
UCLA
Technical Reports

Title
The Low Power Energy Aware Processing (LEAP) Embedded Networked Sensor System

Permalink
https://escholarship.org/uc/item/5ft2s305

Authors
Dustin McIntire
Kei Ho
Bernie Yip
et al.

Publication Date
2005

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ft2s305
https://escholarship.org/uc/item/5ft2s305#author
https://escholarship.org
http://www.cdlib.org/

The Low Power Energy Aware Processing (LEAP)
Embedded Networked Sensor System

Dustin McIntire, Kei Ho, Bernie Yip, Amarjeet Singh, Winston Wu, and William J. Kaiser
Electrical Engineering Department

University of California, Los Angeles
Los Angeles, California

Abstract— A broad range of embedded networked sensor (ENS)
systems for critical environmental monitoring applications now
require complex, high peak power dissipating sensor devices, as
well as on-demand high performance computing and high
bandwidth communication. Embedded computing demands for
these new platforms include support for computationally
intensive image and signal processing as well as optimization and
statistical computing. To meet these new requirements while
maintaining critical support for low energy operation, a new
multiprocessor node hardware and software architecture, Low
Power Energy Aware Processing (LEAP), has been developed.
This architecture integrates fine-grained energy dissipation
monitoring and sophisticated power control scheduling for all
subsystems including sensor subsystems. The LEAP architecture
enables complex energy-aware algorithm design by providing a
simple interface to control numerous platform and sensor power
modes and report detailed energy usage information. This paper
also describes experimental results of a new distributed node
testbed based on LEAP demonstrating that by exploiting high
energy efficiency components and enabling proper on-demand
scheduling, the LEAP architecture meets both sensing
performance and energy dissipation objectives for a broad class
of applications. This testbed including the network of distributed
LEAP nodes and a system producing physical, mobile events
provides a development environment for LEAP-hosted
algorithms. New design principles, detailed implementation, and
in-network programming and remote debugging capabilities of
this platform are also described. While this is the first report of
the LEAP system, it has been deployed for nearly one year with
50 users developing energy aware systems.

Keywords-embedded wireless networked sensor, energy-aware
multprocessor platform, sensor platform hardware and software
architecture

I. INTRODUCTION
A broad range of embedded networked sensor (ENS) systems for

important environmental monitoring [1,2] and other applications now
require advanced capabilities to support high power sensor devices
such as imaging devices. Many of these applications also require
support for on-demand high performance computing and
communication for complex information processing. This includes
image processing, statistical computing, and optimization algorithms
required for selection of proper sensor sampling [3]. Prior
development of ENS platforms has resulted in low power systems well
matched to the requirements for supporting low power sensor devices
(for example, thermistor transducers for temperature sensing or
photodiode sensors for light level sensing). The computing demands
for such systems were matched to low data rate and low complexity
sensors [4-8]. However, prior ENS platforms designed to support
micropower sensor devices are not adapted to system level energy

minimization for a new, expanded set of ENS requirements in
environmental monitoring applications, ranging from ecosystem
monitoring to public health monitoring, and security applications.
These applications have large sensor and instrument device power
dissipation (specifically with peak power levels far in excess of the
ENS node computing and communication power levels). At the same
time, computing and communication demands are also advanced in
order to support the on-demand processing associated with these
complex sensors. While performance needs have increased, it is still
critical to minimize system energy dissipation. Solutions require both
hardware and software architectural changes to enable this. By
exploiting a new architecture and environmental phenomena
characteristics, both advanced performance and low energy can be
achieved.

EM
AP

P
ow

er
 C

on
tro

l
E

ne
rg

y
Ac

co
un

tin
gMicropower Sensor 1

Micropower Sensor 2

Low Power Radio

Platform Current Sensing

E
ne

rg
y

S
ou

rc
es

Platform Power Switching LE
AP

 P
ro

ce
ss

or

S
en

so
r 1

S
en

so
r 2

S
en

so
r 3

Sensor Interfaces

Energy Routing

Power Domains

W
ire

le
ss

 In
te

rfa
ce

EM
AP

P
ow

er
 C

on
tro

l
E

ne
rg

y
Ac

co
un

tin
gMicropower Sensor 1

Micropower Sensor 2

Low Power Radio

Platform Current Sensing

E
ne

rg
y

S
ou

rc
es

Platform Power Switching LE
AP

 P
ro

ce
ss

or

S
en

so
r 1

S
en

so
r 2

S
en

so
r 3

Sensor Interfaces

Energy Routing

Power Domains

W
ire

le
ss

 In
te

rfa
ce

Figure 1. LEAP ENS architecture showing the Energy Management and

Accounting Preprocessor (EMAP) and its defined power domains (shown in
shaded rectangles). Energy routing and data interfaces are indicated.

To address these diverse applications, a new design approach is
required. This must include the system’s sampling schedules and
computational demands required to meet information acquisition
requirements established by the application. Subject to the sensor
selection and sampling constraints, platform system operation must be
optimized to minimize energy. This requires a design approach that
focuses on minimizing energy required for each sensing, computing,
and communication task. The approach leads to the new Low Power
Energy Aware Processing (LEAP) multiprocessor architecture for
ENS nodes. LEAP is based on hardware and software system
partitioning specifically adapted to these new requirements.

LEAP, shown in Figure 1, includes an essential capability for
independent energy monitoring and power control for each subsystem.
The LEAP architecture has been developed to harness the use of
properly scheduled, energy efficient multiprocessor components
selected to achieve the lowest per task operating energy. It is
partitioned such that high efficiency, high power components (used on
demand) are assigned to a LEAP processor partition while
continuously vigilant micropower components are assigned to a LEAP
preprocessor partition. The Energy Management and Accounting
Preprocessor (EMAP) provides fine-grained monitoring and control of
energy dissipation in all ENS subsystems. Additionally it schedules
operation and power delivery to sensor systems and the LEAP’s host
processor. Finally, while EMAP enables the entire LEAP system to
operate at micropower vigilance, it also provides event detection and

triggering capability. This allows event-triggered transition to states
where sensors and computing systems are available on-demand
according to schedules that match application sampling requirements.

