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Abstract

We propose a neural network model that accounts for the emer-
gence of the taxonomic constraint and for the whole object
constraint in early word learning. Our proposal is based on
Mayor and Plunkett (2010)’s neurocomputational model of the
taxonomic constraint and extends it in two directions. Firstly,
we deal with realistic visual and acoustic stimuli. Secondly,
we model the well-known whole object constraint in the visual
component. We show that, despite the augmented input com-
plexity, the proposed model compares favorably with respect
to previous systems.

Keywords: Neural Networks; Children; Language acquisi-
tion.

Introduction
How do infants learn the referent of words? As Quine (1960)
famously pointed out, for every word heard in a given cir-
cumstance, there are several possible referents: in order to
infer the appropriate one, infants have to rule out several pos-
sible alternatives. But how? Markman (1989) proposed that
infants rule out inappropriate referents by means of three con-
straints. By the taxonomic constraint children extend words
to taxonomically-related objects: when a child hears the word
“dog” pronounced by a caregiver while pointing at a specific
dog, she generalizes the referent of “dog” to all dogs, not just
to the one in front of her. By the whole object constraint
children assume that novel words refer to objects as a whole,
rather than to their parts, substance, color, or the visual con-
text in which it appears. Lastly, by the mutual exclusivity con-
straint children assume that two labels usually do not refer to
the same object.

This paper concerns the first two constraints, namely the
taxonomic and the whole object constraint.

Our starting point is Mayor and Plunkett (2010)’s neu-
rocomputational model of the taxonomic constraint. Their
model provides an account of how the taxonomic constraint
may emerge from infant experience, as the result of the in-
terplay between (i) taxonomic organization of visual inputs

in visual areas, (ii) phonetic organization of the acoustic in-
puts in acoustic areas, (iii) Hebbian learning developing con-
nections between the two organizing areas. The model uses
self-organizing maps (Kohonen, 2001) and Hebbian learn-
ing (Hebb, 1949), which are considered cognitively plausible
mechanisms, describing at an abstract level realistic forms
of information organization in the brain (Hebb, 1949; Mi-
ikkulainen, Bednar, Choe, & Sirosh, 2005). The powerful
interplay between these structures allows word-object asso-
ciations to taxonomically generalize after a single (one-shot)
joint word object presentation1.

Here we extend Mayor and Plunkett (2010)’s seminal
model in two directions:

1. We intend to investigate whether the taxonomic constraint
can emerge from experience if we consider realistic visual
and acoustic stimuli (photographic images with different
size, color, location in the picture, point of view, etc. and
audio excerpts embodying spoken words synthesized via
software) instead of the very simple, artificially built stim-
uli examined in the original model. A first effort in this di-
rection was undertaken by (Fenoglio, Esposito, & Gliozzi,
2017), in which, however, only realistic visual stimuli were
considered. Here we enrich that proposal by considering
visual and acoustic realistic stimuli (as well as the whole
object constraint, see below). To this purpose, we insert
in the model two deep architectures, one convolutional to
process visual stimuli and the other recurrent to process re-
alistic acoustic stimuli.

2. We insert the whole object constraint in the model.
Whether early learned or innate, the capacity of picking up
the objects in a scene is present in early infancy (see e.g.
Spelke, 1990). However, this primacy of the object concept

1For a critical discussion of the breadth of one shot learning
and fast mapping see for instance (Yurovsky, Fricker, Yu, & Smith,
2014) or (McMurray, Horst, & Samuelson, 2012).
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in visual scene analysis is not present in most recent convo-
lutional neural network (CNN) models, that are the state of
the art in vision tasks. In fact, these models usually process
visual images as a whole (object and background context
together), see e.g., (Zhu, Xie, & Yuille, 2017). Here we
overcome this limitation of CNNs by inserting a segmen-
tation module that extracts the object from the visual scene
before feeding it to the CNN for feature extraction. In the
experimental section we show that the whole object con-
straint improves the performance of the model.

Remarkably, our model replicates Mayor and Plunkett
(2010)’s performance with realistic visual and acoustic stim-
uli, albeit requiring very-few joint presentations of image and
spoken word pairs.

