
UC San Diego
UC San Diego Previously Published Works

Title
A roadmap for interpreting 13C metabolite labeling patterns from cells

Permalink
https://escholarship.org/uc/item/5fr4f1fn

Authors
Buescher, Joerg M
Antoniewicz, Maciek R
Boros, Laszlo G
et al.

Publication Date
2015-08-01

DOI
10.1016/j.copbio.2015.02.003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5fr4f1fn
https://escholarship.org/uc/item/5fr4f1fn#author
https://escholarship.org
http://www.cdlib.org/


A roadmap for interpreting 13C metabolite labeling
patterns from cells
Joerg M Buescher1,2, Maciek R Antoniewicz3,*, Laszlo G Boros4,*,
Shawn C Burgess5,*, Henri Brunengraber6,*, Clary B Clish7,*,
Ralph J DeBerardinis8,*, Olivier Feron9,*, Christian Frezza10,*,
Bart Ghesquiere1,2,*, Eyal Gottlieb11,*, Karsten Hiller12,*,
Russell G Jones13,*, Jurre J Kamphorst14,*, Richard G Kibbey15,*,
Alec C Kimmelman16,*, Jason W Locasale17,*, Sophia Y Lunt18,*,
Oliver DK Maddocks11,*, Craig Malloy19,*, Christian M Metallo20,*,
Emmanuelle J Meuillet21,22,*, Joshua Munger23,24,*,
Katharina Nöh25,*, Joshua D Rabinowitz26,*, Markus Ralser27,28,*,
Uwe Sauer29,*, Gregory Stephanopoulos30,*, Julie St-Pierre31,*,
Daniel A Tennant32,*, Christoph Wittmann33,*,
Matthew G Vander Heiden34,35,*, Alexei Vazquez11,*,
Karen Vousden11,*, Jamey D Young36,37,*, Nicola Zamboni29,* and
Sarah-Maria Fendt1,2

Available online at www.sciencedirect.com

ScienceDirect
Measuring intracellular metabolism has increasingly led to

important insights in biomedical research. 13C tracer analysis,

although less information-rich than quantitative 13C flux

analysis that requires computational data integration, has been

established as a time-efficient method to unravel relative

pathway activities, qualitative changes in pathway

contributions, and nutrient contributions. Here, we review

selected key issues in interpreting 13C metabolite labeling

patterns, with the goal of drawing accurate conclusions from

steady state and dynamic stable isotopic tracer experiments.
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Introduction
Investigating cellular metabolism has a long-standing

history in various research areas such as biochemistry,

biotechnology and cellular physiology. A widely applica-

ble toolbox to quantitatively measure intracellular me-

tabolism has been developed in the context of

biochemical engineering [1]. In light of the emerging

realization that altered cellular metabolism contributes to

many diseases including cancer, metabolic syndromes,

and neurodegenerative disorders, these approaches are

being increasingly applied to address biomedical research

questions [2–8,9�].

Cellular metabolism can be characterized by many pa-

rameters including nutrient uptake and metabolite secre-

tion rates, intracellular metabolite levels, intracellular

metabolic rates (fluxes), nutrient contributions to metab-

olite and macromolecule synthesis, and pathway activities

[2,3,9�,10–12].

Metabolomics, which provides absolute or relative intra-

cellular or extracellular metabolite levels, is a broad and

sensitive method to detect differences in metabolic states

between conditions [13–16]. Changes in intracellular

metabolite levels indicate an altered activity of the con-

nected consuming or producing reactions (e.g. enzymatic,

non-enzymatic, or transport reactions) [17�,18�,19–21].

However, concentration changes do not readily allow
Current Opinion in Biotechnology 2015, 34:189–201 
conclusions on metabolic rates (fluxes), or the direction

of the flux changes, since an increase in metabolite

concentration can both be indicative of increased activity

of metabolite producing enzymes, but also decreased

activity of metabolite consuming enzymes.

In combination with growth rates (which provide global

information on metabolic fluxes to biomass production),

metabolite uptake/secretion rates provide a macroscopic

picture of overall metabolism. For instance, measuring

the rate of glucose depletion from the media reports the

rate of glucose used by cells in a culture system. However,

these data alone are insufficient to reveal intracellular

fluxes throughout the different metabolic pathways.

To examine intracellular fluxes (metabolite amount con-

verted/cell/time), heavy isotope (most frequently 13C)

labeled nutrients (tracers) are commonly utilized [22–
29]. In formal 13C flux analysis, labeling patterns in

intracellular metabolites resulting from metabolizing a
13C labeled nutrient, cellular uptake and secretion rates,

and prior knowledge of the biochemical reaction network

are combined to computationally estimate metabolic

fluxes [11,30��,31–33,34��]. In practice, resolving meta-

bolic fluxes from measured data can be time and data-

intensive. In many cases, however, direct interpretation

of 13C labeling patterns (without formal 13C flux analysis)

is sufficient to provide information on relative pathway

activities, qualitative changes in pathway contributions

via alternative metabolic routes, and nutrient contribu-

tion to the production of different metabolites. We refer

to this direct interpretation of 13C labeling patterns as 13C

tracer analysis. Here, we discuss selected important

aspects to consider when performing 13C tracer analysis

to ensure correct data interpretation and to increase the

insight obtained by stable isotopic tracer experiments.