The LEAP architecture with the EMAP preprocessor further
partitions ENS node subsystems into separately managed power
domains supporting individual components (for example, individual
sensor devices and processors). Scheduling operation within power
domains enables the LEAP system to define a broad range of power
modes that are then matched to environmental monitoring demands.
This allows users to develop systems with application specific
operating modes intended to meet the minimum energy required for
information acquisition subject to specific sensor system and sampling
requirements of that application.

The LEAP hardware architecture is combined with a software
architecture providing developer access to system energy monitoring
and management along with subsystem operation scheduling.
Experimental results verify that this enables convenient developer
access and promotes development of energy aware systems. It also
provides an advance for in-network programmability and remote
debugging of all the components.

The design approach, high energy efficiency component selection
methods, operation scheduling, and development of the LEAP
platform are described in Sections II- V. Also, detailed experimental
verification of LEAP operational capability is described in Section VI
with a testbed system that supports complex sensors operating on-
demand and displaying power demand varying by four orders of
magnitude during event detection operations. This new experimental
testbed combines distributed LEAP nodes along with physical
environmental event generation systems presenting the distributed
system with accurately scheduled events for performance evaluation.
It has specifically demonstrated that LEAP on-demand scheduling of
high energy efficiency components enables algorithms that self-adapt
to event behavior and may adjust operational schedules to minimize
energy dissipation for a specific detection objective. These
experimental results and experience with many recent users of the
platform also demonstrate the convenient development path for
supporting LEAP applications. As will be described, while this is the
first report of the LEAP system, it has been in use for nearly one year
with 50 users successfully developing diverse energy aware systems
on the distributed testbed. Prototype LEAP based systems have also
been deployed for ecosystem monitoring. Open source release of
LEAP hardware and software is available [9].

II. LIMITATIONS OF CURRENT PLATFORMS
Currently, in order to approach energy dissipation levels consistent

with long term deployment, wireless sensors based on microcontroller
architectures are often employed as described in [4-8]. However, as
will be discussed, while still applicable for certain applications, these
microcontroller-based systems (operating alone) do not satisfactorily
support computationally demanding applications such as multiple
object recognition and tracking via imaging. Nor are these platforms
matched to high peak power dissipation sensors that must be
scheduled for on-demand use.

Early ENS node platforms were designed to support low power
dissipation sensors. These included, for example, geophone seismic
sensors, or in the case of microclimate sensing, temperature, humidity
and light sensors, and for security applications, microphones and
magnetometers. It is important to note that these sensor elements
share the common characteristics of not requiring substantial energy to
support their operation. Specifically, this energy dissipation is less
than that of the node platform itself. Indeed for some sensors, for
example the photodiode, no energy source is required, and only proper
preamplification and analog-to-digital data conversion energy
dissipation is required for sensor support. These sensor systems also

share the additional characteristic of producing a simple (scalar)
output that may be sampled at low rate imposing limited computing
demand that small microcontrollers can support.

However, emerging applications in environmental monitoring,
science and public health, and security now require capable sensors,
such as imaging to detect and identify events, and high performance
chemical sensors to detect contamination in atmospheric and aquatic
systems. These share the characteristics of high peak operating power,
well in excess of that of the platform itself, but may not be operating
during the entire application schedule. These new sensors also place
demands on the ENS platform computation required to extract event
information and to schedule adaptive sampling. Thus, it is now
important to provide a platform that supports yet higher capability
sensing and computation, while maintaining low average energy
operation.

III. DESIGN REQUIREMENTS AND DESIGN APPROACH
The LEAP ENS platform design is developed to meet a set of

design requirements derived directly from the current generation of
environmental monitoring applications. These include requirements
for computational resources, communication subsystems including
wired and wireless interfaces, sensor interfaces, sensor energy
dissipation measurement and control, local data storage, remote
software debugging capability, and remote reprogrammability. Each
of these design topics will be discussed further in the following
sections.

A. Design Requirements
The LEAP design approach exploits the characteristics of

environmental phenomena that permit sampling to occur at low rates
or in an event-triggered fashion for a broad set of applications. For
example, environmental imaging systems may only be required to
operate infrequently (according to events detected using other sensing
modalities or schedules). Many atmospheric and aquatic phenomena
display slow rate of change and may be critically sampled at low rate
or again according to events. This also implies that ENS sensor,
processor, and other components may also be employed on-demand
and only infrequently used. Thus, a new ENS platform intended to
support the complete set of environmental monitoring applications
must differ from previous ENS systems by introducing methods for
proper scheduling of sensing, computing, and communication tasks.

B. Design Approach: Computing Platform
Many deployments demonstrate that ENS systems supporting

environmental monitoring may operate in multiple modes while
serving specific applications. For many applications a vigilant state is
required to permit continuous phenomena monitoring. In this state
minimum energy dissipation is critical since system may spend the
majority of its time here. However, in these periods, signal processing
and communication occurs at low duty cycle since the lack of events
requires only infrequent coordination activities. Conversely, there are
periods of high activity when background information indicates that an
event of interest may be occurring. In this high vigilance state,
computational requirements can be extensive and often with real-time
constraints to support high performance sensor interfaces. Real-time
demands may require large computing resources to meet all deadlines.
In this phase energy efficiency of processor computation will be more
important than short term average power since a task operation is
bounded in time and the energy required to complete the task
ultimately determines the contribution to platform energy usage. The
desired effect is to minimize total energy used during these brief task
activity periods rather than to minimize peak power. As will be seen,
this results in architecture and component selection differing from that
of prior work.

The LEAP design approach for computing platform selection
begins with benchmark characterization of task energy efficiency for
those operations required by a typical ENS platform. Three example
benchmarks are described here. The first benchmark, the cyclic
redundancy check (CRC), tests efficiency for executing ubiquitous
error detection and correction algorithm tasks. The second benchmark
tests the typical ENS requirements for digital filtering of sensor data
streams using a finite impulse response (FIR) filter. The third
benchmark tests energy efficiency for Fast Fourier Transform (FFT)
data transformations on sampled data including images.

