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Single cell RNA-sequencing
of feline peripheral immune
cells with V(D)J repertoire
and cross species analysis
of T lymphocytes
Raneesh Ramarapu1,2, Judit M. Wulcan3, Haiyang Chang4,
Peter F. Moore3, William Vernau3 and Stefan M. Keller3*

1Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of
California, Davis, Davis, CA, United States, 2Department of Anatomy, Physiology and Cell Biology,
School of Veterinary Medicine, University of California, Davis, Davis, CA, United States, 3Department of
Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California,
Davis, Davis, CA, United States, 4Department of Mathematics and Statistics, University of Guelph,
Guelph, ON, Canada
Introduction: The domestic cat (Felis catus) is a valued companion animal and a

model for virally induced cancers and immunodeficiencies. However, species-

specific limitations such as a scarcity of immune cell markers constrain our ability

to resolve immune cell subsets at sufficient detail. The goal of this study was to

characterize circulating feline T cells and other leukocytes based on their

transcriptomic landscape and T-cell receptor repertoire using single cell

RNA-sequencing.

Methods: Peripheral blood from 4 healthy cats was enriched for T cells by flow

cytometry cell sorting using a mouse anti-feline CD5 monoclonal antibody.

Libraries for whole transcriptome, ab T cell receptor transcripts and gd T cell

receptor transcripts were constructed using the 10x Genomics Chromium Next

GEM Single Cell 5’ reagent kit and the Chromium Single Cell V(D)J Enrichment Kit

with custom reverse primers for the feline orthologs.

Results: Unsupervised clustering of whole transcriptome data revealed 7 major

cell populations - T cells, neutrophils, monocytic cells, B cells, plasmacytoid

dendritic cells, mast cells and platelets. Sub cluster analysis of T cells resolved

naive (CD4+ and CD8+), CD4+ effector T cells, CD8+ cytotoxic T cells and gd T

cells. Cross species analysis revealed a high conservation of T cell subsets along

an effector gradient with equitable representation of veterinary species (horse,

dog, pig) and humans with the cat. Our V(D)J repertoire analysis identified a

subset of CD8+ cytotoxic T cells with skewed TRA and TRB gene usage,

conserved TRA and TRB junctional motifs, restricted TRA/TRB pairing and

reduced diversity in TRG junctional length. We also identified a public gd T cell

subset with invariant TRD and TRG chains and a CD4+ TEM-like phenotype.

Among monocytic cells, we resolved three clusters of classical monocytes with

polarization into pro- and anti-inflammatory phenotypes in addition to a cluster

of conventional dendritic cells. Lastly, our neutrophil sub clustering revealed a

larger mature neutrophil cluster and a smaller exhausted/activated cluster.
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Discussion: Our study is the first to characterize subsets of circulating T cells

utilizing an integrative approach of single cell RNA-sequencing, V(D)J repertoire

analysis and cross species analysis. In addition, we characterize the transcriptome

of several myeloid cell subsets and demonstrate immune cell relatedness across

different species.
KEYWORDS

feline, T cells, single cell RNA-sequencing (scRNA-seq), T-cell receptor repertoire, cross
species analysis, myeloid Cells, V(D)J
1 Introduction

The domestic cat, Felis catus, is a valued companion animal and

the second most popular pet in the United States. As of the

American Veterinary Medicine Association (AVMA) pet

ownership statistics, there are upwards of 46.5 million households

with at least one cat in 2023 with ownership trends rising in the last

decade from 25% in 2016 to 29% in 2022 (1, 2). In addition to the

growing need for feline veterinary care, the cat is an important

model for infectious diseases such as virally-induced cancers (Feline

leukemia virus, FeLV) and virally mediated immunodeficiency

(Feline immunodeficiency virus, FIV) (3–6). Despite the value of

the cat as a companion animal and infectious disease model, there

are species specific research limitations including few cat-reactive

immunophenotyping reagents and a poor knowledge base of

immune cell markers and behavior.

In the advent of deciphering the feline immune system, many

studies characterizing feline immune cells have relied strongly on

antibody-based assays including flow cytometry and

immunohistochemistry. This has allowed the study of immune

cells in health and disease conditions such as FeLV or FIV (7–9).

This approach depends on the assumption that feline immune cells

are similar to other species. However, feline immune mediated

diseases behave very differently from those in other small animals

such as dogs, exhibiting unique etiologies and pathogenesis (10). In

a cross-species context, innate immunity shows relatively high

evolutionary conservation; however, this conservation dwindles

with progression to adaptive immunity and complex immune

phenotypes (11). Additionally, there is growing evidence

demonstrating that evolutionary relationships do not translate to

immune transcriptional or cell type relationships. Such an example

is the mouse being a better model for human immune cells than the

macaque (12). Thus, understanding the species-specific system in

the context of our growing evolutionary database is desirable and

there is a strong need to characterize the heterogeneous peripheral

immune cell population in the cat, especially diverse populations

such as T cells.

In efforts to investigate feline specific T cell diseases, our

laboratory has contributed to the growing feline specific reagent

and immune cell knowledge base including T cell receptor (TCR)
02
repertoire analysis (13). On this trajectory, single cell RNA-

sequencing is a logical next step. It enables the efficient large-scale

capture and analysis of heterogeneous tissues, overcoming the

challenges of species-specific reagent assays (14–17). Consequently,

there has been a bloom in single cell RNA-sequencing studies of the

peripheral leukocytes in a variety of mammalian species including the

dog, cow, horse, and pig (18–22). Additionally, single cell data

facilitates the study of cross species variations in immune cell type

and evolution of these cells (12). ScRNA-seq of feline circulating

leukocytes have been previously performed demonstrating the

presence of 5 major cell types (T cells, B cells, NK cells, monocytes,

dendritic cells) in the context of other non-model species (23).

However, in-depth characterization of key subtypes and their

marker conservation has yet to be determined. Thus, the goal of

this study is to characterize the heterogeneity of circulating feline T

cells and other captured leukocytes utilizing CD5 flow cytometry

enriched scRNA-seq and V(D)J repertoire analysis in clinically

healthy domestic shorthair cats between the ages of 6 months and

9 years. CD5 was chosen as a selective T-cell marker given the lack of

availability of anti-feline CD3 antibodies. Additionally, we performed

a cross species transcriptomic integration to assess feline T cells in the

context of 4 other mammalian species - dog, horse, human, and pig.

