
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Simulation of incompressible viscous flows on distributed Octree grids

Permalink
https://escholarship.org/uc/item/5fq2p75m

Author
Guittet, Arthur

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5fq2p75m
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Simulation of incompressible viscous flows on

distributed Octree grids

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Mechanical Engineering

by

Arthur Guittet

Committee in charge:

Professor Frédéric Gibou, Chair
Professor Ted Bennett
Professor Sumita Pennathur
Professor Todd Squires

June 2016

The Dissertation of Arthur Guittet is approved.

Professor Ted Bennett

Professor Sumita Pennathur

Professor Todd Squires

Professor Frédéric Gibou, Committee Chair

March 2016

Simulation of incompressible viscous flows on distributed Octree grids

Copyright c© 2016

by

Arthur Guittet

iii

Curriculum Vitæ
Arthur Guittet

Education

2016 Ph.D. in Mechanical Engineering, University of California, Santa
Barbara.

2010 M.S. in Complex Adaptive Systems, Applied physics, Chalmers
Tekniska Högskola, Gothenburg, Sweden.

2010 M.S. in Computer Engineering, École Nationale Supérieure d’In-
formatique pour l’Industrie et l’Entreprise, Évry, France.

Publications

• Ásd́ıs Helgadóttir, Arthur Guittet and Frédéric Gibou: ”On Solving the Poisson
Equation with Discontinuities on Irregular Interfaces - GFM and VIM”, Computer
Methods in Applied Mechanics and Engineering, under review.

• Mohammad Mirzadeh, Arthur Guittet, Carsten Burstedde and Frédéric Gibou:
”Parallel Level-Set Methods on Adaptive Tree-Based Grids”, Journal of Computa-
tional Physics, under review.

• Arthur Guittet, Maxime Theillard and Frédéric Gibou: ”A stable projection
method for the incompressible Navier–Stokes equations on arbitrary geometries and
adaptive Quad/Octrees”, Journal of Computational Physics, 292 (2015), 215-238.

• Arthur Guittet, Mathieu Lepilliez, Sébastien Tanguy and Frédéric Gibou: ”Solv-
ing elliptic problems with discontinuities on irregular domains – the Voronoi Inter-
face Method”, Journal of Computational Physics, 298 (2015), 747-765.

• Emmanuel Brun, Arthur Guittet and Frédéric Gibou: ”A local level-set method
using a hash table data structure”, Journal of Computational Physics, 31 (2012),
2528–2536.

• Pierre Dossantos-Uzarralde and Arthur Guittet: ”A Polynomial Chaos Approach
for Nuclear Data Uncertainties Evaluations”, Nuclear Data Sheets, 109 (2008), 2894-
2899.

Conference presentations

• Arthur Guittet, Maxime Theillard and Frédéric Gibou: ”A Stable Projection
Method for the Incompressible Navier-Stokes Equations on Arbitrary Geometries
and Adaptive Quad/oc-Trees”, SIAM Conference on Computational Science and
Engineering (2015), Salt Lake City, Utah.

• Arthur Guittet, Maxime Theillard and Frédéric Gibou: ”An unconditionally sta-
ble Navier-Stokes solver on Adaptive Cartesian grids”, So Cal Fluids IX (2015), San
Diego, California.

iv

Abstract

Simulation of incompressible viscous flows on distributed Octree grids

by

Arthur Guittet

This dissertation focuses on numerical simulation methods for continuous problems

with irregular interfaces. A common feature of these types of systems is the locality

of the physical phenomena, suggesting the use of adaptive meshes to better focus the

computational effort, and the complexity inherent to representing a moving irregular

interface. We address these challenges by using the implicit framework provided by the

Level-Set method and implemented on adaptive Quadtree (in two spatial dimensions)

and Octree (in three spatial dimensions) grids. This work is composed of two sections.

In the first half, we present the numerical tools for the study of incompressible

monophasic viscous flows. After a study of an alternative grid storage structure to the

Quad/Oc-tree data structure based on hash tables, we introduce the extension of the

level-set method to massively parallel forests of Octrees. We then detail the numerical

scheme developed to attain second order accuracy on non-graded Quad/Oc-tree grids

and demonstrate the validity and robustness of the resulting solver. Finally, we combine

the fluid solver and the parallel framework together and illustrate the potential of the

approach.

The second half of this dissertation presents the Voronoi Interface Method (VIM), a

new method for solving elliptic systems with discontinuities on irregular interfaces such

as the ones encountered when simulating viscous multiphase flows. The VIM relies on

a Voronoi mesh built on an underlying Cartesian grid and is compact and second order

accurate while preserving the symmetry and positiveness of the resulting linear system.

v

We then compare the VIM with the popular Ghost Fluid Method before adapting it to

the simulation of the problem of the electropermeabilization of cells.

vi

Contents

Curriculum Vitae iv

Abstract v

Permissions and Attributions 1

Introduction 2

1 Hash table structures for sparse grids storage 6
1.1 Introduction . 6
1.2 The Hash Table structure . 8
1.3 Implementation of the local level-set method 10
1.4 Validation . 15
1.5 Summary . 23

2 Parallel Level-Set methods on adaptive tree-based grids 25
2.1 Introduction . 25
2.2 The level-set method . 31
2.3 Parallel algorithms . 32
2.4 Scaling results . 48
2.5 Application to the Stefan problem . 59
2.6 Summary . 66

3 Solving the incompressible Navier-Stokes equations on Quad/Oc-tree
grids 68
3.1 Introduction . 68
3.2 The numerical method . 72
3.3 Discretization and stability on the quadtree data structure 75
3.4 Numerical examples . 96
3.5 Summary . 114

vii

4 Extension of the incompressible fluid solver to parallel environments 118
4.1 Introduction . 118
4.2 The computational method . 121
4.3 Parallel algorithms . 130
4.4 Scalability . 134
4.5 Numerical validation . 140
4.6 Summary . 148

5 The Voronoi Interface Method for discontinuous elliptic problems 149
5.1 Introduction . 149
5.2 The geometrical tools . 154
5.3 Solving a Poisson equation on Voronoi diagrams 159
5.4 Numerical validation on uniform meshes 162
5.5 Extension to adaptive meshes . 182
5.6 Summary . 186

6 Comparison of the Voronoi Interface Method with the Ghost Fluid
Method 188
6.1 Introduction . 188
6.2 Governing Equations and Numerical Methods 190
6.3 Numerical Experiments . 195
6.4 Summary . 201

7 Application of the Voronoi Interface Method to the electropermeabi-
lization problem 203
7.1 Introduction . 203
7.2 Electrical model for a single cell . 205
7.3 Description of the computational method 209
7.4 Numerical results . 215
7.5 Computational study of the permeabilization of three dimensional cell arrays224
7.6 Summary . 231

Bibliography 233

viii

Permissions and Attributions

• The content of chapter 1 is the result of a collaboration with Emmanuel Brun

and Frédéric Gibou, and has previously appeared in the Journal of Computa-

tional Physics as “A local level-set method using a hash-table data structure” [1].

It is reproduced here with the permission of the publisher under license number

3811670078310.

• The content of chapter 3 is the result of a collaboration with Maxime Theillard

and Frédéric Gibou, and has previously appeared in the Journal of Computational

Physics as “A stable projection method for the incompressible Navier–Stokes equa-

tions on arbitrary geometries and adaptive Quad/Octrees” [2]. It is reproduced

here with the permission of the publisher under license number 3811670366101.

• The content of chapter 5 is the result of a collaboration with Mathieu Lepilliez,

Sébastien Tanguy and Frédéric Gibou, and has previously appeared in the Jour-

nal of Computational Physics as “Solving elliptic problems with discontinuities on

irregular domains - the Voronoi Interface Method” [3]. It is reproduced here with

the permission of the publisher under license number 3811670567834.

1

Introduction

The simulation of fluid flows has always been at the heart of computer science, and

the early computers were developed with the goal of predicting the motion of fluids.

The understanding of the interaction between fluids and complex irregular structures is

critical to many applications, from aerodynamics to hydrodynamics and microfluidics,

through biological flows and polymer dynamics.

A common difficulty to all these problems is the necessity to solve the equations

of fluid dynamics in the presence of a non-trivial geometry. Two main categories of

methods exist to capture irregular boundaries, the explicit methods (body-fitted) that

capture the interface by adapting the computational mesh to the geometry, and the

implicit methods. The body-fitted methods rely on a mesh with points lying on the

irregular interface. This makes the implementation of boundary conditions trivial and

lead to very elegant and effective finite elements formulations to solve the fluid dynamic

equations. However, the quality of the mesh greatly impacts that of the solution and

renders the problem of building an adequate mesh very expensive and complex. On

the other hand, implicit methods can be implemented on regular Cartesian mesh, thus

eliminating the complexity of generating a mesh of good quality, with the cost of making

the implementation of boundary conditions more complex.

Among the various implicit representation that exist, we choose the level-set method

framework to represent the irregular boundaries, a powerful tool developed by Osher

2

CONTENTS

and Sethian that captures a moving front as the zero contour of a function existing in

the entire computational domain. This framework naturally enables complex topological

changes and arbitrary deformations and provides a sharp representation of the interface.

Furthermore, the recent development in the level-set community have produced efficient

methods for implementing complex boundary conditions on the irregular interface.

A traditional weakness of the level-set method is its so-called mass loss. The equations

governing the evolution of the level-set function must be discretized in order to be solved

numerically, and the numerical dissipation generated results in the domain enclosed by

the zero-level shrinking. A family of methods have been developed to address this issue,

such as the particle level-set method and the block grid structures. In chapter 1, we pro-

pose and study a new method based on hash tables to store only the part of the Cartesian

mesh located close to the interface, thus reducing the memory requirements while con-

serving the fast O(1) access to the data expected from a Cartesian mesh. However, the

performances of this new method do not match that of the Quad/Oc-tree data structure

which uses a hierarchically stored computational mesh. In this context, the fast access to

the mesh data is preserved and the construction of the mesh is trivial. Furthermore, the

adaptivity inherent to this structure makes it possible to focus the computational effort

close to the irregular boundary, alleviating the mass loss issue, as well as in the area of

the computational domain where the physical structures are located, for instance in a

boundary layer or in high vorticity regions.

If using an adaptive Cartesian mesh like the Quad/Oc-tree data structure helps focus-

ing the computational effort where it is most needed, it is not sufficient to tackle complex

problems in three spatial dimensions. We therefore prolong the level-set method to par-

allel forests of Octrees in chapter 2. We use the p4est library, a c library that provides

the tools to create, partition and balance a forest of Octrees, as well as handle a layer of

ghost points, and that has been demonstrated to scale on large systems.

3

CONTENTS

This thesis focuses on incompressible viscous fluids, a category of fluid flows governed

by the incompressible Navier-Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u, (0.1)

∇ · u = 0, (0.2)

where µ is the viscosity of the fluid, ρ its density, p its pressure and u is the velocity field.

The standard approach to simulate this kind of flows is the projection method introduced

by Chorin. The projection method solves the momentum equation (0.1) neglecting the

pressure term to obtain an intermediate velocity field. This field is then projected onto

the divergence free subspace by solving the continuity equation (0.2). This method was

introduced by Chorin on uniform grids using the Marker-And-Cell (MAC) data layout,

where the pressure is locate at the center of the cells and the components of the velocity

field are locate at the center of the faces. The extension of the projection method with

the MAC layout to Quad/Oc-tree data structures is not trivial and is detailed in chapter

3. We then combine this new fluid solver with the massively parallel implementation of

the level-set method in chapter 4 and analyze the performances and the potential of the

resulting solver.

The second part of this thesis focuses on a different aspect of fluid flow solvers that

is the difficulty generated by the discontinuity encountered at the interface between two

fluids. The equations governing multiphase flows are still the incompressible Navier-

Stokes equations, but the boundary condition at the interface between the two fluids is

now that the stress tensor and the velocity field must be continuous. In practice, this

means that the simulation of multiphase flows require a solver able to handle elliptic

systems with sharp discontinuities in the solution and its flux. This non-trivial problem

is an active area of research and we propose a novel approach based on Voronoi partitions

4

CONTENTS

in chapter 5. This compact method leads to a symmetric positive definite linear system

and is second order accurate. We then compare its performance to the widely used Ghost

Fluid Method in chapter 6 before illustrating its potential by applying it to the complex

non-linear problem of the electropermeabilization of clusters of cells in chapter 7.

5

Chapter 1

Hash table structures for sparse
grids storage

1.1 Introduction

The level-set method was originally introduced by Osher and Sethian [4] and has

proven to be efficient for tracking evolving interfaces in numerous cases [5, 6].It relies on

the simple idea of embedding a problem in a higher dimensional space and considering

the interface as the zero level-set of a function, called the level-set function, in this space.

This modeling procedure allows sophisticated behaviors of the interface, such as cusps,

sharp corners and topological changes. Applications of the level-set method can be found

in various domains such as fluid mechanics, electrodynamics and solid mechanics.

The well-known drawback of this method is the so-called mass loss due to numerical

approximations. In practice, the level-set function is stored by sampling its value on a

mesh. The values of interest are located close to the interface, where high accuracy is

desirable in order to locate correctly the interface as well as its geometrical quantities.

Therefore, computations needed in the level-set method are only needed locally to the

interface and methods providing this capability are dubbed local level-set methods.

Various approaches exist: Adalsteinsson and Sethian [7] suggested to perform the

6

Hash table structures for sparse grids storage Chapter 1

calculations for the level-set function evolution solely in a tube located close to the

interface. The tube is updated every given number of steps so that it stays located close

to the interface. The mesh still covers the entire domain so there is no advantages in terms

of memory, but only a fraction of the nodes are processed thus improving significantly

the computational time. The same idea of building a tubular grid around the interface

has been exploited by Nielsen and Muset [8]. They developed a powerful but intricate

data structure to keep track of the points located in the tubular area only. Another

approach is to use an octree data structure [9, 10] as for example in the work of Strain

[11] Popinet [12], Losasso et al. [13] and Min and Gibou [14]. This approach consists

of meshing the domain using an octree data structure, which allows to refine the mesh

more accurately where the interface lies. Octree grids are very efficient, especially in the

case where the grids can be ungraded, but they still suffer from slow lookup performance:

data access scales as O(log(n)) in the case of a grid with n nodes. Octree data structures

also consume some extra memory to store relevant information needed to represent the

structure.

We present an alternative method for building adaptive meshes to track interfaces

based on the hash table structure, which we will refer to as local grid. This data structure,

widespread in computer science, allows a very fast access to elements, up to an O(1) access

for some implementations, instead of O(log(n)) for octrees, and provides an efficient

strategy for storing an implicit surface in term of memory usage. The literature abounds

with examples of usage of hash table data structures [15, 16]. In this paper, we present

an implementation of the level-set method using a hash table data structure and discuss

the benefits and the drawbacks of the method.

7

Hash table structures for sparse grids storage Chapter 1

1.2 The Hash Table structure

A hash table, or hash map, is a type of data structure often used in computer science.

The goal of such structures is to provide efficient access to data, and they often outper-

forms other classical structures like search trees or lookup tables. It relies on three sets

identified as the keys, the buckets in which the values associated to the keys are stored,

and the hash function.

The keys can be any type of data, and in our case it will be a two dimensional set

of indices (i, j) referencing the grid points in a band around the interface. A bucket is

associated to each key, which in practice is an index in an array. The hash function is

the crux of the method. Its role is to associate a value to each key in the best possible

way, as illustrated in figure 1.1, thus providing an access to the values corresponding to

a key in O(1).

There is no general hash function that would give an optimal solution to every prob-

lem, and finding an efficient hash function can be a challenging task. This is the bottle-

neck of the structure, and there is no general method for designing this function. Ideally,

the hash function should match each key to a single bucket, in which case it is called a

perfect hash function. If this ideal function exists, every element can be accessed in a

single lookup. In practice, such a function may be impossible to design, and different

keys may be associated to the same bucket, creating so-called hash collisions. There are

various strategies for dealing with hash collisions, which can be grouped into two classes:

closed hashing and open hashing.

The first strategy to deal with collisions is closed hashing (also called open addressing),

which consists in finding another available bucket in the hash table. Consider the case

where the key (i, j−2) is associated with the bucket k, and we want to associate a bucket

to the key (i+1, j−1) but the hash function produces the already used bucket k. In this

8

Hash table structures for sparse grids storage Chapter 1

(1)

(2)

(k-1)

(k)

(l-1)

(l)

(n)

(i+2,j+1)

(i+1,j-1)

(i,j-2)

(i-1,j+2)

f(i+2,j+1)

f(i,j-2)

f(i+1,j-1)

f(i-1,j+2)

Local Grid Array

Figure 1.1: Illustration of the hash table data structure. On the left is the set of keys to
be associated with the set of values (on the right) using the hash function.

case, alternate buckets need to be probed, for example with a linear probing sequence,

until a free bucket is found. This procedure is illustrated in figure 1.2. Various closed

hashing methods can be found in the literature, a more detailed description can be found

in [17].

(1)

(2)

(k-1)

(k)

(n)

(i+2,j+1)

(i+1,j-1)

(i,j-2)

(i-1,j+2)

(i+1,j-1) ; f(i+1,j-1)

Local Grid Array

(i-1,j+2) ; f(i-1,j+2)

(i,j-2) ; f(i,j-2)

(i+2,j+1) ; f(i+2,j+1)

(k+1)

(k+2)

Figure 1.2: Example of a hash collision treated with a closed hashing method using a
linear probing sequence.

With the second strategy, called open hashing or closed addressing, each index in

the array is pointing to a data structure in which the values are stored. This external

structure can be any organized structure, such as a tree or an array. We will use linked

lists, in which case one talks of separate chaining or direct chaining. An illustration of

9

Hash table structures for sparse grids storage Chapter 1

the separate chaining strategy can be found in figure 1.3. If we want to store a new value

associated to the key (i−1, j+2) and the hashing function gives the already used bucket

l for this key, we just need to add a new element to the linked list stored in bucket l.

Note that accessing elements is, in general, no longer done with a single operation. Once

the bucket associated to a key is given by the hash function, the linked list it contains

needs to be browsed until the right member is found. The number of hash collisions, and

hence of the lookup time, depends on the efficiency of the hash function. In the worst

case scenario (i.e. using an ill-behaved hash function), a lookup might be done in O(n),

but with a reasonably good function the average lookup time remains of the order of

O(1).

(1)

(2)

(k-1)

(k)

(l-1)

(n)

(i+2,j+1)

(i+1,j-1)

(i,j-2)

(i-1,j+2)

(i+1,j-1) ; f(i+1,j-1)

Local Grid Array of linked lists

(l)
(i-1,j+2) ; f(i-1,j+2)

(i,j-2) ; f(i,j-2)

(i+2,j+1) ; f(i+2,j+1)

Figure 1.3: Configuration of the hash table structure with an open hashing strategy.
Each bucket is pointing to a linked list in which the desired information is stored.

1.3 Implementation of the local level-set method

1.3.1 Presentation of the level-set method

Our goal is to store the local grid on which the level-set function is defined in a hash

table data structure. The main idea behind the level-set method is to describe an interface

10

Hash table structures for sparse grids storage Chapter 1

Γ ∈ Rn as the zero contour of a higher dimensional function φ ∈ Rn. Thus, in two spatial

dimensions, a curve is described as Γ = {(x, y) : φ(x, y) = 0}. The interior region is

defined as Ω− = {x : φ(x) < 0}, and the exterior region as Ω+ = {x : φ(x) > 0}. The

interface Γ is evolved in time by evolving the level-set function according to the level-set

equation:

∂φ

∂t
+ V · ∇φ = 0, (1.1)

where V is the velocity field.

1.3.2 The reinitialization equation

The level-set method has been proven to be more robust and of higher accuracy when

using the signed distance function to the interface as the level-set function. In order to

maintained φ as a signed distance function, the following reinitialization equation [18]

can be solved for a few iterations:

φτ + sgn(φ0)(|∇φ| − 1) = 0, (1.2)

where τ represents a fictitious time and sgn(φ0) denotes the signum of φ0. This algorithm

thus reinitializes an arbitrary level-set function φ0 into a signed distance function. The

solution of this Hamilton-Jacobi equation produces shocks and rarefactions that can

be captured using a combination of a Godunov scheme in space and a Total Variation

Diminishing second-order Runge Kutta (TVD-RK2) scheme in time (see Shu and Osher

[19], Osher and Sethian [4], and Min and Gibou [14]). In this paper, we use the following

discretization:

dφ

d τ
+ sgn(φ0)[HG(D+

x φ,D
−
x φ,D

+
y φ,D

−
y φ)− 1] = 0, (1.3)

11

Hash table structures for sparse grids storage Chapter 1

where HG is the numerical Godunov Hamiltonian defined as:

HG(a, b, c, d) =


√

max(|a+|2, |b−|2) + max(|c+|2, |d−|2) if sgn(φ0) ≤ 0,√
max(|a−|2, |b+|2) + max(|c−|2, |d+|2) if sgn(φ0) > 0,

with a+ = max(a, 0) and a− = min(a, 0). The one-sided derivatives D±x φ and D±y φ are

discretized using second-order accurate one-sided finite differences:

D+
x φi,j =

φi+1,j − φi,j
∆x

− ∆x

2
minmod(Dxxφi,j, Dxxφi+1,j),

and

D−x φi,j =
φi,j − φi−1,j

∆x
− ∆x

2
minmod(Dxxφi,j, Dxxφi−1,j),

with Dxxφ the second-order derivative of φ in the x-direction, computed with a central-

difference discretization. The semi-discrete equation (1.3) is discretized in time with the

TVD-RK2 scheme of Shu and Osher [19]:

φ̃n+1 − φn
∆τ

+ sgn(φ0)[HG(D+
x φ

n, D−x φ
n, D+

y φ
n, D−y φ

n)− 1] = 0,

φ̃n+2 − φ̃n+1

∆τ
+ sgn(φ0)[HG(D+

x φ̃
n+1, D−x φ̃

n+1, D+
y φ̃

n+1, D−y φ̃
n+1)− 1] = 0,

and then we define φn+1 by simple averaging: φn+1 = (φn + φ̃n+2)/2.

The reinitialization is required not to change the original location of the interface.

This is enforced following the idea of Russo and Smereka [20] of including the interface

location, given by φ0, in the stencils of the one-sided derivatives, and its modifications

from Min and Gibou [14].

In the case of our local grid, nodes on the outer edge of the band are missing at

least one immediate neighbor, which poses problems when approximating the different

12

Hash table structures for sparse grids storage Chapter 1

derivatives needed in the evolution and the reinitialization of the level-set. For such nodes,

we choose to construct the missing neighbors using a linear extrapolation of the known

values of φ using a fast marching method approach [21, 22]. This could be improved

upon by using a higher-order extrapolation.

1.3.3 Evolving the level-set function with a Semi-Lagrangian

scheme

If the velocity field is externally generated, i.e. it doesn’t depend on the level-set, the

level-set equation (1.1) is linear and semi-Lagrangian schemes (SLS) can be used. These

schemes are unconditionally stable and thus avoid the standard CFL condition stating

that the interface cannot move by more than one grid cell at every time step, in our

case ∆xsmallest, the smallest space step in the computational domain. The idea behind

SLS is to reconstruct the trajectory of each individual particle of a system by starting

from a point x and integrating numerically the equation governing its motion along its

characteristic curves, thus tracing the particle back to its departure point xd.

In this article, we use a second-order accurate semi-Lagrangian method to solve the

level-set equation (1.1) with the velocity field V externally generated. From the fact that

solutions to hyperbolic problems are constant along characteristic curve, we have that

for any grid point xn+1, φn+1(xn+1) = φn(xd), with φk the level-set function at time k.

We use the second-order accurate mid-point method for locating the departure point, as

explained in [23, 14]:

x̂ = xn+1 − ∆t

2
· V n(xn+1),

xd = xn+1 −∆t · V n+ 1
2 (x̂).

13

Hash table structures for sparse grids storage Chapter 1

We define the velocity V n+ 1
2 at the mid-time step tn+ 1

2 linearly from the previous velocities

as V n+ 1
2 = 3

2
V n − 1

2
V n−1. Since the points xd and x̂ are not grid points in general,

the associated quantities φn(xd) and V n+ 1
2 (x̂) are approximated using an interpolation

procedure. In this work, we take the non-oscillatory interpolation procedure of [14].

1.3.4 Implementation of the hash table structure

We describe here the two key steps for the implementation of a cartesian grid on a

hash table data structure, namely the construction of the local grid and its advection.

Building the adaptive grid

The adaptive grid stored in the hash table data structure is built in two steps: we first

construct a full non-graded adaptive cartesian mesh before restraining it to the regions

of interest and storing a refinement of those regions using the hash table data structure.

We use a quadtree structure because we will compare the performance of the local grid

method with a quadtree implementation [14], but in practice a standard uniform grid

could serve the purpose of ‘initializing’ the grid.

The local mesh is then constructed using the most refined cells of the quadtree mesh.

Those cells are further refined, the new nodes values being obtained by interpolation

of the quadtree nodes values, and the corresponding nodes are stored in a hash table

data structure. Since the initial number of nodes is given, we can build the hash table

structure together with its hash function in an efficient way. We chose the size of the

hash table s to be the smallest prime number larger than the number of nodes to be

stored, and the hash function H to be

H(n) = in · p1 + jn · p2 (mod s),

14

Hash table structures for sparse grids storage Chapter 1

where n is the node index, in and jn are the grid coordinates of the node and p1 and

p2 are two large prime numbers. We choose to define the size s of the hash table in

the beginning of the algorithm and we do not modify it afterwards. Since the number

of nodes can exceed s after the interface evolves, we handle collisions in the hash table

with the direct chaining method presented in section 1.2. Note that closed hashing would

require the table to be resized when the number of nodes becomes larger than s.

Advecting the local grid

Constructing the local grid is computationally expensive because a reference mesh is

needed, but the strength of the approach, in addition to the reduced number of points to

handle, comes from the advection step that is a rather inexpensive and straightforward

procedure. With structures like quadtrees, one has to rebuild the structure at each time

step in such a way as to enforce that each node has known neighbors, a costly process.

In the case of a local grid, there is no need to know the relation between neighboring

nodes since the access to any node is in O(1). Therefore, grid nodes can be added or

removed very simply and efficiently. The procedure for adapting the local grid to the

changes undergone by the interface after advecting the level-set function φ is described

in algorithm 1.

1.4 Validation

In order to validate our implementation of the local grid on a hash table data struc-

ture, we perform typical tests in two spatial dimensions. The local grid is located close

to the interface forming a tube of width 5∆x on each side of the interface. The advection

is done using the Semi-Lagrangian scheme in a band of 2∆x around the interface, and

we use a time step ∆t = ∆x. The information is then propagated to the rest of the tube

15

Hash table structures for sparse grids storage Chapter 1

1: for all node n in the local grid do
2: if |φ(n)| > threshold then
3: remove node n from the local grid
4: else
5: for all neighbor ngbd not in the local grid do
6: compute φ(ngbd) by using the fast marching approach to solve |∇φ| = 1
7: if |φ(ngbd)| ≤ threshold then
8: add ngbd to the local grid with the value φ(ngbd)
9: end if
10: end for
11: end if
12: end for

Algorithm 1: Algorithm for the advection of the local grid

with a fast marching algorithm. The tube is required to be larger than 2∆x to allow

second order accuracy.

1.4.1 Rotation of a disk

The first test is the rotation of a disk. We consider a domain Ω = [−1.5, 1.5]2 and

a disk of radius R = 0.3 centered initially at (0, 0.5). We rotate this disk under the

following rigid-body velocity field:

u(x, y) = −y,

v(x, y) = x,

and rotate the disk until the final time t = 2π is reached, i.e. we perform one complete

revolution. The procedure is illustrated in figure 1.4. The accuracy of the procedure,

given in table 1.1, is monitored using the error close to the interface as well as the mass

loss, which is a good measure of accuracy for the level-set method. The comparison with

the quadtree data structure is developed in table 1.2.

The error is computed close to the interface only, in a band of 1.2∆x with ∆x the

16

Hash table structures for sparse grids storage Chapter 1

Figure 1.4: Snapshots illustrating a full revolution of a disk using a local grid of equivalent
uniform resolution 256× 256 stored in a hash table data structure. The disk is initially
centered at (0, 0.5) and has a radius R = 0.3. The snapshots are taken, from left to
right, at time t = 0, t = 2π/4, t = 2π/7 and t = 2π. The level-set is evolved using the
Semi-Lagrangian approach.

Res. Time (s) L∞ error of φ Rate L1 error of φ Rate Mass loss (%) Rate
642 5 3.21× 10−2 2.70× 10−2 17.15
1282 13 8.20× 10−3 1.97 6.65× 10−3 2.02 4.40 1.96
2562 38 2.36× 10−3 1.80 1.74× 10−3 1.93 1.16 1.92
5122 139 7.91× 10−4 1.58 4.65× 10−4 1.90 0.31 1.90
10242 530 3.46× 10−4 1.19 1.38× 10−4 1.75 0.092 1.75

Table 1.1: Accuracy of the local grid stored in a hash table structure for the revolution of a
disk. The disk is initially centered on (0, 0.5) and the computation domain is [−1.5, 1.5]2.
The disk is evolved with the velocity field (u, v) = (−y, x) until the time t = 2π. In this
article, a ‘resolution’ of r2 defines the grid size equivalent to a r × r discretization on
uniform grid.

17

Hash table structures for sparse grids storage Chapter 1

Local Grid
Res. # of nodes # of slots # of empty slots Average occupied Mem. (Kio)

slots load
642 404 409 194 1.88 18.94
1282 806 823 229 1.35 37.78
2562 1,606 1609 588 1.57 75.28
5122 3,226 3301 1239 1.56 151.22
10242 6,432 6719 2223 1.43 301.50

Quadtree
Res. # of nodes # of slots # of empty slots Average occupied Mem. (Kio)

slots load
642 309 NA NA NA 17.57
1282 609 NA NA NA 35.24
2562 1,237 NA NA NA 72.19
5122 2,509 NA NA NA 146.91
10242 5,001 NA NA NA 293.15

Table 1.2: Resources used by the present local grid algorithm in comparison with the
quadtree data structure for the disk revolution test. The disk is initially centered on
(0, 0.5) and the computation domain is [−1.5, 1.5]2. The disk is evolved with the velocity
field (u, v) = (−y, x) until the time t = 2π. The number of nodes used is of the same
order for both methods, and so is the memory required. Note that around 35% slots are
empty for the local grid scheme, and a better hash function would improve those results.
But according to [17] a total load of around 65% is close to the optimal case of 80%.

18

Hash table structures for sparse grids storage Chapter 1

resolution of the grid, since those points define the interface location, which we are

interested in. The loss of mass is given by |Vinitial−Vfinal|/Vinitial, with Vt the area inside

the interface (i.e. for φ < 0) at time t. In practice, Vt is calculated by extending the

local grid to the whole negative φ region, i.e. to the interior of the domain, and summing

the area of the negative region contained in each cell. The area of the negative region

contained in grid cells adjacent to the interface is computed as described by Min and

Gibou in [24] The grid resolution corresponds to the number of points on a uniform grid

with the same ∆x.

In terms of memory, the hash table data structure is expected to be more efficient

than the quadtree structure. However, for the local grid to provide accurate results, the

band around the interface needs to be wide enough as to minimize the error incurred

by linearly extrapolated nodes on the edge of the band. Also a smaller band limits the

time step we can take in a semi-Lagrangian framework since the departure point could

be outside the band. We found that at least 5∆x on both sides of the interface are

needed, while a band of only 3∆x are needed in the case of the quadtree. Overall, this

restriction can lead to structures that have a size equivalent to or higher than a quadtree

data structure. The hash function we use provides an average access to the nodes in

O(1), since the average load of the hash table occupied slots is close to one. The heaviest

load observed is six nodes for a single slot.

1.4.2 Motion under a vortex velocity field

The second test, based on a proposition by [25], is more challenging as the interface

thins out under the velocity field: We consider a domain Ω = [0, 1]2 and a disk of radius

R = 0.15 centered initially at (0.5, 0.75). We deform the level-set under the divergence

19

Hash table structures for sparse grids storage Chapter 1

free velocity field:

u(x, y) = − sin2(πx) sin(2πy),

v(x, y) = sin2(πy) sin(2πx).

This deformation is illustrated in figure 1.5, and the numerical results are collected in

tables 1.3 and 1.4. As can be observed, and as expected from the results obtained in [14],

the order of convergence is not at good as for the case of the rotation for coarse grids.

The method is of order close to two for the mass loss and the L1 error, and of order

slightly more than 1 for the L∞ error. As explained by Min and Gibou, and reported in

[26], this is due to the fact that part of the geometry is under resolved as it deforms. In

particular, part of the tail of the interface will always be under-resolved, no matter how

high the resolution.

Figure 1.5: Illustration of the deformation of a disk under a vortex velocity field using a
local grid of equivalent uniform resolution 256×256 stored in a hash table data structure.
The disk is evolved forward until time t = 1 and then backward to its initial position.
The snapshots have been taken from left to right at respective times t = 0, t = 1 = 1

2
tfinal

and t = tfinal. The scheme used to evolved the level-set is based on the Semi-Lagrangian
approach.

The disk can be deformed further under the velocity field, and the largest the defor-

mation is the hardest it is to recover the initial disk shape. This is precisely a situation

20

Hash table structures for sparse grids storage Chapter 1

Res. Time (s) L∞ error of φ Rate L1 error of φ Rate Mass loss (%) Rate
642 8 3.74× 10−2 1.43× 10−2 16.34
1282 22 1.81× 10−2 1.05 4.74× 10−3 1.59 5.58 1.55
2562 76 8.53× 10−3 1.09 1.49× 10−3 1.67 1.84 1.60
5122 591 3.98× 10−3 1.10 4.72× 10−4 1.66 0.61 1.59
10242 2,509 1.80× 10−3 1.14 1.61× 10−4 1.55 0.20 1.61

Table 1.3: Accuracy of the local grid stored in a hash table structure for the evolution
of a disk in a vortex velocity field (u, v) = (− sin2(πx) sin(2πy), sin2(πy) sin(2πx)). The
disk is initially centered on (0.5, 0.75) and the computation domain is [0, 1]2. The disk
is evolved until the time t = 1 and is then evolved back to its initial state with the
inverse velocity field. In this article, ”resolution” means the number of grid points for
an uniform grid of the same accuracy. The L∞ and L1 errors of φ are computed on the
nodes adjacent to the interface. As one can observe, the method is of order close to two.

642 1282 2562 5122 10242

Local

Number of slots 1103 2713 6427 13,577 28,111
Min average load 1.00 1.00 1.00 1.05 1.02
Max average load 1.00 1.03 1.05 1.20 1.19
Min empty slots 354 798 2086 4,654 1,305
Max empty slots 657 1722 4341 9,333 6,575

Min number of nodes 504 1,141 2,367 4,793 9,630
Max number of nodes 948 2,690 6,376 13,478 27,563

Min memory usage 18.36 53.48 110.95 224.67 451.25
Max memory usage 44.44 126.09 298.88 631.78 1,292.02

Quadtree

Min number of nodes 283 588 1,206 2,426 4,844
Max number of nodes 484 1,143 2,744 6,177 13,147

Min memory usage 16.34 33.84 70.20 141.52 282.78
Max memory usage 28.19 68.26 164.14 366.36 776.65

Table 1.4: Resources used by the algorithm in comparison with the quadtree data struc-
ture for the evolution of a disk in a vortex velocity field. The disk is initially centered
on (0.5, 0.75) and the computation domain is [0, 1]2. The disk is evolved until the time
t = 1 and is then evolved back to its initial state. The minimum and maximum average
loads of the occupied slots over the whole procedure are monitored, together with the
number of nodes and the memory usage. The number of nodes used by the local grid is
approximately twice the number of nodes used by the quadtree, leading to a structure
that requires twice more memory.

21

Hash table structures for sparse grids storage Chapter 1

Figure 1.6: Deformation of a disk under the vortex velocity field using a local grid of
equivalent uniform resolution 8192 × 8192. The disk (on the left) is deformed until the
time t = 6 (second picture), then the velocity field is inverted and the disk is evolved
to its initial shape (right picture). The mass loss is 0.20%, and the maximum memory
usage is 51 Mio.

where high resolution implementations can provide accurate results. Figure 1.6 illustrates

the deformation of the disk until the time t = 6, before being rewinded back to its initial

state. As can be observed, the final result is close to the initial disk. We find a mass loss

of 0.2%, which is quite small for such an extreme case of deformation. Therefore, the

local grid we implemented succeeds in capturing the general features of this important

deformation.

1.4.3 Case of shock and rarefaction solutions

In the case where the velocity V in equation (1.1) depends on the level-set function

φ, equation (1.1) admits nonlinear solutions related to shock and rarefaction waves in

conservation laws. In order to illustrate the ability of our framework to capture such

solutions, we consider the case of a unit square moving under a normal velocity Vn = ±n,

where n is the outward normal to the interface. The level-set equation (1.1) is solved

using a Godunov scheme similar to the one presented for the reinitialization procedure

in section 1.3.2. Figure 1.7 depicts the correct shock and rarefaction solutions.

22

Hash table structures for sparse grids storage Chapter 1

Figure 1.7: Deformation of a square under a normal velocity to the interface. The original
square, on the left, is contracted in the middle, and the same original square is expanded
on the right. This illustrates the ability of our framework to capture shock and rarefaction
solutions.