TABLE I. COMPARISON OF MICROPROCESSOR COMPONENTS

Benchmark Array
Size

Data
Size Platform Execution Time

(micro sec)
Energy

(mJ)
Relative

Efficiency
Stargate 24.8 0.013 28.4
MICA2 5150 0.367 1
Stargate 325 0.167 70.7
MICA2 16,800 11.800 1
Stargate 94.5 0.046 20.4
MICA2 14,500 0.934 1

FIR 256 32-bit

FFT 128 16-bit

CRC-32 1024 8-bit

Candidate LEAP components were characterized by direct

operational measurements on each processor using identical C code
algorithms. Supply current was monitored by a digital sampling
oscilloscope across a precision sense resistor. Benchmark execution
times were indicated with minimal latency by toggling a processor I/O
pin at the benchmark start and completion. Two platforms are
compared in this experiment, an Intel Stargate platform [10] based on
the Intel PXA 255 processor and the Crossbow MICA2 platform [11]
based on Atmel ATmega128L microcontroller.

Results of platform comparison summarized in Table I show that
the selection of the high performance processor option results in
dramatically reduced energy usage associated with an individual
computing task. Thus, this heavily favors the LEAP design approach
where such a processor is used on demand for execution of specific
tasks and is otherwise operating in a low power or disabled (no
applied power) state. Addressing the diversity of computing
constraints, LEAP chooses a heterogeneous multiprocessor solution as
has been suggested in [12-13]. By utilizing multiple processors,
LEAP selects a solution adapted to varying sensing needs.

C. Design Approach: Communication Interfaces
Experience in ENS platform deployments for environmental

monitoring demonstrates selection of wireless interfaces should
benefit not only energy efficient internode communication, but also
integration with existing deployed wireless infrastructure. Analogous
to the diverse computational requirements described above, the
wireless communications subsystem requires both a low-power, low-
bandwidth, network paging system to remain active for extended
intervals as well as a high bit rate data transport system for increased
vigilance periods. In order to maintain communications compatibility
with existing sensor platforms as well as to integrate with common
wireless infrastructure, we chose a dual radio approach. Similar to the
processing subsystem, the wireless communications subsystem must
have the capability for both low power operation and for highly energy
efficient bulk data transfer.

Energy efficiency analysis of widely used wireless devices was
performed based on supplier measurements and our measurements of
system energy dissipation for a range of broadband and narrow band
devices. Results comparing the energy to transmit and receive data
per bit using 802.11g and 802.15.4 standard devices demonstrate that
with equal link margins, the 802.11g interface is approximately 9
times more energy efficient than its 802.15.4 alternative. However,
the idle power in receive mode of the 802.11g solution is
approximately 14 times greater than the 802.15.4 solution. Thus
LEAP adopts a dual radio solution for both low power and high

efficiency with the EMAP preprocessor including the Chipcon
CC2420 802.15.4 radio compatible with numerous other existing low
power platforms [8] along with standard 802.11 interfaces hosted by
the high efficiency processor.

TABLE II. COMPARISON OF WIRELESS INTERFACE COMPONENTS

802.11g 802.15.4
Chipset Atheros 5006XS CC2420

Output Power 16dbm 0dbm
Rx Sensitivity -78dbm@36Mbps -90dbm@250Kbps

Tx Power (Max Output) 1320mW 57.42mW
Rx Power 924mW 65.01mW

Total Power 2.24W 122.43mW
Effective Throughput 20Mbps 125Kbps

Efficiency (nJ/bit) 112 979

D. Design Approach: Sensing System Support and Interfaces
As environmental sensing becomes increasingly ubiquitous, ENS

platforms must adapt to incorporate their wide ranging set of interfaces
as well as per sensor energy monitoring and control. These have been
provided on the PXA processor platform along with sensor interfaces
ranging from analog (for simple low power devices) to RS-232, I2C,
and SPI serial, and then finally to high speed interfaces including USB
and Ethernet. Again for energy efficiency and high performance, high
bandwidth sensors benefit from direct access to the host processor’s
memory subsystem. To enable these sensors, the LEAP system
provides direct access to the PXA processor external memory bus and
provides direct sensor to memory DMA to offload processing
overhead. This is the most efficient means of data transfer as it
eliminates any bus protocol controller or extraneous data copies.

E. Design Approach: Storage
Environmental monitoring deployments also demonstrate that

platform local storage is a critical design requirement to support
unattended and unserviced long term ENS node operation. Indeed,
through addition of storage, high energy cost communication episodes
may be scheduled to occur at times optimal for data transport. The
LEAP design is directed to enable application developers to optimally
select data allocation strategy to various memory types and to directly
measure resulting energy and performance.

F. Design Approach: Energy Monitoring and Management
Development and deployment of ENS systems has demonstrated

that the optimal choice of sensor system, processor, wireless interface,
and memory technology is not only application dependent, but may
also exhibit temporal dependence for a given application. For
example, as in the experimental example to be discussed below, a
target tracking system may display large resource demand for initial
target acquisition, but, may otherwise operate with reduced resource
demand when updating target bearing. The optimization problem is
observed to be further compounded for multi-user, multi-application
systems operating with different application objectives.

A primary challenge for fundamental ENS algorithm and
application development is the allocation of shared resources
including computing, storage, and communication, as well as critical
energy and sensor systems. Advances in balancing users demands has
been developed in operating systems design [14-16]. However, a
critical hindrance to this development and application to ENS systems
has been the lack of hardware support for system resource monitoring
and management. Clearly, fine-grained device level monitoring and
control must be included in the ENS design approach as has been
considered for conventional embedded systems [17-18]. However, in
the past, the lack of real time data has forced reliance only on off-line
profile data to estimate an algorithm’s performance.

The LEAP design approach provides this capability in the EMAP
processor by partitioning devices into many power domains with the
capability to monitor, enable or disable power to each domain, as well
as to respond to trigger events or conditions that restore or remove
power in each domain. The energy accounting information collected
by the EMAP is periodically transferred to the host processor and a
power management schedule provided by the host processor may be
delivered to the EMAP for each power domain.