It is worth mentioning here that we do not try to maintain
that CNNs or LSTMs are cognitively plausible models of how
realistic stimuli are processed in biological brains – more de-
tails about this point in the “New Model” Section. We are just
validating the hypothesis that the (Mayor & Plunkett, 2010)
model could generalize to more complex stimuli and that the
whole-object constraint can be helpful in this model.

Mayor and Plunkett (2010)’s model
Mayor and Plunkett (2010) neurocomputational model of tax-
onomic constraint (Figure 1) is based on (i) a visual self-
organizing map (SOM) that processes visual inputs, (ii) an
acoustic SOM that processes acoustic inputs, (iii) Hebbian
connections between the two maps. Both self-organizing
maps and Hebbian learning are considered cognitively plau-
sible mechanisms (Hebb, 1949; Miikkulainen et al., 2005)

Figure 1: Mayor and
Plunkett (2010)’s model

Firstly, the two maps are in-
dependently trained (using the
standard learning algorithm for
self-organizing maps, see Ko-
honen, 2001) to categorize the
visual and the acoustic stim-
uli. This first learning phase
is preliminary to word learning,
and unsupervised, proper word
learning starting to occur once
infants have already started to learn to organize visual and
acoustic information in isolation.

In this way, the two maps learn to represent the stimuli
of their training set in a topologically significant way: close
units respond (activate) similarly to similar stimuli. The neu-
ral activation a j of a neuron j in response to a stimulus x is

defined as: a j = e−
q j
τ , where q j is the quantization error (i.e.,

the distance between the input vector x and j′s weight vector:
q j = ‖x−w j‖)), and τ is a parameter that modulates the neu-
ral activation. The neuron having the strongest activation is
the stimulus’ Best Matching Unit (BMU).

Once this first phase of learning is complete, the actual
word learning can start. This is the Hebbian Learning phase,
in which visual and acoustic stimulus are presented to their
respective maps and the synapses between the two maps are

strengthened. In particular, for each neuron v on the visual
map and neuron p on the acoustic map, the Hebbian connec-
tion uv,p is strengthened proportionally to the resulting neural
activations av and ap, as follows:

u′v,p = uv,p +1− e−λavap

where λ is the Hebbian training learning rate, and u′v,p is the
Hebbian connection after the update.

A single Hebbian learning event, combined with the pre-
viously acquired categorization capabilities of the visual and
acoustic SOMs, allows the model to generalize the associa-
tion to other stimuli belonging to the same category.

Comprehension is assessed by considering what visual cat-
egory is retrieved when a word is presented to the auditory
map and its activation is propagated via Hebbian connections.
Production is assessed by considering what word is produced
by the auditory map when a visual stimulus is presented to the
visual map and the resulting activation is propagated through
Hebbian connections.

The ability of the model to extend the learned word-object
associations to other words and objects belonging to the same
category is measured by the Taxonomic Factor, which is the
percentage of correct word-object associations generated by
the model (i.e., the average of the Production and Compre-
hension statistics). Results show that when the SOMs are
adequately trained the Taxonomic Factor reaches 80% after a
single joint word-object presentation.

New Model
We have enriched the original Mayor & Plunkett model
(2010) (and Fenoglio et al. (2017)) so that (i) it can deal
with realistic visual and acoustic stimuli, and (ii) it captures
the whole object constraint. A graphical representation of
the overall model is contained in Figure 2. For the visual
and the acoustic stimuli we propose to use Deep Neural Net-
works to act as powerful feature extractors: we use two deep
convolutional neural networks (Mask R-CNN and Inception
V3) to process visual information and a deep recurrent neu-
ral network (Deep Speech) to process acoustic information.
These models have been widely adopted for this purpose by
the Machine Learning community, as they are able to output
highly discriminative features (Razavian, Azizpour, Sullivan,
& Carlsson, 2014; Graves, Mohamed, & Hinton, 2013; Han-
nun et al., 2014). Even if it is not the main focus of this pa-
per, it is worth mentioning that these models have also been
proposed as realistic models of visual and acoustic process-
ing. Several studies establish a parallel between the represen-
tations of the visual input created by the different levels of
CNNs and the way in which visual stimuli are processed by
the visual cortex (Serre, 2016; Kriegeskorte, 2015; Khaligh-
Razavi & Kriegeskorte, 2014). Furthermore, comparisons
have been drawn between Recurrent Networks units (specifi-
cally the LSTM cell (Hochreiter & Schmidhuber, 1997)) and
biologically plausible models of working memory such as the

1466



PBWM model (prefrontal cortex and basal ganglia) (O’Reilly
& Frank, 2006).