Metabolic steady state versus isotopic steady
state
Metabolic steady state requires that both, intracellular

metabolite levels and intracellular metabolic fluxes of a

cell or a cell population are constant (Figure 1a) [35].

Controlled culture systems that ensure metabolic steady

state are continuous cultures (known as chemostats), where

cell number and nutrient concentrations are maintained

constant throughout the experiment [36]. More commonly,

experiments are performed at pseudo-steady state, where

changes in metabolite concentrations and fluxes are mini-

mal on the timescale over which the measurement is being

made. In adherent mammalian cell culture, perfusion

bioreactors and nutrostats [37,38], where nutrient concen-

trations but not cell number are constant over time, are

closest to a chemostat. In conventional monolayer culture,

the exponential growth phase is often assumed to reflect

metabolic pseudo-steady state, because cells in the culture

steadily divide at their maximal condition specific rate,

given that nutrient supply does not become limiting [39].
www.sciencedirect.com

mailto:sarah-maria.fendt@vib-kuleuven.be
mailto:sarah-maria.fendt@vib-kuleuven.be
http://www.sciencedirect.com/science/journal/09581669/34
http://dx.doi.org/10.1016/j.copbio.2015.05.006
http://dx.doi.org/10.1016/j.copbio.2015.02.003


13C tracer analysis Buescher et al. 191

Figure 1
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Labeling basics. (a) Time dependent metabolic changes: Metabolism reaches a metabolic steady state when the parameters of interest (e.g.

glucose uptake rate) are constant over time. (b) Time dependent labeling changes: Upon addition of an isotopically labeled carbon source, the

isotopic enrichment will increase in the metabolites until the steady state enrichment is reached. (c) Mass distribution vector (MDV) (also known as

mass isotopomer distribution (MID) vector): Labeling patterns are MDVs that consist of the fractional abundance of each isotopologue (also known

as mass isotopomer). M denotes mass of the unlabeled metabolite. (d) Cellular compartmentalization: Most labeling pattern detection methods

cannot resolve different cellular compartments, thus the whole cell average labeling pattern is measured.
So long as biological changes (e.g. differentiation) occur

slowly relative to the timescale of metabolic measurement,

non-proliferating cells are generally also in metabolic pseu-

do-steady state. This can be verified by time resolved

measurements of metabolic parameters of interest [40]. In

case the biological system is not in metabolic pseudo-steady

state, for example, following acute signaling events or nutri-

ent modulations, tracer experiments can still provide quali-

tative and quantitative information on metabolic pathway

fluxes, but interpretation of non-steady state data require

different approaches [30��,41–43] than the here discussed
13C tracer analysis at metabolic pseudo-steady state.

While metabolic steady state characterizes the state of

metabolism, isotopic steady state characterizes the en-

richment of a stable isotopic tracer in metabolites. When a
13C labeled substrate is added and subsequently metab-

olized, the metabolites will become with time increas-

ingly enriched for 13C until the point where the 13C
www.sciencedirect.com 
enrichment is stable over time (Figure 1b). From a

practical perspective, isotopic steady state is reached

when 13C enrichment into a given metabolite is stable

over time relative to experimental error and/or the desired

measurement accuracy. These enrichment dynamics dif-

fer depending on the analyzed metabolite and the tracer

employed, since the time required to reach isotopic

steady state depends on both the fluxes (i.e. rate of

conversion) from the nutrient to that metabolite, and

the pool sizes of that metabolite and all intermediate

metabolites. For example, upon labeling with 13C-glu-

cose, isotopic steady state in glycolytic intermediates

typically occurs within minutes, whereas for tricarboxylic

acid (TCA) cycle intermediates it may take several hours.

For many amino acids that are both produced by the cell

and are supplemented in the media isotopic steady state

may never be achieved in standard monolayer culture,

due to constant and rapid exchange between the intra-

cellular and the extracellular amino acid pools. In such a
Current Opinion in Biotechnology 2015, 34:189–201
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situation, qualitative tracer analysis can easily be mislead-

ing, and quantitative, formal approaches are required (e.g.

[44�]).

Key aspects:

� Proper interpretation of labeling data depends on prior

assessment of whether the system is at metabolic

pseudo-steady state. If so, interpretation of tracer data

is most simple if labeling is allowed to proceed also to

isotopic steady-state.

� The time to reach isotopic steady state depends both

on the tracer being employed and the metabolites

being analyzed.