G. Design Approach: Remote Access and Debugging
Experience in ENS system deployment demonstrates that rapid

development of algorithms and implementations in deployed systems
becomes increasingly important. Additionally, multi-user systems
require periodic retasking. The ENS platform design then must
include transport and verification of software updates and application
of new executable code images during unattended, remote, and
uninterrupted platform operation. In addition, remote debugging of
each component of the multiprocessor system is required. As will be
described, LEAP includes remote reprogrammability of each storage
element and debugging of the host processor and EMAP.

IV. LEAP HARDWARE ARCHITECTURE
The LEAP platform architecture is partitioned into a general purpose
computing module with its associated memory systems and
interfaces, and a preprocessor module dedicated to low power
sensing, energy accounting, and power domain scheduling. These
hardware modules will be discussed in the following section.

A. Slauson Processor Module
The Slauson processor module (SPM) shown in Figure 2, is based

on the Sensoria Slauson platform [19]. The SPM contains a PXA255
400Mhz processor and is populated with an SDRAM bank and an
Intel K3 Strataflash flash bank of up to 128MB and 64MB,
respectively. The core processor and memory subsystem may be
suspended with either 1, 2, or all 4 of the mobile SDRAM’s memory
banks preserved during the suspend state for reduced leakage current
while in self refresh.

180 pin Inter-board Header

I2C
SSP
UART
GPIO

Addr/
Data

3.3V/5V
supply

10bT
Ethernet RJ45

PXA255

SDRAM
x2

Flash
x2

PCMCIA
x2

MMC/
SDCard

RTC

180 pin Inter-board Header

I2C
SSP
UART
GPIO

Addr/
Data

3.3V/5V
supply

10bT
Ethernet RJ45

PXA255

SDRAM
x2

Flash
x2

PCMCIA
x2

MMC/
SDCard

RTC

Figure 2. Processor Platform Block Diagram (left) and Image (right)

In addition to the processor and memory components, the SPM
has dual PCMCIA interfaces configurable for either 3.3V or 5V
devices. Each of the PCMCIA slots may be independently isolated
and powered down. Local non-volatile data storage may be expanded
with the addition of a memory device into the SPM’s SD Card socket.
Communications are provided by an on-board SMC9196 10baseT
Ethernet controller (a 10baseT chipset was selected instead of the
more common 10/100 chipset due to the increased idle power needed
by the 10/100 chipset operating at higher clock rate). This Ethernet
controller may be suspended by software or hardware controls. Table
III describes the SPM operating states and current requirements.

The SPM includes an extensive set of interfaces via a 180 pin
inter-board header including serial buses such as two RS232 ports, two

SPI ports, I2C, and AC97 audio sampling ports. Additionally, the full
parallel memory bus is available with a total of 192MB of memory
space. Full memory-to-memory DMA transfers are possible via either
the PXA’s internal DMA or an external DMA controller. Power is
distributed via the inter-board connector as will be described. Time
synchronization options include an on board real time clock as well as
accessible inputs for external GPS synchronization. Various SPM
power states are shown in Table III.

B. EMAP Module
EMAP preprocessor, shown in Figure 3, developed by these

authors for ENS applications is mated to the SPM via the inter-board
connector. The EMAP utilizes a Texas Instruments MSP430F1611
microcontroller. This version of the MSP430 processor was chosen
for its large on chip RAM space (10KB) and its set of hardware
peripherals.

TABLE III. LEAP SPM CURRENT REQUIREMENTS FOR SEVERAL
OPERATING MODES

SPM Power State Supply Current
at 5V

Suspend 5mA
Operating System Idle Task 41mA
Operating System Idle with SD Card Based Filesystem 50mA
Operating System Idle with Ethernet without traffic 48mA
iperf execution with Ethernet at maximum throughput 140mA
Execution at 100 percent computing load 165mA

The EMAP allows the LEAP system to be subdivided into 5
power domains. Each domain is independently powered and isolated.
Power is supplied to each domain through a low-resistance current
sensing resistor. Detection of current is by differential high common
mode rejection ratio current sense amplifiers followed by antialiasing
filters. Five of the MSP430 internal 12-bit ADC inputs sample the
currents in each domain and current values are integrated to obtain
charge values. For each power domain, the EMAP exploits the power
off state to perform sense amplifier offset correction for the respective
domain.

MSP430

CC2420

180 pin Inter-board Header

USB

3.3V/5V
supply

External
Domain 1

Sensor 0

Sensor 1

External
Domain 2

External
Domain 3

Current
Sensor

Power
Switch

Current
Sensor

Power
Switch

Current
Sensor

Power
Switch

Current
Sensor

Power
Switch

Slauson
Domain

3.3V
supply

Current
Sensor

EMAP
DomainI2C

SPI

Power Jack
6-18V

32bit
Data

GPIO
ADCADC

MMCX

MSP430

CC2420

180 pin Inter-board Header

USB

3.3V/5V
supply

External
Domain 1

Sensor 0

Sensor 1

External
Domain 2

External
Domain 3

Current
Sensor

Power
Switch

Current
Sensor

Power
Switch

Current
Sensor

Power
Switch

Current
Sensor

Power
Switch

Slauson
Domain

3.3V
supply

Current
Sensor

EMAP
DomainI2C

SPI

Power Jack
6-18V

32bit
Data

GPIO
ADCADC

MMCX

Figure 3. EMAP Preprocessor Block Diagram (left) and image (right)

1) EMAP Module - Energy Measurement, Management,
and Sensor Interfaces

The EMAP’s power domains may be allocated according to
platform requirements. For the results described here these are
allocated to 1) EMAP module, 2) Slauson processor module, 3) up to
three external sensor systems (including in the experimental results
here, the imager). EMAP power supply rails, either 3.3 or 5V, are
jumper selectable. The EMAP may power down unused voltage rails
to eliminate the quiescent current draw of the voltage regulator. Up to
2A current is available for high power sensors.

The SPM may request the most recent charge accumulation values
from the EMAP. The EMAP will respond with each domain’s voltage
rail selection, sense amplifier offset value, and sense amplifier gain

constants in addition to the accumulated sum values. The host
processor then may accurately compute integrated charge and energy
for each of the power domains.

