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Abstract

We develop a new hybrid model of human learning on
the NRL Navigation Task (Gordon et. al. 1994). Unlike
our previous efforts (Gordon & Subramanian, 1997) in
which our model was crafted from verbal protocols and
eyetracker data, we demonstrate the feasibility of us-
ing visualmotor data (time series of sensor-action pairs)
gathered during training to construct models of a sub-
ject’s strategy. The goal of our cognitive modeling is
to provide a sufficiently detailed description of the sub-
ject’s strategic misconceptions in real-time, in order to
tailor a personalized, task training protocol. Using a
small-parameter hybrid model that can be estimated
directly and efficiently from the visualmotor data, we
study the deviation of the subject’s action choices from
that dictated by a near-optimal policy for the task. This
model gives us a clear description of the subject’s cur-
rent strategy relative to the near-optimal policy, thus di-
rectly suggesting performance hints to the subject. We
also provide evidence that our model parameters are suf-
ficient to account for individual differences in learning
performance.

Introduction

Our goal is to build computational models of hu-
mans learning to perform complex visualmotor
tasks. By a model of human learning, we mean an
explicit representation of the human’s action poli-
cies (mapping from the perceptual inputs to motor
actions) and its evolution over time. The models
will be used in designing personalized training pro-
tocols to help humans achieve high levels of com-
petence on these tasks. This intended use places
constraints on the class of models we can consider
and the methods for evaluating them. In particu-
lar, the models need to be detailed enough to pin-
point problems in a subject’s learning; yet be coarse
enough to be unambiguously built from the avail-
able visualmotor learning data. Owur criterion for
evaluating models is empirical: (i) they must ac-
curately identify incorrect aspects of the subject’s
strategy, and (ii) when used in place of the human,
they must yield comparable performance.

A major challenge in this endeavour is the fact
that the visualmotor data are at an extremely low

level. One approach to modeling in such a situation
is to start with a cognitive architecture, and then to
find parameter settings for that architecture which
recreate the available low-level data. This tactic is
adopted by Newell in UTC, Anderson in ACT* and
in EPIC by Kieras and Meyer. We take an alter-
native approach here based on behavioral cloning
(Sammut et. al., 1998). In our approach, the low-
level visualmotor data is taken as the ground truth,
and using ideas from machine learning and data
mining we “compress” the data in the form of a pol-
icy which maps sensors to actions. If there are high
level regularities at the policy level in the learning
data, they will be reliably extracted by our learning
algorithms. This approach has the advantage that
cognitive modeling constructs arise endogenously
from the data, rather than being stipulated a priori.

Our task domain is the NRL Navigation task
(Gordon, et al., 1994) developed by Alan Schultz
at the Naval Research Laboratory (NRL). It re-
quires piloting an underwater vehicle through a field
of mines guided by a small suite of sonar, range,
bearing and fuel sensors. Sensor information is pre-
sented via an instrument panel that is updated in
real-time. The sensors are noisy. Decisions about
motion of the vehicle (speed and turn) are commu-
nicated via a joystick interface. The task objec-
tive is to rendezvous with a stationary target be-
fore exhausting fuel and without hitting the mines.
The mines may be stationary or drifting. A trial
or episode begins with the vehicle being randomly
placed on one side of a mine field and ends with one
of three possible outcomes: the vehicle reaches the
target, hits a mine, or exhausts its fuel. Reinforce-
ment, in the form of a scalar reward dependent on
the outcome, is received at the end of each episode.
Since the mine configurations vary from episode to
episode, it is fruitless for subjects to memorize a



sequence of actions that will get the vehicle to the
target. To solve the task, subjects must learn a pol-
icy for choosing actions based on the sensor values
presented to them.

The Navigation task belongs to the family of par-
tially observable Markov decision processes. With
the addition of the last action taken, we can trans-
form it into a fully observable Markov decision pro-
cess (MDP). This transformation lends theoretical
tractability because deterministic optimal decision
procedures exist for MDPs. However, the size of the
state space is about 10'® and there are 153 choices
of action at each time step, which make the Navi-
gation task extremely challenging both for humans
as well as for present-day learning algorithms like
reinforcement learning (Sutton, 1988).