Our results provide a foundation for feline immune transcriptomics.
2 Results

2.1 Single cell atlas of the feline circulating
immune cells

ScRNA-seq data obtained from 4 representative healthy cats of

different ages consisted of 30,073 quality cells. These age groups

were selected as they capture the major feline life stages: 6-month-

old juvenile (6MO), 1-year-old mature (1YO), 4-year-old adult

(4YO), and 9-year-old aged (9YO). The average number of cells

captured per cat was 7,518 with an average of 3,655 transcripts per

cell (Figure 1A; Supplementary Presentation 1). Due to the poor

annotation of the cat reference genome, we utilized a custom

homologous mapping script based on ENSEMBL homologous

mapping between the cat and human to improve gene readability.
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Our script increased the number of gene symbols mapped from

13,886 to 16,936, improving the quality of cell type assignment and

biological interpretation. Following batch correction via reciprocal

principal component analysis, unsupervised clustering revealed the

presence of 21 clusters (Figure 1B). A majority of cell types are

equally represented from each sample (Figures 1C, D). A quality

control violin plot for clusters can be found in the Supplementary

Materials (Supplementary Presentation 1).

These clusters were categorized into 7 major immune cell types

based on canonical marker genes from multi-species PBMC single

cell literature, top marker genes and over-enrichment gene ontology

(GO) (Supplementary Tables 1, 2). The most numerous cell type

identified was T cells called by high expression of T cell receptor

complex genes (CD3D, CD3E) and species conserved T cell markers

LCK, ITK and TCF7 (12, 23) (Figures 1E–G; Supplementary

Presentation 1). Across most T cell clusters, top identified GO

terms of biological processes (BP) included T leukocyte processes of

differentiation, migration, activation, and effector functions

(Supplementary Table 2).
Frontiers in Immunology 03
The second most abundant population was neutrophils marked

by neutrophil-derived proteases including elastase (ELANE),

granulocyte colony stimulating factor receptor (CSF3R) and

calprotectin (S100A8/S100A9) (24–26) (Figures 1E, H). In most

species, neutrophils are not captured in the PBMC layer during

density centrifugation (27). Interestingly, our single cell data set

captured a significant number of neutrophils from all but the 1YO

sample (Figure 1D). This is the first description of feline neutrophils

at the single cell transcriptomic level and can provide insights into

biological processes of these abundant cells.

A substantial number of monocytic cells were captured with

marker genes including scavenger receptor for haptoglobin-

hemoglobin complexes CD163, antigen presenting cell co-

stimulatory molecule CD83, lipopolysaccharide detector protein

CD14, phospholipase B domain containing 1 (PLBD1) and colony

stimulating factor receptor (CSF1R) (28, 29) (Figures 1E, I, J). A

relatively small but heterogeneous population of B cells were

captured which were identified by conserved markers including B

cell surface molecule MS4A1 and Ig-alpha protein of the B-cell
FIGURE 1

scRNA-seq atlas of CD5+ enriched circulating feline immune cells revealed 7 major types across 21 clusters. (A) Table of cell counts from each age
group. (B) UMAP plot demonstrating the unsupervised clustering results for feline circulating immune cells from 4 healthy cats of different age
groups. (C) UMAP plot of global clustering colored by age. (D) Table of cell type counts across clusters by age. (E) Dot plot demonstrating cell type
specific marker expression of the 7 major cell types. (F–O) Feature UMAP plots demonstrating expression profile of key markers for each of the 7
different cell types.
frontiersin.org
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antigen component CD79A (23) (Figures 1E, K, L). This population

also expresses immunoglobulin genes (IGHG3, IGHM) indicating a

sub-population of plasma cells (12) (Figure 1E).

Unexpectedly, we captured plasmacytoid dendritic cells (pDC)

and mast cells, which represented rare but discrete cell populations.

pDCs were identified by expression of Fc fragment of gamma

immunoglobulin (FCRLA), dendritic marker PLAC8B, and

immunoglobulin lambda constant 7 (IGLC7) and lack of

expression of B cell canonical markers MS4A1 and CD79A (30–32)

(Figures 1E, L, M). pDcs clustered more closely with B cells than

other myeloid cells. This is due to close lineage associations and the

shared expression of integral markers FCRLA and IGLC7 among

others (33) (Figures 1E, L). Currently, there is debate regarding the

reclassification of pDCs as innate lymphocytes and this analysis

further supports such an argument (34) (Figure 1B). Mast cells

were marked by IgE receptor MS4A2 and a key component of mast

cell protease, CPA3 (35, 36) (Figures 1E, N).
Frontiers in Immunology 04
Lastly, we captured a population of non-leukocytic immune

cells which were annotated as platelets due to high expression of

platelet specific proteins PPBP, VWF and GP9 (37) (Figures 1E,

O). This cluster also exhibited an extremelylow average count of

unique RNA and total RNA, which is consistent with a highly

specialized cell type lacking a nucleus (Supplementary

Presentation 1).
2.2 Feline circulating T cells

To further characterize T cell subsets, we independently

analyzed T cell clusters previously described at the global level

(clusters 0,2,9,1,6,4,5,14,8,12, and 15). Unsupervised clustering of T

cells revealed the presence of seven T cell clusters, which were

unrecognizable at the global level (Figure 2A). Largely, these

clusters represent greater T cell phenotypes along increasing
FIGURE 2

CD5+ enriched T cells segregate into naïve T cell subtypes and effectors. Unsupervised clustering of T cells reveals 7 subtypes. (A) UMAP of the
scRNA-seq atlas of T cells. (B) UMAP of T cells colored by Pseudotime. (C) Dot plot of marker genes expressed by T cell type. (D) Table of cell type
frequencies across ages by cluster. (E) Feature plots of expression and co-expression of TRG and TRDC. (F–Q) UMAP of T cells colored by classical
T marker genes defining CD4/CD8 status, naive (SELL, CCR7), effectorness (ANXA2, LGALS3, GZMK, PRF1), terminal differentiation (CCL5) and
T exhaustion (TIGIT, PDCD1).
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pseudotime values (proxy of differentiation or lineage) (Figures 2B,

C). The subtle transcriptional differences, as noted through

overlapping differentially expressed genes, make effective

annotation difficult (Supplementary Table 3). Nonetheless, we

were able to identify several canonical subsets.

