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Abstract. The paper deals with the modelling, response quantification and vibration control of
rigid-plastic blocks in presence of stochastic forcing with indicative application to seismic engi-
neering. The full dynamic interaction between a rigid-plastic block and a linear base-isolation
system is considered and efficient piecewise numerical solutions are derived for analysing the
true nonlinear response, in comparison with the base-fixed counterpart. Stochastic forcing is
modelled as stationary filtered white noise, characterised by a modified version of the Kanai-
Tajimi power spectrum suggested by Clough and Penzien, commonly used in earthquake engi-
neering applications. A statistical linearisation approach is adopted in view of approximating
the strongly nonlinear systems during the sliding motion regime, which conveniently permits
quantification of the steady-state, stationary response statistics. The accuracy of the lineari-
sation approximation is investigated, and the effectiveness of the base isolation in suppressing
the extreme forcing delivered to the block is assessed. The work delivers insights into the deter-
mination and understanding of the probabilistic characteristics of the response of dynamically
driven base-fixed and base-isolated rigid-plastic systems, further encouraging investigations on
other types of structures, isolation systems and hazard scenarios.
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1 INTRODUCTION

For the vast majority of the structural systems encountered in engineering, it is of paramount
importance to understand the dynamics that underpin their response and reliability in the occur-
rence of extreme environmental loading conditions. Examples include motions of high speed
crafts and ships in rough seas [1], vibration of buildings and offshore structures due to wave
impacts [2], wind loads [3] and earthquakes [4]. It is widely common to cast idealised models
for these structures or their subsystems, as a starting point in characterising their behaviour. The
class of block-type models, for instance, can be considered representative of the acceleration-
sensitive rigid systems, that is, a broad spectrum of the mechanical, electrical and electronic
equipment of engineering interest (e.g. transformers, emergency generators, computer cabi-
nets, compressors, medical and telecommunications equipment etc.) whose survivability and
operational continuity during transportation and throughout their design life is critical. Inherent
nonlinearities and uncertainties in their properties, the presence of randomness in the external
excitation as well as the type of hazard, pose challenges that render the determination of their
response statistics as a non-straightforward task.

Of interest is the case of the idealised sliding block, exhibiting rigid-plastic behaviour, a
widely accepted model representing a broad range of structural and geotechnical systems, in-
cluding buildings on moving foundation, equipment, retaining walls, slopes and masonry. Sev-
eral studies have been devoted to the deterministic seismic analysis of such blocks, including
those dealing with idealised ground acceleration pulses [5–7] and recorded earthquake ground
motions [8]. The stochastic response of such systems has been examined in presence of white
noise [9] and filtered white noise, characterised by the Kanai-Tajimi [10, 11] power spectrum
[12–17], mostly for applications dealing with rigid structures resting on a frictional foundation.
Modelling the excitation as white noise, however, implies infinite power of the resulting pro-
cess, which is unphysical. Nonetheless, such idealisation can deliver useful insights in analysis,
provided the results are carefully interpreted. The Kanai-Tajimi spectrum on the other hand,
provides a more realistic model for earthquake engineering applications, however, it has been
criticised due to the presence of low-frequency content [18].

Among risk mitigation technologies, base isolation aims at limiting the vibration response of
the system to be controlled via the use of supports that uncouple the structure from the ground.
Theory and practice are covered in several books and papers; a comprehensive review of the
subject is given by Kelly [19]. Previous endeavours in this context investigate the effectiveness
of seismic isolation on the primary load-bearing structure [20], with limited efforts to exam-
ine such effects on the performance of components. The ‘cascade’ response of rigid-plastic
systems, for instance, has been examined in base-isolated buildings subjected to broadband
ground motions [21, 22]. Adequate characterisation of the nonlinear dynamics for the com-
bined primary-secondary system assembly is in fact necessary, when the equipment vibrates
close to, or is tuned with the primary structure. From a different viewpoint, isolation directly
applied on the component can be a viable cost-effective strategy to protect sensitive equipment
in critical facilities [19]. Nevertheless, to our knowledge, the only past publication dealing with
isolation directly on the sliding component is the one by Roussis et al. [23], which tackles the
problem on a conventional deterministic basis.