There are four major sources of complexity in the
Navigation task from a cognitive perspective: (1)
the need for rapid decision making with incomplete
information, (2) the sheer number (10'8) of distinct
sensor configurations for which an action choice has
to be computed, and the need to learn a partition in
the sensor space while acquiring a policy, (3) limited
binary feedback at the end of each episode, and, (4)
a tightly coupled action space in which the differ-
ent components (turn and speed) cannot be learned
independently. Together, these make the task diffi-
cult for our human subjects; one out of every three
never acquires the task with our current training
protocols.

Our data was gathered as follows. Five subjects
ran the Navigation task with a configuration of 60
mines, small mine drift, and low sensor noise.! Sub-
jects trained for five days, spending an hour each
day running consecutive episodes. The number of
episodes per hour varied from around 60 to 160.
Each episode varied from 40 to 200 time steps. At
the beginning of the first session, subjects were told
they had to navigate through a minefield to get to a
target location. They were allowed to interact with
the task to get comfortable with the use of the joy-
stick. We collected the time series of sensor action
pairs as well eyetracker data for the entire train-
ing period. We also videotaped the subject and
recorded all their verbal utterances. In this paper,
we focus on the time series of sensor action pairs to

'Five undergraduates at San Diego State University par-
ticipated in this experiment. The data collection was per-

formed by our collaborators Diana Gordon and Sandra
Marshall.
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Figure 1: The evolution of success percentages on
the Navigation task as a function of training for five
subjects.

determine the strategy used by the subject.

In Figure 1 we show the learning curves of the five
subjects. Note that the success learning curves are
remarkably similar for the three subjects who even-
tually acquired the task. Subjects go through peri-
ods of relatively stable performance, punctuated by
substantial improvements. The success curves for
the subjects who fail to learn the task are also very
similar. This raises hope for building a common
computational model for all subjects, with a few
parameters to account for individual variations.

The visualmotor performance data for the task is
a time series in which each element is of the form:
(episode,timestep,range,bearing,s1,s2,53,s4,$5,56,s7,
last_turn, last_speed turn,speed). We have over
thirty megabytes of visualmotor data for each sub-
ject. Extracting the policy used by the subject from
this data is difficult for several reasons: (1) the high
dimensionality of the data, and the need to find a
small number of partitions in the sensor space that
meaningfully cluster action choices, (2) noise in the
motor data because of joystick hysteresis, (3) data
is non-stationary, since the policy adopted by a sub-
ject changes with training.

The approach: comparison against the
optimal policy
The key to interpreting visualmotor data is a par-
titioning of the sensor space into a small number
of equivalence classes, each of which is associated
with an action choice policy. In this paper, we use
the discretization of the sensor space adopted by a
near-optimal policy to analyze the distribution of



1. Part 1: Seek goal: (Sonar in direction of goal is
clear) Follow that sonar at half speed, unless it is
the straight ahead sonar, then travel at full speed.

2. Part 2: Avoid mine/gap finder: (Sonar not in
direction of goal is clear) Turn in place in the
direction of the first clear sonar counted from the
middle outward.

3. Part 3: Avoid mine/gap finder: (No clear sonar)
If the last turn was nonzero, turn again in the
same direction by that amount, else initiate a turn
by summing the sonars to the left and right, and
turning in the direction of the lower sum.

Table 1: The three-part near-optimal policy for the
NRL Navigation Task. The italicised conditions for
each part represent the equivalence class of sensor
values that define the part.

actions chosen by our subjects. This approach al-
lows us to determine the deviations of the subject’s
strategy from that of the near-optimal policy, which
can then be the basis of directed training. A poten-
tial disadvantage of the approach is that if there
are other near-optimal policies that adopt very dif-
ferent discretizations, a subject using them would
be misdiagnosed as making strategic errors?. We
now describe the near-optimal policy that we dis-
covered, and then present results of modeling the
subject’s strategy viewed through its sensor space
discretization.

