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Evaluation of Parameters for 
High Efficiency Transformation of 
Acinetobacter baumannii
Suleyman Yildirim1,†, Mitchell G. Thompson1, Anna C. Jacobs1, Daniel V. Zurawski1 & 
Benjamin C. Kirkup Jr1,2,‡

Acinetobacter baumannii is an emerging, nosocomial pathogen that is poorly characterized due to 
a paucity of genetic tools and methods. While whole genome sequence data from several epidemic 
and environmental strains have recently become available, the functional characterization of genes 
is significantly lagging. Efficient transformation is one of the first steps to develop molecular tools 
that can be used to address these shortcomings. Here we report parameters allowing high efficiency 
transformation of A. baumannii. Using a multi-factorial experimental design we found that growth 
phase, voltage, and resistance all significantly contribute to transformation efficiency. The highest 
efficiency (4.3 × 108 Transformants/μg DNA) was obtained at the stationary growth phase of the 
bacterium (OD 6.0) using 25 ng of plasmid DNA under 100 Ohms resistance and 1.7 kV/cm voltage. The 
optimized electroporation parameters reported here provide a useful tool for genetic manipulation of  
A. baumannii.

Acinetobacter baumannii is a gram negative, strictly aerobic, coccobacillus that has caused enormous public 
health concerns worldwide because of its remarkable ability to develop antibiotic resistance1. While the mortality 
rate of A. baumannii-associated disease can reach up to 68% in specific at-risk patient populations2, there are 
limited treatment options because of growing antibiotic resistance, and the pharmaceutical pipeline of novel com-
pounds targeting this organism remains deficient3–5. The gap in A. baumannii drug development could be partly 
explained by the lack of genetic tools to functionally characterize genetic loci that contribute to pathogenesis. The 
multiple drug resistant (MDR) nature of relevant clinical isolates and incompatibility of many well-characterized 
plasmids commonly used for the molecular engineering of Escherichia coli make the genetic manipulation of  
A. baumannii a significant challenge6–8. As many previously discovered techniques used to introduce DNA into 
the A. baumannii genome rely on homologous recombination immediately after introduction into the cell, a high 
transformational efficiency is essential9,10. Though other work has employed electroporation as a method to trans-
form A. baumannii, the optimization of transformation conditions for this bacterium has been underexplored9.

Electroporation is a method commonly used for introducing foreign DNA into cells across many phyloge-
nies. Transformation efficiency in electroporation depends on multiple factors including: electrical parameters11, 
the amount and purity of DNA used, temperature, cell density, buffer composition, and the growth phase of 
the bacterial cells when made competent12. These factors must often be determined empirically to achieve opti-
mal results13–15. Optimal transformation protocols are especially important for organisms with poorly defined or 
under developed genetic systems16 such as A. baumannii. Therefore, the aim of the present study was to evaluate 
parameters influencing transformation efficiency of A. baumannii using five different strains and a fractional 
factorial experimental design to achieve higher transformation efficiencies.
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Results and Discussion
Experimental variables and the design of experiments (DOE). To evaluate the effects of five var-
iables (growth phase, voltage, resistance, plasmid DNA concentration, and the concentration of a divalent ion 
(magnesium)) on the transformation efficiency (Transformants/μ g plasmid DNA) we used a three-level fractional 
factorial design to screen these factors in nine runs. Each experimental run was replicated three times to help 
identify sources of variation and to run an analysis of variance. The design matrix is shown in Table 1 17,18 and the 
raw data collected are presented in the supplementary tables, Tables S1 and S2. We added a central point to the 
design matrix in addition to the low and high levels in order to analyze whether the level of each variable chosen 
led to improvement in the transformation efficiency. When the average effect size at the central point (Fave(0)) 
is smaller than the overall average of effect sizes at all other points (Fave(all)), the optimal point was localized 
toward the high-level settings of each variable. If it was greater, then the optimal point was located within the two-
level variable settings17. The central point also allowed for evaluation of the relationship between each variable 
in the design and the response variable. When the average effect size at the center of the design was significantly 
different from the overall average of effect sizes at all other points the relationship between the variables and the 
response variable, it is likely to be non-linear19.

