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ABSTRACT

Plate bending elements, based upon the Reissner-Mindlin plate theory, are formulated
via the Hu-Washizu variational principle, including the Hellinger-Reissner functional as a
special case. It is proven that these elements avoid the well-known shear locking behavior
at the thin plate limit. To obtain this objective, the assumed stress and strain fields are
constructed to satisfy a priori the homogeneous equilibrium equations in a weak sense.
The proposed elements are shown to perform well on a set of standard problems.
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MIXED FORMULATIONS FOR PLATE BENDING ELEMENTS

Shmuel L. Weissman & Robert L. Taylor

Department of Civil Engineering
University of California at Berkeley

1. INTRODUCTION

Plate bending elements, based upon the Reissner-Mindlin plate theory (Reissner
[1945] and Mindlin [1951]), are formulated within the framework of the Hu-Washizu vari-
ational principle (Washizu [1948]), including the Hellinger-Reissner variational principle as
a special case. The method proposed by Weissman & Taylor [1990b] is used to generate
the assumed stress and strain fields. The objective of this work is to show that a systematic
development of elements that avoid shear locking at the element leve] js possible. Proving

that the proposed formulation leads to such elements is the main contribution of this paper.

A major difficulty in the development of plate bending elements based on theories
that account for shear deformations, such as the Reissner-Mindlin theory, is the locking
behavior exhibited at the thin plate limit. This Phenomenon is attributed to the failure of
the numerical approximation to enforce the internal constraint, which is the ratio of

transverse shear strain to curvature going to zero as the plate thickness is reduced to zero.

Much research has been directed at overcoming the locking behavior at the thin plate
limit (see Hughes [1987] and references therein). A comerstone ip the development of

“right” number of constraints, these elements resort to sharing constraints across element
boundaries. Consequently, shear locking is avoided at the system level, but not at the ele-

ment level.

Finite element approximations of problems involving interna] constraints often result

in locking. This difficulty was put in the form of a limitation principle by Fraeijs de Veu-

equilibrium equations can be satisfied in a weak sense.
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Taking advantage of this observation, Weissman & Taylor [1990a] developed plate
bending elements via the Hellinger-Reissner functional. Following Pian & Sumihara
[1984], the assumed stress field is constructed to satisfy the homogeneous equilibrium equa-
tions in a weak sense, relative to a set of incompatible displacements. Consequently, the
assumed transverse shear resultant field is coupled into the assumed moment field. It is

proven that as a result of this coupling shear locking is avoided at the element level.

A general method to generate assumed stress and strain fields, in the context of the
Hu-Washizu functional, is proposed in Weissman & Taylor [1990b]. The key idea is the
assumption that the strain field is the sum of two independent fields, termed “compatible”
and “incompatible” strain fields. The incompatible strain field is obtained from a set of
displacements not contained in the finite element approximation of the displacement solu-
tion space (this requirement is crucial to the stability of the resulting elements). To obtain
the desired fields the internal energy resulting from the product of the incompatible strain
and either the compatible strain or the stress fields is constrained to vanish in a weak
sense. The resulting approximation of the stress and compatible strain fields satisfy the
homogeneous equilibrium equations in a weak sense and consequently also the internal

constraints. Furthermore, the incompatible strain vanishes pointwise at the solution.

The organization of the paper follows. The strong, or classical, form of the Reissner-
Mindlin plate bending theory is summarized in Section 2. Element formulation via the
Hu-Washizu functional (in resultant form), including stress and strain fields generation, is
presented in Section 3. In Section 4 it is proven that the formulation presented in Section 3
leads to elements that avoid shear locking at the element level. The initially assumed stress
and strain fields as well as the assumed displacement field are stated in Section §. Numeri-

cal results are contained in Section 6. Concluding remarks are given in Section 7.

2. STRONG FORM

A plate bending theory that accounts for shear deformations, commonly referred to as
the Reissner-Mindlin theory, is summarized in this section. It must be pointed out that the
stress distribution employed by Reissner accounts for warping of transverse fibers. In this
work the effect of warping is neglected. However, a shear correction factor is introduced
to compensate for the lack of warping.

Throughout this work, Greek subscripts take the values 1 and 2, while Latin sub-
scripts take the values 1, 2, and 3. Repeated indices imply the usual summation conven-
tion. All quantities are referred to a fixed system of rectangular, Cartesian coordinates. A

general point in this system is denoted by (x1,x5,x3).
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A plate is a three-dimensional body embedded in an Euclidian three-space R3. In

the undeformed configuration the plate domain () is of the following form:

—h(xl)xl) h(Xl,Xz)] b 2
) ’ ) J’(II’XZJEACR‘

)

where k(xy,x3) is the plate thickness and A is a closed region in the x; X x, plane,

0:= (xl,xz,x3] €R3 | x5¢ {

bounded by a simple closed curve C. Let Cp and C, be subregions of C such that
C?UCT= C and Cy M C, = ¢, where Cy is the part of C on which displacements are
specified and C, is the part of C on which tractions are specified. k is assumed to be small
in comparison to a characteristic length of A. The plane x3 = 0 is denoted the mid-surface
of the plate. The outward normal unit vector to C in the x1 X x, plane has the components

ny, and the counterclockwise tangential unit vector has the components 7.
Following Mindlin [1951], the assumed displacement field is taken as:
ug(x1,x2,%3):=x3e430p5(x1,x;) (2.1a)
and
us(xy,xz,x3):=w(xy,x;3) (2.1.b)

where the sign conventions for the rotations are shown in Figure 2.1, and €qp are the com-

ponents of the alternator tensor, given in matrix notation by:

[ [0 1]
REMARK: Equations (2.1) are equivalent to the following statements:

i A straight fiber normal to the mid-surface in the reference configuration remains
straight but not necessarily normal to the mid-surface in the deformed configuration,
and

ii  the transverse displacement, w, does not vary through the thickness. s

In view of the assumed displacement field, equations (2.1), the strain field is given

Vo= 2€43= 263 = eqpfp+ W, (232)

and
1
€ap = X3Kap = '2"“3("&7 6y + €py0yp) (2.3b)

where «y is the transverse shear strain vector, and « is the curvature tensor. In matrix
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notation, equations (2.3) are given by:

y=L°U (2.4a)
and

where U7 := [w ,61,92] is the displacement vector; L?

operator, given by:

is the curvature displacement

[
0 0 --9_
6x1
L= [0 -2 2.5)
612
L. 8
6x1 6x2J
and L” is the transverse shear strain displacement operator, given by:
[ o ]
= 0 1
l axl ,
L* :=, ) (2.6)
ey 10|
X2
| )

Plate kinematics are summarized in Figure 2.2.
The stress resultants are defined as:

h
T

Qu:= f—h c’-3cxd'x3
2

Shear resultants,

h
z

Mg := fioqudeB Moment resultants.
2

Sign conventions for transverse shear and moment resultants are given in Figure 2.3,

The distributed loads are defined as:

h

A

- z

0 :=03|%, +f_'l b3dxy Transverse load.
2

2
— Lo A
M, := aa3x3li+ f__h by x3dx, Couple loads.
2 7

where b is the body force vector.
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In order to define the boundary conditions, the following definitions are introduced:

M, := nengMgg Normal bending moment.
M, = natgM,g Twist moment.
Oni=ng,0, Normal shear.