Recognising the importance of understanding the response probabilistic characteristics of
such systems, this paper addresses the modelling, response quantification and vibration control
of rigid-plastic blocks, in presence of stochastic forcing with indicative application to seismic
engineering. The scope of the paper is fivefold: (1) to characterise the full dynamic interaction
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between a rigid-plastic block and a linear base-isolation system; (2) to derive efficient piece-
wise numerical solutions for quantifying the nonlinear response of fixed-base and base-isolated
rigid-plastic blocks to a general-type excitation; (3) to quantify the statistics of the steady-state,
stationary response of the associated equivalent linear systems during the sliding motion regime,
in presence of excitation characterised by the Clough-Penzien spectrum; (4) to investigate the
acuracy of the linearisation approximation; and (5) to assess the effectiveness of the isolation
in suppressing the seismic forcing delivered to the block. The work will form the basis for
extending our investigations to other types of systems and hazard scenarios.

2 VIBRATION OF FIXED-BASE AND BASE-ISOLATED RIGID-PLASTIC BLOCKS

2.1 Fixed-base rigid-plastic block

Let us consider first the case of a rigid-perfectly plastic single-degree-of-freedom (SDoF) block
(S), as depicted in Figure 1(a). The block has a mass ms and is subjected to the horizontal base
acceleration ξ̈(t), where the overdot denotes differentiation with respect to time and us(t) is the
unidirectional displacement, relative to the ground.

(a) (b)

Figure 1: Free-standing sliding block (a) and force-displacement relationship (b).

The system exhibits infinite pre-yielding stiffness and infinite ductility, and the restoring
force takes the form:

fs =

{
∈ [−µ gms, µ g ms] , u̇s = 0

µ gms sgn (u̇s(t)) , otherwise
, (1)

in which µ = as/g is the coefficient of sliding friction assuming horizontal contact surface, as

being the system’s specific strength (i.e. the level of the ground acceleration ξ̈(t) required for
S to yield), and g is the acceleration due to gravity; sgn(•) denotes the signum function (i.e.
sgn(x) = +1 if x > 0, sgn(x) = −1 if x < 0, and sgn(x) = 0 if x = 0). Evidently, the
formalism given by Eq. (1) contains information about two distinct motion regimes, namely,
sticking (i.e. when u̇s = 0), and slipping [24].

The equation of motion for S is:

üs(t) =

{
0, us, u̇s = 0

−µ g sgn (u̇s(t))− ξ̈(t), otherwise
. (2)

The initiation condition for the sliding regime is set to |ξ̈(t)| = µ g (Figure 1(b)). Following
initiation, an instantaneous stop or a full stop can occur in the system once the velocity drops
to zero (u̇s = 0). In the former case, the motion will reverse or it will continue in the same
direction, while in the latter case the system will remain at rest until the initiation condition is
exceeded again.
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2.2 Base-isolated rigid-plastic block

Consider now the case of a two-degree-of-freedom (TDoF) system, comprising of the block S
being supported on a linear base isolation system (B) undergoing horizontal accelerated motion,
as depicted in Figure 2(a), where ub(t), us(t) are the unidirectional displacements of B and S,
relative to the ground, and ub

s (t) = us(t)− ub(t) is the motion of S relative to B.

(a) (b)

Figure 2: TDoF system: sliding block on a linear isolation system (a); free-body diagram (b).

Figure 2(b) shows the forces acting on B and S, where mb and ms are the associated masses.
Further extending the formulation in [4], fb(t) = ω2

bmb ub(t) represents the restoring force in
B, where ωb =

√
k/mt is the associated natural circular frequency, k being the stiffness of a

linear spring and mt = mb + ms the total mass of the system. Furthermore, c = 2 ζωb mt is
the viscous damping coefficient, where ζ is the equivalent viscous damping ratio. The rigid-
perfectly plastic S system finally assumes a restoring force, fs as in Eq. (1), where u̇b

s is used in
place of u̇s.

Dynamic equilibrium of the mass mp in the horizontal direction then gives:

üb(t) = −γ üb
s (t)− 2 ζωb u̇b(t)− ω2

b ub(t)− ξ̈(t) ; ub(0) = u̇b(0) = 0 , (3)

where γ = ms/mt is the ratio of the block’s mass to the total mass of the system, controlling
the relative significance of the feedback action on B.

