Distributive networks employ relations for which the composition operation is distributive
over intersection [10].

As an important consequence of Theorem 5we note that, in case the given network is tree
reducible, algorithm TD' is guaranteed to find a decomposing tree. This follows from the
fact that if we enforce arc and path-consistenty on any tree reducible network the resulting
network is minimal (see proof of Theorem 5 step 1 in the appendix). Consequently, we have

Corollary 2 Algorithm TD' is complete for deciding tree reducihility. If conjecture 1 is
correct the algorithm is complete for tree-decomposition as well.

These results suggest another application oiTD' - redundancy removal. Given a network R
(not necessarily tree decomposable), it is sometimes desirable to remove as many redundant
edges as possible. Our scheme provides an effective heuristics, alternative to that of [1]. We
first apply the TD' algorithm and, in case the tree generated does not represent the network
precisely, we add nonredundant edges until a precise representation obtains.

TD' can also be used for approximation: Given a network /?, find a tree network which
constitutes a good approximation of R. The tree T, generated by TD' provides an upper
bound of R, as it enforces only a subset of the constraints. The quality of this approximation
should therefore be evaluated in terms of the tightness, or specificity, of T.

Conjecture 2 The tree T generated by TD' is most specific in the following sense: no
other tree V, extracted from the network, satisfies rel{T') C rel{T).

Although we could find no proof yet, the conjecture has managed to endure all attempts
to construct a counterexample.

7 Related work; decomposing a relation

The problem of tree-decomposition was solved for general relations. Given a relation p, the
problem is to determine whether p is tree decomposable. We first describe how TD can be
employed to solve this problem, and then compare it with the solution presented in [2].

We start by generating the minimal network M from p. We do this by projecting p on
each pair of variables. We then apply TD to solve tree decomposability for M. If M is not
tree decomposable, pcannot be tree decomposable; because otherwise, there would be a tree
Tsatisfying p= rel(T) Crel{M), violating the minimality of M[10]. If Mis decomposable
by the generated tree T, we still need to test whether rel{T) = p (note that M may not
represent p precisely). This can be done by comparing the sizes of the two relations; p is
decomposable by T if and only if \p\ = \rel{T)\. Generating Mtakes 0(n^ | pj) operations,
while |re/(T)| can be computed in 0{n) time [4]; thus, the total time of this method is
0{n^ I /'D- e u j

An alternative solution to the problem was presented in [2]. It computes for each edge
a numerical measure, w, based on the frequency that each pair of values appears m the
relation. First, the following parameters are computed:
n{Xi = Xi) = number of tuples in pin which variable Xi attains value z^.

n{X, = Xi, Xj = Xj) = number of tuples in p in which both X, = x, and Xj = x .
Then, each edge e = {i,j) is assigned the weight

"^(e)= n{xi,Xj)log (5)
x,.xj^x„Xj n{xi)n{xj)

It has been shown that this labeling, w, is indeed a tree labeling, also requiring 0{n^ (p\)
computational steps.

Comparing the two schemes, the method presented in this paper has three advantages.
First, it does not need the precision required by the log function. Second, it offers a some
what more effective solution in cases where p is not available in advance but is observed
incrementally through a stream of randomly arriving tuples. Finally, it is conceptually more
appealing, since the removal of each edge is meaningfully justified in terms of being redun
dant.

8 Conclusions

The problem addressed in this paper is best viewed as a task of "knowledge compilation"
[11, 5], in which knowledge specified in one form is compiled into a more manageable form,
so as to accommodate a given stream of queries. The compilation task treated in this
paper concerns the decomposition of a constraint network into a tree —a structure known
to facilitate tractable answers to a wide spectrum of queries.

The paper develops a tractable decomposition scheme that requires O(n^) time and solves
the problem for minimal networks and for any path-consistent network from which a tree
decomposition can be extracted by deleting edges. Moreover, the technique is complete
for several classes of networks for which path consistency produces the minimal network.
Row-convex and distributive networks are two such classes.

The theoretical contribution of this paper lies in delineating the extent to which one can
generate trees and remove redundancies by examining only triplets of variables. That such
local examination could be sufficient for certain classes of networks is an intruiging finding,
and should add to our general understanding of dependency and redundancy in constraint
networks.