The equilibrium equations can be deduced from the three-dimensional ones, and are
given by:
divM -Q + M = 0 (2.7a)

and

The constitutive equations can be derived from the three-dimensional constitutive
relations. Plane stress hypothesis is a good approximation of the stresses in thin plates.
Consequently, 033 is assumed to be zero everywhere in ). o3, on the other hand, are
needed to maintain equilibrium in the x3 direction and thus, cannot be neglected. The
constitutive equations, in matrix notation, are given by:

M =D’ (2.8a)

and

Q=aD'y (2.8b)

where D? is the elastic coefficients matrx, given in terms of Young’s modulus, E, and
Poisson’s ratio, v, by:

r l
E Bl 1 0 i
D°= =2 1, 0 ;
12(1-2%) |” . 2.0
lo 0 7(1-v)]
D’ is the transverse shear elastic coefficient matrix, given by:
_ Eh 10
D’ = m [0 IJ (2.10)

and «a is a correction factor introduced in order to obtain consistent results with the three-
dimensional theory, in which the transverse shear varies quadratically along fibers normal

to the mid-surface, usually o = 2—

Let the superscript “‘a’’ denote prescribed boundary conditions (e.g., Q2 is the
applied transverse shear). The formal statement of the strong form for the plate bending
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boundary valye problem is summarized in Box 2.1.

Box 2.1: Plate Bending - Strong Form

Given ﬁu, Q_, Mg, M2, n W4, 85 and 6,7 find w, 6., O, and M g such that:

(
dvM-Q+M=0

divQ+(Q =0

inA 1

3. MIXED FORMULATIONS

The weak form counterpart of the strong form presented in Section 2 is derived from
the Hu-Washizu functional in Section 3.1. The finite element model is obtained by
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sense, the homogeneous equilibrium equations.

3.1 Weak Form

The Hu-Washizu functional involves three independent fields: displacement, stress,
and strain. However, as the plate bending problem is formulated in terms of resultants, it
is more convenient to discuss the stress resultants (i.e., moment and transverse shear) as
the independent stress fields, and their conjugate curvature and transverse shear strain as
the independent strain fields. In order to proceed with the development it is useful to
impose a structure on the spaces of admissible functions. To this end, let the following
classes of functions be introduced:

Trial displacement solutions:'
( = )
U:= iUIUEH(.Q),U=U"0nCUj. (3.1)
Trial displacement weight functions:
W= {Ulueyl(ﬁ),U=Ooncu}. (3.2)
Trial moment solutions:
M= !MlMeHO(ﬁ)l (3.3)
L )
Trial transverse shear resultant solutions:
( 0 =)
0:=4{Q[QeH Q) } (3.4)
( J
Trial curvature solutions:
K:= {xlxéﬂo(ﬁ)} (3.5)

and trial transverse shear strain solutions:

y:= {‘Yl'YGHO(ﬁ)} (3.6)

' A function G is said to be a member of H" if the function and its first n derivatives are members osz. A
function F is said o be a member of L if it is square integrable, i.c., | F*d€)< ® where () is the domain of
interest. Thus, H" = L,. °
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Remark: Since no constraints are imposed on the trial solution spaces used for the
stress resultants and strain fields, they can also be used as the trial weight functions for
strain and stress resultant fields, respectively. This is possible since the traction boundary
conditions evolve naturally from the weak form (see below), and there are no boundary
conditions for the strain fields, s

The Hu-Washizu functional, stated in resultant form, for the case of plate bending is
given by:

HHW(M:Q’Kv'YvU):=.’; [%(KTD[’K+'YTDS'Y)+QT(L:U_'Y)

+MT(L”U—K)—U7F!dA—faUTtdF (3.7)

where FT = [Q—,Aﬂ,ﬁzl is the body resultant vector, and 7 = { —,f, _,f, _,f,] is the
applied boundary traction vector.

The weak, or variational, form of the problem may be obtained from the energy
functional, Tz, by making it stationary (i.e., equating the first total variation, of Hpw, to

zero). The formal statement of the weak form is stated in Box 3.1.

Box 3.1: Weak Form

Given M, Q, M M2, Q%, and U; find U ¢ U.MEM,Q€0,x €x,andy € y
such that for every 8U € W,8M € M,8Q € 0, 8k ¢ K, and 8y € v

0=j; 8M7 (LPU —« )da +L8QT(L’U—y)dA
+ [ 8T (DPk ~M) a4 + [ Y (D'y-Q) a4

+fA (L®3U) M a4 +j; (L*8U)TQdA -j; SUTF dA —fa 8UTtdT

Since 8M, 8Q, 8k, oy, and 8U are independent of each other, the weak form is made of
five independent equations, known as the Euler-Lagrange equations. The first two equa-
tions relate the assumed independent strain field to the displacement field; the third and
fourth are the constitutive equations for the plate bending boundary-value problem; the last
line, after integration by parts, provide the balance of momentum equations for the plate
bending problem.
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3.2 Finite Element Approximation

Let the finite element approximating spaces (i.e., finite dimensional subspaces of the
trial solution and weight spaces introduced above) be denoted by a superscript “h” (e.g.,
Ut c U). In addition, in anticipation of the development requirements, let the assumed
strain fields be decomposed into the additive sum of two independent fields, as follows:

k:=«k*+«! and yi=yh + 4 (3.8)

Furthermore, let k' and v be given by:
kK':=L'U' and 4i:=L'U (3.9)
respectively, where U’ is a displacement field not contained in U* (U is commonly termed

incompatible displacements). This constraint on U, as will be shown, is crucial to the sta-
bility of the resulting elements.

As was pointed out above, the assumed fields must a priori satisfy, in a weak sense,
the equilibrium equations to avoid shear locking. The approximating stress and strain
fields can be constructed to satisfy a priori the homgeneous equilibrium equations by intro-

ducing the following constraint equations:
I [M"T k' + QAT i ]dA =0 (3.10a)
and
fA [K"Dbxi+'y"TD"yi}dA=0 (3.10b)

Taking the first variation of the energy functional, Il , with respect to k', and tak-

ing notice of equations (3.10) yields:
Dn,,w-ax"=an.<"Db k'dA =0 (3.11)

where 8« denotes a virtual curvature field. It follows that at the solution point, k' van-
ishes pointwise provided the elastic coefficients matrix, D®, and all terms in equation (3.9),
are linearly independent. Similarly, taking the first variation of the energy functional with
respect to y' shows that at the solution point, ¥ is zero pointwise. Consequently, the func-
tions that satisfy the constraint equations form a subspace of the approximating spaces.
Let these subspaces be denoted by a superscript “c” (e.g., U C U?).

The elastic coefficients matrices D? and D* appearing in the constraint equation
(3.10b), in general, vary over the element domain. As a result, imposing the constraint
equation (3.10b) results in coupling the constant terms of the strain field with the noncon-
stant terms and consequently, failing the constant strain patch test. To avoid this problem,

D* and D? are replaced by their mean values, denoted by a superposed bar, which are
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defined as follows:

b
D’ := L.I%‘-A_ ; DP:= -f‘TD;Aii (3.12)
A A

Let the approximating fields, which satisfy the constraint equations (3.10), be given

in each element by:

Box 3.2: Assumed Fields

® Moment field: M‘:=M(§)m+S(§)q
® Transverse shear resultant field: Q°:=Q(¢&)q

® Curvature field: x‘:=£(§)k+R(§)e
® Transverse shear strain field: Y i=5(&)e

® Displacement field: U:=N(¢&)d

where m, q, k, e, and d are the vectors of independent moment, transverse shear resultant,

curvature, transverse shear strain, and displacement parameters, respectively; M, Q, &, and

¥ are the matrices of shape functions for the moments, transverse shear resultants, curva-

tures, and transverse shear strain; in addition, S and R are the shape functions for the

transverse shear strain coupling into the moment and curvature fields, respectively.

Remarks:

The coupling of the transverse shear resultant field into the moment field, and the
coupling of the transverse shear strain field into the curvature field js the result of the
constraint equations (3.10). Moreover, this form of coupling is consistent with the
equilibrium equations, 2.7).