� Many amino acids are freely exchanged between

intracellular and extracellular pools. This can prevent

labeling from reaching isotopic steady state and any

intracellular metabolite pool that is in rapid exchange

with a larger extracellular pool is subject to this

complication.

Labeling patterns
The term ‘labeling pattern’ refers to a mass distribution

vector (MDV) (they are also frequently called mass iso-

topomer distribution (MID) vectors) (Figure 1c). The

shift in mass of a metabolite occurs due to the incorpo-

ration of isotopes. Metabolites that only differ in the

isotope composition are isotopologues (they are frequent-

ly also called mass isotopomers). MDVs describe the

fractional abundance of each isotopologue normalized

to the sum of all possible isotopologues. A metabolite

with n carbon atoms can have 0 to n of its carbon atoms

labeled with 13C, resulting in isotopologues that increase

in mass (M) from M+0 (all carbons unlabeled i.e. 12C) to

M+n (all carbons labeled i.e. 13C). Hence, the MDV

represents the relative abundances of M+0 to M+n iso-

topologues for one particular metabolite (Figure 1c).

Consequently, the sum of all fractions from M+0 to

M+n is 100% or 1. Note that in respect to 13C each

isotopologue has
n
k

� �
isotopomers (same isotope com-

position but different position of the isotope within the

metabolite), when n denotes the number of carbons in a

metabolite and k the number of carbons that are 13C

(Figure 1c). Isotopomers can only be resolved using a

detection method that can assign a specific position to a
13C within a molecule (e.g. nuclear magnetic resonance

spectroscopy [45], mass spectrometry analysis of multiple

fragments [46] or in specific cases tandem mass spectrom-

etry [47,48]). Although information on the position of a the
13C label can increase the information content of labeling

data, the MDV is typically sufficient to draw conclusions on

nutrient contributions, and also often regarding pathway

activities. Notably, while we will discuss 13C tracer analy-

sis, the above-described MDVs can be also applied to other

stable isotopes including 15N and 2H.
Current Opinion in Biotechnology 2015, 34:189–201 
To apply MDVs to assess nutrient contributions and

pathway activities, it is important to first correct for the

presence of naturally occurring isotopes, for example, 13C

(1.07% natural abundance (na)), 15N (0.368% na), 2H

(0.0115% na), 17O (0.038% na), 18O (0.205% na), 29Si

(4.6832% na), or 30Si (3.0872% na) [49,50�,51��]. For ex-

ample, glutamate and a-ketoglutarate, which are normally

in complete exchange and share the same carbon back-

bone, should accordingly have matching MDVs. Yet,

since they differ in their molecular formula, uncorrected

MDVs of glutamate and a-ketoglutarate will not match

because of the natural occurring isotopes in N, H, and O.

For analytical methods that require metabolite derivati-

zation to enable chromatographic separation (e.g. gas

chromatography–mass spectrometry), the chemical mod-

ification adds additional C, H, N, O, and Si atoms to the

metabolites [22,52]. Hence, the natural labeling of all

atoms in the metabolite and the derivatization agent

needs to be taken into account when performing data

correction. For analysis of underivatized metabolites

(e.g. by liquid chromatography–mass spectrometry),  nat-

urally occurring 13C has a much greater effect than other

natural isotopes, and it is minimally imperative to correct

for it.

A general applicable correction matrix can be formulated

based on Eqn. (1).

I0

I1

I2

. . .

In

. . .

Inþu

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

LM0

0 0 0 . . . 0

LM0

1 LM1

0 0 . . . 0

LM0

2 LM1

1 LM2

0 . . . 0

. . . . . . . . . . . . . . .

LM0
n LM1

n�1 LM2

n�2 . . . . . .

. . . . . . . . . . . . . . .

LM0
nþu LM1

nþu�1 LM2

nþu�2 . . . LMn
u

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

�

M0

M1

M2

. . .

Mn

0
BBBBBB@

1
CCCCCCA

(1)

Here, the vector I denotes the fractional abundances of

the measured metabolite ions. M represents the MDV

corrected for naturally occurring isotopes. n denotes the

number of carbon atoms that are present in the analyzed

metabolite ion and are subject to isotope labeling. u
denotes additional measured ion abundances beyond n
originating from natural isotopes in the metabolite or the

derivatization. L denotes the correction matrix and the

columns LMk denote the theoretical natural MDV when k
(0 to n) carbons are 13C. The correction matrix L can be

calculated based on the sum formula of the metabolite ion

under consideration of natural isotope abundances

[49,53,54]. To solve the linear equation system at least

n+1 abundances have to be measured. If more than n+1

abundances are considered, this results in an overdeter-

mined system and provides a more robust solution. Tools
www.sciencedirect.com
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for quickly converting raw into corrected MDVs are

available [55,56].