Optimization runs of the electroporation conditions. The DOE scatter plot in Fig. 1 (DOE1) shows 
the response values observed at all levels of each factor. The figure indicates trends in the location and scale for 
both within and between each variable, thereby helping to identify a ranked list of important variables contribut-
ing to transformation efficiency. The levels of two variables, OD600 (growth phase) and [Mg+ + ] (concentration 
of magnesium), showed obvious location differences, suggesting that effect size at these levels significantly vary. 
Other variables did not fluctuate with great variation at both the low and high experimental levels. This could be 
due the levels chosen for these variables were not in a relevant range. Figure 2 summarizes the variations in per-
cent average of effect sizes (Ef) for each factor based on DOE1. The variables, OD600 and [Mg+ + ], clearly showed 
the highest percent Ef, 90% and − 98%, respectively. The observed changes in other variables were as follows: 5% 
for V(kV/cm), − 6% for R(Ohms), and − 5% for DNA (ng). The Ef at central point was Fave(0) =  2.27 ×  104 and 
the overall Ef with other modified variables was Fave(all) =  2.4 ×  105. Since Fave(0) <  Fave(all) the optimum of 
OD600 setting should be in “+ 1” level while [Mg+ + ] should be localized in “− 1” level. Thus, we reasoned that the 
updated levels of each variable, OD600 and [Mg+ + ], are likely to significantly improve the overall transformation 
efficiency further. We therefore re-ran the transformation experiments again with three replicates utilizing the 

Run# OD600 V (kV/cm) R (Ohms) DNA (ng) [Mg++] (mM)

1 + 1 − 1 + 1 + 1 − 1

2 − 1 − 1 − 1 + 1 + 1

3 + 1 − 1 − 1 − 1 + 1

4 − 1 − 1 + 1 − 1 − 1

5 − 1 + 1 + 1 − 1 + 1

6 + 1 + 1 − 1 − 1 − 1

7 − 1 + 1 − 1 + 1 − 1

8 + 1 + 1 + 1 + 1 + 1

9 0 0 0 0 0

Table 1. Matrix of Experimental Design. DOE1 levels (− 1, 0, + 1): OD600 (0.1, 0.5, 4.5); V (10, 14, 18);  
R (100, 200, 400); DNA (25, 50, 100); Mg (0.5, 1, 2) DOE2 levels (− 1, 0, + 1): OD600 (2, 4.5, 6); V (10, 14, 18);  
R (100, 200, 300); DNA (25, 50, 100); Mg (0.5, 1, 2)

Figure 1. Scatter plot for DOE1. The response values (Transformants/μ g DNA) at all levels of each factor 
are shown. The factors, growth phase, voltage, resistance, the amount of plasmid DNA used, and magnesium 
concentration are denoted by OD600, V (kV/cm), R (Ohms), DNA (ng), and [Mg+ + ] mM, respectively.
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updated levels (see Table 1, footnotes). The scatter plot in Fig. 3 (DOE2) shows the response values at all levels of 
each variable at the updated levels. Unexpectedly, the variables, OD600 and resistance (R), showed distinct scale 
differences, and [Mg+ + ] showed distinct location differences. Percent effect size variations caused by the high 
and low settings of these variables are summarized in the Fig. 4. The OD600 was 68%, V was 70%, R was (− 73%), 
DNA was (− 77%), and [Mg+ + ] had (− 95%). Additionally, Fave(all) =  6.95 ×  107 and Fave(0) =  6.89 ×  106. 
Fave(0) <  Fave(all) in all the optimized settings of the variables are localized in lower settings of [Mg+ + ], DNA, 
and R, and this is in contrast to V and OD600 variables. These results also suggested that the transformation effi-
ciency is confounded by interactions of each variable.