The shape functions are functions of the element natural coordinates ¢7 = { £E,m ] .

In order to obtain a more compact form for the approximated Euler-Lagrange equa-

tions, the following definitions are introduced:

and

b._ f -Trb . b._ [ -Twp
Hu.—LxDdi ,H.—LxDRdA :
H;,:=[RTD’Ras ; B = 9D ya4

A;,:=LQT-74A ; A,,,”k:=_£MTﬁdA : A,,‘;,:=LNITR4A s (3.13)

Ag=[ STkas Ag:=[ S"Raa ;
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b._ aT pb . b.— T pb . = AT
Gm.—LMBM,Gq.—LSBdA,G’.—LQB’dA
In the above, B? is the finite element curvature-displacement operator, defined by:
B’d:=LfU (3.14)

where B is associated with the node 7 and is given by:

0 0 —Nl,l
Bf:= |0 N, O (3.15)
O Nl,l Nl,2

and B’ is the finite element shear strain-displacement operator, defined by:
B'd:=L°‘U (3.16)

where B/ is associated with the node / and is given by:

o [N 0 N
B/:= |y, -, OJ (3.17)
Furthermore, let
H, HL | [ab Ak ]
H:= [Hff H;,+H‘J| ;A= [Aé’k A£+A5¢J ; (3.18)
and
=[m] . _ [k
- [qJ ;e K (3.19)

In the absence of “loading” terms from the constitutive equations (e.g., thermal loads),

the Euler-Lagrange equations are approximated by:

H -AT o . 0
-A 0 G 7]=[0] (3.20)
— OJllcu Lf] |

Elimination of the stress resultant coefficients, 7, and the strain coefficients, €, from

equation (3.19), for all elements yields:
Kd=f
where K is the finite element stiffness matrix, given by:
K:=G" (AH™1AT) 1 (3.21)

and f is the load vector, given by:
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f:=fANFdA +fC’NtdA (3.22)

If A is invertible, equation (3.21) can be replaced by:
K:=GTATHA G (3.23)

which requires only one matrix inversion, and consequently is more computationally effi-
cient. Moreover, since the strain and stress resultant interpolations are independent in

each element, the reduction may be performed at the element level.

To satisfy stability conditions for every admissible displacement the following require-
ments must be satisfied (Zienkiewicz, er al. [1986]):

ne+n +ng=n, (3.24a)
ne+n +ng+n,= ng (3.24b)
n, =n, (3.24¢)

Nm + g =ng (3.244)

where n,, n;, N, g, ng, and n,, are the number of transverse shear, curvature, moment,
transverse shear resultant, rotation, and transverse displacement independent parameters,
Tespectively. Note, however, that to obtain the form given by equation (3.23), A must be
a square matrix. This requirement is met if ne=ng and n; = n, . Consequently, equa-

tions (3.24a,b) are identically satisfied.

The stress resultant and strain coefficients may be written in terms of the nodal dis-
placement, d, as follows:

e=A"1[G" + Gy -AL(AL)TGld=F,d (3.25)
k=(A%)[GE -AL, F,ld=F,d (3.26)
q=X‘T[(HE—HA)Fz+<H,’:+H‘—HA)F1]d=F3d (3.27)
m= (A" H}, Fy+H,F i -AJF3ld=F,d (3.28)

where
A=Al —AL (AL 1AL 4 AL (3.29)

and

Hy = A(AL)HS (3.30)

Remark: The Hu-Washizu-based procedure presented above can be reduced to a
Hellinger-Reissner formulation by enforcing the stress-strain relation in a strong sense. It

must be noted, however, that this reduction should be performed at the constraint equation
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level. If it is performed at the functional level, the constraint equations are identically
satisfied and thus, the desired structure cannot be obtained. »

The method presented above involves the use of incompatible displacements to gen-
erate the incompatible strains. A set of properties that these displacements must possess is
presented in Weissman & Taylor [1990b], and is repeated in Box 3.3.

Box 3.3: Properties of the Incompatible Displacements

®  Frame invariant,
® Do not bias the element in any direction,
®  Simple functions (lowest order polynomial admissible),

®  Higher order than the assumed compatible displacements (e.g., for the

bilinear elements, at least quadratic),
e First derivatives vanish in a weak sense, and

®  Preserve the sign convention used in the strong form (plates, shells,

and beams).

For a discussion of these properties see Weissman & Taylor [1990b]. Attention
should be drawn to the last requirement as it is crucial in the selection of incompatible
functions for plate bending elements. This point will be demonstrated by numerical exam-

ples.

4. SHEAR LOCKING ANALYSIS

The major obstacle in the development of plate bending elements based upon theories
that account for shear deformations is the well known locking behavior at the thin plate
limit. In this section, it is proven that as a result of the couplings (transverse shear strain
with curvature, and transverse shear with moment resultants) introduced in Section 3,

shear locking is avoided at the element level.

Before proceeding with the proof, it is useful to give a precise definition of shear
locking. To this end, note that for thin plates the displacements (i.e., rotations and
transverse displacement) are O(h '3). In addition, note that the moment and transverse
shear resultants are determined by the equilibrium equations, and thus are O(k%). As the
finite element methods are derived from energy principles, it is natural to define the
numerical phenomenon of shear locking in terms of strain energy. In view of the above

observations, and the constitutive relations, equations (2.8), shear locking is defined as
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follows:

Shear locking occurs in numerical approximation of thin plates if and only if the ratio of

transverse shear strain energy to bending strain energy is O(h®), with a < 2. )

where o = 2 is the result obtained by the Reissner-Mindlin theory at the thin plate limit,
and a=-2 for the four-node fully integrated isoparametric element which is known to

exhibit severe locking when used to model thin plates.

First, it is assumed that the coupling introduced in the strain fields as well as that
introduced in the stress resultant fields are fully ranked. It is proven, without resorting to
the constraint count method, that shear locking at the thin plate limit is avoided. Second,
the constraint on the rank of the coupling matrices is relaxed. It is shown that the results
presented in the first part hold, provided the number of shear strain parameters not cou-
pled into the curvature field and the number of shear resultant parameters not coupled into
the moment field are both Jess than or equal to the number of constraints allowed per ele-
ment by the constraint count method (see e.g., Hughes [1987]). In addition, in Proposi-
tion 4.5 it is shown that as the thickness is reduced to zero, convergence to the thin plate
solution is obtained (also see remarks).

In order to simplify notations and without loss of generality, the plate thickness is

assumed as constant over each elements’ domain. In view of this assumption and the con-

straint equation (3.10b) the approximating transverse shear strain field is given by:

v:i=h2ye (4.1)
and consequently,
A, :=LhZQT'7dA (4.2a)
and
H* :=Lh4?TbD‘idA (4.2b)

Proposition 4.1: Let the assumed strain and stress resultant fields be given by Box
3.2 with the transverse shear strain given by equation (4.1). Furthermore, let M, S, Q, &,
R, and ¥ be of full rank. Then, as the thickness is reduced to zero, F; and F,, defined by
equations (3.24) and (3.25), respectively, are O(k%), while F3 and F,, defined by equa-
tions (3.26) and (3.27), respectively, are O(k?),

Proof: First note that HS, H2,, and H}, are O(h%): H’ s O(n%); G2, G/, and G
are independent of h; A,f’,k, A,f’,,, Aé’k, and A;’, are independent of h; and A;e is O(h 2). It
follows that, as the thickness is reduced to zero, A, defined by equation (3.28), is given by:
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ASAL ~AL(AL) AL,
Consequently, the desired result follows. =
Proposition 4.2: Let the assumed stress resultant and strain fields be as in Proposi-
tion 4.1. If F; and F, are O(kY, and F3 and F4 are O(k3), then, as the element thickness
is reduced to zero, the shear strain energy becomes negligible in comparison to the bending

strain energy. Furthermore, the limit ratio of transverse shear strain energy to curvature
strain energy is O(h2).