A near-optimal policy for the Navigation
task

A near-optimal policy for the task is deterministic
and is shown in Table 1. It must be emphasized
that discovering this solution was not easy!. It took
several months of work with a machine learning al-
gorithm to arrive at this policy.

The near-optimal policy in Table 1 succeeds at
least 99.7% of the time; its performance has not
been matched by our best human subjects. There
are three key properties of the near-optimal policy.

1. task decomposition: the policy decomposes the
overall goal into the subgoals of avoid-mine and
2However, we were unable to determine other near-

optimal policies for the NRL task after months of compu-
tation and investigation.

seek-goal, a decomposition which appears univer-
sal among our human subjects. However, the so-
lutions to the sub-goals are tightly coupled and
this is difficult for humans to learn.

2. dependence between turn and speed choices: Turn-

ing at zero (or close to zero) speeds is essential for
success on this task. In addition, turning consis-
tently in one direction while trying to find gaps
in the minefield, is crucial.

3. appropriate discretizations: the near-optimal pol-

icy discretizes the sonar values that range from 0
to 220 into a binary distinction of clear/blocked
with the threshold set at 50. The bearing sen-
sor with 12 values is discretized into six, and the
range sensor is ignored. The action space is dis-
cretized too: the turn action with 17 values is
discretized into nine values, and speed with 9 val-
ues is discretized into three (zero, half speed, full
speed).

The near-optimal policy partitions the state space
into three mutually exclusive and collectively ex-
haustive components. The effective number of
states considered by Parts 1 and 2 of the policy
is 27 * 6 which is 768. This is because both parts
consider the values of seven sonars, each of which
is discretized into clear and blocked, and six values
for bearing. The 768 states are really equivalence
classes over ~ 10'4 base states in the original sen-
sor space. Part 3 examines the previous turn, and
thus deals with an effective state space of size 9% 27
which is 243.

Model extraction algorithm

For ease of presentation, we first describe the model
extraction method under the assumption that the
visualmotor sequence data represents a stationary
process. This assumption will be relaxed at the end
of this subsection. Using the discretizations and
definitions of three parts of the near-optimal policy,
we classify each sensor-action pair in the visualmo-
tor sequence as belonging to Part 1, Part 2 or Part
3 equivalence classes. For example, if the sonar in
the direction of the goal is clear in the sensor vector,
the sensor action pair is classified as a Part 1 pair.

Since the action decisions in Part 1 (resp. Part
2) of the near-optimal policy depend only on the
current values of the discretized bearing, we esti-
mate the conditional probability that the subject



chooses a particular discretized® action (turn and
speed) given the value of the discretized bearing.
For discretized action a in the set A, and discretized
bearing b let ny, be the number of times a is taken
by the subject in a Part 1 sensor action pair with
bearing b.

Nap
P(a|b) S e

The action selection scheme adopted by the near
optimal policy for Part 3 sensor equivalence class
is inherently sequential. Therefore, to fit Part 3
behavior, we use hidden Markov models (HMMs)
(Rabiner, 1989). We identify sequences of sensor-
action pairs that belong to Part 3 and train a three
state left-to-right HMM on the data®.

The parametric hybrid model that we construct
from the subject data is shown in Figure 2. Note
that the model reflects the task structure. In par-
ticular, we use conditional action probability dis-
tributions to extract subject behavior on the seek-
target subgoal of the task, and a combination of a
conditional action probability distribution and an
HMM to describe the solution of the coupled sub-
goal of avoid-mine. This model has few relatively
few parameters and can be easily estimated online.
It describes the subject’s policy viewed through the
equivalence class filter imposed by the near-optimal
policy. By comparing the subject’s model for the
three parts against that of the near-optimal policy,
we can read off strategic errors in the subject’s pol-
icy. Examples of such comparisons are offered in
the next section.

To accommodate the non-stationary visualmotor
data sequence, we identify stationary subsequences
from which the conditional probabilities are esti-
mated and the HMMs are trained. We estimate
conditional probability distributions for Part 1 and
Part 2 and HMMs for Part 3 over small contigu-
ous blocks® of episodes in the data sequence. We
then use a standard measure of distance between

3The original action set has cardinality 153; the dis-
cretized set has nine turns and three speeds making a total
of 27 actions.