T cell subsets included CD4+, CD8A+/CD8B+ and gd T cells and

were equally represented in all age groups (Figures 2D–H). A great

majority were identified as naive cells, distinguished by their high

expression of CCR7 and L-selectin (SELL) (38–40) (Figures 2I, J).

These naive populations segregated into two larger groups which

could be distinguished by differential expression of CD4 and CD8A/

CD8B (Figures 2F–H). The CD8A+/CD8B+ naive population

represents a divergence from the traditionally observed

distribution of naive T cells. Most naive T cells in mammalian

species are CD4+ (12). However, a large population of CD8A+/

CD8B+ naive cells has been described in non-model species such as

the horse (22). This highlights a potentially influential role of

CD8A+/CD8B+ T cells in cats.

The clusters 3 and 4, adjacent to the large naive populations, were

identified as effector cells (TEM) (Figure 2A). These clusters show a

gradual upregulation of T effector molecules including S100A11,

galectins (LGALS1, LGALS3), annexins (ANXA1, ANXA2), and

granzymes (GZMA, GZMK) (41, 42) (Figures 2C, K–M). Szabo

et al. identified CCL5 as a critical marker for highly differentiated

effector T cells across tissues as well as its antagonistic expression to

the naive marker SELL (41). In our data, Cluster 6 expressed the

highest levels of cytotoxic markers including CCL5 and exhibited the

highest pseudotime score with no naive marker expression

(Figures 2C, M–O). This indicates that this cluster is most

consistent with the annotation of a terminally differentiated T cell

cluster (CD8+ cytotoxic). Additionally, some effector cells expressed

genes associated with T cell exhaustion such as PDCD1 and TIGIT

indicating the presence of a few of these cells in circulation

(Figures 2C, P, Q).

Cluster 5 represented gd T cells as inferred by the overlapping

expression of the TCR genes TRG and TRDC (13) (Figure 2E).

Within this population, there was an expression gradient of naive as

well as effector markers, indicating subtypes within the gd
population (Figures 2I, K, L). Although these T cell clusters

represent biologically relevant groups statistically, the literature

across various species identifies significant challenges associated

with clustering of transcriptionally similar but heterogenous T cell

populations (43). The gd cluster exemplifies this challenge in that

the cluster’s defining features overlap between two different but not

mutually exclusive phenotypes - gd recombination and effectorness/

naiveness. These cells exhibit overlapping expressions of TRG and

TRDC, indicating their TCR recombination-based categorization.

An overwhelming majority of these gd T cells are naive given their

expression of naive marker SELL (Figures 2I, J). However, some

cells appear to express features of effectorness (Figures 2K–N). This

suggests some limitations of transcriptionally driven phenotyping

of T cells. Nonetheless, this investigation represents a significant

contribution towards deciphering the biology of feline T cells.
Frontiers in Immunology 05
2.3 Feline circulating T effector cells

As described previously, subtyping T cells with overlapping

phenotypes represents a significant challenge, which was further

exacerbated by the low number of effector T cells in our dataset.

Hence, we clustered effector T cells (clusters 3,4) independently,

revealing 13 effector clusters (Figure 3A). Many of these clusters

represent minimally divergent biological states as reflected by the

marked overlap of top differentially expressed genes (Figure 3B;

Supplementary Table 4). However, direct visualization of known

phenotypes demonstrate that the effector populations captured

exhibit phenotypes of human TH1, TH2, TH17 and Treg cells

(Figures 3C–J) (41, 42, 44). Gene sets for each module calculation

are provided in the Supplementary Materials (Supplementary

Presentation 1). These phenotypes do overlap and are not

consistent with identified clusters. Nevertheless, the higher scores

among closely positioned cells likely indicates the presence of these

subtypes. However, a greater sample size of effector cells would be

necessary to better resolve subtypes and their trajectory.
2.4 Cross species analysis of circulating
T cells

To understand how the captured feline T cell populations

compared to those of other domestic animal species and humans,

we performed an integrative cross-species analysis. We selected 4

species for which peer-reviewed annotated scRNA-seq data with over

15,000 cells was available. ScRNA-seq data from three other

veterinary species (dog, horse and pig) and humans were chosen as

the reference for homologous genome mapping (18, 21, 22, 45). In

total, we integrated 95,366 cells and identified 13 clusters across the 5

species (Figures 4A–F). These clusters were functionally annotated

based on markers for T cell identity, naive phenotype, effector

phenotype and cytotoxic phenotype in addition to their differential

gene expression analysis (Figures 4G, H; Supplementary Table 5).

Although feline cells were overrepresented in some naive

clusters such as 3 and 8, there was limited representation in

clusters 5, 6, and 9 particularly (Figure 4I). To investigate

whether this finding was associated with our enrichment protocol,

we assessed CD5 transcript expression across all clusters (Figure 4J).

Our results suggest that the number of CD5+ cells and average CD5

expression were lowest in clusters 5 and 9 (Figures 4K, L).

Additionally, we saw a direct relationship between the number of

feline T cells and the CD5+ cell count in each cluster. Particularly,

clusters 5, 6, 9, 11, and 12 were most underrepresented (Figure 4M).

These clusters were identified as cytotoxic effector cells (Figure 4H).

This highlights a limitation of our CD5 enrichment protocol as it

may select against specific effector clusters such as CD8+ cytotoxic

cells. Much of our current understanding of CD8+ feline T cells is

from flow cytometric studies with no further subtyping due to lack

of reagents. Thus, further investigation is necessary to validate

whether this low frequency is biological or technical.
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2.5 V(D)J recombination

To comprehensively characterize T cell receptor (TR)

expression, we sequenced TR alpha (TRA), TR beta (TRB), TR

gamma (TRG) and TR delta (TRD) transcripts using two dedicated

5’ VDJ libraries generated by amplifying TR transcripts with

universal forward primers and C gene-specific reverse primers.