When using analytical approaches involving selected ion

monitoring (SIM) or selected reaction monitoring (SRM)

mass spectrometry, it is important to consider upfront the

potential role of naturally occurring isotopes when setting

the selected mass range [50�]. In cases involving deriva-

tization with Si-containing reagents, inclusion of these

higher mass ranges may be important and the required

mass range can be estimated based on multinomial ex-

pansion (typically a shift of up to 4 amu beyond the mass

of the fully labeled metabolite should be considered).

Comparison between labeled and unlabeled samples is

sufficient to determine whether an observed mass shift

truly reflects labeling (as opposed to merely natural

isotope abundance). It is not appropriate, however, to

subtract the MDV of an unlabeled sample from the

labeled sample. Typically, the main natural abundance

peak in the unlabeled sample will be M+1, whereas in

labeled samples natural abundance results in peaks at

higher masses.

The natural occurring isotopes can be also used to validate

the applied mass spectrometry method for its accuracy to

measure isotopologue distributions [22]. Specifically, me-

tabolites can be extracted from cells fed with naturally

labeled nutrients (commonly referred to as unlabeled

nutrients) and consequently the measured MDV of these

metabolites should accurately (absolute error <1.5%) re-

flect the theoretical distribution of natural occurring iso-

topes. With this validation the applied mass spectrometry

method can be improved or metabolites for which the

isotopologue distribution is measured with poor accuracy

can be excludes. It is important to be aware of the extent of

error in MDV measurements and to interpret resulting

labeling data accordingly. Random error in MDV measure-

ment is often significant for metabolites that are low

abundance (i.e. measurement signal close to noise). Sys-

tematic error in MDV measurement is more serious and

can reflect metabolite misannotations or overlaps of the

measured metabolite ions with same mass ions from sam-

ple matrix components. In case the accuracy to measure

isotopologue distributions is validated, data variability can

be a subject of the experimental procedure (e.g. inade-

quate metabolism quenching) or the biological system (e.g.

rapid metabolic shifts or a continuous metabolic drift).

Key aspects:

� Correction for natural abundance facilitates proper

interpretation of labeling data.

� Subtracting the measured MDV of an unlabeled

metabolite from the measured MDV of the labeled

metabolite is not a valid method to correct for natural

abundance.
www.sciencedirect.com 
� Labeling patterns must be interpreted in light of the

experimental error in MDV measurements of the

chosen analytical approach. Measurement error will

typically be higher for low abundance compounds.

� In case measurement inaccuracy can be excluded, data

variability can result from the experimental procedure

or the biological system.

Cellular compartments
Eukaryotic cells have organelles such as mitochondria and

peroxisomes, and these organelles result in intracellular

compartmentalization of metabolites and metabolic reac-

tions. Many metabolites are present in multiple intracel-

lular compartments and even spatial distribution within a

compartment might occur. This adds a layer of complexi-

ty to understanding metabolism. Only the average label-

ing pattern and metabolite levels from all compartments

within a cell can be measured using most current tech-

niques (Figure 1d) [57,58].

Depending on the metabolite of interest, compartment-

specific labeling patterns in some cases can be inferred

from labeling of metabolites that are produced exclusive-

ly in one compartment (Figure 1d). For example, pyru-

vate is found both in the cytosol and in the mitochondria.

Lactate and alanine are both directly produced from

pyruvate. Lactate dehydrogenase, the enzyme which

interconverts pyruvate and lactate, is a strictly cytosolic

enzyme [59], an assumption in agreement with the ob-

servation that the deletion of the mitochondrial pyruvate

carrier does not affect lactate production [60,61]. The

finding that mitochondrial pyruvate carrier deletion dras-

tically affects alanine production [60,61] supports that

alanine is produced extensively from mitochondrial py-

ruvate [62]. Thus, under experimental conditions in

which neither exogenous alanine nor lactate is available

to cells, lactate labeling likely reflects the labeling pattern

of cytosolic pyruvate, while alanine labeling better

reflects the labeling pattern of mitochondrial pyruvate.

Additionally, engineered compartment-specific produc-

tion of metabolites in cells can also be used to provide

compartment specific information. For example, labeling

of NADPH in the mitochondria and the cytosol was

determined by compartmentalized transfer of deuterium

to the metabolite 2-hydroxyglutarate (2-HG) [63�]. Spe-

cifically, transient expression of either mutant isocitrate

dehydrogenase 1 or 2 results in compartment specific

production of 2-HG that utilizes NADPH available in

that location. This approach, and a similar approach but

without engineered compartment specific production of

2-HG was used to infer compartmentalized serine —

glycine interconversion [63�,64�].

Key aspects:

� In most cases cell average labeling patterns are measured.

Because many metabolites are present in more than one
Current Opinion in Biotechnology 2015, 34:189–201
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subcellular compartment, this can affect the extent and

pattern of the metabolite labeling observed.