“We experimented with a number of hidden states ranging
from 2 to 10, and using log-likelihoods on a left-out test set,
we determined that three was the best choice for number of
hidden states.

5The size of the blocks is determined empirically, and we
respect day boundaries in the construction of the blocks.
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Figure 2: The structure of our hybrid model for the
Navigation task.

distributions (KL-divergence®) to determine when
a significant shift in the Part 1 and Part 2 distri-
butions have occurred. For the HMMs for Part 3,
we use KL divergence between both the transition
probabilities and the output probabilities to deter-
mine when a significant shift has occurred. This
procedure identifies points in the sequence that cor-
respond to significant differences in the action se-
lection distributions. These shift points are sup-
ported by verbal protocol data as well as eyetracker
data. The sequences between shift points are taken
as stationary, and the model extraction procedure
described above is applied to them.

We now turn to the presentation of experimental
results from the use of our model extraction tech-
nique on the visualmotor data corpus for the NRL
Navigation task.

Modeling Results
Examination of the conditional probability distri-
butions of part 1 and 2 and HMMs of part 3 from
the three successful subjects reveals that they learn
the following.

1. to follow the as-the-crow-flies strategy in the di-
rection of the goal in states in Part 1.

2. to slow down significantly when turning in Parts

1,2 and 3.

3. to turn minimally to avoid mines in states in Part

2.

SK Ldiv(p,q) = > ses P *1og(p/q), where p and q are dis-
crete distributions defined over a set S.



action dayl [ day2 [ day3 [ day4d | day b
t=0,s=0 10334 | 0.370 | 0.192 | 0.090 | 0.078
t<0,s=0 1 0.104 | 0.083 | 0.106 | 0.052 | 0.031
t>0,s=0 | 0.083 | 0.075 | 0.081 | 0.021 | 0.035
t=0,s>0 | 0408 | 0.454 | 0.552 | 0.695 | 0.646
t<0,s>0| 0042 | 0.005 | 0.015 | 0.052 | 0.081
t>0,s>0| 0.028 | 0.014 | 0.053 | 0.090 | 0.129
KLdiv 3.528 | 4.220 | 2.894 | 2.369 | 2.011

Table 2: The evolution of the conditional action
probability distribution for Subject 4 in Part 1 when
bearing = 11 o’clock. The turn ¢ and speed s choices
are discretized into six categories for reading ease.
Turns greater than zero are left turns, and turns
less than zero are right turns For a full explanation
of this table, please see the text below.

4. to turn in place consistently to find gaps in the
minefield in Part 3.

We demonstrate the first point above with data
from Part 1 for Subject 4. For this subject, shifts in
Part 1 distributions correspond to day boundaries,
so we present the evolution of his action selection
policy for each day of training. Table 2 presents
the conditional probability of Subject 4 taking an
action a, given that the bearing (goal direction) is
11 o’clock. That is, the target lies slightly to the
left of the current heading of the vehicle. The near-
optimal policy dictates a mild turn to the left. The
KL divergence between the subject’s policy and the
near-optimal policy is shown in the last row of the
table. Note that the subject’s policy initially di-
verges and then approaches the near-optimal policy
between day 2 and day 3. Also note the rapid de-
cline in the probability of pausing (turn and speed
both equal to zero) as training proceeds, with the
most dramatic reductions occurring between day 2
and day 3 and day 3 and day 4. The probability that
the subject chooses a left turn goes down from day
1 to day 2, but then steadily increases from day 3
forward. All action probabilities except for straight
ahead (t = 0,5 > 0) and left turn (¢ > 0,s > 0)
rapidly decay to zero, indicating that the subject is
learning to follow bearing well in the Part 1 equiv-
alence class.