1.5 Summary

We have presented a successful implementation of the level-set method on a hash table

data structure. It is important to mention that the development of the code for the hash

table based level-set method, with its linear organization, was easier and more straight-

forward than the implementation of the quadtree data structure, which is recursive and

intricate. We note that the hash function we provide produces satisfactory results and

enables a meaningful comparison of the method’s performances with the quadtree data

structure. We also note that the extrapolation procedure to define missing neighbors is

only first-order accurate, which impacts the overall accuracy. The analysis of the numer-

ical tests shows that even if only the nodes close to the interface are stored, the method is

less efficient than the quadtree data structure for three main reasons: (1) to obtain accu-

rate results, a rather large band is required close to the interface, which counterbalances

the absence of grid nodes far from the interface; (2) the performances are deteriorated

by extrapolation procedures on the outer edges of the local grid and (3) the width of the

band restricts the time step and slows down the method. These issues may be resolved

23

Hash table structures for sparse grids storage Chapter 1

by careful development of different algorithms. In addition, the hash table data structure

is more suitable for parallelization than the quadtree data structure, but as it is, we find

that a quadtree data structure seems more adapted than the hash table data structure

for level-set algorithms.

24

Chapter 2

Parallel Level-Set methods on
adaptive tree-based grids

2.1 Introduction

The level-set method, originally proposed by Sethian and Osher [4], is a popular and

powerful framework for tracking arbitrary interfaces that undergo complicated topological

changes. As a result, the level-set method has been used to a wide range of applications

such as multiphase flows, image segmentation, and computer graphics [6, 5]. An impor-

tant feature of this method is that the location of the interface is defined implicitly on

an underlying grid. This convenience, however, comes at a price. First, compared to an

explicit method, e.g. front tracking [27, 28], the level-set method is typically less accurate

and mass conservation could be a problem, although progress has been made in resolving

this issue [29]. Second, the level-set function has to be defined in a one dimension higher

space than that of the interface. If only the location of the interface is needed, the added

dimension greatly increases the overall computational cost for uniform grids. One way

to avoid this problem is by computing the level-set only close to the interface, e.g. as in

the narrow-band level-set method [7] or, more recently, by using a hash table to restrict

both computation and storage requirements [1].

25

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

Another approach that can address both problems is the use of local grid refinement.

In [11] the idea of using tree-based grids for level-set calculations was first introduced and

later extended in [12, 13] for fluid simulations. More recently, authors in [14] proposed

second-order accurate level-set methods on Quadtree (two spatial dimensions) and Octree

(three spatial dimensions) grids. The use of adaptive tree-base grids in the context of

the level-set method is quite advantageous because (i) it gives fine-grain control over

errors, which typically occur close to the interface and (ii) it can effectively reduce the

dimensionality of the problem by focusing most of the grid cells close to the interface.

Fortunately, constructing the tree is quite simple in the presence of an interface that

naturally defines an ideal metric for refinement. However, even though the use of adaptive

grids can dramatically reduce the computational cost, performing high-resolution three

dimensional calculations of complex interfacial problems, e.g. crystal growth in binary

alloys [30], could be prohibitively expensive or even impossible on a serial machine. In

this paper we extend the level-set technology on Quad-/Octrees by proposing parallel

algorithms for distributed memory machines using a domain decomposition technique.

One of the main challenges in parallelizing algorithms on adaptive grids is handling

the grid itself. One option is to replicate the entire grid on each process and to employ

serial ordering techniques, as implemented in an earlier version of the deal.II library

[31], or to use serial graph partitioners such as METIS [32].

This approach, however, is only scalable to a few hundred processes at best and

is limited by the size of the grid itself that can fit in memory. Even though parallel

general-purpose partitioners have since been popularized [33, 34] and the scalability of

partitioning algorithms for unstructured grids has been improved (see e.g. [35]), their use

adds extra overhead that can limit the overall scalability. Refining a grid consisting of

multiple trees using recursive coordinate bisection has been implemented in the SIERRA

framework [36]. Interestingly, tree-based grids have a nice spatial ordering that naturally

26

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

leads to the concept of space-filling curves (SFCs) and can be efficiently exploited for

parallel load balancing [37, 38, 39].

The idea of using SFCs for parallel partitioning of Quad-/Octrees is not new in

itself and has been used by many researchers. For instance, Octor [40] uses a Morton

curve (also known as Z-curve) for traversing the leaves of an Octree for indexing and

load balancing and has been scaled up to 62,000 CPU cores [41]. Dendro [42] is an

example of a so-called linear Octree code in which new algorithms are introduced for

parallel partitioning and the development of a parallel geometric multigrid that has been

scaled up to about 32,000 cores [43]. More recently, authors in [44] extended these ideas

by optionally allowing for a collection, or a “forest”, of connected Octrees, which is

partitioned in parallel using a global Morton curve. The p4est library [45] provides a

publicly available implementation of these algorithms that is equally efficient for a single

tree as well as multiple trees and has been shown to scale to more than 458k CPU cores

[46]. Applications built with p4est have scaled to 1.57M cores [47] and 3.14M cores [48].

In fact, the algorithms presented in this paper are implemented on top of the p4est API.

Due to the need for multiple adaptation and partitioning operations in each time step,

the semi-Lagrangian method we describe below presents a stringent test of the algorithms

and implementation both in terms of scalability and absolute run time.

Parallel level-set algorithms can be categorized into two groups: parallel advection

algorithms and parallel reinitialization algorithms. Eulerian advection schemes can easily

be parallelized but unfortunately are limited by the CFL condition, which could be

very restrictive for adaptive grids. Semi-Lagrangian methods combine the unconditional

stability of Lagrangian methods and the ease of use of Eulerian grids and have been

successfully used for advecting the level-set function on tree-based grids [13, 49, 14].

However, parallelizing the semi-Lagrangian algorithm in a domain decomposition context

is not an easy task. The reason for this is twofold. First, depending on the CFL number,

27

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

the departure points may end up outside the ghost region and in remote processes that

are potentially far away. This requires a very dynamic and nonuniform communication

pattern that is challenging to implement. For an adaptive grid, the situation is even

more complex due to the asymmetric nature of the communication pattern (cf. section

2.3). Second, load balancing could be an issue for large CFL numbers and nonuniform

velocity fields, due to clustering of departure points, which can thus considerably restrict

the scalability of the algorithm. Both of these problems, of course, could be avoided

by choosing CFL ≤ 1 but that would defeat the purpose of using the semi-Lagrangian

algorithm in the first place.

Nonetheless, several parallel semi-Lagrangian algorithms have been proposed. A sim-

ple domain decomposition technique was used in [50] where the width of the ghost layer

is fixed based on the maximum CFL number to ensure that all departure points are cov-

ered by the ghost layer. Good scalings were reported for small CFL numbers (CFL ≤ 2).

However, for large CFL numbers, this leads to a large volume of communication that can

limit the scalability. In [51] the authors propose a more sophisticated domain decompo-

sition approach which uses a “dynamic ghost layer”. Here the width of the ghost layer is

dynamically determined at runtime based on information from previous time steps. Un-

fortunately, this approach also suffers from excessive communication overhead at large

numbers of processes. More recently, the authors in [52] used a domain decomposition

strategy on a cubed sphere but with a single layer of ghost nodes. Interpolation on

remote processes is then handled by sending query points to the corresponding process

and asking for the interpolated result. This approach seems to provide good scalability

for transporting a single tracer up to about 1000 cores for CFL ∼ 10. At higher CFL

numbers, the method begins to loose scalability due to an increase in communication

volume. Finally, note that although we are mainly interested in parallel semi-Lagrangian

methods, one could resort to finite difference or finite element discretization methods if

28

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

small CFL numbers are acceptable. Indeed several algorithms of this type have been

proposed with applications to modeling dendritic crystal growth [53], multiphase flows

[54, 55, 56], and atomization process [57].

In many applications, it is desirable that the level-set function has the signed-distance

property, i.e., |∇φ| = 1. Generally, there are two approaches to enforce this property,

either by solving the pseudo-time transient reinitialization equation [58, 59]

φτ + S(φ0) (|∇φ| − 1) = 0,

or by solving the Eikonal equation

F (x)|∇φ| = 1

with constant speed function F (x) ≡ 1. The transient reinitialization equation can be

solved using explicit finite differences and thus can easily be parallelized in a domain

decomposition approach. Moreover, only a few iterations may be needed if the signed-

distance property is only required close to the interface [14]. This is the approach we have

chosen in this paper. However, if the signed-distance property is required in the entire

domain, solving the Eikonal equation is more computationally efficient. Unfortunately,

the most popular algorithm for solving the Eikonal equation, i.e. the Fast Marching

Method [21, 5], is inherently sequential due to causal relationship between grid points and

cannot be easily parallelized. The Fast Sweeping Method (FSM) [60] is an alternative for

solving the Eikonal equation iteratively. The FSM can be more computationally efficient

for simple choices of speed function, e.g. as in this context, and for simple interfaces.

Moreover, FSM has more potential for parallelization compared to the FMM.

One of the earliest attempt in parallelizing the FMM is reported in [61] where a do-

29

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

main decomposition algorithm was introduced. Unlike the serial FMM, however, parallel

FMM potentially requires multiple iterations or “rollback operations” to enforce causal-

ity across processes. Similar ideas are described in detail in [62]. It should be noted that

the number of iterations needed for the parallel FMM to converge greatly depends on the

complexity of the interface and on the parallel partitioning and, in general, fewer itera-

tions are required if the domains are aligned with the normals to the interface. Due to the

nature of the Eikonal equation, shared memory machines might be a better environment

for parallelization. For instance, in [63] the authors use an “adaptive” technique where

individual threads implicitly define a domain decomposition at runtime. Unfortunately,

this approach does not seem to be more effective than a simple static decomposition. In

[64] a parallel FSM method was presented for the first time, which suffered from a plateau

in the speedup. A scalable FSM was more recently proposed in [65], where the Cuthill-

McKee numbering was utilized to improve scalability. A two-scale, hybrid FMM-FSM

was presented in [66] which, albeit being more complicated to implement, promises even

better scalability. Finally, a parallel Fast Iterative Method (FIM) was proposed in [67].

The FIM is similar to FMM in that it also maintains a list of “active nodes”. However,

unlike FMM, FIM avoids sorting the list and allows for concurrent updating of all nodes

in an iterative fashion. In this article we choose the pseudo-time transient formulation

for two reasons: 1) it is considerably easier to parallelize on Quadtrees and Octrees and

2) we are merely interested in the signed-distance property close to the interface, which

only requires a few iterations.

This article is organized as follows: In section 2.2, we briefly review the sequential

algorithms and discretization methods for the level-set equation on adaptive tree-based

grids. These ideas are then extended in section 2.3 to parallel environments using a

domain decomposition method. In section 2.4, we provide several examples that illustrate

the scalability of our algorithms. Finally, we close by providing an application of our

30

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

method by considering the simulation of the solidification process by solving a Stefan

problem in section 2.5.

2.2 The level-set method

The level-set method, introduced in [4], is an implicit framework for tracking inter-

faces that undergo complicated topological changes. In this framework, an interface is

represented by the zero contour of a higher dimensional function, e.g. a curve in two

spatial dimensions can be described as Γ = {(x, y)|φ(x, y) = 0}, where φ(x, y) is the

level-set function. The evolution of the curve under a velocity field u is then obtained

by solving the level-set equation:

φt + u · ∇φ = 0. (2.1)

When the velocity field does not depend on the level-set function itself, equation (2.1)

can be solved using the semi-Lagrangian method. An important advantage of the semi-

Lagrangian method over the regular finite difference method is its unconditional stability

that allows for arbitrarily large time steps. This is particularly important when using

adaptive grids since higher grid resolutions translate into impractically small time steps.

In general, an infinite number of level-set functions can describe the same zero contour

and thus the same interface. However, it is desirable to choose a function with the signed

distance property |∇φ| = 1. As detailed in section 2.1, we solve the pseudo-time transient

reinitialization equation [58, 59] to achieve this property,

φτ + S(φ0) (|∇φ| − 1) = 0, (2.2)

where τ is a pseudo time step, φ0 is any level-set function that correctly describes the

31

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

interface location and S(φ0) is an approximation of the sign function. Here, we do not go

into the details of the sequential algorithms for solving equations (2.1) and (2.2). Instead,

we note that the parallel algorithms presented in section 2.3 are based on the sequential

methods presented earlier in [14] and refer the interested reader to the aforementioned

articles and references therein for more details.

2.3 Parallel algorithms

To achieve a good parallel performance of our numerical solver, we must ensure the

sufficient scalability of all components. This observation prompted the dedicated devel-

opment and optimization of several techniques, which we discuss in the present section.

2.3.1 Grid management

Adaptive tree-based grids can significantly reduce the computational cost of level-set

methods by restricting the fine grid close to the interface where it is most needed [11].

Moreover, adaptive tree-based grids are easy to generate in the presence of a signed-

distance level-set function [14] and can efficiently be encoded using a tree data structure

[10]. In order to develop scalable parallel algorithms on these grids, it is necessary to

parallelize the data structure and grid manipulation methods such as refinement and

coarsening of cells as well as to provide a fast method for grid partitioning and load

balancing. The p4est library [45] is a collection of such parallel algorithms that has

recently emerged and shown to scale up to 458,752 cores [46].

In p4est the adaptive grid is represented as a non-overlapping collection of trees that

are rooted in individual cells of a common coarse grid (cf. Figure 2.1). This common

coarse grid, which we will refer to as the “macromesh”, can in general be an unstruc-

tured quadrilateral mesh, in two spatial dimensions, or hexahedral mesh, in three spatial

32

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

dimensions. In this article, however, it is sufficient to limit discussions to simple uni-

form Cartesian macromeshes. Moreover, it is implicitly assumed that the macromesh is

small enough that it can be entirely replicated on all processes. For instance, in many of

the applications that we are considering in this paper the macromesh is simply a single

cell. p4est allows for arbitrary refinement and coarsening criteria through defining call-

back functions. In this article the refinement criteria is chosen based on the distance of

individual cells to the interface. Specifically, a cell C is marked for refinement if

min
v∈V (C)

|φ(v)| ≤ LD

2
, (2.3)

where V (C) denotes the set of all vertices of cell C, L denotes the Lipschitz constant of

the level-set function, and D denotes the diagonal size of cell C. Conversely, an existing

cell is marked for coarsening if

min
v∈V (C)

|φ(v)| > LD. (2.4)

We refer to section 3.2 of [44] for details on the parallel refinement and coarsening algo-

rithms implemented in p4est.

Once the grid is adapted to the interface, it must be partitioned to ensure load

balancing across processes. This is achieved by constructing a Z-curve that traverses

the leaves of all trees in order of the tree index (cf. Figure 2.1). A Z-curve is a Space

Filling Curve (SFC) with the important property that cells with close Z-indices are also

geometrically close (on average) in the physical domain. This is beneficial since it leads

to both a reduction in MPI communications and improvements of the cache performance

of several algorithms such as interpolation and finite difference calculations. For more

details on parallel partitioning in p4est one may refer to section 3.3 of [44]. Aside from

33

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

S

E

Figure 2.1: Left: a “forest” made up of two trees T0 and T1. Parallel partitioning is
achieved by first constructing a Z-curve starting at cell “S” and ending at cell “E”. Next,
the one dimensional curve is split up among processes either uniformly or by assigning
different weights to cells. Here processes are represented via different colors. Note how
using the Z-curve naturally leads to clustering of most cells in each domain. Right:
schematic of a tree data structure representing this forest and its partitioning.

grid manipulation and partitioning, we use two additional features of p4est, namely the

generation of ghost layer cells and the creation of a globally unique node indexing. These

algorithms are detailed in sections 3.5 and 3.6 of [44]. We have specifically extended the

latter algorithm such that it can be applied to a non-graded refinement pattern. This is

important because we can entirely skip the 2:1 balance function, which was shown to be

one of the most time consuming parts of grid adaptation in p4est [44].

Finally, in p4est trees are linearized, i.e. only the leaves are explicitly stored. How-

ever, explicit knowledge of the hierarchal structure of the tree is greatly beneficial in

several algorithms, e.g. in search operations needed for the interpolation algorithm.

Thus, we introduce a simple reconstruction algorithm that recreates a local representa-

tion of the entire “forest” that is only adapted to local cells and, potentially, the ghost

layer. This approach is similar to the ideas introduced in [68] and our tests show that

in a typical application they amount to less that 1% of the entire runtime. Algorithm 2

illustrates how this reconstruction is performed. Given a forest and a layer of ghost cells

from p4est, the algorithm generates a local representation of the forest by recursively

34

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

refining from the root until reaching the same level and location of all leaves in the local

forest and the ghost layer. Note that algorithm 2 does not involve any communication

and is load balanced provided that the initial forest is balanced. Figure 2.2 illustrates

an example where Algorithm 2 is applied. Note how each process has independently

generated a local representation of the forest that is refined to match the same leaves as

in the global forest and ghost layer.

2

3 4

1

Figure 2.2: Left: a forest refined close to an interface and partitioned among four pro-
cesses, as indicated by colors. Right: each process independently recreates a local forest
that is refined to match the local grid and is as coarse as possible elsewhere. Note that
empty cells are fictitious, i.e. they are only required to generate the hierarchal structure
and are not matched by any corresponding cell in the global forest.

2.3.2 Interpolation and semi-Lagrangian methods

As indicated earlier, we use the semi-Lagrangian method to solve equation (2.1) when

the velocity field is externally generated, i.e. when it does not depend explicitly on the

level-set function itself. Let us rewrite equation (2.1) along the characteristic curve X(t)

35

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

1: H ← G.macromesh() . start with the coarsest grid
2: for tr inG.local trees() do . update the hierarchy to match local cells
3: for c in tr .local cells() do
4: H.update tree(tr , c)
5: end for
6: end for
7: for c inG.ghost cells() do . update the hierarchy to mach local cells
8: H.update tree(c.get parent tree(), c)
9: end for
10: return H
11:

12: function H.update tree(tr , c) . recursive tree reconstruction
13: cl ← H.get root cell(tr)
14: while cl.level() 6= c.level() do . recursively search for a cell of the same size

as c
15: if cl.is leaf() then cl.split() . if the current cell is leaf, split the cell

and continue search
16: end if
17: h← cl.length() . select the search path based on cell coordinate.
18: i← c.x ≥ cl.x+ h/2
19: j ← c.y ≥ cl.y + h/2
20: k ← c.z ≥ cl.z + h/2
21: cl ← cl.get child(i, j, k)
22: end while
23: end function

Algorithm 2: H ← Reconstruct (G): Construction of the local tree hierarchy, H, from
the parallel grid, G, supplied by p4est. The algorithm starts at the coarsest level, i.e.
the macromesh, and recursively splits the each cell to match the finest local and ghost
cells generated by p4est.

36

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

as: 
dX

dt
= u,

dφ(X(t), t)

dt
= 0.

(2.5)

The semi-Lagrangian method integrates equations (2.5) backward in time, i.e. start-

ing from the grid Gn+1 (computed iteratively as explained later on), we simply write

φn+1(Xn+1) = φ(X(tn+1), tn+1) = φ(X(tn), tn) = φn(Xd). Here, the characteristic curves

are chosen such that X(tn+1) are the coordinates of grids points of Gn+1, and Xd are the

departure points, which are computed using the second-order midpoint method [14]:

X? = Xn+1 − ∆t

2
un(Xn), (2.6)

Xd = Xn+1 −∆tun+ 1
2 (X?), (2.7)

where un+ 1
2 is obtained via extrapolation from previous times, i.e.:

un+ 1
2 =

3

2
un − 1

2
un−1. (2.8)

Note that all values at the intermediate point, X?, and departure point, Xd, must be

calculated via interpolation from the previous grids Gn and Gn−1. Here, we use the

stabilized second-order interpolation for φ(Xd) and the multi-linear interpolation for

un+ 1
2 (X?) [14]. Although parallelization of the interpolation process on a shared-memory

machine is trivial, the same cannot be said for distributed-memory machines. In fact, the

parallel interpolation given in Algorithm 3 is probably the most important contribution

of this article since this procedure, which is trivial on uniform grids, is challenging in

the case of trees because it is not straightforward to identify which processes owns the

departure points. Indeed, complications arise because not all departure points will reside

in the domain owned by the current process. Moreover, due to the irregular shapes of

37

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

the partitions, one cannot even ensure they are entirely owned by neighboring processes.

At best we can only expect that their locations are bounded by a halo of width w ≤

CFL ∆xmin around the local partition, where xmin is the size of the smallest cell in the

forest. Naturally, if one enforces CFL ≤ 1, one can ensure that the halo is bounded by the

ghost layer, which significantly simplifies the communication problem. This assumption,

however, defeats the purpose of using a semi-Lagrangian approach, whose purpose is to

enable large CFL values.

One remedy to this problem, proposed in [50] for uniform grids, is to increase the size

of ghost layer to dCFLe. For large values of the CFL number, however, this approach can

substantially increase the communication volume. Moreover, this simple approach does

not work in the process of generating Gn+1 due to repartitioning. Indeed, Gn+1 is built

iteratively and load balancing is enforced by repartitioning at each sub-iteration. There-

fore, after one such sub-iteration, the backtracked points can end up outside of the initial

ghost layer. An alternative approach would be to handle local and remote interpolations

separately. Our remote interpolation algorithm is composed of three separate phases. In

the first phase, which we call buffering, every process searches for all departure points

inside the local trees. If the point is owned by a local cell, it is added to a local buffer,

otherwise we find the process which owns the point and add the point to a separate buffer

belonging to the found rank. Note that searching the point in the local tree is performed

recursively using the hierarchal reconstruction (cf. Algorithm 2). Moreover, the owner’s

rank is found by computing the Z-index of the point and then using a binary search on

the Z-curve. This is already implemented in p4est and explained in details in section

2.5 of [44].

Once buffering is done, every process knows exactly how many messages it needs to

send and to which processes. This also implicitly defines processes that will later on

send a reply message to this process. However, at this point no process knows which

38

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

processes to expect a message from. We solve this problem using a simple communica-

tion matrix (see Figure 2.3). Our approach is very similar to the “Personalized Census

(PCX)” algorithm described in [69]. Another similar approach is the “Notify” algorithm

introduced in [70]. Furthermore, the MPI-3 standard introduces non-blocking collectives

and Remote Memory Access (RMA) operations which enable new ways of solving the

communication problem. For instance, authors in [69] descried the “Non-blocking Con-

sensus (NBX)” and “Remote Summation (RSX)” algorithms which make use of such

operations and have better theoretical communication complexities. With the exception

of RSX algorithm, which was not tested in this study, all remaining algorithms produced

similar timing and scaling. Thus we have decided to describe our algorithm based on the

idea of the communication matrix.

To solve the communication problem, we first compute the adjacency matrix of the

communication pattern, i.e. we construct the matrix AP×P , where P is the number of

processes, such that

aij =

 1 if process ‘i ’ sends a message to process ‘j ’,

0 otherwise.

Note that this matrix is also distributed among processes, i.e. each row is owned by a

separate rank. Next, we compute

Si =
∑
j

aij and Ri =
∑
j

aji,

where Si and Ri denote the number of messages sent and received, respectively. While Si

can be computed trivially, a reduction operation is required to compute Ri. For instance,

this can be achieved using a single MPI Reduce scatter function call. The last phase of

the interpolation procedure involves overlapping the computation of interpolated values

39

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

1

2
3

4

Figure 2.3: Left: the location of back-traced points depends on the magnitude of the local
velocity and on the time-step. Although the distance to the departure point is bounded by
CFL ∆xmin, one cannot predict the receiving rank without explicitly searching the entire
Z-curve. Moreover, the receiving process has no prior knowledge about which processes
to check for incoming messages nor does it know anything about the possible message
length (i.e. number of points). Middle: a directed graph illustrating the communication
pattern among processes with arrows representing the direction in which messages are
sent. Right: the adjacency matrix of the communication graph. For each row, the sum of
all columns represents the number of messages that need to be sent. Conversely, for each
column, the sum of all rows represents the number of messages that need to be received.
As detailed in Algorithm 3, this information is enough to build a parallel interpolation
scheme.

40

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

for local points with the communication of data between processes. This is done by

alternating between local calculations and probing for incoming messages from other

processes. The interpolation is finished once the values for all local the points have been

calculated and all the remote requests have been processed (see Algorithm 3).

Using the interpolation Algorithm 3, we close this section by presenting the final semi-

Lagrangian Algorithm 4. The basic idea is to start from an initial guess Gn+1
0 for the grid

and modify it using the refinement (2.3) and coarsening (2.4) criteria until convergence

is obtained. Various options are available for Gn+1
0 . For instance it is possible to start

from the macromesh and only perform refinement steps until convergence. This choice,

however, is not suitable since the first few iterations do not contain many cells and there

is little work for parallelism. Here we simply take the previous grid as the starting point,

i.e. Gn+1
0 = Gn. Note that this iterative process is essentially unavoidable since the grid

is based on the values of the level-set function at tn+1, which itself is unknown and is

to be defined on Gn+1. Nonetheless the process converges to the final grid in at most

lmax− lmin steps where lmin and lmax denote the maximum and minimum depth of all trees

in the forest, receptively.

2.3.3 Reinitialization

Successive application of Algorithm 4, especially for large values of the CFL number,

eventually degrades the signed distance property of the level-set function. Thus, it is

important to reinitialize the level-set function every few iterations, especially because the

quality of generated grid heavily depends on the signed distance property. To achieve

this property we solve the pseudo-time transient equation (2.2) using the discretization

scheme detailed in [14]. For completeness, we briefly review the scheme. First, we write

41

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

1: col← 0, local buff ← null , remote buff ← null . Phase I – buffering
2: for p in X do
3: [owners rank, cell]← H.search(p) . search for the owner’s rank and cell
4: if owners rank = mpirank then . can interpolate locally
5: local buff [owners rank].push back(p, cell)
6: else . requires remote interpolation
7: remote buff [owners rank].push back(p)
8: col [owners rank]← 1
9: end if
10: end for
11:

12: for r in [0 ,mpisize) do . Phase II – initiate communication and compute number
of messages

13: if col [r] == 1 then
14: req ← MP Isend(r, QUERY TAG, remote buff [r]) . initiate a non-blocking send

to process r
15: query requests.push back(req)
16: end if
17: end for
18: S ← sum(col) . compute number of messages to send
19: R← MPI Reduce scatter(col , MPI SUM) . compute number of messages to receive
20:

21: done ← false . Phase III – interpolation
22: it← local buff [mpirank].begin()
23: while !done do
24: if it 6= localbuff [mpirank].end() then
25: values ← process local interpolation(it) . process local interpolations
26: ++it
27: end if
28: if R > 0 then . search for interpolation query in the message queue
29: message ← MPI Iprobe(MPI ANY SOURCE, QUERY TAG)

30: if message.is pending() then
31: values ← process remote queries(message) . receive, search, and

interpolate values
32: req ← MPI Isend(message.MPI SOURCE, REPLY TAG, values) . send back

interpolated values
33: reply requests.push back(req)
34: R--
35: end if
36: end if

42

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

37: if S > 0 then . search for interpolation reply in the message queue
38: message ← MPI Iprobe(MPI ANY SOURCE, REPLY TAG)

39: if message.is pending() then
40: values ← process replies(message) . receive remotely interpolated

values
41: S--
42: end if
43: end if
44: done ← S == 0 & R == 0 & it == local buff [mpirank].end()
45: end while
46: MPI Waitall(query requests, reply requests) . make sure all messages have been

received
47: return values

Algorithm 3: values← Interpolate (H,F,X): interpolate the value of F , defined on
the local tree hierarchy H, at coordinates X. This is achieved in three phases as detailed
in the text. I) First, interpolation points are buffered in two arrays, those than can be
interpolated locally and those that should be sent to other processes. II) In the second
phase, each process initiates the remote buffer exchange and computes the number of
messages it should expect to receive using the communication matrix idea described in
section 2.3.2. III) Finally, each process alternates between computing local interpolation
and receiving and performing remote interpolation requests from other processes.

43

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

1: ∆tl ← CFL×Gn.hmin()/max{un}
2: ∆t← MPI Allreduce(∆tl, MPI MIN) . compute ∆t based on CFL condition across

all processes
3: Hn ← Reconstruct(Gn) . using algorithm 2
4: Gn+1

0 ← Gn

5: while true do
6: Xd ← ComputeDeparturePoints(Gn+1

0 ,un,un−1,∆t) . using equations 2.6 – 2.8
7: φn+1 ← Interpolate(Hn, φn,Xd) . using algorithm 3
8: Gn+1 ← Gn+1

0 .refine and coarsen(φn+1) . using equations 2.3 and 2.4 as
criteria

9: if Gn+1 6= Gn+1
0 then

10: Gn+1.partition()
11: Gn+1

0 ← Gn+1

12: else
13: break
14: end if
15: end while
16: return [Gn+1, φn+1]

Algorithm 4: [Gn+1, φn+1] ← SemiLagrangian (Gn, φn,un,un−1,CFL): update φn+1

from φn using a semi-Lagrangian scheme and construct the new forest Gn+1 that is
consistent with the zero level-set of φn+1

44

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

equation (2.2) in the following semi-discrete form:

dφ

dτ
+ S(φ0)

(
HG(D+

i φ,D
−
i φ)− 1

)
= 0, (2.9)

where D+
i φ and D−i φ are the forward and backward derivatives in the xi direction and

HG is the Godunov Hamiltonian defined as:

HG(ai, bi) =



√∑
i max

(
|a+
i |2, |b−i |2

)
if S(φ0) ≤ 0,

√∑
i max

(
|a−i |2, |b+

i |2
)

if S(φ0) > 0,

where a+ = max(a, 0) and a− = min(a, 0). Similar to [14], equation (2.9) is integrated

in time using the TVD-RK2 scheme with adaptive time-stepping in order to accelerate

the convergence to the steady state. Generally it has been observed that adaptive time-

stepping considerably improves the convergence rate and only a few iterations are needed

if the signed-distance property is desired in a small band around the interface [14]. In

this work, and based on previous findings, we use a fixed number of 20 iterations for the

reinitialization equation. Of course, it should be noted that it is quite easy to define a

custom tolerance as the termination criteria.

Since the computation is based on a local stencil, the parallel implementation of this

scheme is mostly trivial. However, one minor point requires further explanation. As

suggested in [14], one-sided derivatives D+
i φ and D−i φ are computed using second order

discretization which require to compute the second-order derivatives. To enable overlap

between computation and communications when computing second-order derivatives and

also integrating equation (2.9), we use the following common technique. First, we label

all local points, Lp, as either private, Pp, or boundary, Bp. Here, the boundary points are

the collection of all local points that are regarded as a ghost point, Gr, on at least one

45

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

other process, i.e. Bp =
⋃

r, r 6=p
Gr. Private points are defined as the collection of all local

points that are not a boundary point, i.e. Pp = Lp \Bp. Algorithm 5 illustrates how this

labeling can help with overlapping the computation and the communication associated

to an arbitrary local operation y ← F(x). Note that the p4est library already includes

all the primitives required for labeling local points without any further communication.

1: for i : Bp do . I – perform computation on boundary points
2: yi ← F(xi)
3: end for
4: send req ← MPI Isend(yB) . II – begin updating ghost values
5: recv req ← MPI Irecv(yG)
6: for i : Pp do . III – perform computation on private points
7: yi ← F(xi)
8: end for
9: MPI Waitall(send req , recv req) . IV – wait for ghost update to finish
10: return y

Algorithm 5: y ← Overlap (x,F): compute yi = F(xi) for all nodes i, where F is a
local operation, while hiding the communication to update the ghost layer

2.3.4 Accuracy

The numerical methods detailed in the previous sections are widely used in the level-

set community and their accuracy is studied for example in [14]. However, in order to

validate our implementation, we present a brief convergence analysis.

The advection of an irregular boundary using the semi-Lagrangian method is the per-

fect candidate to demonstrate the accuracy of our implementation as it makes use of the

interpolation routine as well as the reinitialization procedure. We select the benchmark

problem proposed in [29]. Consider a sphere centered at (0.35, 0.35, 0.35) and with radius

46

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

0.15 in a domain [0, 1]3 and deformed under the divergence free velocity field


u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz),

v(x, y, z) = − sin2(πy) sin(2πx) sin(2πz),

w(x, y, z) = − sin2(πz) sin(2πx) sin(2πy).

(2.10)

forward in time until t1/2 = 1 and then backward to its original state at tf = 2. We set

the time step to ∆t = 5∆xmin, where ∆xmin is the size of the smallest cell in the forest.

The level-set function is reinitialized at every time step by applying 20 iterations of the

reinitialization procedure. We monitor the volume loss and the error in the interface

location at the final time, when the original shape should be recovered, as the finest

resolution of the forest increases. The results are reported in table 2.1 and figure 2.4

shows a visualization of the sphere at the initial time, at t1/2 when the deformation is

maximal, and at the final time. The results are consistent with those reported previously

in [14] and indicate second order accuracy for the mass loss.

Finest resolution L∞ error on φ Rate Volume loss (%) Rate
1283 1.53E-01 - 1.85E-01 -
2563 1.18E-01 0.38 3.73E-02 2.31
5123 9.82E-03 3.58 6.87E-03 2.44
10243 2.56E-03 1.94 1.92E-03 1.84
20483 1.60E-03 0.67 5.17E-04 1.89

Table 2.1: Study of the convergence of the level-set algorithm using Enright’s test [29].
The L∞ error on φ is computed only close to the interface as this is the relevant observable
for an advection procedure.

47

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

Figure 2.4: Visualization of the deformation undergone by the sphere for the Enright’s
test at time 0, t1/2 and tf . The forest’s finest resolution is equivalent to a uniform grid
with 20483 cells and contains between 17 (at initial and final times) and 63 (at t1/2) million
nodes. These results were obtained on the Comet supercomputer with 960 processes (40
compute nodes).

2.4 Scaling results

In this section we present some results that demonstrate the scalability of our al-

gorithms. All of our tests were ran on the Stampede cluster at the Texas Advanced

Computing Center (TACC), a resource accessible through the Extreme Science and En-

gineering Discovery Environment (XSEDE) [71], where we are limited to 4096 cores at

most. Each node of Stampede has 2 eight-core Xenon E5-2680 processes clocked at 2.7

GHz with 32 GB of DDR3-1600 MHz memory and interconnected using an InfiniBand

network card. Unless mentioned otherwise, in all the tests we have used all 16 cores

of every node. Finally, in all cases we report the maximum wall time recorded using

PETSc’s logging interface which has a temporal resolution of roughly 0.1 µs.

We define parallel efficiency as e = s ·P1/P where s = t1/tP is the speed-up, P1 is the

smallest number of processes for which the test was run, t1 is the time to run the problem

on P1 processes, P is the number of processes and tP is the time to run the problem on P

processes. We note that efficiencies larger than 100% are reported for some cases. This

is common and can be hardware related, for instance linked to the problem being locally

48

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

smaller for larger number of processes and thus exploiting the cache better.

2.4.1 Interpolation

In this section we show the results for a simple test to measure the scalability of the

interpolation Algorithm 3. The test consists of interpolating a function at a number of

random points on a randomly refined Octree in three spatial dimensions. We consider

two cases, a small test on a level1 9 tree with roughly 33M nodes and a larger test on a

level 13 tree with roughly 280M nodes. In both cases the number of randomly generated

points is chosen to be equal to the number of nodes and the stabilized second-order

interpolation of [14] is performed 10 times to smooth out possible timing fluctuations.

To simulate the effect of different CFL numbers, we generate the random points such

that on each process α percentage of them are located outside the process boundary and

thus will initiate communication. Scaling results are presented for α = 5% and α = 95%

for both the small and large problems in Figure 2.5. We also present a third row of results

for a much larger problem with roughly 1.66B nodes on a level 14 tree. Excellent scaling

is obtained for the small problem for P = 16 − 512 even when 95% of the interpolation

points belong to a remote process. For the larger problem, however, the communication

overhead prevents the algorithm from scaling beyond 2048 processes when α = 95% (cf.

Table 2.2). Note, however, that this is expected since the total time is dominated by

communication for α = 95% and there is very little local work in this case. Indeed, the

last row of Figure 2.5 show much better scaling behavior on a larger problem size, e.g.

efficiencies are increased from e = 34% to e = 68% for α = 95% on 4096 processes. This

is a typical result with strong scaling and simply implies that our algorithms are scalable

for sufficiently large problems.

1The level is the number of recursive splits allowed for each tree.

49

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

16 32 64 128 256 512
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
buffer
local
queries
replies

(a) NG = 33M, α = 5%

128 256 512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
buffer
local
queries
replies

(b) NG = 280M, α = 5%

512 1024 2048 4096
10

−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
buffer
local
queries
replies

(c) NG = 1.66B, α = 50%

16 32 64 128 256 512
10

−3

10
−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
buffer
local
queries
replies

(d) NG = 33M, α = 95%

128 256 512 1024 2048 4096
10

−3

10
−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
buffer
local
queries
replies

(e) NG = 280M, α = 95%

512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
buffer
local
queries
replies

(f) NG = 1.66B, α = 95%

Figure 2.5: Strong scaling of Algorithm 3 for several tests whereNG denotes the number of
random interpolation points (which is the same as the number of nodes in the Octree) and
α denotes the percentage of these points that are remote for each process. Here “Total”
represents the total time spent in the interpolation while “buffer”, “local”, “queries”,
and “replies” represent the the timing for different sections (cf. Algorithm 3). The black
dashed line represents the ideal scaling. The results indicate excellent scaling for the
small test (a-d) and for the large test when α = 5% (b). For the extreme case (e)
the algorithm stops scaling at 2048 processes due to communication overhead. Note,
however, that this merely indicates that the problem size is not large enough for this
test case. Indeed much better scaling is obtained when the problem size is increased to
NG = 1.66B points (c-f).

50

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

Small Test
P 16 32 64 128 256 512

α = 5% 100% 101% 102% 106% 127% 165%
α = 95% 100% 104% 110% 125% 127% 106%

Large Test
P 128 256 512 1024 2048 4096

α = 5% 100% 89% 95% 101% 109% 114%
α = 95% 100% 103% 108% 99% 67% 34%

Very Large Test
P 128 256 512 1024 2048 4096

α = 50% – – 100% 108% 102% 78%
α = 95% – – 100% 103% 94% 64%

Table 2.2: Parallel efficiency of the total runtime of the interpolation algorithm for the
small (33M nodes), large (280M nodes), and very large (1.66B nodes) tests. Reported
efficiencies are based on the lowest number of processes for each test.

