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Abstract

Objective—Focal cortical dysplasias (FCDs) often cause pharmacoresistant epilepsy, and 

surgical resection can lead to seizure-freedom. Magnetic resonance imaging (MRI) and positron 

emission tomography (PET) play complementary roles in FCD identification / localization; 

nevertheless, many FCDs are small or subtle, and difficult to find on routine radiological 

inspection. We aimed to automatically detect subtle or visually-unidentifiable FCDs by building a 

classifier based on an optimized cortical surface sampling of combined MRI and PET features.
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Methods—Cortical surfaces of 28 patients with histopathologically-proven FCDs were extracted. 

Morphology and intensity-based features characterizing FCD lesions were calculated vertex-wise 

on each cortical surface, and fed to a 2-step (Support Vector Machine and patch-based) classifier. 

Classifier performance was assessed compared to manual lesion labels.

Results—Our classifier using combined feature selections from MRI and PET outperformed 

both quantitative MRI and multimodal visual analysis in FCD detection (93% vs 82% vs 68%). No 

false positives were identified in the controls, whereas 3.4% of the vertices outside FCD lesions 

were also classified to be lesional (“extralesional clusters”). Patients with type I or IIa FCDs 

displayed a higher prevalence of extralesional clusters at an intermediate distance to the FCD 

lesions compared to type IIb FCDs (p<0.05). The former had a correspondingly lower chance of 

positive surgical outcome (71% vs 91%).

Conclusions—Machine learning with multimodal feature sampling can improve FCD detection. 

The spread of extralesional clusters characterize different FCD subtypes, and may represent 

structurally or functionally abnormal tissue on a microscopic scale, with implications for surgical 

outcomes.

Keywords

focal cortical dysplasia; FCD detection; MRI; FDG-PET; Surface-based feature modeling; patch 
analysis

Introduction

Focal cortical dysplasias (FCDs) are a type of malformation of cortical development, and are 

histologically subtyped based on the alterations in cortical lamination (type I) and presence 

of dysmorphic neurons with or without balloon cells (type II).1 They are intrinsically 

epileptogenic, and are a well-recognized cause of pharmacoresistant epilepsy in both 

children and adults.2 Surgical resection can lead to seizure-freedom.

The MRI features of FCDs may include cortical thickening, blurring of the grey-white 

matter junction, an abnormal sulcal or gyral pattern, focal hypoplasia, T2 hyperintense 

signal within the dysplastic lesion relative to normal cortex, and a decreased T1/increased 

T2 signal extending from the ventricle to the cortex (transmantle sign, seen in type II 

FCDs).3 Yet many FCDs are small or subtle, and are difficult to visually identify on MRI. In 

fact, histopathology studies have shown that up to 40% of type II FCD and 85% of type I 

FCD are reported to be MRI-negative on visual inspection,4,5 being variably dependent upon 

the imaging technique and the experience of the interpreter.

When the MRI is unrevealing, 2-[18F]fluoro-2-deoxy-D-glucose (FDG)-PET is performed to 

help with localization of epileptogenic disturbances in metabolism, which may aid 

identification of occult FCDs that are missed on MRI. FDG-PET often reveals focal 

hypometabolism in the FCD region, and has been shown to have a diagnostic sensitivity of 

78–83% in FCD detection.6,7 This sensitivity increases further with the use of PET/MRI 

coregistration.4

Tan et al. Page 2

Neuroimage. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Since identification of an epileptogenic focus on neuroimaging is a positive predictor for 

surgical success,8 MRI post-processing tools have been developed to improve the diagnostic 

yield of FCDs. Voxel-based morphometric and texture analyses9,10,11 have successfully 

characterized quantitative features of FCD lesions. Surface-based feature sampling and 

classification based on lesion characteristics along the cortical folds have further improved 

the accuracy of FCD detection.12,13,14,15 These techniques have helped to convert many 

“lesion-negative” MRIs into “lesion-positive” cases.12,13 The advantages of combining 

quantitative MRI and PET in FCD detection remain to be explored.

Here, we built a classifier based on an optimized cortical surface sampling of combined MRI 

and PET quantitative features, for the detection of FCDs that were subtle or visually-

negative even after multimodal imaging evaluation. To optimize both feature modeling and 

classification, we integrated a framework of patch library construction and label fusion that 

has been widely used for brain structural segmentation,16,17,18 into a surface-based 

classification. We also endeavored to establish the clinical utility of this classifier by testing 

its performance on patients with histopathologically-confirmed FCDs, while using patients 

with MRI-negative temporal lobe epilepsy (TLE) as a reference group.

Methods

The overall procedure of the proposed classification approach is shown in Figure 1.

