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Abstract 
 

Computational methods to improve clinical variant classification for  

the diagnosis of rare genetic disorders 
 

by 
  

Andrew George Sharo 
 

Doctor of Philosophy in Biophysics 
 

Designated Emphasis in Computational and Genomic Biology  
 

University of California, Berkeley 
 

Professor Steven E. Brenner, Chair 
 
 

The term ‘rare disease’ may at first suggest a problem that, if addressed, would benefit few and 
lead only to obscure scientific discoveries. Nothing could be further from the truth. Since before 
the discovery of the structure of DNA, rare disease research has enabled essential biological 
insights. These insights are surpassed only by the clinical innovations that were developed to 
treat rare disease, which benefit not only those living with rare disease but also millions of 
individuals living with common diseases. In the past decade, whole genome sequencing has 
revolutionized the diagnosis and care of individuals with rare genetic disease. However, at least 
half of individuals do not reach a conclusive diagnosis after whole genome sequencing. 
Structural variants (SVs; genomic variants longer than 50 base pairs) are the genetic cause of a 
portion of these unresolved cases. As sequencing methods using long reads become more 
accessible and structural variant detection algorithms improve, clinicians and researchers are 
gaining access to thousands of reliable SVs of unknown disease relevance. To address this 
emerging need, I developed StrVCTVRE to distinguish pathogenic SVs from benign SVs that 
overlap exons. StrVCTVRE performs accurately across a wide SV size range on independent 
test sets, which will allow clinicians and researchers to eliminate about half of SVs from 
consideration while retaining a 90% sensitivity. I anticipate clinicians and researchers will use 
StrVCTVRE to prioritize SVs in patients where no SV is immediately compelling, empowering 
deeper investigation into novel SVs to resolve cases and understand new mechanisms of 
disease.  

To illustrate the value of StrVCTVRE, I next applied it to a cohort of 50 probands with 
undiagnosed rare disease. Linked-read sequencing and optical mapping were performed for 
each proband, mother, and father in this cohort. I investigated the diagnostic value of these two 
methods by comparing them to short-read sequencing. Clinical analysis and validation 
discovered 11 diagnostic or candidate SVs in this cohort. Analysis of optical mapping and 
linked-read sequencing data were each able to detect all 11 SVs. Analysis of short-read 
sequencing data could detect only 7 out of 11 (64%) of these SVs. After prioritizing the SVs in 
each case with StrVCTVRE, I considered the number of SVs a clinical researcher would need to 
manually investigate to find the diagnostic or candidate SV. This number of SVs was 
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surprisingly consistent across methods, and this can be attributed to the greater sensitivity of 
newer methods and the poor specificity of older methods. While newer methods detect more 
SVs with greater specificity, I found that they have not been carefully calibrated in several 
measures that are clinically important, including SV type, zygosity, and endpoint accuracy. 
These are mostly algorithmic limitations and should improve as these methods mature.  

An important limitation of SV classification is the relatively few SVs that have been cataloged as 
pathogenic, compared to the number of cataloged single nucleotide variants (SNVs). To 
investigate how the accuracy of cataloged variants has changed over time, I shifted my focus to 
SNVs. Curated databases of pathogenic SNVs assist clinicians and researchers to interpret 
genetic testing results and classify novel variants. Yet these databases contain errors. Several 
studies have sought to identify cataloged variants that are misclassified, but none have 
recorded how variant misclassification has changed over time. Using archives of ClinVar and 
HGMD, I investigated how variant misclassification has changed over six years across different 
ancestry groups. I considered a class of disorders that are often highly penetrant with neonatal 
phenotypes—inborn errors of metabolism (IEMs) screened in newborn screening—as a model 
system. I used samples from the 1000 Genomes Project (1KGP) to identify individuals with 
genotypes that were annotated as pathogenic. Due to the rarity of IEMs, nearly all annotated 
pathogenic genotypes indicate likely variant misclassification. While the accuracy of both 
ClinVar and HGMD have improved over time, HGMD variants currently imply two orders of 
magnitude more affected individuals in 1KGP than ClinVar variants. I observed that African 
ancestry individuals have a significantly increased chance of being incorrectly predicted to be 
affected by a screened IEM when HGMD variants are used. However, this African ancestry bias 
was no longer significant once common variants were removed in accordance with recent 
variant interpretation guidelines.  
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Chapter 1: Introduction 

In the United States, rare diseases are legally defined as those that affect fewer than 200,000 
Americans1. Since epidemiological data for most rare diseases are unavailable, their true 
burden is difficult to estimate, but there could be as many as 25 million Americans living with a 
rare disease2. Since most rare diseases present in childhood3, lifetime care costs for these 
individuals can amount to several millions of dollars per person, a significant healthcare 
burden4. Additional costs come from undiagnosed genetic diseases, which, in the absence of 
treatment, can increase demand for expensive procedures, such as organ transplants5. A large 
portion of rare diseases are caused by one or more genetic variants in a single gene, yet the 
gene underlying more than 3,000 of these diseases remain unknown6. As scientists who are 
often publicly funded, we should aim to do research that both deepens our understanding of 
biology and broadly improves society. Studying rare disease does both.   

Historically, insights from rare disease research have resulted in treatments that have improved 
the lives of not only those living with rare disease but also millions living with common 
diseases7. In the 1970s researchers sought a treatment for familial hypercholesterolemia (FH), a 
rare disease in which individuals are born with excessive levels of LDL cholesterol and suffer 
early heart attacks. Pioneering work by Japanese biochemist Akira Endo into a class of 
cholesterol-lowering drugs called statins provided a potential treatment. The first clinical trials 
involving statins treated individuals with FH8. As the safety and efficacy of statins became clear, 
they were used more broadly. Statins are now taken by millions of people worldwide to treat 
high cholesterol. Consider also the rare disease hypophosphatasia, which results in brittle 
bones early in life. It is treated with bisphosphonates, a class of drugs that inhibit cells that 
break down bone tissue. Clinical work to understand the mechanism of bisphosphonates in 
treating hypophosphatasia has led to clinical innovation in the treatment of common bone-
mineralization diseases9, such as osteoporosis, which affects millions worldwide. Innovation in 
the treatment of rare diseases continue today. Recent gene editing treatments using CRISPR-
Cas9 are almost exclusively focused on the treatment of rare diseases such as sickle cell 
anemia10 and transthyretin amyloidosis11. These technologies are poised to advance our 
treatment of many rare diseases and even common diseases, as long as the genetic causes of 
every disease are well understood.  

From the earliest days of our understanding of heredity, researchers have sought to understand 
the transmission and cause of rare diseases. In 1902, English physician Archibald Garrod 
discovered the first disease to segregate according to Mendelian rules, a rare disease called 
alkaptonuria12. In 1956, just a few years after the discovery of the DNA double helix, an MIT 
professor named Vernon Ingram discovered the first amino-acid substitution associated with a 
disease—the variant in hemoglobin that causes sickle cell anemia13. This was perhaps the birth 
of molecular medicine. Today, the decreasing cost of sequencing technologies has begun to 
again transform our ability to identify the molecular causes of rare diseases. Many rare diseases 
can reliably be predicted by phenotypes and a diagnosis confirmed through sequencing to 
identify the disease-causing variant. Many of these causes are so well characterized that carrier 
screening can be used to reduce the incidence of a growing number of rare diseases14. For 
some of the most frequent rare diseases, such as cystic fibrosis, we are beginning to see 
treatments that are tailored to an individual’s pathogenic variants—precision medicine15.  

Despite this progress, there remains a minor but substantial fraction of individuals with rare 
disease who are undiagnosed. These families sometimes undergo a diagnostic odyssey, 
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traveling from specialist to specialist to find a diagnosis. The frustration, uncertainty, and time off 
work burdens these families with significant stress and financial cost, while the healthcare 
system must absorb the financial cost of additional clinician-hours and diagnostic tests. 
Discerning the precise genotype that explains the clinical phenotypes can inform disease 
management and may give the family a more confident prognosis. Once diagnosed, families 
may be able to learn about the disease progression in older children with the same disease, as 
well as disease-specific support groups, both of which reduce isolation. Of these unresolved 
cases, about 30-50% can be resolved through DNA sequencing16. Given that these cases 
should have a genetic etiology, that leaves a large fraction for which we will need novel methods 
to resolve.  

Structural variants (SVs; genomic variants longer than 50 base pairs) are the genetic cause of a 
portion of unresolved rare disease cases. As sequencing methods using long reads become 
more accessible and SV detection algorithms improve, clinicians and researchers are gaining 
access to thousands of reliable SVs of unknown disease relevance. Methods to predict the 
pathogenicity of these SVs are required to realize the full diagnostic potential of long-read 
sequencing. To address this emerging need, in chapter 2 I introduce StrVCTVRE, a method to 
distinguish pathogenic SVs from benign SVs that overlap exons. Using a random forest 
classifier, I integrated features that capture gene importance, coding region, conservation, 
expression, and exon structure. I found that features such as expression and conservation are 
important but are absent from SV classification guidelines. I leveraged multiple resources to 
construct a size-matched training set of rare, putatively benign and pathogenic SVs. 
StrVCTVRE performs accurately across a wide SV size range on independent test sets, which 
will allow clinicians and researchers to eliminate about half of SVs from consideration while 
retaining a 90% sensitivity. I anticipate clinicians and researchers will use StrVCTVRE to 
prioritize SVs in patients where no SV is immediately compelling, empowering deeper 
investigation into novel SVs to resolve cases and understand new mechanisms of disease.  

DNA sequencing provides a molecular diagnosis in less than half of undiagnosed rare disease 
cases16. Up to 10% of these unresolved clinical cases are caused by pathogenic structural 
variants (SVs)17. To routinely resolve such cases, clinicians and researchers are beginning to 
detect SVs using a diverse group of long DNA molecule methods. In chapter 3, I compare 
optical mapping, linked-read sequencing, and short-read sequencing in their ability to detect 
structural variants and resolve cases in a clinical diagnostic setting. Clinical analysis and 
validation discovered 11 SVs that were plausibly pathogenic in this cohort. All 11 SVs were 
detected through analysis of optical mapping and linked-read sequencing. Analysis of short-
read sequencing could only detect 7 out of 11 (64%) of these SVs. Next, I developed SV 
prioritization recommendations that are applicable across these methods for filtering variants 
based on SV quality, rarity, type, size, and predicted impact. With this prioritization framework in 
place, I considered the number of SVs a clinical researcher would need to manually investigate 
to find the diagnostic or candidate SV, a measure of practical clinical interest. When 
appropriately prioritized, SVs detected by these methods are clinically manageable to 
investigate, with most diagnostic or candidate variants detected within the top 5 SVs. The 
number of SVs to investigate was surprisingly consistent across methods, and this can likely be 
attributed to the greater sensitivity of newer methods and the poor specificity of older methods. 
While newer methods detect more SVs with greater specificity, I found that they have not been 
carefully calibrated in several measures that are clinically important, including SV type, zygosity, 
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and endpoint accuracy. These are mostly algorithmic limitations and should improve as these 
methods mature.  

Pathogenic variants, such as those identified in chapter 3, are often deposited in curated 
databases of variants. These databases assist clinical researchers to interpret genetic testing 
results and classify novel variants. Yet these databases also contain errors. Several studies 
have sought to identify cataloged variants that are misclassified, but none have recorded how 
variant misclassification has changed over time. Using archives of ClinVar and HGMD, in 
chapter 4 I investigated how variant misclassification has changed over six years across 
different ancestry groups. I considered a class of disorders that are often highly penetrant with 
neonatal phenotypes—inborn errors of metabolism (IEMs) screened in newborn screening—as 
a model system. I used samples from the 1000 Genomes Project (1KGP) to identify individuals 
with pathogenic genotypes that were annotated as pathogenic. Due to the rarity of IEMs, we 
would expect less than one individual in 1KGP have an IEM, thus nearly all annotated 
pathogenic genotypes indicate likely variant misclassification. While the accuracy of both 
ClinVar and HGMD have improved over time, HGMD variants currently imply two orders of 
magnitude more affected individuals than ClinVar variants. After investigating misclassified 
variants that have since been reclassified, I found that variant interpretation guidelines and 
allele frequency databases of genetically diverse samples are important factors in 
reclassification. I observed that African ancestry individuals have a significantly increased 
chance of being incorrectly predicted to be affected by a screened IEM when HGMD variants 
are used. However, this African ancestry bias was no longer significant once common variants 
were removed in accordance with recent variant interpretation guidelines. I discovered that 
ClinVar variants classified as Pathogenic or Likely Pathogenic are reclassified 12-fold more 
often than DM or DM? variants in HGMD, which has likely resulted in ClinVar’s lower false 
positive rate. Finally, I found that ClinVar variants common in European and South Asian 
individuals were more likely to be reclassified to a lower confidence category, perhaps reflecting 
the greater chance that these variants will be annotated by multiple submitters.  

Finally, in Chapter 5 I offer some concluding thoughts and perspectives on promising future 
directions.  
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Chapter 2: StrVCTVRE: A supervised learning method to predict the pathogenicity of 
human genome structural variants* 

 

Background 

Whole genome sequencing (WGS) can identify causative variants in clinical cases that elude 
other diagnostic methods2. As the price of WGS falls and it is used more frequently, researchers 
and clinicians will increasingly observe structural variants (SVs) of unknown significance. SVs 
are a heterogeneous class of genomic variants that include copy number variants such as 
duplications and deletions, rearrangements such as inversions, and mobile element insertions. 
While a typical short-read WGS study finds 5,000–10,000 SVs per human genome, long-read 
WGS is able to identify more than 20,000 with much greater reliability3-5. This is two orders of 
magnitude fewer than the ~3 million single nucleotide variants (SNVs) identified in a typical 
WGS study. Still, despite their relatively small number, SVs play a disproportionately large role 
in genetic disease and are of great interest to clinical geneticists and researchers6,7. 

SVs are of clinical interest because they cause many rare diseases. Most SVs identified by 
WGS are benign, but on average, a given SV is more damaging than an SNV due to its greater 
size and ability to disrupt multiple exons, create gene fusions, and change gene dosage. In a 
study of 119 probands who received a molecular diagnosis from short-read WGS, 13% of cases 
were caused be an SV8. Similarly, an earlier study that found 7% of congenital scoliosis cases 
are caused by compound heterozygotes comprised of at least one deletion9. Yet, since SVs 
continue to be challenging to identify and analyze, these figures may underestimate the true 
causal role that SVs play in rare disease. Indeed, in some rare diseases, the majority of cases 
are caused by SVs. For example, deletions cause most known cases of Smith-Magenis 
syndrome, and duplications cause most known cases of Charcot-Marie-Tooth disease type 
1A10. This suggests that for rare disorders, SVs constitute a minor yet appreciable fraction of 
pathogenic variants.  

To continue discovering SVs which cause disease, researchers face a daunting challenge: 
prioritizing and analyzing the tens of thousands of SVs found by WGS. Best practices for SV 
prioritization are evolving, and generally mirror steps used to prioritize SNVs. Few SV-tailored 
impact predictors have been developed, but a small number of published studies have focused 
on identifying pathogenic SVs from WES11,12 and WGS8,13,14 and have identified a handful of 
important steps. Removing low-quality SV calls is essential, as short-read SV callers rarely 
achieve precision above 80% for deletions and 50% for duplications, even at low recall15. Most 
studies also remove SVs seen at high frequency in population databases or internal controls7,16. 
Moreover, many studies only investigate SVs that overlap an exonic region, as non-coding SVs 
remain particularly difficult to interpret. Depending on its sensitivity, a pathogenic SV discovery 
pipeline may produce tens to hundreds of rare exon-altering SVs per proband to be 
investigated. These values are consistent with a recent population-level study that estimates 
SVs comprise at least 25% of all rare predicted loss-of-function events per genome17. 
Prioritizing SVs will be necessary for the majority of probands, as shown by a study of nearly 

                                                
* This chapter was primarily written by Andrew Sharo, with contributions from Zhiqiang Hu, Shamil 
Sunyaev, and Steven Brenner. It was adapted from a preprint deposited to biorxiv1. Andrew Sharo 
performed al the work described, with advice from other authors. This work is included with permission 
from the authors.  
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500 unresolved cases that found one or more SVs that warranted further investigation in 60% of 
cases8. Clinically validating all SVs of uncertain significance in a genome is currently infeasible, 
and cohort size for rare diseases will likely never reach a scale sufficient to statistically 
associate these SVs with disease. Therefore, computational tools are needed to prioritize and 
predict the pathogenicity of rare SVs. 

Among methods that consider SVs, several annotate the features of SVs but very few prioritize 
SVs by pathogenicity. General-purpose annotation frameworks such as Ensembl’s Variant 
Effect Predictor (VEP)18 and SnpEff19 both annotate SVs with broad consequences based on 
sequence ontology terms (e.g., transcript_ablation), which we found are not sufficient for 
effective prioritization. One standalone annotator, SURVIVOR_ant20, annotates SVs with genes, 
repetitive regions, SVs from population databases, and user defined features. This and similar 
tools put the onus on researchers to provide informative features and determine how to consider 
these features in combination, a difficult challenge. A complementary approach is to annotate 
SVs using cataloged SVs known to be pathogenic or benign. One such SV annotator, 
AnnotSV21, classifies SVs into five classes based on their overlap with known pathogenic or 
benign SVs and genes known to be associated with disease or predicted to be intolerant to 
variation. This approach can be successful when a disease-causing SV has previously been 
seen in another proband and was cataloged as pathogenic, but we show it has limitations when 
a disease-causing SV is novel. In contrast, SNVs can be effectively prioritized by methods such 
as Revel22 and VEST23 that integrate diverse annotations to provide a quantitative score. 
Similarly powerful methods are needed to predict SV pathogenicity.  

In order to provide a summary pathogenicity score to prioritize rare SVs genome-wide, a 
predictor must address two questions. The first question is whether a gene is likely associated 
with a Mendelian phenotype. This relationship can be predicted through gene importance 
features. The second question is whether an SV impacts gene function, which requires 
considering intragenic features. Although these are two separate questions, for convenience 
researchers often combine them into a single summary score. Few methods provide such a 
summary score for SV pathogenicity. One standalone impact predictor, SVScore24, calculates 
the deleteriousness of all possible SNVs within each SV (using CADD25 scores by default), 
while considering SV type and gene truncation. SVScore then generates a summary score by 
aggregating across these CADD scores (mean of the top 10% by default), and this approach 
has shown promise in identifying SVs that are under purifying selection and thus likely 
deleterious24. Another stand-alone predictor, SVFX26, integrates multiple features into a 
summary score, but focuses on somatic SVs in cancer and germline SVs in common diseases 
so we do not discuss it further.  

In this manuscript, we introduce StrVCTVRE (Structural Variant Classifier Trained on Variants 
Rare and Exonic), a method that generates a summary pathogenicity score for exon-altering 
SVs. We anticipate clinicians and researchers will use StrVCTVRE to prioritize rare SVs 
associated with Mendelian phenotypes. Since nearly all pathogenic SVs are rare (minor allele 
frequency (MAF) < 1%), the salient challenge in resolving undiagnosed cases is to distinguish 
rare pathogenic SVs from rare benign SVs17. Existing SV predictors have been trained and 
assessed on common benign SVs24,26, so they may rely on features that instead separate 
common SVs from rare SVs and may not be optimal for this clinical question27. StrVCTVRE is 
the first method trained to distinguish benign rare SVs from pathogenic rare SVs. StrVCTVRE is 
available at https://compbio.berkeley.edu/proj/strvctvre.   
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Results 

StrVCTVRE design and assessment 

StrVCTVRE is implemented as a random forest, in which many decision trees ‘vote’ for whether 
a given SV is pathogenic. The StrVCTVRE score reflects the fraction of decision trees that 
‘voted’ that the SV is pathogenic. The decision trees are shaped by a learning algorithm, in 
which each tree sees thousands of example SVs from a training dataset of known pathogenic 
and benign SVs, and the decision nodes are optimized for accuracy. To promote diverse trees, 
each node of the decision tree uses only a random subset of the features. Finally, StrVCTVRE 
is assessed on a held-out test dataset and independent test datasets.  

Characterization of StrVCTVRE features 

To classify SVs, StrVCTVRE employs 17 features in five categories: gene importance, 
conservation, coding sequence, expression, and exon structure of the disrupted region (see 
Methods, Table 1.1 for details). We assessed gene importance using two features that 
summarize the degree of depletion of predicted loss-of-function (pLoF) variants in healthy 
individuals: pLI28 and LOEUF16. Although LOEUF is effectively an updated, continuous version 
of pLI, and the two are highly correlated, we found better performance when both were included 
rather than just one. To explicitly capture when an important gene is highly impacted by an SV, 
we included two additional features: pLI of a highly impacted gene and LOEUF of a highly 
impacted gene. We define a gene as highly impacted when an SV overlaps the APPRIS29 
principal start codon or 50% of CDS. To specifically model coding sequence (CDS) disruptions, 
we used three coding features: percentage of the CDS overlapped by the SV, distance from the 
CDS start to the nearest position in the SV, and distance from the CDS end to the nearest 
position in the SV. We included a single conservation feature, phyloP of 100 vertebrates30, by 
considering the average of the 400 most conserved sites in the SV. PhyloP produced the best 
classification among the conservation features we investigated (see Methods) and was the most 
informative conservation feature in a rare missense variant classifier22. To infer expression 
impacts from the SV, we included the average expression across all tissues for each exon in the 
SV, the proportion of gene transcripts that included each exon in the SV, and the overlap with 
known topologically associating domain (TAD) boundaries. To model potential differences that 
drive the pathogenicity of deletions and duplications, we included as a feature whether an SV is 
a deletion or duplication. The remaining features were related to the structure of exons in the SV 
including the number of exons in a disrupted gene, the number of exons disrupted, whether any 
affected exons were constitutive, whether all disrupted exons could be skipped in frame, and the 
order of the exon in the transcript. When multiple exons or genes were disrupted, we typically 
took the value of the most severely impacted one, as appropriate (see Methods). Missing or 
non-applicable feature data were replaced by the median value of each feature. 