2.4.2 Semi-Lagrangian

To test the scalability of the semi-Lagrangian scheme of Algorithm 4, we consider a

slightly modified version of the Enright’s rotation test [29] presented in section 2.3.4, i.e.

we advect a sphere of radius 0.35 located at (0.4, 0.4, 0.4) with a divergence free velocity

field given by equation (2.10).

To understand the effect of the CFL number on the scalability of the algorithm

we perform one step of the semi-Lagrangian algorithm for CFL = 1, CFL = 10, and

CFL = 100. We also perform the test for two different initial girds, a small grid with

maximum level lmax = 10 and a large grid with maximum level lmax = 12. In both cases,

the minimum level is lmin = 0. After one advection step, these grids have approximately

15M and 255M nodes, respectively.

Unlike many existing applications where the mesh is changed infrequently, our semi-

Lagrangian algorithm requires several sub-iterations of the refinement and coarsening

operations. As a result, it is expected that refinement and coarsening steps constitute

a significant portion of the total runtime which puts stringent scalability requirements

on these algorithms. We refer the interested reader to section 3.2 of [44] for detailed

description of scalable refinement and coarsening algorithms in p4est.

51

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

CFL
#p

16 32 64 128 256 512

1 2 2 3 3 3 3
10 3 3 3 3 3 3
100 6 6 6 6 6 6

(a) lmax = 10

CFL
#p

128 256 512 1024 2048 4096

1 3 3 3 3 3 3
10 3 3 4 4 4 4
100 6 6 6 6 6 7

(b) lmax = 12

Table 2.3: Number of sub-iterations required for the grid construction in Algorithm 4
for the rotation test on a (a) level-10 and (b) level-12 Octree with approximately 15M
and 255M nodes, respectively. Note how the sub-iteration count increases with the CFL
number but is almost independent of the number of processes. The slight dependence
between the number of sub-iterations and the number of processes is most likely due
to the dependence of round-off errors on the number of processes. Nonetheless, close
examination of the Octrees generated (data not shown) reveals that they are identical
and independent of the number of processes used to perform the test.

52

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

Table 2.3 illustrates the dependence of the number of sub-iterations required to build

the grid on the CFL number; as the CFL is increased, the interface travels a farther

distance, which necessitates more sub-iterations to generate the grid. Figures 2.6 and 2.7

illustrate the scalability of the algorithm for the small and large problems, respectively.

To enable meaningful comparisons between different CFL numbers and number of pro-

cesses, the maximum time has been scaled by the number of sub-iterations required for

the grid construction as reported in Table 2.3. For both problems, excellent scalability is

observed for CFL = 1 and CFL = 10. The algorithm even shows good scalability when

taken to the extreme, i.e. for CFL = 100.

An increase in the CFL number has two effects on the algorithm. First, a larger

fraction of the departure points lands in the domains of remote processes. Moreover,

these points are potentially dispersed across a larger number of processes. This means

that the communication volume should increase with the CFL number. Second, as more

points are shipped to remote processes for interpolation, there is a greater chance that

the interpolation load is imbalanced across processes. This is especially true for regions

of space in which the streamlines cluster. Both factors can contribute to reducing the

scalability of the algorithm at large CFL numbers.

Small Test

P 16 32 64 128 256 512
CFL = 1 100% 88% 84% 82% 74% 67%
CFL = 10 100% 99% 104% 88% 80% 71%
CFL = 100 100% 95% 90% 84% 67% 49%

Large Test

P 128 256 512 1024 2048 4096
CFL = 1 100% 94% 87% 82% 75% 65%
CFL = 10 100% 90% 92% 86% 79% 63%
CFL = 100 100% 94% 90% 84% 70% 57%

Table 2.4: Parallel efficiency of the runtime of a single semi-Lagrangian step. Reported
efficiencies are based on the lowest number of processes for each test.

To better understand the importance of the CFL number on the scalability, we have

53

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

16 32 64 128 256 512
10

−3

10
−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
Interpolation
p4est nodes new
p4est partition
p4est refine coarsen

(a) semi-Lagrangian, CFL = 1

16 32 64 128 256 512
10

−3

10
−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
Interpolation
p4est nodes new
p4est partition
p4est refine coarsen

(b) semi-Lagrangian, CFL = 10

16 32 64 128 256 512
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
Interpolation
p4est nodes new
p4est partition
p4est refine coarsen

(c) semi-Lagrangian, CFL = 100

16 32 64 128 256 512
10

−2

10
−1

10
0

10
1

P

T
m
ax
(s
)

Total
local
queries
replies

(d) Interpolation, CFL = 1

16 32 64 128 256 512
10

−2

10
−1

10
0

10
1

P

T
m
ax
(s
)

Total
local
queries
replies

(e) Interpolation, CFL = 10

16 32 64 128 256 512
10

−2

10
−1

10
0

10
1

P

T
m
ax
(s
)

Total
local
queries
replies

(f) Interpolation, CFL = 100

Figure 2.6: Strong scaling of a single time step of Algorithm 4 for the rotation test
on a level-10 Octree with approximately 15M nodes. Top row: scaling of the various
components of the algorithm for (a) CFL = 1, (b) CFL = 10, and (c) CFL = 100.
Bottom row: breakdown of the various components of the interpolation phase for the
same CFL numbers. The solid dashed line represents the ideal scaling. Note that the
maximum time has been scaled by the number of sub-iterations required to build the tree
(cf. Table 2.3). Here p4est nodes new, p4est partition and p4est refine coarsen

refer to constructing the global indexing for nodes, partitioning the forest, and the refin-
ing/coarsening operation, respectively [44].

54

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

128 256 512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
Interpolation
p4est nodes new
p4est partition
p4est refine coarsen

(a) semi-Lagrangian, CFL = 1

128 256 512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
Interpolation
p4est nodes new
p4est partition
p4est refine coarsen

(b) semi-Lagrangian, CFL = 10

128 256 512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
Interpolation
p4est nodes new
p4est partition
p4est refine coarsen

(c) semi-Lagrangian, CFL = 100

128 256 512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
local
queries
replies

(d) Interpolation, CFL = 1

128 256 512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
local
queries
replies

(e) Interpolation, CFL = 10

128 256 512 1024 2048 4096
10

−2

10
−1

10
0

10
1

10
2

P

T
m
ax
(s
)

Total
local
queries
replies

(f) Interpolation, CFL = 100

Figure 2.7: Strong scaling of a single time step of Algorithm 4 for the rotation test
on a level-12 Octree with approximately 255M nodes. Top row: scaling of the various
components of the algorithm for (a) CFL = 1, (b) CFL = 10, and (c) CFL = 100.
Bottom row: breakdown of the various components of the interpolation phase for the
same CFL numbers. The solid dashed line represents the ideal scaling. Note that the
maximum time has been scaled by the number of sub-iterations required to build the
tree (cf. Table 2.3).

55

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

recorded a complete history of the communication pattern in the interpolation step.

Figure 2.8 illustrates the effects of the CFL number on different metrics, namely the

number of interpolation points2, Np, the number of sent and received messages, Nm =

S + R, and the total communication volume, Vm in megabytes (MB), for p = 4096

processes. Furthermore, these values are reported for the first (top row) and last (bottom

row) sub-iterations of the semi-Lagrangian algorithm. There are several points to make.

First, increasing the CFL number greatly increases the load imbalance, as shown by

the spread of the data in Figure 2.8(a). This is because at higher CFL numbers, it is

more likely that some processes will receive a larger portion of the backtracked points.

Second, increasing the CFL number increases both the communication volume and its

spread across processes (cf. Figure 2.8(c)). Interestingly, however, the number of sent

and received messages do not seem to be affected by the CFL number. The bottom

row of Figure 2.8 exhibits a better balance both in the computation and communication

volume in the last sub-iteration of the semi-Lagrangian algorithm. This can be justified

by noting that for the final sub-iteration, the partitioning of Gn+1 is more consistent

with the partitioning of the departure points on Gn. Detailed information about the load

balancing and the communication patterns is listed in Table 2.5.

2.4.3 Reinitialization

Finally we present the scaling results of our parallel reinitialization algorithm where

we extensively make use of Algorithm 5 for overlapping the computations with the com-

munications when computing spatial derivatives. Our test consists in computing the

signed distance function to a collection of 100 spheres, whose radii and centers are cho-

sen randomly. The test is performed on a small, level-8 Octree with about 21M and a

larger, level-10 Octree with about 337M grid points. In both cases the forest is built on

2Note that this includes both the local points and the points queried by other processes.

56

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

p

N
p

(a)

0 1000 2000 3000 4000
0

50

100

150

200

250

300

350

400

450

p

N
m

(b)

0 1000 2000 3000 4000
0

2

4

6

8

10

12

p

V
m
(M

B
)

(c)

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

p

N
p

(d)

0 1000 2000 3000 4000
0

50

100

150

200

250

300

350

400

450

p

N
m

(e)

0 1000 2000 3000 4000
0

2

4

6

8

10

12

p

V
m
(M

B
)

(f)

Figure 2.8: Performance indicators of the first (top row) and last (bottom row) sub-
iterations of the semi-Lagrangian algorithm for the level-set advection on 4096 processes
with CFL = 1 (♦), CFL = 10 (�), and CFL = 100 (•). Increasing the CFL number
causes load imbalance during interpolation (a) and increases the communication volume
(c). However, the CFL number does not seem to appreciably affect the number of mes-
sages sent by the processes (b). During the last semi-Lagrangian sub-iteration, the initial
grid G0 (cf. Algorithm 4) is very close to the final grid. As a result, the load imbalance
is considerably improved (d). Curiously, however, the communication pattern does not
seem to be change much between first and last sub-iterations (e,f).

57

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

CFL Metric
First sub-iteration Last sub-iteration

min max avg stddev min max avg stddev

1
Np 6.67E+04 1.59E+05 7.57E+04 4.86E+03 6.69E+04 1.55E+05 7.57E+04 4.73E+03
Nm 18 387 47.55 31.72 18 392 47.55 31.19

Vm (MB) 4.01E-01 2.93E+00 7.25E-01 1.95E-01 4.13E-01 3.91E+00 9.68E-01 2.62E-01
Tmax (s) 6.96E-01 3.67E-01

10
Np 5.56E+04 1.63E+05 7.57E+04 6.07E+03 6.65E+04 1.33E+05 7.57E+04 4.50E+03
Nm 17 387 46.73 31.78 19 393 46.68 27.93

Vm (MB) 4.01E-01 3.06E+00 8.40E-01 2.21E-01 4.40E-01 4.80E+00 2.14E+00 9.88E-01
Tmax (s) 7.55E-01 3.30E-01

100
Np 8.28E+02 4.98E+05 7.57E+04 3.14E+04 6.30E+04 1.10E+05 7.57E+04 4.20E+03
Nm 11 373 41.18 30.85 16 357 41.77 22.66

Vm (MB) 5.28E-01 1.01E+01 2.65E+00 9.24E-01 9.76E-01 4.86E+00 3.78E+00 5.69E-01
Tmax (s) 9.25E-01 3.55E-01

Table 2.5: Detailed load balancing and communication information for the advection
test for CFL = 1, CFL = 10, and CFL = 100. Here Np is the number of interpolation
points, Nm = S +R is the number of sent (S) and received (R) messages, and Vm is the
total communication volume in megabytes (MB). Note how increasing the CFL number
causes load imbalance and increases the communication volume while it does not affect
the number of messages sent and received during a sub-iteration of the semi-Lagrangian
step.

a 3× 3× 3 macro-mesh. Figure 2.9 illustrates that our reinitialization algorithm, and in

particular the overlapping strategy presented in Algorithm 5, scales very well (cf. Table

2.6). In general we expect similar scaling results for any local, finite-difference based

calculations on Octrees that can efficiently utilize Algorithm 5.

Small Test
P 16 32 64 128 256 512
e 100% 115% 110% 105% 96% 80%

Large Test
P 128 256 512 1024 2048 4096
e 100% 95% 95% 89% 82% 67%

Table 2.6: Parallel efficiency of the total runtime for the reinitialization test based on
the lowest number of processes for each test.

58

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

16 32 64 128 256 512
10

−2

10
−1

10
0

10
1

10
2

P

T
m
a
x
(s
)

Total
Reinitialization
p4est nodes new
p4est refine
p4est partition

(a)

128 256 512 1024 2048 4096
10

−1

10
0

10
1

10
2

P

T
m
a
x
(s
)

Total
Reinitialization
p4est nodes new
p4est refine
p4est partition

(b)

Figure 2.9: Scalability of the reinitialization test for a small (left) and large (right) Octree
with roughly 21M and 337M grid points, respectively. The black dashed line represents
ideal scaling. Excellent results are obtained in both cases, illustrating the scalability of
the overlapping strategy (cf. Algorithm 5).

2.5 Application to the Stefan problem

2.5.1 Presentation of the problem

In this section we apply our approach to the study of the phase transition of a liquid

melt to a solid crystaline structure. In the case of a single component melt, and in the

absence of convection, the process is dominated by diffusion and can be modeled as a

Stefan problem. We decompose the computational domain Ω into two subdomains Ωl

and Ωs, separated by an interface Γ. The Stefan problem describes the evolution of the

temperature T , decomposed into Ts in the solid phase Ωs and Tl in the liquid phase Ωl,

59

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

as

∂Tl
∂t

= Dl∆Tl in Ωl, (2.11)

∂Ts
∂t

= Ds∆Ts in Ωs. (2.12)

The diffusion constants Dl and Ds can be discontinuous across the interface. We prescribe

homogeneous Neumann boundary conditions on the edge of the computational domain,

∇T ·n|∂Ω = 0. At the interface between the solid and the liquid phases, the temperature

is given by the Gibbs-Tompson boundary condition [72, 73]:

Ts = Tl = TΓ = −εcκ− εv(u · n), (2.13)

where κ is the local interface curvature, u is the velocity of the interface, n is the out-

ward normal to the solidification front and εc and εv are the surface tension and kinetic

undercooling coefficients. The interface velocity u is defined from the jump in the heat

flux at the interface,

(u · n) = −
[
Dl
∂Tl
∂n
−Ds

∂Ts
∂n

]
. (2.14)

We choose to use an adaptive time step with a CFL = 5, i.e.

∆t = 5 ∆xmin min(1, 1/max‖u‖), (2.15)

where ∆xmin is the size of the smallest cell of the forest. The general procedure to solve

the Stefan problem is presented in Algorithm 6 and we refer the interested reader to [74]

for the details of implementation. In implementing the numerical solver, we make use of

the popular PETSc [75] library for linear algebra and its parallel primitives, such as parallel

ghosted vector and scatter/gather operations, which simplifies the implementation.

60

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

1: Initialize the forest and φ given the initial geometry.
2: Initialize Ts in Ω+ and Tl in Ω−.
3: Reinitialize φ and compute the local interface curvature κ.
4: Compute T n+1

l and T n+1
s by solving the heat equations (2.11) and (2.12).

5: Extrapolate T n+1
s from Ω+ to Ω− and T n+1

l from Ω− to Ω+.
6: Compute the velocity field u according to (2.14).
7: Compute the time step dt following (2.15).
8: Evolve the interface and construct the new forest using the Semi-Lagrangian proce-

dure.
9: Interpolate T n+1

s and T n+1
l from the old forest to the new forest.

10: Go to 3 with n=n+1.

Algorithm 6: General procedure for solving the Stefan problem

2.5.2 Scalability

The implementation of the Stefan problem relies on the components described in the

previous sections, and it is therefore a good synthesis of the performance of the various

algorithms. We monitored the performance of the code over five time iterations, as

presented in Algorithm 6, for two different maximum resolutions. In both cases, the forest

is built on a 20× 20× 20 macro-mesh. The maximum tree resolution for the small test

is 9, leading to approximately 7M grid points, and the maximum resolution for the large

test is 11, corresponding to 105M grid points. The level-set function is reinitialized at

every time-step by applying 20 iterations of the reinitialization procedure. The results are

presented in figure 2.10, where “Solution_Extension” refers to extrapolation procedure

(see Algorithm 6 step 5). As expected from the results obtained for each component in

the previous sections, our implementation of the Stefan problem exhibits very satisfactory

scaling (cf. Table 2.7).

2.5.3 Numerical experiments

We now present the results from a large simulation of the Stefan problem on a 20×20×

20 macro-mesh and with level-10 Octrees. The Gibbs-Tompson anisotropy undercooling

61

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

16 32 64 128 256 512
10

−1

10
0

10
1

10
2

10
3

10
4

P

T
m
a
x
(s
)

Total
Semi-Lagrangian
Reinitialization
Solution Extension
Linear System Setup
Linear System Solve
p4est

(a)

128 256 512 1024 2048 4096
10

0

10
1

10
2

10
3

10
4

P

T
m
a
x
(s
)

Total
Semi-Lagrangian
Reinitialization
Solution Extension
Linear System Setup
Linear System Solve
p4est

(b)

Figure 2.10: Scalability of the Stefan problem for small (left) and large (right) Octrees
with roughly 7M and 105M grid points, respectively. The solid dashed line represents
perfect scaling. As expected from the scalability analysis of the individual components,
we observe excellent results, illustrating the potential of our algorithms.

Small Test
P 16 32 64 128 256 512
e 100% 95% 90% 82% 73% 64%

Large Test
P 128 256 512 1024 2048 4096
e 100% 98% 94% 89% 73% 61%

Table 2.7: Parallel efficiency of the total runtime for the Stefan test based on the lowest
number of processes for each test.

62

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

coefficients in equation (2.13) are defined as

εc = [ε1 (1 + α1 cos(3θ1)) + ε2 (1 + α2 cos(3θ2))]κ,

εv = 0,

with θ1 the angle between the normal to the interface n and the x-axis in the (x, y) plane

and θ2 the angle between n and the x-axis in the (x, z) plane. The coefficients

ε1 = 2 (sin(x) + cos(y) + 2) · 10−6, ε2 = 2 (sin(x) + cos(z) + 2) · 10−6,

α1 =
1

4
(cos(x) + sin(y) + 2), α2 =

1

4
(cos(x) + sin(z) + 2),

are used to enforce a variety of crystal shapes. The computation is initialized with twenty

spherical seeds of radius 1.5 · 10−3 placed randomly in the domain. We take the diffusion

coefficients Ds = Dl = 1 and set the initial temperatures T 0
l = −0.25 and T 0

s = 0.

The simulation was ran on 256 MPI processes for 6 hours and 30 minutes, resulting

in 396 time iterations. Visualizations of the final iteration are presented in figures 2.11

and 2.12. The final iteration of the simulation consisted of 167M grid points whereas a

uniform grid with the equivalent finest resolution would lead to 8.59 ·1012 grid points, i.e.

over eight trillion grid points. Our simulation used only 0.002% of the number of grid

points needed for the same simulation on a uniform grid. This application demonstrates

the ability of our approach to resolve small scale details, while accounting for long range

interactions.

63

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

(a) (b)

(c) (d)

Figure 2.11: Visualization of the computational mesh (a, c, d) and the temperature field
(b) for the Stefan problem simulation.

64

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

Figure 2.12: Time evolution of four of the crystals obtained for the Stefan problem
simulation. The snapshots represent, from left to right, iterations 96, 196, 296 and 396.

65

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

2.6 Summary

In this article we have presented parallel algorithms related to the level-set technology

on adaptive Quadtree and Octree grids using a domain decomposition approach. These

algorithms are implemented using a combination of MPI and the open-source p4est li-

brary. In order to preserve the unconditional stability property of the semi-Lagrangian

scheme while enabling scalable computations, we introduced an asynchronous interpola-

tion algorithm using non-blocking point-to-point communications, and demonstrated its

scalability.

In particular we showed that the scalability of the semi-Lagrangian algorithm, de-

pends on the CFL number. Great scalability is observed for intermediate CFL numbers,

e.g. CFL ∼ 10. At higher CFL numbers, however, the departure points are potentially

further dispersed across processors, which limits the scalability. This is because the do-

main decomposition technique used here is based on the Z-ordering of cells and does not

take the velocity field information into account. A possible remedy for this problem could

be assigning weights to cells based on some estimate of the grid structure after one step of

the advection algorithm, e.g. by using a forward-in-time integration of grid points. Such

an estimate could also reduce the number of semi-Lagrangian iterations. These ideas

are postponed for further investigations. We have also presented a simple parallelization

technique for the reinitialization algorithm based on the pseudo-time transient formula-

tion. Both the semi-Lagrangian and the reinitialization algorithms show good scalability

up to 4096 processors, the current limit of our account.

Finally, an application of these algorithms is presented in modeling the solidification

process by solving a Stefan problem. This application clearly illustrates the applicability

of our algorithms to complex multi-scale problems that cannot be treated practically using

the domain decomposition techniques on uniform grids. We believe that our findings can

66

Parallel Level-Set methods on adaptive tree-based grids Chapter 2

serve as a basis to simulating a wide range of multi-scale and free boundary problems.

67

Chapter 3

Solving the incompressible
Navier-Stokes equations on
Quad/Oc-tree grids

3.1 Introduction

The prediction of fluid motion around structures is crucial in many important appli-

cations in science and engineering. Examples include the classical study of the aerody-

namics of aircrafts or the hydrodynamics of ships, but also more modern applications

such as the fluid dynamics occurring during materials processing such as the solidification

of liquid metal alloys, the study of artificial swimmers or biological flows. One of the

difficulties of solving the equations of fluid dynamics is in dealing with non-trivial geome-

tries, which can be explicitly described (body-fitted approaches) or implicitly captured.

We focus here on strategies on Cartesian grids, where the geometry is implicitly captured

and refer the interested reader to the book by Peric and Ferziger [76] for discussions of

body-fitted approaches.

Much of the early work was concerned with compressible flows and strategies based on

Cartesian grids were first introduced on uniform grids by Purvis and Burkhalter [77], who

used a finite volume approach to solve the two-dimensional potential equation. Later,

68

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

researchers proposed solvers for the Euler equations in two [78, 79] and three [78] spatial

dimensions. One of the difficulties inherent to fluid flows is their spatial multiscale

nature. From boundary layers close to solid boundaries to the generation of vorticity

and turbulence, specific regions require a very fine level of detail while other areas can be

treated adequately with a coarser mesh. Researchers have proposed strategies to alleviate

this problem by designing numerical methods on spatially adaptive grids, which include

stretched grids (see e.g. [80, 81]), nested grids (see e.g. [82, 83, 84, 85]), or unstructured

meshes (see e.g. [86, 87, 88, 89, 90]). Large parallel codes have also been written and used

in commercial applications, e.g. TRANAIR, which is an adaptive Cartesian full potential

solver coupled with a viscous boundary layer model [91, 92] or NASA Cart3D [93], which

is a solver for the compressible Euler equations, with application to high-speed flows.

We are focusing in this paper on the incompressible Navier-Stokes equations on Octree

data structures, which provide the ability to refine/coarsen continuously in space1. These

approaches follow the general framework of the projection method of Chorin [94], which

leverages the Hodge decomposition of vector fields: first an intermediate velocity field is

computed, before applying a projection onto the divergence-free subspace (the interested

reader is referred to the excellent paper by Brown, Cortez and Minion [95] for a review of

different projection methods). In that vein, Popinet [12] introduced a solver on Octrees

using finite volume discretizations on the Marker And Cell (MAC) configuration [96]. In

this work, the size between adjacent cells is constrained by a 2:1 ratio, which reduces the

number of local grid configurations. In turn, this can be exploited to construct second-

order approximations of the projection step, albeit leading to a non-symmetric linear

system. Later, Losasso et al. introduced a solver for the incompressible Navier-Stokes

equations and for free surface flows [13]. This approach considers octrees for which the

ratio between adjacent cells is not constrained, allowing for increased adaptivity of the

1Note, however, the inherent memory and CPU overhead from encoding the tree structure.

69

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

computational mesh. The projection step uses a finite volume approach and leads to

a symmetric linear system. However, the Hodge variable is only first-order accurate,

which impacts on the accuracy of the velocity field. Losasso et al. [49] also introduced a

second-order solver for the Poisson equation, based on the work of Lipnikov [97], but did

not used that solver for fluid simulations. Later, Min and Gibou introduced a solver that

uses an approach based on finite differences instead of finite volumes [98]. The linear

system for the Hodge variable is non-symmetric but the solution is second-order accurate

with second-order accurate gradients, which in turn produces also second-order accurate

velocity fields.

However, one of the main challenges when considering a finite difference approach

on adaptive meshes is the potential loss of numerical stability. In [98], Min and Gi-

bou showed that the standard projection method cannot be guaranteed to be stable in

that framework; it was confirmed numerically and shown to be exacerbated by high size

ratios between adjacent cells and high Reynolds numbers. They also introduced the so-

called “orthogonal projection” method that guarantees numerical stability (even though

their method is not conservative) in the case where Dirichlet boundary conditions for

the velocity field are imposed. However, the numerical stability is not guaranteed for

inflow/outflow boundary conditions, which limits the range of applications of that ap-

proach. An approach based on the MAC grid configuration is more amenable to designing

stable projection solvers: following the standard proof of L2-stability, one can show that a

minus transpose relationship of the discrete gradient and divergence operators is enough

to guarantee numerical stability in a weighted L2-norm. Such a constraint can be en-

forced in a MAC grid sampling of the data, even if no constraint is imposed on the grid;

a difference from a node-based approach. In this paper, we present a projection method

that is stable, using the Poisson solver introduced in [49] and deriving the numerical

approximations of gradient and divergence operators to ensure numerical stability. A

70

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

MAC grid discretization also has the desirable property of being conservative.

Another challenge is the representation of the interface between the fluid and the

irregular boundaries, and more specifically how to impose the boundary conditions in an

implicit framework. A common approach is to use Peskin’s immersed boundary method

[99, 100]. However, we seek to avoid the smoothing of the solution induced by a delta

formulation and the subsequent decrease in accuracy in the L∞-norm near the boundaries;

thus we represent the location of the interface implicitly with a level-set function [4] and

impose the boundary conditions sharply on the interface. Several strategies have been

introduced, e.g. the rasterization approach used in Losasso et al. [13] or the Heaviside

formulation of Batty et al. [101]. However, Ng et al. showed that treatments such as these

lead to a method that does not converge in the L∞-norm [102] while a finite-volume/cut-

cell approach in a level-set framework produces accurate results. We use that approach.

The last challenge in solving the incompressible Navier-Stokes equations is the time

step restriction usually resulting from the discretizations of the advection (CFL condition)

and the viscous (∆t = O(∆x2)) terms. We circumvent those issues by employing a BDF

semi-Lagrangian scheme [23] for the advection term and by treating the viscous term

implicitly. Since we opt for a MAC layout, producing a compact accurate implicit solver

for the viscous term is not straightforward, but it can be done with a finite volume

approach where the control volumes are the elements of a Voronoi partition, as discussed

in [103].

71

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

3.2 The numerical method

3.2.1 The projection method

We consider a computational domain Ω = Ω− ∪Ω+, where the solution to the incom-

pressible Navier-Stokes equations is computed in Ω−. The boundary of Ω− is denoted by

Γ and that of Ω is denoted by ∂Ω. The incompressible Navier-Stokes equations, in the

case of a fluid with uniform viscosity µ and uniform density ρ, are written as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u + f in Ω−, (3.1)

∇ · u = 0 in Ω−, (3.2)

where t is the time, u = (u, v, w) is the velocity field, p is the pressure and f includes

the external forces such as gravity. The classical approach to solve these equations was

introduced by Chorin in 1967 [94] and is commonly referred to as the projection method.

The first step of the method is to compute an intermediate velocity field u∗ using the

momentum equation (3.1). We choose to ignore the pressure gradient term in that step

and we refer the reader to [95] for different variants of the projection method. If the

temporal derivative was discretized with a forward Euler step, the first step would be

solving for u∗ in:

ρ

(
u∗ − un

∆t
+ un · ∇un

)
= µ∆u∗ + f . (3.3)

The second step is based on the Helmoltz-Hodge decomposition, which states that a

twice continuously differentiable bounded vector field can be decomposed into a curl-free

component and another divergence-free component. This means that we can decompose

u∗ as

u∗ = un+1 +∇Φ, (3.4)

72

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

where Φ will be refered to as the Hodge variable. Applying the divergence operator to

this equation yields:

∇ · ∇Φ = ∇ · u∗. (3.5)

Therefore, in order to compute the Hodge variable one can solve a simple Poisson equa-

tion. Once Φ has been computed, the intermediate velocity field u∗ is projected onto the

divergence-free subspace to obtain un+1:

un+1 = u∗ −∇Φ. (3.6)

Since we are solving for the intermediate velocity field implicitly, Chorin’s projection

method requires the inversion of two linear systems, resulting from the discretization of

equations (3.3) and (3.5). We now present the boundary conditions associated with those

two steps before describing the discretization of the inertial and temporal terms.

3.2.2 Enforcing the boundary conditions

We focus on single phase flows around rigid objects, thus the possible boundary

conditions are the no-slip condition at the interface between the fluid and objects and

the influx/outflux conditions at the boundaries of the computational domain. The no-slip

condition translates into a Dirichlet boundary condition on the velocity field

u|Γ = u|b.c., (3.7)

where u|b.c. is given and is zero in the case of a static object and equal to the velocity

of the object if the object is in motion. From equation (3.4) we deduce the boundary

73

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

condition to enforce on u∗ when solving for the intermediate velocity field:

u∗|Γ = u|b.c. +∇Φn+1
|Γ . (3.8)

When solving equation (3.5) for the Hodge variable, we enforce a no-flux condition on

the boundaries where u|b.c. is prescribed, i.e.,

(∇Φ · n)|Γ = 0, (3.9)

where n is the outward normal vector to the interface between the fluid and the solid.

Note that this makes sure that the boundary condition on the normal component of u is

respected, however spurious slip can be introduced. Note that Φn+1 is not known when

we solve for the intermediate velocity field u∗. We use the field computed at the previous

time step Φn as an approximation and solve for u∗ and Φ iteratively until convergence

of both fields before moving on to the next time step. In practice we observed that Φn

is a good initial guess for Φn+1 and very few to no iterations are required, as discussed

in sections 3.4.1 and 3.4.1.

The influx and outflux boundary conditions on ∂Ω are implemented through Neumann

boundary conditions. Similarly to the Dirichlet case, the boundary condition on the

intermediate velocity field u∗ should be

(∇u∗ · n)|∂Ω = (∇u · n)b.c. + (∇∇Φn+1 · n)|∂Ω, (3.10)

while the boundary condition enforced when solving for the Hodge variable becomes

a Dirichlet boundary condition to satisfy the compatibility criteria for the boundary

conditions, with the enforced value being linked to the pressure (see equation (3.14)).

However, as we will explain later, the Hodge variable is known to second-order accuracy

74

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

only, making the approximation of the double gradient term inaccurate. In practice,

this term is nothing but a correction term and approximating the Neumann boundary

condition on the intermediate velocity field by (∇u∗ · n)|∂Ω = (∇u · n)b.c. is reasonable

and leads to convergent results in the velocity field.

3.3 Discretization and stability on the quadtree data

structure

3.3.1 The level-set method and the Marker And Cell method

on quadtree

The level-set method

We use the level-set framework to represent the interface between the fluid and the

solid objects, thus enabling a sharp discretization of the boundary conditions: the in-

terface Γ is represented by the zero contour of the so-called level-set function, generally

denoted by φ, Γ = {(x, y)|φ(x, y) = 0}. Following the standard notations, we define

Ω− = {(x, y)|φ(x, y) < 0} to be the fluid subdomain and Ω+ = {(x, y)|φ(x, y) > 0} to be

the solid subdomain.

If infinitely many level-set functions have a zero-contour matching Γ, it is convenient

to use a signed distance function to represent the interface. The level-set function is

therefore reinitialized to a signed distance function at every time iteration with a fast

marching algorithm. The fast marching algorithm is initialized by iterating a second-

order Total Variation Diminishing Runge-Kutta scheme a few times on the reinitialization

equation

∂φ

∂τ
+ sign(φ) (|∇φ| − 1) = 0,

75

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

where τ is a fictitious time. The fast marching method is described in detail in [22, 21]

and the iterative scheme can be found in [14]. We chose this combination of methods

to preserve the location of the interface accurately and propagate the information to the

rest of the domain rapidly.

The Marker And Cell data layout

The classical approach for direct numerical simulation of the Navier-Stokes equations

on uniform mesh is to use the Marker And Cell (MAC) [96] layout for the data. The

Hodge variable is thus located at the center of the cells, the x-velocity at the center of

the vertical faces, the y-velocity at the center of the horizontal faces and the level-set

values on the vertices, as shown in figure 3.1. While the MAC layout has been widely

applied to the incompressible Navier-Stokes equations and can easily be proven to lead to

a stable discretization of the projection method on uniform meshes, its implementation

on quadtree data structures is more challenging.

Figure 3.1: Layout of the data on the quadtree mesh, showing the pressure (), the
horizontal velocity (), the vertical velocity () and the level-set values ().

The first difficulty encountered with this layout consists in interpolating the quantities

76

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

defined on the faces and at cell centers. The standard quadratic interpolations can be

used to find a second-order accurate approximation of the vertex values at any point since

a square can always be defined with vertices, but this is not true for the velocity and

Hodge values on an adaptive MAC grid. To overcome this complication, we use weighted

quadratic least squares interpolations. This means that every time an interpolation is

performed, a neighborhood of points (either face centers or cell centers) must be gathered

and a small 6 by 6 (10 by 10 in three dimensions) symmetric positive definite system must

be inverted. We use a Cholesky decomposition for this purpose. We choose to gather

all direct and second order neighbors to create the stencil to make sure that the system

is overdetermined, where the second order neighbors are defined as the neighbors of the

neighbors. The general procedure to gather the neighbors is presented in algorithm 7.

We choose the weights to be wi = 1√
(x−xi)2+(y−yi)2

, where (x, y) are the coordinates of the

point where the value is interpolated at and (xi, yi) are the coordinates of the neighbor

point number ni involved in the construction of least squares linear system.

The result is a very costly interpolation procedure that must be used sparingly (albeit

one that is intrinsically embarrassingly parallelizable). Taking this into account, we

interpolate the velocities from the faces to the nodes after each iteration to minimize the

cost of the interpolations in the Semi-Lagrangian scheme, which we will present in the

next section. The interpolations on node-based values are computationally inexpensive

and straightforward, as explained in [14].

Extrapolating face and cell centered quantities

A second obstacle resides in the extension of quantities across the fluid-solid interface.

A second-order iterative scheme like that applied to the reinitialization equation can be

used for values defined on the vertices, however the layout of faces and cell centers values

is too cumbersome for a simple implementation. We designed a geometric extrapolation

77

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

let (x,y) be the coordinates where the value is to be interpolated
let ngbd be the list of neighboring cells, initially empty
find the cell Cxy containing (x,y) and add it to ngbd
for dir ∈ {−1, 1} do

find the neighbor cells of Cxy in the direction (dir, 0) and add them to ngbd
find the neighbor cells of Cxy in the direction (0, dir) and add them to ngbd

end for
let N be the length of ngbd
for n < N do

find the neighbors of ngbd(n) in all four directions
add them to ngbd if they are not already in ngbd

end for

Algorithm 7: Algorithm to gather the neighborhood of points required by the least
squares interpolation procedures.

procedure to circumvent this challenge. For each point located in the solid subdomain,

we compute the projection of the point on the interface and follow the normal to the

interface in the negative subdomain to gather well-defined values. We then compute

the extrapolated value by evaluating at the extrapolation point a second degree Newton

polynomial, built from the values gathered and the boundary condition.

Discretizations, boundary conditions and constraint on the grid

The finite difference discretizations on the quadtree data structure present two chal-

lenges. The first challenge comes from the grid structure and the existence of T-junction

nodes, i.e. nodes for which there is a missing neighbor node in one of the Cartesian

directions. The second challenge is the presence of an irregular interface. Both examples

are depicted on figure 3.2.

The T-junctions problem is solved by computing a ghost neighbor vg in the Cartesian

direction where a node is missing, as explained in [14]. Given a node-sampled function

φ : {vi} → R, we define φg = φ(vg) as

78

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.2: Mesh configurations requiring a special treatment for the finite difference
discretizations.

φg =
s3φ4 + s4φ3

s3 + s4

− s3s4

s1 + s2

(
φ1 − φ0

s1

+
φ2 − φ0

s2

)
.

This compact discretization provides a third order accuracte interpolation of φg. The

first and second order derivatives of φ in the x-direction are then obtained as

Dxφ0 =
φg − φ0

sg
· s5

s5 + sg
+
φ0 − φ5

s5

· sg
s5 + sg

,

Dxφ0 =
φg − φ0

sg
· 2

s5 + sg
− φ0 − φ5

s5

· 2

s5 + sg
.

The treatment of Dirichlet boundary conditions on the irregular interface is explained

in [104] and necessitates to locate the interface between two neighbor nodes (using linear

interpolations). Consequently we impose uniformity of the quadtree close to the interface.

Following the notations introduced in figure 3.2, we compute the distances sx and sy by

constructing a quadratic interpolant of the level-set function respectively in the x and

y directions and computing the roots of the interpolant. The values φx and φy on the

interface being prescribed, we can then define

79

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.3: Geometrical configuration for the finite volume discretization close to an
irregular interface with Neumann boundary conditions.

Dxxφ0 =
2

sx + s3

·
(
φ3 − φ0

s3

− φ0 − φx
sx

)
,

Dyyφ0 =
2

sy + s1

·
(
φ1 − φ0

s1

− φ0 − φy
sy

)
.

Neumann boundary conditions on the irregular interface are handled with a finite

volume approach. Provided that the mesh is uniform close to the interface, the control

volume V around a node is a square. The situation is represented in figure 3.3 together

with the notations we use. We can then discretize a poisson equation with the Neumann

boundary condition (∇φ · n)|Γ as

−∆φ = f ⇒
∑
i

li
φ0 − φi

δ
= Af + lΓ(∇φ · n)|Γ,

where δ is the size of the smallest cells and A is the area enclosed by the control volume

V .