Setting ub
s (t) = u̇b

s (t) = 0 in the above for the sticking phase where no relative motion is
exhibited for S, the resulting system can be interpreted as an equivalent oscillator with massmt.

Equilibrium of the forces (Figure 2(b)) gives the equation of motion for S:

üb
s (t) =

{
0, ub

s , u̇
b
s = 0

−µ g sgn
(
u̇b

s (t)
)
− üb(t)− ξ̈(t), otherwise

. (4)

The initiation condition for sliding in the TDoF system is set to |üb(t) + ξ̈(t)| = µ g, üb(t)
being a solution of Eq. (3).

Equations (3) and (4) are cast in a state space form (i.e. explicit expressions of the state
variables) and are solved together. In this case, the state vector is:

y (t) =


{
ub(t) u̇b(t)

}>
, ub

s , u̇
b
s = 0{

ub
s (t) u̇b

s (t) ub(t) u̇b(t)
}>

, otherwise
, (5)
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whose time derivative is:

ẏ (t) =



{
u̇b(t)

−2 ζ ωbu̇b(t)− ω2
bub(t)− ξ̈(t)

}
, ub

s , u̇
b
s = 0

u̇b
s (t)

−µ g sgn(u̇b
s (t))+2 ζωbu̇b(t)+ω2

bub(t)

1−γ

u̇b(t)
γ µ g sgn(u̇b

s (t))−2 ζωbu̇b(t)−ω2
bub(t)

1−γ − ξ̈(t)


, otherwise

. (6)

During the sticking phase, integration is carried out solely for B based on the top part of
Eq. (6), using the initial conditions from the last step. Following initiation integration proceeds
thereafter using the bottom part of the equation.

It is worth mentioning that the formulation presented herein, is in agreement with an equiv-
alent expression in [23] for the sliding motion regime, and delivers further insights during the
sticking motion regime.

3 NUMERICAL PROCEDURE FOR PIECEWISE RESPONSE QUANTIFICATION

Owing to the piecewise linear form of the dynamical systems considered, a highly efficient
numerical procedure is employed for quantifying the true nonlinear response due to a general-
type of excitation. In what follows, each regime of motion is separately considered and the
response time history is constructed by piecing together the individual segments.

3.1 Fixed-base rigid-plastic block

The response of the SDoF system in Eq. (2) is considered first during the sliding motion regime.
Accordingly, a numerical scheme [4] is adopted for the response evaluation by interpolating the
excitation over each time interval. The response vector is then readily determined through the
recurrence formula:

y(ti+1) =

[
1 ∆t
0 1

]
· y(ti)−

[
∆t2

3
∆t
2

]
· η(ti)−

[
∆t2

6
∆t
2

]
· η(ti+1) , (7)

where y(t) = {us(t), u̇s(t)}
>

and η (t) = ξ̈(t) +µ g sgn (u̇s(t)). Notably, the only restriction in
Eq. (7) is that ∆t is sufficiently low to closely approximate the excitation.

3.2 Base-isolated rigid-plastic block

The TDoF system in Eq. (6) is considered next. Similar to the fixed-base block, the response
is separately derived for the sticking and sliding motion regimes. The response vector is then
obtained from the recurrence formula:

y(ti+1) = Θ(∆t) · y(ti) + Γ0(∆t) · µ g sgn
(
u̇b

s (t)
)

+ Γ1(∆t) · ξ̈ (ti) + Γ2(∆t) · ξ̈ (ti+1) , (8)

where Θ(∆t) is the so-called transition matrix, and Γ0(∆t), Γ1(∆t) and Γ2(∆t) are vectors
depending on ∆t, which is tacitly assumed sufficiently small so that the interpolation of the
force is satisfactory.
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During the sticking regime, Θ(∆t) is given by:

Θ(∆t) =

[
A(∆t) B(∆t)

−ω2
b B(∆t) A(∆t)− 2 ζωbB(∆t)

]
, (9)

where A(∆t) = e−ζωb∆t cos(ωd∆t) + ζωb B(∆t), B(∆t) = e−ζωb∆t

ωd
sin(ωd∆t), and ωd =

ωb

√
1− ζ2 is the damped circular frequency.