Correlation and relative importance of SV features in StrVCTVRE 

Clusters emerged when we calculated these features for our SV training set, computed the 
correlation between each feature, and clustered by correlation (Fig. 2.1a). The most prominent 
cluster (labeled i) contains gene importance, conservation, CDS, and one exonic feature, with 
most correlations above Spearman’s ρ = 0.6. Since both gene importance of highly impacted 
gene features are present in this cluster, the other features in this cluster may also capture 
when an important gene is highly disrupted. A smaller cluster (labeled ii) included the remaining 
gene importance features, pLI and LOEUF. Expression features and deletion/duplication status 
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were the features least correlated with all other features (all ρ ≤ 0.26). This low correlation 
suggests that these features capture unique information, which is unsurprising for 
deletion/duplication status. But given the relative importance of some expression features (Fig. 
2.1b), our results suggest expression data contains both orthogonal and valuable information for 
determining SV pathogenicity. The two features capturing gene importance of a highly impacted 
gene were the features most correlated with each other (ρ = 0.97), indicating that pLI and 
LOEUF are generally interchangeable for assessing the importance of highly disrupted genes. 

By training on thousands of example SVs, StrVCTVRE discovers which features are useful for 
discriminating between pathogenic and benign SVs (Fig. 2.1b). Using Gini importance (see 
Methods), we found gene importance features were most useful to StrVCTVRE. This was 
followed by a group of features with similar importance that include the number of exons in a 
gene, conservation, CDS features, exon expression, and gene importance of a highly impacted 
gene. The value of these features is largely intuitive; gene importance, CDS, and conservation 
features are expected to be helpful to assess pathogenicity. In contrast, we suspect number of 
exons in gene is highly ranked due to sampling bias. We found that many well-studied 
pathogenic genes have numerous exons (DMD, NF1, BRCA2), and these genes have many 
representative SVs in our dataset even after removing near-duplicates (Methods). This may 
lead StrVCTVRE to have improved performance on these known clinically relevant genes, but 
reduced performance genome-wide (discussed further below). Surprisingly, several exonic 
features had relatively low importance, which may have been caused by the sparsity of SVs in 
our dataset that alter just a single exon. The low importance of TAD boundaries is counter to 
findings from a recent cancer SV impact predictor31 and may reflect StrVCTVRE’s focus on SVs 
that impact exons. Additionally, the low importance of deletion/duplication status suggests that 
on average, for exon-altering deletions and duplications, the region altered by an SV is more 
important than whether there was a gain or loss of genome content.  
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Figure 2.1 By considering feature clustering and importance, we can identify features providing 
unique and predictive information. a Correlation matrix of StrVCTVRE features in training data. 
Features were ordered by hierarchical clustering, and some values were reversed to reduce 
negative correlation between features. Values represent Spearman’s rank correlation between 
features. Text is colored by feature category. b Feature importance of StrVCTVRE features. 
Gray bars indicate feature importance, estimated using mean decrease in impurity (Gini 
importance). Black lines indicate 95% confidence intervals. Note that exon expression had high 
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importance yet was uncorrelated with all other features, suggesting it captures unique and 
predictive information.  

Characterization of StrVCTVRE training and held-out test sets 

A total of 7,263 pathogenic or likely pathogenic deletions and 4,551 pathogenic or likely 
pathogenic duplications were collected from ClinVar32, a public database of variants cataloged 
by academic institutions and clinical laboratories. We restricted our data to deletions and 
duplications, as they are the only SV types with more than 500 pathogenic examples in ClinVar. 
Additionally, deletions and duplications constitute the vast majority (> 95%) of rare gene-altering 
SVs7. A set of primarily benign SVs (described in greater detail below) were collected from 
ClinVar, gnomAD-SVs17, and a recent great ape sequencing study33. Because these ape SVs 
were mapped to the human genome, they may be biased towards more conserved genomic 
regions. We retained only rare (MAF < 1% in general population) SVs in order to match the 
challenge faced by SV discovery pipelines. Indeed, 92% of SVs identified through cohort 
sequencing are rare17, so the salient challenge is to distinguish rare pathogenic SVs from rare 
benign SVs. Existing SV predictors have been trained and assessed on common benign 
SVs24,31, which may cause them to instead rely on features that separate common from rare 
SVs and result in lower accuracy in clinical use27.  

By training on rare SVs, we intend to achieve better accuracy in the challenge faced in 
pathogenic SV discovery. To create a rare benign dataset that matches the size range of our 
pathogenic dataset, we included SVs observed as homozygous at least once in great apes but 
rare in humans, which we assume should be mostly benign in humans due to our recent shared 
ancestry with great apes. Our benign dataset also included unlabeled rare SVs from gnomAD-
SVs. Although we expect a small fraction of these unlabeled SVs are pathogenic, we made two 
assumptions that mitigated this issue: (1) pathogenic SVs have been depleted by selection so 
the large majority of unlabeled SVs are benign, and (2) the fraction of truly pathogenic SVs in 
the pathogenic and benign training sets is sufficiently different for StrVCTVRE to learn important 
distinguishing features. By including these additional data sources, we brought the ratio of 
pathogenic to benign SVs closer to 1:1 in our training set, even at small sizes. This would have 
been impossible with ClinVar data alone due to the dearth of small benign SVs in ClinVar. 

To assess the appropriateness of including SVs from apes and gnomAD in our benign dataset, 
we explored how performance and feature importance changed with these data included. One 
predictor was trained only on ClinVar SVs, and a second predictor was trained on ClinVar SVs, 
ape SVs, and gnomAD SVs (altogether 3.8x more SVs than ClinVar alone). Using leave-one-
chromosome-out cross validation, we found both training sets performed similarly (Fig. 2.2a), 
supporting our theory that the selected rare unlabeled gnomAD SVs and great ape SVs are 
sufficiently depleted in pathogenic SVs to be used as a training set of rare, benign SVs. 
Additionally, the predictor trained on all data showed a distribution of feature importance that is 
more evenly distributed among feature categories and possibly more robust. This includes a 
decrease in usefulness of gene importance features, which are likely to be overrepresented in 
ClinVar data, and an increase in importance in CDS features, which are an important line of 
evidence for assessing SV pathogenicity34.  

Before training, all data were extensively cleansed to remove duplicate records within and 
between datasets, remove common SVs, and remove SVs larger than 3 Mb (see Methods). 
Pathogenic deletions and duplications were found to have a large size bias, likely due to the 
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sensitivity of detection methods to specific size ranges. To avoid training on this acquisition 
bias, putatively benign SVs were sampled to match the pathogenic SV size distribution (Fig. 
2.3). Specifically, in our training data we included only pairs of pathogenic and benign SVs that 
were of similar size and the same type (deletion or duplication). Using this matching strategy, 
we were able to include nearly all pathogenic deletions and duplications below 1 Mb. By 
incorporating ape and gnomAD SVs, we were able to include pathogenic SVs below 10 
kilobases (kb), a range nearly absent in ClinVar benign SVs. In the benign training set, 26% of 
deletions and 75% of duplications came from ClinVar benign or likely benign SVs.  

 

Figure 2.2 By training on multiple datasets, StrVCTVRE learned diverse feature importances 
and performed well on a held-out ClinVar test set. a Receiver operating characteristic 
comparing StrVCTVRE models trained on two different benign datasets: ClinVar in dark red, 
and all data (ClinVar, SVs common to apes but not humans, and rare gnomAD SVs) in medium 
red. When tested only on ClinVar data, performance does not significantly differ between the 
two training sets. However the feature importances (inset) of the classifier trained on all data 
(medium red) were more evenly distributed among feature categories. This suggests that 
unlabeled rare SVs and common ape SVs are a suitable benign training set. b Receiver 
operating characteristic comparing StrVCTVRE (red) to other methods on a held-out test set 
comprised of ClinVar SVs on chromosomes 1, 3, 5, and 7. Black circle indicates a StrVCTVRE 
score of 0.37, which we refer to as the ClinVar 90% sensitivity threshold. Inset shows 
performance on the same held-out test, modified so that each gene is overlapped by a 
maximum of 1 SV. AUC with 95% confidence interval is in parentheses.  

To accurately assess StrVCTVRE’s performance, we used a held-out test set of ClinVar SVs on 
chromosomes 1, 3, 5, and 7 (~20% of the total ClinVar dataset). Only ClinVar SVs were used 
for testing since it is the highest-confidence dataset. The training set consisted of SVs from all 
three data sources on all remaining chromosomes. The training set consisted of 2,463 
pathogenic SVs and 2,372 benign SVs, and the test set consisted of 244 pathogenic SVs and 
334 benign SVs. The test set is of reduced size because pathogenic and benign SVs in the test 
set were matched on length. None of the SVs in the test set were used to develop the trained 
algorithm.  
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Figure 2.3 Benign training SVs (blue-shaded histograms) closely match the size distribution of 
pathogenic training SVs (red histogram outlines) and were drawn from multiple datasets. 
Histogram of pathogenic and benign (a) deletions and (b) duplications. a Benign deletions are 
composed of 26% ClinVar, 16% apes, and 58% gnomAD. b Benign duplications are composed 
of 75% ClinVar and 25% gnomAD. We were able to include more small pathogenic SVs in our 
training data by using apes and gnomAD SVs. Pathogenic SVs are composed entirely of 
ClinVar Pathogenic and Likely Pathogenic SVs and thus only histogram outlines are shown. 

StrVCTVRE eliminates more than half of benign SVs from consideration at 90% sensitivity 

In discriminating between pathogenic and putatively benign ClinVar SVs in the test dataset, 
StrVCTVRE performed substantially better than published methods. Performance was 
measured using the area under the receiver operating characteristic curve (AUC). The AUC for 
StrVCTVRE was 0.83 (95% CI: 0.79 – 0.87). By comparison, SVScore had an AUC of 0.70 
(95% CI: 0.66-0.74). StrVCTVRE improved notably in the classification of large duplications and 
deletions (> 1 MB), a regime in which SVScore by default classifies all SVs as pathogenic (lower 
left corner of Fig. 2.2b). We also evaluated the predictive ability of transcript consequence 
reported by VEP (AUC = 0.47; 95% CI: 0.42 – 0.52), and we found it performed no better than 
random. This poor performance was largely due to VEP annotating more benign SVs than 
pathogenic SVs with its most deleterious sequence ontology term, transcript ablation. The poor 
performance of transcript consequence from VEP reinforces the known limitations of prioritizing 
variants using sequence ontology terms in isolation. As we intend StrVCTVRE to be used to 
prioritize SVs seen in clinical cases, it needs to perform well in clinically relevant regimes. 
Clinicians must limit cases in which pathogenic variants are misclassified as benign (false 
negatives), which requires strong performance at high sensitivity35. When compared to existing 
methods, StrVCTVRE makes substantial improvements in the high-sensitivity regime, as it is 
able to capture 90% of pathogenic SVs at a 46% false positive rate (black circle, Fig. 2.2b). 
StrVCTVRE scores range from 0 to 1, with higher scores indicating a greater likelihood of 
pathogenicity. In Fig. 2b, 90% sensitivity is reached at a StrVCTVRE score of 0.37, which 
suggests that when used on a collection of SVs called from a clinical cohort, this threshold may 
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identify 90% of pathogenic SVs while reducing the candidate SV list by 54%. We refer to this 
StrVCTVRE score as the ClinVar 90% sensitivity threshold.  

We observed apparent clustering in the ClinVar data that led to additional analysis. Genes that 
are well-studied are overlapped by multiple pathogenic SVs catalogued in ClinVar. This resulted 
in several genes that were over-represented in our test set. Since SVs that overlap the same 
gene tend to be mostly pathogenic or mostly benign, this results in clustered test data, which 
may lead to higher variance in AUC performance. While this may yield improved performance 
for genes of particular interest, it may hide possible deficits in genome-wide performance.  To 
address this, we randomly generated a test dataset in which each gene is overlapped by at 
most one SV (Fig. 2.2b inset). We found that the StrVCTVRE AUC was reduced when applied 
to this dataset, but StrVCTVRE was able to identify pathogenic SVs better than or equal to 
SVScore at all sensitivities. On this dataset, StrVCTVRE shows a sensitivity of 90% at a false 
positive rate of 59%. 

StrVCTVRE sensitivity threshold is validated on recent clinical SVs 

To assess the accuracy of our ClinVar 90% sensitivity threshold and evaluate whether 
StrVCTVRE performs well on clinical data, we evaluated our method on a set of SVs identified 
by researchers at the Broad Institute Center for Mendelian Genomics (CMG). These SVs were 
recently identified through exome sequencing of patient cohorts with undiagnosed 
neuromuscular or retinal degeneration disorders36-40. Clinical researchers determined these rare 
SVs were disease-causing or likely disease-causing. To avoid overlap between these CMG 
clinical SVs and StrVCTVRE training SVs, we used a leave-one-chromosome-out approach, in 
which 24 separate StrVCTVRE classifiers were developed, one for each chromosome. For 
example, CMG clinical SVs on chromosome 1 were predicted by a StrVCTVRE classifier trained 
on chromosomes 2, 3, 4, etc. The CMG clinical SVs consisted of 32 deletions and 2 
duplications, were located on 14 chromosomes, and had a median size of 12kb. At the ClinVar 
90% sensitivity threshold (StrVCTVRE score >0.37), StrVCTVRE identified 31 of 34 disease-
causing SVs (91%) as potentially pathogenic.  

Performance of StrVCTVRE on an independent test set from DECIPHER 

All held-out test SVs, and a large fraction of training SVs, come from a single database: ClinVar. 
To independently test StrVCTVRE, we collected pathogenic and benign SVs from DECIPHER, 
a public database to which clinical scientists submit SVs seen in patients with developmental 
disorders41. Because there is some overlap between training ClinVar SVs and DECIPHER SVs, 
we tested on DECIPHER using a leave-one-chromosome-out approach, as described above. 
Additionally, to ensure this DECIPHER test set is independent from our ClinVar test set, we 
considered only DECIPHER SVs with a reciprocal overlap of less than 10% with any SV used in 
training or testing StrVCTVRE. This strategy effectively removes any concerns of training and 
testing on the same or similar SVs. This test set included only DECIPHER variants with the 
highest classification confidence (Set 1, described below). Because StrVCTVRE was trained on 
SVs less than 3 Mb, and few benign SVs larger than 3 Mb have been observed42, all SVs larger 
than 3 Mb were scored as pathogenic (given a score of 1). Compared to its performance on the 
ClinVar test set, StrVCTVRE performed similarly well on the DECIPHER test set, although 
performance varied across SV size (Fig. 2.4a). On large SVs (> 500 kb), StrVCTVRE performed 
very well (AUC = 0.91; 95% CI: 0.88 – 0.94; N=297), partially because most of the SVs larger 
than 3 Mb are correctly predicted as pathogenic. StrVCTVRE also performed very well (AUC = 
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0.89; 95% CI: 0.81 – 0.97, N=116) on small SVs (< 30 kb), although this is tempered somewhat 
by the relatively few small SVs in the DECIPHER dataset. StrVCTVRE performed well (AUC = 
0.80; 95% CI: 0.72 – 0.88,N=545) on mid-length SVs, identifying pathogenic SVs significantly 
better than SVScore.  

 

Figure 2.4 a Across three size ranges, StrVCTVRE accurately classified variants in an 
independent test set. In this ROC comparison of StrVCTVRE (solid line) and SVScore (dotted 
line), three size ranges of SVs were considered. StrVCTVRE performed very well on large and 
small SVs, while performing well on mid-sized variants. b When presented with data that are 
more reliably classified, StrVCTVRE’s performance improved. ROC plot showing StrVCTVRE’s 
performance increased as SV contribution to proband phenotype increases from set 3 (includes 
less confidently classified SVs) to set 2 and from set 2 to set 1 (most confidently classified SVs). 
The performance of SVScore did not significantly differ between the sets.  

StrVCTVRE performance is higher when assessed on more reliably classified data 

We expect that some DECIPHER pathogenic SVs are in reality benign. SVs that better explain 
patient phenotype are more likely to be pathogenic. To investigate the effect of SV pathogenicity 
on predictor performance, we grouped DECIPHER SVs into 3 sets. Set 1 consisted of SVs that 
sufficiently explain the proband phenotype, and these should be reliably pathogenic. Set 2 
included SVs that partially explain the proband phenotype and Set 1 SVs. Set 3 included SVs 
with unknown contribution to proband phenotype and Set 2 SVs, and therefore their 
pathogenicity is less certain. StrVCTVRE was tested using a leave-one-chromosome-out 
approach, and DECIPHER SVs were filtered based on overlap with training and testing data as 
described above. We found a consistent trend towards more accurate StrVCTVRE classification 
in sets that were more enriched for pathogenic SVs (Fig. 2.4b). However, the same trend was 
not observed for SVScore. Since StrVCTVRE’s performance improves on presumably more 
reliably classified data, we have reason to believe StrVCTVRE is making meaningful 
classifications. 

StrVCTVRE eliminates the most benign SVs seen in 221 individuals 
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Typically, patients with a rare disorder caused by homozygous SVs have one or two pathogenic 
SVs in their genome, and the remaining SVs are benign. An ideal impact predictor would 
prioritize the pathogenic homozygous SVs and eliminate from consideration as many of the 
benign SVs as possible. To evaluate StrVCTVRE’s performance in this scenario, we applied it 
to SVs called in 2,504 genomes identified by the 1000 Genomes Project phase 343 (1KGP). 
Because 1KGP should be depleted in individuals with severe rare disorders, we treated each 
genome as if it came from a proband with a rare disorder whose pathogenic SVs have been 
removed. 221 of these genomes had 1 or more homozygous rare exon-altering SVs, almost all 
of which should be benign. For each genome, we recorded the fraction of putatively benign SVs 
that were correctly identified as benign by StrVCTVRE and SVScore (Fig. 2.5a). Since many 
genomes had just one homozygous exon-altering SV, the distribution is bimodal at 0 and 1. We 
used our leave-one-chromosome-out predictors (e.g., predicting on 1KGP SVs on chromosome 
1 and training StrVCTVRE on all other chromosomes) to score each SV. At the ClinVar 90% 
sensitivity threshold (StrVCTVRE score >0.37), on average StrVCTVRE identified 59% of the 
putatively benign SVs in each genome as benign, compared to 43% when SVScore was used at 
the same sensitivity (Wilcoxon paired-rank p = 8.06e-6). In a clinical setting, StrVCTVRE may 
classify more benign SVs as benign than SVScore, allowing clinicians and researchers to 
eliminate the most benign homozygous SVs from consideration.  

StrVCTVRE performance is reliable even on SVs that do not overlap cataloged pathogenic SVs.   

Since probands with the same disorder often have SVs altering the same genome element, and 
recurrent pathogenic de novo SVs are known to occur44, one strategy used to prioritize SVs is to 
annotate them with overlapping SVs of known pathogenicity. AnnotSV is a popular method to 
identify pathogenic SVs based on their overlap with both cataloged pathogenic SVs in the 
National Center for Biotechnology Information’s dbVar. Because it considers catalogued SVs, 
AnnotSV would likely perform very well for a proband whose disease-causing SV overlaps a 
cataloged pathogenic dbVar SV. Yet, many probands have disease-causing SVs that are not 
cataloged. To address these novel SVs, AnnotSV also considers SV overlap with genes 
associated with disease or predicted to be intolerant to variation, and it uses manually 
determined decision boundaries to score SVs (e.g., an SV overlapping a gene with pLI > 0.9 is 
scored as likely pathogenic). To compare the performance of AnnotSV with machine learning 
SV impact predictors on novel SVs, we created a dataset of Set 3 DECIPHER SVs that do not 
overlap dbVar SVs used by AnnotSV, and we recorded the prediction accuracy of each method 
(Fig. 2.5b). AnnotSV performed notably worse on these uncatalogued SVs. We tested 
StrVCTVRE (using the leave-one-chromosome-out approach) and SVScore on these 
uncatalogued SVs, and both methods showed significant predictive power, which we attribute to 
their consideration of features beyond gene intolerance (such as conservation and expression 
features) and their use of methods that learn decision boundaries based on training data, rather 
than manually determined boundaries.  
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Figure 2.5 a StrVCTVRE eliminated a significantly larger fraction of benign SVs from 
consideration than SVScore. When tested on rare exonic SVs from the genomes of 221 
putatively healthy individuals, StrVCTVRE was able to correctly classify 59% of putatively 
benign variants in each genome. White dots represent mean values. For both methods, the 
threshold for variant consideration was at the ClinVar 90% sensitivity (Fig. 2.2b). b ROC 
comparing two machine-learning methods with diverse features (StrVCTVRE and SVScore) to 
one method (AnnotSV) that uses limited features and manually determined decision boundaries. 
AnnotSV ranks an SV as ‘pathogenic’ or ‘likely pathogenic’ when the SV overlaps a catalogued 
pathogenic SV, known disease gene, or gene predicted to be intolerant to variation. To generate 
this figure, all SVs overlapping any of AnnotSV’s catalogued pathogenic SVs were removed 
from the DECIPHER Set 3 dataset, and the remaining SVs were used for testing. AnnotSV 
performs relatively poorly on these novel variants. In contrast, the machine learning methods 
perform better, possibly because they use more diverse features and have decision boundaries 
trained on real data. StrVCTVRE scores were generated using a leave-one-chromosome-out 
approach. 

Interpreting StrVCTVRE scores 

StrVCTVRE scores range from 0 to 1, reflecting the proportion of decision trees in the random 
forest that classify an SV as pathogenic. Note that StrVCTVRE scores are not probabilities. 
Although we used the ClinVar 90% sensitivity threshold for evaluation, we advise against using 
StrVCTVRE scores as a threshold. We instead recommend that greater consideration be given 
to SVs with greater StrVCTVRE scores. However, thresholds are currently required for 
computational tools when SVs are classified using the guidelines for sequence variant 
interpretation recommended by the American College of Medical Genetics and Genomics 
(ACMG; criteria PP3, BP4)34,45. Within the ACMG framework, StrVCTVRE can be used as 
supporting evidence since it uses multiple lines of computational data. We suspect that higher 
levels of evidence (e.g., moderate) may be achievable, as shown by Tavtigian et al.46 However, 
when using StrVCTVRE at higher levels of evidence, users should be careful not to also count 
other ACMG criteria that StrVCTVRE already incorporates, which could lead to double counting. 
Alternatively, to resolve concerns of double counting, StrVCTVRE can be used just to prioritize 
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variants, but not used as evidence. Users then can manually classify SVs of interest using the 
full ACMG criteria.    