The majority of CD4+ naïve, CD4+ TEM and CD8+ naïve T cells

expressed TRA/TRB transcripts only, while 60.6% of CD8+

cytotoxic T cells additionally expressed TRG transcripts

(Figure 5A). Compared to other ab T cell subsets, CD8+

cytotoxic T cells exhibited differential TRAV gene usage, and to a

lesser degree, TRBV gene usage (Figure 5B). CD8+ cytotoxic T cells

with TRG expression utilized distinct TRA and TRB V/J pairings,

that were not used by CD8+ cytotoxic T cells without TRG

expression or other ab T cell subsets (e.g. TRAV23/TRAJ25,

TRAV25/TRAJ41, TRBV25/TRBJ2-6) (Figure 5C). TRG
Frontiers in Immunology 06
transcripts in these cells were skewed towards a junctional length

of 16 amino acids, had dominant usage of TRGV2-2/TRGJ2-2 genes

(Figure 5C) and converged on the conserved mot i f

‘CAAWDPRGYGWAHKVF’ (Figure 5D). Additionally, these cells

exhibited a significantly reduced combinatorial diversity between

TRA and TRB chains, with three dominant pairings (Figure 5E).

The majority of gd T cells expressed TRG/TRD transcripts

(49.7%) followed by cells with an additional TRB transcripts

(16.4%) (Figure 5A). Of note, 11.5% of cells classified as gd cells

based on their global transcriptome contained TRA/TRB/TRG

transcripts, which might represent ab T cells with an effector

phenotype similar to gd T cells. Next, we analyzed gd T cells as

defined by TCR expression rather than global gene expression. Out

of 154 cells with a single productive TRD and TRG rearrangement

each, 127 (82.5%) had been classified a gd T cells based on their

global transcriptome while 20 (13.0%) had been classified as CD4+

TEM cells. When assessing the pairing of TRD and TRG chains
FIGURE 3

Feline Effector T cells (TEM) segregate into transcriptionally similar clusters and reveal the presence of helper T phenotypes. Unsupervised clustering
of TEM reveals 13 subtypes. (A) UMAP of scRNA-seq atlas of TEM. (B) Dot plot demonstrating up to 3 top differentially expressed genes for each
cluster determined via Wilcoxon rank sum testing (Adj P <0.05). (C, E, G, I) UMAP of TEM colored by helper T subtype gene modules.
(D, F, H, J) Expression UMAP of a representative gene from each helper T gene module presented in parallel.
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based on V gene usage, TRD V genes paired with TRG V genes in

an all-vs-all pattern (Figure 6A). The exception to this rule were

TRD chains utilizing the TRDV4 gene (n=19), which exclusively

paired with chains containing the TRGV5-3 gene. TRDV4 and

TRGV5-3 genes each rearranged to a single J gene only (TRDV4/

TRDJ3 and TRGV5-3/TRGJ5-1). Interestingly, the V gene usage of

cells coincided with functional phenotype as 18/19 of cells with

TRDV4/TRGV5-3 usage were classified as CD4+ TEM based on

their global transcriptome and only one was identified as gd T cell.

In addition, TRDV4/TRGV5-3 cells had a highly limited junctional

length and sequence composition (Figures 6B, C). All cells had the

same 17 aa TRD sequence ‘CASDIGGSSWDTRQMFF’ and 16/19

cells shared the 13 aa TRG sequence ‘CACWDESGWIKIF’. These

cells were found in all four cats, suggesting that this might be a

widely shared gd T cell subset in cats.

Next, we characterized the repertoire overlap between cats and

the relatedness of junctional regions across cats and T cell subsets

(Figure 7). The number of shared clonotypes was highest for TRA

and TRG but overall low (Figure 7A). When expanding the

definition of shared repertoires to include clonotypes with one
Frontiers in Immunology 07
amino acid difference, the TRA locus had the highest number, size

and publicity of clusters (Figures 7B, C).
2.6 Feline circulating monocytic cells

Although CD5+ enrichment was performed for T cell selectivity,

we serendipitously captured neutrophils and monocytic cells, which

provides insight into the transcriptome of circulating myeloid cells

in cats. Clustering analysis of both cell types was performed

independently. Due to the low myeloid cell count in the 1YO, it

was excluded from this analysis.

Monocytic cells clustered into 5 groups and were largely

represented by the 9YO sample (Figure 8A; Supplementary

Presentation 1). Cluster 3 represented neutrophils which is likely

due to the close clustering of myeloid cells on the global object

(Figure 1B; Supplementary Presentation 1). Cluster 0, 1 and 2 were

identified as classical monocytes (CM) with all clusters having high

expression of markers PLBD1, CD83 and classical monocyte

markers CD14 and VCAN (28, 29, 46) (Figures 8B–E). We did
FIGURE 4

Cross-species integrative analysis of T cells reveals missing cytotoxic effectors in the cat. Unsupervised clustering revealed 12 clusters across 5
species. (A) UMAP of scRNA-seq atlas of T cells. (B–F) UMAP split by species- dog, horse, cat, human and pig. (G) UMAP of T cells colored by T cell
phenotype. (H) Dot plot of marker gene sets for T cell subtypes. (I) Percentage bar chart of clusters stacked by species. (J) UMAP colored by CD5
expression. (K) Bar chart of percentage CD5+ cells per cluster. (L) Bar chart of average CD5 expression across cells in each cluster. (M) Scatter plot
of percentage CD5+ cells per cluster versus number of cat cells within the corresponding cluster.
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FIGURE 5