Patient selection

We retrospectively identified 28 patients who had undergone surgical resection for 

localization-related medically refractory epilepsy, with histopathological confirmation of 

FCD from our surgical databases at two institutions (University of California, San Francisco 

[UCSF]; n=12, and University of Alabama, Birmingham [UAB]; n=16), over a 10-year 

period (2005–2015). The pathology specimens were reviewed by a pathologist (T.T.) and 

subtyped under the International League Against Epilepsy (ILAE) classification. Patients 

were included if they had a pre-surgical 3.0 Tesla MRI with three-dimensional (3D) T1-

weighted sequence, as well as pre-surgical 3D FDG-PET. The following patients were 

excluded: (i) poor image quality scans (due to motion artifact, aliasing or rippling related to 

eye movement), (ii) age<2 years old (due to incomplete myelination), (iii) type III FCD on 

histopathology (e.g. FCD with another principle lesion such as hippocampal sclerosis), (iv) 

large/diffuse FCDs on MRI, and (v) more than one FCD lesion visible on MRI. Patients with 

multiple visible FCDs were excluded as it was possible these patients had tuberous sclerosis 

complex, reflecting a different genetic etiology. Also, as the remaining FCDs had potential 

epileptogenicity, this could affect the surgical outcomes. The patient demographics and 

lesion characteristics are summarized (Table 1). We used pre-surgical MRI and FDG-PET 

scans from 23 patients with MRI-negative TLE as a reference (“control”) group, as it is not 

practical to obtain healthy controls imaged using both modalities in the clinical setting. We 

had intracranial electroencephalogram (ICEEG) confirmation of seizures arising from 

mesiotemporal regions. All MRI-negative TLE patients chosen for the current study 

underwent epilepsy surgery and hence had histopathological verification of the absence of 

FCD. Their histopathology findings are shown in Table 1.
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FCD patients were followed up post-operatively for a mean period of 15.6 (±16.6) months. 

At their last documented visit, 76.8% had good (Engel I and II) surgical outcomes. This 

study was approved by the ethics committees of both UCSF and UAB.

MRI and FDG-PET acquisition

All images were acquired at 3.0T field strength using dedicated MRI epilepsy protocols. 3D 

T1-weighted IR prepped gradient echo scan sequences were used for quantitative image 

analysis, and their parameters are described (Table S1). In addition, fluid-attenuated 

inversion recovery (FLAIR) images (slice thickness 1–4mm), and T2-weighted images 

(thickness 1–3mm) were included as part of the clinical protocol, complementing qualitative 

image interpretation. Acknowledging the importance of thin FLAIR slices in the clinical 

identification of small lesions, both institutions (UCSF and UAB) routinely used 1mm 

volumetric coronal acquisitions after 2011. Prior to this, FLAIR sequences were 3mm thick, 

and anything above this was an exception.

FDG-PET scans were acquired in the interictal state under standard resting conditions (eyes 

closed, dimmed ambient light) using CTI ECAT HR+, GE-Discovery LS, and GE-Discovery 

STE PET/CT scanners. Approximately 45 minutes following the intravenous administration 

of 2.6–13.2 mCi 18F-labeled FDG, 3D PET images of the brain were obtained from the 

vertex to skull base (slice thickness 3.0–4.25mm). Images were attenuation-corrected using 

noncontrast CT transmission information.

Image processing and cortical surface construction

Intra-subject PET and MR images were co-registered using a mutual information-based 

rigid-body transformation (mri-to-self in minc tool package).19 The CIVET pipeline (version 

1.1.12; http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET1112) was performed on T1-

weighted structural images to spatially normalize the brain size, segment brain tissues and 

generate a model of the GM-WM and GM-CSF surfaces. The pipeline first automatically 

performed correction for intensity nonuniformity and intensity standardization, linear 

registration into standardized stereotaxic space (defined using MNI-ICBM 152 template, 

version 2009c), and automatic classification of T1-weighted images into white matter 

(WM), gray matter (GM), and CSF. Deformable models were then used to construct the 

WM-GM and GM-CSF interfaces in both hemispheres.20 These yielded 40,962 vertex points 

per surface. Extracted surfaces were nonlinearly aligned to the surface template using a 2D 

registration procedure based on patterns of cortical folding that improves inter-individual 

correspondence.21 The accuracy of surface extraction was validated by visual inspection.

FCD feature extraction from MRI

At each vertex of the surface, we calculated morphology (cortical thickness and sulcal 

depth) and intensity-based (GM relative intensity, gradient at GM-WM interface) features 

representing the lesional characteristics of FCDs. The features were extracted at a different 

level of the cortical depth depending on the given feature. The details are described below:

Morphological features: i) cortical thickness measured as the shortest distance between 

corresponding vertices on the WM-GM and GM-CSF surfaces; ii) sulcal depth (it was 
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previously shown that small lesions were located at the bottom of a deep sulcus)14 was 

defined as the geodesic distance between the given vertex located within sulci and the 

closest vertex within the gyral crown which was defined as the vertices showing larger than 

zero in the depth potential measurement.22

Intensity features: i) relative intensity (RI) was measured in a similar manner as previously 

described by Hong et al.,12 and defined as RI(x) = 100 × (I(x)-IGM_peak)/(B-IGM_peak), 

where I(x) is the intensity at voxel x, IGM_peak the intensity of GM peak obtained from the 

whole-brain histogram, and B the intensity at the boundary between GM and WM. Three 

equidistant intracortical surfaces were created by placing uniformly spaced vertices between 

linked vertices of GM-WM and GM-CSF surfaces. The RI was then interpolated at each 

vertex of these surfaces and averaged; ii) gradient (blurring / low gradient at the GM-WM 

interface has characterized FCD lesions) was computed as intensity differences between 0.5 

mm above and below the GM-WM interface along the surface normal vector. Note that the 

denominator of the gradient is uniformly 1 across all vertices.