We can only speculate about the applicability of this method for large, reaJ-life problems.
The method can certainly be useful for guiding removal of redundancies and for generating
tree-networks that provide upper bound approximations. However, the prospects for un
covering tree structures in real-life databeises, while a possibility, may be rather dim; we
suspect that, in practice, most networks will not be tree-decomposable. In such cases, the
effectiveness of our technique would rest upon the goodness of the approximation provided
by the tree generated and how well the redundancies discovered are exploited.

Acknowledgment

This work was supported in part by the Air Force Grant #AFOSR 90 0136, National
Science Foundation Grant ^IRI 9200918, National Science Foundation Grant t^IRI 9157636,
Toshiba of America, and a Xerox grant.

References

[1] Dechter, A. and Dechter, R., "'Removing Redundancies in Constraint Networks," in
Proceedings of AAAI-87, Seattle, WA, 105-109, 1987.

[2] Dechter, R., "Decomposing a Relation into a Tree of Binary Relations," Journal of
Computer and System Sciences, 41, 2-24, 1990.

[3] Dechter, R., "Constraint Networks," in Encyclopedia of Artificial Intelligence, 2nd Edi
tion, Wiley and Sons, Inc., 276-285, 1992.

[4] Dechter, R. and Pearl, J., "Network-Based Heuristics for Constraint Satisfaction Prob
lems," Artificial Intelligence, 34(1), 1-38, 1987.

[5] Dechter, R. and Pearl, J., "Structure Identification in Relation<il Data," Artificial In
telligence, 58, 237-270, 1992.

[6] Even, S., Graph Algorithms, Computer Science Press, Rockville, MD, 1979.

[7] Mackworth, A.K., "Constraint Satisfaction," in Encyclopedia of Artificial Intelligence,
2nd Edition, Wiley and Sons, Inc., 276-285, 1992.

[8] Mackworth, A.K. and Freuder, E.C., "The Complexity of Some Polynomi«d Network
Consistency Algorithms for Constraint Satisfaction Problems," Artificial Intelligence,
25(1), 65-74, 1985.

[9] Maier, D., The Theory of Relational Databases, ComputerScience Press, Rockville, MD,
1983.

[10] Montanari, U., "Networks of Constraints: Fundamental Properties and Applications to
Picture Processing," Information Sciences, 7, 95-132, 1974.

[11] Selman, B. and Kautz, H.A., "Tractability through theory approximation," AI Technical
Report, AT&T Bell Laboratories, Murray Hill, NJ, 1992.

[12] van Beek, P. "On the Minimality and the Decomposability of Constraint Networks,"
Proceedings of AAAI-92, San Jose, CA, 447-452, 1992.

Appendix: Proofs of Theorems

Theorem 1 Let G = {V, E) he a. minimal network. G is decomposable by a tree T if and
only if every edge in £ —T is redundant in its supporting cycle.

Proof. Assume G is decomposable by T. Suppose there is an edge (t,j) € E —T which
is nonredundant relative to its supporting path Pij. Thus, there exists an instantiation of
the variables on P,j which satisfies the constraints along Pij, but the pair of values (x,y),
assigned to variables i and is disallowed by Rij. Since the network is arc consistent, this
instantiation can be extended to a complete solution of T. However, since the pair (x,y)
is disallowed by Rij, T is not equivalent to G, and thus cannot be a tree decomposition;
contradiction.

The other direction is rather obvious. If any edge in E —T is redundant in its supporting
cycle, it can be deleted from the network without affecting the set of solutions. Thus, T is
equivalent to G, and it is a tree decomposition. •

Lemma 1 Let G be a path consistent network and let e = (lo, im) be an edge redund«int
in cycle C = {I'o,ii, •••,»m}- If C ={I'o,is an interior cycle created by
chord {ik,ik+i)i then e is redundant in C.

Proof. From path consistency we have

Q ,!*+(• (6)

Composition of constraints preserves tightness, thus

^«0. -»*.>*+(»m — «*+(>m- (7)

Since {io,im) is redundant in C, we have

^ ^0,'r

From (A-2) and (A-3) we obtain

^«0 »t.»*+(>•••,im —

From path consistency, Rio,im Q ^«o ;*.»*+(«m» (t'o,fm) is redundant in C. •

Lemma 2 Let G be a minimal network decomposable by a tree T, and let e 6 T" be a tree
edge redundant in some cycle G. Then, there exists an edge e' € C,e' ^ T, such that e is
redundant in the supporting cycle of e'.