It should be emphasized that while Part 1, Part 2
and Part 3 models for each subject co-evolve, they
do not evolve at the same rate, and rarely do sig-
nificant shifts in these probability models coincide.
While Part 1 distributions evolve rather slowly and
shifts in them occur aligned with day boundaries;

0.79 0.005 1
0.21 0.995
1 2 3
ACTIONS: OUTPUT PROB
0 0 0.84 0.00 0.35
right O 0.03 0.003 0.33
left O 0.05 0.00 0.31
other 0.08 0.997 0.00

Figure 3: A hidden Markov model that generates
and explains the behavior of Subject 5 in states
where all sonars are blocked, day 2, episodes 45-67.

Part 3 HMMs evolve much more quickly. For ex-
ample, for Subject 5, the Part 3 HMM we acquired
on data from episodes 45-67 of day 2, differs signif-
icantly from the one learned from episodes 68-90 of
day 2. These two HMMs are shown in Figures 3 and
4. The first HMM in Figure 3 is a mathematical de-
scription of the following strategy: pause (speed =
0 and turn = 0) for a while, and then make an aver-
age of two moves with non-zero speed and turn, and
finally settle into oscillating back and forth between
pauses, left and right turns at zero speed until time
runs out. Note that the probability of left and right
turns in the terminal hidden state 3 are about the
same. In Figure 4, the HMM encodes the following
very different strategy: pause for a while, make a
left turn at zero speed, and then settle into an ac-
tion pattern with a consistent preference for turning
to the right at zero speed. That is, the subject no
longer oscillates back and forth when hemmed in
by mines, she sweeps them from left to right trying
to find a gap between the mines. This behavior is
fairly close to the near-optimal policy for Part 3. In
fact, with practice we can get her to spend less time
in the state labeled 1, completely eliminate state 2,
and in state 3, we can zero out her tendency to
pause and increase her probability to turn right.
This analysis forms the basis for designing lessons
to help the subject acquire greater competence at
the task.

How good a fit to performance does the model in
Figure 2 provide? The results on Subject 5 for day
2, for episodes 45-67 and episodes 68-90 are shown
in Table 3. Note that although the magnitudes pro-



0.73 0.62 1

0.27 0.38
ACTIONS: OUTPUT PROB
0 0 0.82 0.05 0.37
right O 0.0024 0.00 0.553
left O 0.025 0.95 0.07
other 0.131 0.00 0.00

Figure 4: A hidden Markov model that generates
and explains the behavior of Subject 5 in states
where all sonars are blocked, day 2, episodes 68-90.

D 2, ep 45-67 | Succ | Exp | Timeouts | Total
Subject 5 0 12 11 23
Model 0 17 6 23
D 2, ep 68-90 | Succ | Exp | Timeouts | Total
Subject 5 0 2 13 15
Model 0 4 11 15

Table 3: The behavioural fit of the new hybrid
model to Subject 5, day 2, episodes 45-90.

duced by the model only coarsely approximate those
produced by the subject, the trends are captured.
For example, both model and subject increase the
number of timeouts and reduce the number of their
explosions. To get better fits to the performance
data, we are currently experimenting with distribu-
tions for Parts 1 and 2 conditioned additionally on
the previous action.

Conclusions and Related Work

Our work builds on several distinct pieces of work in
the cognitive science as well as the machine learning
community. The use of probabilistic models in gen-
erating hints for performance improvement is con-
sidered by (VanLehn, et. al., 1998). Our work uses
a mixture of probabilistic models (conditional ac-
tion distributions and HMMs) instead of Bayesian
networks, and our models are automatically learned
from visualmotor data. While the structure of the
model is obtained from task analysis (Fredericksen
and White, 1989), the parameters are learned by
sampling the visualmotor data corpus. The idea of
behavior cloning introduced by (Sammut et. al.,

1998) underlies our approach, however the specific
techniques for partitioning and learning from non-
stationary data are different and novel.

In sum, we have developed a new hybrid model
for the NRL Navigation task and presented meth-
ods for automatically learning it from low level vi-
sualmotor data. The model succinctly represents
the deviation of the subject’s policy from a near
optimal policy, and allows directed design of new
training instances. The model is expressive enough
to capture individual differences in strategy. Our
current work is to provide closer behavioral fits to
the visualmotor data by using richer probabilistic
representations.
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