Steady state labeling
MDVs describe the relative fractions of isotopologues

within a metabolite. At isotopic steady state, and in the

absence of compartment-specific labeling patterns,

MDVs are independent of metabolite levels. Therefore,

metabolites that are in complete exchange such as gluta-

mate and a-ketoglutarate have identical MDVs even

though their intracellular levels are very different [65–
67] (Figure 2a). Consequently, any further analysis of

relative pathway activities, qualitative changes in path-

way contributions, or nutrient contributions based on

isotopic steady state labeling data only requires MDVs

and is independent of the metabolite levels. Notably, this

simplifying assumption breaks down when compartmen-

tation is significant and results in compartment-specific

labeling patterns (see section above).

Nutrient contribution

To determine which fraction of a metabolite’s carbon is

produced from a certain nutrient the fractional contribution

(FC) using the fully 13C-labeled nutrient can be calculated

based on Eqn. (2). Using positionally labeled nutrients for

this analysis is not advised because positionally labeled

tracers will not only reflect changes in the FC but also

differential pathway usage. For example, the FCfrom glucose

in pyruvate calculated from a 1-13C1-glucose tracer can be

altered between conditions because of a reduction in the

fraction of pyruvate produced from glucose or because the

forward flux through the oxidative and non-oxidative pen-

tose phosphate pathway is increased, leading to the incor-

poration of the 13C labeled carbon into CO2.

FC ¼
Pn

i¼0 i � mi

n �
Pn

i¼0 mi
(2)

Here n is the number of C atoms in the metabolite, i
denotes the isotopologues, and m the abundance of an

isotopologue. Alternatively, FC can be directly calculated

from the MDV by Eqn. (3), which takes advantage of the

fact that the sum of all fractions from M+0 to M+n is

already normalized to 1.

FC ¼
Pn

i¼0 i � si

n
(3)

Here s is the relative fraction of the isotopologues.

If only two carbon sources (e.g. glucose and glutamine)

contribute to the formation of a metabolite, the sum of

FCfrom glutamine and FCfrom glucose will be 100% or 1 for this

metabolite (Figure 2b). Thus, the relative contributions

of carbon sources to a metabolite can be determined from

FCs. As an example, this approach was applied to reveal a

switch from glucose to glutamine-derived tricarboxylic
Current Opinion in Biotechnology 2015, 34:189–201 
acid (TCA) cycle metabolites during metformin treat-

ment [68]. For any metabolite that is subject to a carbox-

ylation reaction the FC values will be reduced due to

incorporation of unlabeled CO2 [69]. Similarly any other

incorporation of unlabeled carbon sources will also lead to

a reduced FC. For example a low FC of fatty acids from
13C6-glucose and 13C5-glutamine in hypoxia was recently

used to reveal a contribution from serum acetate to fatty

acid synthesis [70].

Also isotope impurity of the tracer will reduce FC values.

Yet, for standard quality of tracers (e.g. 1% for 13C6-

glucose), the reduction of FC values based on isotope

impurity is marginal. For example, although in 13C6-

glucose with 1% isotope impurity only 94% of the glucose

molecules carry at each carbon position a 13C, the FC for

this 13C6-glucose is 0.99. Thus, normalizing to the FC of

the tracer has in this case little effect. However, for tracers

with higher isotope impurity a normalization to the FC of

the tracer can be useful.

Nutrient contribution indirectly provides some informa-

tion on flux: it reveals the fraction of the metabolite being

formed by the sum of all pathways leading from the

labeled nutrient to the metabolite. It does not reveal

the activity of specific pathways, nor absolute fluxes.

For example, two metabolites can have identical FC

although the net flux (Figure 2c) of the labeled nutrient

to one of the metabolites is much smaller than to the

other, but between both metabolites exists a rapid ex-

change flux. Thus, rapid exchange fluxes (Figure 2c) can

readily label metabolites although the net flux to the

metabolite might be marginal.

Key aspects:

� If the sum of the labeled nutrient contributions to a

metabolite do not sum up to 100% or 1, and the labeling

in the metabolite is in isotopic steady state, there are

additional sources that contribute to the production of

that metabolite.

� In general, nutrient contributions alone do not reveal

specific or absolute fluxes.

� Exchange fluxes can lead to labeled metabolites

although the net flux to the metabolites is marginal.

Pathway activity

Specific isotopologues do not provide per se information

on absolute fluxes, rather they allow conclusions on rela-

tive pathway activities and qualitative changes in path-

way contributions to the production of a certain

metabolite. Thereby, isotopologue patterns can indicate

the activity of alternative metabolic routes.

Relative pathway activity

Relative pathway activities can be inferred from a ratio

between two alternative and converging pathways. A 13C
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labeled tracer can be fed to the cells, which is designed to

result in different labeling patterns when converted

through either of the two alternative metabolic pathways.