Note that since the mesh is constrained to be uniform close to the irregular interface,

80

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

the geometric configuration is the same whether we are considering node, face or cell

centered values. Therefore, the treatment of the boundary conditions we just described

aslo holds for the discretization of the momentum equation and of the projection step.

3.3.2 Discretization of the momentum equation

Discretization of the advection term

We discretize the left-hand side of equation (3.3) for the intermediate velocity u∗ using

a semi-Lagrangian approach and a second-order Backward Difference Formula scheme,

as described in [98, 105], with an adaptive time step. The general term corresponding to

the advection of a field u by a velocity field v,

∂u

∂t
+ v · ∇u,

can be discretized at time tn+1 by interpolating u along the characteristic curve of

the equation through un+1. The characteristic curve through un+1 is followed backward

in time to find the departure points xnd and xn−1
d as

x̂ = xn+1 − ∆tn
2
· vn(xn+1),

xnd = xn+1 −∆tn · vn+ 1
2 (x̂)

and

81

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

x̄ = xn+1 −∆tn · vn(xn+1),

xn−1
d = xn+1 − (∆tn + ∆tn−1) · vn(x̄)

where ∆tn−1 and ∆tn are the adaptive time steps respectively from tn−1 to tn and

from tn to tn+1. The intermediate velocity vn+ 1
2 (x̂) is interpolated from the velocity fields

at time tn−1 and tn as

vn+ 1
2 (x̂) =

2∆tn−1 + ∆tn
2∆tn−1

vn(x̂)− ∆tn
2∆tn−1

vn−1(x̂).

We then interpolate u at the departure points xn−1
d and xnd from the values stored at

the vertices with quadratic interpolation procedures2 and we denote them un−1
d and und .

The advection equation formulated along a characteristic curve becomes

∂u

∂t
+ v · ∇u =

du

ds
(3.11)

where the characteristic curve has been parametrized by (x(s), t(s)). Solving for

equation (3.11) to first order yields the familiar scheme

∂un+1

∂s
≈ un+1 − und

∆tn
.

Note that in the context of the level-set function advection, the advection term is

equal to zero and we have the familiar update un+1 = und . We choose to discretize (3.11)

with a second order backward difference scheme, and therefore the time derivative of u

2Although one should replace quadratic interpolations by multilinear ones when a new maximum is
introduced, we have only used quadratic interpolations in all our examples without encountering any
instabilities.

82

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

along the characteristic is approximated by

∂un+1

∂s
≈ α

un+1 − und
∆tn

+ β
und − un−1

d

∆tn−1

. (3.12)

Expanding un−1
d and und into

un−1
d = un+1 − (∆tn + ∆tn−1)∂su

n+1 +
(∆tn + ∆tn−1)2

2
∂2
su

n+1,

und = un+1 −∆tn∂su
n+1 +

∆t2n
2
∂2
su

n+1

and replacing them in equation (3.12) leads to

α

(
∂su

n+1 − ∆tn
2
∂2
su

n+1

)
+

β

∆tn−1

(
∆tn−1∂su

n+1 − (∆tn−1∆tn +
∆t2n−1

2
)∂2
su

n+1

)
= ∂su

n+1

⇒ (α + β)∂su
n+1 − (α

∆tn
2

+ β∆tn + β
∆tn−1

2
)∂2
su

n+1 = ∂su
n+1

⇒


α + β = 1

α∆tn
2

+ β∆tn + β∆tn−1

2
= 0

⇒


α = 2∆tn+∆tn−1

∆tn+∆tn−1

β = − ∆tn
∆tn+∆tn−1

The discretization of the left-hand side of equation (3.3) for the intermediate velocity

u∗ using a semi-Lagrangian approach and a second-order Backward Difference Formula

83

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

scheme with an adaptive time step is therefore

ρ

(
α

u∗ − und
∆tn

+ β
und − un−1

d

∆tn−1

)
= µ∆u∗ + f . (3.13)

This temporal discretization is unconditionally stable, lifting any restriction on the

time step. From the above discretization (3.13) and the Hodge decomposition (3.4), the

pressure can then be recovered as

p = α
ρ

∆tn
Φ− µ∆Φ. (3.14)

Implicit discretization of the viscous term

The first step of the projection method consists in solving the momentum equation

without the pressure gradient term (3.3). Note that for a fluid with uniform viscosity the

two (respectively three in three dimensions) components of the velocity field are decou-

pled, therefore we can solve for the horizontal and the vertical components separately.

A finite volume approach based on Voronoi control volumes, as introduced in [103] and

applied in [106] in the context of Chimera grids, provides a compact implicit second-

order solver for data localized either at the center of the vertical or horizontal edges of a

non-graded quadtree.

We propose a finite volume solver where the control volumes are the cells of the

Voronoi diagram built with the data points. The Voronoi diagram of a set of data points,

or seeds, is the set of Voronoi cells such that the voronoi cell of a seed consists of all the

points closer to that seed than to any other. See figure 3.4 for an example of a Voronoi

cell. We construct the Voronoi cells in parallel using a simple geometric algorithm we

developed in two dimensions and exploiting the software Voro++ [107] in three dimensions.

In the latter, for each point we start by gathering the potential voronoi neighbors before

84

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

calling Voro++ on this reduced set. This drastically improves the computation time and

enables simple and very efficient parallelization of the procedure, since it is intrinsically

embarassingly parallel.

Figure 3.4: Example of a Voronoi cell for a horizontal velocity data point u0. We call di
the distance between the data point u0 and a neighbor data point ui which is involved in
the construction of the Voronoi cell, and si the length of the edge (or area of the surface
in three dimensions) connecting u0 and ui.

The Voronoi diagram has desirable properties for a second-order discretization. It

connects data points though an edge (or face in three dimensions) that is the bissector

line (or bisector plane) of the segment joining the two data points. While this corresponds

to a second-order accurate discretization of the flux at the edge on uniform grids, it is

not necessarily the case on quad/oc-trees. However, the flux is orthogonal to the edge (or

face) connecting two data points and numerical examples on highly arbitrary grids show

second order accuracy. Furthermore, the Voronoi diagram is a tessellation of the plane.

Finally, we build the Voronoi diagram inside the fluid only so that the edges (or faces) of

the Voronoi cells next to the interface lie on the interface, facilitating the discretization

of Neumann boundary conditions. In two dimensions, we enforce this directly on the

Voronoi representation by cutting the Voronoi cells close to the interface by a plane (see

85

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

configuration in figure 3.3). The location of the plane is obtained by finding the points

on the edges of the cell where the level-set function is zero. In three dimensions, we use

the Voro++ software far from the interface and construct the Voronoi cells by hand close

to the interface with the direct extension of the two dimensional algorithm, knowing that

the mesh is uniform close to the interface.

The momentum step (3.3) of the projection method with the left-hand side discretized

can be restated in a finite volume formulation as

∫
C
ρ

(
∂u

∂t
+ u · ∇u

)
=

∫
C
µ∆u

=⇒ ρVol(C)
(
∂u

∂t
+ u · ∇u

)
= µ

∫
∂C
∇u · n, (3.15)

where C is the Voronoi cell, Vol(C) its volume, ∂C its contour and n its outer normal.

We can then discretize the right-hand-side of (3.15) for data point u0 as

µ

∫
∂C
∇u · n = µ

∑
i∈Voro(u0)

si
ui − u0

di
, (3.16)

where Voro(u0) is the set of neighbors of u0 involved in its Voronoi cell, di is the distance

between the two data points u0 and ui, and si is the length of the edge (or the area of

the face in three dimensions) connecting the two data points (see figure 3.4). The system

resulting from this Voronoi diagram based solver is obviously symmetric positive definite

and numerical experiments indicate second-order accuracy on highly non-graded meshes

(figure 3.5) and with both Dirichlet and Neumann boundary conditions on an irregular

interface (figure 3.6).

Neumann boundary conditions are implemented naturally by integrating (∇u · n)|b.c

on the edges (or faces) of the Voronoi cells in contact with the boundary. We enforce

86

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

number of recursive splits L∞ error order
0 3.21 · 10−2 -
1 1.76 · 10−2 0.87
2 5.60 · 10−3 1.65
3 1.53 · 10−3 1.87
4 3.97 · 10−4 1.95

Figure 3.5: Convergence of the Voronoi diagram based Poisson solver on an arbitrary
grid. The top left figure shows the quadtree mesh and the top right figure shows the
corresponding Voronoi diagram for the x-velocity. The initial tree is level 1/8, with a
maximum difference of 7 levels between two adjacent cells. The test function is u(x, y) =
cos(x) sin(y). The successive trees are obtained by recursively splitting all the cells of the
initial tree and the convergence of the solver is presented. The Voronoi cells on the edge
of the domain are missing on the top right figure because Dirichlet boundary conditions
are enforced, so they do not need to be computed. Even on this highly non-graded mesh,
the solver is second-order accurate.

87

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

quadtree level Neumann Dirichlet
(min / max) L∞ error order L∞ error order

4/7 1.45 · 10−3 - 1.48 · 10−3 -
5/8 3.05 · 10−4 2.25 3.92 · 10−4 1.91
6/9 7.48 · 10−5 2.03 1.01 · 10−4 1.96
7/10 1.88 · 10−5 1.99 2.54 · 10−5 1.98
8/11 4.81 · 10−6 1.97 6.39 · 10−6 1.99

Figure 3.6: Convergence of the Voronoi diagram based Poisson solver. The top left fig-
ure shows the quadtree mesh and the top right figure shows the corresponding Voronoi
diagram for the x-velocity. The domain is Ω = [−1, 1]2\C{(0, 0), 0.25}, and the test func-
tion is u(x, y) = cos(x) sin(y). We successively enforce Dirichlet and Neumann boundary
conditions on the edge of the computational domain and on the interface and report
the respective results in the table. A level n quadtree means it has undergone n re-
cursive splits, so that the equivalent uniform grid would have a resolution of 2n × 2n.
The Voronoi cells on the edge of the domain are missing on the top right figure because
Dirichlet boundary conditions are enforced, so they do not need to be computed. The
solver is second-order accurate.

88

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Dirichlet boundary conditions through a finite difference approach as explained in [104].

Consequently, we impose uniformity of the quadtree grid close to the interface. The linear

system resulting from this discretization is solved with the numerical solvers provided by

the Petsc libraries [75, 108, 109]. We choose to use the Bi-Conjugate Gradient Stabilized

iterative solver in combination with the Hypre multigrid preconditioner. For the case of

Neumann boundary conditions on both the interface and the edge of the computational

domain, the linear system is ill-posed and we remove the nullspace from the matrix using

the Petsc procedures [108].

3.3.3 Discretization of the projection step

The projection step is resolved by solving the poisson equation (3.5) to compute

the value of the Hodge variable Φ at the center of the cells. Such a discretization was

introduced in [13], which produced first-order accurate solutions for the Hodge variable.

Later [49] presented a second-order accurate Poisson solver for the Hodge variable, but

did not apply it to the projection step. Here, we use the Poisson solver of [49] and show

how to define a discrete divergence operator to ensure numerical stability.

Second order discretization of the flux of the Hodge variable on the faces

We call ci the quadtree cell containing Φci , and we will use the notations presented

on figure 3.7 where Φc0 is at the center of the large cell c0, NgbL(c0) are all the indices

of the small cells connected with the same large cell in the left direction (e.g. in the case

presented, NgbR(c2) = NgbL(c0) = {1, 2, 3}), Sci is the length of the edge connecting

c0 and ci, and δfci is the signed distance between the center of ci and the face f where

∇Φ|f ·nf is being discretized, nf being the outer normal to the face f . Hence, if the face

f is to the left of ci then δfci > 0, and δfci < 0 if f is to the right of ci. Note that we are

89

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.7: Nomenclature used in the discretization of the projection step (section 3.3.3).

using a finite volume approach on cartesian grid, so for a vertical face only ∂xΦ needs to

be discretized. First, we define the average distance:

∆f =
∑

i∈NgbL(c0)

sci
sc0

(δfc0 − δfci) =
∑

i∈NgbL(c0)

sci
sc0

∆i.

We then define the flux of Φ on the left face f of c0 as:

∇Φ|f · nf = (∂xΦ)c0,L =
∑

i∈NgbL(c0)

sci
sc0

(
Φc0 − Φci

∆f

)
.

From our notations comes (∂xΦ)ci|i∈NgbL(c0),R = −(∂xΦ)c0,L, i.e. the discretization is

symmetric and the flux is conserved (note that the normals are pointing in opposite

directions, cancelling the minus sign when computing the flux). Intuitively, including the

neighbors in the discretization of the gradient allows for compensating the orthogonal

component. We now show that this discretization is second-order accurate at the center

90

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

of the face f of cell ck. We call ηik the signed distance between the center of ci and the

center of ck. Then,

(∂xΦ)ck,R =
1

sc0∆f

∑
i∈NgbR(ck)

sci(Φc0 − Φci)

=
1

sc0∆f

∑
i∈NgbR(ck)

sci(Φ|f + δfc0∂xΦ|f + ηk0∂yΦ|f − Φ|f − δfci∂xΦ|f

− ηki∂yΦ|f + o(δfci , ηki))

=
1

sc0∆f

∑
i∈NgbR(ck)

sci (∆i∂xΦ|f + ηi0∂yΦ|f + o(δfci , ηki))

= ∂xΦ|f +
∂yΦ|f
sc0∆f

∑
i∈NgbR(ck)

sciηi0 + o(δfci , ηki),

and writing yi the ordinate of the center of cell ci, and αi the ordinate of the center of

the edges of the cells,

∑
i∈NgbR(ck)

sciηi0 =
∑

i∈NgbR(ck)

sci(y0 − yi)

= sc0y0 −
n∑
i=0

1

2
(αi+1 − αi)(αi+1 + αi)

= sc0y0 −
1

2

n∑
i=0

(α2
i+1 − α2

i)

= sc0y0 −
1

2
(α2

n − α2
0)

= sc0y0 −
1

2
(αn − α0)(αn + α0)

= sc0y0 − sc0y0

= 0.

This proves that the proposed discretization is second-order at the center of the cell

faces, and therefore the Poisson solver for the cell-centered data is second-order accurate.

91

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Neumann boundary conditions are enforced naturally on the irregular interface with a

finite-volume discretization while Dirichlet boundary conditions are applied through a

finite difference approach, making sure that the mesh is uniform close to the interface

[110, 111, 104]. Again, the resulting linear system is solved using the Petsc libraries with

a Bi-Conjugate Gradient Stabilized iterative solver combined with the Hypre multigrid

preconditioner. The cost of assembling the linear system, which scales linearly with the

number of cells, is negligible compared to that of computing the solution.

Discretization of the divergence operator and stability of the projection step

We modify our notation slightly (see figure 3.7 to clearly distinguish between the set

of all faces ΩF and the set of all cells ΩC) to express the gradient and the divergence as

linear operators. We now call Nf(c) the set of the faces in contact with cell c and Nc(f)

the set of the cells in contact with the largest direct cell neighbor of face f . Furthermore,

we define

Af =
1

2

∑
ci∈Nc(f)

sci ,

which is equivalent to the sc0 from the previous section, but with these new notations

we abolish the distinction between the largest cell and the smaller ones. We can then

rewrite ∆f and the gradient operator for any face f ∈ ΩF as:

∆f =
1

Af

∑
ci∈Nc(f)

sci|δfci|

∇Φ|f =
1

Af

∑
ci∈Nc(f)

sciΦci

∆f

δfci
|δfci |

(3.17)

Our goal is to design the discrete divergence operator D as the minus transpose of

92

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

the discrete gradient operator G for some given metrics LF and LC :

LFG = −(LCD)T

This leads to the definition of the discrete divergence operator for any cell c ∈ ΩC

∇ · u∗|c = − 1

∆c

∑
fi∈Nf(c)

sfiui
Afi

δfic
|δfic|

, (3.18)

where ∆c is the size of cell c. We now prove that the projection method is stable on

non-graded adaptive cartesian mesh for this choice of operators. We first clarify the

expressions for LF and LC , and we then make use of the adjoint property to demonstrate

the stability of the method.

Equations (3.17) and (3.18) are the definitions for the discrete linear operators G :

ΩC → ΩF and D : ΩF → ΩC . The coefficients for those two operators are given by the

following expressions:

Gfc =
1

Af

sc
∆f

δfc
|δfc|

if c ∈ Nc(f), 0 otherwise,

Dcf = − 1

∆c

sf
Af

δfc
|δfc|

if f ∈ Nf(c), 0 otherwise.

We then define the diagonal operators

LSC
: ΩC → ΩC , LSF

: ΩF → ΩF ,

L∆C
: ΩC → ΩC , L∆F

: ΩF → ΩF ,

93

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

with respective diagonal coefficients

(LSC
)cc =

1

sc
, (LSF

)ff =
1

Sf
,

(L∆C
)cc = ∆c, (L∆F

)ff = ∆f .

From these definitions, it follows that:

(L∆F
GLSC

)fc =
1

Af

δfc
|δfc|

= −(L∆C
DLSF

)cf

and therefore the operator L∆F
GLSC

is the minus transpose of L∆C
DLSF

. Written in a

more compact form,

LFG = −(LCD)T ,

where LF = L−1
SF
L∆F

and LC = L−1
SC
L∆C

. From equation (3.6) we know that the discrete

fields u∗ and Φ satisfy

‖un+1‖LF
= ‖u∗ −GΦ‖LF

= ‖u∗‖LF
− 2 < u∗|LF |GΦ > +‖GΦ‖LF

, (3.19)

where || · ||LF
is the norm associated to the metric LF and < · > is the standard scalar

product. We can make use of the minus transpose property to rewrite the right-hand

side as

< u∗|LF |GΦ >= − < LCDu∗|Φ >

From equation (3.5) we know that

DGΦ = Du∗

94

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

and therefore

< u∗|LF |GΦ >= − < LCDGΦ|Φ >

Using the minus transpose property again gives

< u∗|LF |GΦ >= − < GΦ|LF |GΦ >= ‖GΦ‖LF

We now plug the above expression back into equation (3.19) to find

‖un+1‖LF
= ‖u∗ −GΦ‖LF

= ‖u∗‖LF
− 2‖GΦ‖LF

+ ‖GΦ‖LF

= ‖u∗‖LF
− ‖GΦ‖LF

,

which implies that ||un+1||LF
≤ ||u∗||LF

and therefore the proposed projection is stable

in the ‖·‖LF
norm. Since we are working in finite dimension, we can conclude that our

method is stable.

Numerical validation of the projection step

In order to verify numerically the stability of the projection method presented in the

previous section, we consider the velocity field U∗ = (u∗, v∗) with

u∗(x, y) = sin(x) cos(y) + x(π − x)y2(
y

3
− π

2
),

u∗(x, y) = − cos(x) sin(y) + y(π − y)x2(
x

3
− π

2
),

in the domain Ω = [0, π]2. This vector field can be decomposed into U∗ = U+∇φ where

U is the divergence-free field (sin(x) cos(y),− cos(x) sin(y)) and φ = (x
3

3
− πx2

2
)(y

3

3
− πy2

2
).

We apply our projection method iteratively on the highly non-graded mesh depicted in

figure 3.8 and monitor the evolution of the x- and y- components of ‖Un−U‖∞ in figure

95

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

3.9. As expected, the projection is stable.

Figure 3.8: Highly non-graded mesh used to test the stability of the projection step.

We then employ the described method to solve the Poisson equation ∆Φ = f on

the domain Ω = [0, π]2 \ C{(π
2
, π

2
), 0.8} with f(x, y) = −2 cos(x) sin(y) and compare the

results with the exact solution Φexact(x, y) = cos(x) sin(y). We enforce Neumann and

Dirichlet boundary conditions and monitor the second-order convergence of our solver,

given in figure 3.10.

3.4 Numerical examples

In this section we propose some validation examples in two and three spatial dimen-

sions and demonstrate the efficiency of our solver. For each example, we also provide the

runtime on an Intel i7-2600 CPU with 16 GiB RAM, compiled with gcc 4.8.2 on a linux

kernel 3.13.0-24 and using the Petsc library 3.5.1 and the Voro++ library 0.4.6.

96

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

0 20 40 60 80 100

10
−1

10
0

Number of iterations

M
a
x
im

u
m

 e
rr

o
r

u

0

1

2

3

4

0 20 40 60 80 100
10

−1

10
0

Number of iterations

M
a
x
im

u
m

 e
rr

o
r

v

0

1

2

3

4

Figure 3.9: Left: x-component of ‖Un−U‖∞. Right: y-component of ‖Un−U‖∞. The
numbers correspond to the number of recursive splitting applied to all the cells of the
original mesh 3.8.

quadtree level Neumann Dirichlet
(min / max) L∞ error order L∞ error order

4/7 7.82 · 10−3 - 4.62 · 10−3 -
5/8 1.95 · 10−3 2.00 1.18 · 10−3 1.97
6/9 4.82 · 10−4 2.02 2.98 · 10−4 1.99
7/10 1.20 · 10−5 2.01 7.49 · 10−5 1.99
8/11 3.00 · 10−6 2.00 1.88 · 10−5 2.00

Figure 3.10: Convergence of the cell-based poisson solver. The test solution is f(x, y) =
cos(x) sin(y) and the computational domain is Ω = [0, π]2 \ C{(π

2
, π

2
), 0.8}. The middle

column presents the results for Neumann boundary conditions on the domain boundaries
and on the interface, and the right column shows the results for Dirichlet boundary
conditions on both the interface and the domain boundaries. We observe second-order
convergence.

97

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

3.4.1 Examples in two spatial dimensions

We start by analysing the convergence of the solver on an analytic example before

testing it on three classical benchmark problems: the driven cavity problem, the vortex

shedding past a cylinder and the drag on a periodically oscillating cylinder.

Convergence analysis

Figure 3.11: Computational domain and coarsest mesh used for example 3.4.1. The
minimum and maximum resolutions of the quadtree are respectively 3 and 7. The zoom
clearly depicts a non-graded part of the mesh.

In this first example we consider the following analytical solution for the Navier-Stokes

equation:

u(x, y) = cos(t) sin(x) cos(y)

v(x, y) =− cos(t) cos(x) sin(y)

p(x, y) = 0

98

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

The geometry, depicted in figure 3.11, is defined by Ω− = {(x, y) ∈ [0, π]2| sin(x) sin(y) ≥

.2} reinitialized to a distance function, and we set µ = 1, ρ = 1. We apply the appropriate

forcing term

Fx =−ρ sin(t) sin(x) cos(y) + ρ cos2(t) sin(x) cos(x) + 2µ cos(t) sin(x) cos(y)

Fy = ρ sin(t) cos(x) sin(y) + ρ cos2(t) sin(y) cos(y)− 2µ cos(t) cos(x) sin(y)

and we monitor the convergence of the solver as the mesh is refined. The simulations

are run until a final time tf = π
3

with an adaptive time step defined at each iteration by

∆tn = ∆x
max‖un‖ . The whole simulation requires 9.61 seconds for a mesh of level 3/7.

A profiling of the first iteration of the solver on this example for a mesh of level 5/9

and with all parallel optimizations deactivated is presented in figure 3.12. Note that the

extrapolation procedures take a significant time because they rely on the least square

interpolations. We observe that a large portion of the time (approximately 56.3% of

the total runtime) is spent interpolating quantities with the least square algorithm. Of

course, this profiling is only indicative and would be different on a larger mesh since the

various algorithms scale differently. In addition, some sections can be very efficiently

parallelized (for instance the least square interpolation procedure which is embarassingly

parallelizable). Finally, only the significant portions of the code are accounted for, which

explains why the subsections of the program do not add up to 100%.

The results are reported in tables 3.1 and 3.2 and in figure 3.13. We also monitor the

convergence of the Hodge variable as the procedure to enforce the boundary condition

decribed in section 3.2.2 is iterated. The convergence of the Hodge variable over a typical

time iteration on a mesh of level 5/9 is presented in table 3.3.

99

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Total
100%

Viscosity
40.0%

Projection
57.5%

Build linear
system
10.4%

Solve linear
system
2.4%

Extend over
interface
23.4%

Interpolate from
faces to nodes

15.1%

Build/solve
linear system

2.6%

Extend over
interface
37.9%

Remeshing
2.5%

Figure 3.12: Analysis of the time spent in the various parts of the program for one
iteration of example 3.4.1. The percentages correspond the fraction of the total runtime
occupied by each section of the program. The extension procedures rely on the least
square interpolations and therefore represent a large portion of the runtime. Note that
only the most time consuming procedures are reported (we ignore 5.7% of the total
procedure).

quadtree level
(min / max) L1 error order L∞ error order

3/7 5.48 · 10−3 - 2.18 · 10−2 -
4/8 1.76 · 10−3 1.64 8.65 · 10−3 1.33
5/9 5.56 · 10−4 1.66 3.28 · 10−3 1.40
6/10 1.61 · 10−4 1.79 1.64 · 10−3 1.00
7/11 3.62 · 10−5 2.15 3.84 · 10−4 2.09
8/12 8.59 · 10−6 2.08 2.45 · 10−4 0.65

Table 3.1: Convergence of the x-component of the velocity for the example of section
3.4.1

100

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

quadtree level
(min / max) L1 error order L∞ error order

3/7 3.17 · 10−4 - 1.62 · 10−3 -
4/8 3.47 · 10−5 3.19 2.47 · 10−4 2.71
5/9 4.48 · 10−6 2.96 5.85 · 10−5 2.08
6/10 7.20 · 10−7 2.64 1.44 · 10−5 2.02
7/11 7.41 · 10−8 3.28 2.81 · 10−6 2.36
8/12 1.14 · 10−8 2.70 6.72 · 10−7 2.06

Table 3.2: Convergence of the Hodge variable Φ for the example of section 3.4.1

7 8 9 10 11 12
10

−8

10
−6

10
−4

10
−2

10
0

Max level

E
rr

o
r,

 l
o
g
 s

c
a
le

Convergence of u

L
∞
 norm

L
1
 norm

first order convergence

second order convergence

7 8 9 10 11 12
10

−10

10
−8

10
−6

10
−4

10
−2

Max level

E
rr

o
r,

 l
o
g
 s

c
a
le

Convergence of Hodge

L
∞
 norm

L
1
 norm

second order convergence

third order convergence

Figure 3.13: Visualization of the convergence of the error on the horizontal component
of the velocity field and of the Hodge variable for example 3.4.1. We observe an order
one for the x-velocity and two for the Hodge variable, both in L∞ norm. The velocity is
also second order accurate in the L1 norm.

iteration error
1 1.19 · 10−1

2 3.13 · 10−2

3 6.37 · 10−3

4 3.15 · 10−3

5 2.16 · 10−3

6 1.56 · 10−3

Table 3.3: Typical convergence of the Hodge variable on a mesh of level 5/9 as the
algorithm to enforce the correct boundary conditions is iterated, i.e. after computing u∗

and Φ successively as described in section 3.2.2. The error between two iterations is the

relative error defined by e = max |Φ
k−Φk+1|
|Φk+1| .

101

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Driven cavity

The driven cavity problem, for which Ghia et al. [112] have published experimental

data, is one of the standard validation problems thoroughly studied in the literature.

It is an excellent test for our solver when the domain does not contain any irregular

interfaces. Consider a domain Ω = [0, 1]2, with the top wall moving with unit velocity

and a no-slip boundary condition for the velocity on the four walls. We choose a density

ρ = 1 and Reynolds numbers Re = 1000 and Re = 5000. The refinement criterion

we use is to refine where the gradient of velocity is large. Precisely, we compute γ =

1
2

(maxN |∇u|) ·∆/ (maxΩ−‖u‖), where ∆ is the size of the local cell and N refers to the

vertices of the local cell. We refine the cell if γ > .01.

Figure 3.14 shows the excellent agreement of the steady-state solution of our solver

with the benchmark simulations found in [112] and [113], while figure 3.15 depicts the

mesh and the streamlines of the steady-state solution for both Reynolds numbers. The

full simulation takes 11 minutes for a mesh of level 6/8.

Karman vortex street

We propose to validate our solver with an irregular geometry through the analysis of

the vortex shedding of a flow past a sphere, as first studied by Dennis and Chang [114].

The standard setup for this test consists of a cylinder of radius r = .5 located at (8, 8)

in a domain Ω = [0, 32] × [0, 16], with an imposed velocity u = U∞ = 1 on the left, top

and bottom walls, and an homogeneous Neumann boundary condition for the velocity

on the right wall. We impose homogeneous Neumann boundary conditions for the Hodge

variable on the left, top and bottom wall, and for the problem to be well posed we impose

a Dirichlet boundary condition on the right wall, which we set to zero.

The values for the drag and lift coefficients on the sphere, together with the Strouhal

102

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

v

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

v

Figure 3.14: x- and y- components of the velocity field in the driven cavity from example
3.4.1 after 37 seconds. The black circles are the experimental results from Ghia et al.
[112] and the red circles are taken from Erturk et al. [113]. The line represents the results
obtained with our solver and with a time step ∆t = 5∆x. The figures show the results
for Re = 1000 on a quadtree of minimum level 6 and maximum level 8 on the left, and
Re = 5000 on a quadtree of level 7/9 on the right.

103

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.15: Visualization of the mesh (grey) and the streamlines (blue) for the driven
cavity benchmark. Left: Re = 1000 with a mesh of level 6/8. Right: Re = 5000 with a
mesh of level 7/9.

number, have been tabulated through numerical simulations in the literature, for example

in [102, 115, 116, 117]. We compute the forces exerted on the cylinder via the geometric

integration procedure of [24, 118] as:

F =

∫
Γ

(−p+ 2µD)n,

where Γ is the contour of the sphere, D is the symmetric stress tensor and n is the

outward normal to the cylinder. The drag and lift coefficients are obtained respectively

from the x- and y- components of F through scaling by ρrU2
∞. The Strouhal number

is computed by taking the Fourier transform of the lift coefficient history to obtain the

main frequency f of the system and scaling it by 2r/U∞. All the simulations in this

section were performed with a time step ∆t = ∆x/max‖u‖. The refinement criterion is

the same as in the driven cavity case, except that in addition, we impose a uniform band

around the sphere in order to capture the boundary layer properly.

104

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

We observe that some numerical results presented by previous authors, for instance

our previous work [102] and the references therein, correspond to an underesolved sim-

ulation and therefore do not give converged values for the lift and drag. We ran our

solver with a uniform mesh, i.e. a quadtree with identical minimum and maximum lev-

els, thus reproducing the method presented in [102], for various resolutions and observed

the convergence of the drag coefficient. The convergence of the drag coefficient with the

resolution of the mesh is presented in figure 3.16 and demonstrates the need for a high

mesh resolution in order to obtain meaningful results. We observe that even with an

adaptive mesh of maximum level 10, corresponding to a uniform resolution of 10242, the

boundary layer is barely resolved for Re = 100, as illustrated in figure 3.17. Keeping this

observation in mind, we compare the drag and lift coefficients we found, along with the

Strouhal number, with the tabulated values from the literature. The results are reported

in figure 3.19 and table 3.4 and 3.5 for Re = 100 and Re = 200, while the visual results

are displayed in figure 3.18. In addition, we note that a time iteration with 100,000 leaves

completes in 4.5 seconds.

Resolution Drag coefficient Cd
7 1.250
8 1.341
9 1.390
10 1.404

Figure 3.16: Left: convergence of the drag coefficient on a uniform mesh. Right: con-
vergence of the drag coefficient on an adaptive mesh. For both cases, the resolution
corresponds to the number of recursive splitting of the mesh, so that a resolution n for a
uniform mesh leads to 22n cells. The Reynolds number is Re = 100.

105

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.17: Illustration of the boundary layer on the surface of the cylinder for example
3.4.1. The snapshots are taken at time t = 50 for Re = 100 with an increasing maximum
resolution of the adaptive mesh from 7 on the left, corresponding to a uniform mesh of
1282, to 10 on the right, equivalent to a uniform resolution of 10242. This is also a good
example of a non-graded mesh with a jump of three levels between neighbor cells for the
highest resolution.

Figure 3.18: Visualization of the mesh and the vorticity (on top) and of the streamlines
colored with the pressure (bottom), for example 3.4.1 with Re = 100 on the left and
Re = 200 on the right, and a quadtree of level 7/10 in both cases.

106

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

0 20 40 60 80 100 120 140 160 180 200
0.8

1

1.2

1.4

1.6

Cd

time

150 160 170 180 190 200

1.38

1.4

1.42

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

time

Cl

0 20 40 60 80 100 120 140 160 180 200
0.8

1

1.2

1.4

1.6

Cd

time

150 160 170 180 190 200

1.35

1.4

1.45

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

time

Cl

Figure 3.19: Evolution of the drag and lift coefficients for Re = 100 (left) and Re = 200
(right), for a quadtree of level 7/10.

Drag coefficient Cd Lift coefficient Cl
Re = 100 Re = 200 Re = 100 Re = 200

Ng et al. [102] 1.368± 0.016 1.373± 0.050 ±0.360 ±0.724
Braza et al. [115] 1.364± 0.015 1.40± 0.05 ±0.250 ±0.750

Calhoun [116] 1.330± 0.014 1.172± 0.058 ±0.298 ±0.668
Engelman et al. [119] 1.411± 0.010 − ±0.350 −

Present 1.401± 0.011 1.383± 0.048 ±0.331 ±0.705

Table 3.4: Drag and lift coefficients for example 3.4.1

Re = 100 Re = 200
Rosenfeld et al. [120] - 0.20

Braza et al. [115] 0.16 0.20
Mahir et al. [121] 0.172 0.192

Laroussi et al. [117] 0.173 0.199
Muddada et al. [122] 0.170 -

Present 0.172 0.203

Table 3.5: Strouhal number for example 3.4.1

107

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Oscillating cylinder

A popular test to demonstrate the ability of a solver to handle moving complex inter-

faces is that of a periodically oscillating cylinder in a viscous fluid. Two non-dimensional

parameters characterize the flow, the Reynolds number and the Keulegan-Carpenter

number. The Reynolds number is defined like previously as Re = 2rρum/µ with um

the maximum velocity of the cylinder and the Keulegan-Carpenter number is defined as

KC = um/2rf where f is the frequency of the oscillation. We consider a cylinder of

radius r = 0.05 in a domain Ω = [−1, 1]2 oscillating in the x−direction so that at time t,

the cylinder is centered on (xc, 0) with

xc = X0(1− cos(2πft))

where X0 = 0.7957D (with D = 2r) is the amplitude of the oscillation. We enforce

Dirichlet boundary conditions on the edge of the computational domain and set Re = 100

and KC = 5. We compute the forces on the cylinder by direct integration as described

in the previous section. For this example, we iterate our solver twice at each time step

as described in section 3.2.2 in order to properly enforce the moving boundary condition.

We choose an adaptive mesh of minimum level 6 and maximum level 12, and we set the

adaptive time step as ∆t = 2∆x/max‖u‖ where ∆x is the size of the smallest cell. One

time iteration with a mesh consisting of 119,086 leaves necessitates 15.89 seconds. Note

that a uniform mesh with the same maximum resolution would have over 67 billion cells.

The history of the drag coefficient in the oscillatory direction is presented in figure 3.20

together with some reference data from [123, 124, 125].

108

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

time (s)

d
ra

g
 c

o
e
ff
ic

ie
n
t

1.8 2 2.2 2.4 2.6
−4

−3

−2

−1

0

1

2

3

4

time (s)

d
ra

g
 c

o
e
ff
ic

ie
n
t

Figure 3.20: History of the drag coefficient for an oscillating cylinder with Re = 100 and
KC = 5. The black crosses are the original experimental data from Dutsch et al. [123],
the red circles correspond to the data from Seo and Mittal [124] and the purple stars
were computed by Liao et al. [125].

3.4.2 Examples in three spatial dimensions

Flow past a sphere

Our first three-dimensional example is a flow past a sphere. We use the same setup

as in two spatial dimensions, i.e. a sphere of radius r = 0.5 centered at (8, 0, 0) in a

domain Ω = [0, 32] × [0, 8] × [0, 8], and compute the drag coefficient and the Strouhal

frequency when applicable. The drag coefficient is computed the same way as for the

two dimensional case by direct integration [24, 118]:

CD =
Fx

1
2
ρAU2

∞
=

1
1
2
ρAU2

∞

∫
Γ

(−p+ 2µD)nx,

where A = πr2 is the cross section of the sphere, U∞ = 1 is the imposed inlet velocity, µ is

the viscosity, ρ = 1 is the density, p is the pressure and D is the symmetric stress tensor.

The Strouhal number is obtained as in the two-dimensional case. The four simulations

were performed on an octree of minimum level 6 and maximum level 10 refined according

109

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

to the same rule as in the two dimensional case. The Re = 350 case generated the largest

mesh with up to 2.85 million leaf cells, corresponding to 0.27% of the number of cells

of the equivalent uniform mesh. One iteration of the solver on a mesh with 1.3 million

leaves completed in 3 minutes.

The results are presented in tables 3.6 and 3.7 and figures 3.21 and 3.22. We observe

a good agreement with the literature. For a Reynolds number of 350, we observe two

distinct frequency peaks in the Fourier analysis (see figure 3.21). The main frequency is

reported in table 3.7 while the second fundamental frequency we find is 0.047.

0 20 40 60 80 100 120 140 160

0.6

0.7

0.8

0.9

1

1.1

Cd

time

40 60 80 100 120 140 160

0.61

0.62

0.63

0.64

0.65

0.66

0.67

Cd

time

Figure 3.21: The left figure shows the drag coefficients for Re = 100 (red), Re = 200
(black), Re = 300 (blue) and Re = 350 (green). The right figure presents a close up of
the oscillatory behavior for Reynolds numbers 300 and 350.