(A) TCR chain expression of T cell subsets (top). TRA/TRB transcripts dominate in all ab T cell subsets except for CD8+ cytotoxic T cells, which
primarily express TRA/TRB/TRG transcripts. Of note, CD8+ cytotoxic T cells were markedly less abundant than other ab subsets (bottom) and were
almost exclusively found in a single cat (22-007). (B) TRAV (top) and TRBV (bottom) gene usage of ab T cell subsets. CD8+ cytotoxic T cells show
differential gene usage compared to other ab T cell subsets. The most abundant V genes are highlighted in either red (CD8+ cytotoxic) or blue
(other ab T cell subsets). (C) Junctional length and V/J usage of ab T cell subsets stratified by TRA/TRB vs. TRA/TRB/TRG expression. CD8+ cytotoxic
T cells with TRA/TRB/TRG transcripts use distinct TRA and TRB but not TRG V/J gene combinations. TRG transcripts in this group are characterized
by a limited junctional diversity. The most abundant V/J gene combinations in CD8+ cytotoxic T cells have been highlighted. (D) Position weight
matrix of the most common TRA (top), TRB (middle) and TRG (bottom) junctional motifs in CD8+ cytotoxic T cells with TRA/TRB/TRG expression. (E)
Combinatorial diversity of TRA and TRB chains in ab T cells with TRA/TRB/TRG expression. Each stratum in the left and right axes represent a unique
TRA V/J and TRB V/J combination, respectively. The connections between the left (TRA) and right (TRB) strata represent the pairing of specific TRA
and TRB combinations. Compared to other subsets, CD8+ cytotoxic T cells (blue lines) have more frequent pairings between specific TRA and TRB
combinations, suggesting that CD8+ cytotoxic T cells exhibit more focused TRA/TRB pairing patterns and lower combinatorial diversity. The three
dominant pairings are: (1) TRAV23/TRAJ25 TRBV25/TRBJ2-6 (51 cells), (2) TRAV25/TRAJ41 TRBV25/TRBJ2-6 (35 cells), and (3) TRAV8-6/TRAJ30
TRBV4-2/TRBJ2-6 (27 cells).
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not identify any non-classical monocytes, based on absence of CD16

expression, as seen in other species such as humans, horses and

cattle (22, 29, 46, 47). Cluster 4 showed an upregulation of receptor-

type tyrosine-protein kinase FLT3, a conventional pan-dendritic

cell marker (48) (Figure 8F). In addition, these cells exhibited

upregulation of MHC class-II molecules (FECA-DRB, HLA-DRA,

HLA-DOA, and HLA-DMD) and were hence identified as

conventional dendritic cells (cDC) (49) (Figure 8G).

In-depth assessment of differentially expressed genes across the

four monocytic clusters identified signatures that further

characterized these cell types. Cluster 2 demonstrated a

proinflammatory phenotype characterized by upregulation of

classic proinflammatory cytokines (IL1A, IL1B), TNF/NF-KB

pathway (TNF, TNFAIP3, NFKBIA, NFKBIZ, NFKB1) and M1-

macrophage-associated proinflammatory cytokines (CXCL10,

CXCL16, CCL3, CCL4 and CCL5) (Figures 8G, H; Supplementary

Tables 6, 7) (20, 50–54). Cluster 1 gene ontology revealed an

upregulation of leukocyte migration and chemotaxis terms in

addition to upregulation of proinflammatory cytokines IL1A and

IL1B (Figures 8G, I; Supplementary Tables 6, 7). However, these

cells also lack TNF expression and upregulate anti-inflammatory

cytokines IL10 and IL18 and proteins which promote anti-

inflammatory phenotypes in macrophages such as LCN2 and

MSRB1 (55, 56) (Figure 8G). They have the lowest expression of

CD86, a T cell co-stimulatory molecule of antigen presenting cells,

which is associated with an anti-inflammatory phenotype (57).

Most strikingly, these cells were found to upregulate genes similar
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to a novel monocyte cluster found in SARS-CoV-2 infected and

recovered patients. These genes include AREG, EREG, BCL6, IL10,

and IL18 which have been described as anti-inflammatory tissue

repair genes (Figure 8G) (58, 59). Thus, these cells were designated

as anti-inflammatory, although they do not follow the traditional

M2 polarization phenotype described in human monocytes (60).

Our data suggests a novel classical monocyte subtype with an anti-

inflammatory phenotype.

Cluster 0 (CM) appears the least differentiated with low

expression of inflammatory cytokines and the top GO terms

include more cellular rather than immune related functions

(Figure 8H; Supplementary Table 7). Cluster 4 (cDC) showed an

upregulation of and the GO terms associated with leukocyte

activation and T cell activation via TCR contact with antigen

bound MHC (Figures 8G, J; Supplementary Tables 6, 7). Given

the strong antigen presentation phenotype, the annotation of cDC

was further corroborated.
2.7 Feline circulating neutrophils

We identified 2 major neutrophil clusters (Figure 9A) based on the

expression of canonical neutrophil markers including CSF3R and

ELANE as well as mature neutrophil functional markers vimentin

(VIM), thioredoxin (TXN), S100A9 and S100A12, suggesting both

clusters are comprised of mature neutrophils (25, 61, 62)

(Figures 9B–G). Cluster 1 exhibited several notable differences
FIGURE 6

Characterization of gd T cells with one TRG & TRD rearrangement each. (A) Correlation of TRG/TRD V gene pairing and functional phenotype. Three
TRD V genes (TRDV3, TRDV5-1, TRDV5-2, TRDV5-3) pair with three TRG V genes (TRGV2-1, TRGV2-2, TRGV2-4) in an all-vs-all fashion (white
strata) while TRDV4 genes exclusively pair with TRDV5-3 genes (grey strata). Cells with TRDV4/TRDV5-3 gene usage have a CD4+ TEM phenotype
(orange alluvium), while other cells have a predominant gd phenotype (green alluvium). (B) Junctional diversity of gd T cell subsets. TRDV4/TRDV5-3
gd T cells have a highly skewed TRD & TRG junctional length and are found in all 4 cats. (C) Junctional sequence diversity of the TRD (top) & TRG
(bottom) rearrangements. All TRDV4/TRDJ3 rearrangements and 16/19 TRG5-3/TRGJ5-1 rearrangements share the same junctional sequence,
respectively. The three divergent TRG sequences were highly similar and either had a single amino acid variation in position 6 (2/3) or contained one
additional histidine between positions 5 and 6 (CACWDHESGWIKIF, not shown).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1438004
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ramarapu et al. 10.3389/fimmu.2024.1438004
compared to cluster 0. Differential gene expression analysis

accompanied by gene ontology showed an upregulation in cluster 1

of apoptotic signaling and activated neutrophil functions such as

response to lipopolysaccharide and IL-2 production (Figure 9H;