MRI and PET features were computed after first warping surfaces back first into each 

subject’s MRI native space, and subsequently into PET native space by inversely 

transforming the previously performed PET-to-MRI registration. These features were then 

resampled on the MNI-ICBM surface template using the related transformation.

FCD feature extraction from PET

Cortical PET intensities were sampled using mid surfaces (i.e., the 2nd intracortical surface 

generated previously) to avoid possible partial volume effects between different brain 

tissues. The following features were extracted: i) normalized intensity at a given vertex 

(nPET) was used to characterize the hypointensity of each FCD lesion. This feature was 

measured as nPET(x) = 100 × (PET(x) - PETCSF_vent)/ (PETWM_peak – PETCSF_vent), where 

PET(x) is the PET intensity at x, PETCSF_vent the intensity of CSF peak obtained from the 

histogram of the lateral ventricle, and PETWM_peak the intensity of WM peak obtain from 

the whole histogram; ii) hemispheric asymmetry (aPET) was used to capture the relatively 

lower PET intensity in the FCD lesion compared to its homotopic location in the 

contralateral brain hemisphere (which was assumed to be non-lesional), even though the net 

lesional intensity itself may not be abnormal. This feature at a given vertex x was measured 

as aPET = 2 × (L(x) – R(x))/(L(x) + R(x)), where L / R denotes left / right. We mapped 

aPET when x is a voxel on the left hemisphere, and –aPET when x is on the right in order to 

identify a hypointensity in the correct hemisphere.

Feature smoothing and normalization

Prior to classification, features were smoothed using a 5-mm full-width-at-half-maximum 

(FWHM) Gaussian surface kernel. This small-size kernel was used for the detection of 

small / MRI-negative lesions in a previous study12 and was proven to yield high sensitivity. 

Each type of feature was then normalized: To account for the large age range of our dataset, 

we first normalized each type of feature across all the vertices within a given individual 

using z-score normalization (intra-subject normalization); feature values at a given vertex 
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were then normalized with respect to the distribution of the TLE group using z-score 

normalization (inter-subject normalization).

Lesion labeling

FCD lesions were labeled by two imaging physicists (S.L. & H.K.) who were trained in 

imaging characteristics of FCDs. We measured their inter-rater agreement using kappa-

statistics (inter-rater agreement: κ =88±5% for all cases). Even though this agreement was 

considered “excellent”, raters may not always yield consistent labels at the level of the 

“gold” standard. Thus, in addition, two neurologists with extensive neuroimaging expertise 

(Y-L.T. & R.K.) reviewed the segmentations using imaging features in combination with 

seizure history, clinical examination, and video EEG. For optimal segmentation, raters and 

reviewers reached a consensus in labeling each individual FCD lesion for all cases. For FCD 

lesions that were not visible on MRI scans at the first examination, the lesion locations were 

identified based on the locations of surgical cavities in post-surgical scans. When we 

revisited these locations, we could find the presence of small size FCDs in pre-operative 

scans, and successfully outlined them using combined MRI and PET imaging 

characteristics. This volumetric label was projected onto cortical surfaces, and blurred with a 

kernel of 5mm FWHM, which was the same as the kernel used for feature smoothing. The 

probabilistic map of lesion labels is shown in Figure S1.

Lesion characteristics

In patients, we averaged each quantitative feature within the lesion label. These values were 

displayed using box-whisker plots for each histopathological FCD subtype.

Optimization of classification

Automated classification of lesional versus non-lesional tissue types was performed in two 

steps. The first step in which we applied the Suport Vector Machine (SVM)-based classifier 

was designed to recognize lesional vertices with the highest detection rate. Starting within 

the detected lesional areas, we then carried out the patch-based classifier to remove false 

positives (FP) generated by the first classifier. Details are found below:

Similar to previous quantitative studies,12,15 we first employed a linear classifier. We 

adopted the SVM classifier that uses the support vectors as representative points in the 

feature space so that these points of the different classes are divided by a clear gap that is as 

wide as possible. As our features were constructed based on hypotheses, they should explain 

intuitively the imaging characteristics of FCD lesion. We then adopted a patch-based 

classifier (Figure 1B). This approach, adapted for the surface feature analysis in the current 

study, determined a label (i.e., lesional or non-lesional) corresponding to a given vertex xt on 

the target cortical surface according to the similarity between its surrounding patch P(xt) and 

all the patches P(ys) taken from training surfaces (s | s=1,2,…, N) in the library (= training-

set).