We used JMP software (screening designs module) to fit a model to the data and identify significant interac-
tions. Figure S1 shows a plot of actual versus predicted efficiency, a report of summary of fit, Analysis of Variance, 
and a prediction of desirability function. The model fits well as calculated by a high Rsquare, (R2 =  0.99) and 

Figure 2. Percent effect size for each factor in DOE1. The Effect size difference between high level and low 
settings are divided by the average effect size of the entire experiment and expressed as percent effect size.

Figure 3. Scatter plot for DOE2. The response values (Transformants/μ g DNA) at all levels of each factor 
are shown. The factors, growth phase, voltage, resistance, the amount of plasmid DNA used, and magnesium 
concentration are denoted by OD600, V (kV/cm), R (Ohms), DNA (ng), and [Mg+ + ] mM, respectively.

Figure 4. Percent effect size for each factor in DOE2. The Effect size difference between high level and low 
settings are divided by the average effect size of the entire experiment and expressed as percent effect size.
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(Prob >  F, p <  0.0001). Significance of the regression parameters is determined by the Lenth t- Ratio statistics, 
calculated as Estimate/PSE, where PSE is Lenth’s Pseudo-Standard Error (see JMP DOE guide for more informa-
tion on the description of the screening report: (https://www.jmp.com/support/downloads/pdf/jmp1001/doe_
guide.pdf). The screening analysis identified the variables that have the most significant two-way interactions: 
[Mg+ + ]*[Mg+ + ], [Mg+ + ]*DNA (ng), and DNA(ng)*V(kV). This result suggested that the effect of other 
two variables, OD600 and R (Ohms), are linear with transformation efficiency, that is, their effect is additive. The 
desirability function predicted parameter settings that maximizes transformation efficiency under the current 
model: when transformation is conducted under 100 Ohms, 18 V/cm, at late exponential phase (OD600 =  6.0) and 
with no magnesium ions present, then the predicted efficiency would be 4.44 ×  108 with the confidence intervals 
(4.3 ×  108 −  4.6 ×  108). Indeed, this prediction corresponds to the factor settings that resulted in maximum effi-
ciency we obtained in transformation runs (Supplemental Table S2).

Effect of growth phase (OD600) and validation of optimized conditions. The effect size of growth 
phase (OD600) in DOE1 and DOE2 showed that the factor OD600 is the most important variable when com-
pared to others, and model analysis indicated that this variable did not have a significant interaction with other 
parameters. Thus, we decided to investigate variation of the transformation only by growth phase. Interestingly, 
transformation efficiency at various phases of growth by the bacteria (Fig. 5) under the optimal conditions (the 
conditions that led to maximum efficiency and also predicted by the desirability function) showed that transfor-
mation efficiency significantly increased in stationary phase (24 hr point in Fig. 5; significance by Tukey HSD test; 
p <  0.001). This finding was unexpected as examples of high transformation efficiency of bacteria in stationary 
phase are highly uncommon. A recent report20 on the Gram negative species Bacteroides fragilis, demonstrated 
that the bacteria also had high transformation efficiency in stationary phase. Likewise, the Gram-positive species, 
Corynebacterium pseudotuberculosis and Lactobacillus lactis subsp. lactis were reported to have higher transfor-
mation efficiency in the stationary phase21–22. These two reports suggest that there are underlying mechanisms 
in common between both types of bacteria (Gram positive or negative) that play a role in high transforma-
tion efficiency in stationary phase. For example, membranes and/or the cell wall of both Gram-positive and 
Gram-negative bacteria maybe subjected to remodeling and/or turnover in response to nutrient limitation23, and 
this, in turn, may contribute to the increased efficiency of transformation in stationary phase. However, several 
other researchers12,18 reported that cell density in electroporation medium (Concentration Factor, CF) interact 
with the growth phase (OD) as OD*CF and, depending on the growth phase, this function evolves into an opti-
mal point after which the transformation efficiency rapidly drops. Throughout this work we resuspended cells 
in 1.5 mL glycerol before electroporation from 50 mL growth medium, at a fixed CF, 33.3X. Because we did not 
include CF variable in the experimental design we did not look at OD*CF interaction in our experiments; thus 
we cannot rule out that the increased efficiency we observed in stationary phase could be due to OD*CF reaching 
optimal level and that there may be an optimal OD*CF in exponential phase that may yield high level efficiency.