Furthermore, Γ0(∆t) is a zero vector and Γ1(∆t), Γ2(∆t) are given by:

Γ1(∆t) =

 ωb∆tA(∆t)+2 ζ(A(∆t)−1)−ωbB(∆t)

ω3
b∆t

1−A(∆t)

ω2
b∆t

− B(∆t)

 ; (10)

Γ2(∆t) =

 −2 ζA(∆t)+ωbB(∆t)−ωb∆t+2 ζ

ω3
b∆t

A(∆t)−1

ω2
b∆t

 . (11)

For the sliding regime, the response depends on:

Θ(∆t) =


1 ∆t 1− ζωb F− ωd1Q ∆t+ (γ − 1)F
0 1 ω2

b F 1 + ζωb F− ωd1Q
0 0 ζωb F + ωd1Q (1− γ)F
0 0 −ω2

b F ωd1Q− ζωb F

 ; (12)

Γ0(∆t) =


γ(ζωb F+ωd1Q−1)

ω2
b

− ∆t2

2

−γ F−∆t

−γ(ζωb F+ωd1Q−1)

ω2
b

γ F

 ; (13)

Γ1(∆t) =



6(γ−1)ζ2Fωb+ωb(∆t3(−ω2
b)+3(γ−1)2F+3(γ−1)∆tQωd1)+3(γ−1)ζ(∆tFω2

b+2Qωd1−2)
3∆tω3

b

−∆t2ω2
b−2Fωb(∆tωb+ζ)+2γ(Fωb(∆tωb+ζ)+Qωd1−1)−2Qωd1+2

2∆tω2
b

− (γ−1)((γ−1)Fωb+ζ(Fωb(∆tωb+2ζ)−2)+Qωd1(∆tωb+2ζ))

∆tω3
b

(γ−1)(Fωb(∆tωb+ζ)+Qωd1−1)

∆tω2
b


; (14)

Γ2(∆t) =



−∆t3ω3
b+6(γ−1)ωb(∆t+(γ−1)F)+12(γ−1)ζ2Fωb+12(γ−1)ζ(Qωd1−1)

6∆tω3
b

−∆t2ω2
b+2ζFωb−2γ(ζFωb+Qωd1−1)+2Qωd1−2

2∆tω2
b

(γ−1)(ωb(∆t+(γ−1)F)+2ζ(ζFωb+Qωd1−1))

∆tω3
b

− (γ−1)(ζFωb+Qωd1−1)

∆tω2
b


, (15)

where the above depend on F(∆t) = 1
ωd1
e
ζωb ∆t

γ−1 sin(ωd1∆t
1−γ ), Q(∆t) = 1

ωd1
e
ζωb ∆t

γ−1 cos(ωd1∆t
1−γ ) and

ωd1 = ωb

√
1− γ − ζ2.
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In using the piecewise linear solutions presented herein, the response is evaluated separately
during the sticking and sliding motion regimes and once both components have been determined
the overall response is constructed by piecing together the individual segments. Notably, an
iterative scheme needs to be employed to identify the time of initiation for each regime of
motion as well as subsequent changes in the regime when the velocity changes sign. Details on
the numerical implementation procedure are provided in Appendix A.

4 STOCHASTIC MODEL OF SEISMIC FORCING

Let us now consider a ground acceleration ξ̈(t), modelled as stationary filtered white noise
process, characterised by a more realistic version of the Kanai-Tajimi power spectrum [10, 11],
suggested by Clough and Penzien [25], commonly used in earthquake engineering applications.

The spectral density function takes the form:

Sξ̈(ω) = S0 ·Hk(ω) ·Hc(ω) ; −∞ < ω <∞ , (16)

where S0 represents a constant power spectral density level due to white noise, Hk(ω) and
Hc(ω) represent the Kanai-Tajimi and Clough-Penzien filters, respectively, given by:

Hk(ω) =
1 + 4 ζ2

g (ω/ωg)
2(

1− (ω/ωg)
2)2

+ 4 ζ2
g (ω/ωg)

2
; Hc(ω) =

(ω/ωf )
4(

1− (ω/ωf )
2)2

+ 4 ζ2
f (ω/ωf )

2
,

(17)
where the parameters ωg and ζg denote the frequency and damping ratio of the soil layer, re-
spectively, and ωf , ζf control the Clough-Penzien filter’s characteristics.