A training vertex ys was selected inside a search area (y ∈ ηxt). In other words, for the patch 

P centered at the vertex xt of the target surface, similar patches extracted from the N surfaces 

were searched for within the neighborhood ηxt. We defined the smallest patch as an 
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aggregation of vertices that form 6-connected neighbors on the triangulated surface. A 62-

connected neighbor was defined as the aggregation of the given neighboring 6-connected 

vertices. In the same way, a 6n-connected neighbor was defined using the 6n−1-connected 

neighbors. Using a method previously introduced by Eskildsen et al,23 we calculated the 

probability of the label at the vertex xt using the nonlocal mean estimator and the similarity 

measure between the target patch P(xt) and the library patch P(ys). As introduced in the 

original study by Coupe et al,16 we calculated the probability of the label at the vertex xt 

using the nonlocal mean estimator vl(xt):

(1)

Where l(ys) is the label of vertex y on the current template surface s. For the purpose of FCD 

detection, we define the label values as background = 0, and FCD = 1. The weight wl(xt, ys) 

of the label l(ys) was computed based on the similarity between patches P(xt) and P(ys) as:

(2)

|•||2 is the normalized L2 norm that is normalized by the number of patch elements and 

computed between each intensity of the elements of the patches P(xt) and P(ys). The 

parameter h is locally adapted using the minimal distance between the target patch and the 

template patches.16

The lesion label was determined at a given threshold of probability (i.e., a probability above 

the threshold labeled xt as “lesional”). We determined the search area y as the lobe 

(parcelled by a surface-based approach)24 that the target vertex xt belonged to, and the 

mirror lobe in the contralateral hemisphere. In this manner, we sufficiently sampled the 

lesional patches in the library, regardless of the location of xt. For each classification step, 

we trained and cross-validated the classifier using a leave-one-out strategy. This was based 

on the subjects and not based on the vertex samples. In other words, for testing of each 

individual subject, we used all subjects minus that subject to construct the training-set. This 

procedure was equally applied for the 2 step-wise classifiers.

Sampling non-lesional tissue

We defined “non-lesional tissue” for the classification process by sampling tissue from 

cortical regions in the TLE subjects. However, TLE subjects could potentially harbor 

extratemporal cortical abnormalities including cortical thinning25 and PET 

hypometabolism.26 We thus also sampled tissue from extralesional areas in FCD patients, 

and compared the classification performance based on these two different sampling schemes 

(TLE vs FCD-extralesional).
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Evaluation of classification accuracy

We defined a lesion detection rate as the proportion of FCD patients in whom a detected 

cluster overlapped with the manual lesion label. We computed specificity as the proportion 

of TLE subjects in whom no lesion cluster was falsely identified. True positive (TP) 

coverage was defined as the proportion of detected cluster area which overlapped with the 

manual label. False positive (FP) rate per individual was defined as the number of vertices of 

FP / number of vertices of negative vertices (true negative [TN] + false negative [FN]).

Results

Lesion characteristics (Figure 2)

In type IIb FCD (n=14), all examined features known to be characteristic of FCDs were 

significantly abnormal compared to TLE subjects (p-values were corrected using Bonferroni 

adjustment) - cortical thickening (z-score: 2.4±1.8; t=5.0; p<0.001;, unless otherwise 

specified), sulcal deepening (i.e., z: 2.6±2.9; t=3.6; p<0.05), GM-WM blurring (i.e., low 

gradient; z: −1.7±1.6; t=3.8; p<0.01), GM hyperintensity (i.e., higher RI; z: 1.7±1.9; t=3.4; 

p<0.05), PET hypointensity (i.e., low nPET; z: −1.4±1.1; t=3.8; p<0.01), and low PET signal 

compared to its mirror site in the opposite hemisphere (aPET: z: −1.7±1.3; t=3.8; p<0.01).

In type IIa FCD (n=11), only PET hypointensity (z: −1.8±1.4; t=4.4; p<0.001), and aPET (z: 

−2.2±1.6; t=4.7; p<0.0005) significantly characterized lesional abnormalities. We found a 

trend of cortical thickening (z: 1.5±2.2; t=2.6; p=0.02 uncorrected) and blurring (z: 

−1.3±1.2; t=3.0; p=0.005 uncorrected) in these lesions. Neither GM intensity nor sulcal 

depth was different from TLE subjects (p>0.1). The multivariate Hotelling T2-test showed 

that the MRI features were significantly different between type IIa and IIb FCD groups 

(T2=8.1; p<0.01) whereas the PET features did not differ (T2=2.3; p>0.2).