We validated the optimal conditions of electroporation by transforming four additional clinical strains of A. 
baumannii (Fig. 6), ATCC 17978, AB5711, AB5674, and AB4448. The transformation efficiency for these strains 
was as follows; 1.05 ×  109, 6.2 ×  107, 1.14 ×  108, and 1.11 ×  108, respectively, indicating that the optimized con-
ditions are valid and consistent among various strains of the species. The reference strain (ATCC 17978) showed 
significantly higher transformation efficiency than other clinical strains possibly due to the exposure and adapta-
tion to laboratory conditions over a long period of time.

In this study, we have demonstrated that the variables of electroporation to include: growth phase, voltage, 
resistance, and the amount of plasmid DNA as well as their two-way interactions significantly contribute to the 
transformation efficiency. Notably, magnesium, a divalent cation (Mg+ + ), displayed an antagonistic effect in 
transformations when overall efficiency was compared. This effect was more pronounced when growth phase 
reached late exponential phase, and it is in contrast to previous findings with respect to Gram-negative bacteria 
as divalent cations have been shown to enhance transformation efficiencies. For example, the presence of cati-
ons enhances transformation in E. coli, and the absence of divalent cations reduces E. coli transformations up to 

Figure 5. Transformation efficiency by growth phase. Variation of Transformation efficiency as a function 
of growth phase of Acinetobacter baumannii, AB5075. Error bars are obtained after replication of the 
transformation three times.

https://www.jmp.com/support/downloads/pdf/jmp1001/doe_guide.pdf
https://www.jmp.com/support/downloads/pdf/jmp1001/doe_guide.pdf
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500-fold24. While the exact reason that [Mg+ + ] decreases transformation efficiency remains unclear, it is known 
that [Mg+ + ] bridges are thought to stabilize lipopolysaccharide (LPS), which is thought to be a permeability 
barrier associated with the outer membranes of Gram-negative bacteria25. The higher concentrations of [Mg+ + ] 
may stabilize LPS of A. baumannii, which may limit transient pore formation during electroporation leading to 
reduced transformation efficiency, though further work needs to be done to test this hypothesis.

Although there may be other factors contributing to the transformation efficiency, such as restriction enzyme, 
temperature, washing buffer, concentration factor, and cell wall weakening agents12, the optimization of only four 
factors helped to increase the efficiency by four orders of magnitude with the highest transformation efficiency 
being 4.44 ×  108 transformant/μ g DNA. This level of transformation frequency is usually more than sufficient 
for most downstream applications such as allelic exchange to develop knock out mutations and construction of 
mutant libraries for high-throughput screening.

The data presented here demonstrated that three-level fractional factorial designs (including center points) 
are effective in helping to screen several variables by substantially decreasing the number of total runs relative to 
full factorial designs. Indeed, a well-designed experiment should be cost-effective and enables the researcher to 
optimize conditions in the fewest possible experimental runs. The replication of each run while increasing the 
experimental cost did enable us to analyze variations and error in the experiments as well as interactions.

To conclude, our results indicate that high efficiency transformation of A. baumannii strains are obtained in 
stationary growth phase (OD 6.0) at a concentration factor 33.3X, and the presence of magnesium reduces the 
efficiency. The electroporation protocol conditions presented here should facilitate the genetic manipulation of A. 
baumannii strains, including the generation of knockout mutants, side-directed mutagenesis, heterologous gene 
expression, and random insertion mutagenesis using transposons.