Re = 100 Re = 200 Re = 300 Re = 350
Mittal et al. [126] 1.08 - 0.67 0.62

Marella et al. [127] 1.06 - 0.621 -
Le Clair et al. [128] 1.096 0.772 0.632 -

Johnson and Patel [129] 1.1 0.8 0.656 -
Present 1.112 0.784 0.659 0.627

Table 3.6: Average drag coefficients for example 3.4.2

110

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.22: Visualization of the computational mesh (top) and of a vorticity contour
colored with the pressure values (bottom) for Re = 350.

111

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Re = 300 Re = 350
Mitall et al. [126] 0.135 0.142

Marella et al. [127] 0.133 -
Johnson and Patel [129] 0.137 -

Bagchi et al. [130] - 0.135
Present 0.137 0.141

Table 3.7: Strouhal frequencies for example 3.4.2

Flow through a porous medium: Darcy’s law

Monophasic viscous flows through a porous medium have been shown to follow

Darcy’s law, which states that the flux q through the medium is proportional to the

gradient of pressure, ∇P , i.e.,

q =
−k
µ
∇P,

where k is the intrinsic permeability of the porous medium and µ is the viscosity of the

fluid. In general, this relation is used experimentally to find the permeability by applying

a pressure gradient and measuring the flow rate.

We propose to reproduce Darcy’s law numerically. In order to do so, we choose a

porous geometry in a domain Ω = [−8, 8] × [−8, 8] × [0, 32], shown in figure 3.23. We

then enforce a pressure gradient through Dirichlet boundary conditions on the pressure

on the x-axis walls and we measure the corresponding flux at the location x = −6. We

impose a no-slip condition on the irregular geometry and on the y- and z-walls, and

homogeneous Neumann boundary conditions on the x-walls for the velocity field. We

repeat the process for a range of pressure values and observe the linear relationship

between the pressure gradient and the flux for a viscosity µ = 20 and a pressure gradient

ranging from 3.1 · 10−3 to 15.625. We also compute the Reynolds number for the various

pressure gradients, which we define as Re = 2ρqr̃
µA , where A is the area of the cross-section

at x = −6, r̃ is the average hydraulic radius, and ρ = 1 is the density of the fluid. We

112

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

monitor the Reynolds number to make sure that we are running the system in a range

of parameters to which Darcy’s law applies (see figure 3.26).

All the simulations were done on an adaptive mesh of minimum level 3 and maximum

level 8, resulting in 3, 126, 928 cells. We use only 18.64% of the cells that the equivalent

uniform mesh would have to represent very accurately this complex and space-filling

geometry. Note that as the maximum level of the mesh increases, this ratio becomes

more and more advantageous. A single time iteration completed in fifteen minutes.

We ran each simulation long enough for the flow to reach the steady-state regime, as

demonstrated in figure 3.24. The results are reported in figure 3.25 and 3.26.

Figure 3.23: Representation of the geometry (grey) used for the three dimensional porous
flow simulation 3.4.2 seen from two different angles. Part of the adaptive grid is depicted
in blue.

Flow around a deformable object

We propose a simulation of the flow past a swimming great white shark. Note that the

Reynolds number for this problem, of the order of 106, is far too large for the boundary

layer to be resolved properly with our method on a single workstation. However, it

still illustrates the ability of our solver to handle high Reynolds number flows around a

113

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

0 20 40 60 80 100
0.408

0.41

0.412

0.414

0.416

0.418

k

iterations

Figure 3.24: Convergence of the numerical solution of the Navier-Stokes equations to-
wards a steady state for the porous flow example 3.4.2. The graph shows the evolution
of the permeability coefficient k as a function of the number of iterations, with colors
corresponding to various inlet pressures ranging from Pin = 0.1 for the bottom dark blue
curve to Pin = 500 for the top light green curve. The imposed outlet pressure is Pout = 0.

deformable irregular geometry without loss of stability. The visual results are presented

in figure 3.27.

3.5 Summary

We presented a method for the simulation of incompressible viscous flows on non-

graded adaptive Cartesian meshes. The implicit discretization of the viscous term com-

bined with a semi-Lagrangian approach for the advection term enables large time steps,

while the discretization of the projection step is proven to be stable, regardless of the type

of boundary conditions enforced or the ratio between adjacent cells. We validated the

solver in both two and three spatial dimensions on benchmark cases, and demonstrated

the strength of using an adaptive mesh in terms of efficiency. This work can be used as a

building block for the numerical study of more complex flows, such as free surface flows

114

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.25: Representation of the streamlines through the porous geometry for example
3.4.2. The imposed pressure is 1 at the inlet and 0 at the outlet. The colors show the
magnitude of the velocity field along the streamlines, ranging from 0 (in blue) to 8 · 10−3

(in red).

115

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Pin k Re
.1 0.4107 1.09 · 10−5

.2 0.4134 2.20 · 10−5

.5 0.4141 5.50 · 10−5

1 0.4141 1.10 · 10−4

2 0.4143 2.20 · 10−4

5 0.4143 5.50 · 10−4

10 0.4145 1.10 · 10−3

20 0.4145 2.20 · 10−3

50 0.4145 5.50 · 10−3

100 0.4144 1.10 · 10−2

200 0.4168 2.21 · 10−2

500 0.4175 5.55 · 10−2 10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

∇ P

q

Figure 3.26: Left: values of the intrinsic permeability coefficient k and the computed
Reynolds number Re for various imposed inlet pressures Pin, with the outlet pressure 0.
Right: representation of the observed flux as a function of the imposed pressure gradient.
The red circles are the experimental data and the blue line is the linear regression. The
relation is clearly linear, and we find an intrinsic permeability coefficient of 0.414 for the
chosen geometry.

or multiphase flows, or in the coupling with other physical phenomena.

116

Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids Chapter 3

Figure 3.27: Vorticity generated by a swimming great white shark.

117

Chapter 4

Extension of the incompressible fluid
solver to parallel environments

4.1 Introduction

In the last decade, the democratization of the access to supercomputers has prompted

the development of massively parallel simulation techniques. The previously existing

serial codes are progressively being adapted to exploit the hundreds of thousands of cores

available through the main computing clusters. We propose a parallel implementation of

the solver for the incompressible Navier-Stokes equations introduced in [2] based on the

parallel level-set framework presented in [131].

Numerical simulations at the continuum scale are generally divided into two categories

characterized by their meshing technique. On the one hand, the finite elements commu-

nity relies on body-fitted unstructured meshes to represent irregular domains. Given a

high quality mesh, the resulting solvers are fast and very accurate and this approach has

been successfully applied to the simulation of incompressible viscous flows [76, 132, 133].

However, the mesh generation is very costly and impractical when tracking moving inter-

faces and fluid features. On the other hand, methods based on structured Cartesian grids

render the mesh geometry mainly trivial but lead to a higher complexity for the implicit

118

Extension of the incompressible fluid solver to parallel environments Chapter 4

representation of irregular interfaces. We focus here on the latter class of methods.

A common approach to represent an irregular interface in a implicit framework is to

use Peskin’s immersed boundary method [99, 134, 100] or its extension, the immersed

interface method [135]. However, these methods introduce a smoothing of the interface

through a delta formulation and therefore restrict the accuracy of the solution to first

order in the L∞-norm near the boundaries. We therefore opt for the sharp interface

representation provided by the level-set function [4]. The level-set function can be used in

several ways to implement the boundary conditions on an irregular interface, such as with

the rasterization approach described in Losasso et al. [13] or the Heaviside formulation

of Batty et al. [101]. However, these treatments were shown to be inconsistent in the

L∞-norm by Ng et al. [102] and we choose the finite-volume/cut-cell approach they

suggested.

Fluid flows are by nature multiscale, thus limiting the scope of uniform Cartesian

grids. A range of strategies have been proposed to leverage the spatial locality of the

fluid information such as stretched grids [80, 81], nested grids [82, 83, 84, 85], chimera

grids [136, 106] or unstructured meshes [86, 87, 88, 89, 90]. Another approach is to use

a Quadtree [137] (in two spatial dimensions) or Octree [138] (in three spatial dimen-

sions) data structures to store the mesh information [139, 140]. Popinet applied this

idea combined with a non-compact finite volume discretizations on the Marker-And-Cell

(MAC) configuration [96] to the simulation of incompressible fluid flows [12]. Losasso

et al. also proposed a compact finite volume solver on Octree for inviscid free surface

flows [13] while Min et al. presented a node-based second order viscous solver [98]. The

present work is based on the work presented in [2] which solves the viscous Navier-Stokes

equations implicitly on the MAC configuration using a Voronoi partition and where the

advection part of the momentum equation is discretized along the characteristic with a

BDF semi-Lagrangian scheme [141, 23].

119

Extension of the incompressible fluid solver to parallel environments Chapter 4

The extension of [2] to parallel architectures relies on the existence of an efficient

parallel Octree structure. Possible ways to implement parallel tree structures include the

replication of the entire grid on each process. This approach, however, is not feasible when

the grid size exceeds the memory of a single compute node, which must be considered

a common scenario today. Using graph partitioners such as parMETIS [33] on a tree

structure would discard the mathematical relations between neighbor and child elements

that are implicit in the tree, and thus result in additional overhead. Another option,

which we find preferable, is to exploit the tree’s logical structure using space-filling curves

[37]. This approach has been shown to lead to load balanced configurations with good

information locality for a selection of space-filling curves including the Morton (or Z-

ordering) curve and the Hilbert curve [39].

Space-filling curves have been used in several ways, for example augmented by hashing

[38], tailored to PDE solves [142], or focusing on optimized traversals [143]. Octor [40]

and Dendro [42] are two examples of parallel Octree libraries making use of this strategy

that have been scaled to 62,000 [41] and 32,000 [43] cores, operating on parent-child

pointers and a linearized octant storage, respectively. Extending the linearized storage

strategy to a forest of interconnected Octrees [36, 31], the p4est library [44] provides

a publicly available implementation of the parallel algorithms required to handle the

parallel mesh, including an efficient 2:1 balancing algorithm [70]. p4est has been shown

to scale up to over 458k cores [46], with applications using it successfully on 1.57M cores

[47] and 3.14M cores [48].

The algorithms pertaining to the second order level-set method on Octree presented

in [14] have been extended to the p4est data structure in [131] and shown to scale up

to 4,096 cores. Starting from this existing basis for the level-set function procedures,

we present the implementation of the algorithms pertaining to the simulation of incom-

pressible fluid flows detailed in [2]. The Voronoi tesselation that we construct over the

120

Extension of the incompressible fluid solver to parallel environments Chapter 4

adaptive tree mesh requires two layers of ghost cells, whose efficient parallel construction

we describe in detail. We report on the scalability of the algorithms presented before

illustrating the full capacities of the resulting solver.

4.2 The computational method

We now briefly present the mathematical approach employed to solve the incom-

pressible Navier-Stokes equations on a Quadtree grid. The extension to Octree grids is

straightforward. We use the method described in [2] and encourage the reader to refer

to it for a more complete description.

4.2.1 Representation of the spatial information

The level-set method

A central desired feature of the proposed solver is to be able to handle complex,

possibly deforming, sharp interfaces. The level-set framework, first introduced by [4]

and extended to Quadtrees in [11], is the perfect tool for such a goal. The level-set

representation of an arbitrary contour Γ separating a domain Ω into two subdomains

Ω− and Ω− consists in defining a function φ, called the level-set function, such that

Γ = {x ∈ Rn|φ(x) = 0}, Ω− = {x ∈ Rn|φ(x) < 0} and Ω+ = {x ∈ Rn|φ(x) > 0}.

Among all the possible candidates that satisfy these critera, a signed distance function

is the most convenient one. In order to transform any function into a signed distance

function that shares the same zero contour, one can solve the reinitialization equation

∂φ

∂τ
+ sign(φ) (|∇φ| − 1) = 0,

121

Extension of the incompressible fluid solver to parallel environments Chapter 4

where τ is a fictitious time. The finite difference discretization and its corresponding

parallel implementation employed to solve this equation are presented respectively in

[14] and [131].

Octrees and the p4est library

When dealing with physical problems that exhibit a wide range of length scales,

uniform Cartesian meshes become impractical in that capturing the smallest length scales

require a very high resolution. This is the case for high Reynolds number flows for which

the boundary layers and wake vortices have a length scale significantly smaller than that

of the far field flow. This observation naturally leads to the use of adaptive Cartesian

grids, including Octrees grids.

The p4est library [44] is a collection of parallel algorithms that handles a linearized

tree data structure and its manipulation methods and has shown to scale up to 458,752

cores [46]. In p4est the domain is first divided by a coarse grid, which we will refer to

as the “macromesh”, common to all the processes. While this macromesh can represent

complex domains, for our purpose we will consider solely uniform Cartesian macromeshes

in a brick layout. Such a layout can be constructed at no cost using predefined and self-

contained functions. A collection of trees rooted in each cell of the macromesh is then

constructed and partitioned and their associated expanded ghost layers are generated.

The refinement and coarsening criteria necessary for the construction of the trees are

provided to p4est through defining callback functions. We propose to use three criteria

based on the physical characteristics at hand. Different combinations of these criteria is

used depending on the circumstances.

The first criterion, presented in [14] and [131], captures the location of the interface.

122

Extension of the incompressible fluid solver to parallel environments Chapter 4

Specifically, a cell C is marked for refinement if

min
v∈V (C)

|φ(v)| ≤ Lip(φ) · diag(C)

2
,

where V (C) is the set of all the vertices of cell C, Lip(φ) is the Lipschitz constant of the

level-set function φ, and diag(C) is the length of the diagonal of cell C. Similarly, a cell

is marked for coarsening if

min
v∈V (C)

|φ(v)| > Lip(φ) · diag(C)

2
.

The second criteria, introduced in [12] and used in [98] and [2], is based on the vorticity

of the fluid. High vorticity correspond to small length scales and therefore necessitate a

high mesh resolution. We mark a cell C for refinement if

size(C) · maxv∈V (C)‖∇ × u(v)‖2

maxΩ‖u‖2

≥ γ,

where size(C) is the length of cell C and γ is a parameter controlling the level of refine-

ment. Analogously, a cell C is marked for coarsening if

size(C) · maxv∈V (C)‖∇ × u(v)‖2

maxΩ‖u‖2

< γ.

Finally, we introduce a passive marker in the fluid for visualization in section 4.5.4.

For enhanced graphical results, we propose to refine the mesh where the density of the

marker exceeds a threshold. Given a density β ∈ [0, 1], a cell C is marked for refinement

if

max
v∈V (C)

β(v) ≥ δ,

where δ is a parameter controlling the level of refinement. Conversely, a cell is marked

123

Extension of the incompressible fluid solver to parallel environments Chapter 4

Figure 4.1: Representation of the Marker-And-Cell (MAC) data layout on a Quadtree
structure with the location of the x-velocity (), the y-velocity (), the Hodge variable
() and the level-set values ().

for coarsening if

max
v∈V (C)

β(v) < δ.

The Marker-And-Cell layout

The standard data layout used to simulate incompressible viscous flows on uniform

grids is the Marker-And-Cell (MAC)[96]. The analogous layout for Quadtrees is presented

in figure 4.1 and leads to complications in the discretizations compared to uniform grids.

However, second order accuracy is achievable and two possible corresponding discretiza-

tions are presented for the data located at the center of the cells (the leaves of the trees)

and at their faces, respectively, in sections 4.2.4 and 4.2.3.

124

Extension of the incompressible fluid solver to parallel environments Chapter 4

4.2.2 The projection method

Consider the incompressible Navier-Stokes equations for a fluid with velocity u, pres-

sure p, density ρ and dynamic viscosity µ,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∆u, (4.1)

∇ · u = 0. (4.2)

The standard approach to solve this system is the projection method introduced by

Chorin in 1967 [94]. We refer the reader to [95] for a review of the variation of the

projection method. The system is decomposed into two distinct steps, identified as the

viscosity step and the projection step. The first step consists in solving the momentum

equation (4.1) without the pressure term,

ρ

(
∂u

∂t
+ u · ∇u

)
= µ∆u, (4.3)

to find an intermediate velocity field u∗. Since this field does not satisfy the incom-

pressibility condition (4.2), it is then projected on the divergence-free subspace to obtain

un+1:

un+1 = u∗ −∇Φ. (4.4)

where Φ is referred to as the Hodge variable. The following sections describe the dis-

cretization applied to solve these two steps.

4.2.3 Implicit discretization of the viscosity step

The viscosity step (4.3) contains two distinct terms, the advection term on the left

hand side and the diffusion term on the right hand side. We now present their respective

125

Extension of the incompressible fluid solver to parallel environments Chapter 4

discretizations.

Discretization of the advection term with a semi-Lagrangian approach

We discretize the advection part of the viscosity step using a semi-Lagrangian ap-

proach [141] combined with a second order backward difference discretization [23]. This

method relies on the fact the solution of the advection equation

∂u

∂t
+ u · ∇u = 0 (4.5)

is constant along the characteristics of the equation. In other words, along a characteristic

of equation (4.5) parametrized by (x(s), t(s)), one can write

du

ds
= 0. (4.6)

Applying the second order backward difference formula to find u∗, located at (x∗, y∗),

then leads to

∂u

∂t
+ u · ∇u ≈ α

∆tn
u∗ +

(
β

∆tn−1

− α

∆tn

)
und −

β

∆tn−1

un−1
d , (4.7)

where α =
2∆tn + ∆tn−1

∆tn + ∆tn−1

, β = − ∆tn
∆tn + ∆tn−1

, and und and un−1
d are the interpolations

of the velocity field a time tn−1 and tn respectively along the characteristic of equation

(4.5) that passes through (x∗, y∗). We refer the reader to [2] for further details.

Implicit discretization of the Laplace operator

The information on the velocity field is located on the faces of the leaves of the mesh,

and therefore that is where the Laplace operator in equation (4.3) must be discretized.

126

Extension of the incompressible fluid solver to parallel environments Chapter 4

As explained in [2], this can be done by applying a finite volume approach to the Voronoi

tessellation of the faces of the leaves. We present a summary of the approach and refer

the reader to [2] for further details.

Given a set of points in space, called seeds, we define the Voronoi cell of a seed as

the region of space that is closer to that seed than to any other seed. In the case of the

x-component of the velocity field, located on the vertical faces of the mesh, the seeds

correspond to the center of the faces of the leaves of the Quadtree grid. The union of all

the Voronoi cells forms a tessellation of the domain, i.e. a non-overlapping gap-free tiling

of the domain. And example of Voronoi tessellation of a Quadtree grid is presented in

figure 4.2. The diffusion equation

µ∆u = f (4.8)

is then discretized on the Voronoi tessellation with a finite volume approach, where the

control volume for each degree of freedom i is its Voronoi cell Ci, as follows:

∫
Ci
µ∆u =

∫
∂Ci
µ ∇u · n ≈

∑
j∈ngbd(i)

µ sij
uj − ui
dij

,

where ngbd(i) is the set of neighbors for i, n is the normal to the face of Ci between i

and j, sij is the length of that face and dij is the distance between i and j, as illustrated

in figure 4.2. This discretization provides a second order accurate solution [144].

General discretization for the viscosity step

Combining the discretizations presented in the two previous sections, we obtain the

general formula for any degree of freedom i and its associated Voronoi cell Ci

Vol(Ci)ρ
α

∆tn
u∗i + µ

∑
j∈ngbd(i)

sij
u∗i − u∗j
dij

= Vol(Ci)ρ
[(

α

∆tn
+

β

∆tn−1

)
uni,d −

β

∆tn−1

un−1
i,d

]
,

127

Extension of the incompressible fluid solver to parallel environments Chapter 4

Figure 4.2: Left: nomenclature for the discretization of the Laplace operator on a Voronoi
diagram. Right: example of a Quadtree mesh (top) and its Voronoi tessellation for the
vertical faces (bottom).

with Vol(Ci) the volume of Ci. This produces a symmetric positive definite linear system

that we solve using the biconjugate gradient stabilized iterative solver and the successive

over-relaxation preconditioner provided by the PETSc library [75, 108, 109].

4.2.4 A stable projection

The projection step consists in solving the Poisson equation (4.4) with the data lo-

cated at the center of the leaves of the tree. Stability and accuracy constraints result in

the discretization presented in [49]. The method relies on a finite volume approach with

a leaf being the control volumes for the degree of freedom located at its center. Using

the notations defined in figure 4.3, we now explain the discretization of the flux of the

Hodge variable Φ on the right face of C2. The first step is to define the average distance

∆ between Φ0 and its neighboring small leaves on the left side,

128

Extension of the incompressible fluid solver to parallel environments Chapter 4

Figure 4.3: Nomencalture for the discretization of the Laplace operator with the data
located at the center of the leaves.

∆ =
∑
i∈N

si
s0

δi,

where N is the set of leaves whose right neighbor leaf is C0. We then define the gradient

of Φ on the right face of C2 as

∂Φ

∂x
=
∑
i∈N

si
s0

Φ0 − Φi

∆
.

Similarly, we define the divergence of u at the center of the leaf containing Φ2 as

∇ · u =
1

∆x

(∑
i∈N

si
s0

u+
i − u−

)

Both the divergence and the gradient operators involve the small leaves sharing a right

neighbor leaf with C0. This discretization is second order accurate and ensures that the

projection step is stable. The proofs of stability and second order accuracy can be found

in [2]. The linear system resulting from this approach is symmetric positive definite,

and we use the same combination of the biconjugate gradient stabilized iterative solver

129

Extension of the incompressible fluid solver to parallel environments Chapter 4

preconditioned with successive over-relaxation provided by the Petsc library than for the

viscosity step.

4.3 Parallel algorithms

In this section, we discuss the new parallel algorithms introduced in addition to

the ones presented in [131]. Specifically, we describe how to extend the collection of

off-processor neighbor octants, commonly called ghost cells, iteratively by any desired

number of layers. In addition, we comment on the numbering scheme of face-centered

variables.

4.3.1 Expansion of the ghost layer

The Voronoi and cell-centered finite volume operators constructed in sections 4.2.3

and 4.2.4 are compact, in that they only connect degrees of freedom located on the same

or adjacent cells. However, in the case of the Voronoi based discretization, a neighboring

degree of freedom can be on the edge of an adjacent cell and yet belong to a second-degree

cell neighbor, as illustrated in figure 4.2. Furthermore, the backward difference formula in

section 4.2.3 uses a wide neighborhood for the second order least-squares interpolation,

as illustrated in figure 4.4. The locations for the upstream values uni,d and un−1
i,d for a

velocity degree of freedom ui can also, depending on the time step, lie outside of the cells

adjacent to ui. For these reasons, the layer of ghost cells at inter-processor boundaries

must be deeper than a single layer. The ability to construct deep ghost layers is a recent

extension to p4est interface, which we briefly describe here.

The algorithm used by p4est to construct a single layer of ghosts ([44, Algorithm 19])

is able to maximize the overlap of computation and communication because each process

can determine for itself which other processes are adjacent to it. This is because the

130

Extension of the incompressible fluid solver to parallel environments Chapter 4

Ci
×(x, y)

Figure 4.4: The stencil used to interpolate the velocity at (x, y) in cell Ci is not just
ngbd(Ci) (red), but ngbd2(Ci) (blue), a set of cells including second-degree (indirect)
neighbors.

“shape” of each process’s subdomain (determined by the interval of the space-filling curve

assigned to it) is known to every other process. As a consequence, the communication

pattern is symmetric and no sender-receiver handshake is required.

As a first extension, when creating the send buffers we remember their entries, since

they identify the subset of local cells that are ghosts to one or more remote processes.

We store these preimage cells or “mirrors” in ascending order with respect to the space

filling curve, and create one separate index list per remote processor into this array. This

data is accomodated inside the ghost layer data structure and proves useful for many

purposes, the most common being the local processer needing to iterate through the

preimage to define and fill send buffers with application-dependent numerical data.

The communication pattern of a deeper ghost layer, on the other hand, depends

not just on the shapes of the subdomains, but the leaves within them, as illustrated in

figure 4.5. Rather than complicating the existing ghost layer construction algorithm to

accommodate deep ghost layers, a function that adds an additional layer to an existing

ghost layer has been added to p4est. This function is called p4est ghost expand() and

adds to both the ghosts and the preimages. Thus, as a second extension to the data

structure, we also identify those local leaves that are on the inward-facing front of each

131

Extension of the incompressible fluid solver to parallel environments Chapter 4

1

1 2

1 2

1 1

2 2

2 2

2

1

1 2

1 2
2 2

2

1
1
2

2
2

2 2

2

Figure 4.5: Two meshes with the same partition shapes, but with different two-deep
ghost layers. In each we show the first and second layers of the ghost layer of process p
(red). In the first, the second layer includes cells from process q (blue), but in the second
it does not.

p

q

r

Figure 4.6: We show the preimages of process q’s and process r’s ghost layers in the
leaves of process p. The solid red area represent the cells at the “front” of the preimage
for q (preimage front[q] in algorithm 8), while the solid and dashed together form the
whole preimage (preimage[q]).

preimage, in other words the most recently added mirrors. This is illustrated in figure 4.6.

When process p expands its portion of process q, it loops over the leaves in the front

of the preimage for process q and adds any neighbors that are not already in the ghost

layer. Sometimes this will include a leaf from a third process r: process p will also send

such leaves to process q, because it may be that r is not yet represented in q’s ghost

layer, and so communication between q and r is not yet expected. The basic structure

of this algorithm is outlined in algorithm 8.

132

Extension of the incompressible fluid solver to parallel environments Chapter 4

1: for q ∈ ghost neighbors do . processes that contribute to ghost layer
2: initialize empty sets send forward[q], send back[q], and new front[q]
3: end for
4: for q ∈ ghost neighbors do
5: for l ∈ preimage front[q] do
6: for each neighbor n of l in local leaves do . n found by search
7: if n 6∈ preimage[q] then
8: add n to send forward[q], preimage[q], and new front[q]
9: end if
10: end for
11: for each neighbor n of l in ghost layer do . n found by search
12: if n belongs to process r 6= q then
13: add n to send forward[q] and (n, q) to send back[r]
14: end if
15: end for
16: end for
17: replace preimage front[q] with new front[q]
18: end for
19: for q ∈ ghost neighbors do
20: send (send forward[q], send back[q]), receive (recv forward[q], recv back[q])
21: add all of recv forward[q] to ghost layer

22: for (l, r) ∈ recv back[q] do
23: if r 6∈ ghost neighbors or l 6∈ preimage[r] then
24: add l to preimage[r] and preimage front[r] . new lists if

r 6∈ ghost neighbors

25: end if
26: end for
27: end for
28: recompute ghost neighbors from leaves in ghost layer

Algorithm 8: Process p’s algorithm for expanding other processes’ ghost layers, and
receiving expansions to its own ghost layer. Note that finding a neighbor of a leaf l
entails a fixed number of binary searches through the local leaves, which are sorted
by the space-filling curve induced total ordering.

133

Extension of the incompressible fluid solver to parallel environments Chapter 4

4.3.2 Indexing the faces

Although the p4est library provides a global numbering for the faces of the leaves,

its numbering differs from our needs because it does not number the small faces on a

coarse-fine interface, where we have degrees of freedom in our MAC scheme. Therefore,

we implement a procedure to distribute the faces of the leaves across the processes and

to generate a unique global index for each face. Since some faces are shared between two

processes, we chose to attribute a shared face to the process with the smaller index. With

this rule, each face belongs to a unique process and after broadcasting the local number

of faces a global index can be generated for all the local faces. The second step is to

update the remote index of the faces located in the ghost layer so that their global index

can be constructed easily by simply adding the offset of the process each face belongs to.

We do so in two steps, represented in figure 4.7. First, the indices of the ghost faces of

the local leaves are synchronized, then the indices of the faces of the ghost layer of leaves

are updated. This has some similarities to the two-pass node numbering from [68], here

extended to two layers of ghosts. Algorithm 9 details the steps of our implementation and

makes use of the Notify collective algorithm described in [70] to reverse the asymmetric

communication pattern.

4.4 Scalability

In this section, we present an analysis of the scaling performance of our implementa-

tion. We define the parallel efficiency as e = s·(P0/P)η with s = t0/tp the speed-up where

η is the optimal parallel scaling coefficient (η = 1 for linear scaling), P0 is the smaller

number of processes with its associated runtime t0 and P is the number of processes

with its associated runtime tp. All the results were obtained on the Stampede supercom-

puter at the Texas Advanced Computing Center (TACC), at The University of Texas

134

Extension of the incompressible fluid solver to parallel environments Chapter 4

1: for l ∈ (local|ghost) leaves do
2: for f ∈ remote faces(l) do
3: add proc(f) to receivers

4: add f to buffer[proc(f)]

5: end for
6: end for
7: Notify(receivers,senders) . reverse communication pattern
8: for p ∈ receivers do . send requests
9: MPI Isend(buffer[p]) . send request to process p
10: end for
11: for p ∈ senders do . process remote requests
12: MPI Recv(req) . receive request from process p
13: assemble answer with local indices requested
14: MPI Isend(ans) . send answer to process p
15: end for
16: for p ∈ receivers do . process answers
17: MPI Recv(p) . receive answer from process p
18: update faces information
19: end for

Algorithm 9: Communication algorithm to generate a global indexing of the faces. The
Notify collective algorithm is used to reverse the communication pattern, described in
more detail in [70].

135

Extension of the incompressible fluid solver to parallel environments Chapter 4

0

1

1

1

1

2

1

10

Figure 4.7: Illustration of the ghost layer of x-faces of depth 2 and of the global indexing
procedure for process 2. The numbers in the leaves correspond to the indices of the
processes owning them. After the first step, the remote index for the circled face is
known to process 2, and after the second step the remote indices for the faces in a square
are known to process 2. Note that a single step would not be sufficient for process 2 to
gain knowledge of the remote index of the two faces belonging to process 0.

at Austin, and on the Comet supercomputer at the San Diego Supercomputer Center,

at the University of California at San Diego. Those resources are available through the

Extreme Science and Engineering Discovery Environment (XSEDE) [71]. The maximum

number of processes available to us per run are 4,096 for Stampede and 1,728 for Comet.

4.4.1 Expansion of the ghost layer

We present both weak and strong scaling results for the algorithm use to expand the

ghost layer of cells for each process in figure 4.8. The associated efficiency is presented in

table 4.1. The strong scaling consists in choosing a problem and solving it with increasing

number of processes. Ideally, for an algorithm with a workload increasing linearly with

the problem size (i.e. with parallel scaling coefficient η = 1), doubling the amount of

resources spent on solving a problem should half the runtime. However, in the case of

the ghost layer expansion, and as explained in [46], the amount of work depends on the

136

Extension of the incompressible fluid solver to parallel environments Chapter 4

size of the ghost layers. For a well behaved partition, we expect O(N
(d−1)

d) of the leaves

to be in the ghost layer, where d is the number of spatial dimensions. We therefore

consider a parallel scaling coefficient η = 2/3 to be optimal for a three dimensional

problem, i.e. O((N/P)2/3) is the ideal scaling, with P the number of processes and

N the problem size. The results presented were obtained on Stampede for a mesh of

level 9/13, corresponding to 588,548,472 leaves, and on Comet for a mesh of level 10/13,

corresponding to 1,595,058,088 leaves. The computed parallel efficiency between the

smallest and the largest run is 66% for Stampede and 59% for Comet.

The idea behind the weak scaling is to keep the problem size constant for each process

while increasing the number of processes. The right graph of figure 4.9 presents the results

obtained on Stampede for two problems of sizes 30,248 leaves per process and 473,768

leaves per process, and for a number of processes ranging from 27 to 4,096. The runtime

increases by 16% between the smallest and the largest run for the small problem and by

6% for the large problem.

10
2

10
3

10
0

number of processes

tim
e

(s
)

Comet

Stampede

4 6 8 10 12 14 16
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of processes per dimension

tim
e

(s
)

473,768 leaf per process
 30,248 leaf per process

Figure 4.8: Scaling results for the expansion of the layer of ghost cells (see section 4.4.1).
The strong scaling results are presented in the left figure together with the ideal reference
scaling for a parallel scaling coefficient η = 2/3 (dashed lines) while the weak scaling
results are shown on the right figure. The increases in runtime observed for the weak
scaling are of 16% for the small problem and 6% for the large problem.

137

Extension of the incompressible fluid solver to parallel environments Chapter 4

Stampede
Number of processes 128 256 512 1024 2048 4096
Efficiency 100% 79% 70% 69% 66% 66%

Comet
Number of processes 96 192 384 672 1152 1728
Efficiency 100% 82% 81% 71% 67% 59%

Table 4.1: Efficiency of the procedure for expanding the ghost layer of leaves.

4.4.2 Indexing the faces

The scaling procedure presented in the previous section is repeated for Algorithm 9

and the results are presented in figure 4.9. Even though the workload for this procedure

increases slightly as the number of processes increases and the number of leaves in the

ghost layers increases, we compare our results to and ideal linear scaling η = 1. The cor-

responding efficiency is computed in table 4.2. The parallel efficiency computed between

the smallest and the largest run from the strong scaling results is 44% for Stampede and

70% for Comet. The weak scaling results show an increase in runtime of 71% for the

small problem and of 14% for the large problem.

Stampede
Number of processes 128 256 512 1024 2048 4096
Efficiency 100% 94% 87% 76% 63% 44%

Comet
Number of processes 96 192 384 672 1152 1728
Efficiency 100% 96% 88% 82% 77% 70%

Table 4.2: Efficiency of Algorithm 9 producing a global index for the faces.

138

Extension of the incompressible fluid solver to parallel environments Chapter 4

10
2

10
3

10
0

10
1

number of processes

tim
e

(s
)

Comet
Stampede

4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of processes per dimension

tim
e

(s
)

473,768 leaf per process
 30,248 leaf per process

Figure 4.9: Scaling results for the indexing of the faces with Algorithm 9. The strong
scaling results are presented in the left figure together with the reference ideal linear
scaling (dash lines) while the weak scaling results are shown on the right figure. The
strong scaling problem shown for Comet is three times larger than the one for Stampede.
The increases in runtime observed for the weak scaling are of 71% for the small problem
and 14% for the large problem.

4.4.3 Scalability of the full solver

Having presented the scaling results for the new algorithms introduced in this manu-

script, we now focus on analyzing the performance of the main components of the pro-

posed incompressible Navier-Stokes solver. The results are presented in figure 4.10 for

the three principal parts of the solver and for the overall program. The first part is

the viscosity solver introduced in section 4.2.3, the second part is the projection step

described in section 4.2.4 and the third part is the re-meshing step. The problem used to

obtain these results consists in solving the first two iterations of the flow past a sphere

described in section 4.5.2 on a macromesh of size 8× 4× 4 and for Octrees of level 6/9.

This leads to approximately 35 million leaves. The results observed are very satisfying,

particularly considering that for the largest run, with 4, 096 processes, each process has

only around 8, 500 degrees of freedom. The parallel efficiency of the program is reported

in table 4.3. Once more, the disparity between the two supercomputers can be partially

139

Extension of the incompressible fluid solver to parallel environments Chapter 4

explained by the larger number of processes available per run on Stampede.

10
3

10
2

10
3

number of processes

tim
e

(s
)

total
viscosity
projection
update

10
3

10
2

10
3

number of processes

tim
e

(s
)

total
viscosity
projection
update

Figure 4.10: Scaling results for the main components of the complete solver and for the
overall program on the Comet supercomputer (left) and on the Stampede supercomputer
(right), compared with an ideal linear scaling (dashed lines).

Stampede
Number of processes 128 256 512 1024 2048 4096
Efficiency 100% 82% 75% 69% 71% 63%

Comet
Number of processes 192 384 576 864 1248 1728
Efficiency 100% 88% 87% 84% 79% 79%

Table 4.3: Efficiency of the full solver proposed for the incompressible Navier-Stokes
equations on the Stampede and Comet supercomputers.

4.5 Numerical validation

In this section, we present a series of numerical examples to validate our implemen-

tation as well as to demonstrate the potential of our approach.

140

Extension of the incompressible fluid solver to parallel environments Chapter 4

4.5.1 Validation with an analytical solution

Our first application aims at validating the implementation by monitoring the conver-

gence of the solver using the analytical solution presented in [102]. Consider the irregular

domain Ω = {(x, y, z)| − cos(x) cos(y) cos(z) ≥ .4 and π
2
≤ x, y, z ≤ 3π

2
} and the exact

solution

u(x, y, z) = cos(x) sin(y) sin(z) cos(t),

v(x, y, z) = sin(x) cos(y) sin(z) cos(t),

w(x, y, z) = −2 sin(x) sin(y) cos(z) cos(t),

p(x, y, z) = 0.

The exact velocity is prescribed at the interface and homogeneous Neumann boundary

conditions are enforced for the Hodge variable. The appropriate forcing term is applied

to the viscosity step. We take a final time of π
3

and monitor the error on the velocity field

and on the Hodge variable as the mesh resolution increases. The successive resolutions are

obtained by splitting every cell from the previous resolution. The results are presented in

table 4.4 and indicate first order accuracy for the velocity field and second order accuracy

for the Hodge variable in the L∞ norm.

u, v w Hodge variable
level (min/max) L∞ error order L∞ error order L∞ error order

4/6 4.72 · 10−3 - 3.77 · 10−3 - 8.71 · 10−4 -
5/7 3.34 · 10−3 0.50 2.03 · 10−3 0.89 2.64 · 10−4 1.72
6/8 1.63 · 10−3 1.03 1.05 · 10−3 0.95 8.33 · 10−5 1.66
7/9 8.33 · 10−4 0.97 5.07 · 10−4 1.05 2.37 · 10−5 1.81

Table 4.4: Convergence of the solver for the analytic solution presented in section 4.5.1.
First order accuracy is observed for the velocity field and second order accuracy for the
Hodge variable.