Imaging abnormalities in type I FCD were not found to be significant due to the small 

sample size (n=3). Nonetheless they showed features of cortical thickening (z: 1.4±1.5), 

shallow sulcation (z: −0.5±0.4), GM-WM blurring (z: −1.9±2.4), GM hyperintensity (z: 

1.6±2.8), PET hypointensity (z: −2.1±2.3), and low PET intensity compared to the mirror 

site (z: −0.8±1.1).

Parameters selection

The highest sensitivity and specificity was obtained for the patch-based classifier using a 

search area y as the 65-connected neighbor or larger, and the patch size P as the 62-

connected neighbor or larger. Use of the threshold of 46% label probability resulted in the 

best performance as we obtained the highest TP detection rate (up to 93%) with very low FP 

rates in TLE subjects (≤0.1%; Table 2) and when sampling “extralesional” tissue (≤0.3%; 

Table 3).

Classification performance

Sampling nonlesional tissue from TLE subjects yielded superior results as compared to 

sampling “extralesional” tissue from FCD patients (see Table 3) as a normal reference, and 

are described below.
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Step 1 (Table 2A): When analyzing classifier performance based on MRI-alone vs combined 

MRI and PET (MRI+PET) features, we found the best trade-off between the sensitivity and 

specificity at the posterior probability of 91% in the SVM classifier, in which we obtained 

the highest TP and lowest FP rates. MRI+PET analysis detected all FCD lesions 

(28/28=100%) whereas analysis using MRI-alone missed one lesion (27/28=96%). 

Classification using MRI+PET also demonstrated a lower FP rate in TLE subjects (1.1% 

lower; t=3.0; p<0.005) compared to MRI-alone analysis. On the other hand, use of MRI

+PET revealed a larger FP rate in FCD patients compared to MRI-alone (4.3% higher; t=1.8; 

p=0.1). The relatively high FP rate in FCD patients was present even at the highest posterior 

probability (99%) where a very low FP rate in TLE subjects was found (MRI-alone: 1.4%; 

MRI+PET: 0.6%), suggesting the presence of extralesional pathology in the FCD group. At 

the maximum posterior probability, MRI+PET also showed a higher sensitivity in FCD 

lesion detection than MRI-alone (89% vs. 79%).

Step 2 (Table 2B): Compared to the SVM in step 1, the patch analysis particularly improved 

the specificity, resulting in 0% FP rate in the TLE reference group (vs. 1.6±0.9; t=9.8; 

p<0.00001) when using MRI+PET while maintaining a high TP detection rate (26/28=93%). 

Similar to the results obtained in step 1, when compared to MRI-alone analysis, MRI+PET 

demonstrated a higher TP detection rate (93% vs. 82%), lower FP rate in TLE subjects (0% 

vs. 0.1%) and detection of more extralesional abnormalities in FCD patients (3.4% vs 2.5% 

vertices). This trend was also seen at the highest probability threshold (99%).

Classification performance when sampling “extralesional” tissue from FCD patients as 
reference

The overall results are shown in Table 3. Through classification steps 1 and 2, lesion 

detection rate dropped by 9%–14% compared to sampling nonlesional tissue from the TLE 

group. While the FP rate was lower in FCD patients (FCD: 0.5–4.2%) compared to sampling 

from TLE, it was slightly increased in the TLE group (TLE: 0.1–0.2%). Extralesional 

abnormalities were still found throughout the classification steps 1 and 2. Moreover, FP 

clusters in the TLE subjects were still detected even after running the 2nd classifier, 

suggesting that sampling nonlesional tissues in FCD patients would be less optimal than 

sampling non-FCD epilepsy subjects.

Subsequent analysis of extralesional FCD clusters

Despite having zero-FP rate in the TLE group, the classifier identified lesional vertices 

outside the known FCD lesion (3.4±1.2%). These extralesional abnormalities were located 

significantly more frequently in the hemisphere ipsilateral to the lesion (ipsi: 2.9±1.3 vs. 

contra: 0.5±1.3%; t=9.2; p<0.00001). To assess the proximity of extralesional clusters to the 

primary lesion, the geodesic distance from the boundary of the lesion label to each 

extralesional vertex was measured, and their distance maps plotted (Figure 3). To measure 

the distance from the lesion to the contralateral hemisphere, we first projected the lesion on 

this hemisphere surface based on the hemispheric point-correspondence. The distance in the 

contralateral hemisphere was then computed with respect to this projected lesional mask.
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The largest population of extralesional clusters was perilesional (1–30mm; 339 vertices per 

patient), the 2nd largest was closely located within the same ipsilateral lobe or neighboring 

lobes (40–80mm; mean=202 vertices), and the 3rd largest was within the same lobe in the 

contralateral hemisphere (30–60mm; 132 vertices). Patients with type I or IIa FCDs 

displayed a larger number of extralesional vertices than those with type IIb in the 40–80mm 

distant region (#vertices: 351±288 vs. 142±137; p<0.05). These patients had a lower 

proportion with good surgical outcomes compared to the type IIb FCD group (71% vs. 