Discussion 

As genome sequencing becomes more accessible, clinicians and researchers face a challenge 
in identifying pathogenic SVs in the thousands identified by sequencing. The ACMG recently 
offered guidelines for classifying SVs, acknowledging that classification is complex and many 
pathogenic SVs will be classified as variants of uncertain significance due to incomplete 
knowledge34. SV impact predictors can address this challenge, but few SV impact predictors 
exist. Although SVs comprise a significant fraction of the loss-of-function variants that cause 
rare disease, fewer than 10,000 pathogenic SVs have been cataloged in ClinVar. These SVs 
have distinct biases towards certain genes and lengths, which leads to acquisition bias that 
hinders predictor development. Additionally, it is not clear which features are most useful when 
classifying SVs and how to address the large size range of SVs. StrVCTVRE is the first method 
to address these problems by predicting the impact of exon-altering deletions and duplications 
in rare genetic disorders. We overcame data limitations and bias by combining SVs from 
multiple data sources as well as matching pathogenic and benign SVs by size. Since clinicians 
and researchers must recognize SVs that cause disease among dozens of rare exon-altering 
SVs detected in a proband, we trained only on rare SVs.   

Determining whether a single SV is pathogenic requires consideration of numerous features in 
combination, as demonstrated by the recent ACMG SV guidelines. Independent of these 
guidelines, our method identified important features in cataloged SVs. Our findings reinforce 
clinical guidelines, while also highlighting new areas to explore. Both StrVCTVRE and the 
ACMG guidelines found gene importance and CDS disruptions to be critical for SV 
interpretation. Additionally, StrVCTVRE highlighted two features not discussed in the guidelines: 
conservation and expression. We found exon expression in particular is both predictive and 
poorly correlated with all other features, suggesting it captures distinctive information for 
determining pathogenicity. More widespread consideration of expression features could be 
beneficial for SV classification. StrVCTVRE additionally identified features that are not useful to 
classify exon-altering SVs, such as TAD boundary strength and whether there is a copy gain or 
loss. This is consistent with the ACMG guidelines, which do not consider TAD boundaries and 
provide very similar scoring metrics for both copy gain and loss.  

Since SVs range from 50 bp to > 10 Mb, it is challenging to accurately classify SVs across this 
range. Benign SVs in ClinVar are mainly > 10 kb, but accurate classification of SVs < 10 kb 
requires training on benign SVs from the same size range. We accomplished this by training on 
small benign SVs from great apes and gnomAD. When tested on an independent test set, 
StrVCTVRE performed well at all size ranges. To be helpful in a clinical setting, a method must 
perform well at moderately high sensitivity. StrVCTVRE satisfies this requirement and was able 
to remove 57% of homozygous SVs from consideration at a sensitivity of 90% in the 1KGP 
dataset. This 90% sensitivity threshold was validated using a dataset of recent SVs observed to 
cause neuromuscular and retinal degeneration disorders. Overall, we found StrVCTVRE 
outperforms SVScore in most tasks, even though SVScore’s underlying approach , CADD, was 
trained on > 1,000-fold more variants. Additionally, whereas StrVCTVRE was often assessed 
using a leave-one-chromosome-out approach, SVScore could not be readily modified and thus 
had the benefit of possibly training on data that overlapped the testing SVs.    
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StrVCTVRE is accessible as a downloadable command line program (see Data Availability). 
Whereas SVScore requires users to download an 80 gigabyte (Gb) CADD file, StrVCTVRE only 
requires a 9 Gb phyloP file. Because there are an intractably large number of possible SVs, 
each SV must be scored anew (unlike SNVs for which scores can be pre-computed), and this 
requires efficient scoring methods. StrVCTVRE runs rapidly and annotates 100,000 gnomAD 
SVs in three minutes, while SVScore annotates the same SVs in 24 hours.  

Following existing predictors, StrVCTVRE predicts the pathogenicity of an SV in isolation. Yet 
human biology complicates this picture through zygosity and dominance. Since zygosity is not 
reported for most SVs in ClinVar, StrVCTVRE is zygosity-naïve. Additionally, StrVCTVRE’s 
pathogenic training dataset consists largely of SVs in genes predicted to lead to dominant 
disorders. When tested on sets of predicted dominant or recessive SVs, StrVCTVRE performs 
similarly on both. Researchers who suspect a recessive mode of inheritance may need to 
consider StrVCTVRE scores in tandem with impact predictor scores for SNVs in trans in the 
same gene. Although genes vary in their tolerance of SVs and dominance, we believe a whole 
genome approach will be necessary to identify all pathogenic SVs, including those SVs 
disrupting genes not currently associated with disease. To identify new disease genes, it may 
be helpful to consider StrVCTVRE scores in tandem with one of the many methods that assess 
the match between patient phenotype and known/predicted phenotypes for an affected gene47-

49.  

A method can only be as good as its training data. SV impact predictors are limited by the 
relatively small number of identified pathogenic and putatively benign SVs, as well as the over-
representation of certain genes in the dataset. While pathogenic ClinVar variants are commonly 
used to train variant impact predictors, they are known to include misclassified variants50. We 
know of no characterization of the accuracy of SVs in ClinVar, but work investigating pathogenic 
SNVs suggest at least 90% are pathogenic based on reclassification rates51. 70% of our 
pathogenic training SVs have at least 1 review star in ClinVar, indicating they have supporting 
evidence which further bolsters our confidence in these data. Nonetheless, data limitations 
almost certainly curtail the ultimate performance of our approach. StrVCTVRE is unable to 
classify inversions and insertions due to limited data; however, these have been shown to 
contribute to a minority of the pLoF events caused by SVs17. We are hopeful that additional 
clinical sequencing studies will identify a more diverse range of SVs, which will be cataloged in 
open resources such as ClinVar and leveraged to develop more accurate models. We look 
forward to greater non-coding genome annotations, which will expand our understanding and 
cataloging of pathogenic noncoding SVs, which remain vexing to classify.  

Much of the focus in SV algorithms has been on methods to accurately detect SVs. These 
methods have left clinicians and researchers awash with SVs not previously known. As 
experimental methods and algorithms advance, SV detection will improve, but SV interpretation 
will continue to be challenging. StrVCTVRE advances the clinical evaluation of SVs. During 
genome sequencing analysis, some cases contain an SV that matches a cataloged pathogenic 
SV or satisfies the conditions for pathogenicity set forth in the ACMG SV guidelines. However, 
these SVs are often not obvious, and StrVCTVRE can be used to quickly bring these SVs to 
attention. In the many cases in which no SV is immediately promising, StrVCTVRE aids 
clinicians and researchers in identifying compelling SVs for manual investigation. Then, if a case 
remains unresolved by manual investigation, SVs highlighted by StrVCTVRE that are in novel 
disease genes can be directed to experimental exploration. This will empower researchers to 
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identify novel disease genes where haploinsufficiency and triplosensitivity were not previously 
known causes of disease. Adoption of structural variant impact predictors will enable clinicians 
and researchers to make the most of these new data to improve both patient care and our 
understanding of basic biology. 

Methods 

Training, validation, and test datasets 

All SVs were retrieved in GRCh38 or converted using the University of California, Santa Cruz 
(UCSC) liftover tool52.  

All ClinVar SVs32 were downloaded from  
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz on January 21, 2020. 
SVs were retained if they fulfilled all the following requirements: clinical significance of 
pathogenic, likely pathogenic, pathogenic/likely pathogenic, benign, likely benign, or 
benign/likely benign; not somatic in origin; type of copy number loss, copy number gain, 
deletion, or duplication; > 49 bp in size; at least 1 bp overlap with an exon.  

Great ape SVs33 mapped to GRCh38 were downloaded from 
ftp://ftp.ebi.ac.uk/pub/databases/dgva/estd235_Kronenberg_et_al_2017/vcf/ on April 8, 2019. 
Deletions were retained if they were absent in humans and homozygous in exactly one of the 
following species: chimpanzee, gorilla, or orangutan. Only exon-altering deletions > 49 bp were 
retained. These deletions are subsequently referred to as apes. 

gnomAD 2.1.1 SVs17 (build GRCh37) were downloaded from 
https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz on 
June 28, 2019. Only duplications and deletions were retained that were exon-altering, >49 bp, 
and PASS Filter. gnomAD SVs were divided into three categories: SVs with a global minor allele 
frequency (MAF) > 1% (gnomAD common), SVs with a global MAF < 1% with at least one 
individual homozygous for the minor allele (gnomAD rare benign), and SVs with a global MAF < 
1% with no individuals homozygous for the minor allele (gnomAD rare unlabeled).  

Database of Genomic Variants42 release 2016-05-15 of GRCh38 “DGV Variants” was 
downloaded from http://dgv.tcag.ca/dgv/app/downloads on April 08, 2019. MAF of each deletion 
was calculated as ‘observedlosses’ / (2 * ’samplesize’). MAF of each duplication was calculated 
as ‘observedgains’ / (2 * ’samplesize’). Only exon-altering SVs > 49 bp were retained. Those 
SVs with a MAF greater than 1% are subsequently referred to as DGV common.  

DECIPHER CNVs (build GRCh37) were downloaded from http://sftpsrv.sanger.ac.uk/ on Jan 
27, 2020. Only exon-altering SVs > 49 bp with pathogenicity of “pathogenic”, “likely pathogenic”, 
“benign”, or “likely benign” were retained. We only considered benign or likely benign SVs 
without “Full” or “Partial” contribution to disease phenotype. These benign and likely benign SVs 
were included in all 3 sets. Set 1 pathogenic SVs consisted of pathogenic or likely pathogenic 
SVs with “Full” contribution to disease phenotype (referred to as “sufficient” in this manuscript). 
Set 2 SVs consisted of pathogenic or likely pathogenic SVs with “Full” or “Partial” contribution. 
Set 3 SVs consisted of pathogenic or likely pathogenic SVs with “Full”, “Partial”, or “Unknown” 
contribution. Identical SVs with conflicting pathogenicity were removed. SVs were then sorted 
by size (ascending) and SVs with a reciprocal overlap >90% were removed, keeping only the 
first SV.  
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1KGP merged SVs43 were downloaded from 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_positio
ns/ on Oct 22, 2019. Only exon-altering deletions and duplications with a global allele frequency 
less than 1% were used for testing in Fig. 2.5a.  

We used exon boundaries from Ensembl biomart53, genes v96, GRCh38.p12, limited to genes 
with HGNC Symbol ID(s) and APPRIS annotation29. For each gene, a single principal transcript 
was used, based on the highest APPRIS annotation. For transcripts that tied for highest 
APPRIS annotation, the longest transcript was used. Exon overlap was determined using 
bedtools intersect.  

Extensive deduplication of data was performed as follows. Deletions and duplications were 
considered separately. Benign SVs (n=23,239) were ordered (ClinVar benign, ClinVar likely 
benign, apes, gnomAD rare benign, gnomAD rare unlabeled) and duplicates (reciprocal overlap 
of 90% or greater) were removed, keeping the first appearance of an SV. This removed 577 
SVs from ClinVar benign/likely benign, 5 SVs from apes, and 408 SVs from gnomAD. The 
retained data are subsequently referred to as benign. To deduplicate pathogenic SVs (n=8,378), 
deletions and duplications were considered separately. Exact matches between ClinVar 
pathogenic and ClinVar likely pathogenic were removed from likely pathogenic. SVs were then 
sorted by size, ascending. SVs with > 90% reciprocal overlap were removed, keeping the 
smallest SV. This removed 2,421 pathogenic SVs. The retained data are subsequently referred 
to as pathogenic. Next, exact matches between the benign and pathogenic datasets were 
removed from both datasets. Finally, duplicates between pathogenic and benign (reciprocal 
overlap of 90% or greater) were removed from the pathogenic dataset. This removed 3 benign 
SVs and 82 pathogenic SVs.  

Data were processed as follows to ensure we trained only on rare SVs. Pathogenic and benign 
SVs that exactly matched a DGV common SV were removed. Pathogenic and benign SVs with 
reciprocal overlap > 90% with an SV in gnomAD common were removed. This removed 30 
benign SVs and 1 pathogenic SV. SVs between 50 bp and 3 Mb were retained, all others were 
removed. 

We found some evidence of acquisition bias in ClinVar data due to the SV size sensitivity of 
different SV detection methods. To ensure StrVCTVRE was not learning on this acquisition bias, 
the size distribution of benign and pathogenic SVs were matched using the following procedure. 
After filtering as described above, benign SVs were organized into five tiers: ClinVar likely 
benign; ClinVar benign; apes; gnomAD rare benign; and gnomAD rare unlabeled. Each 
pathogenic SV was then matched by size and type (DEL or DUP) to a benign SV, iterating 
through each tier. Specifically, each pathogenic SV of size 𝑁𝑁 seeks a benign SV of the same 
type in the bin [𝑁𝑁 − (𝑁𝑁/𝛼𝛼 + 20),𝑁𝑁 + (𝑁𝑁𝛼𝛼 + 20)] where α = √106101  (this bin size derived from 
Ganel et al.24). A pathogenic SV first seeks a benign SV in the first benign tier. If matched, the 
pathogenic and benign SVs are included in the training set, and the benign SV cannot match 
any further pathogenic SVs. If no match is found in the first benign tier, the same process is 
repeated while progressing through further benign tiers. Pathogenic SVs that do not find a 
match in any benign tier are not included in the final training set. This process was continued for 
all pathogenic SVs and the resulting data are shown in Fig. 2.3. 

After SVs were annotated with features (see below), we identified groups of SVs with identical 
features, considering pathogenic and benign SVs separately. We removed all but one of these 
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feature-identical SVs in order to avoid overfitting. This removed 37 SVs from the pathogenic 
training set and 31 SVs from the benign training set. For feature-identical SVs that were present 
in both the pathogenic and the benign datasets, all feature-identical SVs were removed. This 
removed 13 SVs.  

Structural variant impact predictors 

VEP18 v96 was downloaded from https://github.com/Ensembl/ensembl-vep on April 16, 2019, 
and used to annotate SVs with transcript consequence sequence ontology terms. SVScore24 
v0.6 was downloaded from https://github.com/lganel/SVScore on June 16, 2019. It was run 
using CADD25 v1.3, downloaded from https://cadd.gs.washington.edu/download on June 16, 
2019, using default settings. AnnotSV21 v2.3.2 was downloaded from 
https://github.com/lgmgeo/AnnotSV on Feb 27, 2020. AnnotSV was run using human annotation 
and default settings.  

Structural variant features 

All gene and exon boundaries used to determine features came from Ensembl Genes v96 as 
described above. Each SV was annotated with the following 17 features:  

Feature 
category Feature description 

Data 
type 

Aggregation 
method for 

multiple 
genes 

CDS 
Fraction of CDS adjacent to start codon that is not 

disrupted by SV float min 

CDS 
Fraction of CDS adjacent to stop codon that is not 

disrupted by SV float min 
CDS Fraction of CDS overlapping SV float max 

Conservation 
Average phyloP score of the 400 most conserved 

overlapping nucleotides float NA 
Expression Exon expression (see Methods) float NA 
Expression Exon inclusion (see Methods) float NA 
Expression TAD boundary strength (according to Gong et al54) float max 

Gene 
importance LOEUF of gene float min 

Gene 
importance 

LOEUF of gene where stop codon overlaps SV or 
>50% of CDS overlaps SV float min 

Gene 
importance pLI of gene float max 

Gene 
importance 

pLI of gene where start codon overlaps SV or 
>50% of CDS overlaps SV float max 

Other All overlapped exons can be skipped in frame boolean NA 
Other Any overlapped exon is constitutive boolean NA 
Other Minimum exon transcript order* integer min 
Other Number of exons in canonical transcript of gene integer min 
Other Number of exons SV overlaps by 1 or more bp integer max 
Other SV is deletion or duplication boolean NA 
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Table 1.1: Features used in StrVCTVRE. *exon transcript order was defined as the number of 
exons preceding a given exon in a gene. 

Expression features were derived from transcript data downloaded from the GTEx Portal v755. 
Exon expression was calculated for each nucleotide as the sum of the transcripts per million 
(TPM) of fragments that map to that nucleotide. Exon inclusion estimated the proportion of 
transcripts generated by a gene that include a given nucleotide and was calculated for each 
nucleotide as the TPM of fragments that map to that nucleotide, divided by the sum of TPM that 
map to the gene containing that nucleotide. For both features, adjacent base pairs with the 
same value were merged together into genomic intervals. For SVs that overlapped more than 
one of these genomic intervals, exon expression was calculated by averaging the 400 highest 
exon expression genomic intervals contained in that SV. The same was done for exon inclusion. 
All GTEx tissues were used in this analysis. 

To determine which conservation feature to use, we assessed the accuracy of both 
PhastCons56 and PhyloP30 in discriminating between pathogenic and benign SVs using the 
average of the highest-scoring 200, 400, 600, 800, and 1000 nucleotides. The test set consisted 
of 200 small (< 800 bp) SVs randomly selected from our pathogenic and benign SV training 
datasets (as described above). We found the mean PhyloP score of the 400 most conserved 
nucleotides in an SV was among the highest accuracy predictors. For both conservation and 
expression features, if the total overlap between the SV and all exons was less than 400 
intervals, then the values of the overlapped intervals were averaged together to calculate the 
feature. Median imputation was used to fill in missing feature annotations.  

In Fig. 2.1a, features were clustered by correlation using the linkage and fcluster functions from 
the SciPy57 v 1.1.0 hierarchical clustering package. The input to this figure were the features for 
all SVs used as training data. Values for some features were reversed to ensure most matrix 
correlations are positive.  

Random forest classification 

StrVCTVRE was implemented as a random forest classifier in Python with scikit-learn58 v0.17, 
using class RandomForestClassifier. A grid search was performed to find the optimal 
hyperparameters by using a leave-one-chromosome-out cross validation strategy and validation 
only on ClinVar data, as described previously. The hyperparameters searched included: the 
max depth of a tree (5, 10, 15, No limit), max features considered at each split (1, 2, 3, 4), the 
minimum samples at each leaf node (1, 2, 4), the minimum samples required to split a node (2, 
4), the number of trees generated (500, 1000, 3000), and whether to use out-of-bag samples to 
estimate accuracy (True, False). Several combinations of features performed similarly well, and 
we chose one that performed well while unlikely to over-fit to the training data—max depth: 10, 
max features considered at each split: 1, minimum samples at each leaf node: 2, minimum 
samples required to split a node: 4, number of trees: 1,000, out of bag samples: False. Feature 
importance used in figures is also known as Gini importance59, and was calculated using the 
feature_importances_ attribute of RandomForestClassifier.  

Figures 

In Fig. 2.1b, 95% confidence intervals were derived by generating 1,000 random forest 
predictors. 
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In Fig. 2.2a, the data were generated by using a leave-one-chromosome out approach that 
included all chromosomes besides chromosomes 1, 3, 5, and 7 (e.g., SVs in chromosome 2 
were assessed using training data from chromosomes 4, 6, 8, 9, 10, etc.).  

In Fig. 2.2b, to create the inset testing set, we began with the benign and pathogenic datasets 
as described above, and only retained ClinVar SVs from each dataset. Next, we removed any 
SVs larger than 3MB, and for both the benign and pathogenic dataset, we randomly sampled 
SVs without replacement, such that SVs were retained if they did not overlap any of the same 
genes as a previously sampled SV. This resulted in a reduced dataset for both pathogenic and 
benign SVs, in which every gene was overlapped by at most a single SV. Pathogenic and 
benign SVs from these reduced datasets were then matched by size as described above, and 
only results from testing on SVs on chromosomes 1, 3, 5, and 7 are shown in the Fig. 2.2b 
inset.  

In Fig. 2.2b, 4a, and 4b, AUC 95% confidence intervals were derived by calculating the AUC 
standard error following Hanley and McNeil60. 

In Fig. 2.4b, 90% sensitivity thresholds were derived from StrVCTVRE and SVScore 
performance on the ClinVar held-out test set (dotted line, Fig. 2.2b).  

Method availability 

The StrVCTVRE command line tool can be downloaded from 
https://compbio.berkeley.edu/proj/strvctvre.  
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Chapter 3: Assessing the clinical value of detecting structural variants with optical 
mapping and linked-read sequencing to diagnose rare monogenic disorders* 

 

Background† 

Sequencing methods have revolutionized the clinical care of rare diseases, but serious 
challenges remain. Short-read sequencing of exomes and genomes resolves 26 to 40% of 
cases that could not be diagnosed by standard methods, leading to improved care and cost 
savings2,3. Yet, this leaves many cases unresolved. Some of these unresolved cases may be 
caused by structural variants (SVs) that either could not be detect or were of unknown 
significance. SVs include deletions, duplications, and rearrangements (such as translocations, 
inversions, and insertions) larger than 50bp. Long-read sequencing routinely identifies more 
than 20,000 SVs in each genome4,5. For many rare diseases, SVs cause a minor but 
considerable fraction of disease. In one study of 119 probands with undiagnosed diseases, 13% 
of resolved cases were caused by an SV6. 

SVs remain difficult to detect. Unlike SNVs, for which best practices are well established and 
methods are accurate, there are several diverse techniques used to detect SVs, few of which 
are accurate alone. These techniques also vary widely in cost. Established cytogenic methods 
such as oligo array CGH and SNP array are able to accurately detect large SVs, but without 
good breakpoint accuracy. A single test that offers both SNV and SV detection is attractive, 
since it reduces the number of samples needed from a patient and reduces time spent ordering 
and analyzing tests. Such a combined test is possible with sequencing-based methods such as 
short-read, linked-read, and long-read sequencing. To detect SVs from short-read sequencing, 
computational methods use clues from unexpected read pair orientation or distance, changes in 
read depth, and single reads that span an SV breakpoint. However, these techniques are 
hindered by the repetitive nature of as much as 5% of the human genome. Worse yet, it is 
exactly in these repetitive areas of the genome in which breakpoints for many SVs lie7. Linked-
read whole genome sequencing from 10x Genomics uses barcodes to computationally 
assemble short reads into long reads, and has been used successfully to resolve clinical 
diagnoses in prenatal testing8. Specifically, the process begins with high molecular weight 
genomic DNA. A specialized library preparation is used to barcode short reads that originate 
from the same DNA molecule. These short reads are then sequenced on a short-read 
sequencer. During mapping, barcodes from each read allow for the construction of pseudo-long 
reads, called linked reads. SNVs can be accurately called from these data as well. 