Visual Component
The visual stimuli that we consider are images taken from
the Common Objects in COntext (COCO) dataset (Lin et al.,
2014). In this dataset images are labelled pixel-wise, mean-
ing that it is possible to extract the foreground objects from
the background scene (i.e. performing image segmentation).
As a first component of the visual module, we included a
Mask R-CNN segmentation model (He, Gkioxari, Dollár, &
Girshick, 2017), which separates foreground objects from the
background content. Then the foreground object is cut from
the background, the background erased and the new image so
obtained is fed into an InceptionV3 Deep Convolutional Net-
work (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016),
an architecture which displays human-like performance on
Object Recognition tasks. The deep network processes the
object and builds a representation for it. We extract the rep-
resentations (i.e. the neural activations) that are found in
the deepest layer before the fully connected neural classi-
fier (as they contain the most abstract features which have
the best chance to depict the abstract concept the object in-
stance refers to), and feed these representations to the visual
self-organizing map.

To summarise, we employ a stack of two Deep Neural Net-
works in our visual module: the first one segmenting the ob-
ject from the context; the second one analysing that output
by means of a standard convolutional deep network. This
architecture allows the model to overcome one limitation of
standard deep convolutional models that, differently from hu-
mans (Spelke, 1990), do not use the notion of object when
processing an image, and, on the contrary, rely very much on
background information in object recognition tasks (Zhu et
al., 2017).

Acoustic Component
We process spoken words using a Deep Speech Recurrent
Network (Hannun et al., 2014) which is close to the state of
the art in the Speech Recognition (i.e. parsing speech into
text) task. This network is able to extract highly discrimina-
tive representations from our input stimuli, which have been
generated using a realistic voice synthesizer that can be set
up to use both male and female voices as well as different re-
gional English accents. In our experiments, we had the gen-
erator pronounce labels from the COCO dataset. Similarly to
the visual module, we extract features by concatenating the
hidden state of the recurrent units after each time step. The
resulting vector representations are then truncated to the same
length and reduced in dimensionality by means of principal
component analysis.

Overall Model
The upper component of the model, comprising the visual and
acoustic self-organizing maps and their Hebbian connections,
is trained as in the original (Mayor & Plunkett, 2010) model:

Visual Feature 
Extraction Network

Acoustic Feature 
Extraction Network

Segmentation 
Network

“dog”

Visual Module

Acoustic Module

Figure 2: Our model

at first the visual and acoustic self-organizing maps are sepa-
rately trained to organize their stimuli, then Hebbian learning
starts.

Similarly to the original model, in order to assess the qual-
ity of the word/object association (the Comprehension and
Production ability), we proceed as follows. For Production,
we present to the visual map a visual stimulus, individuate
a BMU, propagate its activity through Hebbian connections,
and then evaluate the induced activation on the acoustic map
with a cascading mechanism where neurons are interrogated
in order of activation intensity. The first neuron correspond-
ing to a single spoken word (i.e. a neuron that is the BMU
for a single acoustic stimulus category) indicates which word
is produced. We say that a Production task is successful if
the category of the word matches the category of the visual
stimulus. We proceed in a similar way for Comprehension.

Experiments
In our experimental phase, we set out to answer the following
two questions:

1. Does our extension to the original word learning model by
(Mayor & Plunkett, 2010) still account for the taxonomic
constraint? In other words, is it possible to use realistic
auditory and visual stimuli and achieve good word learning
performance?