Proof: It follows from equation (3.31) that:

Ggd=Ale+Abk+Abe-G'd (4.42)

AL k=Gld-Ab e (4.4b)

Hie=AYm+ Alq-HL k (4.4c)
and

He, = AZq+ A + A _HITY, s e (4.4d)

Substituting equations (4.4) into equation (3.27), and neglecting the external work, yields

the following expression for the strain energy:

Ipw(m,q,e,k,d)= ;—[kTA,f’,{m+kTA;’[q+eTA,,me+ e’ (AT + AT)q] (4.5)

It follows from the assumed order of Fy, F5, F3, and F, that the last term in equation
(4.5), associated with the shear strain energy, is negligible in comparison to the first four
terms, which are associated with the bending strain energy. Consequently, as the thickness
is reduced to zero, the shear strain energy becomes negligible in comparison to the bending
strain energy. Moreover, the desired ratio of O(h 2) (at the thin plate limit) is obtained.

Proposition 4.3: Shear locking is avoided if and only if the shear strain energy is
negligible in comparison to the bending strain energy.

Proof: Assume the shear strain energy is negligible in comparison to the bending

strain energy; it follows from the definition of shear locking that it does not occur.

Now assume that shear locking does not occur. M and Q are defined by equilibrium
equations and are O(k%). Furthermore, Fq is O(h%) independent of the coupling. It fol-
lows that the elements of the vector dare O(h=3). Asa result, e and k are O(473), and m
and q are O(k%. It follows from equation (4.5) that the shear strain energy becomes
negligible in comparison to the bending strain energy as the thickness is reduced to Zero. s

So far it has been assumed that M, S, Q, bKa, R and Y are fully ranked. The ques-
tion arises, what if S and R are not fully ranked? To answer this question, note that the
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constraint is on the transverse shear strain. Consequently, only the rank deficiency of R is
of importance, as long as the rank deficiency of § is less or equal to the rank deficiency of
R. This is shown below.

Proposition 4.4: A s O(k% independent of the coupling introduced between the

assumed shear strain and assumed curvature.
Proof: In the case when R is rank deficient, the assumed shear strain is given by:
v= h2-71 e+ yr8, (4.6)
where e; are the shear strain coefficients coupled into the curvature, and e, are the shear

strain coefficients not coupled into the curvature, Consequently, the following structure is
induced on L

As = thfl
TolAL
The desired result follows. =

Remark: The above proof holds as long as the rank deficiency of § is less than or
equal to the rank deficiency of R. This may be seen directly from the structure of A. =

Let the shear coefficients q be given by:

q =<q,q> (4.7)
and let the displacement vector d be given by:
n . 3 -
d= > h'—q, (4.8)
i=0

where d; are independent of 4.

and the shear strain, Y, is O(h 1),

Proof: First note that by Proposition 4.4 A js O(h 0) Secondly, note that it follows
from Proposition 4.4 that F; and F; are O(h G,

It follows from the structure of equation (3.26) that 61 = l*:3ld and 62 = f32 d, where
Fs, is O(k3), and Fa is O(rY). Asdis O(h~3), and Q is determined by equilibrum and
thus is O(h%), there is a contradiction. It follows that the contradiction is resolved if and
only if IF32 is orthogonal to &0 and &1. Consequently, q-2 is O(n%).
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The assumption on the number of constraints implies that shear locking does not
occur. Consequently, by Proposition 4.3, the shear strain energy becomes negligible in
comparison to the bending strain energy at the thin plate limit. Therefore, by equation
(4.5) e; must be O(k?) with o > —3.

Let e;= fud and e; = l?nd. Now, in order for f32 to be orthogonal to dy and d;,
fu must be orthogonal to both &0 and &1. Consequently, taking notice of equation (4.6)
and the fact that F is O(#"°) results in the assumed shear strain O(h~1).

Remarks:

® It follows from Proposition 4.5 that the solution obtained by this formulation con-
verges to the thin plate solution as the thickness is reduced to zero. It must be noted,
however, that this convergence is obtained only when the solution of the plate theory

used converges to the thin plate solution.

®  If the couplings (introduced in Section 3) are neglected, the analysis predicts locking
at the element level and consequently, analysis at the global level is required to deter-
mine whether shear locking occurs.

5. ELEMENT CONSTRUCTION

Four-node quadrilateral plate bending elements are used to illustrate the formulation
presented in Section 3. The displacement, stress, and strain fields are given first. These
are followed by the incompatible functions used.

5.1 Displacement Field

The standard isoparametric displacement field is given by:

where N, is the shape function associated with node /, and d; is the nodal displacement

vector. The shape functions for four-node quadrilateral elements are given by:
1
Ni(Em)= (14 £8)(1+mym) (5.2)

where § and m are the element natural coordinates, on the interval [-1,1], and ¢, and v,

are the values of the natural coordinates at the node 1.

It is commonly accepted that passing the constant strain patch test is an indication of
good elements. Thus, plate bending elements are required to be able to represent exactly
constant curvature and constant shear. The former is characterized by a state of biqua-

dratic transverse displacements and bilinear rotation fields (no shear deformations), while
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the latter is characterized by a state of bicubic transverse displacements and biquadratic
rotation fields. Consequently, bilinear plate bending elements are bound to fail the con-

stant strain patch test.

Remark: Parallelogram shaped elements do pass the constant strain patch test. This

pathology is a manifestation of the mean-value theorem for integrals. =

Exact representation of constant curvature by arbitrary quadrilateral elements can be
obtained if the approximation of the displacement field is slightly modified. To this end ,
note that a bilinear rotation field is the exact one for this case. In addition, note that the
transverse shear is identically zero everywhere. Consequently, the Kirchoff assumption
holds, and the rotation field can be used to enhance the displacement field (a similar
approach was taken by Morris [1986], and implicitly by Bathe & Dvorkin [1985]).

The rotation field is assumed as a standard isoparametric field. Consequently, the
assumed rotation field is given by:
8,=N, 6 (5-3)
where 6, is the rotation 0, at the node /.

It follows from the transverse shear strain displacement relation, equation (2.4a), that
W o= —€qp8g. Thus, given the rotation field and the transverse displacement at a given

point a, the transverse displacement at any point b can be computed as follows:
b
Wy =wa+ [ 68,(8,m)ds (5.4)
a

where w, and w, are the transverse displacements at points a and b, respectively; and 6,

is the rotation about the normal to the line ab connecting points a and 4. 6, is given by:

0,(E,m) =ng(E,m) 6,(6,m) (5.5)

where n; and n; are the components of the unit normal vector to the line ab.

Using the relations given by equations (5.4) and (5.5), the transverse displacements at
the element mid-edge points can be computed as follows:

i+4

k
1
Witq = 2—(w,-+wk+f9,.1ds—f O ds ) (5.6)
i i+4

where i=1,2,3,4; and k = (i+4) modulo 4. The “node” numbering and the normals to
the paths used are presented in Figure 5.1. The transverse displacement at the element

center (§ = m = 0) can be computed as follows:

ol L

Wg =

8
i=

9
(wi + [0, ds ) (5.7)
5 i
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The transverse displacement field can now be interpolated by
g .
W(§,"])=2N1(§,TI)W1 (58)
I1=1

where N, are the standard quadratic nine-node Lagrangian element shape functions (see
Zienkiewicz & Taylor [1989]).

Remarks:

®  The consistent loading and consistent mass matrix must be modified to account for
the enhanced interpolation used for the transverse displacement.