Long-read methods, available from Oxford Nanopore and PacBio, sequence long-reads 
(>10kb), most of which can be unambiguously mapped to the genome. SVs are then spanned 
by or entirely contained within the reads themselves, which leads to more accurate calls and 
precise breakpoints9. However, accurate SNV calling requires high-depth long reads because 
the per-base error rate is high. These methods are thus prohibitively expensive in most clinical 

                                                
* The majority of this chapter was written by Andrew Sharo. Parts of this chapter, where indicated, were 
adapted from a published article1. Andrew Sharo performed the work described in those sections he 
wrote, while the sections written by others describe work that was performed primarily by others. This 
work is included with permission from the authors. 
† Parts of the first two paragraphs in this section were adapted from a published article1 and primarily 
written by Joseph Shieh, Monica Penon-Portmann, and Karen Wong. 
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contexts. Optical mapping by Bionano Genomics, a non-sequencing-based method to call SVs, 
has been used in clinical SV discovery, such as identifying SVs in a Duchenne muscular 
dystrophy cohort10. Starting with high molecular weight genomic DNA, custom restriction 
enzymes are used to nick the DNA, which is repaired with a fluorescent nucleotide. This gives a 
sequence-specific pattern of fluorescent nucleotides for each DNA molecule, which is optically 
recorded by linearizing DNA molecules in nanometer-scale channels. These overlapping 
fluorescent patterns are then aligned to each other to create contigs. These contigs can then be 
compared to a reference genome pattern to detect SVs. There are two important caveats: SVs 
breakpoints are not able to be determined more precisely than within several kb, and SVs 
smaller than 1 kb are difficult to detect with confidence. These limitations stem from the 
fluorescent nucleotides, which are located approximately every 10kb in the genome and for 
which the location can only be accurately determined within several hundred base pairs. 
However, among the SVs that can be detected, the sensitivity and specificity of calls is generally 
quite high11.  

Detecting SVs is only half the battle. Identifying one or two disease-causing SVs out of the 
thousands of SVs present in an individual is a monumental task. The American College of 
Medical Genetics and Genomics has released guidelines for clinicians to determine the 
pathogenicity of SVs, but they are demanding and cannot reasonably be done for more than a 
few top candidates in clinical setting with limited time12. Thus, there are several steps to address 
this challenge by removing SVs from consideration that are likely not pathogenic. A crucial first 
step is to remove low quality SVs. All methods have some fraction of false positive calls (that is, 
variants that are detected but do not exist in the genome), which can be eliminated by 
considering only those SVs with quality indicators above a certain threshold or which pass 
certain filters. Generally, these thresholds are specific to each method, and we explore one way 
to calibrate these quality thresholds in our analysis. Next, it is important to remove common SVs 
(>1%) which occur too frequently to cause a rare disease. Just like SNVs, many SVs are 
population specific, so reference SVs must come from a diverse cohort. gnomAD SVs provide 
one source of diverse SV allele frequencies13. At the same time, it is equally important to use a 
set of SVs that were called with the same pipeline to remove SVs that are systematic false 
positives due to errors in alignment or calling. Below, we quantify the extent of systematic false 
positives across methods. 

This process leaves a set of rare, high-quality SVs which could include tens to hundreds of SVs 
depending upon the methods used. Many of these SVs will be intronic or intergenic. These SVs 
are typically more difficult to interpret, and they are expected to be more benign on average 
than SVs that affect coding regions. As a first pass, a clinician may consider only SVs that 
overlap a coding region. This step highlights the importance of accurate breakpoint prediction to 
distinguish between coding and non-coding SVs, which we compare between methods below. 
Additionally, researchers predict that the majority of rare gene-altering SVs are deletions and 
duplications14, so we may consider these SVs first. Below we investigate the accuracy of 
methods to distinguish deletions and duplications. A handful of methods exist to prioritize 
deletions and duplications based on overlap with genomic features15-17 or overlap with known 
pathogenic SVs18. By investigating these prioritized SVs and considering the match between 
patient phenotypes and the phenotypes associated with the affected gene, a clinical researcher 
may identify one or more SVs that explain the patient phenotypes.  
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Here we compare the diagnostic value of optical mapping and linked-read sequencing to detect 
diagnostic and candidate SVs in rare monogenic disorders. We also consider the diagnostic 
value of short-read sequencing that is derived from trimmed linked-read data (see Methods). 
We use Smoove, the successor to Lumpy19, which integrates multiple pieces of evidence (split 
reads, paired reads, and read depth) to call and genotype SVs20, to identify SVs from short-read 
data. Independent assessments have identified Smoove as a top-performing method21. Linked-
read sequencing and optical mapping are expected to detect more SVs with greater accuracy. 
However, due to the difficulty of prioritizing SVs, it is not obvious that this will translate to greater 
clinical value. Indeed, a recent study comparing short-read and linked-read sequencing for 
germline SV detection in a clinical setting found no improvement22.  

Methods* 

DNA extraction and preparation 

High molecular-weight DNA was extracted and isolated using the Bionano Prep Blood Isolation 
Kit following the manufacturer protocol (Bionano Genomics). Bionano optical mapping libraries 
were prepared following the manufacturer protocol (Bionano Genomics). 10x Genomics linked-
read sequencing libraries were built as published23 using the GemCode platform (10x 
Genomics). 

Optical mapping and linked-read data generation and processing 

Optical mapping on the Bionano Irys and Saphyr platforms was used to produce de novo 
assemblies and identify SVs and rearrangements. DNA was labeled using Nick, Label, Repair 
and Stain (NLRS) and/or Direct Label and Staining Technologies (DLS). The first uses a nicking 
endonuclease that recognizes a specific 6-7 base pair sequence and creates a single-strand 
nick, filled with fluorescent nucleotides. The second uses a single direct-labeling enzymatic 
reaction to attach a fluorophore to a specific 6-basepair DNA sequence motif. Labeled DNA 
libraries were loaded onto the Bionano Genomics IrysTM Chip or SaphyrTM Chip, linearized and 
visualized using the IrysTM or SaphyrTM system, which detects the fluorescent labels along each 
molecule. Single molecule maps were assembled de novo into genome maps using Bionano 
Solve with the default settings24. Genome assembly and alignment was performed using 
IrysView/IrysSolve software. For optical mapping, we performed embedding of cells, long DNA 
extraction and Chip run over a total 3.25 days. 

Linked-read sequencing data was obtained from 10x Genomics libraries sequenced to ~60X 
coverage using an Illumina sequencer. Reads were aligned to GRCh38 using LongRanger and 
SVs were identified using the callers integrated in the 10x pipeline including GATK Haplotype 
caller for SNPs and indels. SNPs and indels were kept for analysis if the minor allele frequency 
is ≤5% as reported in the gnomAD database. 

Optical mapping SV filtering 

We considered all SVs present in the bionano Smap files. Translocations were identified as SVs 
for which ‘RefcontigID1’ and ‘RefcontigID2’ did not match. Only SVs greater than 50 bp and with 
‘Present_in%_of_BNG_control_samples’ ≤ 0.5 were retained. Only SVs with 
                                                
* The sections titled ‘DNA extraction and preparation’, ‘Optical mapping and linked-read data generation 
and processing’, and ‘Approvals and phenotypic assessment’ were adapted from a published article1 and 
primarily written by Joseph Shieh, Monica Penon-Portmann, and Karen Wong. 
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‘Fail_assembly_chimeric_score’ of ‘pass’ or ‘not_appliable’ and with ‘Found_in_self_molecules’ 
of ‘yes’ were considered further, as recommended by nanotatoR25. To generate Fig. 3.3, we 
removed deletions with a ‘Confidence’ below 0.99.  

Linked-read LongRanger SV filtering 

We removed SVs for which length and start position were perfect multiples of 10,000 since 
these were found to be largely false positives called exclusively based on sequence depth. 
Deletions and duplications with a cohort frequency greater than 0.5% were removed. For rarity 
filtering, SVs were considered equivalent if they had a reciprocal overlap ≥ 80% and their 
corresponding breakpoints were within 10,000 bp of each other. Translocations were assumed 
the same if their corresponding breakpoints were within 100bp. SVs were removed if their filter 
was anything other than ‘PASS’. To generate Fig. 3.3, duplications with a quality below 3 were 
removed, and deletions with a quality below 4 were removed.   

Short-read Smoove SV filtering 

To create our short-read dataset, we used the FASTX-Toolkit (RRID:SCR_005534) to trim the 
first 24 bases from the forward reads of the linked-read fastq files. This step removes the 
barcode information which is used to assemble reads into long contigs. Next, we used bwa-
mem26 (v 0.7.10-r789) ‘mem’ command with default parameters to align the trimmed reads to 
GRCh38. We used Samblaster27 to remove duplicates and add mate tags, with a maxSplitCount 
of 2 and minNonOverlap of 20. We first called SVs in 122 samples using Smoove v0.2.5 
downloaded on April 6, 2020. Smoove ‘call’ was run with all default parameters as well as 
excluding intervals defined in the file available at https://github.com/hall-
lab/speedseq/blob/master/annotations/exclude.cnvnator_100bp.GRCh38.20170403.bed. For 
each sample, to remove common SVs, we removed SVs with more than 1 heterozygote and 
any number of homozygotes in the cohort. For filtering, SVs were considered equivalent if they 
had a reciprocal overlap ≥ 80% and their corresponding breakpoints were within 10,000 bp of 
each other. Translocations were assumed the same if their corresponding breakpoints were 
within 100bp. SVs with an MSHQ below 4 were removed, except for those with an MSHQ of -1. 
To generate Fig. 3.3, deletions with quality below 266.6 and duplications with quality below 
20.32 were removed.  

Linked-read Smoove SV filtering 

Filtering steps were identical to short-read Smoove SV filtering (above) except SVs were called 
directly from the LongRanger bam files using Smoove. To generate Fig. 3.3, deletions with 
quality below 251.44 and duplications with quality below 29.38 were removed.  

SV prioritization 

For all methods, our final step was to remove exon-affecting SVs, defined as any SV that has at 
least 1bp of overlap with an exon as defined by Ensembl biomart28, genes v96, GRCh38.p12, 
limited to genes with HGNC Symbol ID(s) and APPRIS annotation29. For transcripts that tied for 
highest APPRIS annotation, the longest transcript was used. Exon overlap was determined 
using bedtools intersect30. StrVCTVRE15 v.1.6, downloaded on May 7, 2020, was used to 
prioritize exon-affecting deletions and duplications by pathogenicity.  

Calculating 90% sensitivity threshold of each method 
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For cases 1903, 2203, 3403, 4203, and 5104 we identified the 90% sensitivity threshold for the 
quality feature using the following method. Because optical mapping calls are known to be 
reasonably accurate for deletions and duplications larger than 1,000 bp, they were treated as a 
quasi-truth set. Considering deletions called by optical mapping, we removed SVs for which the 
size inferred by ‘RefStartPos’ and ‘RefEndPos’ did not match size given by ‘Size’ or for which 
size was less than 1kb. Due to the limited resolution of SV breakpoints called by optical 
mapping, the following method was devised. For SVs discovered in our linked-read LongRanger 
analysis, we retained optical mapping SVs for which ≥1% was overlapped by a linked-read SV, 
and ≥50% of the same linked-read SV was overlapped by the same optical mapping SV. SVs 
were retained only if the optical mapping SV size was between 85% and 115% of the linked-
read SV size. SVs less than 1kb were removed. The same process was repeated for SVs 
identified in our linked-read Smoove and short-read analysis. Then, all the SVs that were in 
common between these three sets were retained. This was performed for all five cases. These 
SVs were concatenated together across the five methods. Then, for each method, the quality 
threshold was identified for which 90% of these common SVs were detected. This quality 
threshold was used at the 90% sensitivity threshold. This process was repeated for duplications.  

gnomAD comparison 

gnomAD 2.1 SVs13 aligned to GRCh37 were downloaded on Dec 11, 2019. We used the 
University of California, Santa Cruz liftover tool31 to convert SVs to GRCh38. Deletions and 
duplications with a popmax allele frequency greater than 0.5% and a PASS Filter were retained. 
For each method, these SVs were then used to removed common SVs using exactly the same 
procedure as for cohort SVs. To generate Fig. 3.4, for each case, we summed the number of 
deletions and duplications to investigate when gnomAD is used and divided by the sum of 
deletions and duplications to investigate when our cohort was used. Across the five cases, we 
plotted the mean fold increase with a 95% confidence interval, calculated as 1.96 times the std 
deviation computed with the students t test.  

Breakpoint accuracy 

We manually determined the difference between true SV start and predicted SV start as well as 
true SV end and predicted SV end for the diagnostic or candidate SVs in cases 1903, 2203, 
3403, and 4203. No significant accuracy differences were observed between deletions and 
duplications, or start and stop. True breakpoints in 5104 were not able to be determined, so the 
case was not included. Mean distance is shown for 4 samples, considering both start and end, 
for a total of 8 measurements. 95% confidence interval is calculated as described above in 
gnomAD comparison.  

Approvals and phenotypic assessment 

The study was approved by the Institutional review board of Children’s Hospital Oakland and 
University of California, San Francisco (UCSF), Committee for Human Subjects Research. 
Recruitment was from UCSF Benioff Children’s Hospital Medical Genetics and Genomics 
clinics. In recruiting patients, we focused on cases of two types: cases in which whole-exome 
sequencing had not returned a diagnostic variant; and sporadic cases from the pediatric 
population that are suspected to have a genetic basis, but fall into no clear syndrome and have 
no clear candidate target for conventional genetic diagnosis. Individuals with undiagnosed 
conditions and unaffected parents were offered testing and underwent an informed consent 
process prior to blood draw. The nature and possible risks of the study were explained in the 
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consent process. Phenotypic evaluation was performed by clinical review by at least two 
genetics professionals, and human phenotype ontology terms were curated for each case. 

Results* 

Optical mapping and linked-read methods detected more diagnostic and candidate SVs than 
short-read sequencing 

We analyzed 50 undiagnosed cases to determine the diagnostic yield of three methods: optical 
mapping, linked-read sequencing, and short-read sequencing. During recruitment, clinicians 
proposed unsolved cases for genomic sequencing, and cases were included only if prior testing 
was negative and there was no clear further specific test. Of the 50 cases, 23 previously had a 
negative commercial trio whole-exome sequencing, and 42 previously had a negative 
microarray. Our initial SV pathogenicity assessment integrated two complementary methods 
(linked-read sequencing and optical mapping) and detected deletions, duplications, 
translocations, inversions, insertions, and complex SVs.  

Our pipeline identified 6 diagnostic SVs and 5 candidate SVs (Table 3.1). 14 diagnostic SNVs 
were identified as well, which gives a total diagnostic yield of 40% (20 out of 50 cases). 
Diagnostic SVs were found in 12% of cases (6 out of 50). 4 of the 6 diagnostic SVs were not 
discovered in a prior trio exome analysis, and all were missed in a prior microarray analysis.  

In a 9-month-old female with craniosynostosis and syndactyly, we found a rare 32kb 
heterozygous de novo intronic duplication within NHEJ1 (Fig. 3.1a,b; case 1703). Similar cases 
have been described under the name chromosome 2q35 duplication syndrome, but this 
duplication narrows the critical region of the NHEJ1 intron that is important for the condition32,33 
(Fig. 3.1c). The duplication affects an enhancer for the Indian Hedgehog (IHH) gene, located 
within the third intron of NHEJ1. This SV was detected by both optical mapping and linked-read 
sequencing but could not be detected by short-read sequencing.  

Considering all diagnostic and candidate SVs, both linked-read and optical mapping were able 
to identify 11 of 11 SVs. When cases were re-analyzed with short-read sequencing, we were 
able to identify 7 out of 11 SVs. There was no obvious explanation why the diagnostic or 
candidate SVs in these particular 4 cases (1703, 2303, 2803, 5103) were missed by short-read 
sequencing. We suspect random differences in read coverage played an important role. 
Consider, two siblings were identified to have identical biallelic diagnostic deletions in TANGO2 
(cases 5103 and 5104). Short-read sequencing was able to identify the deletions in one sibling 
(5104), but did not identify the deletions in the other sibling (5103).  

 

                                                
* Parts of the section ‘Optical mapping and linked-read methods detected more diagnostic and candidate 
SVs than short-read sequencing’ were adapted from a published article1 and primarily written by Joseph 
Shieh, Monica Penon-Portmann, and Karen Wong. 
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Figure 3.1 Heterozygous, intronic tandem duplication (32 kb) in NHEJ1. The affected region 
includes an IHH upstream enhancer and narrows the diagnostic interval for this condition. a 
Optical mapping assembly (light blue) and its alignment to reference (green). The labeled motifs 
in the reference genome (vertical maroon lines) are duplicated in the de novo assembly and 
their orientation demonstrates the duplication occurred adjacent to the original sequence, in 
tandem. b A matrix view of linked reads. The dark orange square in the left panel (proband), 
illustrates a higher density of barcode overlap in the read matrix compared to either parent, 
indicating the variant likely occurred de novo. c Phased haplotypes generated using linked-read 
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data. Haplotype B, in purple, contains the intronic region with a greater depth of linked reads 
due to sequence duplication. This figure was adapted from a published article1. 

Optical mapping detects the largest number of rare exonic deletions and duplications 

To compare the three methods, we next consider the seven cases (0703, 1903, 2203, 3403, 
4203, 4603, 5104) in which the diagnostic or candidate SV was detected by all methods. For 
each case, we calculated the number of duplications, deletions, and translocations with a quality 
greater than the diagnostic or candidate SV quality (Fig. 3.2). Since our linked-read analysis 
only reported duplications larger than 30kb, here we include for each method only those 
duplications larger than 30kb. We found that optical mapping detected a median of 11-fold more 
confident duplications than linked-read sequencing and 3-fold more than short-read sequencing 
(Fig. 3.2a). When only rare duplications are considered (rarity determined as described below), 
optical mapping continues to call more duplications, but linked-read and short-read sequencing 
detect a similar number of SVs (Fig. 3.2d). Given that our linked-read analysis is expected to be 
more accurate than our short-read analysis, this may reflect the fact that some of the confident 
short-read duplications are actually systematic false-positives that are called in many samples 
and eliminated when common duplications are removed. Among SVs that are of primary clinical 
interest, rare exonic duplications, we find that optical mapping confidently calls a median of 5, 
which is more than either linked-read (median of 1) or short-read (median of 0) sequencing (Fig. 
3.2g).  

We noticed a very similar pattern among deletions, in which optical mapping calls the most 
confident deletions, with a median of 8 rare exonic deletions compared to 1 for linked-read 
sequencing and 2 for short-read sequencing (Fig. 3.2h). We note that for all methods only 
deletions larger than 1kb are considered, due to optical mapping’s technical limit on SV 
resolution. The opposite trend was observed for translocations. We found that our linked-read 
analysis predicted a median of 10-fold more confident translocations than optical mapping, and 
our short-read analysis predicted a median of 80-fold more confident translocations than optical 
mapping (Fig. 3.2c). However, once only rare, genic (overlapping an exon or intron) 
translocations were considered, the number of predicted translocations were similar across 
methods (Fig. 3.2i). Given that we expect most genomes have very few, if any, translocations, 
these data suggest that both linked-read and short-read sequencing predict a large number of 
confident translocations, but that these are systematic errors which are removed when only rare 
SVs are considered. Overall, we found that optical mapping identifies a greater number of 
confident, rare, exonic duplications and deletions than linked-read or short-read sequencing, 
and that all methods identify a similar number of confident, rare, genic translocations. Although 
this provides a helpful comparison of methods, this analysis is limited because rarely are SVs 
prioritized by quality. Instead, researchers typically define a quality threshold based on desired 
tradeoffs between sensitivity and specificity, which we investigate next. 
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Figure 3.2 High-quality variants called by each method. The number of duplications (left 
column), deletions (middle column), and translocations (right column) called by optical mapping 
(green), linked-read sequencing (magenta), and short-read sequencing (blue). In addition to all 
variants (top row), we show the number of rare variants (middle row) and rare exonic variants 
(bottom row). Generally, optical mapping identifies a greater number of high-quality duplications 
and deletions than linked-read sequencing or short-read sequencing. For each case, we show 
the number of variants with quality equal to or greater than the causal variant. Note that y-axis 
scale changes between panels.  
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All methods required a similar number of SVs to be investigated when appropriate filtering 
strategies were used 

We took the following steps to prioritize SVs by pathogenicity. First, we removed low quality 
SVs. Since a sensitive analysis that does not miss any potentially pathogenic SVs is paramount, 
for each method we identified a 90% sensitivity threshold. There are some fundamental 
differences between SVs identified by each method (e.g., linked-read sequencing did not report 
duplications less than 30kb), so this is not a global 90% sensitivity but rather a 90% sensitivity 
for the subset of SVs that could be detected by all methods. Recently developed methods (such 
as optical mapping and linked-reads) can provide challenges in this domain, since best 
practices are not always well-established, and often independent assessments of SV quality are 
unavailable. Additionally, peculiarities of a particular protocol for DNA extraction, library 
preparation, sequencing, and data analysis can create unexpected results. Quality thresholds 
can readily be determined when one or more standard genomes (for which SVs are already well 
characterized, such NA1287834) are included in the analysis35. Depending on the number of 
batches in which genomes are processed, it may be helpful to include a standard genome in 
multiple batches to identify batch effects. A standard genome was not included in our data, so 
we developed an alternative strategy to identify a 90% sensitivity quality threshold. For the 
following analysis, we considered only the five cases (1903, 2203, 3403, 4203, 5104) for which 
diagnostic or candidate deletions or duplications were detected by all methods. For each case, 
we identified the subset of deletions and duplications that were detected by all three methods 
(see Methods). Presumably, the SVs in this subset are nearly all true positives (that is, they do 
exist in the genome). For each method, we then used this subset to determine an appropriate 
quality threshold, which we set such that 90% of the subset SVs were retained. We used these 
thresholds to remove low-quality SVs from each method’s call set.   

Next, we filtered SVs by rarity. Since these disorders are expected to be very rare (incidence of 
<1 in 100,000), We retained only SVs with an allele frequency below 0.5%. There are two 
potential sources which can be used to identify common SVs: cohort samples and population 
databases. Cohort samples have the advantage of removing systematic errors in SV calling, 
which are often absent in population databases. However, depending on the size of the cohort, 
it may not be sufficient for filtering. Additionally, if a cohort contains samples from different 
ancestry groups, a diverse population database such as gnomAD SVs may enable filtering of 
SVs that are common in a single ancestry. In our analysis, we found that filtering SVs by cohort 
SVs was more valuable than filtering by gnomAD SVs, and that filtering by both did not improve 
upon filtering by cohort alone. This is possibly due to the inclusion of parents in our sampling. 
Additionally, parent SVs allowed us to identify de novo SVs. Of our 11 cases, we found that 7 
were caused by de novo SVs. Although de novo SVs are enriched for disease-causing SVs, 
they are also often false positives, and so to remove false positive calls we only flagged an SV 
as de novo if it did not match any SV called in the parents of any quality.  