2. Is the whole object constraint beneficial to the word learn-
ing process?

In order to extract whole object and non whole object rep-
resentations (the inputs of the visual SOM), we trained two
separate InceptionV3 networks for the same amount of time
(i.e. epochs, full passes of the COCO dataset). However, one
network was trained on images where the main object was cut
out using the Mask R-CNN model, while the other one em-
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ployed images that include a portion of the full visual scene2.
We refer to these models respectively as the “whole object”
and “non whole object” networks. Therefore, we explored the
impact of using one network or the other in our visual module
as a way to quantify the impact of including the whole ob-
ject constraint in the overall model. An early evidence of the
importance of the whole object constraint is provided by the
performances (in terms of Object Recognition accuracy) of
the two networks: the whole object network reaches a higher
accuracy (93%) than the non-whole object network (77%)
after the same amount of training time and similar learning
rate schedules3. For the experiments that follow, however,
we decided to only use as visual stimuli those images that
have been correctly classified by both networks; thus, both
convolutional models have perfect accuracy on the final vi-
sual dataset and can be compared on a fair ground. As far as
the acoustic stimuli are concerned, we used a voice synthe-
sizer to generate realistic voice recordings of both male and
female voices pronouncing the object categories which ap-
pear in the visual dataset. To augment the size of the auditory
dataset, we also varied the synthesizer’s pronunciation speed.
The representations were then extracted using a pre-trained
Deep Speech network4. We truncated the representations to a
length of 25 and kept the 20 most informative factors of varia-
tion using PCA. In the following sections, we report represen-
tation quality, SOM quality and taxonomic factor measure-
ments for a dataset composed by 1000 visual stimuli and 390
acoustic stimuli belonging to 10 different word-object cate-
gories.

Representation Quality
First off, we set out to understand whether the representations
extracted from the realistic stimuli are well-behaved. To this
end, we performed an experiment in which the representa-
tions are used as input for the k-Means clustering algorithm
with k, the number of clusters, set to 10. After fitting the clus-
tering model, we visualize the resulting clusters (see Figure 3)
using a histogram plot.

We also assess the trained SOMs’ topological organization
by visualizing them. In Figure 4, we see that representations
belonging to the same category are mapped on neurons that
are topologically close. Moreover, we evaluate the organiza-
tion quality by using the class compactness measure; this is
computed by averaging the Euclidean distances between neu-
rons that are BMUs for stimuli belonging to the same class
and dividing by the average distance between BMUs for any
stimulus. Lower values indicate better topological structure.

2More specifically, we used the bounding box information for
each object in COCO and expanded it by 40% so to preserve a sig-
nificant amount of visual context.

3We trained the whole object network for 60 epochs. We used
a learning rate of 10−3, decreasing it to 10−4 after 40 epochs. This
schedule, however, appeared to be very sub-optimal when training
the non whole learning network, as the object recognition accuracy
progressed very slowly. Therefore, the second network was trained
with a learning rate of 10−2 and decreased it to 10−3 after 40 epochs.

4https://github.com/mozilla/DeepSpeech/

(a) Non whole object representations.

(b) Whole object representations.

(c) Audio representations.

Figure 3: K-means clusters. Colors show how representa-
tions of each category contribute to the clusters.
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Averaging this formula over the categories in the dataset re-
sults in the overall SOM compactness value. We report (Table
1) lower compactness values for the SOM we trained on the
whole object representations, and robust compactness for the
non whole object and acoustic SOMs.

Word Learning
As an experimental evaluation of the overall model, we com-
pare the word learning capabilities of our model with and
without the whole object constraint. After training with a
number of joint word-object presentations, the model has to
be able to produce an appropriate acoustic stimulus when pre-
sented with an image (understanding) and viceversa (compre-
hension). The algorithm used to obtain the final word-object
association is described in the “New Model” Section.

In Figure 5 we report the understanding and comprehen-
sion performances alongside the Taxonomic Factor (their av-
erage). A set of stimuli (20% of all the visual and acoustic
representations) was reserved for testing and was excluded
from the training sets.

Discussion
Coming back to the questions we set out to answer at the start
of the section, Figure 5 makes apparent that our model man-
ages to perform word learning with appropriate performance
(set at a Taxonomic Factor of over 80% in (Mayor & Plun-
kett, 2010)) after very few word-object presentations. The
performance is also in line with previous work on this model
(Fenoglio et al., 2017), in which, however, very simplified
acoustic stimuli were considered. Therefore, this computa-
tional model can still account for the taxonomic constraint
even in the face of realistic visual and acoustic stimuli. As for
the contribution of the whole object constraint to the model,
we first observe that the comparison of the clusters is favor-
able to the whole object model (Figure 3); furthermore, the
self-organizing maps that were trained using the aforemen-
tioned representations display good topological organization
(Figure 4) and solid compactness values. In addition, as im-
plied by Table 1, the SOM trained with the whole object rep-
resentations displays stronger topological organization. As
for the word learning performance, we obtain a significantly
higher Taxonomic Factor when using the whole object repre-
sentations and conclude that including the whole object con-
straint in this model is highly beneficial.