®  When the simply supported boundary condition is specified as w = M, =M, =0 (the
so called SS1 boundary condition), as a result of the enhanced interpolation used on
the transverse displacement, the w = 0 condition is satisfied only at the nodes. w

converges pointwise to zero, however, under mesh refinement.

® It must be emphasized that without the enhanced interpolation used for the transverse
displacement, the proposed elements will not lock in shear (Weissman & Taylor
[1990a]). The enhanced transverse displacement is introduced only in order to be
able to represent a state of constant curvature/moment for elements distorted from a

parallelogram shape.

®  The general constant strain patch test requirement for plate bending elements necessi-
tates the ability to exactly represent a state of constant shear strain/stress as well as
that of constant curvature/moment. The scheme outlined above will not yield ele-
ments that can model a state of constant shear if the element is perturbed from a
parallelogram shape. This remark, however, is true for all known four-node plate
bending elements (e.g., T1 and Bathe & Dvorkin [1985] elements).

® It is common practice in the finite element literature to replace the constant shear
strain patch test, as stated above, by a test in which the nodal rotations are con-
strained to be zero (i.e., shear deformation only). Indeed, the transverse displace-
ment field for this case is bilinear. Consequently, all four-node elements can represent
this case exactly. The plate bending elements presented in this work contain coupling
between the shear strain and the curvature. Consequently, the curvature is not zero

unless body couples are introduced. The shear strain, however, is exact. »

5.2 Moment Resultant Field

The assumed moment resultant field is taken as a complete linear field’ in the ele-

ment natural coordinates as follows:

" The stress resultant and strain fields are assumed as complete linear fields since this is the best assumption that
may be used in conjunction with a bilinear displacement field.
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mj

Mg 1gnoooooo]m;
M'=M,m 0001¢q00004 -1 (5.9)

Mg, 0000001§nJm';

()

Since complete polynomials are used to express the membrane forces, equation (5.9)
could be used for M directly. However, the reduction to satisfy the constraints introduced
in Chapter 3 would require selection of different parameters in each element (i.e., there
would be a dependence on element orientation of ¢ and n with respect to x; and x,). This
dependence may be avoided by using the transformation procedure described below.

The following definitions are introduced:

xs = 1—§1-"11 ; Xt = 1—"114‘711 ; xh = 1—('ﬁﬂ)zxu
4 4 4

1 1 1
ys = Z’élle = Z'"]lxﬂ 3 Yh = 4—(§'ﬂ )l-xZI

Following Zienkiewicz & Taylor [1989], the Jacobian of the coordinate transformation
from the (&,m ) space to the (x1,x3) space is given by:
J=J0+JI§+12T| (510)

where,
Jo=xs 'yt —xt-ys Ji=xs-yh —xh -ys Ja=xh -yt —xt - yh (5.11)

The moment resultants in the physical space are obtained by using the following
transformation:

1 .

where both i and j take the values X1 Or x3, and both I and J take the values € or m, and

dx
Fre= -é—gl—l5=.,l=o, etc. The transformation is based on values of F at the center of the

element in order to maintain the constant terms decoupled from the nonconstant terms
(Pian & Sumihara [1984]).

After redefining the independent cocfficients, the assumed moment resultant field is
given by:
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Mg
0 xs2q xt2 xs2¢ xt?n 2xsxt§21.vxtn] my

Mnl 10
M={Mnt=1010 ys? y% ys% y®n 2ysyrk 2ysyr
001 xsysm xtytrE xsysE xtytm AE A

F (5.13)

mg

where A = xs -yt +xt°ys.
With this construction, mg, m, m g, and mg may always be eliminated in satisfying
equation (3.10a).

5.3 Transverse Shear Resultant Field

The transverse shear resultant field is constructed in a manner similar to that
described above for the moment resultant field. Accordingly, let the assumed linear resul-

tant field in the element natural space be given by:

m
7
._[ef)_[temoo0o]fe
e ssee]f oo
qEJ

The shear resultant field in the physical space is obtained by means of the following

transformation:

0i= S-Fu0; (5.15)
(]

where i takes the values x; or x,, and 7 takes the values ¢ or m. After redefining the

independent shear coefficients, the assumed shear resultant field in the physical space is

given by:

r 3\

q91
_fe1] 110 xsm o xE xsE ) |92

Q‘{Qz BRI EIR TR TN (5.18)

de
)

\

With the above construction, the parameter set {g s» ¢} may always be selected as the set to
be eliminated in satisfying equation (3.10a).



Shmuel L. Weissman & Robert L. Taylor 22

5.4 Curvature Field

The assumed curvature field is formulated in the element natural coordinates, and

then transformed into the physical domain. Two types of transformations can be used:
® The same transformation as used for the moment resultant field.
@ The inverse to the transformation used for the moment resultant field.

The first approach is motivated by the simplicity obtained when the same functions are
used for both the moment and curvature fields. The second approach is motivated by the
invariance of the complementary energy (05 €;) under coordinate transformation.

Accordingly, the transformation of a tensor of order two is given by’
M;; =J F; M) (5.17)
A similar approach was taken by Simo & Rifaj [1989].

Following the path established in the assumed stress fields, the curvature field is
assumed as a complete linear field in the element natural coordinates, and then

transformed into the physical space. Using the transformation given by equation (5.12)

yields:
(Y 2 : 2 2 1 [kl
K11 100 xs*m %t xs?t xt“n  2xsxt & 2xsxtm ks
K= !K:zzl: |0 10 ysn  y%  ys%  w®n 2ysy € 2ysyinm , ! “t (5.18a)
[k, | lOOIJcsys*q ayt§ xsysE xtytm AE Anm [
C7) 1 I lks»J
and using the inverse transformation, equation (5.17), yields:
(
k
l-1 00 yt2~q xt ¢ yr2t xtz'q —2ytxt & —2ytxt~q-| lk;
k=1010 ysz'q xs 2t ys 2t xs2q —2ysxs & —2ysxsm , ! . (3.18b)
lOO 1 —ytysm —xtxsté —ytysE —xtxsn At Am k‘

9
)
With the above construction, the parameter set {k¢, k;, kg, ko} may always be selected as
the set to be eliminated in satisfying equation (3.10b).

5.5 Transverse Shear Strain Field

The transverse shear strain field is constructed in a manner similar to that described

above for the curvature field. The (inverse) transformation is given by:

3 In direct notation, equation (6.23) would read: M =J F-' M F-r
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Yi =J Fi (5.19)

The assumed transverse shear strain in the physical space, using equation (5.15), is given
by:

€1
10 xsm xté xst &t €2
y= {1l noEE st an] o2 (5.20a)
Y2 |01 ysm y&ys& ym|].
€q
L )

and when using the inverse transformation, equation (5.19), the transverse shear strain

field is given by:

()
1
[10 yym —xte ye —un]le
3= llo 1 —ysm xs& —yst ,m]JH:} (5.20b)
€6
L)

With the above construction, the parameter set {e s, e} may always be selected as the set to

be eliminated in satisfying equation (3.10b).

5.6 Incompatible Displacements

Let the assumed incompatible displacements be given by:

8{=Ni N3+ Nb ), (5.21a)

85 =Ni A5+ Nj )¢ (5.21b)
and

wi= NN + N, (5.21c¢)
where Ay, Ay, ...., and Ag are the independent incompatible displacement parameters, and

N are the incompatible shape functions.