Supplementary Tables 8, 9). Thus, we annotated this cluster as

activated neutrophils. When investigating top differentially expressed

genes, we noted a higher expression of IL1A and TNFAIP3, suggesting

a proinflammatory phenotype (63) (Figures 9I, J). Similarly, cluster 1

had an increased expression of VCAN, which is upregulated in the skin

in response to damage from ultraviolet light B and reactive oxygen

species (64) (Figure 9K). Lastly, cluster 1 exhibited lower RNA counts

per cell, which is consistent with findings in murine neutrophils where

the number of genes and counts of RNA decrease with neutrophil

differentiation, maturation and eventual activation and function (65)

(Figures 9L, M). Since a pathway driving this clustering could not be

resolved, we examined an interferon (IFN) module score, which is a
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composite score based on expression levels of interferon stimulated

genes (Figure 9N). Cluster 1 did not show an increased IFN score but

the adjacent cells in cluster 0 did (Figure 9N). Interferon stimulation

can delay neutrophil apoptosis, which could represent one of the

potential driving factors for cells to move from cluster 0 to cluster 1

(66). This analysis is the first to resolve circulating neutrophil

transcriptomic signatures in cats at the single cell level.
3 Discussion

The importance of the cat as a companion animal as well as a

model for infectious diseases warrants an in-depth characterization

and understanding of the feline immune system. Our study is one of

the first to characterize feline immune cell subpopulations at the

single cell level. We utilized 5’ single cell RNA-sequencing with V
FIGURE 7

(A) Shared clonotypes across 4 cats. The TRA locus exhibits the highest degree of publicity. The TRD and TRG clonotypes that are shared by all four
cats are ‘CASDIGGSSWDTRQMFF’ and ‘CACWDESGWIKIF‘, respectively (see also Figure 6C) (B) Characterization of clusters based on mean centrality
and cluster density. Higher values reflect larger and more connected clusters. (C) Network plots of TRA clusters with high centrality and density.
Each node represents a unique clonotype, all clonotypes have identical junctional lengths and edges connect clonotypes with one amino acid
sequence difference in the junctional region. The clusters contain clonotypes from all four cats and different T cell subsets. (D) Position weight
matrices of TRA junctional regions of two representative clusters with high centrality and density (identified in Figure 7B).
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(D)J analysis to resolve the heterogeneity of CD5+ enriched

peripheral blood immune cells. We resolved populations of T

cells, neutrophils, B cells and monocytes. Additionally, this atlas

is the first to annotate the single cell transcriptome of rarer cell

types, plasmacytoid dendritic cells and mast cells, which are

seldomly captured in single cell atlases (67, 68).
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Among T cells, we were able to resolve different populations of

naive cells including a significant number of CD8A/CD8B naive

cells. We further identified T effector cells and terminally

differentiated cytotoxic effectors. The transcriptomic gradient of T

cell differentiation was found to fit the paradigm seen with other

species (23). Additionally, we captured feline gd T cells for the first
FIGURE 8

Feline circulating monocytes include classical monocytes with more differentiated clusters with traditional proinflammatory and unconventional
anti-inflammatory phenotypes. Unsupervised clustering revealed 5 clusters. (A) UMAP of scRNA-seq atlas of monocytes. (B–F) UMAP of monocytes
colored by expression levels of canonical markers. (G) Dot plot of genes of monocytic phenotypes across the 4 monocytic clusters. (H–J) Dot plots
of top GO biological process terms called based on sets of positive differentially expressed genes identified via Seurat FindMarker function (Wilcoxon
rank sum, Adj P <0.05). CM, Classical monocyte; cDC, Conventional dendritic cell; Pro-inf, proinflammatory; Anti-inf, anti-inflammatory..
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time. Upon investigation of effector cells, we were able to

demonstrate known T helper effector phenotypes among the most

differentiated effectors. Of note, the Treg phenotype was found to be

the most prominent. The importance of Treg populations has been

studied in cats, particularly in the context of feline mammary

carcinoma (69–71). Our study corroborates the large presence of

this phenotype and the potential importance of Treg cells in

feline immunology.

We performed a cross species integrative analysis of T cells to

take advantage of the growing database of single cell RNA data. We

found relatively high conservation of T cell subtypes along an

effector gradient with relatively equitable representation of other

veterinary species (horse, dog, pig) and humans with the cat. This

analysis also revealed the potential negative impacts of CD5+

enrichment for T cells. Effector clusters with high CD5 expression

were found to be underrepresented in the cat. Thus, a broader T cell
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selection protocol would be necessary in future studies to further

investigate effector cells in cats.

In addition to characterizing T cells based on their

transcriptome, we analyzed TCR expression on a single cell level

for the first time in the cat. Cytotoxic CD8+ T cells differed from

other ab T cell subsets in multiple aspects. In addition to the

expected TRA and TRB transcripts, a high percentage of cytotoxic

CD8+ T cells expressed a productive TRG transcript. Given that this

was not observed in naïve CD8+ T cells, we attribute this

phenomenon to differential transcriptional regulation of naive

and effector T cells. Compared to other ab T cell subsets,

cytotoxic T cells also exhibited divergent TRAV and TRBV gene

usage but not TRGV gene usage. Moreover, the junctional length of

TRG transcripts was skewed towards a highly conserved 16 aa

motif. This finding is of potential significance for clonality testing,

an adjunct method for differentiating reactive from neoplastic
FIGURE 9

Feline circulating neutrophils separate into 2 clusters based on activation state. (A) UMAP of scRNA-seq atlas of neutrophils. (B–G) UMAP of
neutrophils colored by expression levels of canonical and functional neutrophil markers. (H) Dot plots of top GO biological process terms in cluster 1
called based on sets of positive differentially expressed genes identified via Seurat FindMarker function (Wilcoxon rank sum, Adj P <0.05). (I–K) UMAP
of neutrophils colored by expression levels of select differentially upregulated genes in cluster 1. (L, M) Violin plots of RNA counts and feature
(unique RNA) counts per cell by cluster; (****) indicates P value less than 0.001 by T-test. (N) UMAP of neutrophils colored by interferon (IFN) gene
composite score per cell; genes included are named in figure.
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lymphoid proliferations. If the majority of cytotoxic CD8+ T cells

harbor a length restricted TRG rearrangement, then reactive CD8+

dominant T cell proliferations might exhibit reduced TRG diversity,

which could result in a higher false positive rate. Of note, since other

ab T cell subsets did not express a significant number of productive

TRG transcripts, it is unknown if similar length restricted

rearrangements occur in these subsets on a DNA level. A

previous study examining the feline TCR transcriptome across

thymus, spleen and mesenteric lymph nodes did not identify any

TRG length restrictions (13). However, the previous study aimed to

identify global rearrangement patterns and hence utilized a bulk

sequencing strategy, which is not suited to resolve repertoire

characteristics of individual T cell subsets.