In this model, the first filter Hk(ω) attenuates the frequency content for ω > ωg as ω →
∞, and amplifies the frequencies in the vicinity of ω = ωg; the second filter Hc(ω) is then
introduced to eliminate the low-frequency content, thus assuring finite power for the ground
displacement.

Table 1 lists filter parameter values for producing reasonable spectral shapes for ‘firm’,
‘medium’ and ‘soft’ soils, as suggested in [26]. Figure 3 plots the corresponding curves for
S0 = 1, where the soft soil indicates a narrow-band process while the firm ground is broad-
band with significant high frequency content.

0 10 20 30 40 50
0

2

4

6

8

ω [rad/s]

S
ξ̈
(ω

)

Firm
Medium
Soft

Figure 3: Clough-Penzien spectrum for different soil types [26].
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Table 1: Filter parameters for different soil types [26].

Soil type ωg [rad/s] ζg ωf [rad/s] ζf

Firm 15.0 0.6 1.5 0.6
Medium 10.0 0.4 1.0 0.6
Soft 5.0 0.2 0.5 0.6

5 STEADY-STATE STATIONARY RESPONSE QUANTIFICATION

We next consider the case where the statistics of the steady-state, stationary response are of
interest and the intensity of the base acceleration is sufficiently high such that the probability of
sticking can be regarded negligible. In this case, the bottom part of Eq. (5) and (6) is valid for
all time.

5.1 Fixed-base sliding block

Following the procedure delineated in [17] the nonlinear Eq. (2) is replaced with a linear one:

üs(t) = −β u̇s(t)− ξ̈(t) , (18)

where β represents a linear viscous damping term.
Minimising the mean square of the error ε = µ g sgn (u̇s(t)) − β u̇s(t) with respect to β

and after manipulation based on the standard assumption of zero mean Gaussian response, one
obtains:

β =

(
2

π

) 1
2 µ g

σu̇s

, (19)

where σ2
u̇s

= E 〈u̇2
s (t)〉 is the mean square of u̇s(t).

Further manipulation based on the specification of the spectrum, gives σus and σu̇s in terms
of β:

σ2
us

=

∫ ∞
−∞

(
ω2(β2 + ω2)

)−1
Sξ̈(ω) dω ; σ2

u̇s
=

∫ ∞
−∞

(
β2 + ω2

)−1
Sξ̈(ω) dω . (20)

Solution to Eq. (20) was presented in [17] for white noise excitation i.e. Sξ̈(ω) = S0, in
which case σ2

u̇s
= πS0/β and β = 2(µ g)2/π2S0. In the case where the excitation is charac-

terised by the Kanai-Tajimi spectrum (i.e. setting Hc(ω) = 1 in Eq. (16)), solution is reported
in [16]. Notably, for both these cases, the first integral in Eq. (20) is infinite which implies that
the mean-square of the displacement will indefinitely grow with time.

Further extending the existing contributions, we present here solutions for the Clough-Penzien
spectrum in Eq. (16).

Analytical evaluation of Eq. (20) gives:

σ2
us

=
πS0 ω

2
g(C1 + C2)

2 ζf ζg ωf C3 C4

; σ2
u̇s

=
πS0 ω

2
g(C5 + C6)

2 ζf ζg C3 C4

, (21)

where the coefficients C1 - C6 are given by:
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C1 = β (2 ζfωf + 2 ζgωg + β) C8 ; (22a)

C2 = ωg
(
ω3
f C7 + ζgωg

(
4ω2

f

(
ζ2
f + ζ2

g

)
+ 4ζfζgωfωg + ω2

g

))
; (22b)

C3 =
(
β2 + 2βζfωf + ω2

f

) (
β2 + 2βζgωg + ω2

g

)
; (22c)

C4 = 2ω2
fω

2
g

(
2ζ2
f + 2ζ2

g − 1
)

+ 4ζfζgω
3
fωg + 4ζfζgωfω

3
g + ω4

f + ω4
g ; (22d)

C5 = ωg(2β(ζfωg + ζgωf ) + ωfωg) C8 ; (22e)

C6 = β2
(
ω3
g C7 + 4ζ3

g

(
4ζ2
fωfω

2
g + ω3

f

)
+ 16ζfζ

4
gω

2
fωg + ζgωfω

2
g

)
, (22f)

in which C7 = ζf
(
4 ζ2

g + 1
)

and C8 = 4 ζ3
gω

2
f + ζgω

2
g + ζf

(
4ζ2
g + 1

)
ωf ωg.