Remark: Different incompatible shape functions are used for the assumed incompati-
ble transverse displacement since a higher order interpolation is used to model the
transverse displacement (Section 5.1). =

To illustrate the motivation for the last requirement of the incompatible shape func-
tions two options are used for Ni and Nb. The first set of functions (Wu, er al. [1987]) is
given by:

P 203 2J,
Ni=§&——¢t+ —=nq (5.22a)
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Ny=m?+ —¢ -2 (5.22b)

The second set of functions (Taylor, er al. [1986]) is given by:

. J J

Ni =<1—J—;—n)(1—§2)+ J—gg(l—nz) (5.22a)
. J J

N'z=(1—J—;—§)(1—n2)+ ;Z-n(l—gz) (5.22b)

The second set satisfies all the requirements presented in Box 3.2, while the first set does
not satisfy the last one. In addition, Note that the second set of incompatible modes is
zero (compatible) at the nodal points while the first set is not.

The following functions are used for N and N the (Wu, er al. [1987]):

Ny=gio 2, 4 (5.23a)
3=8- 57 579 B

Ny=nis 21,4 (5.23b)
ST s s, '

Remark: A study of the constraint equations (3.10) in component form shows that

the last requirement in Box 3.2 does not apply to N and Nj.

5.7 Proposed Elements

Six four-node quadrilateral plate bending elements are proposed. Two are formulated
via the Hellinger-Reissner variational principle, and four via the Hu-Washizu variational
principle. The class of elements developed here is labeled Coupled Resultants Bending
(CRB).

The proposed elements are summarized in Table 6.1.

Table 6.1c Proposed Plate Bending Elements
Element Formulation Incompatible shape | Strain transformation
function equations equations

CRB1 Hellinger-Reissner (5.21) -

CRB2 Hellinger-Reissner (5.22) -

CRB3 Hu-Washizu (5.21) (5.12) and (5.15)
CRB4 Hu-Washizu (5.22) (5.12) and (5.15)
CRB5 Hu-Washizu (5.21) (5.17) and (5.19)
CRB6 Hu-Washizu (5.22) (5.17) and (5.19)




Shmuel L. Weissman & Robert L. Taylor 25

6. NUMERICAL EXAMPLES
The performance of the plate bending (CRB) elements proposed in Chapter 5 are

evaluated with several discriminating problems selected from the literature. Convergence
of the results obtained by the four-node elements presented in Chapter 5 are compared
with the S1 ( Hughes, et al. [1978]) and T1 (Hughes & Tezduyar [1981]).

Three types of boundary conditions are used:
SS1 - Simply Supported, w = M, = M, = 0.
SS2 - Simply Supported, w = M, =86, =0.
CL - Clamped, w = 0, = 0, = 0.

In all examples identical results are obtained Jor elements formulated via the Hellinger-
Reissner variational principle and the corresponding (i.e., same incompatible shape JSunctions)
elements formulated via the Hu-Washizu variational principle. Identical results are also
obtained for the two approaches taken to transform the assumed strain field from the element’s

natural space into the physical space.

6.1 Patch Test

A rectangular domain is modeled by a single element as shown in Figure 6.1a and
the skewed mesh as shown in Figure 6.1b. The mesh is subjected to constant states of
bending, transverse shear and in-plane twist. All elements presented pass all tests with the
exception of the constant transverse shear, when the skewed mesh is used. The failure of
these elements to pass the constant shear patch test is discussed in detail in Section 5.2.
Constant shear strain is modeled exactly, however, when all rotational degrees-of-freedom

are fixed (this is the common test for constant shear in the finjte element literature).

6.2 Beam Problems

These problems were suggested by MacNeal & Harder [1985] as standard problems to
evaluate the performance of different elements. The meshes used contain only one row of
six elements for both the straight beams, shown in Figure 6.2, and the curved beam, shown
in Figure 6.3. Geometrical and material properties used are summarized in Table 6.1.
Results are normalized with respect to solutions obtained by beam theory which are sum-
marized in Table 6.2.
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Table 6.1 Material and Geometrical Properties for Beam Problems
E v thickness length/ width/ arc
inner radius | outer radius
straight beam | 1.0E+7 | 0.3 0.1 6.0 0.2 -
curved beam | 1.0E+7 | 0.25 0.1 4.12 4.32 90°

Table 6.2 Theoretical Solutions for Beam Problems

Tip load direction | Displacement in the direction of the load
Straight beam Curved beam

Out-of-plane shear 0.4321 0.5022

Twist 0.03208

6.2.1 Out-of-plane shear

26

Both the straight beams, Figure 6.2, and curved beam, Figure 6.3, meshes are used.

The results, normalized by beam theory solution (see Table 6.2) are given in Table 6.3.

Table 6.3 Out-of-plane shear
mesh CRB1,3,5 | CRB2,4,6 S1 T1
straight (a) 0.9825 0.9877 0.9801 | 0.9801
straight (b) 0.9706 0.9684 0.9963 | 0.9634
straight (c) 0.9843 0.9889 0.9912 | 0.9780
curved 0.9308 0.9248 29.535 | 0.9290

Very small sensitivity to the incompatible shape functions used is observed, less than

0.5% for all meshes. The CRB and T1 elements yield comparable results. The S1 element

exhibits unstable behavior unstable behavior in the curved beam problem.

6.2.2 Twist of a beam

The straight beam meshes shown in Figure 6.2 are used. The results are normalized

with the theoretical beam solution given in Table 6.2, and are summarized in Table 6.4.

Table 6.4 Twist of a straight beam
mesh CRB1,3,5 | CRB2,4,6 S1 T1
straight (a) 0.9429 0.9373 377.36 | 0.9445
straight (b) 0.9882 0.9622 108.83 | 0.8844
straight (c) 0.9478 0.9412 138.16 | 0.8490

The S1 element shows instability in this problem. The proposed elements exhibit very

small sensitivity to the incompatible shape functions used (maximum of 2.6% for mesh b).
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6.3 Circular Plates

A circular plate is modeled using 3, 12, 48 and 192 elements. Due to symmetry, only
one quadrant is discretized. A typical mesh used is shown in Figure 6.4. SS1 and CL
boundary conditions are used. The material properties and geometrical data used are sum-

marized in Table 6.5.

Table 6.5 Material and Geometrical Data for Circular plates
E v h R
Thin Plate 10920 0.3 0.1 5.0
Thick Plate 1.365 0.3 2.0 5.0
E k3

1.0.

With these properties the plate stiffness D = ——-2 =
BEERE P 12(1-+2)

The plates are loaded by a uniform distributed transverse load. In addition, the case
of a thick plate loaded by a unit point load at the center is considered in order to exhibit

the stability of the proposed elements.

The analytical solution for the center transverse displacement and external work are
given in Weissman & Taylor [1990a]. The energy expressions reported are for the total

work performed by the external loads, and consequently are twice the actual strain energy.

6.3.1 Simply supported thin plate: Uniform transverse load
The analytical solutions are: w(0) = 39.83156 and Egs = 359.08748. The results

obtained, normalized with respect to these solutions, are shown in Figures 6.5 and 6.6 for

the convergence of the center displacement and energy norm, respectively.

Monotonic convergence in both the energy norm and center transverse displacement
is obtained for all elements. The proposed elements show some sensitivity to the type of
incompatible shape functions used for coarse meshes, from 10.5% difference in the energy

norm for the three-element mesh to only 1.5% difference for the 48-element mesh.

6.3.2 Clamped thin plate: Uniform transverse load
The analytical solutions are: w(0) = 9.78348 and Ec; = 64.09118. The results

obtained, normalized with respect to these solutions, are shown in Figures 6.7 and 6.8 for

the convergence of the center displacement and energy norm, respectively.

Monotonic convergence in both the energy norm and center transverse displacement
is obtained for all elements. The proposed elements show great sensitivity to the type of
incompatible shape functions used. 64% difference in the energy norm is observed for the

three-element mesh. However, for the 192-element mesh, only 2.4% difference is observed
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in the energy norm.