Cytotoxic CD8+ T cells with TRG transcripts utilized few but

distinct TRA and TRB V/J parings and had conserved junctional

motifs. A previous study utilizing scRNA-seq with VDJ sequencing in

dogs identified MAIT-like cells with restricted TRAV gene usage and

junctional length as well as numerous distinct but highly similar TRA

gene sequences (19). A cluster analysis of TCR sequences in this study

did not identify T cells with similarly characteristics. The fact that we

were unable to identify MAIT-like cells in cats could reflect their true

absence or represent an artifact of CD5-based enrichment, which

might have resulted in the exclusion of CD5- or CD5low subsets.

Additional studies with more animals, inclusion of different tissue

types and without selection bias are needed to elucidate the existence

of innate-like ab T cells in cats.

The annotation of gd T cells based on their TCR expression

rather than global transcriptome revealed a population of gd T cells

with invariant TRD and TRG V/J gene usage and a highly conserved

junctional region. The existence of T cells with TRGV5-3 gene

usage and reduced TCR diversity had previously been suspected

based on the finding of a recurrent clone in liver and intestinal

samples of cats (87). Our results demonstrate that this canonical

rearrangement stems from gd T cells with a similarly restricted TRD

chain utilizing TRDV4 and a highly conserved junctional motif.

This population was missed during an initial analysis because cells

clustered with and were obscured by more numerous CD4+ ab
TEM cells when annotated by global transcriptome. Akin to CD8+

ab T cells with a canonical TRG rearrangement, TRGV5-3/TRDV4

gd T cells could result in false positive clonality testing results and

hence require careful primer set design and result interpretation.

T cell lineage annotation based on global transcriptome did not

always match the classification based on T cell receptor expression.

In addition to the previously discussed TRGV5-3/TRDV4 gd T cells

that masqueraded as CD4+ ab TEM cells, annotation based on

global transcriptome revealed presumed gd T cells with TRA-TRB

and TRA-TRB-TRG rearrangements. Given that TCR cell surface

expression is the ultimate arbiter for T cell lineage, these cells most

likely represented ab T cells with functional properties similar to

that of gd T cells. Additional factors that might result in erroneous

lineage classification are low TCR expression or incomplete

annotation of TCR genes in the cat reference transcriptome. In

mouse models it has been demonstrated that adaptive gd T cells that

have overlapping phenotypes with the ab T cells and it has been

suggested that CD8+ gd T cells may be functionally

indistinguishable from CD8+ ab T cells (88). Consequently, ab
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vs. gd lineage classification based on global transcriptome alone

might not always be always accurate and additional studies with

concomitant analysis of all four TCR loci are needed to further

substantiate this phenomenon.

Among the myeloid cells, we resolved 3 clusters of classical

monocytes and 1 cluster of conventional dendritic cells. Of the three

clusters of monocytes, we found two to be differentiated in a

somewhat polarized manner- pro-inflammatory versus anti-

inflammatory. The anti-inflammatory population was

unconventional in that it had an upregulation of classic pro-

inflammatory cytokines IL-1A and IL-1B but also an upregulation

of genes associated with a unique and novel monocytic cluster

found in human COVID-19 patients such as AREG, EREG, IL10,

IL18 and BCL6 (59, 72). Sub clustering of neutrophils identified a

larger mature cluster and a smaller exhausted/activated cluster

which showed upregulation of pro-inflammatory and apoptotic

genes. Thus, analysis of these myeloid cells revealed the presence

of conventional and non-conventional subtypes, providing a

footing for feline circulating myeloid immunology.

Currently, feline T cell subtypes have only been described at the

flow cytometric level, and with a focus on CD4/CD8 populations

due to paucity of species-specific reagents. Our data indicates the

presence of unique subtypes of peripheral blood immune cells

including ab CD8+ cytotoxic cells, CD8A/CD8B naive T cells,

plasmacytoid DC, mast cells , conventional DCs, anti-

inflammatory monocytes and mature and end stage neutrophils.

Our study is the first of many necessary for the further

characterization of the feline immune system. Taken together, it

has increased our understanding of feline circulating immune cells,

including T cell subtyping and capture of rare populations

previously undescribed in the cat.
4 Materials and methods

4.1 Samples and Sorting

Whole blood was obtained from four healthy, female, domestic

shorthair cats (13-101/9 years, 18-003/6 years, 21-005/1 year, 22-

007/6 months) housed at the UC Davis Nutrition and Pet Care

Center in accordance with the UC Davis Policy and Procedure

Manual section 290-30 and Animal Use and Care protocol #22150.

Blood was collected in purple top EDTA tubes and immediately

processed in one batch without freezing until completion of the

reverse transcription step during library preparation. Peripheral

blood mononuclear cells (PBMC) were isolated from whole blood

by density gradient centrifugation. Briefly, 5 mL of whole blood was

layered on top of 10 mL Histopaque 1077 (density 1.077g/mL,

Sigma-Aldrich, Burlington, MA, USA) in a 50 ml tube. The samples

were centrifuged at 145 relative centrifugal force (RCF) for 30

minutes at room temperature (RT) without break. After

centrifugation, the PBMC layer at the plasma-histopaque interface

was aspirated and transferred to a clean 15 ml tube. The PBMCs

were then washed twice with 14 ml PBMC isolation media (500 mL

Hanks’ Balanced Salt Solution (HBSS), 15 mL Fetal Bovine Serum

(FBS), 2 mL EDTA) by centrifuging at 850 RCF for 10 minutes at
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RT. Following the second washing step, the PBMC pellet was

resuspended in 200 ml modified flow buffer solution (MFB,

500 ml phosphate buffer saline (PBS), 0.467g EDTA tetrasodium

salt and 1% Horse serum).