Proof: Assume that the vertices along C are where e = (ui,Um)- Without loss
of generality, we may assume that ui is not a leaf in T (otherwise, reverse the order of the
vertices along G). Let k be the highest index such that there exists a path P\^k in T from Ui
to Ufc not passing through Vm. Note that k > 1 since Ui is not a leaf.

Consider the path P = Pi,k U {e} which is entirely contained in T. There exists a path
in T connecting vertex Vk+i to a unique vertex, u, on P. Clearly v = t;,„; otherwise, there
would be a path in T from ui to ujt+i not paissing through Vm, violating the aissumption that
Vk is the highest such vertex. Therefore, there exists a path in T from Ujt+i to Vm- Let
denote this path.

Let e' = {vk,Vk+i). The supporting cycle of e' is

Cr(e') = U {(i;it,Vfc+i)} U Pfc+i,m U {e}. (10)

To complete the proof we now show that e is redundant in Crie'). From Lemma 1, since
e is redundant in C, it is also redundant in the quadrangle {ui, Ufc, Vjt+i, u„,}. However,
{vi,Vk) and (ufc+i, Um) are redundant with respect to their supporting paths, Pi,it and Pjt+i,m,
respectively. Thus, e is redundant in Cjie'). O

Lemma 3 Let G be a minimal network decomposable by a tree T. If there exist e € P and
e' ^ T such that e is redundant in the supporting cycle of e', then G is decomposable by
r = r-{e}U{e'}.

Proof: By Theorem 1, we need to show that every edge is redundant with respect to its
supporting path relative to T'. Let {i,j) be any edge in P - T, and let P be its supporting
path in T'. Consider an instantiation of the variables on P which satisfies the constraints
along P. Let x and y be the values cissigned to i and j, respectively, by this instantiation.
We will show that they are also allowed by the direct constraint Rij.

Since the network is arc consistent, we can extend this partial instantiation to include
the rest of the variables, in accordance with the constraints of T'. Since e is redundant in
its supporting cycle in T' (it is redundant in = ^^'(e)), the instantiation satisfies the
direct constraint represented by e. Thus, since T C T'U {e}, the instantiation satisfies all
the constraints of T. Since T is a tree decomposition, the pair (x,j/) is allowed by Pi,j. •

Theorem 2 Let G be a minimal network. Algorithm BFD produces a tree T if and only if
G is decomposable by T.

Proof: Clearly, i(BFD produces a tree, it constitutes a tree decomposition. Conversely, we
will show that if the network is tree decomposable, BFD produces a tree decomposition.

We claim that during the execution of BFD the following invariant is maintained: there
exists a tree decomposition T such that T C N.

Initially the invariant holds since the network is decomposable by some tree T C E = N.
Now assume that the invariant holds before edge e is deleted from N. e \s deleted since it is
redundant in some cycle G. If e ^ T, then the invariant trivially holds after the deletion of
e. Ife € T then, according to Lemma 2, there exists an edge e' such that e is redundant
in its supporting cycle. Then, from Lemma 3., T' = T —{e} U{e'} is a tree decomposition
of G, and T' C N. Hence, the invariant holds after e is deleted.

To complete the proof we need to show that upon termination N constitutes a tree.
Suppose N contains a cycle C. Since N always contains a tree decomposition T, there is an
edge e€ Gwhich is redundant in its supporting cycle, and thus can be deleted. Thus, when
BFD terminates N forms a tree. •

Lemma 4 Let u; be a labeling of a minimal network G. u; is a tree labeling if and only if w
is a redundeincy labeling.

Proof: If G is not tree decomposable, the theorem trivially holds. Now assume G is tree
decomposable. We use a well-known fact from graph theory, called the MWST property,
which says that a tree T" is a MWST if and only if every nontree edge is an edge of minimum
weight in its supporting cycle.
if part: Let u; be a redundancy labeling of G. We shall show that wis also a tree labeling;
namely, for any tree T C E, G is decomposable by T if and only if T is a MWST with
respect to w.

Let T C E he a. tree decomposition of G. From condition (1) and the MWST property,
we conclude that T is a MWST with respect to w.

Conversely, let T be a MWST with respect to w. We show that if G is decomposable
by a tree T', then it is also decomposable by T. The proof is by induction on k= \T' - T\,
namely the number of edges contained in T' but not in T.