91%). The probabilistic mapping of the extralesional clusters (Figure S2) showed that they 

were mainly located in the proximity of their corresponding primary lesions (Figure S1). 

This was in keeping with the information shown in Figure 3. Although the extralesional 

clusters were more prevalent in the ipsilateral rather than contralateral hemisphere, the 

pattern of extralesional clusters was however very symmetric between hemispheres, with 

regions of high probability (>10%) seen in the orbitofrontal, inferior prefrontal, cingulate, 

temporal pole and central cortices.

Comparison between visual and quantitative methods for FCD identification (Table 4)

Both quantitative methods using MRI-alone or MRI+PET showed significantly higher 

sensitivity for FCD detection relative to their respective multimodal visual evaluation 

(Fisher’s exact tests; p<0.05). Significantly higher sensitivity for the MRI+PET quantitative 

method was achieved in patients with type I (visual: 67% vs. quantitative: 100%; p=0.1) and 

type IIa FCD (24% vs. 91%; p=0.003).

Discussion

Quantitative FCD detection methods have consistently shown higher sensitivities compared 

to qualitative visual analysis.12,27,28 To date, these analyses have been applied only to single 

imaging modalities (MRI or PET), although PET scans can aid localization of the 

epileptogenic zone when the MRI is visually negative.29 In our study, we took advantage of 

the availability of PET scans, and demonstrated superior sensitivity in FCD detection using 

feature modeling of combined MRI and PET, compared to quantitative MRI alone. Our PET

+MRI quantitative classifier was also more sensitive than routine visual radiological 

examinations of MRI and PET, proving its value in FCD lesion identification. Further, the 

classifier revealed extralesional abnormalities in FCD patients, with pattern differences 

between FCD subtypes. To the best of our knowledge, the quantitative analysis of combined 
PET and MRI is indeed new in FCD detection. Even though our pipeline is a two-stage 

classifier similar to our previous work 12, a significant improvement was made by adapting 

the nonlocal patch featuring and label fusion method to a surface approach of detecting FCD 

lesions. Furthermore, our sampling of PET features on the mid-cortical surface advances 

conventional volumetric approaches by minimizing the partial volume effects.30 Lastly, the 

analysis in depth with respect to the extralesional clusters and the relationship with the 

surgical outcome has not been investigated prior to the current study.

Excellent classifier performance despite scanner heterogeneity

The MRI and PET images used in the current study were clinical scans conducted during the 

course of the patients’ presurgical evaluation. We performed the classification using a leave-
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one-out approach to avoid bias related to the training process. Our image data acquired in 

routine clinical scanners however inevitably contained mild variations in data resolution, 

with subsequent different degrees of partial volume effects as shown in Table S1. Also, the 

size of the training-set was not considerably large although the size of the samples in our 

study was one of the largest in the FCD detection algorithms to date.12,13 Such weaknesses 

might have resulted in overfitting and potentially boosted our excellent classification 

performance. Further analysis will help clarify the effects of such variations on the 

classification process. The accurate classification in the current study is however in keeping 

with a previous study that documented equivalent cross-validation performances in 

classifiers trained on images acquired with both homogeneous and heterogeneous hardware 

settings.31 These findings encourage transition of this method to clinical application in other 

institutions, especially where high-level visual interpretation expertise is not available.

The use of TLE subjects as a reference group

Whole-brain PET imaging involves exposure to ionizing radiation, and it is difficult to find 

healthy subjects with PET images who are free of central nervous system disease in the 

clinical setting. MRI-negative TLE subjects who exhibited no dual pathology and who had 

undergone both MRI and PET imaging were chosen as a reference group in our study as 

they most closely matched the age range of FCD patients, and were used to provide feature 

standardization.

MRI features in TLE are known to be quite different from FCD subjects, as widespread 

cortical thinning in even MRI-negative TLE patients has been reported,25 as opposed to the 

cortical thickening seen in FCD lesions. Although hypometabolism in the epileptogenic 

temporal lobes and perhaps also in extra-temporal regions in TLE subjects rendered them 

suboptimal as PET control scans, the excellent performance of our classifier may be 

explained by its multivariate analysis of MRI+PET features. Of note, all four temporal lobe 

FCDs were successfully detected.

The performance of our classifier using TLE subjects as reference shows that it is possible 

for other clinical centers to adapt this methodology for FCD detection without the necessity 

of scanning healthy subjects. We specifically chose to test TLE patient scans as controls 

since these scans would be available in the typical clinical environment; the ease of 

translating this methodology for widespread institutional use being an important goal of this 

work.