The isolated PBMCs were first incubated with a primary anti-

feline CD5 monoclonal antibody (clone FE 1.1.B11-IgG1-Azide,

Peter F. Moore Leukocyte Antigen Biology Laboratory, UC Davis,

CA, USA) or a non-cross reacting canine antibody (negative

control) for 30 min at RT. This was followed by a wash step

(addition off 3 mL of MFB, followed by centrifugation at 400 RCF

for 3 min at RT and resuspension in 100 - 200 ml of supernatant),
and incubation with a secondary horse-anti-mouse FITC antibody

(1:99 in MFB) for 15 minutes at RT in darkness. Finally, the stained

PBMC was washed again (as above), resuspended in 500 ml of MFB

and stained with DAPI (1 mg/mL). Cells were sorted at the UC

Davis Comprehensive Cancer Center Flow Cytometry Core. Cells

were initially gated based on FSC vs. SSC to exclude debris and

aggregates. Singlet gating was then applied based on SSC to exclude

doublets, followed by discrimination of live and dead cells based on

DAPI staining and subsequent gating for CD5 positive (FITC

positive) cells (Supplementary Presentation 2).
4.2 Single-cell 5’ RNA and V(D)J library
preparation, sequencing and mapping

Libraries were constructed using the Chromium Next GEM Single

Cell 5’ Kit v2 (10x Genomics). All four feline T cell receptor loci were

amplified using the Chromium Single Cell V(D)J Enrichment Kit

according to the manufacturer’s instructions but with custom reverse

primers specific for the feline orthologs (Supplementary Table 10).

Separate libraries were prepared for the transcriptome, ab TCRs, and

gd TCRs (Supplementary Table 10). Libraries were sequenced using the

Illumina NovaSeq S4 platform using 150 paired-end reads to a target

read depth of 30,000 reads per cell. Raw FASTQ sequencing data were

processed by the UC Davis Bioinformatics Core using 10X CellRanger

version 7.1 for alignment to the cat reference genome (Felis_catus_9.0).

To improve the quality of annotation of the Felis catus genome, we

converted unmapped ENSEMBL IDs to human homologs fromBioMart

for greater interpretative power. Gene mapping was performed in the

following order: (1)Mapping of one-to-one orthologs from cat to human

(2) Mapping of one-to-many and many-to-many was performed by

choosing a representative cat gene based on the following parameters, in

respective order [orthology_confidence, gene_order_confidence,

Whole_Genome_alignment, %_query_identical_target, %

target_identical_query]. Additionally, specific unmapped genes were

manually annotated or filtered (Supplementary Table 11). Further

analysis was then continued using Seurat v5 (73).
4.3 Count matrix pre-processing and
quality control

Filtered feature matrices for the 4 samples were independently

normalized and scaled using the function SCTransform v2

(glmGamPoi) (74). Dimensionality reduction (determined using
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knee identification in elbow plot), k-means clustering (resolution

determined using clustree package) and neighbor identification

(74–76) was performed. Low quality clusters were identified and

filtered based on low gene counts, high mitochondrial read

percentage and lack of biologically relevant markers. To further

ensure quality, doublet identification was performed using package

DoubletFinder according to package vignette and ambient RNA

decontamination was performed using the DecontX package as per

package tutorials adapted to the data (77, 78).
4.4 Integration and downstream analysis

Objects were integrated by sample using the Seurat native

reciprocal principal component analysis (RPCA) (79). The

embeddings were utilized for Uniform Manifold Approximation

and Projection (UMAP) and subsequent clustering and neighbor

identification as described prior. Differential gene expression

analysis was performed using each cluster identified by the Seurat

function FindAllMarkers (Non-parametric Wilcoxon Rank Sum

with adjusted P value <0.05). Gene set enrichment analyses

including over-enrichment analysis (ORA) of gene ontology

(biological process) was performed using ClusterProfiler on

human homologized genes (adjusted P value <0.05) (80).

Additional visualizations and associated statistics were performed

using ggplot2 and gg supplementary packages (81). Figures were

illustrated on Bio Render.
4.5 Cell type sub clustering

Cell type sub-clustering (example: T cell sub-clustering)

analysis was performed in the same manner as described prior.

Pseudotime values were calculated using the UMAP embeddings

produced via Seurat with RPCA integration using packagemonocle3

(82). Gene module scores were calculated via the Seurat

function AddModuleScore.
4.6 Cross species T cell integrative analysis

Published single cell RNA-sequencing datasets were obtained

from NCBI GEO Accession for 4 species including dog [Canis

familiaris: GSE225599 (18)], human (Homo sapiens: https://

support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/

pbmc_10k_v3), horse [Equus caballus: GSE148416 (22)] and pig

[Sus scrofa: https://data.nal.usda.gov/dataset/data-reference-

transcriptomics-porcine-peripheral-immune-cells-created-

through-bulk-and-single-cell-rna-sequencing (21)]. All species

genes were mapped to human homologs as described prior for

the cat. Only homologized shared genes between all 5 species were

utilized for analysis. T cell clusters annotated by authors were

validated using canonical T cell markers (CD3E, CD3D, TCF7,

LCK, ITK). T cells were integrated across species using Seurat

canonical correlation analysis (CCA) and downstream analysis

proceeded in the same manner as described prior for global

object analysis.
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4.7 VDJ analysis

Contigs were mapped to available IMGT reference genes (as of

February 2023) using Cell Ranger version 7.1. All analyses were

based on the ‘all_contig_annotations.csv’ file using the R packages

tidyverse, circlize and ggseqlogo (83–85). A clonotype was defined

as a unique TCR amino acid sequence. To exclude incomplete

contigs or inter-locus chimeras, we only retained productive contigs

for which V, J and C genes could be identified and belonged to the

same locus. Cluster analysis was performed as previously

described (86).
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