Clearly, for k= 0, Gis decomposable by T = T'. Now assume that if Gis decomposable
by T', such that \T'-T\ = k, then it is also decomposable by T. We have to show that ifG
is decomposable by tree T, such that \T' -T\ = k+l, then it is also decomposable by T.

Let T' be a tree decomposition, where |7" - I"! = A: -f- 1. Let e be an edge in T* - T.
Clearly, in Cr'(e), its supporting cycle relative to T', there are edges of T' - T; let E' denote
this set of edges. We first show that there exists an edge e' € E' such that < w{e).

Consider T-{e]. Deleting e from T divides T into two subtrees Ti and T2. At least one
of the edges in E' connects a vertex in Ti with a vertex in T?; let e' denote such an edge. We
observe that e is in the supporting cycle of e' relative to T. Then, by applying the MWST
property to T, w{e') < w{e).

Consider again CT'(e). From condition (1) w{e) < w{e'), hence w{e) = w{e'). From
condition (2) we conclude that e' is redundant in Cr'(e). By Lemma 3, T" = T'- {e'} U{e}
is a tree decomposition of G. Furthermore, \T" —T\ = k. Thus, by the induction hypothesis
G is decomposable by T.
only if part: Let w be a tree labeling of G. We shall show that u; is a redundancy labeling.

Suppose w is not a redundancy labeling. Then, there exists a tree decomposition of G,
T C E, and a nontree edge e', having supporting cycle Crie'), for which either condition (1)
or condition (2) is violated. There are two cases depending on which condition is violated.

Case 1: If condition (1) is violated then there exists a tree edge e € Cr(e'), such that
•w{e) < w{e'). By the MWST property, T is not a MWST relative to w. However, G is
decomposable by T, and hence, w is not a tree labeling; contradiction.

Case 2: If condition (2) is violated then there exists a tree edge e € Cjie'), such that
^^;(e) = w{e'), but e is nonredundant in Cr(e'). Clearly, T = T - {e} U{e'} is a MWST
relative to w. However, T/ is not a tree decomposition, since e is nonredundant in Cjiit) =

its supporting cycle in T'. Thus, w is not a tree labeling; contradiction. •

Lemma 5 Any path consistent network admits a triangle labeling.

Proof: Suppose not. Therefore, there are two conflicting constraints, namely, there is a pair
of edges e',e" € E, for which one set of triangle constraints requires ui(e') > w{e"), whereas

another set of triangle constraints requires w{e') < w{e"). Together, there exists a sequence
of edges e/ = Ci, 62,= e" = e' for which the triangle constraints require

w{ei) < ... < iv{ek) < ... < w{^l) < wiei+i) < w{et+2) < - < w{em). (H)

Without loss of generality we can rename the edges, and the constraints may be written as

1^(61) < ... < u;(e,n-i) < w{^m) < u^(em+i), (12)

where e^+i = ^1, and the strict inequality is last. Let t2, be the corresponding
sequence of triangles, namely, t, contains edges ei_i and for i = 2,...,m + 1.

We now show by induction that for all i,2 <i <m, there exists a cycle Ci containing ei
and e,, in which ei is redundant.

For i = 2, triangle <2 contains Ci and 62, and imposes the constraint u;(ei) < u;(e2).
Hence, ei is redundant in C2 = ^2-

Now assume that there exists a cycle Ci containing ei and e^, in which ei is redundant.
Consider triangle t.+i. It contains both e, and e^+i, and from the triangle constraint, ti is
redundant in t,+i. Let vi, V2 and U3 be the vertices of t,+i, where ti = (ui,U2)- Clearly,
vertices vi and V2 lie on Ci. There are two cases depending on the location of ^3.

Case 1: t;3 is not in Ci- Let the third edge of (besides Cj and Ci+i) be c^+i, and let
Ci+i =Ci- {ei} U{e,+i,c,+i}. Clearly, ei is redundant in C,+i.

Case 2: V3 is in Ci. Therefore, e,+i is a chord of Ci, and it divides Ci into two interior
cycles, C„ that contains ei and e.+i, and C„. By Lemma 1, since Ci is redundant in C,, it^
is also redundant in Ci+i = C,,.