Lesional characteristics by histological subtypes

FCD type IIa lesions are more difficult to diagnose using conventional visual analysis 

compared to type IIb, due to their milder MRI abnormalities.32 Indeed, all the MRI features 

were observed to be significantly abnormal in our type IIb lesions, whereas type IIa lesions 

only showed PET hypointensity and asymmetry, with a trend towards cortical thickening and 

GM-WM junction blurring. Importantly, in the type IIa group the classifier had the highest 

yield in converting “non-lesional” cases to “lesional” ones, as multivariate analysis of PET 

and MRI features, although subtle, boosted the detection power. A larger sample size is 

needed for conclusive lesion characterization of type I FCDs.
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Extralesional clusters in FCD patients

Extralesional clusters were identified in 3.4% of the vertices in FCD patients. The 

phenomenon of extralesional cluster detection in FCD patients is not new.12,33 Both our 

classifier and a previous study12 identified none or very limited false positive clusters in 

TLE subjects. Furthermore, sampling “nonlesional tissues” from FCD patients did not 

entirely remove the presence of extralesional clusters after the 2nd classification step, while 

we observed a decrease in the FCD detection rate. This suggests the existence of 

extralesional abnormalities that resemble the feature characteristics of the FCD lesion, and 

consequently, likely reflect subtle multifocal FCDs. In fact, nineteen percent of small FCDs 

have been reported to be multilobar in location32; and although multilobar FCDs were 

excluded from our study by visual analysis, microscopic variants could have escaped 

detection.

We also investigated the proximity of extralesional abnormalities to the primary lesion, and 

its relationship with FCD histopathological subtypes and surgical outcome. Extralesional 

clusters were located most preferentially in perilesional locations, followed by locations 

within the same or neighbouring lobes within the same hemisphere. This finding is 

corroborated by a study which examined the MRI characteristics of multi-focal FCDs,34 and 

found 80% of the lesions to occur within the same hemisphere.

Finally, patients with type I or IIa FCD had a lower chance of good surgical outcomes (70 vs 

91%) compared to those with type IIb FCD, and displayed a correspondingly larger 

population of extralesional clusters. This suggests that extralesional clusters may be 

potentially epileptogenic, which could explain why not all patients with complete resection 

of the primary FCD lesion become seizure-free.35

Interestingly, the contralateral extralesional clusters were seen to be in the homotopic lobe as 

the primary lesion and the pattern of these clusters was very similar to that of the ipsilateral 

extralesional clusters. Such a contralateral abnormality has also been found in previous 

studies,11,12 which may explain the developmental characteristics of FCDs. The 

epileptogenic nature of this abnormality is however unclear as its presence did not 

necessarily worsen the surgical outcome in our analysis.

Technical consideration

Some studies reported abnormal sulcal patterns in FCD compared to healthy controls.36,37,38 

The abnormal sulcal patterns observed in these previous studies may have influenced our 2D 

surface registration that used a sulcal morphological property (i.e., sulcal depth potential) 

and a template constructed based on a healthy population (MNI-ICBM 152). This issue may 

need further investigation to be fully addressed. However, it is worth noting that the extent of 

abnormal sulcal shapes in FCD observed in the aforementioned studies is relatively small 

with a nature of branching out of a main sulcal body. The impact of mis-registration due to 

this would be focal. It is also noted that the MNI-ICBM template has been used in numerous 

clinical studies dealing with the brain diseases or disorders where abnormal sulcation 

patterns are implied.39,40,41 On the other hand, a smoothing procedure has been adopted in 

the registration to address such morphological variability. We followed a standard size of the 
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smoothing kernel.21 The focal nature of the sulcal abnormality and a smoothing of sulcal 

feature in the registration may therefore explain, at least partly, the maintained high 

performance of the FCD identification in our classification.

Conclusion and future directions

We present an objective, quantitative classifier combining features from both MRI and PET 

imaging, with a high sensitivity and specificity in FCD lesion detection. This method is 

superior to both conventional visual analysis and single modality quantitative analysis. 

Although the current classification result obtained using TLE subjects as a group reference 

was very satisfactory, use of healthy controls will better clarify the results and the nature of 

detected abnormalities. We intend to continue refining and testing the methodology for 

diagnostic accuracy, and once validated on prospective subjects, we hope to develop a 

software pipeline which incorporates these methods into a software for distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The lesion classification procedure (A), the illustration of the patch-based classification and 

the result for a MRI-negative case (C). In panel C, only representative features (z>3) are 

shown. The classification result shows that the 2nd patch-based classifier cleaned most of the 

extralesional clusters that were detected in 1st SVM-based classifier, while the 2nd classifier 

maintained the coverage of the true lesional cluster.
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Figure 2. 
Feature characteristics of FCD lesions for each histopathological type. The vertex-wise 

imaging features were normalized with respect to the distribution of the TLE group using z-

score transformation. Each feature was averaged within the FCD lesion label. We evaluated 

the lesion characteristics using the box-whisker plot for each histopathological type of FCD.
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Figure 3. 
Distance profiling of extralesional clusters detected using the proposed classifier. A) We 

generated a distance map from the boundary of the primary lesion (blue) using the geodesic 

distance propagation. We then computed the distance at given vertices detected as 