Materials and Methods
Chemicals, Bacterial Strains, and Plasmids. Bacterial strains and the plasmid used in this study are 
listed in Table 2. A. baumannii strain AB507526 and AB571127 are clinical isolates and were used to optimize elec-
troporation parameters. The A. baumannii clinical isolates AB4448 and AB5674, were obtained from Walter Reed 
Army Medical Center (WRAMC) and have been previously described and characterized28,29. The reference strain 
ATCC 17978 was obtained from the ATCC30. The E. coli strain DH10B was used to harbor plasmid pWH126631. 
Selection for pWH1266 in both E. coli and A. baumannii was maintained with 10 μ g/mL tetracycline (Sigma-
Aldrich, St. Louis, MO). lysogeny (LB) Lennox Broth and agar plates (Becton, Dickinson and Co., Sparks MD) 
were used to maintain and propagate all strains; Super Optimal Broth (SOC) media (Sigma-Aldrich, St. Louis, 
MO) was used to recover cells post-pulse. Plasmid was isolated with the Zyppy™  Plasmid Miniprep Kit (Zymo 
Research, Irvine, CA), and all plasmids were eluted in 10 mM Tris EDTA (TE) at pH 8.0 and adjusted to a con-
centration of 50 ng/μ L.

Figure 6. Strain-to-strain variation of transformation efficiency. Transformation efficiency of four strains 
of Acinetobacter baumannii under the optimized conditions. Error bars are obtained after replication of the 
transformation three times.

Strains and plasmid ID Characteristics References

AB5075 Clinical strain, Global 
Clonal Lineage I Zurawski et al. 2012; Jacobs et al. 2014

ATCC17978 Reference strain Baumann P, et al. 1968

AB5711 Clinical strainGlobal 
Clonal Lineage II Zurawski et al. 2012; McQueary et al. 2012; Jacobs et al. 2014

AB5674 Clinical strainGlobal 
Clonal Lineage I McQueary et al. 2012; Jacobs et al. 2014

AB4448 Clinical strainGlobal 
Clonal Lineage I McQueary et al. 2012; Jacobs et al. 2014

pWH1266 (ATCC®  77092™ ) TetR, ampR, 8900 bp Hunger et al. 1990

Table 2.  Bacterial strains and plasmid used in this study.
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Electroporation Procedure. A single colony of AB5075 from an LB plate was picked and grown overnight 
in 3 mL of LB media. The next day 0.5 mL of AB5075 media was inoculated into 50 mL of LB pre-warmed to 37 °C. 
Cells were grown at 37 °C with shaking at 250 rpm to the appropriate optical density (OD). Cells were pelleted at 
10,000 x g, then washed twice with 25 mL of 10% glycerol at room temperature, and resuspended in a final volume 
of 1.5 mL of 10% glycerol. Electroporations were conducted using 50 μ L of competent cells with 1 μ L of the appro-
priate concentration of plasmid in 1 mm electroporation cuvettes (Eppendorf, Hamburg, Germany). All electro-
porations were carried out using a Bio-Rad GenePulser Xcell (Bio-Rad, Hercules, CA). After pulsing, the cells 
were immediately recovered in 1 mL of SOC media prewarmed to 37 °C, and then allowed to incubate at 37 °C 
for 1 hour. To enumerate post-pulse survival and transformants, cells were plated via spiral plater (Autoplate; 
Advanced Instruments, Inc., Norwood, MA) onto pre-warmed LB agar plates or LB agar plates supplemented 
with 10 μ g/mL tetracycline, respectively. Plates were allowed to incubate overnight at 37 °C, and were then enu-
merated. Transformations were confirmed using plasmid preparations described above and enzymatic restriction 
enzyme digests performed with EcoRI, BamHI, etc. (Fermantas).

Analyses of experimental data. We used JMP Statistical discovery from SAS (Cary, NC) software trial 
version (v.11) to plot the data and run model analysis using analysis of variance approach. The effect of a factor is 
the difference between average response at high level setting of a factor and average response at low setting of the 
same factor and can be mathematically calculated using the simple equation below (Antony, 2009):

= (+ ) − (− ) ( )E Fav Favf 1 1 1

where Ef denotes the effect size of a factor, Fav (+ 1) is average effect size of the factor at high levels and Fav (− 1) 
is average effect size of the factor at low levels.
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