In addition to detailed energy monitoring, the EMAP provides a
power management scheduling capability. Each of the power domains
is electrically isolated from one another when powered off. This is
critical since current leakage paths (for example via current conveyed
by input protection diodes) to ground may appear when nonisolated
systems are operated in a suspend condition. Current inrush limiters
also protect the LEAP system from individual domain current inrush
and resulting supply voltage droop when enabling domains.

Two low voltage analog sensor inputs are provided with 12bit
ADC inputs operating at sampling rates up to 10 kHz, and with a 3.0V
precision voltage reference. These ADC inputs may be connected to a
variety of low bandwidth sensors for simple event detection.

2) EMAP Module – Processor Communication
The MSP’s dual USART controllers may be configured to support

I2C, SPI, or UART serial protocols. I2C is chosen for inter-board
communications since it provides a multi-master capability with
implicit bus arbitration. This permits convenient expansion of the
LEAP platform to include multiple EMAP modules and multiple high-
performance processors. The LEAP system is implemented with the
SPM and EMAP processors operating as I2C peers. Either device
may initiate transactions with the other or with any other device. The
second MSP USART controller is configured as an SPI master for
access to the CC2420 radio. An MMCX external antenna connector is
included.

3) EMAP Module - Low Power Operation
For purposes of energy and performance control, the MSP’s CPU

frequency may be controlled from 100KHz to 8MHz or fixed under
software control by an external crystal. Further, the EMAP hardware
and software has been designed to provide various power modes. The
MSP enters the LPM3 power state when running the operating
system’s idle thread. Further, a suspend (LPM4) state may be entered
through software. The MSP processor and all EMAP peripherals are
disabled. The system wakes only due to a sensor signal transition.
These states are shown in Table IV.

TABLE IV. LEAP EMAP CURRENT REQUIREMENTS FOR SEVERAL
OPERATING MODES

EMAP Power State Supply Current
at 5V

Suspend (LPM4) 385µA
Current sensing task and idle task (LPM3) 419µA
Previous with all power domains enabled 862µA
Previous with 1.8V RF power enabled 950µA
Previous with all power domains and supplies enabled 7.6mA

4) EMAP Module - Remote Debugging
To facilitate remote software upgrade and source level debugging,

the MSP processor’s JTAG interface has been provided to the SPM’s
PXA processor through the inter-board connector. This allows the
SPM to assume control of the MSP processor’s execution, to program
internal flash, and to perform any action on the MSP’s I/O pins. The
host processor acts as the proxy agent for a remote user’s debugging
system. Debugging commands that are issued by a remote user’s
debugger are routed to the host processor and converted to JTAG
command sequences. The software requirements for remote
debugging will be discussed in a later section.

V. LEAP SOFTWARE ARCHITECTURE
A. SPM PXA Processor

In order to support the increasing demand to host complex
applications, such as the EmStar runtime environment [20] and R

statistical computing package [3], the LEAP software framework is
comprised of multiple tiers to ensure dependable operation. It is
designed to allow recovery from many common faults. The tiers are
described below in the order at which they appear at boot time.

The first LEAP software tier is the system bootloader, Redboot (a
configuration of the eCos real time operating system) [22]. This
provides methods for flash memory manipulation, support for remote
file retrieval, and loading and execution of other operating systems.
The LEAP bootloader itself may be updated with RTOS library
elements or completely replaced over remote links. Boot commands
are stored in flash-based configuration script and boot the Linux
operating system, the next tier. The Slauson PXA processor supports
the Linux 2.6 version kernel, the second tier, compiled with module
support for device drivers, network protocols, and power management.

The third tier to appear at boot time is a compressed, read-only
cramfs filesystem [23] containing the Busybox [24] utility set. At
boot time, this tier validates the integrity of the read-write filesystem
composed of a JFFS2 image.

Upon validation of the JFFS2 image, the cramfs image transfers
control to the fourth software tier starting the init program located on
the JFFS2 filesystem. The JFFS2 image contains the standard Linux
directory structure and boot scripts and a larger set of filesystem
utilities and libraries linked against the glibc library.

This tier also includes the SPM to EMAP communication system.
Applications operating over Linux on the SPM access EMAP utility
functions that enable interaction with the EMAP via I2C
communication. A utility, msp-client, provides a convenient interface
with both an interactive model for development and testing, as well as
a command sequence model. EMAP control provided by msp-client
includes access to sensor data, energy and charge data, and power
control for all domains. Sensor data access provides the ability to
measure instantaneous, average, peak, minimum, and other signal
attributes.

The msp-client command set also includes a powerful control
interface to set, query, and modify power management schedules on a
per power domain basis. These schedules may become arbitrarily
complex by setting future start times, repeat period, power domain,
and power management action. Each power management command
issued by msp-client to the EMAP is assigned a unique key permitting
additional msp-client access to observe and manipulate schedules. It is
important to note that not only may sensor resources be scheduled for
power, but the SPM may be powered down (or placed in suspend) to
conserve energy and then to be re-enabled at a future time according to
a scheduled action.

Finally, msp-client also includes many functions that permit
control of system response to trigger events that may be set and
manipulated. These are based on sensor input signals and may trigger
an EMAP action to enable the SPM or another power domain.

B. EMAP MSP Microcontroller
Many operating systems are available for the SPM’s PXA

processor and the EMAP’s MSP microcontroller. The EMAP’s
experimental results reported here are obtained using a traditional
priority driven, preemptive RTOS known as uC/OS [24]. This
operating system was chosen to meet development requirements
including supporting source level debugging, such as through the
GNU debugger, gdb.

The EMAP software architecture includes a set of uC/OS objects
designed for compatibility with the small MSP memory footprint. The
workload for our design was partitioned into the following software
tasks: host processor communication using I2C messages, power

management scheduling, sensor interface monitoring and threshold
triggering, and CC2420 radio communications.