141

Extension of the incompressible fluid solver to parallel environments Chapter 4

4.5.2 Vortex shedding of the flow past a sphere

Now that the accuracy of our solver have been validated on an analytical solution,

we propose to compare its results to the standard problem of measuring the properties

of a flow past a sphere. We consider a sphere of radius r = 1 and located at (8, 0, 0) in

the domain Ω = [0, 32]× [−8, 8]× [−8, 8]. We impose an inflow velocity u0 = (1, 0, 0) on

the x = 0 edge of the domain as well as on the the side walls, homogeneous Neumann

boundary conditions on the velocity field at the outlet x = 32 and no-slip conditions

on the sphere. The pressure is set to zero at the outlet and is subject to homogeneous

Neumann boundary condition on the other walls as well as on the sphere. We set the

density of the fluid to ρ = 1 and vary the viscosity µ according to the Reynolds number.

The Octree mesh is refined around the sphere and according to the vorticity criteria

of section 4.2.1, with a threshold of γ = 0.01. All the results were obtained with a

macromesh 8 × 4 × 4 and with trees of levels 4/7, leading to approximately 6 million

leaves and corresponding to a uniform grid resolution of 268,435,456 cells. We set ∆t =

5 ∆xmin

maxΩ‖u‖
. We monitor the average drag coefficient CD of the fully developed flow on the

sphere, as well as the lift coefficient and the Strouhal frequency St = 2rf
u0

when applicable

and when reference data is available for comparison. The drag coefficient is obtained by

geometric integration [24] of the viscous and pressure forces on the sphere,

CD =
FD

1
2
ρu2

0πr
2

=

∫
Γ
(−p+ 2µD)n

1
2
ρu2

0πr
2

, (4.9)

where Γ is the surface of the sphere, D is the symmetric stress tensor and n is the outward

normal to the sphere. The comparison of our results for a range of Reynolds numbers

from 50 to 500 with the data from various publications is presented in tables 4.5 and 4.6

and drag coefficients are visualized in figure 4.11. Figure 4.12 shows a snapshot of the

unsteady flow for Re = 300. The values we obtain are in general in very good agreement

142

Extension of the incompressible fluid solver to parallel environments Chapter 4

with the existing literature.

Re=50 Re=100 Re=150 Re=215 Re=250
CD CD CD CD CD CL

Kim et al. [145] - 1.09 - - 0.70 0.059
Johnson et al. [129] 1.57 1.08 0.90 - 0.70 0.062
Constantinescu et al. [146] - - - - 0.70 0.062
Choi et al. [147] - 1.09 - - 0.70 0.052
Bagchi et al. [130] 1.57 1.09 - - 0.70 -
Marella et al. [127] 1.56 1.06 0.85 0.70 - -
Guittet et al. [2] - 1.11 - - 0.784 -
Present 1.63 1.13 0.92 0.78 0.74 0.063

Table 4.5: Drag coefficient on a sphere for steady flows.

Re=300 Re=350 Re=500
CD CL St CD St CD St

Kim et al. [145] 0.657 0.067 0.134 - - - -
Johnson et al. [129] 0.656 0.069 0.137 - - - -
Constantinescu et al. [146] 0.655 0.065 0.136 - - - -
Choi et al. [147] 0.658 0.068 0.134 - - - -
Marella et al. [127] 0.621 - 0.133 - - - -
Bagchi et al. [130] - - - 0.62 0.135 0.56 0.175
Mittal et al. [126] - - - - 0.142 - -
Guittet et al. [2] 0.659 - 0.137 0.627 0.141 - -
Present 0.695 0.068 0.134 0.66 0.128 0.59 0.153

Table 4.6: Drag coefficient and Strouhal frequency for a sphere in a unsteady flow.

4.5.3 Oscillating sphere in a viscous fluid

As stated in [2], the solver presented in this article is able to handle deforming and

moving geometries. We propose to illustrate this capacity by computing the drag coeffi-

cient of a viscous fluid on an oscillating sphere. We consider a sphere of radius r = 0.1

in a domain Ω = [−1, 1]3. We enforce no-slip boundary conditions on the sphere and

143

Extension of the incompressible fluid solver to parallel environments Chapter 4

0 50 100 150 200
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

time (s)

C
D

Re = 50

Re = 100

Re = 150

Re = 215

Re = 250

0 100 200 300 400

0.55

0.6

0.65

0.7

0.75

time (s)

C
D

Re = 300
Re = 350
Re = 500

Figure 4.11: Visualization of the drag coefficient on a sphere for steady (left) and unsteady
(right) regimes corresponding to a Reynolds number ranging from 50 to 500.

Figure 4.12: Visualization of the unsteady flow past a sphere for Re = 300. The trees
are level 4/7 rooted in a 8x4x4 macromesh, leading to approximately 6 million leaves.
The snapshot is taken at time t = 221 seconds, corresponding to 1600 time iterations.
The colors correspond to the process ranks and the surface is an isocontour of the Q-
criterion for Q = 0.006. This simulation was ran on the Stampede supercomputer with
1024 processes.

144

Extension of the incompressible fluid solver to parallel environments Chapter 4

on the edges of the domain, and we impose an oscillatory motion to the sphere in the

x-direction described by

x(t) = X0 cos(2πf0t),

where f0 and X0 = r/4 are the frequency and the amplitude of the oscillation, respec-

tively. We choose µ = 1, ρ = 1, and we set the Strouhal frequency to St = 2rf0

u0
= 1.5 and

define the Reynolds number as Re = 2rρu0

µ
. For this example, we choose the fixed time

step ∆t = T
200

= 1
200f0

. We then computed the drag coefficient on the sphere according

to equation (4.9) for various Reynolds numbers. The results are presented in figure 4.13

for three periods of oscillation. As expected, we observe that the amplitude of the drag

coefficient increases as the Reynolds number decreases. Furthermore, we observe a lag

in the response as the Reynolds number decreases. Indeed, as the viscous forces become

more important, the information takes longer to propagate in the fluid. In contrast, the

forces in a system dominated by inertia come mainly from the pressure term and the in-

compressibility condition enforces instantaneous propagation of the information. Figure

4.14 shows some visual representations of the simulation for Re = 80. The simulations

completed in around 4 hours on the Stampede supercomputer and with 512 processes

for a mesh of resolution 5/10 rooted in a single macromesh cell, resulting in a number of

leaves ranging between 2 and 5 million.

4.5.4 Transport of a scalar quantity in a flow

We now propose to add a smoke marker to the fluid. For the two examples in this

section, we refine the Octree where any of the three criteria (interface, vorticity and

marker) presented in section 4.2.1 is satisfied. For the first smoke simulation, the marker

is passively advected in a flow past a sphere. The simulation setup is the same as the one

in section 4.5.2 and we set the Reynolds number to Re = 5, 000 and the level of each tree

145

Extension of the incompressible fluid solver to parallel environments Chapter 4

0 0.5 1 1.5 2 2.5 3

−15

−10

−5

0

5

10

15

time (t/T)

C
D

Re =10
Re =20
Re =30
Re =50
Re =80
Re =150
Re =300

Figure 4.13: Drag coefficient for a periodically oscillating sphere and for a range of
Reynolds numbers. The drag increases and the peaks shift as the Reynolds number
decreases and the viscous forces become dominant.

Figure 4.14: Left: visualization of the computational domain and of the streamlines
colored with the pressure for the oscillating sphere 4.5.3. Right: slice of the Octree grid
colored with the pressure.

146

Extension of the incompressible fluid solver to parallel environments Chapter 4

to 2/8, with an 8× 4× 4 macromesh. This leads to around 34 million leaves for a fully

developed flow and with the marker refinement threshold set to δ = 0.05. Figure 4.15

presents a visualization after 48 seconds, corresponding to 857 time steps. The entire

simulation took 20 hours on 1,024 cores of the Stampede supercomputer.

The second example with a smoke marker involves gravity. Given a fluid of density ρ = 1

Figure 4.15: Visualization of a passively advected smoke in a flow past a sphere and for
a reynolds number Re = 5, 000.

in a box of dimension Ω = [0, 1]3, we initialize the simulation with a ball of smoke with

concentration β = 1 located at (0.5, 0.5, 0.75) and with radius 0.1. The action of gravity

is then included by simply adding the force term β(t,x)g to the momentum equation

4.1. We choose a 2×2×2 macromesh and trees with resolution 4/8, leading to 20 million

leaves. The simulation took 20 hours on 256 cores of the Stampede supercomputer for

603 time iterations. Figure 4.16 shows three snapshots of the simulation.

147

Extension of the incompressible fluid solver to parallel environments Chapter 4

Figure 4.16: Visualization of a drop of high density smoke falling under gravity after 0
second, 0.75 second and 1.55 second.

4.6 Summary

We have described the implementation of a Navier-Stokes solver for simulating in-

compressible flows in irregular domains. The strategy is based on the discretizations on

adaptive Cartesian grids using a forest of Octrees. We have introduced an algorithm

for defining a unique indexing for the degrees of freedom located at the cells’ faces in

a standard MAC arrangement so that distributed machines can be readily considered.

Scaling analyses have illustrated the strong and weak scalings of this solver. Future work

will explore the extension to free surface and multiphase flows in irregular geometries.

148

Chapter 5

The Voronoi Interface Method for
discontinuous elliptic problems

5.1 Introduction

We focus on the class of Elliptic problems that can be written as:

∇ · (β∇u) + ku = f in Ω− ∪ Ω+,

[u] = g on Γ, (5.1)

[β∇u · nΓ] = h on Γ,

where the computational domain Ω is composed of two subdomains, Ω− and Ω+, sepa-

rated by a co-dimension one interface Γ (see figure 5.1), with nΓ the outward normal.

Here, β = β(x), with x ∈ Rn (n ∈ N), is bounded from below by a positive constant and

[q] = q+
Γ −q−Γ indicates a discontinuity in the quantity q across Γ, f is in L2, g, h and k are

given. Note that this general formulation includes possible discontinuities in the diffusion

coefficient β and in the gradient of the solution ∇u. Dirichlet or Neumann boundary

conditions are applied on the boundary of Ω, denoted by ∂Ω. This class of equations,

where some or all of the jump conditions are non-zero, is a corner stone in the modeling

149

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

of the dynamics of important physical and biological phenomena as diverse as multi-

phase flows with and without phase change, biomolecules’ electrostatics, electrokinetics

(Poisson-Nerntz-Planck) models with source term or electroporation models.

Figure 5.1: Geometry of the problem.

Given the importance of this class of equations, several approaches have been pursued

to computationally approximate their solutions, each with their own pros and cons. The

finite element method (FEM) is one of the earliest approaches to solve this problem

[148, 149, 150, 151, 152, 153] and has the advantage of providing a simple discretization

formalism that guarantees the symmetry and definite positiveness of the corresponding

linear system, even in the case of unstructured grids. It also provides a framework where

a priori error estimates can be used to best adapt the mesh in order to capture small

scale details. However, the FEM is based on the generation of meshes that must conform

to the irregular domain’s boundary and must satisfy some restrictive quality criteria, a

task that is difficult, especially in three spatial dimensions. The difficulty is exacerbated

when the domain’s boundary evolve during the course of a computation, as it is the case

150

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

for most of the applications modeled by these equations. Mesh generation is the focus

of intense research [154], as the creation of unwanted sliver elements can deteriorate the

accuracy of the solution.

Methods based on capturing the jump conditions do not depend on the generation

of a mesh that conforms to the domain’s boundary, hence avoiding the mesh generation

difficulty altogether. However, they must impose the boundary conditions implicitly,

which is a non-trivial task. A popular approach is the Immersed Interface Method (IIM)

of Leveque and Li [135], and the more recent development of Immersed Finite Element

Method (IFEM) and Immersed Finite Volume Method (IFVM) [155, 156, 157]. The

basis of the IIM is to use Taylor expansions of the solution on each side of the interface

and modify the stencils local to the interface in order to impose the jump conditions.

As such, solutions can be obtained on simple Cartesian grids and the solution is second-

order accurate in the L∞ norm. The corresponding linear system, however, is asymmetric

unless the coefficient β has no jump across the interface. Another difficulty is the need

to approximate surface derivatives along Γ as well as the evaluation of high-order jump

conditions. These difficulties have been addressed in the Piecewise-polynomial Interface

Method of Chen and Strain [158] and several other approaches have improved the efficacy

of the IMM [159, 160, 161, 162, 163, 164, 165]. We note also that the earliest approach on

Cartesian grid is that of Mayo [166], who derived an integral equation to solve the Poisson

and the bi-harmonic problems with piecewise constant coefficients on irregular domains;

the solution is second-order accurate in the L∞ norm. We also refer the interested

researcher to the matched interface and boundary (MIB) method [167, 168].

The finite element community has also proposed embedded interface approaches,

including discontinuous Galerkin and the eXtended Finite Element Method (XFEM)

[169, 170, 171, 172, 173, 174, 175, 176, 177, 178]. The basic idea is to introduce additional

151

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

degrees of freedom1 near the interface and augment the standard basis functions on these

elements with basis functions that are combined with a Heaviside function in order to

help capture the jump conditions.

In [179], the authors introduce a second-order accurate discretization in the case of,

possibly adaptive, Cartesian meshes using a cut-cell approach. The jump condition is

imposed by determining the fluxes on both side of the interface, which are constructed

from a combination of least squares and quadratic approximations. In [180], the authors

also use a cut cell approach but impose the jump with the help of a compact 27-point

stencil.

The Ghost Fluid Method (GFM), originally introduced to approximate two-phase

compressible flows [181], has been applied to the system problem 5.1 in [182]. The basic

idea is to consider fictitious domains and ghost values that capture the jump conditions in

the discretization at grid nodes near the interface. An advantage of this approach is that

only the right-hand-side of the linear system is affected by the jump conditions. However,

in order to propose a dimension-by-dimension approach, the projection of the normal

jump conditions must be projected onto the Cartesian directions. As a consequence,

the tangential component of the jump is ignored. Nonetheless, the method has been

shown to be convergent with first-order accuracy [183]. The GFM was also shown to

produce symmetric positive definite second-order accuracy [104] and even fourth-order

accuracy [111], but for a different class of problem, namely for solving Elliptic problems

on irregular domains with Dirichlet boundary conditions. In fact, symmetric positive

definite second-order accurate solutions can also be obtained in the case where Neumann

or Robin boundary conditions are imposed on irregular domains [77, 102, 184, 185].

These methods can be trivially extended to the case of adaptive Cartesian grids and

we refer the interested readers to the review of Gibou, Min and Fedkiw [186] for more

1We understand by degrees of freedom the set of locations at which the solution is sampled.

152

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

details. In the case of jump conditions, Coco and Russo [187] have also used a fictitious

domain approach, where a relaxation scheme is used to impose the boundary condition;

the solution is second-order accurate. The same authors have also introduced a method

to consider Dirichlet, Neumann and Robin boundary conditions on an irregular interface

[188]. Latige et al. [189] have also presented a method based on fictitious domains using a

piecewise polynomial representation of the solution on a dual grid, also obtaining second-

order accurate solutions. Finally, [190] have applied the ghost fluid idea in a variational

framework.

Related ideas are used in methods combining fictitious domains and variational for-

mulations [191, 192], dubbed virtual nodes approaches. Some of these approaches can

be considered similar to XFEM methods [193, 194, 195], while others are different

and offer advantages when considering under-resolved, possibly non-smooth, interfaces

[191, 196, 197]. This philosophy has been used in [198], which introduces a virtual node

algorithm for solving Elliptic problems on irregular geometries with jump conditions as

well as Dirichlet or Neumann boundary conditions imposed on Γ. The solutions are

second-order accurate in the L∞ norm and the approach provides a unifying treatment

for Dirichlet, Neumann and jump boundary conditions; however sacrificing simplicity.

Rather recently, Cisternino and Weynans [199] introduced a second-order accurate

method that uses additional degrees of freedom on the domain’s boundary and use them

to discretize the Poisson operator with jump conditions in a dimension-by-dimension

framework. The authors also present how to carefully approximate the gradients. The

method produces second-order accurate solutions and a nonsymmetric linear system in

part because of the need to change the size of the stencil for nodes adjacent to the

domain’s boundary.

We introduce a capturing computational approach, the Voronoi Interface Method,

that produces second-order accurate solutions in the L∞ norm. This approach is based on

153

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

building a Voronoi diagram local to the interface, which enables the direct discretization

of the jump conditions in the normal direction. The linear system is symmetric positive

definite and the jump conditions only influence the right-hand-side. The construction

of the local Voronoi mesh is a straightforward and parallelizable process and can be

built with existing libraries that are freely available. In the present work, we use the

excellent Voro++ library in three spatial dimensions [107]. This method is different from

body-fitted methods in that it relies on the post-processing of an existing background

mesh, thus avoiding the standard difficulties associated with body-fitted approaches. We

note that previous works have developed solvers for the Poisson equation on Voronoi

diagrams (see [200, 201] and the references therein); however discontinuities across an

irregular interface were not considered.

5.2 The geometrical tools

5.2.1 The level-set method

The level-set method [4] is a powerful way of representing irregular interfaces as the

zero contour of a continuous function. This representation is convenient in that it can be

applied to the case of moving boundaries that can change their topology. It also provides

a framework that lends itself to design sharp discretizations.

We use the level-set set framework to capture the irregular interface on which the

discontinuities are enforced. We define a level-set function φ on the domain Ω such that

the irregular interface Γ is described by Γ = {x ∈ Rn ∈ Ω |φ(x) = 0} and φ is negative

on one side of the interface and positive on the other side, as pictured in figure 5.1. Even

though infinitely many functions satisfy this criteria, it is convenient to work with a

signed distance function to the irregular interface, i.e. a function that is negative on one

154

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

side of the interface, positive on the other side and such that its magnitude at every point

is the distance from the point to the interface. Constructing a signed distance function

from an arbitrary function can be done for example by following the procedure explained

in [98]. The normal to the interface is then obtained as

n =
∇φ

‖∇φ‖ ,

and the curvature as

κ = ∇ · n.

Note that if the level-set function is a signed distance function, ‖∇φ‖ = 1, and the

projection onto Γ of any given point x is easily computed as:

xΓ = x− φ(x)∇φ(x). (5.2)

5.2.2 Voronoi diagrams

The solver we present is based on Voronoi diagrams, which can be generated locally

with existing procedures and freely available libraries. In this work, we use the excellent

Voro++ library [107]. For the sake of clarity, we introduce the Voronoi diagram: given

a set of points, which we call seeds, the Voronoi cell of a given seed consists of all the

points of the domain that are closer to that seed than to any other seed. Hence, the

collection of all the Voronoi cells of a set of seeds is a tessellation of the domain, i.e. a

tiling that fills the domain and does not contain any overlaps.

Given a computational mesh, which we consider to be uniform in this section for

clarity, we propose to modify the mesh so that the irregular interface coincides with the

155

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

edges of the new mesh and the degrees of freedom close to the interface are all located

at the same distance from the interface.

The procedure is illustrated in figure 5.2. Starting from a uniform grid, we find the

projection of the degrees of freedom whose control volume is crossed by the irregular

interface onto the interface using (5.2), and we remove those degrees of freedom from the

original list of unknowns. If a projected point is within diag/5 of a previously computed

projected point, where diag is the length of the diagonal of the smallest grid cell, we skip

this points. Otherwise, we add two new degrees of freedom located at a distance dΓ of the

interface in the normal direction on either side of the interface. We repeat this procedure

for all projected points. The new set of degrees of freedom is therefore made up of the

original degrees of freedom whose control volume is not crossed by the interface and of

the new degrees of freedom added next to the interface. This constitutes the set of seeds

for the Voronoi diagram computational mesh on which we perform the computations.

Each Voronoi cell can then be generated independently based on the local neighborhood

of each degree of freedom, making the generation of the Voronoi mesh embarrassingly

parallel.

Note that all the new degrees of freedom are placed at the same distance dΓ from

the interface. This is a free parameter of our method, and experimenting with various

reasonable values shows little impact on the numerical results. We choose dΓ = diag/5.

This simple procedure will be shown in sections 5.4.1 and 5.4.2 to be sufficient to construct

second-order accurate solutions in the L∞ norm.

5.2.3 Smoothing the mesh

The algorithm described in the previous section can lead to undesirable geometrical

configurations in the case when the interface is not sufficiently resolved. Figure 5.3

156

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Figure 5.2: Illustration of the procedure for generating a Voronoi diagram based com-
putational mesh. The left figure presents the original uniform mesh and the right figure
shows the final computational mesh. The purple square degrees of freedom have been
removed and the orange dots degrees of freedom have been added close to the interface
Γ.

presents one such configuration. The control volumes of some of the degrees of freedom

are connected by a face that is not capturing properly the interface.

It is possible to remediate this issue by modifying the Voronoi partition in a post-

processing step. The control volume of any degree of freedom that has been added next

to the interface should be connected to exactly one control volume associated to a degree

of freedom on the other side of the irregular interface. Consequently, if more than one

neighbor is found across the interface, we disconnect the undesired ones by removing

the connecting edge as shown in figure 5.3. The edge and its two associated vertices are

then replaced by a single vertex located in the middle of the removed edge. The control

volume of all the degrees of freedom of the resulting mesh are connected to at most one

control volume on the other side of the interface and the interface is captured properly.

However, this procedure alters the mesh which is no longer a Voronoi diagram, and

157

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

the edge between two degrees of freedom is not guaranteed to be orthogonal to the line

connecting the two degrees of freedom. The impact of this post-processing algorithm

is analyzed in sections 5.4.1 and 5.4.2 and does not seem to improve the method, we

therefore recommend not using it.

Figure 5.3: Example of a Voronoi mesh where a degree of freedom is connected to more
than one other degree of freedom located on the other side of the irregular interface. The
smoothing procedure is illustrated on the right.

5.2.4 Interpolating back to the original mesh

In general, if solving a diffusion equation with discontinuities is part of a larger solver,

it is necessary to interpolate the solution from the Voronoi mesh back to the original

mesh. This is an easy task given some basic bookkeeping information linking the original

degrees of freedom to the ones generated for the Voronoi mesh. With this information,

the solution on the Voronoi mesh can be accessed for the same cost than accessing the

data on the original mesh. The algorithm to interpolate the solution at a given point

158

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

(x, y) from the Voronoi mesh is then as follows:

1. locate the cell of the original mesh containing (x, y),

2. using the bookkeeping information, identify the Voronoi degree of freedom v(x, y)

closest to (x, y),

3. find the two neighbors of v(x, y) closest to (x, y) and on the same side of the

interface,

4. compute the multilinear interpolation of the solution using those three degrees of

freedom and evaluate it at (x, y).

This simple procedure produces a second-order interpolation at any given point (x, y).

5.3 Solving a Poisson equation on Voronoi diagrams

We discretize equation (5.1) with a finite volume approach on the Voronoi diagram

introduced in section 5.2.2. We use the notations from figure 5.4. We consider the degree

of freedom i with the set of Voronoi neighbors {j}. Applying a finite volume approach

to the problem at i, we can write

∫
C
∇ · (β∇u) dV =

∫
∂C

(β∇u) · nC dl

≈
∑
j

sijβi
uij − ui
dij/2

,

where nC is the outer normal to the face of C connecting i and j, sij is the length of that

face (or area of the surface in three spatial dimensions) and dij is the distance between

the degrees of freedom i and j. For the case when i and j are on either side of the

159

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Figure 5.4: Nomenclature for the finite volume disretization for the degree of freedom i.
For each neighboring degree of freedom j, we call dij the distance between i and j, sij
the length of the edge (or surface of the polygon in three spatial dimensions) connecting i
and j, and uij the value of u at the middle of the segment [i, j]. Note that by construction
uij can be considered to be exactly on the irregular interface Γ, in which case we define
u+
ij and u−ij.

interface with φi > 0, where φi is the value of the level-set function at the degree of

freedom i, we can match the flux at the irregular interface as follows,

sijβi
u+
ij − ui
dij/2

= sijβj
uj − u−ij
dij/2

− sij [β∇u · nΓ] ,

We also know that u+
ij = u−ij + [u]. Injecting this into the previous expression gives

sijβi
u+
ij − ui
dij/2

= sijβj
uj − u+

ij + [u]

dij/2
− sij [β∇u · nΓ]

⇔ u+
ij(βi + βj) = βjuj + βiui + βj[u]− dij

2
[β∇u · nΓ]

⇔ u+
ij =

1

βi + βj

(
βjuj + βiui + βj[u]− dij

2
[β∇u · nΓ]

)
.

160

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

In the case when i and j are on the same side of the interface, the derivation is the

same but the contributions from the discontinuities vanish. The contribution from the

interaction between the degrees of freedom i and j, in the case when φi > 0, to the finite

volume discretization of (5.1) can then be written

βisij
u+
ij − ui
dij/2

=
2βi

βi + βj

sij
dij

(
βjuj + βiui − (βi + βj)ui + βj[u]− dij

2
[β∇u · nΓ]

)
=

2βiβj
βi + βj

sij
uj − ui
dij

− 2βiβj
βi + βj

sij
dij

(
−[u] +

dij
2βj

[β∇u · nΓ]

)
= β̃ijsij

uj − ui
dij

− β̃ij
sij
dij

(
−[u] +

dij
2βj

[β∇u · nΓ]

)
,

where β̃ij is the harmonic mean between βi and βj, i.e.

β̃ij =
|φi|+ |φj|

|φi|/βi + |φj|/βj
=

2βiβj
βi + βj

.

The contribution of the interaction between the degrees of freedom i and j to the linear

system is therefore

β̃ijsij
uj − ui
dij

,

while the contribution to the right-hand side is

β̃ij
sij
dij

(
−[u] +

dij
2βj

[β∇u · nΓ]

)
.

Note that we made use of the fact that φ is a distance function and uij is midway

between i and j to simplify the expression. Similarly, we can derive the contribution

of the interaction between i and j for the case when φi < 0 and obtain the general

161

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

expression for the interaction between any degrees of freedom i and j

β̃ijsij
uj − ui
dij

+ Vol(C) · ki · ui = β̃ij
sij
dij

(
−sign(φi)[u] +

dij
2βj

[β∇u · nΓ]

)
+ Vol(C) · fi,

where Vol(C) is the volume of the Voronoi cell associated to the degree of freedom i and ki

and fi are the respective values of k and f at the degree of freedom i. This discretization

is entirely implicit and leads to a symmetric positive definite matrix. The discontinuities

contribute only to the right-hand side of the linear system. Note that this formulation is

identical to the Ghost Fluid Method of [182] in the case where the irregular interface is

orthogonal to the flux between the two degrees of freedom and located midway. In fact,

the Voronoi Interface Method can be interpreted as a Ghost Fluid Method where the

flux between to degrees of freedom is guaranteed to be orthogonal to the face connecting

their respective control volumes. We solve the linear system with the Conjugate Gradient

iterative solver provided by the Petsc libraries [108, 75] and preconditioned with the

Hypre multigrid [202]. We enforce Dirichlet boundary conditions on ∂Ω.

5.4 Numerical validation on uniform meshes

In this section, we validate the addition of the degrees of freedom along the irregular

interface and analyze the convergence of our method on various examples. In order to

demonstrate that our solver captures the discontinuities properly, all the results in this

section are presented on meshes that are uniform away from the interface. Doing so,

we make sure that the error on the interface dominates the overall error. Since the

degrees of freedom are the seeds of the Voronoi cells, it is convenient to compute the

gradient of the solution at every point located in the middle of two degrees of freedom,

i.e. ∇uij · nij = (uj − ui)/dij where nij is the normal to the edge of the Voronoi cell

162

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

connecting the degrees of freedom i and j. The errors presented are normalized.

5.4.1 Validation of the construction of the Voronoi diagrams

close to the interface

In this first example, we are interested in the influence of the quality of the mesh

close to the interface. We consider three different possibilities, represented in figure 5.5

for a circular irregular interface described by φ(x, y) = −
√
x2 + y2 + r0, with r0 = 0.5,

in a domain Ω = [−1, 1]2.

explicit non-smoothed smoothed

Figure 5.5: Visualization of the three different meshes on a resolution 24× 24 for section
5.4.1.

For the first case, we place the new degrees of freedom at regular intervals on the

irregular interface, making use of the explicit parametric expression available for a circle.

We choose to place N = 1.5b 2πr0
min(xmin,ymin)

c new degrees of freedom on either side of the

interface, at a distance diag/5 from the interface with diag =
√
x2
min + y2

min. For the

second case, we place the new degrees of freedom according to the procedure described

in section 5.2.2, at a distance diag

5
from the interface. Finally, for the third case, we

start from the partition obtained with the second case and modify it according to the

procedure described in section 5.2.3 to obtain a smoothed mesh.

163

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

We monitor the convergence of our method on these three meshes for the following

solution taken from [161],

u(x, y) =


1 + log(2

√
x2 + y2) if φ(x, y) < 0,

1 if φ(x, y) > 0,

and β(x, y) = 1. Note that for this case we have [u] = 0 and [∇u·n] = 2, with continuous

β and a discontinuity in the flux across the interface. A representation of the solution

is given in figure 5.6 together with a visualization of the localization of the error. We

report the convergence of the solver on this example for the three different meshes in

tables 5.1 and 5.2. We observe second-order convergence for the solution and first-order

convergence for the gradient of the solution, and very similar errors for all three meshes.

We conclude that smoothing the mesh obtained with the procedure explained in section

5.2.3 does not seem to improve the accuracy of the solver.

Figure 5.6: Left: representation of the solution for example 5.4.1. Right: visualization
of the localization of the error on a non-smoothed mesh (case 2) of resolution 27 × 27.

164

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

explicit non-smoothed smoothed
resolution solution order solution order solution order

23 3.66 · 10−3 - 1.27 · 10−2 - 1.20 · 10−2 -
24 1.79 · 10−3 1.03 2.34 · 10−3 2.44 2.20 · 10−3 2.45
25 5.77 · 10−4 1.63 6.17 · 10−4 1.92 6.02 · 10−4 1.87
26 1.56 · 10−4 1.89 1.62 · 10−4 1.93 1.61 · 10−4 1.91
27 4.32 · 10−5 1.86 4.45 · 10−5 1.87 4.23 · 10−5 1.86
28 1.13 · 10−5 1.94 1.14 · 10−5 1.97 1.14 · 10−5 1.96
29 2.83 · 10−6 1.99 2.96 · 10−6 1.95 2.95 · 10−6 1.94
210 7.19 · 10−7 1.98 7.46 · 10−7 1.99 7.45 · 10−7 1.98

Table 5.1: Convergence of the error on the solution in the L∞ norm for example 5.4.1.
The first case corresponds to the degrees of freedom placed along the interface using the
explicit parametrization, the second case corresponds to the mesh obtained following the
method described in section 5.2.2, and the third case is the smoothed version of case 2.

explicit non-smoothed smoothed
resolution gradient order gradient order gradient order

23 4.60 · 10−2 - 4.71 · 10−2 - 4.24 · 10−2 -
24 3.28 · 10−2 0.49 2.40 · 10−2 0.98 2.36 · 10−2 0.84
25 1.79 · 10−2 0.87 1.23 · 10−2 0.96 1.23 · 10−2 0.94
26 9.56 · 10−3 0.91 8.34 · 10−3 0.56 8.35 · 10−3 0.56
27 5.15 · 10−3 0.89 3.94 · 10−3 1.08 3.94 · 10−3 1.08
28 2.56 · 10−3 1.01 2.12 · 10−3 0.90 2.12 · 10−3 0.90
29 1.30 · 10−3 0.98 1.12 · 10−3 0.92 1.12 · 10−3 0.92
210 6.61 · 10−4 0.98 5.61 · 10−4 1.00 5.61 · 10−4 1.00

Table 5.2: Convergence of the error on the gradient of the solution in the L∞ norm for
example 5.4.1. The first case corresponds to the degrees of freedom placed along the
interface using the explicit parametrization, the second case corresponds to the mesh
obtained following the method described in section 5.2.2, and the third case corresponds
to its smoothed version.

165

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

5.4.2 Influence of the smoothing of the mesh

We further consider the influence of the smoothing procedure described in section

5.2.3. This time, we consider an interface described by φ(x, y) = −
√
x2 + y2 + r0 +

r1 cos(5θ), with r0 = 0.5, r1 = 0.15 and θ the angle between (x, y) and (1, 0), in a domain

Ω = [−1, 1]2. Since we do not have an explicit parametrization of the interface that would

enable to place the degrees of freedom at regular intervals, we only consider the mesh

generated form the procedure described in section 5.2.2 and its smoothed version obtained

by applying the procedure described in section 5.2.3. Figure 5.7 gives a visualization of

the meshes obtained.

Figure 5.7: Visualization of the non-smoothed (left) and smoothed (right) meshes on a
resolution 24 × 24 for section 5.4.2.

For this section, we choose to work with the exact solution taken from [162]

u(x, y) =


0 if φ(x, y) < 0,

ex cos(y) if φ(x, y) > 0,

166

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

with β− = β+ = 1. The solution is represented in figure 5.8. We monitor the convergence

of the solver in table 5.3 and observe second-order convergence for the solution and

first-order convergence for the gradient of the solution in both cases. Given that the

smoothing algorithm requires additional processing and does not seem to improve the

accuracy (in fact, we notice for this particular example that the non-smoothed results are

more accurate), we choose to work with the non-smoothed mesh constructed as described

in section 5.2.2 for the remaining of this article.

Figure 5.8: Left: representation of the solution for example 5.4.2. Right: visualization
of the error on a non-smoothed mesh and for a resolution 27 × 27.

5.4.3 Example with a discontinuity in the diffusion coefficient

We now consider the exact solution

u(x, y) =


x(ρ+1)−x(ρ−1)r2

0/r
2

ρ+1+r2
0(ρ−1)

if φ(x, y) < 0,

2x
ρ+1+r2

0(ρ−1)
if φ(x, y) > 0,

167

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

non-smoothed smoothed
res. solution order gradient order solution order gradient order
23 2.39 · 10−3 - 3.01 · 10−2 - 2.00 · 10−2 - 1.06 · 10−1 -
24 1.06 · 10−3 1.17 5.08 · 10−1 -4.07 1.44 · 10−2 0.47 5.27 · 10−1 -2.32
25 3.43 · 10−4 1.63 8.42 · 10−3 5.91 4.21 · 10−3 1.78 2.84 · 10−2 4.21
26 6.82 · 10−5 2.33 3.95 · 10−3 1.09 1.62 · 10−3 1.38 1.66 · 10−2 0.78
27 2.79 · 10−5 1.29 2.93 · 10−3 0.43 4.55 · 10−4 1.83 8.03 · 10−3 1.04
28 7.35 · 10−6 1.92 1.40 · 10−3 1.06 1.11 · 10−4 2.03 2.66 · 10−3 1.59
29 1.89 · 10−6 1.96 6.31 · 10−4 1.15 2.76 · 10−5 2.01 9.62 · 10−4 1.47
210 4.75 · 10−7 1.99 3.28 · 10−4 0.94 6.86 · 10−6 2.01 3.34 · 10−4 1.53

Table 5.3: Convergence of the error on the solution and its gradient in the L∞ norm for
example 5.4.2.

with r0 = .5, r =
√
x2 + y2, φ(x, y) = −r2 + r2

0 and ρ = β+/β− in the domain Ω =

[−1, 1]2. This corresponds to the example 7.3 from [161]. In this case, u is continuous,

but the diffusion coefficient β experiences a large jump across the irregular interface Γ.

We also have [∇u · n] 6= 0. A visualization of the solution is given in figure 5.9. The

gradient of the solution is given by

∇u(x, y) =



1
ρ+1+r2

0(ρ−1)

ρ+ 1− r2
0(ρ− 1) y2−x2

(x2+y2)2

r2
0(ρ− 1) 2xy

(x2+y2)2

 if φ(x, y) < 0,

1
ρ+1+r2

0(ρ−1)

2

0

 if φ(x, y) > 0.

The errors on the solution and its gradient are monitored in table 5.4 which shows

second-order convergence on the solution and first-order convergence on its gradient.

Figure 5.10 provides a visualization of the localization of the error. We also monitor the

evolution of the 1-norm condition number of the matrix of the linear system as the mesh

is refined in and present the results in table 5.5. The condition number depends on the

mesh resolution and on the diffusion coefficient. When the diffusion coefficient is large,

168

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Figure 5.9: Two examples of solutions for example 5.4.3. Left: β− = 1 and β+ = 10.
Right: β− = 10 and β+ = 1.

the condition number gets large rapidly. However, the discontinuities at the interface are

entirely captured by the right hand side and therefore do not affect the conditioning of

the matrix.

β− = 1, β+ = 105 β− = 105, β+ = 1
res. solution order gradient order solution order gradient order
23 1.10 · 10−2 - 3.84 · 10−2 - 1.74 · 10−2 - 1.14 · 10−1 -
24 3.42 · 10−3 1.68 1.93 · 10−2 1.00 4.70 · 10−3 1.89 5.65 · 10−2 1.01
25 1.39 · 10−3 1.30 1.17 · 10−2 0.72 1.26 · 10−3 1.90 2.54 · 10−2 1.15
26 3.82 · 10−4 1.86 6.19 · 10−3 0.92 3.39 · 10−4 1.90 1.77 · 10−2 0.53
27 1.34 · 10−4 1.51 3.59 · 10−3 0.79 1.05 · 10−4 1.69 8.06 · 10−3 1.13
28 3.43 · 10−5 1.97 1.84 · 10−3 0.96 2.67 · 10−5 1.98 4.87 · 10−3 0.73
29 9.76 · 10−6 1.81 1.05 · 10−3 0.82 7.55 · 10−6 1.82 2.40 · 10−3 1.02
210 2.58 · 10−6 1.92 5.41 · 10−4 0.95 1.96 · 10−6 1.95 1.25 · 10−3 0.94

Table 5.4: Convergence on the solution and its gradient for example 5.4.3, for two different
combinations of diffusion coefficients.