Related Work
Our model bears some family resemblance to recent models
of image-speech association learning (Synnaeve, Versteegh,
& Dupoux, 2014; Harwath & Glass, 2015; Harwath, Tor-
ralba, & Glass, 2016; Chrupala, Gelderloos, & Alishahi,
2017), which, at least in part, have been proposed as cog-
nitive models of spoken words referent acquisition. Sim-
ilarly to Synnaeve et al. (2014), here we consider associ-
ations between images and single spoken words, whereas
Harwath and Glass (2015); Harwath et al. (2016); Chru-
pala et al. (2017) consider associations between images and

(a) SOM over non whole object representations.

(b) SOM over whole object representations.

(c) SOM over audio representations.

Figure 4: SOM representations. Colors represent different
categories, larger circles are for neurons that activate more
often.

Table 1: Compactness values for the three SOMs.

Visual Visual Acoustic
Whole Object Non Whole Object

0.228 0.372 0.429
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Production Whole object
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Figure 5: Taxonomic factor of the model, using an increasing
number of pairs of stimuli per class during the training of the
Hebbian Connections (on the x-axis).

more complex acoustic stimuli, as whole spoken sentences
(Harwath & Glass, 2015; Harwath et al., 2016; Chrupala et
al., 2017). With respect to all these models, the specificity of
our model is that it learns to generalize image-speech associ-
ations to whole visual categories and all phonetic variants of
a corresponding word, out of few positive joint image-speech
presentations, without any need of explicit counterexamples.
This parallels the training schedule by which humans usually
learn to associate words (or sentences) to visual stimuli.

Vinyals, Blundell, Lillicrap, Kavukcuoglu, and Wierstra
(2016) address the problem of One Shot Learning: how to
build models that reproduce the crucial ability of humans, in-
fants and adults, of learning out of few examples, as opposed
to the massive training currently used for many neural net-
work models? The proposed model is trained to integrate in
one-shot new observations into pre-existent knowledge, rep-
resented by a support set. Similarly to our work, representa-
tions extracted from pre-trained neural networks are also em-
ployed. The authors test their model on classification tasks
in which the training dataset is composed by 1 or 5 examples
for each category; while a direct comparison would not be
proper, as the experimental setups and datasets are fundamen-
tally different, it is worth mentioning that word learning in the
present approach does not rely on the supervised, gradient-
based optimization of a training objective (i.e. a loss func-
tion). On the contrary, in our model word learning emerges
after the unsupervised training of the SOMs and a few joint,
positive presentations of word-object pairs.

Conclusions
In this paper we expand on the the model originally in-
troduced by (Mayor & Plunkett, 2010) and extended by
(Fenoglio et al., 2017). Our work focused on two objectives:
allowing the model to process realistic acoustic stimuli, and
injecting the whole object constraint into it. We also intro-

duce experiments allowing one to assess the effects of these
two changes to the model.

In summary, the empirical evidence shows that the realistic
stimuli are not hindering the ability of the model to learn the
association between objects and word. In fact, even though
the greater complexity of the stimuli representation makes the
task harder, the system only requires a few joint presentations
to reach the 80% taxonomic accuracy performance shown in
the original work by Mayor and Plunkett (2010).

For what concerns the whole object constraint, the evi-
dence demonstrates the remarkable impact of this constraint
on the performances of the system. In practice the whole ob-
ject constraint allows for better performances with respect to
the model by Fenoglio et al. (2017) even considering that the
latter is dealing with simpler acoustic stimuli. It is worth de-
bating whether the whole-object representations extracted by
the visual module contain all the parts of the original objects.
Indeed, given the discriminative nature of the CNN training
process, the representations may only contain few, very spe-
cialized features which suffice for the classification task. As
a future work, one may investigate this problem by design-
ing experiments in which one studies whether the activation
of the visual SOM, elicited by an acoustic stimulus (a word),
allows one to reconstruct a prototypical version of the object
referenced by the word. Furthermore, we intend to investi-
gate how to cope with the uttering of whole sentences instead
of single words.
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