On combining Eq. (19) with Eq. (21), the resulting algebraic equation can be solved numer-
ically for β and therefore σus and σu̇s can be evaluated from Eq. (21).

5.2 Base-isolated sliding block

The TDoF base-isolated block is next considered. The system is of chain-like structure and
statistical linearisation is admissible. Accordingly, the term sgn (u̇s(t)) in Eq. (6), is replaced
with the linear viscous damping term β, which assumes a similar form as the fixed-base block,
except that σu̇b

s
(i.e. the standard deviation of u̇b

s (t)), is used in place of σu̇s in Eq. (19).
The equation of motion of the equivalent linear system then reads:

üb
s (t) =

−βu̇b
s (t) + 2 ζωb u̇b(t) + ω2

b ub(t)

1− γ
; (23a)

üb(t) =
γ βu̇b

s (t)− 2 ζωb u̇b(t)− ω2
b ub(t)

1− γ
− ξ̈(t) , (23b)

where the spectral density matrix of the response process takes the form:

Su(ω) = H(ω) · Sf (ω) ·H>∗(ω) , (24)

in which Sf (ω) denotes the spectral density matrix of the forcing, the symbols > and ∗ de-
note transposition and conjugation, respectively, and H(ω) is the matrix of frequency response
functions, given by:

H(ω) =

 ω2−2 i ζωb ω−ω2
b

ωG −ω
G

−γ ω
G

ω−β i
G

 , (25)

where G(ω) = ω2((γ − 1)ω + i β) + 2 ζωb(β + i ω)ω + ω2
b(ω − i β).

Further, the cross-variance of the response is evaluated through:

E 〈ui(t)uj(t)〉 =

∫ ∞
−∞

Suiuj(ω) dω ; E 〈u̇i(t)u̇j(t)〉 =

∫ ∞
−∞

ω2Suiuj(ω) dω , (26)

where Suiuj(ω) is the (i, j)th element of Su(ω).
An alternative iterative procedure is employed for evaluating Eq. (26). Specifically, it is first

assumed that β = 0 and the cross-variance terms in Eq. (26) are evaluated. These are used
for determining a new estimate of β, which results in an update to Eq. (26). The procedure is
repeated several times until accuracy is satisfactory.
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6 NUMERICAL INVESTIGATIONS

The contributions presented in the preceding sections are next investigated by simulation tech-
niques. Purpose is the quantification of the statistics of the steady-state stationary response of
the systems under consideration due to filtered white noise excitation.

6.1 Piecewise linear solutions

The piecewise linear solutions presented in § 3 are first demonstrated on the nonlinear response
quantification of fixed-base (FB) and base-isolated (IB) blocks with the purpose of assessing
the validity of approximating the rigid-plastic behaviour with pure-sliding one (i.e. neglecting
the rigid regime of motion, assuming that sliding is valid for all time). In the sequel, us(t) is
used in place of ub

s (t), to represent the motion of the block relative to its base.
Figures 4(a) and 4(b) show two simulated realisations of the earthquake excitation, charac-

terised by the Clough-Penzien power spectrum for a medium soil with ωg = 10 rad/s, ζg = 0.4,
ωf = 1 rad/s, ζf = 0.6 and S0 = 0.0025 m2/s3. Details on the procedure used for generating
the excitation time series are provided in Appendix B.

The relative displacement and relative velocity response time histories of the FB and IB
systems have been quantified next using the proposed piecewise linear solutions. Each system
has been successively modelled with idealised rigid-plastic (R) and sliding (S) behaviour, and
the isolation parameters γ = 0.04, ωb = 1.5 rad/s and ζ = 0.05 have been assumed.