169

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

resolution β− = 1, β+ = 105 β− = 105, β+ = 1 β− = β+ = 105 β− = β+ = 1
23 2.38 · 106 2.02 · 106 5.59 · 106 1.72 · 102

24 1.17 · 107 5.09 · 106 1.23 · 107 8.11 · 102

25 4.86 · 107 1.57 · 107 2.69 · 107 3.66 · 103

26 2.09 · 108 7.18 · 107 5.72 · 107 1.58 · 104

27 8.52 · 108 3.14 · 108 1.19 · 108 6.59 · 104

28 3.86 · 109 1.32 · 109 2.42 · 108 2.70 · 105

29 1.48 · 1010 5.43 · 109 4.89 · 108 1.09 · 106

210 6.59 · 1010 2.20 · 1010 9.84 · 108 4.39 · 106

Table 5.5: Evolution of the condition number as the mesh is refined for example 5.4.3.
The condition number depends solely on the diffusion coefficient β and on the resolution
on the mesh since the discontinuities are captured by the right hand side of the linear
system.

Figure 5.10: Visualization of the localization of the error in the L∞ norm on a grid of
resolution 27 × 27 for example 5.4.3. Left: β− = 1 and β+ = 105. Right: β− = 105 and
β+ = 1.

170

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

5.4.4 A complete example

This example is meant to test our method to its full capacity, with discontinuities in

all four quantities (the solution, its gradient, the diffusion coefficient and the flux across

the interface), and with a complex irregular interface. We choose the exact solution

u(x, y) =


ex if φ(x, y) < 0,

cos(x) sin(y) if φ(x, y) > 0,

in a domain Ω = [−1, 1]2 with φ(x, y) = −
√
x2 + y2 + r0 + r1 cos(nθ), where r0 = 0.5,

r1 = 0.15 and n = 5, and we define the diffusion coefficient as

β(x, y) =


y2 ln(x+ 2) + 4 if φ(x, y) < 0,

e−y if φ(x, y) > 0.

Note that with our method, each degree of freedom has a control volume that is entirely

on one side of the irregular interface, and therefore we can easily define a forcing term for

any analytical solution. The exact solution and the diffusion coefficient are represented

in figure 5.11. The convergence is summarized in table 5.6 and once again indicates

second-order convergence for the solution and first-order convergence for the gradient of

the solution. A visualization of the localization of the error on the solution is given in

figure 5.12.

Figure 5.13 presents the percentage of the runtime consumed by the four principal

components of the algorithm, i.e constructing the Voronoi mesh, assembling the matrix,

computing the right hand side and solving the linear system. For coarse grids, the

bottleneck of the computation is the construction of the Voronoi mesh, but for high

resolution we observe that inverting the linear system is the costliest. These results

171

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

correspond to our implementation in the absence of parallelization. The finest resolution

of 1024× 1024 takes 18s on a single core of an Intel i7-2600 3.40GHz cpu.

Figure 5.11: Left: visualization of the solution u for example 5.4.4. Right: visualization
of the diffusion coefficient β.

Figure 5.12: Visualization of the localization of the error for example 5.4.4 on a resolution
of 27 × 27 .

172

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

resolution solution order gradient order
23 3.97 · 10−3 - 4.37 · 10−1 -
24 9.98 · 10−4 1.99 5.01 · 10−1 -0.20
25 2.90 · 10−4 1.78 3.67 · 10−3 7.09
26 8.84 · 10−5 1.71 1.73 · 10−3 1.09
27 2.06 · 10−5 2.10 9.84 · 10−4 0.81
28 5.22 · 10−6 1.98 4.77 · 10−4 1.05
29 1.33 · 10−6 1.97 2.45 · 10−4 0.96
210 3.39 · 10−7 1.97 1.23 · 10−4 0.99

Table 5.6: Convergence on the solution and its gradient for example 5.4.4.

4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

resolution

pe
rc

en
ta

ge
 o

f r
un

tim
e

mesh matrix right hand side solve

Figure 5.13: Representation of the computation time consumed by the four main sections
of our implementation, constructing the mesh, assembling the matrix, computating the
right hand side and solving the linear system for example 5.4.4. For coarse grids, building
the Voronoi partition takes the most time, but as the resolution of the grid increases, the
inversion of the linear system becomes the costliest.

173

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

5.4.5 Adding subdomains

We now propose an example with multiple subdomains. Note that the method we

propose leads naturally to a linear system with N rows, the number of degrees of freedom.

This number increases slightly as the number of subdomains increases and additional

degrees of freedom are added next to the irregular interfaces.

Figure 5.14: Illustration of the division of the computational domain into four subdo-
mains, together with the voronoi mesh generated, for example 5.4.5.

For simplicity, we choose to work with non-intersecting irregular interfaces, but our

method is suited for any general configuration. We divide the computational domain

Ω = [−1, 1]2 in 4 subdomains represented in figure 5.14 and separated by the three

contours defined by

Γ0 =
{

(x, y), φ0(x, y) =
√
x2 + y2 − 0.2

}
,

Γ1 =
{

(x, y), φ1(x, y) =
√
x2 + y2 − 0.5 + 0.1 cos(5θ)

}
,

Γ2 =
{

(x, y), φ2(x, y) =
√
x2 + y2 − 0.8

}
,

174

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

where θ is the angle between (x, y) and the x-axis. We choose the exact solution

u(x, y) =



ex + 1.3 if (x, y) ∈ Ω0,

cos(y) + 1.8 if (x, y) ∈ Ω1,

sin(x) + 0.5 if (x, y) ∈ Ω2,

−x+ ln(y + 2) if (x, y) ∈ Ω3,

and the diffusion coefficient

β(x, y) =



y2 + 1 if (x, y) ∈ Ω0,

ex if (x, y) ∈ Ω1,

y + 1 if (x, y) ∈ Ω2,

x2 + 1 if (x, y) ∈ Ω3.

The solution and the diffusion coefficient are represented in figure 5.15.

The convergence of the solver is presented in table 5.7. We observe second order

convergence for the solution and first order convergence for its gradient.

resolution solution order gradient order
24 1.00 · 10−3 - 3.33 · 10−3 -
25 2.33 · 10−4 2.11 1.01 · 10−3 1.72
26 6.23 · 10−5 1.90 3.46 · 10−4 1.54
27 1.56 · 10−5 2.00 1.59 · 10−4 1.12
28 4.00 · 10−6 1.96 6.82 · 10−5 1.22
29 1.01 · 10−6 1.99 4.00 · 10−5 0.77
210 2.55 · 10−7 1.99 2.24 · 10−5 0.84

Table 5.7: Convergence on the solution and its gradient in the L∞ norm for example
5.4.5.

175

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Figure 5.15: Visualization of the solution (left) and the diffusion coefficient (right) for
example 5.4.5.

5.4.6 Application to three spatial dimensions

We now present an example in three spatial dimensions and with a spherical interface

of radius 0.5 in a domain Ω = [−1, 1]3. We work with the exact solution

u(x, y, z) =


ez if φ(x, y, z) < 0,

cos(x) sin(y) if φ(x, y, z) > 0,

and the diffusion coefficient

β(x, y, z) =


y2 ln(x+ 2) + 4 if φ(x, y, z) < 0,

e−z if φ(x, y, z) > 0.

176

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

The geometry, together with a slice of the solution and of the diffusion coefficient, is

represented in figure 5.16. Table 5.8 presents the numerical results and indicates second-

order convergence for the solution and first-order convergence for its gradient.

Figure 5.16: Left: representation of the irregular interface and the associated Voronoi
mesh on a resolution 24× 24× 24 for example 5.4.6. Center: visualization of the solution
on the slice x = 0. Right: visualization of the diffusion coefficient on the slice x = 0.
Note that the surfaces have been translated to facilitate the visualization.

resolution solution order gradient order
23 3.61 · 10−3 - 1.13 · 10−2 -
24 1.21 · 10−3 1.58 7.69 · 10−3 0.56
25 3.04 · 10−4 1.99 3.83 · 10−3 1.01
26 7.74 · 10−5 1.98 2.43 · 10−3 0.66
27 1.97 · 10−5 1.98 1.24 · 10−3 0.98

Table 5.8: Convergence on the solution and its gradient in the L∞ norm on a sphere
(example 5.4.6).

177

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

5.4.7 A complex geometry in three spatial dimensions

For a more complicated geometry, we select the intricate contour borrowed from [198]

and parametrized by

Γtrefoil =


R

3


(2 + cos(3t)) cos(2t)

(2 + cos(3t)) sin(2t)

sin(3t)

 , t ∈ [0, 2π]

 ,

where R = 0.7 is the major radius of the trefoil. We then define

Ω+ =

{
x ∈ R, min

y∈Γtrefoil

‖x− y‖2 < r

}
,

with r = 0.15 the minor radius of the trefoil. The contour is represented in figure 5.17.

Figure 5.17: Representation of the irregular interface and the associated Voronoi mesh
on a resolution 24 × 24 × 24 for example 5.4.7.

178

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

For this example, we use the exact solution

u(x, y, z) =


yz sin(x) if φ(x, y, z) < 0,

xy2 + z3 if φ(x, y, z) > 0,

and the diffusion coefficient

β(x, y, z) =


y2 + 1 if φ(x, y, z) < 0,

ex+z if φ(x, y, z) > 0.

Slices of the solution and of the diffusion coefficient are displayed in figure 5.18. The

convergence of our method on this complex irregular interface is reported in table 5.9 and

once more indicates second order convergence for the solution and first order convergence

for its gradient.

resolution solution order gradient order
24 3.89 · 10−3 - 1.44 · 10−1 -
25 1.34 · 10−3 1.54 2.56 · 10−2 2.67
26 3.45 · 10−4 1.96 9.75 · 10−3 1.21
27 8.25 · 10−5 2.07 5.04 · 10−3 0.95

Table 5.9: Convergence on the solution and its gradient in the L∞ norm on a complex
three-dimensional contour (example 5.4.7).

179

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Figure 5.18: Visualization of the solution (top row) and the diffusion coefficient (bottom
row) on three slices for example 5.4.7. The slices are taken, from left to right, at x = 0.3,
x = −0.3 and x = −0.5. Note that the surfaces of the diffusion coefficient have been
translated to facilitate the visualization.

180

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

5.4.8 The screened Poisson equation

This example and the following one add a non-zero k to the previous example 5.4.7.

In this example, we choose k < 0 as

k(x, y, z) =


−ex if φ(x, y, z) < 0,

− cos(y) sin(z)− 2 if φ(x, y, z) > 0.

The convergence results are presented in table 5.10 and show second order convergence

with errors very similar to the ones obtained when k = 0.

resolution solution order gradient order
24 3.87 · 10−3 - 1.44 · 10−1 -
25 1.34 · 10−3 1.53 2.25 · 10−2 2.67
26 3.44 · 10−4 1.96 9.74 · 10−3 1.21
27 8.22 · 10−5 2.06 5.04 · 10−3 0.95

Table 5.10: Convergence on the solution and its gradient in the L∞ norm on a complex
three-dimensional contour for the screened Poisson equation (example 5.4.8).

5.4.9 The Helmholtz equation case

Our last example on a uniform base mesh is exactly the same than the one from the

previous section but for the Helmholtz equation case, i.e. k(x, y, z) > 0. We set

k(x, y, z) =


ey if φ(x, y, z) < 0,

cos(x) sin(z) + 2 if φ(x, y, z) > 0.

In this case, the linear system obtained is more complicated to solve because the matrix

is no longer diagonally dominant, meaning that the problem is not convex and iterative

solvers such as the Conjugate Gradient used so far are not guaranteed to converge.

181

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Instead, we solve the linear directly with an LU decomposition. The numerical results are

presented in table 5.11 and are almost identical to the results from the previous section,

illustrating the second order convergence of our method for the Helmholtz equation.

resolution solution order gradient order
24 3.91 · 10−3 - 1.44 · 10−1 -
25 1.35 · 10−3 1.54 2.26 · 10−2 2.67
26 3.46 · 10−4 1.96 9.75 · 10−3 1.21
27 8.27 · 10−5 2.06 5.05 · 10−3 0.95

Table 5.11: Convergence on the solution and its gradient in the L∞ norm on a complex
three-dimensional contour for the Helmholtz equation (example 5.4.9).

5.5 Extension to adaptive meshes

In the previous section we demonstrated the efficiency of our method based on uniform

meshes in both two and three spatial dimensions. However, it can be applied straightfor-

wardly to any mesh and in this section we propose an implementation on Quad/Oc-trees.

5.5.1 Introduction to the Quad/Oc-tree data structure

A Quad/Oc-tree grid refers to a Cartesian grid that uses the Quad/Oc-tree data

structure for its storage in two/three spatial dimensions. Starting from a root cell cor-

responding to the entire domain, four (eight in three spatial dimensions) children are

created if the cell satisfies a given splitting criterion. The process is iterated recursively

until the maximum allowed level is reached. The root cell has level 0 and the finest cells

have the maximum level allowed. We denote a tree with coarsest level n and finest level

m by level n/m. The process is illustrated in figure 5.19. This data structure provides a

O(ln(n)) access to the data stored at the leaves. We refer the reader to [14] for further

details on the Quad/Oc-tree data structure and the associated discretization techniques.

182

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Level=0

Level=1

Level=2

Level=3

Level=4

Figure 5.19: Example of a Quadtree grid.

Since this article is a proof of concept and we know the exact solution in all the

numerical example we propose, we make use of this knowledge in the construction of the

tree. We will use solutions of the form

u(x) = e−α‖x−x0‖22 ,

and any given leaf L of the tree with center coordinates xc is split if ‖x0−xc‖2 < λ·diag,

where diag is the length of the diagonal of L and λ controls the spread of the mesh around

the peaks of the solution.

5.5.2 Solution on a Quadtree mesh

For this example, we consider the exact solution, represented in figure 5.20,

u(x, y) =


e−50((x+0.7)2+(y−0.7)2) if φ(x, y) < 0,

e−50((x−0.1)2+(y+0.1)2) if φ(x, y) > 0,

183

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

with β− = β+ = 1 and on the domain Ω = [−1, 1]2. We use the same geometry as in

section 5.4.4, i.e. φ(x, y) = −
√
x2 + y2 + 0.5 + 0.15 cos(5θ).

Figure 5.20: Left: visualization of the solution for example 5.5.2 with α = 10. Higher
values of α narrow the peaks. Right: representation of the error interpolated on the base
Quadtree mesh of level 8/10 for α = 50.

We start by constructing a mesh of level 5/7 with the criteria described in the previous

section and with λ = 8. A visualization of this initial mesh is given in figure 5.21. Note

that the mesh is not uniform close to the interface. We then split every cell of the mesh to

monitor the convergence of the solver. The results are presented in table 5.12 and show

second-order convergence for the solution and first-order convergence for its gradient.

resolution solution order gradient order
5/7 2.56 · 10−3 - 8.89 · 10−3 -
6/8 6.48 · 10−4 1.98 5.14 · 10−3 0.79
7/9 1.69 · 10−4 1.94 2.52 · 10−3 1.03
8/10 4.30 · 10−5 1.97 1.33 · 10−3 0.92
9/11 1.09 · 10−5 1.99 6.84 · 10−4 0.96

Table 5.12: Convergence on the solution and its gradient in the L∞ norm on a Quadtree-
based Voronoi mesh (example 5.5.2).

184

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

Figure 5.21: Left: the initial level 5/7 Quadtree mesh generated for example 5.5.2. The
irregular interface Γ is represented in red. Right: the corresponding Voronoi mesh. Note
that the mesh is not uniform along Γ.

5.5.3 Solution on an Octree mesh

For this last example, we work with the exact solution

u(x, y, z) =


e−50((x+0.7)2+(y−0.7)2+(z−.5)2) if φ(x, y, z) < 0,

e−50((x−0.1)2+(y+0.1)2+(z+.3)2) if φ(x, y, z) > 0,

and on the irregular interface described by

φ(x, y, z) = −
√
x2 + y2 + z2 + r0 + r1 cos(5θ) cos(

2π

r0

z),

with r0 = 0.25 and r1 = r0/3, and rotated around the z-axis, y-axis and x-axis by

respectively 0.6 radians, 0.2 radians and 0.9 radians. We set β− = β+ = 1. The geometry

and the Voronoi mesh generated for the initial level 3/5 are represented in figure 5.22.

The convergence is presented in table 5.13 and shows second-order convergence for the

185

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

solution and first-order convergence for its gradient.

Figure 5.22: Left: representation of the geometry together with the Voronoi mesh on the
initial mesh of resolution 3/5 for example 5.5.3. Note that the mesh is not uniform along
Γ. Right: visualization of the solution on the y = −0.1 slice and after applying three
successive refinement operations to the original mesh.

resolution solution order gradient order
3/5 6.76 · 10−2 - 6.54 · 10−2 -
4/6 1.47 · 10−2 2.20 1.97 · 10−2 1.73
5/7 3.58 · 10−3 2.04 7.04 · 10−3 1.49
6/8 8.96 · 10−4 2.00 4.24 · 10−3 0.73

Table 5.13: Convergence on the solution and its gradient in the L∞ norm on star shaped
irregular interface and on an Octree base mesh (example 5.5.3).

5.6 Summary

We have presented a novel fully implicit approach based on Voronoi diagrams for solv-

ing an Elliptic equation with discontinuities in the solution, its gradient, the diffusion

186

The Voronoi Interface Method for discontinuous elliptic problems Chapter 5

coefficient and the flux across an irregular interface. The interface was captured through

a level-set framework, and the equation was discretized with a finite volumes approach

on the local Voronoi mesh. The contributions from the discontinuities were included

naturally in the right-hand-side of the linear system, preserving its positive symmetric

definiteness. We demonstrated second-order convergence of the solution and first-order

convergence of its gradient, in the L∞ norm, in both two and three spatial dimensions

and on both uniform and adaptive Quad/Oc-tree base meshes. Large ratios in the dif-

fusion coefficients are readily considered. We believe this approach could be utilized for

numerous physical applications including those mentioned in the introduction.

187

Chapter 6

Comparison of the Voronoi Interface
Method with the Ghost Fluid
Method

6.1 Introduction

The Poisson equation with discontinuities across irregular interfaces emerge in ap-

plications such as multiphase flows with and without phase change, in heat transfer,

in electrokinetics or in the modeling of biomolecules’ electrostatics. Several numerical

methods have been proposed to solve this system, each with their own advantages and

disadvantages. One approach is in the context of Discontinuous Galerkin methods, an

extension of the finite element method (FEM), e.g. see [148, 149, 203, 151, 152, 153,

193, 204, 194, 195, 177, 205] and the references therein. Finite element methods lead to

symmetric positive definite linear systems that can be efficiently solved with fast itera-

tive solvers [206]. In addition, FEM-type approaches can derive and use a priori error

estimates to refine the mesh where higher resolution is needed. However, FEM-type

methods rely on the quality of the underlying mesh, which is often difficult to obtain in

cases where the irregular domain undergoes large deformations. In this case, it is chal-

lenging to generate a mesh with elements that pass a quality measure needed to ensure

188

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

accurate solutions.

Another approach is within the context of finite difference methods (FDM), e.g. see

[135, 207, 208, 209, 182, 104, 111, 210, 211, 212] and the references therein. For finite

difference methods the grid is Cartesian (uniform or adaptive), which leads to a straight-

forward grid generation process. However, interfaces must be represented by other means

and the treatment of boundary conditions requires additional considerations.

In order to capture the interface and enforce the correct boundary conditions, several

approaches have been explored. The immersed boundary method (for example [99, 213,

214, 215, 58]) uses the δ-formulation that smears out the solution profile across the

interface. This produces algorithms that are straightforward to implement since they are

similar to solving the same equations on a regular domain. However, the smearing of the

solution introduces O(1) errors near the interface. The immerse interface method (IIM)

(see for example [135, 163, 164, 165, 162, 160, 216]) is a sharp interface method that

leads to second-order accurate solution, albeit it is not a robust second-order method

since it reaches its order by minimizing the truncation error. The method leads to

neither symmetric nor positive definite linear systems and the application of the immerse

interface method may be difficult in three spatial dimensions.

In [182], Liu et al. introduced a Ghost-Fluid methodology that treats the jump con-

dition in a dimension-by-dimension framework. This leads to a linear system that is

symmetric positive definite and the jump conditions only affect the right-hand side of

the linear system, leading to an easy-to-implement method. However, the GFM suffers a

loss in accuracy due to smearing of the tangential derivative of the discontinuity at the

interface caused by this dimension-by-dimension framework, as indicated in [182].

The Voronoi Interface Method (VIM) [3] avoids the loss of accuracy of the GFM of

[182] by constructing local Voronoi partitioning near the interface. The cells adjacent

to the interface therefore have their faces orthogonal to the fluxes of the solution, hence

189

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

providing a configuration that can leverage the Ghost-Fluid Methodology to its fullest.

The advantage is therefore that the solution is second-order accurate. A drawback is that

the solution is computed at the cells’ center of the Voronoi partition and an additional

interpolation step is required should the solution be needed on the original Cartesian

mesh. As is the case of GFM of [182], the linear system is symmetric positive definite

and only its right-hand side is modified by the jump conditions. Finally, we note that

even though the construction of a global Voronoi partition may be difficult and costly,

the construction of a local partition, i.e. only for cells that are adjacent to the interface,

is straightforward. In [3], the authors used the Voro++ library of [107].

In this paper we highlight the performance of both GFM and VIM.

6.2 Governing Equations and Numerical Methods

We consider the Poisson equation with variable coefficient and discontinuities (jumps)

across an irregular interface, Γ, which splits the computational domain Ω into Ω+ and

Ω−, both in Rn, n ∈ N. The governing equation is:

∇ · (β∇u) = f for x ∈ Ω+ ∪ Ω−, (6.1)

where f = f(x) and β = β(x) are given. Here, β is bounded from below by a positive

constant and f is in L2(Ω). This equation is supplemented by jump conditions on the

irregular interface,

[u] = g,

[β∇u · n] = h,

190

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

where [a] = aΓ+ − aΓ− denotes the jump in a across Γ. The functions g = g(x) and

h = h(x) are given. Either Dirichlet, Neumann or Robin boundary conditions can be

imposed at the boundaries of the computational domain, ∂Ω. In order to represent the

irregular interface, we use the signed distance level-set function, φ, which is positive inside

Ω+, negative inside Ω− and zero on Γ. The outward normal to the irregular interface can

be computed from the level-set function by

n = (n1, n2, n3) =
∇φ
|∇φ| .

6.2.1 The Ghost-Fluid Method

A detailed description of the Ghost-Fluid Method is given in [182], we will explore here

the main aspects in two spatial dimensions. The discontinuity in βun, where un refers to

the derivative in the normal direction to the interface, is [βun]Γ = [βux]Γ n1 + [βuy]Γ n2.

The discontinuity in βut, where ut refers to the derivative in the tangential direction

to the interface, is [βut]Γ = [βux]Γ n2 − [βuy]Γ n1. These equations lead to [βux]Γ =

[βun]Γ n1 + [βut]Γ n2 and [βuy]Γ = [βun]Γ n2 − [βut]Γ n1. However, in order to devise a

method in a dimension-by-dimension framework, the Ghost-Fluid Method smears out the

discontinuity in the tangential derivative leading to the simplification [βux]Γ = [βun]Γ n1

and [βuy]Γ = [βun]Γ n2. The discretization at each grid point i, j is then given by

βi+1/2,j

(
ui+1,j − ui,j

∆x

)
− βi−1/2,j

(
ui,j − ui−1,j

∆x

)
∆x

+

βi,j+1/2

(
ui,j+1 − ui,j

∆y

)
− βi,j−1/2

(
ui,j − ui,j−1

∆y

)
∆y

= fi,j + F x + F y,

191

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

where βi+1/2,j =
βi + βi+1

2
if xi,j and xi+1,j have φ are on the same side of the interface

or by βi+1/2,j =
β+β− (|φ−|+ |φ+|)
β+|φ−|+ β−|φ+| otherwise. Here β± refer to the value of β adjacent

to the interface in the Ω± domain and ∆x and ∆y are the cells’ sizes in the x- and

y- directions, respectively. The left-hand side thus gives the same symmetric positive

definite matrix as the one generated by the standard five-point stencil discretization of

the Poisson equation on regular domains and only the right-hand side is altered when a

discontinuity occurs. Furthermore, F x = FL +FR and F y = FB +F T are only activated

if there is a discontinuity present in the local five point stencil. Here, FL and FR and

the contribution from the left and right grid points to the current grid point and FB and

F T are the contributions from the bottom and top grid points.

We give the details for FL and FR in the x-direction, referring the reader to the

original paper [182] for the description for FB and F T in the y-direction, since they

follow the same procedure. If φi−1,j and φi,j have opposite signs, define

θ =
|φi−1,j|

|φi,j|+ |φi−1,j|
,

aΓ =
ai,j|φi−1,j|+ ai−1,j|φi,j|
|φi,j|+ |φi−1,j|

,

βΓ =
bi,jn

1
i,j|φi−1,j|+ bi−1,jn

1
i−1,j|φi,j|

|φi,j|+ |φi−1,j|
.

FL is then defined as

FL =



βi−1/2,jaΓ

(∆x)2 − βi−1/2,jbΓθ

β+∆x
if φi,j ≤ 0 and φi−1,j > 0,

βi−1/2,jaΓ

(∆x)2 − βi−1/2,jbΓθ

β+∆x
if φi,j > 0 and φi−1,j ≤ 0,

0 otherwise.

192

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

Similarly, if φi+1,j and φi,j have opposite signs, define

θ =
|φi+1,j|

|φi,j|+ |φi+1,j|
,

aΓ =
ai,j|φi+1,j|+ ai+1,j|φi,j|
|φi,j|+ |φi+1,j|

,

βΓ =
bi,jn

1
i,j|φi+1,j|+ bi+1,jn

1
i+1,j|φi,j|

|φi,j|+ |φi+1,j|
.

FR is then defined as

FR =



βi+1/2,jaΓ

(∆x)2 +
βi+1/2,jbΓθ

β+∆x
if φi,j ≤ 0 and φi+1,j > 0,

βi−1/2,jaΓ

(∆x)2 − βi−1/2,jbΓθ

β+∆x
if φi,j > 0 and φi+1,j ≤ 0,

0 otherwise.

The Ghost-Fluid Method leads to a symmetric positive definite linear systems that

captures the discontinuity in the normal derivative while smearing out the discontinuity

in the tangential direction to the interface.

6.2.2 The Voronoi Interface Method

We present a summary of the method and refer the reader to [3] for a detailed de-

scription. For a given set of seeds, the Voronoi cell of a seed is defined as the points of

space that are closer to that seed than any other. The union of the Voronoi cells is a

tessellation of space, and the first step for the Voronoi Interface Method is to generate the

Voronoi mesh associated to the background mesh chosen, which in our case is a uniform

Cartesian grid. The seeds are of two types,

• if a cell of the background mesh is not crossed by the irregular interface Γ, its center

is a seed of the Voronoi mesh,

193

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

• if a cell of the background mesh is crossed by the irregular interface Γ, we locate

the projection of its center onto the interface and generate two seeds located on

either side of the projected point at a distance δ = min(∆x,∆y)/5.

The Voronoi partition associated with those seeds is constructed using a simple geometric

algorithm. We refer the reader to the Voro++ library [107] for an efficient tool to compute

Voronoi partitions in both two and three spatial dimensions.

Equation (6.1) is then discretized on the Voronoi mesh using a finite volume ap-

proach. The complete derivation is presented in [3] and leads to the discretization of the

interaction between point i and point j

β̃ijsij
uj − ui
dij

= β̃ij
sij
dij

(
−sign(φi)[u] +

dij
2βj

[β∇u · nΓ]

)
+ Vol(Ci)fi,

where any variable of the form γk would be the quantity γ at point k, dij is the distance

between i and j, sij is the length of the face between i and j, β̃ij =
2βiβj
βi + βj

and Vol(Ci)

is the volume of the Voronoi cell associated with point i. The discontinuities at the

interface only affect the right-hand side of the linear system where the irregular interface

is located and the system is symmetric positive definite.

We remark that the solution is provided at the center of the Voronoi cells. If the

solution is needed on the original background mesh, then an interpolation step is required.

This can be done for example with least square interpolations and it does not impact the

order of accuracy of the solution as long as the order of the polynomial interpolants is

high enough. In this article, we work with second-order polynomial interpolants.

194

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

6.3 Numerical Experiments

We present a pair of two dimensional numerical examples where the two methods

are compared. Both examples have a star shaped irregular interface. The first example

has a coefficient β that is constant in the whole domain. This example has a constant

discontinuity in the solution across the irregular interface but neither a discontinuity

in the normal nor tangential derivatives at the interface. The second example has a β

coefficient that is not constant and has a discontinuity across the irregular interface. This

example has a non-constant discontinuity in the solution and non-constant discontinuities

in the normal and tangential components of the gradient of the solution at the irregular

interface.

6.3.1 Constant β-coefficient

Let us consider ∇·(β∇u) = f (x, y) in two spatial dimensions in Ω = [−1, 1]2 with the

level set function φ = −
√
x2 + y2 + 0.5 + 0.15 cos

(
5 arctan

(y
x

))
. We take β = 1 when

φ ≤ 0 and an exact solution of u = cos(x) cos(y). For the region φ > 0, we take β = 1

and the exact solution to be u = cos(x) cos(y) + 1. A representation of the solution is

given in figure 6.1. The comparison of the Ghost-Fluid Method and the Voronoi Interface

Method is shown in table 6.1 for the maximum error in the solution, in table 6.2 for the

average error in the solution, in table 6.3 for the maximum error of the gradient and in

table 6.4 for the average error of the gradient. For the Voronoi Interface Method, we

present the errors on both the Voronoi mesh and the Cartesian mesh. For the Voronoi

mesh, the gradients are computed on the faces of the Voronoi cells. For this example, the

solution only experiences a constant discontinuity in its solution and no discontinuities

in its normal or tangential derivatives, nor is there a discontinuity in the β coefficient,

which is constant in the entire domain. Both methods give second-order accuracy in the

195

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

solution in the L∞- and L1-norms and the solution’s gradient in the L1-norm. However,

the Voronoi method gives first order accuracy for the gradient of the solution in the

L∞-norm while the GFM gives second-order accuracy for such simplified problems. A

likely explanation for this difference is that the fluxes in the volume of fluid derivation

for the Voronoi Interface Method are not necessarily computed at the center of the faces

between two points. We also observe that the interpolation from the Voronoi mesh to

the Cartesian mesh does not impact the solution itself but affects its gradient. However,

the order of accuracy is conserved. We conclude that for such simple problems the GFM

is preferable.

Figure 6.1: Left: visualization of the exact solution for example 6.3.1. Right: example
of a Voronoi mesh generated.

6.3.2 Non-constant β-coefficient

Let us consider ∇ · (β∇u) = f (x, y) in two spatial dimensions in Ω = [−1, 1]2 with

the level set function φ = −
√
x2 + y2 + 0.5 + 0.15 cos

(
5 arctan

(y
x

))
. We set β =

196

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||u− uh||∞ Order ||u− uh||∞ Order ||u− uh||∞ Order
1/4 2.627× 10−3 — 3.709× 10−3 — 4.098× 10−1 —
1/8 6.587× 10−4 2.00 6.172× 10−4 2.59 5.901× 10−2 2.80
1/16 1.648× 10−4 2.00 1.565× 10−4 1.98 1.788× 10−4 8.37
1/32 4.121× 10−5 2.00 4.016× 10−5 1.96 4.030× 10−5 2.15
1/64 1.030× 10−5 2.00 1.020× 10−5 1.98 1.023× 10−5 1.98
1/128 2.576× 10−6 2.00 2.598× 10−6 1.97 2.656× 10−6 1.95
1/256 6.439× 10−7 2.00 6.591× 10−7 1.98 6.655× 10−7 2.00

Table 6.1: Comparison of the L∞ error in the solution for the Ghost-Fluid Method and
the Voronoi Interface Method for example 6.3.1.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||u− uh||1 Order ||u− uh||1 Order ||u− uh||1 Order
1/4 9.010× 10−4 — 1.790× 10−2 — 4.694× 10−2 —
1/8 2.597× 10−4 1.79 2.918× 10−3 5.04 1.417× 10−3 5.04
1/16 6.940× 10−5 1.90 7.365× 10−5 4.31 7.130× 10−5 4.31
1/32 1.792× 10−5 1.95 1.848× 10−5 2.00 1.780× 10−5 2.00
1/64 4.552× 10−6 1.98 4.625× 10−6 1.98 4.518× 10−6 1.98
1/128 1.147× 10−6 1.99 1.156× 10−6 1.98 1.142× 10−6 1.98
1/256 2.879× 10−7 1.99 2.890× 10−7 1.99 2.871× 10−7 1.99

Table 6.2: Comparison of the L1 error in the solution for the Ghost-Fluid Method and
the Voronoi Interface Method for example 6.3.1.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||∇u−∇uh||∞ Order ||∇u−∇uh||∞ Order ||∇u−∇uh||∞ Order
1/4 4.829× 10−3 — 8.160× 10−3 — 1.872× 10−0 —
1/8 1.398× 10−3 1.79 1.550× 10−3 2.40 3.666× 10−1 2.35
1/16 3.776× 10−4 1.89 5.192× 10−4 1.58 4.180× 10−2 3.13
1/32 9.866× 10−5 1.94 4.367× 10−4 0.25 2.082× 10−2 1.01
1/64 2.530× 10−5 1.96 2.551× 10−4 0.78 1.037× 10−2 1.00
1/128 6.419× 10−6 1.98 1.376× 10−4 0.89 5.195× 10−3 0.99
1/256 1.618× 10−6 1.99 8.580× 10−5 0.68 2.597× 10−3 1.00

Table 6.3: Comparison of the L∞ error in the gradient of the solution for the Ghost-Fluid
Method and the Voronoi Interface Method for example 6.3.1.

197

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||∇u−∇uh||1 Order ||∇u−∇uh||1 Order ||∇u−∇uh||1 Order
1/4 3.636× 10−3 — 2.575× 10−3 — 3.797× 10−1 —
1/8 8.704× 10−4 2.06 3.490× 10−4 2.88 2.908× 10−2 3.71
1/16 2.155× 10−4 2.01 7.553× 10−5 2.21 5.617× 10−3 2.37
1/32 5.343× 10−5 2.01 1.711× 10−5 2.14 1.474× 10−3 1.93
1/64 1.331× 10−5 2.01 4.126× 10−6 2.05 3.707× 10−4 1.99
1/128 3.322× 10−6 2.00 9.930× 10−7 2.05 9.345× 10−5 1.99
1/256 8.298× 10−7 2.00 2.465× 10−7 2.01 2.350× 10−5 1.99

Table 6.4: Comparison of the L1 error in the gradient of the solution for the Ghost-Fluid
method and the Voronoi Interface Method for example 6.3.1.

y2 ln (x+ 2)+4 and the exact solution to u = ex in the region where φ ≤ 0. In the region

where φ > 0, we set β = e−y and the exact solution to u = cos (x) sin (y). Figure 6.2

provides a representation of the solution and of the diffusion coefficient. The comparison

of the Ghost-Fluid Method and the Voronoi Interface Method is shown in table 6.5 for

the maximum error in the solution, in table 6.6 for the average error in the solution, in

table 6.7 for the maximum error of the gradient and in table 6.8 for the average error of

the gradient. Again, for the Voronoi Interface Method we present the results on both the

Voronoi and on the Cartesian meshes. For this example, where there is a non-constant

discontinuity in the solution, a non-constant discontinuity in the normal derivative of

the solution to the interface, a non-constant discontinuity in the tangential derivative

of the solution to the interface, a discontinuity in the β coefficient across the interface

and a β coefficient that is not constant in each domain as in the previous example, the

Ghost-Fluid Method is only first-order accurate in both the L∞- and the L1-norm, as

well as in the L1-norm for the gradient of the solution. However, it is not consistent

in the L∞-norm for the gradient of the solution. This example is a case where the lack

of orthogonality between the cells’ faces and the solution’s fluxes lowers the accuracy of

the GFM’s dimension-by-dimension approach. The Voronoi Interface Method provides

198

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

a solution to that drawback and therefore produces a second-order accurate solution in

the L∞- and L1-norms, and first-order accurate (resp. second-order accurate) gradients

in the L∞- (resp. L1-) norm. Similarly to the previous example, we observe a decrease

in accuracy for the gradient computed on the Cartesian mesh after the interpolation

step, but the order of accuracy is conserved. The solution itself does not suffer from the

interpolation step. For this type of complex problems, the Voronoi Interface Method is

able to provide a second-order accurate solution and consistent gradient that the Ghost-

Fluid Method cannot produce. VIM is therefore the recommended approach.

Figure 6.2: Visualization of the exact solution u (left) and of the diffusion coefficient β
(right) for example 6.3.2.

199

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||u− uh||∞ Order ||u− uh||∞ Order ||u− uh||∞ Order
1/4 6.254× 10−1 — 9.802× 10−3 — 6.044× 10−1 —
1/8 4.063× 10−1 0.62 2.560× 10−3 1.94 9.178× 10−2 2.72
1/16 2.493× 10−1 0.70 7.709× 10−4 1.73 7.041× 10−4 7.03
1/32 1.474× 10−1 0.76 2.370× 10−4 1.70 2.160× 10−4 1.70
1/64 8.488× 10−2 0.80 5.560× 10−5 2.09 4.929× 10−5 2.13
1/128 4.802× 10−2 0.82 1.413× 10−5 1.98 1.293× 10−5 1.93
1/256 1.481× 10−2 0.84 3.618× 10−6 1.97 3.377× 10−6 1.94

Table 6.5: Comparions of the L∞ error in the solution for the Ghost-Fluid Method and
the Voronoi Interface Method for example 6.3.2.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||u− uh||1 Order ||u− uh||1 Order ||u− uh||1 Order
1/4 6.446× 10−2 — 2.291× 10−3 — 4.557× 10−2 —
1/8 3.393× 10−2 0.93 4.022× 10−4 2.51 2.041× 10−3 4.48
1/16 1.692× 10−2 1.00 1.038× 10−4 1.95 9.891× 10−5 4.37
1/32 7.908× 10−3 1.10 2.985× 10−5 1.80 2.718× 10−5 1.86
1/64 3.982× 10−3 0.99 7.243× 10−6 2.04 6.729× 10−6 2.01
1/128 2.155× 10−3 0.89 1.790× 10−6 2.02 1.717× 10−6 1.97
1/256 1.035× 10−3 1.06 4.509× 10−7 1.99 4.401× 10−7 1.96

Table 6.6: Comparison of the L1 error in the solution for the Ghost-Fluid Method and
the Voronoi Interface Method for example 6.3.2.