With this set of high-quality, rare SVs, we next considered only exon-affecting deletions and 
duplications, as they are expected to constitute the vast majority (>95%) of rare gene-altering 
SVs14. Additionally, deletions are called more accurately than other events21, and deletions and 
duplications are more clinically interpretable than SVs such as inversions, insertions, and 
translocations. Finally, we prioritized these exon-affecting deletions and duplications using 
StrVCTVRE, an SV impact predictor developed specifically to prioritize exon-affecting deletions 
and duplications for rare disease. In addition to our three methods, we also ran Smoove directly 
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on the linked-read alignments. This allowed us to de-couple the limitations of linked-read 
chemistry from the limitations of the LongRanger computational method that called linked-read 
SVs.  

 

Figure 3.3 Comparison of variants investigated, and errors made by each method across 
cases. a The number of variants that would need to be investigated until the causal variant is 
discovered. Variants were prioritized by StrVCTVRE score after filtering for quality and rarity 
(see Methods). Values are grouped by case, dot color indicates method, and line color indicates 
the number of deletions and duplications. b Grouped by case, the types of errors made in each 
case, with column color indicating method. Blue squares indicate correct classifications, while 
red X’s indicate errors or missing information. c The same information as b but grouped by 
method, which shows some clustering in errors by method.  

 

For each of the five cases described above, we prioritized rare, exon-affecting deletions and 
duplications by StrVCTVRE score. We then calculated how many SVs would need to be 
investigated until the diagnostic or candidate SV was discovered, assuming the SVs were 
investigated in order of decreasing predicted pathogenicity (Fig. 3.3a). We found that there was 
little difference between the three methods in the number of SVs investigated. On average, 
short-read sequencing required the fewest SVs to be investigated, but this is offset by the fact 
that it did not identify the diagnostic or candidate SV in 4 of 11 cases. We found that 63% of the 
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SVs to be investigated were duplications. This overrepresentation could be due to the greater 
challenge in detecting duplications, thus requiring a lower quality threshold to achieve 90% 
sensitivity. There were two cases (3404 and 4203) for which all three methods prioritized the 
diagnostic or candidate SV as the top SV. When we applied Smoove to the linked-read 
alignment, we found it generally resulted in more SVs investigated than LongRanger, 
demonstrating that new sequencing methods do require bespoke methods to optimize SV 
calling. However, in addition to minimizing the number of SVs investigated, there are several 
additional features that are important in a clinical setting.  

Each method is prone to errors in SV type, zygosity, filtering, or breakpoints 

Methods varied in their ability to accurately report clinically important features of SVs. In every 
case, except for 4203, at least two methods incorrectly reported some aspect of the SV (Fig. 
3.3b). These errors did not obviously group by case, suggesting that they are not necessarily 
caused by the complexity of the individual SV. When grouped by method, these errors were 
more clustered, suggesting that they represent systematic or sporadic limitations of each 
method (Fig. 3.3c). Out of 5 SVs, the LongRanger algorithm was unable to call SV type in two 
large (~500kb) duplications. It is clear this was an algorithmic limitation, as Smoove was able to 
correctly call both SVs as duplications when run on the same alignment data. Clinicians use SV 
type to interpret the pathogenicity of an SV. For example, duplications of some regions may be 
benign, yet deletions of the same interval may be pathogenic12. In some cases, deletions and 
duplications of the same region are known to cause different disorders36.  Balanced 
rearrangements, such as inversions, are generally less clinically tractable without experimental 
studies. For these reasons, unambiguous, accurate reporting of SV type is a valuable feature of 
SV detection methods, which linked-reads sometimes falls short of.  

All methods misreported the zygosity of at least one SV in the five cases, and more recent 
methods had more incorrect reports. Optical mapping was unable to report zygosity for any of 
the diagnostic or candidate duplications. It is unclear if this is a limitation of the optical mapping 
chemistry or algorithm. Linked-read sequencing incorrectly reported a candidate heterozygous 
440kb duplication as homozygous, which our Smoove analysis revealed to be an algorithmic 
limitation. Short-read sequencing incorrectly reported a candidate heterozygous 1.5Mb 
duplication as homozygous. In the absence of other pathogenic variants, an SV in a 
homozygous state may be of much greater clinical interest than were it heterozygous, due to 
haploinsufficiency/triplosensitivity that varies across the genome. In these particular cases, all 
incorrectly reported SVs were heterozygous duplications in copy-sensitive genomic regions, and 
thus their initial reporting as unknown zygosity or homozygous did not significantly change their 
clinical interest. This may also reflect the generally greater difficulty of accurately determining 
the zygosity of duplications compared to deletions. Although many of our cases were caused by 
dominant SVs, accurate zygosity would be particularly important when recessive conditions are 
expected.  

Most SV methods, in addition to a quality score, provide one or more filters to aid users to 
remove likely false positives. We found that one candidate SV identified by linked-read 
LongRanger was marked with the ‘LOWQ’ filter. Given the small number of SVs evaluated, it is 
difficult to determine if the LongRanger LOWQ filter is too aggressive or if this is a rare incident. 
We also found two SVs that did not meet the recommended Smoove filtering for MSHQ (see 
Methods). This appears to be a limitation of short-read alignment accuracy, since we found the 
same SVs passed filters when Smoove was run on the linked-read alignment. Were these filters 
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used strictly, both linked-read and short-read sequencing would have missed clinically-relevant 
SVs.   

Breakpoint accuracy varied greatly across methods due to both experimental and algorithmic 
limitations. Optical mapping measures fluorescent nucleotides that are an average of 10kb apart 
in the genome, thus the breakpoint resolution of this method is inherently limited. Indeed, across 
five cases, we found the breakpoints reported by optical mapping were a mean of 4kb from the 
actual SV breakpoints, with all differences under 9kb (Fig. 3.4a). In one case (4203), if optical 
mapping had been the sole method used, it would have been impossible to tell whether the 
diagnostic deletion affected an exonic region, or whether it was completely intronic (Fig. 3.4b). 
This uncertainty would have made this deletion much less compelling, since it may have been 
assumed to be intronic in the absence of further evidence. We found breakpoints called by 
LongRanger were an average of 10 bp from the true breakpoints. To determine if this was an 
algorithmic limitation, we checked the breakpoints called by Smoove run on the linked-read 
alignments, and we found the calls were accurate within less than 1 bp, confirming that the 
LongRanger algorithm was limiting accuracy. We suspect this difference in breakpoint accuracy 
called on the same alignments is due to the way each algorithm treats of split reads. We found 
that breakpoints called from short-read alignments were accurate within less than 1bp on 
average.  

 

Figure 3.4 a Average distance between the breakpoint identified by each method and the true 
breakpoint. Error bars show 95% confidence interval. b For case 4203, optical mapping 
indicated that a 1.5kb deletion was located within a 10.7kb region. The red rectangle shows the 
true location of the variant, but it could easily have been entirely intronic (green rectangle) which 
would have resulted in lower clinical interest. c When gnomAD SVs are used to remove 
common variants, we find that the number of variants investigated until the causal variant is 
reached doubles for linked-read sequencing and is significantly greater in other methods.  

a 

b 

c 



41 
 

Filtering by cohort identified rare SVs more reliably than population databases 

We had a relatively large cohort (~130 individuals) in which to identify and remove common 
SVs. However, in many studies that may not be the case. gnomAD SVs are a large, publicly 
available population database which can be compared against to identify common SVs when a 
large cohort is not available. To evaluate the appropriateness of using gnomAD SVs in place of 
cohort SVs to remove common SVs, we re-calculated the number of SVs that would need to be 
investigated until the diagnostic or candidate SV was found (Fig. 3.3a) when only gnomAD is 
used to remove common SVs. We found that on average this doubled the number of linked-read 
sequencing SVs to be investigated (Fig. 3.4c). The number of short-read SVs to be investigated 
increased 16-fold, and SVs called by Smoove from linked-read alignments increased even 
more, although this was not significantly greater. We suspect the notable increase in SVs to be 
investigated in both Smoove methods reflects systematic false positive SV calls, which are not 
able to be filtered by gnomAD. The even greater increase in SVs called by Smoove from linked-
read alignments, although not significant, suggests that bespoke methods are needed to avoid 
excessive false positives from novel methods.  

Discussion* 

In genomic medicine, rare disease diagnostics has traditionally been limited by the variants that 
can be detected and our ability to interpret those variants. Here, we investigate the use of 
optical mapping and linked-read sequencing to identify SVs implicated in rare genetic diseases. 
We also outline our pipeline for prioritizing SVs by pathogenicity. In 4 of 11 cases, we find that 
these methods detect diagnostic or candidate SVs that are missed by short-read sequencing. 
While SV detection from long DNA technologies can improve the detection of diagnostic SVs, it 
is not without its limitations. 

Optical mapping identified the greatest number of confident, rare, exonic duplications and 
deletions. The major clinical limitations we identified were its inability to determine zygosity in 
duplications, and its poor resolution of SV breakpoints. Although this resolution is rarely an 
issue for large SVs, we observed one 1.5kb diagnostic SV which would have been much less 
clinically compelling if optical mapping was the only method used. Linked-read sequencing 
identified all diagnostic and candidate SVs, but it was hampered by algorithmic limitations in 
calling SV zygosity, SV type, and breakpoint resolution. These finding reinforce known 
limitations of novel methods: despite intrinsic advantages over existing methods, it may take 
years for the corresponding algorithms to reach a high level of performance37. As of January 
2020, linked-read sequencing is no longer available from 10x genomics due to a patent 
infringement case, but we anticipate that our findings will be broadly relevant to sequencing 
methods that use long DNA molecules.  

As expected, we found evidence that short-read sequencing identifies a greater number of false 
positive SVs. However, it seems that many of these SVs are systematic errors that occur in 
multiple samples, or occur in regions with poor genome mappability which tend to be non-
exonic38,39. Indeed, many of these putative false positives are removed when only rare exon-
affecting SVs are considered. As a connected issue, we also found that short-read sequencing 
filters meant to reduce false positive calls instead removed one diagnostic SV and one 

                                                
* Parts of the first, sixth, seventh, eight, and ninth paragraphs in this section were adapted from a 
published article1 and primarily written by Joseph Shieh, Monica Penon-Portmann, and Karen Wong. 
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candidate SV. On the other hand, short-read sequencing was the only method that identified 
breakpoints with single base pair accuracy.  

Once SVs have been prioritized by an automated pipeline, a clinical researcher must manually 
investigate the top candidates to potentially identify a diagnostic SV. We anticipate that our 
description of SV prioritization may be valuable to others faced with a similar challenge. One 
step that could be added is to use one of the many phenotype-to-gene methods to prioritize 
genes based on association with proband phenotypes40,41. We chose not to take this step to be 
able to discover novel disease-gene associations.  

Overall, we found that all three methods required a similar number of SVs to be considered 
before the diagnostic or candidate SV is uncovered. This analysis is limited by the accuracy of 
the SV prioritization method we used, StrVCTVRE. Additionally, it is not possible to know 
whether the SVs prioritized above the diagnostic or candidate SV are actually false positives or 
instead true positives that happened to be prioritized above the diagnostic or candidate SV. For 
these reasons, this is not a perfect metric, but it remains clinically relevant. A further limitation is 
we discovered diagnostic and candidate SVs using a combination of linked-read sequencing 
and optical mapping. This is an important limitation to our analysis, as it may have biased our 
results to favor optical mapping and linked-read sequencing. For example, there may be 
diagnostic SVs which could not be detected by these methods but would be identified by short-
read sequencing such as duplications between 100 bp and 1kb. This limitation is further 
compounded by the fact that our short-read sequencing data was derived from our linked-read 
sequencing data. 

For individuals with undiagnosed conditions, optical mapping and linked-read sequencing 
together encompass what is currently provided by the combination of karyotyping, microarray 
testing, and short-read WGS. By identifying novel SVs and phasing variants, these methods 
provide additional diagnostic information beyond current clinical tests, despite the limitations 
that we have described. One notable advantage is that these methods bypass the need for 
additional time and blood for testing. These strengths make the technologies suitable for early 
implementation in diagnostic evaluations, particularly if a specific genetic condition or type of 
variant is not immediately suspected. Thanks to the long-range phasing offered by these 
methods, they can also be particularly effective when parents are not available for testing. This 
may be useful in intensive care units or other settings where rapid diagnosis is vital to clinical 
care42,43. 

The number of diagnostic cases attributable to SVs was striking in our study, as 43% of exome-
negative cases (3 out of 7 cases) that received a diagnostic variant were solved by identifying 
an SV or rearrangement. We also identified at least one highly probable SV or SNV candidate in 
more than half of the remaining undiagnosed patients. These cases do not meet diagnostic 
criteria due to the following reasons. Most SVs are not recurrent and thus do not share identical 
breakpoints. As a consequence, SVs overlapping similar regions do not always produce the 
same phenotype. Furthermore, unless a critical region can be established or a syndrome is 
associated with a very distinct phenotype, it is often unclear whether an SV is diagnostic even if 
it is de novo. This is made worse by sparse and inconsistent SV databases, in stark contrast to 
SNV databases. To resolve the remaining cases, researchers will need to discover genotype 
correlations or perform functional testing. 
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These methods have additional limitations. Even with the use of long DNA molecules averaging 
200–300 kb in our optical mapping experiments, they are not long enough to resolve the large, 
near-identical segmental duplications in some of the most complex regions of the human 
genome. Thus, a small number of these complex regions remain inaccessible despite using 
long-range sequencing and mapping technologies23. Additionally, the current human reference 
genome is a set of composite haplotypes generated from 8 anonymous DNA donors44. As such, 
there are functionally important sequences found in many people around the world but missing 
from the reference genome45,46. Since the reference genome serves as the benchmark for all 
analyses, missing sequences are never assessed, and variants in these regions are 
undiagnosable. 

Emerging long DNA sequencing methods have the potential to comprehensively identify genetic 
variants in undiagnosed patients and provide promising new diagnostic possibilities. If the 
limitations that we identify are addressed, these methods could improve diagnostics for direct 
clinical care. In this study, we found diagnostic SVs in 6 cases out of 50 families and candidate 
SVs in an additional 5. Although our ability to assess the impact of these candidate SVs will 
remain a rate limiting step for some time, these data will still be valuable for later reanalysis. 
Data reanalysis is becoming a successful strategy to identify variants that underlie disease in a 
patient’s genome47; as our understanding of deleterious SVs grows, it will be increasingly 
possible to revisit previously acquired data and assign pathogenicity to previously detected SVs. 
By detecting a more extensive set of SVs, optical mapping and linked-read sequencing increase 
the likelihood that future reanalysis will be productive. 
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Chapter 4: Individuals with pathogenic genotypes reveal differences in ClinVar and 
HGMD variant classification over six years* 

 

Background 

Rare genetic diseases may affect as many as 1 in 20 Americans1, but a definitive diagnosis is 
sometimes elusive2. In the past decade, exome and genome sequencing have improved the 
diagnostic rate for unresolved rare genetic diseases by 3 to 4-fold over previously established 
methods2-4. Identifying the causal variant(s) through sequencing can inform disease 
management by altering treatment, predicting disease progression, and informing risk to other 
family members including future births5,6. However, identifying causal variants can be 
challenging. Clinicians must objectively weigh many sources of evidence to determine if a 
variant explains the proband phenotypes. Indeed, the majority of individuals with a suspected 
rare genetic disease remain undiagnosed after exome or genome sequencing2,7.  

To standardize the interpretation of variants, in 2015 the American College of Medical Genetics 
and Genomics (ACMG) and the Association for Molecular Pathology (AMP) developed 
guidelines to unify norms across clinical laboratories8. Since then, a growing number of 
laboratories have adopted these guidelines9. As familiarity with the guidelines has grown, 
variant interpretation concordance across laboratories has increased from 71% in 2016 to 84% 
in 202010,11. These variant interpretation guidelines draw from several specialized research 
areas including population genetics, human gene isoforms, protein structure and function, and 
computational predictions of variant impact. While these specialties have all made important 
contributions to variant interpretation, perhaps no resource has been more valuable than the 
creation of diverse databases of allele frequencies, which are used to identify variants that are 
too common to cause a rare disease. In 2012, the Exome Sequencing Project created the first 
large-scale database of exonic allele frequencies that included samples from both European 
Americans and African Americans12. In 2015, phase 3 of the 1000 Genomes Project (1KGP) 
became available, providing genome-wide alleles from thousands of global genomes13. This 
was quickly followed by progressively larger and more diverse databases, including ExAC14, 
gnomAD15, and ALFA16. Here we investigate trends in the accuracy of variant interpretation 
since 2014, during which these allele frequency resources have grown tremendously.  

Researchers communicate variant interpretations through published articles and submissions to 
variant databases. Until recently, variants were annotated in locus-specific databases (LSDBs) 
that typically collected variants in a single gene. In an effort to standardize content and improve 
ease of access, many LSDBs used the same software, the Leiden Open Variation Database17, 
and the Human Genome Variation Society collected LSDBs to form a databases of LSDBs18. 
Authoritative reference resources such as OMIM19 and GeneTests20 often included additional 
variant information. Following calls to harmonize these resources into a single common 
database21, today there are two leading genome-wide variant databases of clinical interest: 
ClinVar and the Human Gene Mutation Database (HGMD). In 2013, the NIH created ClinVar, a 
free-to-access database (maintained by ClinGen) that accepts submissions from clinical 
                                                
* This chapter was primarily written by Andrew Sharo, with contributions from Yangyun Zou, Aashish 
Adhikari, and Steven Brenner. It was adapted from a manuscript in preparation. Andrew Sharo performed 
the work described in those sections he wrote, while the sections written by others describe work that was 
performed primarily by others. This work is included with permission from the authors. 
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laboratories, research groups, and specialized databases. As of 2020, 8,000+ people access 
ClinVar each day, and it currently contains pathogenic interpretations of nearly 130,000 
variants22,23. ClinVar labels disease-causing variants as either Pathogenic (P) or Likely 
Pathogenic (LP). By definition, P indicates a 99% chance of pathogenicity, and LP indicates a 
90% chance of pathogenicity. Although these definitions provide a built-in threshold for false 
positives, for the purposes of this paper, we highlight all variants that could be incorrectly 
classified as pathogenic.  

HGMD began in 1996, is privately funded through subscriptions, and is curated directly from 
published literature by dedicated staff. It contains pathogenic interpretations of nearly 300,000 
variants. A free version of HGMD is available that is several years out of date. HGMD labels 
disease-causing variants as either disease-causing (DM) or likely disease causing (DM?). 
ClinVar and HGMD attempt different strategies to reach the same goal: accurate variant 
annotation. ClinVar receives variants primarily from clinicians and laboratory staff who often use 
standardized interpretation guidelines to identify pathogenic variants in a clinical context. 
ClinVar annotates variants as either pathogenic or benign. HGMD curates information directly 
from research and clinical articles, which may include experimental assays of variant function24. 
These databases are rapidly growing. Since 2017, the number of ClinVar variants has doubled, 
and HGMD variants have grown by 50%. 

Several studies have attempted to assess the accuracy of cataloged variants using large 
sequencing cohorts of healthy individuals25-29. Two of the earliest studies searched for variants 
annotated as pathogenic in individuals sequenced in a population database created by the 
1,000 Genomes Project (1KGP)13. These researchers identified individuals in 1KGP who were 
homozygous for one or more recessive variants annotated as pathogenic (henceforth, ‘indicated 
affected individuals’). Surprisingly, these two studies found that most individuals harbored 
multiple homozygous variants that were catalogued by HGMD to cause early-onset disease. 
However, individuals in 1KGP were all over 18 years of age and healthy enough to sign a 
consent form. Certainly, 1KGP individuals are not expected to be enriched for disease, yet 
these studies found that the implied rates of disease were higher in 1KGP than the known 
disease prevalence. There are two plausible explanations for this discrepancy. The first is that 
many benign variants were misclassified as pathogenic, which the authors concluded27,28. An 
alternative explanation is that some Mendelian diseases have been underdiagnosed. While this 
is true for some disorders30, we analyze a subset that are screened for at birth and are likely not 
substantially underdiagnosed (see Methods). With this modification, we believe that most, and 
likely all, of indicated affected individuals are not affected by a disease, and rather the 
annotated pathogenic variants they harbor were misclassified. A similar approach has also been 
used to investigate ClinVar variants, which a 2018 study showed imply disease prevalence 
much higher than recorded prevalence for several clinically actionable or rare disorders25. Using 
orthogonal methods, researchers have identified variant features that are associated with 
correct classification. Specifically, they have found that recently curated variants, with lower 
minor allele frequency (MAF), with multiple concordant submissions, and submitted by clinical 
researchers are more likely to be correctly classified29,31.  

Since many variants are found principally in a single ancestral population, misclassification can 
lead to racial disparities in variant interpretation and clinical care. Indeed, one study determined 
that variants erroneously associated with sudden heart failure were found at higher allele 
frequency in Black Americans than white Americans32. Fortunately, these misclassified variants 
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were eventually corrected. However, until erroneously annotated variants are corrected, which 
may take years, probands who harbor these variants may undergo inappropriate medical care. 
Furthermore, misclassified variants can have effects beyond the clinical care of individuals with 
those variants, since cataloged pathogenic variants can influence novel variant interpretation. In 
the ACMG/AMP variant interpretation guidelines, two categories of evidence that support 
pathogenicity rely directly on cataloged variants: the same amino acid change as a cataloged 
pathogenic variant (PS1) and a different amino acid change at the same residue as a cataloged 
pathogenic variant (PM5). Misclassified variants can also have indirect effects through the 
ACMG/AMP guidelines’ consideration of variant impact predictors, which contribute supporting 
evidence (PP3, BP4). Since many variant impact predictors are trained or are validated on 
cataloged variants 33-36, their predictions may be influenced by misclassified variants. In the 
worst case, a researcher following the ACMG/AMP guidelines may be misled by misclassified 
variants to incorrectly classify a novel variant, either by using misclassified variants as direct 
evidence (PS1, PM5) or indirectly though variant impact predictors that trained on misclassified 
variants (PP3, BP4). Such an event would propagate existing variant misclassifications and 
possibly reinforce racial disparities. 