Calculating a split ratio of the activity between two

alternative and converging pathways requires that the

labeling patterns of the metabolites are valid surrogates

of the two pathways, and that a converged pathway

metabolite can be measured [50�]. Consequently, the

sum of the relative activity of both alternative and con-

verging pathways is 100% or 1. In those cases where

additional information can provide the forward flux for

one of the pathways, then the forward flux of the other

pathway can be calculated based on the split ratio.

For example, the pentose phosphate pathway has both

oxidative and non-oxidative branches that connect to gly-

colysis at different locations [71�]. Under some conditions,

pentoses produced via the oxidative pathway can re-enter

glycolysis via the non-oxidative pathway, providing two

routes from glucose-6-phosphate to trioses. When 1,2-13C2-

glucose is converted through glycolysis, M+0 and M+2

pyruvate will be formed, while conversion of glucose to

pyruvate through the oxidative pentose phosphate path-

way will lead to M+0, M+1, and M+2 pyruvate. The split

ratio (relative pathway activity) between glycolysis and the

pentose phosphate pathway can be estimated based on the

above-described different labeling patterns [72,73]. Nota-

bly, the difference in pyruvate labeling is not informative as

to relative pentose phosphate pathway and glycolysis flux if

the non-oxidative pentose phosphate pathway flux is di-

rected toward pentose production, as it is the case in many

cancer cells [74,75]. A more direct measurement of oxida-

tive pentose phosphate pathway flux can be obtained from

quantifying 14CO2 production from 1-14C1-glucose versus

6-14C1-glucose [76]. Alternatively, formal 13C flux analysis

or isotopomer analysis based on nuclear magnetic reso-

nance can be applied to determine the oxidative pentose

phosphate pathway activity from 13C-labeling data (e.g.

[77,78]).

Importantly, if a single nutrient contributes to a pathway,

then steady state labeling data are not informative as

to relative or qualitative pathway activity or flux. For
Interpretation of labeling data. (a) Steady state labeling data are

independent from the metabolite levels. (b) Fractional contribution

quantifies the contribution of a labeled nutrient to the metabolite of

interest. (c) Exchange fluxes can lead to rapidly labeled metabolites

although the net flux of the nutrient to the metabolites is small. (d)

Dynamic labeling patterns are metabolite level dependent: The flux

from glutamine to glutamate is the same in condition A and B, but in

condition A the glutamate levels are greater than in condition B.

Consequently, the labeling dynamics of glutamate in condition A are

slower than in condition B although the flux from glutamine to

glutamate is the same in both conditions. (e) Relative flux activity

between two conditions can be evaluated without kinetic flux

calculations if both the labeling dynamics and all metabolite levels of

the pathway of interest are altered in the same direction.
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instance, in most cases glycolytic intermediates are la-

beled primarily from glucose and the fact that glycolytic

intermediates are labeled from glucose at steady state

does not provide any information on the magnitude of the

glycolytic flux.

Qualitative changes in pathway contribution

Qualitative changes in pathway contribution are indicative

of whether a certain pathway is used to produce a metabo-

lite. Thereby, only the labeling pattern that is indicative for

the pathway of interest is analyzed. Consequently, no

quantitative split ratio is calculated between the pathway

of interest and the alternative conversion routes, and only

qualitative information is obtained. Examples are changes

in the fractional abundance of M+5 citrate from 13C5-

glutamine to suggest reductive glutamine metabolism

[79–84], or M+3 malate from 13C6-glucose to suggest

contribution of pyruvate via pyruvate carboxylase. The

example of pyruvate carboxylase is discussed in full detail

in Box 1. Recognizing the limitations of the specific iso-

topologues to be indicative for relative pathway activities

or qualitative changes in pathway contribution is impor-

tant, and use of more than one tracer as well as investigation

of more than one metabolite labeling can increase confi-

dence in conclusions (Box 1).

Key aspects:

� Steady state labeling patterns are independent of

metabolite levels. Consequently, multiplying MDVs

with metabolite levels at isotopic steady-state (or

simply reporting the absolute magnitudes of different

labeled species) does not reliably provide information

on any metabolic changes. More reliable information is

obtained by examining the steady-state labeling

fractions themselves to infer relative or qualitative

pathway activities and nutrient contributions.

� Relative pathway activities and qualitative changes in

pathway contribution to the production of a metabolite

do not allow conclusions on absolute flux magnitudes.

� Steady state labeling patterns are information-rich for

metabolites in pathways with more than one source of

nutrient contribution or alternative metabolic routes for

nutrient contribution.

� Steady state labeling patterns for linear pathways

without alternative nutrient contributions are not

informative for pathway activity.

� If no formal split ratio of pathway contribution can be

calculated, any pathway activity inferred from steady

state labeling patterns is qualitative.

� It is important to remember that relative contributions

may change due to the increased activity of one

pathway, or the decreased activity of another pathway.

� Analysis of labeling patterns from more than one 13C

tracer can increase confidence in data interpretation.