Figure 4 shows the EMAP software components. First, the interface to
the MSP microcontroller is supported by I2C and SPI drivers noted
above. The I2C device driver layer performs both blocking and
nonblocking operations to the I2C hardware. Atomic hardware access
is maintained by use of a guard semaphore. Tasks requesting blocking
reads or writes may set optional timeout values to prevent deadlock
occurrences. The I2C device driver utilizes the MSP’s DMA
hardware to transfer data blocks to and from the I2C hardware
controller unit. Upon completion of the requested transfer, the DMA’s
ISR is run which signals the I2C device driver of the completed event
by posting to the driver’s transaction complete semaphore. This will
unblock the device driver and allow the waiting task’s read or write
request to complete.

Using the MSP’s DMA substantially reduces the interrupt
overhead incurred versus doing single byte transfers through
programmed I/O operations. Similarly, blocking tasks with a
semaphore when waiting for DMA hardware to complete allows other
tasks to run during the blocked period or for the CPU to shutdown to
reduce power.

The I2C messaging task is responsible for receiving and
composing messages to and from the host processor. It communicates
with the msp-client application mentioned in the previous section.
This task utilizes the I2C device driver layer to provide master and
slave read and writes through MSP’s I2C hardware controller.

MSP430

I2C
Messaging

Task

PM
Schedule

Task

CC2420
Comms

Task

Sensor
Interface

Task

I2C

Sensor
Q

PM QComms
Q

SPI

DMA0 DMA1 DMA2

I2C
Driver

SPI
Driver

ADC GPIO

Figure 4. EMAP software architecture showing uC/OS objects operating
over the MSP hardware devices in the shaded rectangle.

All commands received from the msp-client application are parsed
within the I2C messaging task and any reply messages are composed,
and returned. The I2C messaging task will handle messages that do
not require specialized actions without waking other threads including
read back of system settings or of charge accumulation values.

The power management task is responsible for processing and
scheduling all power management commands issued by the msp-client
application. When a new msp-client message arrives it is processed
by the I2C messaging task. If that command is a power management
command, it is added to the power management task’s list of actions
and the task is signaled to run. The power management task then
chronologically sorts all new and existing power management actions
in the scheduled actions list. By chronologically sorting the list, it can
be parsed quickly for expired actions. The power management task
then suspends itself until the time of the first scheduled action or until
a new power management command arrives. If no new command
message arrives, the action’s delay timer expires. The power
management task then examines the scheduled action list looking for
runnable actions. An action is runnable when it is on the scheduled
actions list and it is in the past. The power management task removes
each runnable action from the actions list. The action, which can be to
enable or disable power, or to trigger a wakeup, is performed on the

specified power domain. If the action is not periodic, the action object
is recycled to the free actions list. If the action is marked as periodic,
then the period interval is added to the actions scheduled run time and
the action is reinserted into the actions list.

The sampling and triggering task is responsible for setting the
periodic sample rates for the on chip ADC channels connected to the
two external sensor inputs and to set the wakeup trigger threshold
values. Sensor sampling and threshold settings commands issued by
msp-client are first parsed by the I2C messaging task. Relevant
messages to the sampling and triggering task will wake this thread to
process the message contents. The sampling and triggering task
checks the validity of sensor sampling commands such as assuring that
the selected sensor sample rate is compatible with the charge
accumulation sampling rate. This task is also responsible for resetting
triggered wakeup actions and setting sensor threshold values and
detection edges. Should this task be run by the ADC interrupt handler
due to a threshold excursion event, it will perform all wakeup actions
on power domains that are registered for wakeup event handling.

 The last EMAP task is for communication through the CC2420
low-power radio. The CC2420 communications thread utilizes the
SPI driver for reads and writes to the CC2420’s data port. Like the
I2C driver the SPI driver uses DMA for data transfer. Unlike I2C, the
SPI bus operates in full duplex. To support this, two DMA channels
are necessary. One DMA channel reads incoming data from the SPI
receive buffer while the second directs outbound data into the transmit
buffer. The CC2420 communications task leverages a CC2420 utility
library that abstracts the CC2420 into basic access functions such as
power mode settings and to transmit or receive packets.

VI. EXPERIMENTAL RESULTS
Experience with development of applications in energy aware

environmental monitoring using LEAP demonstrate that a broad range
of algorithms may be classified into reactive, proactive, and hybrid
methods. Reactive algorithms respond to external events captured by
sensor data (and then trigger operation of high peak power and high
performance LEAP subsystems) while proactive methods attempt to
estimate an event arrival in advance such that the system is able to
perform some action without the latency associated with response to
trigger events. Hybrid algorithms combine the reactive and proactive
approaches in any combination. Further, it is important to note that
multiple LEAP nodes contribute to detection and tracking of
phenomena, vastly expanding the capability for achieving both low
operating energy and high detection and tracking performance.

Algorithm selection depends largely on the phenomenon of
interest as well as sensor platform capabilities. Reactive algorithms
may be well suited to applications where the sensors and sensor
platforms are highly agile in time and energy usage or where the
sensed phenomena are poorly understood. Alternatively, proactive
approaches may suit less agile sensors and sensor platforms or where
the sensed phenomena are well understood and may be predictable
with sufficient certainty over short time periods. These defining
characteristics may even evolve over time as a system learns
environment characteristics. The LEAP system may support each
algorithmic class with resource management implemented to permit
the lowest operating power consistent with sensing requirements.

A. LEAP Testbed
An experimental system is required to enable detailed

characterization of each algorithm with respect to energy and
distributed sensing performance. This has been accomplished by
deploying many LEAP based nodes in a distributed network, each
supporting multiple sensor inputs for environmental event detection.
In addition, a new testbed has been developed that provides accurately
reproducible physical events that may be detected both by the

micropower, constantly vigilant sensors as well as by the on-demand
use of high performance imaging devices supported by each LEAP
based node. The testbed includes six distributed nodes each supporting
1) an SMC2532 802.11b wireless interface, 2) a SNC-RC30N high
performance embedded networked cameras capable of zoom, pan, and
tilt operating in a sensor power domain, and 3) a photodiode sampled
by the EMAP ADC. The photodiode measures only light intensity and
does not enable localization or color identification.