Variant databases have taken different approaches to address misclassifications. ClinVar 
introduced a star system to indicate the review status of a variant interpretation, in which a 
variant gains credibility when assertion criteria are provided, multiple submitters concur, or an 
interpretation comes from experts in the field who follow gene-specific classification 
guidelines37. Wright et al. found that variants annotated as pathogenic with more review stars 
were more likely to be truly pathogenic29. ClinGen has also supported the formation of expert 
panels—composed of healthcare professionals with expertise relevant to a disease gene—
which can provide high-confidence variant interpretations and resolve conflicting variant 
interpretations. As of December 2020, ClinVar contains just 36 genes in which 10 or more 
variants are reported as reviewed by an expert panel, out of more than 3,000 genes associated 
with a monogenic disorder by OMIM19. Although expert panels are promising, they have so far 
contributed to a small fraction of ClinVar variant reclassifications. HGMD curators reclassify 
variants based on new published evidence such as functional studies or population frequency, 
and their reclassification rate has been reported as similar to that of ClinVar24,38. Here, we 
consider whether these reclassification efforts, in concert with improved resources, have 
reduced the number of apparently misclassified variants over time. We consider variants in a 
subset of well-studied genes with highly penetrant phenotypes.  

Inborn errors of metabolism (IEMs) are a group of rare, primarily recessive or X-linked, 
monogenic disorders caused by defects in a metabolic enzyme or its cofactors. Newborns in 
most developed countries are screened for IEMs using blood metabolites. Untreated, many of 
these screened IEMs are highly penetrant and lead to metabolite accumulation that often 
causes irreversible disability or death. They are thus a model system for identifying false 
positives in variant databases, as they should not be present as pathogenic genotypes in 
healthy individuals. While many screened IEMs are debilitating or fatal in childhood unless 
treated, there are notable exceptions. For example, our screened IEMs include Short Chain Acyl 
CoA Dehydrogenase Deficiency (SCADD; associated with ACADS) and Hyperprolinemia type I 
(HPI; associated with PRODH), both of which are often asymptomatic in newborns who screen 
positive for metabolite levels indicative of the disease40,41. Additionally, our screened IEMs 
include Ornithine transcarbamylase deficiency (OTCD; associated with OTC) and Glutaric 
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Acidemia Type II (GAII; primarily associated with ETFDH), both of which are often seen in a 
late-onset form which may not result in outward symptoms until 40 years of age42,43.  

Because screened IEMs are systematically identified in the population, their maximum possible 
incidence is generally known, and there has been greater opportunity to identify and catalog the 
genetic variants that cause these diseases. Indeed, one recent study found potential benefit to 
screening newborns for IEMs using exome sequencing alongside mass spectrometry, the 
current standard for screening39. However, these researchers found it necessary to manually 
curate dozens of variants cataloged in ClinVar or HGMD for which the MAF was higher than 
expected for a rare disorder. Out of 60 variants with MAF > 0.1%, they deemed 41 were not 
reportable due to insufficient published evidence for pathogenicity.  

Variants with a MAF greater than expected from disease incidence are addressed in the 2015 
ACMG/AMP variant interpretation guidelines8 under the BA1 evidence for benign variants. 
These guidelines recommend that a MAF >5% in 1KGP, ExAC (now superseded by gnomAD), 
or the Exome Sequencing Project (ESP) may be considered stand-alone evidence that the 
variant is benign. In 2018, the guidelines for this classification were updated by Ghosh et al. to 
recommend that a MAF >5% in any continental population dataset of at least 2,000 alleles (with 
some additional constraints) is stand-alone evidence the variant is benign44. We have 
investigated how implementing the original vs revised guidelines impacts our results.  

Here, we investigate how the degree of variant misclassification has changed over time in 
ClinVar and HGMD, using screened IEMs as a model system. Building on previously developed 
methods27,28, we used samples in the 1000 Genomes Project (1KGP) to identify individuals who 
harbor genetic variants that have been listed in ClinVar or HGMD as pathogenic. We identified 
more individuals than expected from screened IEM incidence, an indication of the specificity of 
each database. We investigated how the number of these likely false positive individuals 
indicated by ClinVar and HGMD changed over time, and we considered whether certain 
ancestry groups were over-represented. Since we do not measure false negatives, we cannot 
assess the sensitivity of each database even though the balance between specificity and 
sensitivity is an important tradeoff to consider. We looked in detail at variants that were 
misclassified and what led to their eventual reclassification. Additionally, we probed overall 
trends of reclassification in ClinVar and HGMD, identifying surprising trends in the 
reclassification of confidently classified variants to uncertain classifications. Finally, we 
replicated our findings using samples from gnomAD, which includes 63,269 genomes.  

Methods 

Identifying putatively affected individuals in 1KGP 

We used GRCh38 genotypes from 1KGP phase 313 VCF files (downloaded on 14 November, 
2019) to identify individuals who harbor genotypes annotated as pathogenic (defined as 
homozygous, hemizygous, or compound heterozygous) but who likely do not suffer from a 
screened IEM. Ancestry was determined by superpopulation membership, as listed by the 
International Genome Sample Resource45. We created a curated list of 80 genes, associated 
with 48 IEMs screened by the California newborn screening program46 (henceforth, screened 
IEMs). These screened IEMs include some disorders where a large fraction of affected 
individuals is asymptomatic. In our analysis below, we identified several ClinVar variants in 
PRODH, associated with HPI. This condition is characterized by elevated levels of proline, and 
it is sometimes considered benign and asymptomatic41. However, there are reports of 
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individuals with HPI who have severe neurological impairment47. Additionally, recent long-term 
follow-up of patients with HPI suggests it results in impaired social skills, and there is evidence 
that deletions containing PRODH (and possibly variants in PRODH) contribute to schizophrenia 
risk48-50. Given the possible clinical phenotypes associated with this gene, we retained it in our 
analysis.  

The population incidence of screened IEMs is approximately 1 in 3,20051. Thus, if the individuals 
sequenced in 1KGP were a random sample with unknown health status at birth, we would 
expect less than 1 individual to have a screened IEM. Given that most of the indicated affected 
individuals lived in countries without newborn screening programs before 1990, they are unlikely 
to have been screened and treated early enough to prevent irreversible damage. 

ClinVar GRCh38 variants were obtained from VCF files (downloaded on 8 January, 2021) from 
the NCBI ClinVar FTP site37. VCF files were gathered from both archives 1.0 and 2.0 (starting 
with clinvar_20140401.vcf.gz and ending with clinvar_20201226.vcf.gz). Bcftools norm52 was 
used to left-align and normalize indels. Only variants within our list of 80 genes were considered 
further. Variants that were listed as only somatic or variants with null alt alleles were not 
considered further. For ClinVar archive 1.0 variants, variants were assigned clinical significance 
using the following categories: ‘0’: VUS, ‘2’: Benign (B), ‘3’: Likely benign (LB), ‘4’: Likely 
pathogenic (LP), and ‘5’: Pathogenic (P). Variants were inferred to have conflicting 
interpretations when they had interpretations in two or more of the following three categories: B 
or LB, VUS, P or LP. Due to inconsistencies in review star annotation in archive 1.0 files before 
June 15, 2015, ‘not’ was assigned 0 review stars, ‘single’ was assigned as 0or1 review stars 
(see below for details), ‘conf’ was assigned as 1 review star, and ‘mult’ was assigned as 2 
review stars. For archive 1.0 files after June 15, 2015, ‘no_assertion_criteria_provided’, 
‘no_assertion_provided’, ‘not’, ‘no_criteria’, and ‘no_assertion’ were grouped as 0 review stars; 
‘criteria_provided’, ‘conf’, and ‘single’ were grouped as 1 review star; ‘_multiple_submitters’, 
‘_no_conflicts’, and ‘mult’ were grouped as 2 review stars. For all archive 1.0 files, review stars 
were assessed manually for variants with an inferred pathogenic genotype in 1KGP. For archive 
2.0 variants, “no_assertion_criteria_provided”, “No_assertion_provided”, and 
“no_interpretation_for_the_single_variant” were grouped as 0 review stars, “criteria_provided”, 
“_single_submitter”, and “_conflicting_interpretations” as 1 review star, “_multiple_submitters”, 
“_no_conflicts”, and “reviewed_by_expert_panel” as 2+ review stars. In calculating indicated 
affected individuals for each year, we reported the maximum number of individuals with an 
inferred pathogenic genotype at any time in that year. In our analysis of 1KGP affected 
individuals, ClinVar submissions were removed from consideration if the submitted condition 
was a not a screened IEM (e.g., Schizophrenia). Submissions for which the condition was “not 
provided” were included in our analysis. For all other analyses, it was not feasible to check the 
submitted condition of variants.  

HGMD variants were obtained from privately archived versions of HGMD 2014.1 and 2016.2, 
and a recently accessed version of 2020.3 through Qiagen Digital Insights HGMD Professional. 
Only SNVs classified at least once as ‘DM’ or ‘DM?’ within our list of 80 screened IEM genes 
were considered further.  

In our analysis using the 2015 BA1 guidelines, variants with a global MAF > 5% in 1KGP, the 
Exome Sequencing Project (ESP6500SI-V2), or gnomAD v2.1 exomes were removed from 
consideration. In our analysis using the 2018 BA1 guidelines, variants with a global MAF > 5% 
in 1KGP or ESP, or a MAF >5% in any gnomAD exome continental population were removed.  
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Ensembl Variant Effect Predictor with custom annotations was used to annotate the 1KGP VCF 
with all features. For rapid I/O of VCFs, we used cyvcf253. To identify when the ancestry 
composition of indicated affected individuals (aggregated across all screened IEMs) was 
significantly different from the ancestry composition of 1KGP or gnomAD, we first performed a 
two-sided Fisher’s exact test on a 5 x 2 contingency table that included the five continental 
populations (African, Latino, East Asian, European, South Asian), using fisher.test in the R 
‘stats’ package54. When the expected count for every population was greater than 40, we 
instead performed a Pearson’s Chi-squared test using chisq.test to reduce computation time. 
For those global analyses that showed significant deviation from the 1KGP database ancestry 
composition, we performed individual tests to identify the significantly skewed population. These 
individual tests were performed using a one-sided Fisher’s exact test on a 2 x 2 contingency 
table as described above. To correct for multiple tests, we used a 5% significance threshold with 
Bonferroni correction for 222 tests, yielding a p-value threshold of 2.2 × 10-4. We determined 
222 tests by calculating the total number of tests performed across all figures (including 
supplementary figures), which were typically 1 Fisher’s exact test per bar, with an additional 5 
tests per bar when the Fisher’s exact test was significant. Bars that had zero height were not 
tested. Odds ratios and 95% confidence intervals were determined using two-sided Fisher’s 
exact tests as described above. 

To confirm that the inferred pathogenic genotypes we observed in 1KGP were not sequencing 
errors, we attempted to confirm the quality of all variants that comprised these genotypes. 
Specifically, we downloaded whole genome and deep exome sequencing BAM alignment files 
of select individuals with homozygous, hemizygous, or compound heterozygous inferred 
pathogenic genotypes. Most of these alignments were improved by quality-control steps 
including marking duplicates, local realignment around indels, and base quality recalibration, 
especially for the Illumina sequencing data. Next, we detected variants and calculated 
genotypes for each sample at specific sites based on both low-coverage genome sequencing 
data (<5×per site per individual) and high-coverage exome sequencing information (at least 
>20×per site per individual) using ‘UnifiedGenotyper’ from the Genome Analysis Toolkit (GATK 
3.4-0) under a multi-sample calling strategy55,56. Variant Quality Score Recalibration (VQSR) 
was conducted to evaluate variant quality by GATK 3.4-0. Finally, we obtained variant and 
genotype information of select individuals and their site-specific genotype quality parameters 
such as genotype quality (GQ) to validate the quality of the called genotypes. We used GQ≥30 
(p-value of 0.001) as our threshold for high quality genotype calls. Genotypes of some 
individuals were re-confirmed based on high-coverage whole genome sequencing by Complete 
Genomics57. Thanks to the recent availability of high-coverage whole genome sequencing of all 
1KGP samples from the New York Genome Center58, the remaining inferred pathogenic 
genotypes were confirmed using these data. Two inferred pathogenic genotypes in PRODH 
were not able to be reconfirmed due to poor sequencing quality in the gene.* 

To infer screened IEM incidence from 1KGP, for each IEM gene g, we summed the allele 
frequencies of all annotated pathogenic variants in g, which we call pg. Genes were then divided 
into two categories: X chromosome and autosomal. The disease incidence for all X-linked 

disorders was calculated as  � 𝑝𝑝𝑔𝑔�1 − 𝑝𝑝𝑔𝑔� + 𝑝𝑝𝑔𝑔2
𝑔𝑔∈𝑋𝑋

 where 𝑋𝑋 is the set of all X-linked screened 

                                                
* This paragraph was primarily written by Yangyun Zou. 
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IEM genes. For all autosomal genes, the incidence was calculated as � 𝑝𝑝𝑔𝑔2
𝑔𝑔∈𝐴𝐴

 where 𝐴𝐴 is the 

set of all autosomal screened IEM genes . We repeated this process for each population using 
the 1KGP population-specific allele frequency as well. In Figs. 4.3,4.4, the height of each bar 
represents the incidence inferred using the database-wide allele frequency, while the proportion 
of the bar comprised by each ancestry is based on the relative disease incidence calculated 
using the population-specific allele frequency. The same process was repeated for our gnomAD 
analysis. 

Variant reclassification in ClinVar and HGMD 

ClinVar and HGMD variants were filtered as described above. VEP59 was used to annotate each 
variant with its gnomAD v2.1 exomes MAF. In order to identify reclassifications, for each time 
point available for ClinVar, each variant was classified into one of the following categories: B/LB 
3 stars, B/LB 2 stars, B/LB 1 star, B/LB 0 stars, VUS, Conflicting, P/LP 0 stars, P/LP 1 star, 
P/LP 2 stars, P/LP 3 stars. At each time point available for HGMD, each variant was classified 
into one of the following categories: DM, DM?, DFP, DP, R. Variants that were removed from 
the database were classified as R. Variants classified in any other category (such as ‘not 
provided’) and all ClinVar variants prior to June 15, 2015 were not considered. To create figures 
for the Results section ‘Comparison of variant reclassification between ClinVar and HGMD‘, for 
each variant we considered only its first category chronologically (typically its category when 
first entered into the database) and its last category chronologically.  

Next, for each ClinVar variant we used gnomAD v2.1 exomes to determine the ancestry group 
in which it occurs at the highest allele frequency. To reduce bias from the unequal number of 
individuals in each ancestry group in gnomAD, all allele frequencies below 6.152×10-5 (the 
smallest possible allele frequency in African ancestry, which has the smallest number of 
individuals in gnomAD) were set to zero. Next, each variant was assigned to the ancestry with 
the highest allele frequency. Variants with zero allele frequency in all ancestries were not 
considered further. 

For each variant, we recorded all reclassifications it underwent. To avoid classifications without 
stars, only ClinVar reclassifications after June 15, 2015 were considered. ClinVar GRCh38 VCF 
files (as described above) were used to identify reclassifications. Reclassifications were 
considered every month. Since more recent ClinVar VCFs were archived weekly, these were 
downsampled to approximate monthly archives. The removal of a ClinVar variant from the 
database was not considered a reclassification. If a variant re-entered into ClinVar under a new 
classification, it was considered reclassified.  

Variant reclassifications were grouped into two categories: increasing confidence and 
decreasing confidence. Increasing confidence was defined as Conflicting or VUS to P/LP or 
B/LB with any number of stars. Decreasing confidence was defined as: P/LP or B/LB with any 
number of stars to Conflicting or VUS. Variants were grouped by these categories, colored by 
assigned ancestry (see above), and visualized using Floweaver60, resulting in Fig. 4.6C,E.  

To correct for bias caused by the possible overrepresentation of some ancestries in ClinVar, for 
each ancestry we calculated the number of variants in each classification category. The number 
of variants per category was were calculated for every month, yielding a measure we call 
variant-months. A variant-month is a measure of both the number of variants and how long they 
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have been in ClinVar. For example, 2 variants classified in ClinVar for a month is 2 variant-
months, and 1 variant classified in ClinVar for 2 months is also 2 variant-months. For each 
ancestry, we analyzed its assigned variants to determine how many variant-months were 
catalogued for each category between June 15, 2015 and Dec 31, 2020. The differences in 
variant-months between ancestries reflects differences in genetic diversity as well as ClinVar 
submission bias. These variant-months are used to normalize comparisons across ancestries 
which we report in reclassifications per variant-month. In normalizing a reclassification category 
(increasing confidence or decreasing confidence), we divide the number of reclassifications by 
the variant-months of the source category. For example, if we wanted to compare increasing 
confidence across ancestries, then for each ancestry we would calculate the number of 
reclassifications with increasing confidence among variants assigned to that ancestry and divide 
that by the variant-months of the source category, in this case VUS and Conflicting variants. 
95% confidence intervals were calculated for each ancestry group as +/- 1.96*sqrt(p*(1-p)/n) 
where p is reclassified variants / variant-months of source variants and n is variant-months of 
source variants.  

Results 

Individuals affected by ClinVar variants 

We analyzed ClinVar screened IEM variants submitted between April 2014 and December 
2020, and first examined a Select subset based on review stars (see Methods). This Select 
subset included P variants with 1 or more review stars (indicating the submitter included 
assertion criteria), which consisted of 2,118 variants in 2020 (Fig. 4.1A). In accordance with the 
2015 ACMG/AMP BA1 guidelines, we removed variants with a MAF that reached the threshold 
for classification as stand-alone benign (global MAF > 5% in 1KGP, gnomAD, or ESP). This 
resulted in the removal of a single variant with 1 review star and a global MAF of ~5%. We later 
discuss applying the 2018 BA1 guidelines. To identify individuals who harbored inferred 
pathogenic genotypes of these Select ClinVar variants, we used the 1KGP database. 1KGP 
includes 2,504 individuals that are drawn approximately evenly from 5 continental populations 
(Fig. 4.1B). We considered all individuals who were homozygous, hemizygous, or compound 
heterozygous for one or more Select variants to be indicated affected. We found a single 
indicated affected individual, with South Asian ancestry, who was homozygous for a P variant 
(ACADS:c.1108A>G) added to ClinVar in 2015, which was re-classified as Conflicting by 2017 
(Fig. 4.1C; Table 1). There have since been zero indicated affected individuals through 2020.  

In addition to Select ClinVar variants, clinicians often consider and report P and LP variants with 
0 review stars (no assertion criteria) but give them appropriately lower credence. To analyze 
these variants, we next considered the Full dataset of ClinVar screened IEM variants, which 
included P and LP variants with any number of review stars. We removed from consideration 
variants that fulfilled the 2015 BA1 criteria. This eliminated six variants from 2014 to 2020, with 
a median MAF in 1KGP of 12%. We searched for individuals in 1KGP who were indicated 
affected (Fig. 4.1D). In 2014, there were 8 indicated affected individuals, which increased to 9 in 
2015, and declined to just 1 by 2020 (reclassification causes discussed below). 11 variants 
played a role in the genotypes of these indicated affected individuals. We also considered 
whether P or LP variants led to a larger number of indicated affected individuals. However, due 
to the relatively small fraction of variants that are classified as LP, the results of considering only 
P variants were nearly identical to considering both P and LP. We did not observe any 
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statistically significant skew in the ancestries of the 1KGP individuals who were indicated 
affected.  

 

 

 

 

 

 

 

 

Figure 4.1 Number of 1KGP individuals 
indicated affected for screened IEMs by ClinVar 
or HGMD over time. A Number of screened IEM 
variants present in ClinVar or HGMD in 2014 
and 2020. B Ancestry composition of individuals 
in 1KGP. C-F Bars are colored by ancestry as 
shown in B. Tick marks on bars separate 
individuals by annotated pathogenic variant. 
Dashed black lines indicate the aggregate 

population incidence of screened IEMs. The number of 1KGP individuals with a pathogenic 
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genotype for a variant in C Select ClinVar variants annotated as pathogenic, defined as variants 
with a P interpretation with at least 1 review star. Variants that also have conflicting 
interpretations (with VUS or B/LB) with 1 or more review stars are removed. D Full ClinVar 
variants annotated as pathogenic, defined as variants with a P or LP interpretation. Variants that 
also have conflicting interpretations (with VUS or B/LB) are removed. E Select HGMD variants, 
defined as variants classified as DM. 2014, 2016, and 2020 are shown because they are the 
years for which we have archived HGMD data. F Full HGMD variants, defined as variants 
classified as DM or DM?. G The number of affected individuals relative to the number of 
variants classified in each variant set. This approximates a false positive rate, which has fallen 
over time for each database. *Data not available because existing review star framework was 
not in place until 2015.  

Individuals affected by HGMD variants 

Similar to our ClinVar analysis, we first examined a Select subset of HGMD variants. This 
subset included HGMD DM (disease-causing) variants in a screened IEM gene, which consisted 
of 5,833 variants in 2020. We removed one variant that met the 2015 BA1 criteria in 2014 and 
2016 with a MAF of 20%. We removed an additional variant in 2016 with a MAF of 50%. We 
investigated individuals in 1KGP who harbored Select HGMD variants, and we found 37 
indicated affected individuals in 2014, caused by 16 variants (Fig. 4.1E). Repeating this analysis 
with Select HGMD classifications from December 2020, we found 11 indicated affected 
individuals in 1KGP (70% reduction from 2014) due to 9 variants (reclassification causes 
discussed below). 3 of these 9 variants were added to HGMD after 2014.  

To gain a larger picture of potential variant misclassification in HGMD, we next considered the 
Full dataset of HGMD variants annotated to likely cause disease, which included DM and DM? 
variants (henceforth, Full HGMD variants). We removed 5 variants that met the 2015 BA1 
criteria in 2014, 4 variants in 2016, and 7 variants in 2020. We investigated individuals in 1KGP 
who harbored Full HGMD variants. In 2014 there were 126 indicated affected individuals in 
1KGP due to 20 DM and 12 DM? variants (Fig. 4.1F). This increase in the number of DM 
variants compared to our Select analysis is due entirely to compound heterozygotes consisting 
of one DM variant and one DM? variant. Unexpectedly, we found indicated affected individuals 
increased over time, with 157 individuals in 2020, due to 17 DM and 27 DM? variants. These 
include 7 DM? and 4 DM variants that were added to HGMD since 2014.  