� Analysis of labeling patterns in more than one metabo-

lite can increase confidence in data interpretation.
Current Opinion in Biotechnology 2015, 34:189–201 
Dynamic labeling

Dynamic labeling is a powerful method to infer flux from

metabolite labeling data and metabolite levels

(Figure 2d) [30��,41,51��,85�]. During dynamic labeling,

how fast a metabolite pool becomes labeled is measured.

The underlying principle is that the greater a flux the

faster a metabolite pool becomes labeled; however, con-

sidering the size of the metabolite pool is crucial as larger

metabolite pools will take longer to be labeled than

smaller metabolite pools (Figure 2d). Thus, dynamic

labeling patterns are inherently metabolite level depen-

dent, and will also depend on the pool size and labeling

rates of upstream metabolites if the labeled intermediate

is not directly produced from the 13C tracer.

Integrating dynamic labeling data into metabolic models

has mainly been applied to microbial systems, although

other systems have been recently investigated as well

[34��,39,86–89]. For a meaningful direct interpretation of

dynamic labeling patterns a suitable time resolution (i.e.

multiple time points that cover the labeling dynamics)

and measurement of the metabolites that are upstream of

the metabolite of interest are essential. This is required to

(a) obtain reliable curve fits and (b) determine when the

dynamic profile transitions to steady state labeling. Nota-

bly, dynamic labeling is limited by the feasible time

resolution. Therefore, low flux pathways such as gluta-

mine anaplerosis to the TCA cycle (conversion of gluta-

mine to a-ketoglutarate) are easier to correctly infer with

dynamic labeling data than high flux pathways such as

glycolysis. Additionally, the direct interpretation of dy-

namic labeling patterns (without sophisticated methods

such as non-stationary 13C flux analysis) requires that the

metabolite levels are constant over time. In practice, this

is often achieved by exchanging the medium for a period

of time with unlabeled medium before adding 13C-la-

beled media. This allows the intracellular metabolite

levels that are in rapid exchange with the medium (e.g.

lactate) to equilibrate to a medium without high levels of

these metabolites present extracellularly. Importantly,
13C tracer analysis as discussed here is only valid if the

media change does not affect the metabolic steady state.

For calculating fluxes from dynamic labeling data two

cases have to be considered. Either the direct substrate

metabolite of the reaction of interest is 100% labeled and

the metabolite of interest is not a product from a conden-

sation reaction, or this is not the case. In the first case flux

can be calculated based on Eqn. (4) [51��].

dXU

dt
¼ � f X �

XU

XT

� �
(4)

Here, XU is the unlabeled metabolite level, fX is the sum

of fluxes producing the metabolite X from the tracer

substrate and XT is the total metabolite level (sum of
www.sciencedirect.com
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Box 1
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Pyruvate anaplerosis is the counterpart to glutamine anaplerosis and allows the TCA cycle to continuosly oxidize acetyl-CoA simultaneously to provide carbon
backbones for biomass production. During pyruvate anaplerosis, pyruvate is converted via pyruvate carboxylase to oxaloacetate to compensate for metabolite loss
from TCA cycle due to biomass production.
Pyruvate anaplerosis can be identified by measuring M+3 malate, oxaloacetate, or fumarate under conditions when 13 C6-glucose is consumed (a). Notably,
oxaloacetate is not measurable by many metabolomics protocols because it requires a direct derivatization during quenching due to its chemical instability [96].
However, the labeling pattern of aspartate can serve as a surrogate of oxaloacetate labeling in aspartate-free medium, because if the medium does not contain
this amino acid, oxaloacetate is the sole source of aspartate carbon. Notably, if oxaloacetate from pyruvate anaplerosis is further used in the TCA cycle, also a
fraction of M+5 citrate from 13 C6-glucose will appear, because M+3 oxaloacetate will be combined with M+2 acetyl-CoA.
Under 13C6-glucose labeling conditions M+3 malate, aspartate, and fumarate can also be formed by multiple oxidation rounds in the TCA cycle (b). Hence, to
ensure that the M+3 malate, aspartate, and fumarate from 13C6-glucose are indicative of pyruvate anaplerosis, this isotopologue should be compared to the M+3
succinate (b). Comparison between malate, aspartate, and fumarate with succinate is thereby directly possible because they all consist of the same four-carbon
backbone. Thus, differences between the M+3 in malate, aspartate, and fumarate and the M+3 succinate represents the pyruvate anaplerosis contribution to the
TCA cycle, given that fumarate reductase activity is absent.
Fumarate reductase activity of the succinate dehydrogenase complex converts fumarate to succinate and thereby constitutes anaerobic electron transport. This
activity is found in many bacteria and fungi, but it has been also shown to occur in some mammalian cells during starvation, ischemic, or hypoxic conditions [97-
99]. When fumarate reductase activity is observed under 13C6-glucose labeling conditions, the M+3 malate, aspartate, and fumarate can match the M+3 succinate
although pyruvate anaplerosis is active (c). Therefore, the M+3 malate, aspartate, and fumarate should also be compared to the M+3 and M+4 a-ketoglutarate,
because the a-ketoglutarate to succinate reaction can be considered to operate only in forward direction (c). Notably, a-ketoglutarate consists of a five carbon
backbone and in the reaction to succinate CO2 is lost. Thus, this difference in the carbon backbone has to be taken into account when the MDVs of malate,
aspartate, and fumarate are compared to α-ketoglutarate.
To assess the contribution of pyruvate to TCA cycle via pyruvate carboxylase with an additional tracer, 1-13C1-pyruvate (or 3,4-13C2-glucose, which is converted to
1-13C1-pyruvate) can be used (d) [100,101]. Using these tracers, the 13C labeled carbon is lost in the pyruvate dehydrogenase reaction but is retained when
pyruvate enters via pyruvate anaplerosis into the TCA cycle (d). Any further TCA cycle metabolization of oxaloacetate from pyruvate anaplerosis, however, will lead
to loss of the the labeled carbon (d). Notably, when using a pyruvate tracer in the presence of glucose as a carbon source, the enrichment of 13C-pyruvate needs to
be taken into account when estimating relative pyruvate anaplerosis.
Hence, pyruvate anaplerosis is a good example that it can be helpful to depict not only the isotopologue of interest, but the MDVs of multiple connected
metabolites.
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Qualitative changes in pathway contribution: 13C tracer analysis to identify changes in pyruvate anaplerosis.
all labeling states). Hence, XU/XT is the fraction of M+0 in