“extralesional” (green). B) We assessed the number of extralesional vertices per patient 

identified at the given distance from the FCD lesion. In the close area (40–80mm), patients 

with FCD type I or IIa (average shown in green) presented a significantly larger number of 

extralesional abnormalities compared to those with FCD IIb (red).
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Table 1

Patient demographics and FCD lesion characteristics

FCD Patients (n=28) TLE Subjects (n=23)

Age (mean ± SD years) 26.5 ± 14.1, range 3–52 35.3 ± 12.7, range 14–56

Gender (%) 15 males (53.6%) 9 males (39.1%)

Histology (%) FCD Type I 3 (10.7%) Gliosis 8 (34.8%)

FCD Type IIa 11 (39.3%)

Mesial Temporal Sclerosis 15 (65.2%)

FCD Type IIb 14 (50.0%)

Lesion location (%) Frontal 19 (67.9%) N.A.

Temporal 4 (14.3%)

Temporo-occipital 3 (10.7%)

Parietal 2 (7.1%)

Lesion size (mm3) Negative/small (n=18): 977 ± 625 mm3; range 53–2,389 mm3 N.A.

Larger (n=10): 3770 ± 1574 mm3; range 2577–7,506 mm3
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Table 2

The performance of the proposed classifiers. Nonlesional tissues were sampled in MRI-negative TLE patients.

A: 1st step using SVM

FP rate % (using MRI alone) FP rate % (MRI + PET)

At the best trade-off At max specificity At the best trade-off At max specificity

TLE subjects 2.7±1.7 1.4±1.6 1.7±1.0 0.7±0.8

FCD patients 11.4±11.1 8.0±7.9 16.1±14.1 10.1±8.8

detected lesion 27/28=96% 22/28=79% 28/28=100% 25/28=89%

#FP cluster #FP cluster

TLE subjects 29.5±13.5 - 23.5±12.1 -

FCD patients 67.4±26.3 - 63.5±26.5 -

TP coverage 33.3±31.8% - 39.3±21.6% -

B: 2nd step using a patch-based analysis

FP rate % (using MRI alone) FP rate % (MRI + PET)

At max Sensitivity At max specificity At max Sensitivity At max specificity

TLE subjects 0.1±0.1 0.0±0.0 0.0±0. 0 0.0±0.0

FCD patients 2.8±0.8 1.2±0.7 3.8±1.4 2.4±0.8

detected lesion 23/28=82% 17/28=61% 26/28=93% 18/28=64%

#FP cluster #FP cluster

TLE subjects 8.0±7.1 0.5±0.7 0.0±0.0 0.0±0.0

FCD patients 26.3±18.8 2.2±2.2 35.8±12.2 2.6±2.0

TP coverage 32.3±25.6% 22.9±17.4% 38.5±20.8% 22.9±17.4%

*
FP rate = mean of #vertices of FP / #vertices of negative vertices (TN + FN) per individual

*
Detected lesion = any cluster overlapped with the TP lesional label.

*
Best trade-off obtained when detecting the maximum number of TP labels with the highest posterior probability of the classifier.

*
Max specificity obtained at the maximum posterior probability (99%).
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Table 3

The performance of the proposed classifiers. Nonlesional tissues were sampled from the extralesional areas in 

FCD patients.

A: 1st step using SVM

FP rate % (using MRI alone) FP rate % (MRI + PET)

At the best trade- off At max specificity At the best trade- off At max specificity

TLE subjects 3.0±2.1 1.4±1.9 1.9±1.2 0.9±1.0

FCD patients 7.5±5.0 3.4±3.5 9.6±8.3 5.1±2.8

detected lesion 24/28=86% 20/28=71% 25/28=89% 22/28=79%

#FP cluster #FP cluster

FCD patients 36.4±26.3 - 43.5±19.5 -

TP coverage 20.1±24.3% - 32.3±17.8% -

FCD patients 7.1±4.6 3.1±3.1 9.2±7.8 4.7±2.3

B: 2nd step using a patch-based analysis

FP rate % (using MRI alone) FP rate % (MRI + PET)

At the best trade- off At max specificity At the best trade- off At max specificity

TLE subjects 0.3±0.3 0.1±0.3 0.3±0.2 0.1±0.1

FCD patients 2.1±0.8 0.9±0.6 3.2±1.4 1.9±0.5

detected lesion 20/28=71% 13/28=46% 23/28=82% 14/28=50%

#FP cluster #FP cluster

FCD patients 17.3±14.2 2.0±1.9 24.8±9.7 2.2±1.8

TP coverage 25.3±21.1% 17.4±17.9%

FCD patients 1.9±0.6 0.8±0.5 3.4±1.2 2.2±0.6

*
FP rate = mean of #vertices of FP / #vertices of negative vertices (TN + FN) per individual

*
Detected lesion = any cluster overlapped with the TP lesional label.

*
Best trade-off obtained when detecting a maximum number of TP labels with the highest posterior probability of the classifier.

*
Max specificity obtained at the maximum posterior probability (99%).
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