B. Event Generator
An essential testbed component is a physical event generator

producing a moving target signal that may be detected using imaging
sensors as well as using a limited capability but micropower sensor
contained in the EMAP power domain. This allows us to exercise the
sensor device and sensor power domain. The LEAP testbed, shown in
Figure 5, relies on a physical event generator consisting of two
horizontal linear arrays of 32 individually controlled lamps distributed
over an 8 m length. Both red and green lamps are attached to the rigid
assembly at fixed intervals and power for each lamp is sequenced by
an independent relay control, itself supported by an event generator
server platform. The event generator system is remotely accessible
with capability to repeatedly perform diverse experiments thereby
extracting both instantaneous discrete and statistical characteristics of
system performance.

Actuated
Image
Sensor
Node

Field of View
Of

Trigger Sensor

Event Generator
Server

Viewing
Obstacle

Actuated
Image
Sensor
Node

Field of View
Of

Trigger Sensor

Event Generator
Server

Viewing
Obstacle

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000

Time (seconds)

N
od

e
Po

w
er

 (W
)

0

1

2

3

4

5

6

N
od

e
En

er
gy

 (k
J)

Figure 5. The Event Generator and distributed LEAP nodes are shown at

upper left with a typical LEAP node shown at upper right. Power and energy
dissipation (dashed line) for one typical node in the network is shown in the

bottom panel (all nodes display similar behavior for this algorithm).

The event generator server platform manages a series of lamp
sequence test vectors yielding dynamic events. For example,
sequencing of lamp state, such that only one lamp is illuminated at any
time, causes an apparent motion of the illumination providing a target
that must be detected and tracked. Test vectors for a typical
experiment produce event patterns that are classified into contexts
mirroring many forms of environment phenomena. For example,
events were classified into slow, medium, and fast motion
corresponding to velocities and events appeared at slow, medium, and
fast issues rates. An environmental context in this instance may consist
of many events with a specific choice of velocity and issue rates and

may itself remain fixed for a period, prior to a change in context and a
resulting new velocity, new issue rate, or both. A distribution of
random events and context classifications may be introduced as well.
An example testbed configuration is shown in Figure 5.

C. Algorithm Design and Implementation
In addition to enabling fundamental investigations of energy

aware algorithms in a precise, reproducible fashion, the LEAP systems
and testbed have supported both an undergraduate and graduate
course. Student course projects have ranged from energy aware
detection and tracking of moving objects to energy aware fault
detection and recovery systems that all adapt to environmental context
to reduce energy. All algorithms are distributed and involve software
systems operating only on the LEAP nodes. Course project
management has been enabled also by a unique testbed system that
manages LEAP node software distributions automatically on each
node, for each user, according to a usage schedule that is accessible to
all users. Demonstration of robust operation results from having
supported both research and over 50 student users.

A current topic of investigation is the development of novel
algorithms that are now enabled to manage energy, schedule resource
usage, and seek to optimize sensing performance. The experimental
results from testbed characterization of an example algorithm are
shown in Figure 5. This algorithm was developed to solve the
problem of event detection and identification with the requirement that
a distributed set of nodes must detect and identify an object (the
moving lamp signal) and determine its color (red or green) and detect
its precise location using the imager, and finally compute velocity.
This all must be accomplished while minimizing energy usage by
limiting the time of operation of the SPM and camera image sensor.
Camera power usage is large at seven watts peak, thus strongly
encouraging the algorithm designer to apply LEAP EMAP capabilities
to minimize its operation time. This encourages the development of
hybrid algorithms that operate both in a reactive mode for discovery of
instantaneous environmental context and a proactive mode for
operation at minimum resource usage. Algorithm designs are
constrained to those that uniformly distribute energy usage demands to
all nodes. Finally, algorithm designers seek to minimize the
probability of false positive or false negative detection error.

The algorithm for which results are shown in Figure 5, reactively
seeks to determine the rate at which events occur and the velocity
associated with events, then proactively schedules the operation of
distributed nodes to minimize their energy usage. Supporting
applications, hosted on the SPM were developed using the EMAP
msp-client. Energy in each power domain was logged..

Figure 5 displays data from the period immediately after a test
initiates at t = 0. Within 500 seconds the system has classified the
environment behavior and has settled into a self-determined operation
cycle where at approximately each 200 seconds this LEAP node is
triggered from a sleep state for event characterization – no
misdetections occur during this period. A second node also must
operate to ensure localization in the event of imaging obstacles that
may obscure the target. It is important to note that energy is used only
episodically during servicing of the event. The large energy power
excursions seen in the figure are due to imager operation. Then note
that at t = 2400 seconds a change appears in the environment and a
new context appears with a reduced event issue rate. Initially unaware
of this change, the LEAP system detects this new context and expends
energy in sensing and communication until the distributed LEAP
nodes discover the new event context and again settle into a properly
proactive optimized cycle of operation for t > 3000 s. This algorithm
is a demonstration of capability and represents one member of a broad
class of new investigations that may now be pursued.

VII. CONCLUSIONS AND FUTURE WORK
The new LEAP ENS platform including a heterogeneous

multiprocessor architecture has been developed based on a design
approach addressing the challenge of supporting complex and
powerful sensor systems, embedded computing platforms, and high
performance communication interfaces. To achieve desired
performance goals while simultaneously meeting energy dissipation
requirements, this design approach focuses on exploiting high energy
efficiency components that are scheduled for operation on-demand
operation. The LEAP system relies on the EMAP module for
maintaining low power, constantly vigilant operation while providing
event detection and fine-grained energy accounting.

The LEAP system is now in active use for development of a wide
range of ENS applications in many environment monitoring
applications. The feasibility of operation at low duty cycle with
multiple power domain scheduling has been demonstrated and
experimentally verified, as discussed here. Many users have
developed complex and robust algorithm implementations based on
the SPM tool set including the EMAP msp-client interface.