the metabolite of interest. In the second case isotopically

non-stationary 13C flux analysis [30��,40,85�] or kinetic

flux profiling [51��,90,91��] can be performed. These

methods require the same additional data and information
www.sciencedirect.com 
as steady state 13C flux analysis and/or measurements of

metabolite levels along the pathway of interest. More-

over, to measure biosynthesis and turnover of polymers

mass isotopomer distribution analysis (MIDA) [92�] or

isotopomer spectral analysis (ISA) [93�] can be applied.
Current Opinion in Biotechnology 2015, 34:189–201
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In some experimental setups, pragmatic simplifications to

compare flux between two conditions have been applied

[66,94,95]. For example, a pulse of a fully labeled carbon

source is added to the medium in a reference and in a

perturbed condition (e.g. mutant, or drug treatment).

Under the precondition that all metabolite levels along

the pathway of interest are lower in the perturbed condi-

tion than in the reference condition, a slower or equal

decrease in M+0 of the metabolite of interest in the

perturbed condition signifies a lower pathway flux in

the perturbed condition (Figure 2e). To allow assessment

of metabolite levels and labeling dynamics, both param-

eters should be depicted separately. Notably, such a

qualitative analysis of dynamic labeling data and metab-

olite levels are subject to the assumption that the non-

compartment specific metabolite level measurement

does not impact the data interpretation and that the

metabolites of the pathway of interest are not in rapid

exchange with other metabolites outside the pathway. If

doubts about these assumptions exist, then conclusions

based on the assumptions should be verified with formal

non-stationary 13C flux analysis.

Key aspects:

� Multiple time points are essential to interpret directly

dynamic 13C labeling patterns. Interpretations of single

time points of dynamic 13C labeling patterns are not

reliable.

� Dynamic labeling is limited by the feasible time

resolution (e.g. glycolytic intermediates are labeled in

the second to minute range).

� Qualitative and quantitative assessment of dynamic

labeling patterns (without formal non-stationary 13C

flux analysis) must take metabolite levels into account.

� Interpretation of labeling dynamics in a pathway with

metabolites that are in rapid exchange with other

metabolites outside a pathway require other

approaches than the here discussed direct 13C tracer

analysis.

� Compartment-dependent metabolite production can

impact the interpretation of dynamic labeling data.

Concluding remarks
13C-labeled and other isotope-labeled tracers can be

powerful tools to interrogate the metabolism of cells.

They can determine relative pathway activities, qualita-

tive changes in pathway contribution, nutrient contribu-

tions, and help infer metabolic fluxes. Analysis using more

than one tracer and examination of multiple metabolites

can help to increase the confidence in conclusions from

direct 13C tracer analysis. Moreover, integration of label-

ing data with additional information such as uptake and

secretion rates will increase the resulting understanding

of cellular metabolism and confidence in the biological

conclusions. Importantly, the biological question of
Current Opinion in Biotechnology 2015, 34:189–201 
interest dictates which metabolic parameters (uptake

rates, relative pathway activities, pathway/nutrient con-

tributions, or fluxes) are most important to determine.

Taking into account the considerations discussed here

will hopefully be useful to the growing set of scientists

engaged in metabolic tracer studies.
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