These indicated affected individuals are not only a barometer for changes in potentially 
misclassified variants, but they can also inform whether particular ancestry groups are more 
likely to be affected by variant misclassifications. Considering Select HGMD variants in 2014, 
African ancestry individuals were significantly more likely to be indicated affected (Fig. 4.1E). 
While 26.4% of individuals in 1KGP are of African ancestry (Fig. 4.1B), 25 out of 37 (67.6%) of 
indicated affected individuals had African ancestry, which is significantly more than expected by 
chance (p < 10-6) and indicates an odds ratio of 5.8 for African ancestry individuals (95% CI: 
2.8-12.8). By 2020, no populations were significantly skewed. Notably, in 2014, 2016, and 2020, 
no European ancestry individuals were indicated affected. When considering Full HGMD 
variants, we found that 89 out of 126 indicated affected individuals in 2014 and 94 out of 157 
indicated affected individuals in 2020 were of African ancestry (both p<10-15) (Fig. 4.1F). This 
translates to an odds ratio of 6.7 (95% CI: 4.5-10.2) in 2014 and 4.2 (95% CI: 3.0-5.9) in 2020.  



56 
 

 



57 
 

Unlike the ancestry skew observed in Select HGMD variants, the ancestry skew in Full HGMD 
variants has persisted over time.  

Accuracy per variant across datasets 

Since each ClinVar or HGMD dataset contains a different number of cataloged IEM-associated 
variants (Fig. 4.1A), we developed a metric to enable a comparison of classification accuracy 
across datasets. For each available year, we calculated the number of indicated affected 
individuals in 1KGP divided by the number of cataloged variants. Although we cannot be certain 
that no individual in 1KGP has a screened IEM, this metric is a proxy for the false positive rate 
per variant for each database. In 2014, the Full ClinVar dataset indicated 7.3 affected 
individuals per 1,000 cataloged P or LP variants (Fig. 4.1G). By 2020, this false positive rate 
had decreased by 97%. We could not determine a meaningful false positive rate for the Select 
ClinVar dataset due to the several years with zero affected individuals. For Select HGMD 
variants, the false positive rate decreased by 81%, with most of this decrease occurring 
between 2016 and 2020 (Fig. 4.1G). For Full HGMD variants, the false positive rate decreased 
26% from 2014 to 2020 (Fig. 4.1G). It may seem surprising that the false positive rate of Full 
HGMD variants is decreasing given the increase in affected individuals over time (Fig. 4.1F). 
However, this decrease is due to the ~60% growth in cataloged variants between 2014 and 
2020, which outweighed the growth in indicated affected individuals.  

These three datasets have reduced the false positive rate of their cataloged variants over time, 
yet false positive rates currently differ greatly between them. As of 2020, Full ClinVar variants 
indicate 0.22 affected individuals per 1,000 cataloged pathogenic variants, which is an order of 
magnitude lower than Select HGMD variants, which indicate 1.9 affected individuals per 1,000 
cataloged pathogenic variants (Fig. 4.1G). This, in turn, is an order of magnitude lower than Full 
HGMD variants, which indicate 25 affected individuals per 1,000 cataloged pathogenic variants.  

Reliability of genotypes  

To ensure that the inferred pathogenic genotypes we observed in 1KGP were not caused by 
errors from sequencing or downstream variant and genotype calling, we independently 
confirmed nearly all Select ClinVar variants, Full ClinVar variants, and Select HGMD variants 
present in an inferred pathogenic genotype. We re-called a subset of these genotypes using 
available low-coverage genome sequencing and high-coverage exome sequencing data from 
1KGP (see Methods). We found that nearly all annotated pathogenic variants in this subset 
passed variant quality score recalibration (VQSR) filtering, and most genotypes in the indicated 
affected individuals had a genotype quality (GQ) larger than 30. For variants that we did not 
attempt to re-call or for which re-call quality was poor, we confirmed genotypes using high-
coverage whole genome sequencing by either Complete Genomics or the New York Genome 
Center (see Methods). Out of the entire set of 52 genotypes indicated as pathogenic, there were 
just two for which genotype quality was below 30. One was TAZ:c.383T>C present in Select 
HGMD variants and found in a hemizygous state in HG03196. The other genotype consisted of 
a pair of compound heterozygous variants (PRODH:c.1357C>T;c.1322T>C) present in Full 
ClinVar variants and harbored by NA19372. Overall, we confirmed that 96% of the inferred 
pathogenic genotypes are high quality and reproducible. This suggests that the over-
representation of putatively pathogenic genotypes in 1KGP is unlikely to be explained by errors 
introduced by sequencing or data processing.  

ClinVar variant reclassification 
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Between 2014 and 2020, 11 variants in the Full ClinVar dataset were part of an inferred 
pathogenic genotype in at least one 1KGP individual. As of December 2020, 10 of these 11 
variants have been reclassified in ClinVar to a non-pathogenic category. 8 variants were 
reclassified to Conflicting, 1 variant to VUS, and 1 variant to B/LB. One variant remains 
classified as P with 0 review stars. These variants were present in 7 genes: OTC (3), ASS1 (2), 
PRODH (2), ACADS (1), MMAB (1), MMUT (1), and SLC22A5 (1). Variants within the same 
gene tended to be initially contributed by the same submitter. For example, GenMed 
Metabolism Lab submitted the first interpretation for all three variants we identified in OTC, and 
OMIM first provided both PRODH variants. For each variant, we also recorded the submitter 
that contributed the first non-pathogenic classification but did not identify any patterns.   

Among these 11 variants, we noticed a trend in which variants were initially submitted as P or 
LP when seen in an affected individual, even though there was limited evidence for 
pathogenicity. As more information because available, such as MAF, later submitters, most 
using defined criteria, interpreted these variants as VUS, B, or LB. One illustrative case is the 
variant A135T in MMAB (Table 1). Through a semi-automated process, this variant was 
extracted from a GeneReviews table to a ClinVar record in February 2016 as P and included 
two articles to support the interpretation61,62. According to these articles, researchers found this 
variant in a heterozygous state in three African ancestry individuals with methylmalonic 
acidemia (MMA) cblB type. In addition to A135T, each of these individuals also harbored a 
suspected pathogenic variant, although it was not confirmed to be in trans. Both articles claim 
the variant was absent from control samples, for which ancestry information was not provided. 
We now know the MAF of this variant in African ancestry individuals is approximately 1% in 
1KGP and gnomAD exomes, corresponding to a disease incidence of 1 in 10,000 assuming 
complete penetrance. However, MMA cblB type occurs in less than 1 in 50,000 births, and has 
not been seen at elevated levels in individuals of African ancestry51. This variant was observed 
in a homozygous state in an African ancestry male in 1KGP, who most likely did not have MMA 
cblB type, which is a neonatal-onset disorder that results in severe disability and sometimes 
death without treatment. A plausible explanation is that the three affected individuals from the 
literature happened to carry this putatively benign allele, and due to inadequate information 
about its frequency this allele was mistakenly associated with MMA. Since the P submission, 
GeneDx used variant classification criteria to interpret this variant as VUS, citing the relatively 
high variant frequency as evidence for benignity. Invitae (with criteria) and Natera (without 
criteria) have interpreted the variant as B.  

We examined the ClinVar variant responsible for the single indicated affected individual in 2020 
and found this variant could plausibly cause disease. GenMed Metabolism Lab submitted this 
variant, G50R in OTC, an X-linked gene, in 2014 and cited an article in which researchers found 
this variant in a male with late-onset Ornithine transcarbamylase deficiency (OTCD) but did not 
provide the age of onset63. OTCD is known to have a variable age of onset in a sizeable fraction 
of cases, and researchers have identified one individual who was 44 years old when disease 
onset began42. Plausibly, this variant may be associated with late onset OTCD and the 1KGP 
hemizygous South Asian ancestry male (NA21124) has not yet reached the age of onset.  

HGMD variant reclassification 

In 2014, 16 Select HGMD variants contributed to an inferred pathogenic genotype in at least 
one 1KGP individual. By December 2020, 8 of these variants were reclassified to DM?, and an 
additional 3 DM variants were cataloged that contributed to an inferred pathogenic genotype. In 
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total, we observed 19 Select variants in an inferred pathogenic genotype, which were present in 
11 genes: OTC (4), PAH (3), ASS1 (2), CBS (2), CPT2 (2), ACAD8 (1), ACADS (1), ACADVL 
(1), SLC22A5 (1), SLC25A13 (1), and TAZ (1). We did not evaluate the Full HGMD variants in 
detail, but we do note that of the 32 DM and DM? variants that contributed to an inferred 
pathogenic genotype in 2014, none were reclassified to a non-disease-causing category by 
2020.  

HGMD rarely provides explanations for variant reclassification, so it is difficult to directly 
investigate why certain variants were reclassified. Instead, we examined the evidence for 
pathogenicity of the 19 Select variants identified in an inferred pathogenic genotype in 2014, 
2016, or 2020. For each variant, we reviewed the articles cited by HGMD. According to the cited 
articles, researchers observed these variants in probands who were diagnosed with an IEM. 
None of the articles provided evidence for pathogenicity equivalent to the ACMG/AMP 
guidelines, which is not surprising given that most of the articles were published prior to 2015. 
Additionally, 12 out of 19 studies (63%) did not show any direct evidence for the functional effect 
of the variant, such as experimental assays of gene expression or enzymatic activity, and 
therefore did not conclusively assign pathogenicity to the variant. Assay absence was highly 
correlated with later reclassification from DM to DM?. Of the 5 variants classified as DM in 2014 
for which assays were performed, all remained DM through 2020. Of the 11 variants for which 
no assay was performed, 8 were reclassified to DM? by 2020. Despite the predictive power of 
assay presence, the results of the assays were not always conclusive. For example, we found 
one 1KGP individual was homozygous for the variant c.1108A>G (M370V) in ACADS, which 
was cataloged by HGMD as DM (Table 2). Yet, the original article cited by HGMD indicates that 
the variant c.1108A>G has a much more mild effect on tetramerization than all other putatively 
pathogenic variants tested64. Similarly, functional assays of the variant c.1105C>T (R369C) in 
CBS in a yeast model indicated no effect on enzyme function in the article cited by HGMD65 
(Table 2). Among the 19 studies cited by HGMD for these Select variants, only three studies 
directly measure the enzymatic activity of the observed variant66-68. One of these studies 
described the variant c.374C>T (T125M) in OTC, which was observed in a male newborn who 
died at the age of 14 days66. A biochemical assay verified the variant OTC enzymatic activity 
was <1% that of wild type in liver tissue. Surprisingly, we observed that one African ancestry 
male, NA19117, possesses c.374C>T in his single copy of the X-linked OTC gene. Although the 
genotype in this individual was called with low quality, this same genotype was re-confirmed 
with high genotype quality (GQ=187) by Complete Genomics.  

We observed a single variant (ACADS:c.1108A>G) that led to an inferred pathogenic genotype 
in 1KGP that was present in both the Select ClinVar and Select HGMD datasets. 6 variants that 
led to an inferred pathogenic genotype were shared by the Full ClinVar and Select HGMD 
datasets. A total of 8 variants that led to an inferred pathogenic genotype were shared by the 
Full ClinVar and Full HGMD datasets. By the end of 2020, 7 of these 8 variants were 
reclassified to a non-pathogenic category in ClinVar, while in HGMD, 4 of the variants were 
classified as DM, and 4 were classified as DM? 

Considering expanded stand-alone benign guidelines  

We next considered how the use of updated BA1 guidelines changed the number of 1KGP 
individuals who were indicated affected. In accordance with the updated 2018 BA1 guidelines44, 
we removed variants from consideration that had a MAF > 5% in any gnomAD exomes 
continental population. This had no effect on our analysis of Select or Full ClinVar variants (Fig. 
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4.2A,B). Applying these guidelines to Select HGMD variants led to the removal of 1 variant in 
2014 and 2016 (Fig. 4.2C). We found that this reduced the Select HGMD indicated affected 
individuals by 15 African ancestry individuals in 2014 and 2016, while the 2020 individuals 
remained at 11. We next applied these guidelines to the Full HGMD variants, which led to the 
removal of 8 variants in all three years and reduced the number of affected individuals by 75% 
in 2014 and 62% in 2020 (Fig. 4.2D). Additionally, there was no remaining significant ancestry 
skew after correcting for multiple tests (see Methods). When we implemented the 2018 BA1 
guidelines, the ClinVar and HGMD datasets had similar rates of false positive individuals in 
2014, and only recently have their rates diverged (Fig. 4.2E).  
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Fig. 4.2 Number of 1KGP individuals indicated affected for screened IEMs with Ghosh et al. 
guidelines applied. Bar coloring, tick marks, and dashed lines are used as described in Fig. 4.1. 
The number of 1KGP individuals with a pathogenic genotype for a variant in A Select ClinVar 
variants annotated as pathogenic. B Full ClinVar variants annotated as pathogenic. C Select 
HGMD variants. D Full HGMD variants. E The number of affected individuals relative to the 
number of variants classified in each variant set.  

 

Comparison of inferred incidence with known incidence of screened IEMs 

Next, we sought to characterize the extent of misclassified rare variants that could not be 
removed by a MAF filter or identified as part of an inferred pathogenic genotype. To do this, we 
compared the screened IEM incidence inferred from each database with the known incidence of 
screened IEMs. The aggregate incidence of screened IEMs is estimated to be 1 in 3,200 
births51. This includes a small number of X-linked IEMs, which are extremely rare, with an 
estimated aggregate incidence of 1 in 450,000 births. We used these values as baselines to 
compare with the inferred incidence of screened IEMs. We inferred the screened IEM incidence 
of each database from the 1KGP allele frequency of annotated pathogenic variants (see 
Methods), after applying the 2018 BA1 guidelines. Since the inferred incidence of X-linked IEMs 
is primarily determined by hemizygous males, we consider autosomal and X-linked IEMs 
separately. For autosomal IEMs, we found that both Full and Select ClinVar variants inferred an 
incidence greater than the known incidence prior to 2018 (Fig. 4.3A,C). By 2018, the inferred 
incidence fell below the known incidence, and has remained at 20% of the known incidence for 
both datasets. For X-linked IEMs, Select ClinVar variants have indicated an incidence of zero 
since 2014 (Fig. 4.3B). However, Full ClinVar variants have always suggested an incidence 
orders of magnitude higher than the known incidence, although since 2017 this has been due to 
just a single variant which primarily is found in East Asian ancestry (Fig. 4.3D). The more 
comprehensive perspective provided by screened IEM incidence also allows us to observe 
patterns that were too subtle to be seen in our analysis of indicated affected individuals. For 
example, we observed that a large fraction of the screened IEM incidence was skewed towards 
European ancestry from 2015 to 2017 in Select ClinVar variants (Fig. 4.3A). However, due to 
the extreme rarity of these conditions, it is difficult to precisely infer incidence from 1KGP.  

When we considered Select HGMD autosomal variants, we found that the inferred screened 
IEM incidence has decreased slightly over time, yet in 2020 is triple the known incidence (Fig. 
4.4A). The incidence inferred from Full HGMD autosomal variants has increased over time, and 
in 2020 was 10-fold greater than the known incidence (Fig. 4.4C). As with Full ClinVar variants, 
the X-linked IEM incidence suggested by Select and Full HGMD variants is orders of magnitude 
higher than the known incidence (Fig. 4.4B,D). The separation of autosomal and X-linked IEMs 
suggests that African ancestry skew remains among Full HGMD autosomal variants (Fig. 4.4C), 
but in our analysis of indicated affected individuals (Fig. 4.2D) this African ancestry skew is 
largely masked by X-linked variants with high MAF. 
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Figure 4.3 Incidence of IEMs inferred by ClinVar variants. Dashed line indicates expected 
incidence of 1 in 3,200 births. Colors are used as described in Fig. 4.1. The IEM incidence in 
1KGP inferred by allele frequency of A Select autosomal ClinVar variants annotated as 
pathogenic. B Select X-linked ClinVar variants annotated as pathogenic. C Full autosomal 
ClinVar variants annotated as pathogenic. D Full X-linked ClinVar variants annotated as 
pathogenic.  
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Figure 4.4 Incidence of IEMs inferred by HGMD variants. Dashed line indicates expected 
incidence of 1 in 3,200 births. Colors are used as described in Fig. 4.1. The IEM incidence in 
1KGP inferred by allele frequency of A Select autosomal HGMD variants annotated as 
pathogenic. B Select X-linked HGMD variants annotated as pathogenic. C Full autosomal 
HGMD variants annotated as pathogenic. D Full X-linked HGMD variants annotated as 
pathogenic.  
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Independent validation of major results 

We used gnomAD 3.0 genomes to assess the reproducibility of our major findings. We 
considered gnomAD individuals from the five continental ancestries (African, Latino, East Asian, 
European, and South Asian; n = 63,269). gnomAD 3.0 does not include any individuals sampled 
in 1KGP. However, gnomAD does include individuals enrolled in genetic studies. Additionally, 
gnomAD does not provide individual-level data, so we were unable to identify compound 
heterozygous variants. These are significant limitations that restrict our confidence in absolute 
values derived from this analysis. Instead, we focus on robust claims that can be made from 
trends over time in the relative values we obtained.  

For each cataloged variant, we recorded the number of homozygotes and hemizygotes in 
gnomAD. Overall, our gnomAD analysis replicated all major findings from our 1KGP analysis. 
Across both ClinVar and HGMD, we found that the proportion of individuals in gnomAD that 
were indicated affected was almost always less than the proportion affected in 1KGP, but not by 
less than 50%. One exception was the number of gnomAD individuals affected by Full and 
Select HGMD variants, which was one third of the size expected based on our 1KGP analysis 
(Fig. 4.5E,F).  

The direction of change in indicated affected individuals for all four datasets over time was 
nearly always consistent with our 1KGP analysis. We found one notable difference when we 
considered indicated affected individuals using Select ClinVar variants. In 2015 and 2016, we 
found an unexpectedly large number of indicated affected individuals (Fig. 4.5C). This can be 
attributed to a single variant (ACADS:c.511C>T) with a gnomAD MAF >3% and which was P 
with 1 review star in 2015 and 2016. Due to its modest size, 1KGP did not contain any 
individuals affected by this variant, although the existence of such individuals was suggested by 
our incidence analysis in 1KGP, which found elevated European ancestry incidence in Select 
ClinVar variants from 2015 to 2017 (Fig. 4.3A). The variant, which was annotated as P with 1 
star in 2015 and 2016, is more prevalent in European ancestry individuals, resulting in 
European ancestry individuals significantly (p < 3.8e×10-10) over-represented in 2015 and 2016 
Select ClinVar variants, with an odds ratio of 4.0 (95% CI:2.4-6.7). When considering Full 
ClinVar variants, both East Asian (p<4×10-6) and European (p<1×10-4) ancestry individuals were 
significantly over-represented from 2014 through 2016, with East Asian individuals having an 
OR of 4.5 (95% CI:2.6-7.6). These results were obtained by applying the 2015 BA1 guidelines, 
and they were unaltered when the 2018 BA1 guidelines were applied. 

In addition to confirming the African ancestry skew in indicated affected individuals in our 1KGP 
analysis of HGMD variants, we discovered significant ancestry skew (p<2×10-6) towards East 
Asian ancestry individuals in Full HGMD variants in 2014 and 2016 (Fig. 4.5F), as well as 
significant skew towards European ancestry individuals (p<2×10-5) in Select HGMD variants in 
2020 (Fig. 4.5E). When 2018 BA1 guidelines were applied, significant skew remained for East 
Asian and European ancestry individuals. Due to the imbalanced ancestry composition of 
gnomAD, the described ancestry skew is not obvious from visual inspection of the figures.   

With the greater number of individuals in gnomAD relative to 1KGP, we were able to directly 
compare the false positive rate of Select and Full ClinVar variants. Although there were fewer 
gnomAD individuals predicted affected by Select ClinVar variants, when considering the inferred  
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Figure 4.5 Number of gnomAD individuals indicated affected for screened IEMs by ClinVar or 
HGMD over time. A Number of screened IEM variants present in ClinVar or HGMD in 2014 and 
2020 (identical to Fig. 4.1). B Ancestry composition of individuals in gnomAD. Due to the 
imbalanced ancestry composition, ancestry skew is difficult to discern visually in the following 
panels. C-F Bars are colored by ancestry as shown in B. Dashed black lines indicate the 
aggregate population incidence of screened IEMs. The number of gnomAD individuals with a 
pathogenic genotype for a variant in C Select ClinVar variants annotated as pathogenic, defined 
as variants with a P interpretation with at least 1 review star. Variants that also have conflicting 
interpretations (with VUS or B/LB) with 1 or more review stars are removed. D Full ClinVar 
variants annotated as pathogenic, defined as variants with a P or LP interpretation. Variants that 
also have conflicting interpretations (with VUS or B/LB) are removed. E Select HGMD variants, 
defined as variants classified as DM. 2014, 2016, and 2020 are shown because they are the 
years for which we have archived HGMD data. F Full HGMD variants, defined as variants 
classified as DM or DM?. G The number of affected individuals relative to the number of 
variants classified in each variant set. *Data not available because existing review star 
framework was not in place until 2015.  

 

affected individuals per cataloged variant, we found that there was little difference between 
Select and Full ClinVar variants.  

Comparison of variant reclassification between ClinVar and HGMD 

Our analysis of reclassified variants has so far considered only those variants which contributed 
to an inferred pathogenic genotype in 1KGP individuals. To identify broad trends in variant 
reclassification in ClinVar and HGMD, we considered all screened IEM variants that were 
reclassified in ClinVar or HGMD between 2014 and 2020. 

Out of 16,857 ClinVar variants, 3,772 (22%) were reclassified between April 2014 and 
December 2020. Of these reclassified variants, 28% were reclassified 2 or more times. To 
simplify our analysis, for each variant we considered only the variant’s classification when it first 
entered ClinVar and the variant’s classification at the end of 2020. Of the 4,917 P/LP variants in 
ClinVar between 2014 and 2020, we found 1,655 (34%) were reclassified by the end of 2020 
(Fig. 4.6A). 78% of these reclassifications were towards greater evidence for pathogenicity, and 
the remaining 22% were towards reduced evidence for pathogenicity (8% of all P/LP variants). 
The most common reclassification towards greater evidence for pathogenicity was from P/LP 1 
star to P/LP 2 stars. The most common reclassification towards reduced evidence for 
pathogenicity was from P/LP 1 star to Conflicting. 

HGMD screened IEM variants were reclassified substantially less often than those in ClinVar. 
Out of 4,777 variants classified as DM or DM? in 2014 or 2016, just 37 (0.8%) were reclassified. 
7 of these reclassifications were from DM? to DM, and the remaining 30 were towards reduced 
evidence for pathogenicity (0.6% of all DM or DM? variants). The most common reclassification 
towards reduced evidence for pathogenicity was from DM to DM?.  