6.3.3 Clamped plates: Unit concentrated load at the center

The thick plate case is used to demonstrate the stability of the proposed elements.
2

PR

16wD
elements, is shown in Figure 6.9. The analytical solution can be found in Lukasiewicz
[1979]. The S1 shows the well known instability (Hughes [1987]); the T1 and all CRB ele-

ments, on the other hand, show excellent results.

The transverse displacement along the radius, normalized with , for a mesh of 48

6.4 Square Plates

A square plate is modeled using meshes of uniform square elements. Due to sym-
metry, only one quadrant is discretized. A typical mesh is shown in Figure 6.10. The
material properties are: E = 10.92E +6 and v = 0.3, and the geometrical data is: & = 0.01
and L = 10. Using these properties, the plate bending stiffness D = 1.0.

Only the case of uniform transverse loading is examined. The boundary conditions
examined are: SS1, SS2, and CL.

The “‘exact” energy reported is computed from:

E= { g (x1,x2) w(xy,x5)dQ (4.1)

using a Fourier series solution and, thus, is twice the actual strain energy.

6.4.1 Thin simply supported (SS1) plate

The exact solution is w = 40.623 (Timoshenko & Woinowsky-Krieger [1959]) and
E =425.6276. Results, normalized with the exact solution, are shown in Figures 6.11
(center displacement) and 6.12 (energy).

With the exception of the one-element mesh, only mild sensitivity to the incompatible
shape function used is observed. A difference of only 2.4% and 3.4% is observed in the

center transverse displacement and energy norm, respectively, for the four-element mesh.

6.4.2 Thin simply supported (SS2) plate
The exact solution is w = 40.623 and E = 425.6276 (thick plate theory, series solu-

tion). Results, normalized with the exact solution, are shown in Figures 6.13 (center dis-

placement) and 6.13 (energy).
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As observed for the SS1 boundary condition, with the exception of the one-element

mesh, only mild sensitivity to the incompatible shape function used is observed.

6.4.3 Thin clamped plate
The exact thin plate solution is w = 12.6 (Timoshenko & Woinowsky-Krieger [1959]).

No analytical solution is available for the energy. Consequently, a converged finite ele-
ment solution obtained using 4096 elements is used, E = 97.3. Results, normalized with

these values, are shown in Figures 6.15 (center displacement) and 6.16 (energy).

The converged finite element solution of the transverse displacement is about 0.4%
larger than the solution obtained by the thin plate theory. This result is expected since all

the elements under discussion are based on a theory that accounts for shear deformation.

The S1 and T1 elements yield identical results. Both elements obtain monotonic con-
vergence in both criteria. The CRB elements, on the other hand, do not converge mono-
tonically. A small sensitivity to the incompatible shape functions is observed. Only about
1.5% difference is observed in both the energy norm and center transverse displacement for

the 16-element mesh.

All elements exhibit locking for the one-element mesh. This result is expected since
all rotational degrees-of-freedom are constrained, and consequently the rotations are zero
pointwise in the element’s domain. It follows from the shear strain transverse displacement
relation (see Section 2) that the derivatives of the transverse displacement go to zero point-
wise as the thickness is reduced to zero; consequently, the transverse displacement tends to

zero as the plate thickness is reduced to zero.

6.4.4 Mesh distortion

To study the sensitivity to mesh distortion, a coarse mesh modeling a clamped square
plate is used. Only four elements are used to model one quadrant of the plate. The plate
is loaded by a uniform unit transverse load. Two types of distortion are introduced. First,
the center node of the mesh is moved along the main diagonal of the plate as shown in
Figure 6.17. Results, normalized with respect to the thin plate solution w = 12.6
(Timoshenko & Woinowsky-Krieger [1959]), are shown in Figure 6.18.

Next the center node is moved parallel to the edge as shown in Figure 6.19. Results,

normalized with respect to the thin plate solution w = 12.6 are shown in Figure 6.20.

The difficulty of this mesh is that there are only eight degrees-of-freedom. The
“optimal”’ number of constraints per element, according to the constraint count method, is

two. Consequently, the ratio of degrees-of-freedom to constraints, for this mesh, is one.
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Thus, shear locking becomes an important issue as the symmetry of the mesh is lost.

The proposed elements’ performance deteriorates to about 66% of the solution. The

T1 and S1 elements, on the other hand, exhibit severe locking.

6.4.5 Shear and moment resultants

These examples were proposed by Hinton & Huang [1986] as a set of tests designed
to test the stress resultants recovered by the finite element approximation. A square plate,
with SS1/SS2 boundary conditions and of side length L = 10, is modeled by a graded mesh
as shown in Figure 6.21. Due to symmetry only one quadrant is discretized. The stress
distributions inside the elements are reported. Results are compared to the solutions given
by Kant & Hinton [1983].

The distribution of Q; along the line x3=L/2, and of Q, along the line x5 = 0, for
all CRB elements, are shown in Figures 6.22 and 6.23, respectively. The My, distribution
along the line x, = 0 is shown in Figure 6.24 for the CRB1 ;3,5 elements and in Figure 6.25
for the CRB2,4,6 elements.

The moment distribution inside the CRB1,3,5 elements has an opposing gradient to
the exact moment gradient, which results from the fact that the incompatible shape func-
tions do not satisfy the last requirement set in Box 3.3. On the other hand, the gradient
inside the CRB2,4,6 elements has the correct orientation (incompatible shape functions
satisfy all requirements set in Box 3.3). The transverse shear resultants are almost identical

for all elements.

6.5 Rhombic Plates
In this standard test, a highly skewed rhombic plate of side length L = 100.0 and an

acute angle @= 30° is modeled by a uniform mesh. A typical mesh is shown in Figure
6.26. The material properties used are: E = 10E+6, v=03and h=1. A comparison
solution for the center displacement of w = 0.04455 was obtained by Morley [1963]. No
solution is available, however, for the energy. Consequently, a converged finite element
solution of E = 78.9 is used as a reference solution. Results normalized with the reference
solution are shown in Figures 6.27 (center displacement) and 6.28 (energy). The distribu-
tions of Mq; and Mo, along the short diagonal are shown in Figures 6.29 (CRB1,3,5 ele-
ments) and 6.30 (CRB2,4,6 elements).

The converged center displacement is about 4% higher than the solution predicted by
the thin plate theory (Morley [1963]). These results are in agreement with the observation
made by Babuska and Scopolla [1989]. Results obtained by the proposed elements are
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sensitive to the incompatible shape functions used for coarse meshes; 78% and 22% differ-

ences in the energy norm are observed for the four- and 16-element meshes, respectively.

As observed for the square plate, the moment slope orientation in the CRB1,3,5 ele-
ments is opposite to the slope orientation of the exact solution. The slope orientation in
the CRB2,4,6 elements, on the other hand, is of the same orientation as the slope of the
exact solution. It must be noted that the corner element exhibits a pathological behavior.
Excellent behavior, however, is observed in all other elements. Moreover, note that good

moments are recovered at the center of the corner element.

7. CONCLUDING REMARKS

The main objective of this paper is to present a formulation for plate bending finite
elements, based on the Reissner-Mindlin theory, which leads to elements that avoid shear
locking (at the thin plate limit) at the element level. The proposed formulation is derived
via the Hu-Washizu functional. The Hellinger-Reissner formulation is also considered as a

special case of the Hu-Washizu functional,

It is proven that the proposed formulation leads to elements free of locking. The pro-
posed elements exhibit excellent results when subjected to an extensive numerical evalua-

tion. In addition, good stress resultants are recovered at the element level.

Identical results are obtained for elements formulated via the Hellinger-Reissner and
Hu-Washizu functionals, provided the same incompatible functions are used. Also, identi-
cal results are obtained for both approaches taken to transform the assumed strain field
from the element’s natural space into the physical space. However, the results are sensitive

to the incompatible shape functions for coarse meshes.