Figures 4(c) and 4(e) show the response due to the first realisation of the excitation with µ =
0.02, indicating excellent agreement between the rigid-plastic and sliding solutions. Plotting
the response histories for the second realisation in Figures 4(d) and 4(f), with µ = 0.06, shows
pronounced variations between the rigid-plastic and sliding solutions for both the two systems
under consideration.

Overall, considering the probability of sticking negligible appears reasonable for low values
of µ, or when the excitation is sufficiently high. Under these conditions, the approximation is
admissible for use in the statistical linearisation procedure. In cases where these conditions are
not met, such an approximation can be checked a priori. It is finally noted that demonstrating
the validity of the piecewise linear solutions through comparisons with reference ones, falls
outside the scope of this paper.

6.2 Statistical linearisation

The effectiveness of the statistical linearisation (SL) procedure described in § 5 is investigated
next for the two systems under consideration.

Figure 5 compares the standard deviation of the relative velocity response determined us-
ing the SL procedure, with the nonstationary one numerically evaluated using the piecewise
linear solutions via pertinent Monte Carlo (MC) simulation (N = 200 realisations), for vari-
ous parameter combinations of ωb and µ. The analysis has been carried out for a medium soil
(ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6), and with parameters S0 = 0.003 m2/s3,
γ = 0.04, and ζ = 0.05.

As shown, for the fixed-base block, the standard deviation of the velocity response reaches
stationarity in very short time. Further, for µ = 0.01 and µ = 0.03, there is good agreement be-
tween the MC and SL, confirming the validity of the expressions derived in § 5.1. Interestingly,
the accuracy of the SL approximation deteriorates at higher values of µ, as evidenced by the
large deviation for µ = 0.05. This is in agreement with investigations carried out in [16] using
the Kanai-Tajimi power spectrum.
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Figure 4: Response of fixed-base (FB) and base-isolated (IB) block, modelled with idealised rigid-plastic (R)
and sliding (S) behaviour: realisations of base excitation (a, b) due to filtered white noise (S0 = 0.0025m2/s3,
ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6); corresponding relative displacement and relative velocity
response time histories (γ = 0.04, ωb = 1.5 rad/s and ζ = 0.05) for µ = 0.02 (c, d) and µ = 0.06 (e, f).
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Figure 5: Standard deviation of relative velocity quantified for various parameter combinations of ωb and µ: com-
parison of statistical linearisation (SL) and Monte Carlo (MC) simulation (N = 200 realisations), for the fixed-base
(FB) and base-isolated (IB) block modelled with sliding behaviour. Reference parameters: S0 = 0.003m2/s3;
ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6 (medium soil); and γ = 0.04, ζ = 0.05.

For the base-isolated block, the SL is found satisfactory for lower values of µ than those
required for the fixed-base block, and for certain parameter combinations (e.g. ωb ≥ 0.8 and
µ = 0.01), while for other combinations (i.e. ωb = 0.8 and µ = 0.03) the iterative procedure
employed for evaluating Eq. (26) does not converge and the solution breaks down. Further
investigations are required to examine the influence of parameters γ and ζ on the effectiveness
of the procedure.

6.3 Response spectra

A comparative study has been carried out with the purpose of assessing the effectiveness of
the base isolation in suppressing the seismic forcing delivered to the block. Three soil types
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have been considered, namely, firm (ωg = 15 rad/s, ζg = 0.6, ωf = 1.5 rad/s, ζf = 0.6);
medium (ωg = 10 rad/s, ζg = 0.4, ωf = 1 rad/s, ζf = 0.6) and soft (ωg = 5 rad/s, ζg = 0.2,
ωf = 0.5 rad/s, ζf = 0.6). In all cases, a spectral density level S0 = 0.003 m2/s3 has been
considered, and the isolation parameters γ = 0.04 and ζ = 0.05 have been assumed.

For each case, an ensemble of N = 200 synthetic ground motions has been generated us-
ing the procedure delineated in Appendix B, and Monte Carlo simulations have been used to
quantify the stationary value of the standard deviation of the velocity response of each system.

Figure 6 plots the calculated standard deviation of the response, for several values of the
parameters ωb, and µ, where the standard deviation of the response of the base-isolated block
(σIB(u̇s)), has been normalised with respect to the corresponding value of the fixed-base (σFB(u̇s))
model.