We have now proved that there exists a cycle containing Ci and in which Ci is redun
dant. However, Ci and Cm areadjacent (they are both contained in triangle tm+i)- Therefore,
from Lemma 1, ci is redundant in tm+i- On the other hand, triangle tm+i imposes the con
straint w(€m) < n'(ei), implying that Ci is nonredundant in tm+i, thus contradiction. •

Lemma 6 Let G be a minimal network. If u; is a triangle labeling of G then it is also a
redundancy labeling.

Proof: IfG is not tree decomposable, the theorem trivially holds. Now assume G is decom
posable by tree T. Let e' T and e € T be edges such that e is on Crie'), the supporting
cycle of e'. We need to show:

(i) w(e') < w(e).
(u) If u;(e') = w(e) then e is redundant in CT(e').
Assume the vertices of Cr(e') are where e' = (vi,Uj) and e = (umi^^m+i). To

simplify notation, we may assume without loss of generality e ^ (u,_i,t;,) (otherwise, we
may reverse the order of the vertices along Crie')).

(i) We first show that u;(e') < u;(e). Let e, (i = l,...,m-h 1) denote edge (vi,v,), and let
Ci be its supporting cycle. Let t, be the unique triangle containing edges Ci and Ci+i. By
Lemma 1, e< is redundant in ti, for i = 1,.., m. Consider the sequence of triangles ti,..., tm.
In fi, 1< i < m—1, we have w{ei) < u'(ei+i), and in triangle tm we have w{tm) ^ w{e).
Together we have:

w{e') = if(ei) < 1^(62) < ... < i^(em) ^ w{e). (13)

(zz) Now assume u;(e') = ii;(e). We can replace the inequalities in Eq. refEqi3 by equalities:

UJ(e') =u;(ei) = u;(e2) = ... = u;(e^) = w{e). (14)

From Eq. 14 we conclude that edge e.+, is redundant in triangle for z= 1, m- 1-
otherwise, we would have u;(e.+,) > u;(e.), violating the equality. Similarly, e is'redundant
m tm.

Finally, to show that e is redundant in Cjie') = Ci, we prove by induction on j that eis
redundant in Cm-j, for j = 0 m - I.

For j =0we have to show that eis redundant in Cm- eis redundant in and e,n+i is
redundant in its supporting cycle Cm+i, thus e is redundant in Now assume that e is
redundant in Cm-j. Since tm-: is redundant in eis also redundant in Cm-j-i, which
completes the induction. •

Theorem 3 Let Gbe a minimal network and assume TD uses a triangle labeling wof G.
G is tree-decomposable iff TD finds a tree-decomposition of G.

Proof: clear.

Theorem 4Given apath-consistent network R, algorithm TL generates a triangle labeling
of R in O(n^) steps.

Proof: The proof is outlined in the text. •

Corollary 1Tree decomposability of a minimal network Gcan be decided in 0(n3) steps.
Furthermore, if it exists, a tree decomposition of Gcan be generated in O(n^).

Proof: Algorithm TD decides whether a tree-decomposition exists, and if it does the algo
rithm generates such one (Theorem .3). Since the complexity of generating triangle labeling
is 0{n) and since the complexity oi TD without the weight generation step is aJso 0{n^)
the overall complexity is O(n^). •

Theorem 5 Algorithm TD' is complete for the following networks:

1. Tree reducible networks
2. Row-convex networks

3. Binary (0,1) networks
4. Distributive networks

Proof: Parts 2 and 3 follows from the fact that row-convex networks [12] and distributive
networks [11] were shown to be minimal following the application of path-consistency. Re
garding tree reducible network, one can show first, that a tree-network which is closed by
path-consistency is minimal. The reason is that any pair of values allowed by a unique path
of tree-edges can be extended to a full solution and therefore will appear in the minimal

network. A tree reducible network, R, must have an equivalent tree subnetwork, Rf, con
taining a subset of its edges. Lets denote by path{R) the network resulting from applying
path-consistency to R. Since R is tighter than Rf, path{R) is tighter than path{Rj). Since
path{Rj) is minimal and since the two networks are equivalent, path{R) is minimal as well.
•

Corollary 2 Algorithm TD' is complete for deciding tree reducibility.

Proof: If the network is tree reductible, the constraints on that tree are minimal. Therefore,
the constraints on the tree to be uncovered are minimal. Consequently, when applying
path-consistency to the whole network, it is applied to the tree subnetworks as well, and
consequently, the minimal network is generated (Theorem 5 (1)). It is known that the
application of TD' to the minimal network is complete. •