REFERENCES

Babuska, I. & T. Scapolla, [1989], “Benchmark Computation and Performance Evaluation
for a Rhombic Plate Bending Problem,” International Journal for Computer-Aided
Engineering and Software, Vol. 27, pp. 155-179.

Bathe, K.J. & E.N. Dvorkin, [1985], ““A Four Node Plate Bending Element Based on
Mindlin/Reissner Plate Theory and Mixed Interpolation,” International Journal for
Numerical Methods in Engineering, Vol. 18, pp. 1077-1089.



Shmuel L. Weissman & Robert L. Taylor 32

Fraeijs de Veubeke, B., [1965], “Displacement and Equilibrium Models in the Finite Ele-
ment Method,” in Stress Analysis, editors O.C. Zienkiewicz & G.S. Holister. Lon-
don: John Wiley.

Hinton, E. & H.C. Huang, [1986], “Shear Forces and Twisting Moments in Plates Using
Mindlin Elements,”” Engineering Computations, Vol. 3, pp. 129-142.

Hughes, T.J.R, M. Cohen & M. Haroun, [1978], “Reduced and Selective Integration
Techniques in the Finite Element Analysis of Plates,” Nuclear Engineering and
Design, Vol. 46, pp. 203-222.

Hughes, T.J.R., [1987], The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey.

Hughes, T.J.R. & T.E. Tezduyar, [1981], “Finite Elements Based Upon Mindlin Plate
Theory with Particular Reference to the Four Node Bilinear Isoparametric Element,”
Journal of Applied Mechanics, Vol. 46, pPp. 587-596.

Kant, T. & E. Hinton, [1983], ‘“Mindlin Plate Analysis by Segmentation Method,”” Journal
of Engineering Mechanics Division, ASCE, Vol. 109, pp. 537-556.

Lukasiewicz, S., [1979], ‘“‘Local Loads in Plates and Shells,” Sijthoff & Noordhoff, the
Netherlands.

MacNeal, R.H. & R.L. Harder, [1985], “A Proposed Standard Set of Problems to Test
Finite Element Accuracy,* Finite Elements in Analysis and Design, Vol. 1, pp. 3-20.

Mindlin, R.D., [1951], “Influence of Rotatory Inertia and Shear in Flexural Motions of
Isotropic Elastic Plates,” Journal of Applied Mechanics, Vol. 18, pp. 31-38.

Morley, L.S.D., [1963], Skew Plates and Structures, International Serjes of Monographs in
Aeronautics and Astronautics, New York.

Morris, G.R., [1986], “Kinematic Formulation of Finite Elements for Plate Bending,”
Ph.D. dissertation, University of California at Berkeley.

Pian, T.H.H. & K. Sumihara, [1984], ‘“Rational Approach for Assumed Stress Finite Ele-
ments,”” International Journal for Numerical Methods in Engineering, Vol. 20, pp.
1685-1695.

Reissner, E., [1945], “The Effect of Transverse Shear Deformation on the Bending of
Elastic Plates,” Journal of Applied Mechanics, Vol. 12, pp. 69-76.

Simo, J.C. & M.S. Rifai, [1989], “A Class of Mixed Assumed Strain Methods and the
Method of Incompatible Modes,” to appear.



Shmuel L. Weissman & Robert L. Taylor 33

Taylor R.L., O.C. Zienkiewicz, J.C. Simo & A.H.C. Chan, [1986], “The Patch Test for

Mixed Formulations,” International Journal Jor Numerical Methods in Engineering,
Vol. 22, pp. 32-62.

Timoshenko, S. & S. Woinowsky-Krieger, [1959], Theory of Plates and Shells, McGraw-
Hill, New York.

Washizu, K. Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford,
1948.

Weissman, S.L. & R.L. Taylor, [1990a], “Resultant Fields for Mixed Plate Bending Ele-

ments,” Computer Methods in Applied Mechanics and Engineering, Vol. 79, pp. 321-
355.

Weissman, S.L. & R.L. Taylor, [1990b], ““Treatment of Internal Constraints by Mixed Fin-
ite Element Methods: Unification of Concepts,” Report No. UCB/SEMM-90/05.

Wu, C.-C., M.-G. Huang & T.H.H. Pian, [1987], “Consistency Condition and Conver-
gence Criteria of Incompatible Elements: General Formulation of Incompatible Func-
tions and its Application,” Computers & Structures, Vol. 27, No. 5, pp. 639-644.

Zienkiewicz, O.C., S. Qu, R.L. Taylor & S. Nakazawa, [1986], ““The Patch Test for
Mixed Formulations,” International Journal for Numerical Methods in Engineering,
Vol. 23, pp. 1873-1883.

Zienkiewicz, O.C. & R.L. Taylor, [1989], The Finite Element Method, 4th edition,
MacGraw-Hill Book Co., London.



Shmuel L. Weissman & Robert L. Taylor

X3

X2

@2
> b

Figure 2.1: Sign convention for rotations, right-hand-rule rotations.
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Figure 2.2: Plate kinematics.
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Figure 2.3: Sign convention for stress resultants on positive faces.
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Figure 5.1: Location of the additional five “nodes” (numbers 5-9) and the
normals to the paths used in the integration scheme to provide
enhanced interpolation for the transverse displacement.
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Figure 6.1: Patch test - (a) One-element mesh, (b) Skewed mesh.
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Figure 6.2: Straight cantilever beam. (a) Regular shape elements; (b)
Trapezoid shape elements; (c) Parallelogram shape elements.

Figure 6.3: Curved beam mesh.
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Figure 6.4: Circular plate. Due to symmetry only one quadrant is discretized.
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Figure 6.5: Simply supported (SS1) thin circular plate; uniform load;

Normalized energy norm

convergence of center transverse displacement.
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Figure 6.6: Simply supported (SS1) thin circular plate; uniform load;

convergence in the energy norm.
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Figure 6.7: Clamped thin circular plate; uniform load; convergence of the
center transverse displacement.
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Figure 6.8: Clamped thin circular plate; uniform load; convergence in the energy norm.



Shmuel L. Weissman & Robert L. Taylor

=== .==  CRB1,3,5

<~
=

(-]

E

(-3}

&

S

g 3 = s.em  CRB24,6
:E‘ = . S1

g 2 EasRE®! T1

= EXACT
=

= -

<

| =

<=

=

N 0-

=

=

| =

c 1
Z, 0.00 0.25 0.50 0.75 1.00 r/R

Figure 6.9: Clamped thick plate; concentrated unit load at the center,;
normalized transverse displacement alon g the radius.

ol

L2=50
- -
Symmetry
o J
2 E |2
b E [
{Q Q
I l Jl y %
: —>
CL/SS1/8S82

Figure 6.10: Square plate. Due to Symmetry, only one quadrant is discretized.
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Figure 6.11: Simply supported (SS1) thin square plate; uniform load;

convergence of the center transverse displacement.
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Figure 6.13: Simply supported (SS2) thin square plate; uniform load;

convergence of the center transverse displacement.
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Figure 6.14: Simply supported (SS2) thin square plate; uniform load;
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Figure 6.15: Clamped thin square plate; uniform load; convergence in the
center transverse displacement.
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Figure 6.16: Clamped thin square plate; uniform load; convergence in the energy norm.
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Figure 6.20: Sensitivity to mesh distortion; asymmetric distortion;

normalized center transverse displacement.
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Figure 6.26: Rhombic plate mesh.
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Figure 6.27: Rhombic plate; h = 1.0; convergence of the center displacement.
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Figure 6.28: Rhombic plate; h = 1.0; convergence in the energy norm.
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Figure 6.29: Rhombic plate; h = 1.0; variation of Mjij and M»p»>

along the line X = 0; CRB1,3,5 elements.
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