As shown, seismic isolation can attenuate the velocity response of the sliding block in all
cases considered. Reducing the isolation frequency ωb results in a reduction in the response
standard deviation, and as ωb →∞, the response of the isolated block approaches the response
of the fixed-base block (i.e. σIB/σFB → 1). Seismic isolation is effective for ωb < 1.25, ωb < 1
and ωb < 0.7, for the firm, medium and soil, respectively, and higher values of ωb are admissible
as µ increases.
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Figure 6: Isolated to non isolated standard deviation of relative velocity, quantified via N = 200 Monte Carlo
realisations: (a) firm (ωg = 15 rad/s, ζg = 0.6, ωf = 1.5 rad/s, ζf = 0.6); (b) medium (ωg = 10 rad/s,
ζg = 0.4, ωf = 1 rad/s, ζf = 0.6); and (c) soft (ωg = 5 rad/s, ζg = 0.2, ωf = 0.5 rad/s, ζf = 0.6) soil.
Reference parameters: S0 = 0.003m2/s3, γ = 0.04 and ζ = 0.05.

7 CONCLUSIONS

The modelling and response quantification of fixed-base and base-isolated rigid-plastic blocks
were addressed in presence of stochastic forcing with indicative application to seismic engi-
neering.

The dynamics of fixed-base rigid-plastic blocks were first overviewed, and equations govern-
ing their full dynamic interaction with a linear base-isolation system were presented. Highly-
efficient piecewise numerical solutions were then derived for the two systems under considera-
tion, which permit accurate quantification of the true nonlinear response due to a general-type
excitation via pertinent Monte Carlo simulations.

A statistical linearisation approximation approach was adopted in view of approximating the
strongly nonlinear systems during the sliding motion regime in presence of filtered white noise
excitation, characterised by the Clough-Penzien stationary power spectrum, commonly used in
earthquake engineering applications.
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The accuracy of the linearisation approximation was examined and the effectiveness of the
isolation system was assessed in attenuating the forcing delivered to the block.

The work delivers insights into the determination and understanding of the probabilistic char-
acteristics of dynamically driven fixed-base and base-isolated rigid-plastic systems, motivating
further investigations.

APPENDIX A. SOLVERS FOR THE SDOF AND TDOF NONLINEAR SYSTEMS

The piecewise linear solutions presented in § 3, govern the true nonlinear response of the sys-
tems considered and have been implemented in C++ resulting in standalone solver executable
files. An iterative procedure based on the bisection method [27] has been adopted to identify
state events (i.e. transition points such as the initiation and change in the regime of motion) and
break down the solution in parts which have been later pieced together.

In order to confirm the validity of the solvers the solution has been compared to a MATLAB
[28] implementation that has been prototyped using build-in Ordinary Differential Equation
solvers. Specifically, ODE45 has been used, which is based on an explicit fourth- and fifth-
order Runge-Kutta formulation. In this implementation, the continuous function tanh (α u̇s(t))
has been used in place of sgn (u̇s(t)), where α is a large constant. Further, consistent initial con-
ditions have been used, and MATLAB’s odeset parameters have been set to AbsTol = RelTol =
10−8 and Refine = 4, which refer to relative and absolute solution tolerances and interpolation
output, respectively. The option ‘Events’ has been invoked to identify state events.

APPENDIX B. SIMULATION OF STOCHASTIC FORCING

A stationary stochastic process representing the excitation time series ensemble, is generated
through the summation of cosines with amplitudes and frequencies characterised by the power
spectrum under consideration and random phases uniformly distributed over the interval [0, 2π]
[29]. In doing this, a frequency interval [0, ω̃] is considered, where ω̃ = 100 is an upper cut-off
frequency, beyond which the spectral density is negligible. This interval is discretised using
a frequency step ∆ω = ω̃/Nω, where Nω = max

{
N0, ceil

(
ω̃ T
4π

)}
depends on N0 ≈ 100

(chosen such that the variance of the resulting process closely approximates the PSD) and on
the temporal duration T of interest [30]. The time series is finally discretised using a time step
∆t ≤ π

4 ω̃
.
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