Future work enabled by the LEAP architecture includes the
development of many additional platforms now purposefully designed
for energy monitoring tasks. Other systems will provide new
operating system instrumentation providing high resolution, per-task
and per user monitoring of energy usage. Also, since boot times for
sensor systems and the Linux OS can be many seconds, the energy
expended in dynamic power management transition may dominate the
overall energy expenditure and thus reduce the effectiveness of
dynamic power management in the limit of rapidly arriving events.
Thus, future LEAP development includes new systems including
methods that automatically preserve minimal operational state when
entering low power modes to reduce the live memory footprint during
dormancy periods. This further includes systems that detect and
preserve active data before entering a suspended state while discarding
unused or recoverable information. Data would further be preserved
to the most energy efficient storage medium based upon its estimated
volatility and lifetime such as previously proposed [25-26]. During
resume operations, data will be restored to its previous state according
to a lazy algorithm such that immediate execution of a foreground
operation will be possible without incurring the delay of complete
memory restoration and further reduce transition energies.

The LEAP system reported here is being deployed in critical
environmental monitoring systems for both static and actuated sensor
networks as well as in research testbeds. These energy aware
capabilities now may be added to existing sensor networking run time
systems such as EmStar [19] and included into the new Tenet
microserver and mote architectures [27].

ACKNOWLEDGMENT
This material is based upon work supported by the National

Science Foundation (NSF) under Grant No. ANI-00331481. Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES
[1] D. Estrin, G.J. Pottie, M. Srivastava, “Instrumenting the world with

wireless sensor networks,” ICASSP 2001, 2001.
[2] C. M. P. Ozanne, D. Anhuf, S. L. Boulter, M. Keller, R. L. Kitching, C.

Korner, F. C. Meinzer, A. W. Mitchell, T. Nakashizuka, P. L. Silva Dias,
N. E. Stork, S. J. Wright, M. Yoshimura, “Biodiversity meets the
tmosphere: A global view of forest canopies,” Science, vol. 301, pp.
183-186, July 2003.

[3] Maxim Batalin, Gaurav S. Sukhatme, Yan Yu, Mohammad H. Rahimi,
Mark Hansen, Gregory Pottie, William Kaiser, and Deborah Estrin,

"Call and Response: Experiments in Sampling the Environment," ACM
SenSys, Baltimore, Maryland, Nov 2004, pp. 25-38,

[4] K. Bult, A. Burstein, D. Chang, M. Dong, M. Fielding, E. Kruglick, J.
Ho, F. Lin, T. H. Lin, W. J. Kaiser, and others, 1996 International
Symposium on Low Power Electronics and Design, Digest of Technical
Papers, “Low Power Systems for Wireless Microsensors”, Proceedings
of 1996 IEEE International Symposium on Low Power Electronics and
Design. pp 17-21. 1996.

[5] J. Agre, L. Clare, G. Pottie, and N. Romanov, “Development platform
for self-organizing wireless sensor networks,” Proceedings of
Aerosense, International Society of Optical Engineering, 1999, pp. 257-
268.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister. "System
Architecture Directions for Network Sensors”. Proceedings of ASPLOS,
2000, pp 93-104, 2000.

[7] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling Ultra-Low
Power Wireless Research. Fourth International Symposium on
Information Processing in Sensor Networks, IPSN 2005, pp 364-369
April 2005.

[8] L. Nachman., R. Kling, R. Adler, J. Huang, V. Hummel. The Intel Mote
Platform: A Bluetooth-Based Sensor Network for Industrial Monitoring.
Fourth International Symposium on Information Processing in Sensor
Networks, IPSN 2005, pp 437-442, April 2005.

[9] LEAP Systems: http://www.cens.ucla.edu/portal/nims/
[10] http://platformx.sourceforge.net
[11] http://www.xbow.com/Products/products.htm
[12] B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho, and L. Wang. A

modular power-aware microsensor with 1000x dynamic power range.
Fourth International Symposium on Information Processing in Sensor
Networks, IPSN 2005, pp 469-474, April 2005.

[13] C. Worth, M. Bajura, J. Flidr, and B. Schott, “On-demand Linux for
Power-aware Embedded Sensors,” Proceedings of the Ottawa Linux
Symposium, Ottawa, Ontario, Canada, July 26-29, 2004.

[14] J. Flinn, M. Satyanarayanan, “Managing Battery Lifetime with Energy-
Aware Adaptation”, ACM Transactions on Computer Systems, Vol 22
No. 2, pp 137-179, May 2004.

[15] M. Waitz “Accounting and Control of Power Consumption in Energy-
Aware Operating Systems”, Diploma Thesis, 2002, University of
Erlangen-Nurnberg

[16] G. Banga, P. Druschel, and J.C. Mogul, ‘Resource Containers: A New
Facility for Resource Management in Server Systems”, Proceedings of
the 3rd Symposium on Operating Systems Design and Implemenatation,
1999

[17] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. ECOSystem:
Managing energy as a first class operating system resource. In Tenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS X), 2002.

[18] M. Anand, E. Nightingale, J. Flinn. Ghosts in the Machine: Interfaces
for Better Power Management. In Proceedings of the 2nd Annual
International Conference on Mobile Systems, Applications, and Services
(MOBISYS '04), Boston, MA, June 2004.

[19] Sensoria Slauson Processor Module http://www.sensoria.com
[20] L. Girod and J. Elson and A. Cerpa and T. Stathopoulos and N.

Ramanathan and D. Estrin, “EmStar: a Software Environment for
Developing and Deploying Wireless Sensor Networks,” USENIX, 2004.

[21] Redboot http://ecos.sourceware.org/redboot/
[22] cramfs http://sourceforge.net/projects/cramfs/
[23] Busybox http://www.busybox.net/
[24] J. Labrosse, MicroC/OS-II, The Real Time Kernel, CMP Books; 2nd

Edition Edition, June 2002
[25] H. G. Lee and N. Chang, "Energy-Aware Memory Allocation in

Heterogeneous Non-Volatile Memory Systems," in Proceedings of
International Symposium on Low Power Electronics and
Designs(ISLPED 2003), pp. 420-423 , Seoul, Korea, August 2003.

[26] H. Huang, P. Pillai, and K. G. Shin, "Design and Implementation of
Power-Aware Virtual Memory," in Proceedings of USENIX Technical
Conference, June 2003.