When considering variants reclassified towards reduced evidence for pathogenicity, we found 
that ClinVar variants were reclassified at a rate 12-fold greater than those in HGMD. We 
recognize this analysis is impacted by the greater number of available time samples and variant 
categories in ClinVar compared to HGMD. However, when we repeat this analysis considering 
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only ClinVar variants at time points for which HGMD data is available, while also collapsing 
ClinVar pathogenic variants to just 2 categories (see Methods), this result stands.  

 

Figure 4.6 Variant reclassification in ClinVar and HGMD A Reclassification paths of P/LP 
ClinVar variants from 2014 (or first submission thereafter) to 2020, visualized in a Sankey plot in 
which line width represents the number of reclassified variants. Blue lines indicate increasing 
annotated pathogenicity or review stars, orange lines indicate increasing annotated benignity or 
reduced confidence of pathogenicity, and gray lines indicate no change. Numbers in 
parentheses provide variant counts of initial and final classifications for each category. B 
Reclassification paths of DM and DM? HGMD variants from 2014 to 2020. C Reclassification 
paths of ClinVar variants from P/LP or B/LB to VUS or Conflicting. We plot only variants that 
could be assigned to a principal ancestry. Variant paths are colored by ancestry as in D. D Rate 
of reclassification of variants shown in C when normalized by the historical ancestry composition 
of variants in ClinVar. E Reclassification paths of ClinVar variants from VUS or Conflicting to 
P/LP or B/LB. F Rate of reclassification of variants shown in E when normalized by historical 
ancestry composition of variants in ClinVar. 
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Variant reclassification rates by ancestry 

In our earlier analysis, we identified ancestry skew in likely misclassified variants. Next, we 
investigate whether ancestry influences overall reclassification rates of variants in ClinVar. 
Historically, large-scale exome and genome sequencing projects (from which MAF is often 
derived) have undersampled non-European individuals69,70.  Thus, we suspected that non-
European individuals may shoulder a larger burden of variants that were initially classified as P 
or LP due to uncertain MAF and later reclassified to be VUS or Conflicting. At the same time, we 
recognized that the largest ClinVar submitters are located in countries where a majority of the 
population has European ancestry. Consequently, variants common in European ancestry 
individuals may have a greater chance of being interpreted by multiple submitters which could 
lead to Conflicting interpretations.  

To distinguish which of these effects likely dominate in ClinVar, we determined whether variants 
present in specific ancestries were disproportionately likely to be reclassified. First, for each 
variant we used gnomAD exomes to identify the continental ancestry group with the highest 
allele frequency, and we assigned the variant to that ancestry group. gnomAD exome allele 
frequencies were normalized to avoid bias from sample size differences between ancestries 
(see Methods). We first considered variants for which the classification was reduced in 
confidence, which includes P/LP and B/LB variants that were reclassified to VUS or Conflicting. 
For those variants that could be assigned to an ancestry, we visualized reclassifications using 
Sankey diagrams in which line width represents the number of reclassified variants, and lines 
were colored by ancestry (Fig. 4.6C). We observed that European ancestry variants were the 
largest group in most reclassification paths. However, this analysis did not account for the 
differences in ancestry composition of the variants submitted to ClinVar. To control for this 
potential bias, for each ancestry we normalized by both the number of variants assigned to that 
ancestry and the duration in which they were in ClinVar which we measure in variant-months 
(see Methods). One variant-month is equivalent to a single variant classified in ClinVar for one 
month. We normalized only by variants that could have contributed to the reclassification (in this 
case, P/LP and B/LB). Controlling for the ancestry composition of variants in ClinVar, we found 
that variants for which European ancestry individuals had the highest MAF were reclassified 
towards greater uncertainty at a rate of ~0.8% per variant-month (Fig. 4.6D). This was 
approximately twice the rate of reclassification for variants for which African, East Asian, or 
Latino ancestries (all p < 8×10-5) had the highest MAF (Fig. 4.6D). This is consistent with our 
observation that amongst all variants classified in ClinVar, a larger fraction of European 
ancestry variants were classified as Conflicting. South Asian variants were also found to have 
elevated reclassification towards greater uncertainty of approximately 0.6% per variant-month, 
significantly higher than East Asian or African variants (both p < 2×10-4).     

We also considered variants for which classification increased in confidence, which includes 
VUS or Conflicting variants that were reclassified to P/LP or B/LB. After visualizing these 
reclassifications with Sankey plots, we observed that in many reclassification paths, European 
variants were not the largest group (Fig. 4.6E), in contrast with reclassification paths towards 
less confidence. Indeed, when we normalized by the ancestry composition of variants in 
ClinVar, we found no significant difference between variants most common in African, East 
Asian, European, or South Asian ancestry, each of which was reclassified at ~0.3% per variant-
month (Fig. 4.6F). The exception were variants most common in Latino ancestry, which were 
reclassified at ~0.1% per variant-month.  
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Discussion 

Variant databases are under continuous development and growth23,24. Several studies have 
attempted to capture this progress at different snapshots in time, although these studies have 
generally looked at different database elements, making comparisons across time difficult25-27,71. 
Here, we investigated not a single point in time, but evaluated systematically the same disorders 
over 6 years across two different databases. In both databases, we observed a decrease over 
time in the number of 1KGP individuals indicated affected by an IEM. Based on the high 
temporal resolution the ClinVar archives afford, we can see this change was most pronounced 
in 2016 through 2018 after the establishment of the 2015 ACMG/AMP guidelines and coincident 
with allele frequency resources such as ExAC. We believe screened IEMs provide an 
informative lens that reveals broader database trends that may be representative of thousands 
of rare genetic disorders.  

Perhaps our most striking finding is the large difference between the number of affected 
individuals predicted by HGMD and ClinVar in 2020. However, this difference is not entirely 
surprising. HGMD states that its curation policy is “to err on the side of inclusion and enter a 
variant into the database even if its pathological relevance may be questionable” and uses DM? 
classifications for this purpose as well as frequency flags in its online interface75. On the other 
hand, the clinicians and genetic testing laboratories that contribute to ClinVar are typically 
concerned with the immediate clinical implications of a variant. While they don’t want to pass 
over variants that could explain proband phenotypes, they are also loath to misinform patients 
or begin unnecessary interventions that may be irreversible. Thus, ClinVar contributors are 
invested in maintaining a database of pathogenic variants with minimal false negatives and false 
positives. An additional factor may be the increasing use of assertion criteria in variants 
contributed to ClinVar, which compels contributors to delineate the pieces of evidence leading to 
a classification. In contrast, many journals do not require these pieces of evidence. Therefore, 
this analysis should not be seen as a duel between two competing databases, but rather a 
quantitative comparison of the outcomes of two distinct variant cataloging methods. These 
distinct methods led to the 100-fold difference between the false positive rate of individuals 
indicated affected by Full ClinVar variants and Full HGMD variants, observed in both 1KGP (Fig. 
4.1G) and gnomAD (Fig. 4.5G). While the Full HGMD rate (~25 indicated affected individuals 
per 1,000 cataloged variants) is still relatively low, our analysis allows us to quantify the 
difference between the two databases. It is possible that a clinical analysis using HGMD, which 
includes a greater number of variants than ClinVar, would result in a higher sensitivity analysis, 
but we are not able to assess false negatives in this study. Understanding this difference 
between these databases may be valuable to not only clinical researchers, but also to non-
domain experts such as computational researchers, who sometimes use HGMD and ClinVar 
interchangeably to develop variant interpretation methods76.  

Due to founder mutations, individual IEM variants are often enriched in a single ancestry. 
However, when we consider the total burden of all screened IEMs, continental ancestry groups 
appear to be affected at similar rates51. We found that African ancestry individuals were 
disproportionately affected in 2014, when HGMD Select variants were considered, but this skew 
was resolved by 2020. Yet, all of the DM variants causing the ancestry skew in 2014 were 
reclassified to DM?. Thus, when considering HGMD Full variants, we found that significant 
African ancestry skew remained. Encouragingly, when we applied the 2018 BA1 guidelines, we 
observed no significant ancestry skew among Full or Select HGMD variants. This suggests that 



70 
 

much of the observed ancestry skew is due to population-specific common variants. This likely 
reflects the historical lack of African ancestry samples in large sequencing projects72,73. HGMD 
in particular may be susceptible to these factors, since it catalogs variants directly from 
publications, including older literature that was written when common variants in African 
ancestry individuals were poorly characterized. When older studies are given the same 
credence as recent ones, these disparities are more likely to be perpetuated. 

In addition to the 2018 BA1 guidelines, Whiffin et al.78 have also proposed disorder-specific 
MAF thresholds which are supported by recent ACMG/AMP guideline specifications79. For 
example, under this system PAH variants would have a stand-alone benign MAF threshold of 
1.5% assuming a maximum incidence of 1 in 5,000 births. However, we decided not to pursue 
Whiffin et al. thresholds due to the heterogeneity of our disorders and complications arising from 
incomplete penetrance in some disorders. Additionally, many screened IEMs are significantly 
more common in one ancestry group, due to founder effects, which makes it difficult to define 
thresholds.  

Among ClinVar variants that were reclassified, very rarely did the initial submitter change their 
interpretation, and instead nearly all were reclassified due to conflicting interpretations that 
largely included assertion criteria. We carefully examined 10 ClinVar variants which previously 
contributed to an inferred pathogenic genotype but have since been re-classified to a non-
pathogenic interpretation. Eight of these variants are currently interpreted as Conflicting. For 
many variants, this is an accurate descriptor and reflects enduring disagreement among 
submitters. However, for some variants this may be a byproduct of ClinVar’s definition of 
Conflicting. Specifically, if any P or VUS classification includes assertion criteria (one review 
star), then regardless of the number of B or LB classifications submitted, the record remains 
conflicting until the P or VUS submitter changes or retracts their submission. If a submitter is no 
longer active, then an older submission becomes impossible to change. Although this system 
has advantages (historical knowledge is not lost), it may also impede the resolution of variants 
and indicate conflict when there is large consensus. For example, c.323G>T in ASS1 is 
currently listed in ClinVar as conflicting, yet it has the following interpretations with at least 1 
review star: 1 B, 4 LB, and 1 VUS. The VUS interpretation is from 2017, while the 5 B/LB 
interpretations are more recent. Although researchers have found that older variant 
classifications tend to be less accurate, their influence persists31. This is even more true for 
HGMD, which predates ClinVar and thus also contains a large fraction of variants classified 
without assertion criteria. Given the rapid increase in our ability to determine variant MAF and 
predict variant pathogenicity, even in the past 5 years, it may be reasonable to require 
submitters to refresh older interpretations. Under such a system, submitters would need to 
confirm their interpretations after several years, or the interpretations would be deprecated. This 
would reduce the influence of ‘zombie’ interpretations that persist although their submitter is no 
longer active. Regardless of the exact strategy, methods to confirm the validity of older 
classifications will be valuable.  

Our analysis of ClinVar and HGMD variants revealed a few variants that do not fit the model of 
screened IEM variants, which typically result in severe, highly-penetrant disorders that begin in 
infancy or early childhood. For example, we discovered inferred pathogenic genotypes in 1KGP 
that included c.512C>G in ACAD8 (associated with asymptomatic disease), c.374C>T in OTC 
(our results suggest this variant has incomplete penetrance), and c.148G>A in OTC (observed 
in late onset disease). Asymptomatic IEMs occur when a proband does not have any noticeable 
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signs of disease, but their metabolites reveal a disease phenotype. These variants are generally 
classified as disease-causing due to their potential to cause disease. However, as our analysis 
shows, some individuals will be predicted to have a disease, even though they may never 
develop symptoms (asymptomatic disease, incomplete penetrance) or symptoms may appear 
much later in life (late-onset). That we are identifying these variants (as well as variants in 
diseases known to be asymptomatic such as ACADS and PRODH) implies the databases may 
in fact be performing better than our analysis suggests. It is possible that some of these variants 
do cause symptomatic disease in some individuals but disease has not manifested in the 1KGP 
individuals. These variants may inhabit a gray zone between pathogenic and benign, and they 
contribute to existing appeals to reconsider the binary paradigm of pathogenic and benign 
classifications25,77. Our work shows that a feature such as optional flags on a ClinVar or HGMD 
record would be useful. Submitters or curators could then flag entries for various non-standard 
features for which there is evidence, such as asymptomatic disease, incomplete penetrance, or 
late-onset in a disease that is typically early onset. This information would then be readily 
available, without the need to search through supplemental materials of cited publications or 
detailed explanations provided by submitters. This would be a step towards a classification 
system that recognizes that variant pathogenicity is multi-faceted, and it would also enable 
greater interpretability of variant classification data for non-domain experts. 

Our gnomAD analysis supported the major findings or our 1KGP analysis. However, we noted a 
persistent issue in which the number of indicated affected gnomAD individuals was 
proportionally about half of that expected from our 1KGP results. This is potentially explained by 
our inability to identify compound heterozygotes. In IEM cohorts, a majority of pathogenic 
genotypes are caused by compound heterozygous variants74. However, in our 1KGP analysis, 
compound heterozygotes rarely exceeded 20% of indicated affected individuals, possibly due to 
high-frequency false positives which contributed to a disproportionately large number of 
homozygotes. Alternatively, the reduction in gnomAD indicated affected individuals may be 
caused by the imbalanced ancestry composition of gnomAD, specifically the large fraction of 
European genomes (which had few affected individuals in our 1KGP analysis) compared with 
the relative paucity of South Asian or East Asian genomes (which contributed to a large fraction 
of the affected 1KGP individuals). Despite gnomAD’s imbalanced ancestry composition, its 
greater size did allow us to compare the accuracy per variant of Select and Full ClinVar, 
suggesting that there was little difference in accuracy between the two datasets. Additionally, 
our gnomAD analysis revealed ancestry skew towards East Asian and European individuals in 
both ClinVar and HGMD that could not be definitively detected by 1KGP.  

This work has several limitations. Among rare diseases, the variants associated with screened 
IEMs are unusually well-studied thanks to newborn screening programs. Thus, screened IEMs 
are not necessarily representative of many rare diseases. Furthermore, our primary analysis 
was limited by the comparably small size of 1KGP relative to the rarity of IEMs. At the same 
time, 1KGP has several advantages, including its approximately even representation of the 5 
major continental ancestries and its open availability of genomes, which allowed us to identify 
individuals who are compound heterozygous for annotated pathogenic variants and to validate 
the quality of nearly all analyzed variants. These unique features give 1KGP enduring value. 
Our analysis was particularly sensitive to putatively misclassified variants on the X chromosome 
since we considered males who were hemizygous for an annotated pathogenic variant to be 
affected. This explains the relatively high number of observed OTC and TAZ variants flagged by 
our analyses of ClinVar and HGMD, despite the extreme rarity of their associated disorders. 
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Finally, since few ClinVar submitters provide detailed explanation for their interpretation, and 
HGMD does not provide detailed explanation for its classifications, for many variants it is difficult 
to determine with confidence why interpretations changed over time.   

We have investigated how the false positive rate of ClinVar and HGMD variants has changed 
over time. Our results suggest that ClinVar has a lower false positive rate than HGMD due to 
variant reclassification occurring in the past few years. We noted patterns in variant 
reclassification, and found that variant interpretation guidelines and diverse allele frequency 
databases principally contributed to these reclassifications. In agreement with the lower false 
positive rate of ClinVar variants, we found that annotated pathogenic ClinVar variants are 
reclassified 12-fold more often than those in HGMD, suggesting that misclassified variants are 
more readily reclassified in ClinVar than HGMD. We also discovered that variants common in 
European and South Asian individuals were significantly more likely to be reclassified from P/LP 
or B/LB to VUS or Conflicting. We conclude that although the allele frequency of variants 
common in European individuals has been known for longer, due to the increased chance they 
will be annotated by multiple submitters, they are more often reclassified from a confident 
category to a less confident category in ClinVar. We anticipate that this work will be a valuable 
benchmark of the progress that has been made in variant interpretation, of interest to the 
individuals who maintain these databases, the clinical researchers who use these databases 
regularly, and the computational researchers who use these databases for training and testing 
methods.  
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Chapter 5: Conclusions and Future Directions 

Clinicians and researchers face a crucial challenge in the molecular diagnosis of rare diseases. 
Despite the genetic etiology of these diseases, less than half are able to be resolved by exome 
or genome sequencing. Structural variants explain a portion of these unresolved cases, as they 
are challenging both to detect and interpret. To improve the interpretation of structural variants, I 
developed StrVCTVRE, a method to automatically prioritize exon-affecting deletions and 
duplications. I anticipate that this method will not only assist clinical researchers to resolve 
cases but also enable gene-phenotype discoveries. Next, I compared the ability of two recent 
long-read sequencing methods to detect pathogenic structural variants in a rare disease clinical 
setting. I found that these recent methods detect more diagnostic and candidate structural 
variants than can be detected with short-read sequencing. Although their associated structural 
variant calling algorithms would benefit from further refinement, these long-read sequencing 
methods and others like them show promise in resolving cases by detecting diagnostic 
structural variants that may otherwise be missed. Finally, I investigated how rare disease 
variants have been reclassified over time in the variant curation databases ClinVar and HGMD. I 
found that the unique methodologies used by each database have resulted in a large difference 
in their rates of variant reclassification, with ClinVar variants reclassified 12-fold more often than 
those in HGMD. Consequently, HGMD predicts a much larger number of false positive 
individuals than ClinVar and with a significant skew towards African ancestry individuals. 
Overall, my work suggests that our ability to identify variants that cause rare disease is slowly 
improving. While I am glad to have contributed to this progress during my PhD training, there 
remains much further work to be done.   

Exon-affecting variants made up the majority of the variants in my analysis. This is due to two 
related reasons: it is difficult to determine whether an intronic or intergenic variant is pathogenic 
due to our limited understanding of the function of these regions; and the majority of classified 
variants (which are used to train and test methods) overlap exons. Yet, noncoding variants are 
the cause of a portion of unresolved rare disease cases. Fortunately, existing limitations should 
begin to erode as biological data increases. Valuable data will continue to come from ENCODE1 
and similar projects that seek to experimentally identify functional elements in the human 
genome and epigenome. Additional insights will be gained by aggregating data from the 
enormous number of human genomes that will be sequenced in the near future, through large-
scale projects like the UK Biobank2. Finally, diverse functional genomic data such as 
expression3 and proteomics data4 will enable researchers to model cellular networks and 
pathways that are disrupted by pathogenic variants. By integrating these data, I am optimistic 
that researchers will be able to further refine and test variant impact predictors that will provide 
accurate clinical interpretations for noncoding regions of the genome.  

An additional promising direction in rare disease diagnosis is the interrogation of RNA. When 
the tissue of interest can be biopsied, RNA provides a window into disease that is one step 
closer to the actual phenotype than DNA. Consider, RNA can readily reveal defects in splicing 
and expression which may be completely opaque in analysis of the corresponding DNA. 
Additionally, because gene expression is often the result of a finely-tuned network of co-
regulation, RNA can reveal network signatures of a genetic variant that would be invisible in 
DNA. Already RNA analysis shows promise in specific cases5,6, and I am optimistic that the 
integration of RNA and DNA analysis will resolve rare disease cases that would otherwise go 
unresolved.  
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An alternate path to improve variant detection is to improve the substrate against which we call 
variants, the human reference genome. There has not been a coordinate-altering update to the 
human genome since GRCh38 was released in 20137 (although the Telomere-to-Telomere 
Consortium recently released the first apparently complete sequence of a human genome8). 
Recent proposals to improve the reference genome have included constructing pan-genomes9. 
A pan-genome would include all common variation in the human population. These additional 
sequences would be considerable, given that most individuals have >20,000 structural variants 
relative to the reference genome. These sequences would likely reduce read misalignments and 
also enable variant calling in regions which are currently absent from the reference genome. 
The urgency of this approach has been highlighted by a recent study showing that sequencing 
of 910 African ancestry individuals reported 300 Mb of novel sequence that is absent from the 
reference genome10. Pan-genomes will likely require novel alignment and calling algorithms. 
Perhaps the most revolutionary innovation would be to create a graph representation of the 
genome, rather than a linear string11. Until a single pan-genome is created for all humans, a 
useful intermediate step will be the population-specific pan-genome, which is a pan-genome 
focused on a single ancestry12. I anticipate that these approaches will allow researchers to 
detect pathogenic variants which are currently missed, improving the diagnostic yield in rare 
disease cases.  

It is likely that sequencing will play a growing role in our own lives and those of the next 
generation. We are approaching an era in which genome sequencing at birth may become a 
widespread practice with the potential to revolutionize healthcare. This influx of personal 
genome data will be accompanied by advances in our ability to interpret these data. Screening 
newborns for complex diseases such as autism, asthma, or depression and providing 
prophylactic care will likely be possible. Sufficient advances may even enable pre-implantation 
screening of embryos for these diseases. Given the potentially widespread effects of these 
innovations on society, it will be critical to consider the ethical, legal, and social implications of 
these technologies to improve upon—rather than exacerbate—existing health disparities. A 
primary consideration when developing methods to improve clinical care is to ensure that the 
clinical value of sequencing is similar across ancestry groups. However, European ancestry 
individuals comprise 81% of individuals in genome-wide association studies13. Variant 
databases are similarly biased, with a recent study finding ClinVar missed a large number of 
hearing impairment variants that primarily affect African ancestry individuals14. Given the future 
importance of polygenic risk scores and cataloged variants, how can researchers ensure that 
genetic databases reflect human diversity? Projects to sequence underrepresented populations, 
such as H3 Africa15, will be increasingly essential. As a greater number of humans are 
sequenced for clinical research, there will inevitably be concerns regarding how these data can 
be effectively used to improve healthcare while reducing personal risk. One option to improve 
data privacy and security is through a federated learning model, in which data are not shared 
directly but new methods are able to learn on samples across data silos16. Given the increasing 
risk of data leaks and ease of identifying individuals from genetic data, new legislation may also 
be useful to limit potential risks to research participants17. Although these challenges are 
concerning, I am optimistic that by being honest about current inequalities, researchers will build 
the determination to tackle and eventually overcome these limitations.* 

                                                
* This paragraph was adapted from a published article18 and originally written by Julia Brown. This work is 
included with permission from the authors.  
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Our ability to identify the variants that cause rare diseases is already rapidly growing, and will 
likely accelerate as new data pours in. Although we are still quite limited in our ability to predict 
the impacts of most variants, research into rare disease variants have already yielded great 
advances in both biology and clinical care19-21. Considering the track record of advances that 
resulted from rare disease research, I anticipate that the field will continue to generate 
innovations that benefit not only those with a rare disease, but all of humanity.   
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