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||∇u−∇uh||∞ Order ||∇u−∇uh||∞ Order ||∇u−∇uh||∞ Order
1/4 1.259 — 1.309× 10−2 — 2.658× 10−0 —
1/8 1.227 0.04 9.931× 10−3 0.55 6.334× 10−1 2.07
1/16 1.139 0.11 2.954× 10−3 1.60 8.950× 10−2 2.82
1/32 1.156 -0.02 1.589× 10−3 0.89 4.373× 10−2 1.03
1/64 1.188 -0.04 1.038× 10−3 0.62 2.155× 10−2 1.02
1/128 1.205 -0.02 5.177× 10−4 1.00 1.070× 10−2 1.01
1/256 1.214 -0.01 3.194× 10−4 0.70 5.329× 10−3 1.01

Table 6.7: Comparison of the L∞ error in the gradient of the solution for the Ghost-Fluid
Method and the Voronoi Interface Method for example 6.3.2.

200

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

Ghost-Fluid Method Voronoi Interface Method VIM Interpolated
dx ||∇u−∇uh||1 Order ||∇u−∇uh||1 Order ||∇u−∇uh||1 Order
1/4 2.611× 10−1 — 2.126× 10−3 — 3.895× 10−1 —
1/8 1.438× 10−1 0.86 6.395× 10−4 1.73 3.400× 10−2 3.52
1/16 7.136× 10−2 1.01 1.957× 10−4 1.71 5.631× 10−3 2.59
1/32 3.922× 10−2 0.86 6.409× 10−5 1.61 1.464× 10−3 1.94
1/64 2.019× 10−2 0.96 1.593× 10−5 2.01 3.713× 10−4 1.98
1/128 1.033× 10−2 0.97 4.132× 10−6 1.95 9.359× 10−5 1.99
1/256 5.222× 10−3 0.98 1.099× 10−6 1.91 2.358× 10−5 1.99

Table 6.8: Comparison of the L1 error in the gradient of the solution for the Ghost-Fluid
Method and the Voronoi Interface Method for example 6.3.2.

6.4 Summary

This paper has considered the numerical solution of the Poisson equation with jump

conditions across an irregular interface. In particular, we have compared the results ob-

tained with the Ghost-Fluid Method and the Voronoi Interface Method. The Ghost-Fluid

method imposes the jump conditions in a dimension-by-dimension framework, leading to

a linear system that is symmetric positive definite in which the jump conditions only affect

the right-hand side. However, the dimension-by-dimension approach forces a smearing

of the tangential quantities in the jump, leading to a loss of accuracy unless both the

discontinuity in the solution and the variable coefficient β are constant. The Voronoi In-

terface method solves that problem by constructing a Voronoi partition for cells adjacent

to the interface. A finite volume discretization over those cells produces discretized fluxes

that are orthogonal to the cells’ faces themselves and aligned with the normal direction

to the interface. The Ghost-Fluid philosophy can therefore be readily applied, resulting

in a linear system that is also symmetric positive definite with only its right-hand side

affected by the jump conditions. The resulting solution is second-order accurate (versus

first-order accurate in the general case of the Ghost-Fluid Method) and the solution’s gra-

dient is first-order accurate (versus zeroth-order accurate in the case of the Ghost-Fluid

201

Comparison of the Voronoi Interface Method with the Ghost Fluid Method Chapter 6

Method). The Voronoi Interface Method can therefore be considered superior in general.

In the particular case where both the discontinuity across the interface is constant and

the variable coefficient β is constant over each subdomains and across the interface, the

Ghost-Fluid Method gives a second-order accurate solution and also second-order accu-

rate gradient, giving this approach an advantage over the Voronoi Interface Method. The

likely reason is that the discrete fluxes for the Voronoi Interface Method are not located

at the center of the faces between two points. Finally, the Voronoi Interface Method

provides the solution at the center of the Voronoi cells. An interpolation step is required

if the solution on the original Cartesian mesh is needed which can for example be carried

out with least square interpolations. The order of accuracy is then preserved though the

quality of the gradient of the solution is impacted.

202

Chapter 7

Application of the Voronoi Interface
Method to the
electropermeabilization problem

7.1 Introduction

Electropermeabilization, also known as electroporation or electropulsation, is a signif-

icant increase in the permeability and in the electrical conductivity of the cell membrane

that occurs when electric pulses of large amplitude (a few hundred volts per centimeter)

are applied to cells membrane [217, 218, 219]. For high electric fields, the membrane is

(reversibly or irreversibly) permeabilized, which enables the transfer of non-permeable

molecules into the cell cytoplasm by diffusion through the electropermeabilized mem-

brane areas. If the pulses are too long, too numerous, or if their amplitude is too high,

the cell membrane is irreversibly destroyed and the cells are killed. Electroporation is im-

portant in the treatment of some cancers, as it provides an avenue to deliver therapeutic

molecules directly into the cells of targeted areas.

Even though cell electropermeabilization is a well-known phenomenon, at least from

the experimental point of view, there is a lack of predictive computational models that are

validated by experiments [220]. This prevents a systematic use of electropermeabilization

203

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

in configurations far from the experimental settings. This is particularly pertinent to

deep-seated tumor treatments for which irreversible electropermeabilization (IRE) or

electrochemotherapy (ECT) need an accurate distribution of the electroporated region.

The lack of a predictive computational framework is mainly due to the complexity of

the electropermeabilization models at the cell scale [221, 222, 223, 224, 225], which are

written in terms of partial differential equations in irregular geometries and that utilize

non-standard transmission conditions through the cell’s membrane. In addition, the

experimental settings are usually far from the standard numerical configurations since

most of the simulations deal with one single cell, while in vitro experiments, a large

number of cells (in suspension or aggregated in spheroids) is considered. Therefore,

important phenomena, such as cell screening, or electropermeabilization at the mesoscale

(scale of cell aggregates) cannot be accounted for by existing computational approaches.

The aim of this paper is to present an accurate numerical method that provides a

first step in that direction by enabling the computation of the voltage potential in cell

aggregates when an electropermeabilizing electric field is applied. A cell membrane is

very thin and acts as a capacitor, thus leading to a discontinuity in the electric poten-

tial where the jump is proportional to the electric flux. A variety of methods exist to

solve elliptic systems with discontinuities. The finite element method is one of the most

popular approach [148, 149, 151, 152]. It is well studied and guarantees high accuracy

and a symmetric positive definite linear system. However, its efficiency relies on the

quality of the mesh that must body-fit the irregular domain’s boundary. In contrast,

interface capturing methods are based on Cartesian grids that are easily generated and

impose the discontinuous boundary condition implicitly. The Immersed Interface Method

[135] and its development, the Immersed Finite Element Method and the Immersed Fi-

nite Volume Method [155, 156, 157], produce second-order accurate solutions in the L∞

norm but produce asymmetric linear system in the case of discontinuous diffusion coef-

204

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

ficients. This is also the case for the interface treatment used in Mirzadeh et al. [226].

Cisterno and Weynans developed a second-order accurate method [199] and applied it

to the electropermeabilization problem [227], though their method is not compact and

leads to asymmetric linear systems. The Ghost Fluid Method [181], originally developed

to address two-phase incompressible flows, has also been applied to discontinuous ellip-

tic problems [182], resulting in a symmetric linear system, albeit limited to first-order

accuracy [183]. The Ghost Fluid Method’s low accuracy comes from its dimension by

dimension structure. The Voronoi Interface Method, introduced in Guittet et al. [3],

considers a structured conforming Voronoi mesh based on an underlying Cartesian grid

before applying the ghost-fluid philosophy of [182]. As a result, the discretized fluxes

are normal to the interface and second-order accuracy is achieved while preserving the

symmetry positiveness of the linear system.

In this paper, we develop a VIM approach for the simulation of electropermeabiliza-

tion for both single cells and spheroids. Multicellular tumor cells spheroids are particular

cell aggregates that mimic the behavior of tumors [228], in particular from the electrop-

ermeabilization point of view [229]. Therefore, providing a computational framework

that makes it possible to compute accurately the electric field in such cell aggregates is a

crucial step forward for the clinical use of electropermeabilization-based therapies. In the

first part of this article, we present the non-linear model for cell electropermeabilization

before describing the numerical method. We then validate the computational method in

two and three spatial dimensions and investigate the behavior of cell aggregates.

7.2 Electrical model for a single cell

Cell membranes are very thin and very resistive, therefore they are usually described

as a two spatial dimensions surface, Γ, with given capacitance, C, and surface conduc-

205

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

tance, S, as described by Schwan, Stuchly et al. [230, 231] and depicted in figure 7.1.

∂Ω

(Oc, σ
c)

(Oe, σ
e)

(Γ, S, C)

n

Figure 7.1: Geometry of the problem. The cell Oc is imbedded in the extra-cellular
matrix Oe. The entire domain Ω is defined by Ω = Oe ∪ Oc.

Denoting by Oc the cell cytoplasm and by Oe the extracellular medium and defining

by σ the conductivity of the medium as:

σ =


σe, in Oe,

σc, in Oc,

the electric potential satisfies the following boundary value problem:

u(0, ·) = 0 in Oe ∪ Oc, (7.1a)

and for any t > 0,

∆u = 0, in (0, T)× (Oe ∪ Oc) , (7.1b)

u(t, ·) = g(t, ·) on (0,+∞)× ∂Ω, (7.1c)

206

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

with the jump conditions:

[σ∂nu] = 0, on (0, T)× Γ, (7.1d)

C∂t[u](t, ·) + S(t, [u])[u] = σc∂nu(t, ·)|Γ , on (0, T)× Γ. (7.1e)

The jump condition (7.1d) enforces the continuity of the flux and the transmission

condition on the jump of the potential (7.1e) captures the influence of the thin resistive

membrane.

We note that it is necessary to discretize the flux σc ∂nu|Γ in (7.1e) implicitly to avoid

the drastic CFL condition, as previously observed by Guyomarc’h et al. [170]. In [227],

Poignard and colleagues proposed a second-order accurate finite volume method based

on Cartesian grids to solve the equations in (7.1). However, the interface treatment they

propose leads to wide stencils and large linear systems so that their approach cannot

be readily applied to the simulation of a cluster with a large number of cells. The

aim of this paper is to provide an efficient numerical method that makes it possible to

solve the electric potential in a many-cell system. Such a numerical method is of great

importance since it can help in understanding the macroscopic behavior of the potential

in cell aggregates and therefore could lead the way to provide a numerical tool to compare

micro- and meso-scale phenomena.

7.2.1 Electropermeabilization model

Electropermeabilization modeling consists in deriving a non-linear law for the surface

membrane conductance S, or equivalently to add an electropermeabilization current in

the Kirchhoff’s law (7.1e). Generally speaking, these models describe the membrane

207

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

conductance as follows:

S(t, λ) := SL + Sep(t, λ), (7.1f)

where SL is the linear surface conductance of the membrane in the resting state and Sep

is the non-linear conductance due to the high transmembrane voltage. In this paper, we

focus on the LMSP electropermeabilization model derived by Poignard and colleagues

in [225], although our numerical method can also be used for the standard model of

Krassowska and colleagues [221].

The LMSP model

Leguèbe, Poignard et al. have recently proposed in [225] a new phenomenological

model, which discriminates the electroporated state of the membrane and the long-lasting

permeabilized state. The electroporated state of the membrane is the highly conducting

state of the membrane during the pulse delivery, while the long-lasting permeabilized

state is persistent after the pulse. The model reads then as:

S(t, λ) = SL + S0X0(t, λ) + S1X1(t,X0(t, λ)), (7.2)

where SL, S0 and S1 are the surface conductance of the membrane in the respective

resting state, porated state and permeabilized state, and X0 and X1 are the degree of

208

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

poration and permeabilization respectively, which are solutions of


∂X0(t, λ)

∂t
=
β0(λ(t))−X0

τep

,

X0(0, λ) = 0,

(7.3)

and
∂X1(t,X0)

∂t
= max

(
β1(X0)−X1

τperm

,
β1(X0)−X1

τres

)
,

X1(0, λ) = 0,

(7.4)

where β0 and β1 are even-regularized step functions

for all λ ∈ R, β0(λ) := e−V
2
ep/λ

2

, (7.5)

for all X ∈ R, β1(X) := e−X
2
ep/X

2

, (7.6)

with Vep and Xep are given and correspond respectively to the threshold of the mem-

brane voltage and of the degree of poration. The coefficients τep, τperm and τres are the

poration characteristic time, the permeabilization characteristic time and the resealing

characteristic time, respectively.

7.3 Description of the computational method

7.3.1 Representation of irregular interfaces on Quad-/Oc-trees

The irregular interface (i.e. the cell’s boundary), denoted by Γ, is implicitly captured

as the zero level of the level-set function φ as first suggested by [4]. The extracellular

domain Oe corresponds φ > 0 and the cell cytoplasm Oc corresponds to φ < 0.

In the case of the electropermeabilization model, the region where the solution under-

209

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

goes rapid variations is focused along the cell membrane, where the discontinuities are

located. It is therefore desirable to focus the computational effort along the membrane,

and we choose to work with adaptive Cartesian grid of type Quad-/Oc-trees [137, 138].

A Quadtree is constructed by starting from a computational cell representing the entire

domain and splitting it in 4 (respectively 8 if working with Octrees in three spatial di-

mensions) recursively. We use the following refinement criteria, proposed by Strain [11]

and extended by Min [232]: split a cell C if

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) · diag(C)

is satisfied. Here Lip(φ) is the Lipschitz constant associated to the level-set function φ,

and diag(C) is the length of the diagonal of C. The process is illustrated in figure 7.2. In

practice, we choose φ to be the signed distance function to the irregular interface Γ, and

set Lip(φ) conservatively to 1.2. A tree is characterized by its minimum and maximum

level where a level is the depth in the tree. Thus a Quadtree of level 4/6 has a coarsest

resolution equivalent to a uniform grid with 162 cells and a finest resolution equivalent

to a uniform grid with 642 cells.

Level = 0

Level = 1

Level = 2

Level = 3

Level = 4

Figure 7.2: Illustration of a Quadtree mesh and its associated data structure.

210

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

7.3.2 The Voronoi Interface Method for electropermeabiliza-

tion

The Voronoi Interface Method (VIM) introduced in [3] is designed to solve elliptic

problems with discontinuities on irregular interfaces and with second-order accuracy. It

consists in defining a Voronoi mesh based on an underlying Cartesian grid and solving

the discontinuous elliptic problem on that new mesh. We now present an extension of the

methodology for the electropermeabilization model where the discontinuity in the flux is

non-trivial.

The first step consists in defining new degrees of freedom near the interface, placed

along the normal to the interface, and building a corresponding Voronoi mesh. We define

a Voronoi mesh as the collection of Voronoi cells such that each Voronoi cell is associated

to a degree of freedom and defines the area of the computational domain that is closer

to that degree of freedom than to any other. The degrees of freedom are the centers of

the Quadtree cells except when the interface crosses a Quadtree cell, in which case the

cell center is replaced by a pair of points on either side of the projection of the cell’s

center onto the interface, as illustrated in figure 7.3. The procedure enforces a minimum

distance between the new degrees of freedom, as explained in [3].

We now proceed to present the numerical scheme and refer to the nomenclature

presented in figure 7.4. In order to lighten the notations, for any function f defined in Ω,

we denote by f e (resp. f c) the restriction of f to Oe (resp. to Oc). We generically denote

by fi, fj and fp respectively the values of f at the point xi, xj and xp on a Voronoi mesh.

We present the derivation for φi > 0 and φj < 0 and start by discretizing the time

evolution of the membrane voltage, [u], given by equation (7.1e) by a standard Backward

Euler scheme:

C
[u]n+1 − [u]n

∆t
+ Sn[u]n+1 = (σ∂nu

n+1)|Γ

211

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

Figure 7.3: Illustration of the process to build a Voronoi mesh from a Quadtree grid.
The cells crossed by the interface yield two new degrees of freedom on either side of the
interface, avoiding the creation of points that are too close to each other. The left figure
shows the original Quadtree Cartesian grid and the right figure depicts the corresponding
Voronoi mesh.

Figure 7.4: Nomenclature for the discretization on a Voronoi mesh. p is the projection
of i on the interface Γ. It is also the projection of j on Γ and the halfway point between
i and j. Furthermore, s is the length of the edge connecting the Voronoi cell of point i
and the Voronoi cell of point j, and d is the distance between i and j.

212

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

from which we infer:

[u]n+1 =
C[u]n + ∆tσ∂nu

n+1

C + ∆tSn
. (7.7)

We then use the continuity of the flux across the interface Γ at any time given by (7.1d)

to write:

σe
ue
p − ue

i

d/2
= σc

uc
j − uc

p

d/2
.

The discontinuity condition at the interface uc
p = ue

p − [u]n+1 and the expression of the

flux across the interface σ∂nu
n+1 = σe u

e
i−ue

p

d/2
leads to:

σe

d/2

(
ue
p − ue

i

)
=

σc

d/2

(
uc
j − ue

p + [u]n+1
)

hence using (7.7) the equality

σe
(
ue
p − ue

i

)
= σc

(
uc
j − ue

p +
C[u]n + ∆tσ∂nu

n+1

C + ∆tSn

)

and thus

σe
(
ue
p − ue

i

)
= σc

(
uc
j − ue

p +
C[u]n

C + ∆tSn
+

∆t

C + ∆tSn
σe
ue
i − ue

p

d/2

)
,

which leads to the expression of ue
p:

ue
p =

(
σeue

i + σcuc
j +

σcC[u]n

C + ∆tSn
+

σeσc∆t

(C + ∆tSn)d/2
ue
i

)
/

(
σe + σc +

σeσc∆t

(C + ∆tSn)d/2

)
.

We can then use ue
p into the discretization for the linear system. More precisely, from

the equality

σes
ue
p − ue

i

d/2
= 0,

213

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

we get the following:

s
σeσc

σe + σc + σeσc∆t
(C+∆tSn)d/2

uc
j − ue

i

d/2
= −s σeσc

σe + σc + σeσc∆t
(C+∆tSn)d/2

C[u]n

(C + ∆tSn)d/2
.

Similarly, we obtain the final expression for the case when φi < 0 and φj > 0:

sσ̂
uj − ui
d/2

= sgn(φi)sσ̂
C[u]n

(C + ∆tSn)d/2
,

with

σ̂ =
σeσc

σe + σc + σeσc∆t
(C+∆tSn)d/2

.

If we use a second-order Backward Differentiation Formula for the time discretization,

the above expression becomes

sσ̃
uj − ui
d/2

= sgn(φi)sσ̃
C
(
2[u]n − 1

2
[u]n−1

)
(3

2
C + ∆tSn)d/2

,

with

σ̃ =
σeσc

σe + σc + σeσc∆t
(3

2
C+∆tSn)d/2

.

The points far from the interface are treated with a classical finite volume discretization

on the Voronoi partition. Since all the coefficients involved in σ̂ are positive and the

discontinuity [u]n appears only in the right hand side, this produces a symmetric positive

definite linear system.

We next present numerical results that show the accuracy of our method in section 7.4.

We then study numerically the permeabilization of cell aggregates in 3D configurations

in section 7.5.

214

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

7.4 Numerical results

Throughout this section, the parameters described in table 7.1 are used.

Variable Symbol Value Unit
Extracellular conductivity σe 15 S/m
Intracellular conductivity σc 1 S/m
Capacitance C 9.5 · 10−3 F/m2

Membrane surface conductivity SL 1.9 S/m2

Cell radius R1 50 µm
Voltage threshold for poration Vep 258 · 10−3 V
Threshold for poration degree Xep 0.5 -
Poration characteristic time τep 10−6 s
Permeabilization characteristic time τperm 10−6 s
Resealing characteristic time τres 60 s
Porated membrane conductance S0 1.1 · 106 S/m2

Permeabilized membrane conductance S1 104 S/m2

Table 7.1: Physical and computational parameters used for the simulations.

7.4.1 Solution to the static linear problem in two spatial di-

mensions

Consider the static linear problem in the case where the cell is a disk of radius R1,

embedded in a concentric bath of radius R2. Assume that the electric potential at R2 is

1
2
g cos θ, with g = R2E. In practice, we choose E = 40kV/m and R2 = 0.6mm. Then

the exact solution of the static problem is explicitly given by:

ue = (αer +
βe

r
) cos(θ), (7.8a)

uc = αcr cos(θ), (7.8b)

215

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

where the coefficients αc, αe and βe are given by

αc =

((
σc

SLR1

+ 1 +
σc

σe

)
R2 +

(
σc

SLR1

+ 1− σc

σe

)
R2

1

R2

)−1

g, (7.8c)

αe =
1

2

(
σc

SLR1

+ 1 +
σc

σe

)
αc, (7.8d)

βe =
1

2

(
σc

SLR1

+ 1− σc

σe

)
αcR2

1, (7.8e)

from which we infer the static membrane voltage:

[u] =
σc

SL
αc cos(θ). (7.9)

Figure 7.5 presents a visualization of the computed electric potential and the computed

membrane voltage. We monitor the convergence of the solver on the membrane voltage

and report the results in table 7.2. The computed error corresponds to the largest error

over the membrane between the exact membrane potential and the computed membrane

potential. The convergence results indicate that second-order accuracy is achieved.

level (min/max) L∞ error on u order L∞ error on [u] order
3/5 3.76 · 10−6 - 3.95 · 10−6 -
4/6 1.98 · 10−6 0.93 1.98 · 10−6 1.00
5/7 7.84 · 10−7 1.34 7.75 · 10−7 1.35
6/8 2.56 · 10−7 1.62 2.52 · 10−7 1.62
7/9 7.33 · 10−8 1.80 7.20 · 10−8 1.81
8/10 1.98 · 10−8 1.89 1.91 · 10−8 1.91
9/11 5.35 · 10−9 1.89 5.11 · 10−9 1.90

Table 7.2: Convergence of the solver for the static case of subsection7.4.1.

216

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

Figure 7.5: Representation of the numerical potential (left) and of the membrane voltage
(right). These functions are approximations of the potential u and the membrane voltage
[u] given by equations (7.8) and (7.9), respectively.

7.4.2 Dynamic solution in two spatial dimensions

We now study the convergence of our method for the dynamic solution to the time-

dependent linear problem in the two spatial dimensions case of a circular single cell.

The geometrical framework is similar to that of section 7.4.1. We focus on the membrane

voltage, which is the biophysically relevant quantity. Applying a time-dependent Dirichlet

condition (t, θ) :→ g(t) cos θ on the outer boundary, we infer that the membrane voltage

satisfies the ordinary differential equation

∂t[u] +
SL −B
C

[u] =
A

C
g cos(θ),

with A = −2σcR2K and B = σcR
2
1+R2

2

R1
K, where

K =
σe

R2
1(σc − σe)−R2

2(σe − σc)
.

217

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

Given that the initial discontinuity is [u]t=0 = 0, we obtain:

[u](t, θ) =
A

SL −B
g cos(θ)

(
1− e−

SL−B

C
t
)
.

The solution and the membrane potential are represented in figure 7.6. We choose the

time step as ∆t = ∆xmin/40 and solve the problem until the final time tf = 1µs.

The convergence of the solver on the membrane potential [u] is presented in table 7.3

and figures 7.6 and 7.7. The error is computed as the maximum error over the entire

membrane between the calculated membrane potential [u] and the expected exact value.

The results indicate an order of accuracy of about 1.5.

Figure 7.6: Representation of the electric potential and the transmembrane voltage given
by (7.1), in the bidimensional circular framework of section 7.4.1.

218

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

first order time second-order time
level (min/max) error (L∞) order error (L∞) order

3/5 2.58 · 10−5 - 3.29 · 10−6 -
4/6 1.26 · 10−5 1.03 2.75 · 10−6 0.26
5/7 5.91 · 10−6 1.09 1.18 · 10−6 1.22
6/8 2.76 · 10−6 1.10 3.98 · 10−7 1.57
7/9 1.30 · 10−6 1.08 1.19 · 10−7 1.74
8/10 6.30 · 10−7 1.05 3.91 · 10−8 1.61
9/11 3.09 · 10−7 1.03 1.33 · 10−8 1.56

Table 7.3: Error on the membrane electric potential discontinuity [u] in the dynamic case
7.4.2 after tf = 1µs, with E = 40kV/m and ∆t = ∆xmin/40.

0 0.2 0.4 0.6 0.8 1

x 10
−6

10
−8

10
−7

10
−6

10
−5

time (s)

er
ro

r
on

 U

level 3/5

level 4/6

level 5/7

level 6/8

level 7/9

level 8/10

level 9/11

0 0.2 0.4 0.6 0.8 1

x 10
−6

10
−9

10
−8

10
−7

10
−6

10
−5

time (s)

er
ro

r
on

 [u
]

Figure 7.7: Visualization of the L∞ error on the electric potential u (left) and on the
membrane discontinuity [u] (right) as a function of time for the dynamic analytical ex-
ample 7.4.2, and for grid resolutions 3/5 (top curves) through 9/11 (bottom curves).

219

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

7.4.3 Validation with the static linear case in three spatial di-

mensions

In spherical coordinates, a possible form of the solution to the homogeneous Laplace

equation that is independent of the azimuthal angle ϕ is

f(r, θ, ϕ) = f(r, θ) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos(θ)),

where Pl is the lth Legendre polynomial and θ is the angle with the z-axis, in other words

θ = tan−1(
√
x2 + y2/z). For instance P1(x) = x. We then choose:

U e = (αer +
βe

r2
) cos(θ) and U c = αcr cos(θ).

Matching the boundary conditions for an external potential g = ER2 and a cell of radius

R1, from



ue(R2) = g

[σ∂nu]|R1 = 0

[u]|R1 = U e − U c

, we infer:



αe = R2
2(σc + 2σe)Kg −R2

1σ
cK [u]

cos(θ)

βe = R3
1R

2
2(σe − σc)Kg +R2

1R
3
2σ

cK [u]
cos(θ)

αc = 3σeR2
2Kg − σe(R2

1 + 2
R3

2

R1
)K [u]

cos(θ)

,

with K−1 = R3
1(σe−σc) +R3

2(2σe +σc). Since we are working with the static linear case

(i.e. S = SL), [u] is given by:

[u] =
A

SL −B
g, with A = 3σcσeR2

2K and B = −σcσe(R2
1 + 2

R3
2

R1

)K. (7.10)

220

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

We monitor the convergence of the solver for this exact solution with E = 10 kV/m,

Ω = [−10−4, 10−4]3, R1 = 5 · 10−6 and R2 = 6 · 10−4. The results are presented in

table 7.4 and seem to indicate second order accuracy, though the asymptotic regime is

not reached yet. Unfortunately, larger simulations are not practical with the current

framework and would require a parallel environment, to which we plan to extend our

method in the future.

potential U Membrane potential [u]
level (min/max) error (L∞) order error (L∞) order

3/5 4.14 · 10−6 - 5.71 · 10−6 -
4/6 3.72 · 10−6 0.15 3.80 · 10−6 0.59
5/7 2.01 · 10−6 0.89 1.87 · 10−6 1.02
6/8 7.49 · 10−7 1.42 7.14 · 10−7 1.39
7/9 2.43 · 10−7 1.62 2.32 · 10−7 1.62

Table 7.4: Convergence of the solver for the linear static case in three spatial dimensions
7.4.3.

7.4.4 Validation with the dynamic linear case in three spatial

dimensions

For this validation, we use the time-independent data g as in the previous section.

However, [u] now satisfies the dynamic equation given, for a constant S = SL, as:

C∂t[u] + SL[u] = σc∂nU
c,

hence

∂t[u] +
SL −B
C

[u] =
A

C
g cos(θ),

221

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

where A and B are given by equation (7.10). Given that the initial discontinuity is

[u]t=0 = 0, we obtain:

[u](t, θ) =
A

SL −B
g cos(θ)

(
1− e−

SL−B

C
t
)
.

We monitor the convergence of the solver for this exact solution with E = 40 kV/m,

Ω = [−10−4, 10−4]3, R1 = 5 · 10−5, R2 = 6 · 10−4, tf = 10−6s and ∆t = ∆xmin/40. The

results are presented in table 7.5 and in figure 7.8.

potential U Membrane potential [u]
level (min/max) error (L∞) order error (L∞) order

3/5 4.16 · 10−6 - 9.99 · 10−6 -
4/6 3.71 · 10−6 0.17 5.63 · 10−6 0.83
5/7 1.99 · 10−6 0.90 2.46 · 10−6 1.19
6/8 7.41 · 10−7 1.43 8.24 · 10−7 1.58
7/9 3.39 · 10−7 1.13 6.11 · 10−7 0.43

Table 7.5: Convergence of the solver for the linear dynamic case in three spatial dimen-
sions 7.4.4 for E = 40kV/m and ∆t = ∆xmin/40.

0 0.2 0.4 0.6 0.8 1

x 10
−6

10
−6

time (s)

er
ro

r
on

 u

level 3/5

level 4/6

level 5/7

level 6/8

level 7/9

0 0.2 0.4 0.6 0.8 1

x 10
−6

10
−8

10
−7

10
−6

10
−5

time (s)

er
ro

r
on

 [u
]

Figure 7.8: Visualization of the L∞ error on the electric potential u (left) and on the
membrane discontinuity [u] (right) as a function of time for the dynamic analytical ex-
ample 7.4.4, and for grid resolutions 3/5 through 7/9.

222

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

7.4.5 Convergence in time and space for the non-linear model

in a single cell

We propose to monitor the convergence of the solver in time and space for the full

non-linear model. We consider a spherical cell with radius r0 = 50µm, centered in a box

of length 4r0. We apply an electric field in the z-direction with intensity E = 40kV/m

and compute the solution at a final time of tf = 1.5 · 10−6s.

Starting with the convergence in space, we solve the problem for increasing spatial

resolutions and with a fixed time step ∆t = 9.77·10−9s. Starting with a mesh of resolution

3/6, i.e. with finest resolution equivalent to 643 cells, we increase the maximum resolution

up to 9, i.e. equivalent to 5123. The electric discontinuity [u] at the pole of the cell is

monitored in figure 7.9 and we observe convergence.

0 0.5 1 1.5

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

[u]

level 3/6

level 3/7

level 3/8

level 3/9

1.2 1.4 1.6 1.8 2 2.2

x 10
−7

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

time (s)

[u]

level 3/6

level 3/7

level 3/8

level 3/9

Figure 7.9: Convergence of the solver in space for the non-linear dynamic case with a
single cell. The time step ∆t = 9.77 · 10−9s is kept constant while the spatial resolution
is increased. We observe convergence.

Next, we observe the convergence of the solver for a fixed space resolution of 3/7

as the time step is halved successively. Again, we monitor the electric discontinuity [u]

at the pole of the cell and the results are presented in figure 7.10 together with the

finest resolution from the previous spatial convergence study. The solver converges, and

223

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

furthermore we observe similar accuracy with a resolution 3/7 than for the fine resolution

3/9 for the same time step.

0 0.5 1 1.5

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

[u]

dt = 3.91e−8 s

dt = 1.95e−8 s

dt = 9.77e−9 s

reference

1 1.5 2 2.5 3

x 10
−7

0.5

0.52

0.54

0.56

0.58

0.6

0.62

time (s)

[u]

dt = 3.91e−8 s

dt = 1.95e−8 s

dt = 9.77e−9 s

reference

Figure 7.10: Convergence of the solver in time for the non-linear dynamic case with a
single cell. The reference solution is computed on a mesh of level 3/9 and with ∆t =
9.77 · 10−9 = ∆xmin/40. The other solutions are calculated on a mesh of level 3/7 for
decreasing ∆t (∆xmin

40
, ∆xmin

80
and ∆xmin

160
). The system’s response converges.

These results are consistent with the model which is highly non-linear in time but

well-behaved in space. Therefore, as long as the geometry is correctly resolved, the spatial

accuracy is dominated by the temporal errors and a finer time step is more critical than

a fine spatial resolution.

7.5 Computational study of the permeabilization of

three dimensional cell arrays

The combination of the sharp treatment of the interfacial jump condition, the sym-

metry and definite positiveness of the linear system, with the adaptive Cartesian grid,

enables the study of electroporation beyond a single cell. In what follows, we present

electroporation simulations on arrays of cells and study the influence of cells’ geometry

224

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

and the shadowing effects.

7.5.1 Shadowing effect

We study the behavior of the solver for a 3× 3× 3 array of spherical cells with radii

r0 = 5µm, located periodically in an inner box of 1 cm3. In order to ensure that the

entire aggregate is embedded in an homogeneous electric field, we place it at the center

of a 2 cm3 computational domain as illustrated in the left part of figure 7.12. We take

a time step ∆t = ∆xmin

400
and we impose an electric field E = 40kV/m in the z-direction.

The Octree has a resolution 5/10, leading to a Voronoi mesh with 2,219,552 cells. The

permeabilization of the cells averaged on each of the slices in the z-direction is presented

in figure 7.11. We observe a shadowing effect on the middle slice, which presents a lower

degree of permeabilization. The same setup with 5x5x5 cells exhibits a more pronounced

shadowing, as depicted in figure in figure 7.12. The tree this time is level 5/9, leading

to 2,614,488 Voronoi cells. Figure 7.13 summarizes this section by showing the average

permeabilization of the entire cluster of cells for different densities of cells, from a single

cell to a 5x5x5 array, demonstrating the effect of shadowing. Such results are consistent

with the experimental observations of Pucihar et al. [233], in which dense cell suspensions

increase shadowing effects. This example demonstrates the ability to study quantitatively

shadowing effects with respect to the density of cell suspensions.

7.5.2 Influence of the shape

We propose to investigate the influence of the cells’ geometry on the poration. We

choose an array of N3 cells spread evenly in a box of size 1cm3 located in a computational

domain of size 2cm3 and apply a electric potential in the z-direction with magnitude 40kV.

We select three shapes: spheres with radii 50µm, oblate ellipsoids with radii 46µm and

225

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

0 1 2 3 4 5 6 7

x 10
−6

0

1

2

3

4

5

6

7

8
x 10

−4

time (s)

X
1

slice #1
slice #2
slice #3

Figure 7.11: Left: Visualization of the permeabilization X1 of a 3× 3× 3 array of cells.
Right: Evolution in time of the average permeabilization of the cell membranes for each
z-slice of the 3× 3× 3 array of cells. Note that due to symmetry the curves for the first
and third slices are superposed.

0 1 2 3 4 5

x 10
−6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

time (s)

X
1

slice #1
slice #2
slice #3
slice #4
slice #5

Figure 7.12: Left: setup for the simulation 7.5.1. The blue box represents the computa-
tional domain and the red corners mark the inner box in which the cells are located. The
cells are colored with the electric potential u. Right: average permeabilization X1 by
z-slice as a function of time. The first and fifth slices are superposed due to symmetry,
and so are the second and the third slices.

226

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

0 1 2 3 4 5

x 10
−6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

time (s)

X
1

N =1
N =2
N =3
N =4
N =5

Figure 7.13: Influence of the cell packing on the average permeabilization X1. A packing
of N corresponds to a N × N × N array of spherical cells. As N increases and the
cells get closer, the shadowing effects become more pronounced and the permeabilization
decreases.

prolate ellipsoids with radii 53µm. Here, an ellipsoid with radius r0 is given by:

x2

a2
+
y2

b2
+
z2

c2
= r2

0.

It is oblate for a = b > c and prolate for a = b < c. The coefficients a, b and c are

chosen such that the surface of the ellipsoidal cells is the same than that of the spherical

cells. Figure 7.14 provides a visualization of the three shapes. The tree is level 5/9,

leading to approximately 610,784 Voronoi cells for the spherical cells, 597,968 Voronoi

cells for the oblate cells and 561,176 Voronoi cells for the prolate cells. The time step

is set to ∆t = ∆xmin

400
≈ 9.77 · 10−9s. The relevant physical parameters, i.e. the average

conductance S, the average discontinuity in the electric potential [u] at the tip of the

cells, the average poration X0 and the average permeabilization X1, are represented in

figures 7.15 and 7.16 for N = 3 and N = 5 respectively. We observe a strong influence of

227

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

the cell shapes, with orders of magnitude of difference in the case of the permeabilization

X1. These results are consistent with the biological experiments demonstrating that, in

order to increase the efficacy of electroporation in muscles, the electric field has to be

applied orthogonally to the fibers [234]. This computational example demonstrates that

the approach described in this manuscript is capable of studying the influence of cells’

geometries. In turn, this will enable the study of electroporation in more complex cell

distributions, such as in brain tissue for example, and will help determine the optimal

distribution of the electric field for maximizing cell electroporation.

Figure 7.14: Visualization of an array of 3×3×3 cells with oblate (left), spherical (center)
and prolate (right) shapes colored with the electric potential u.

7.5.3 Random cluster with 100 cells

For this last example, we consider 100 cells located in a box of size 1cm3 in a domain

twice that size. We impose an electric field in the z-direction with intensity 40kV and

choose ∆t = ∆xmin

400
≈ 9.77 · 10−9s. The tree resolution is 5/9 and the cells are ellipsoids

with random eccentricities, orientations and locations. The results are depicted in figure

7.17 and illustrate the capacity of our solver to handle complex layouts of numerous

cells. This example is interesting for biological applications, for which cells do not have

228

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

2

4

6

8

10

12

14

16

x 10
4

time (s)

S
m

oblate
spherical
prolate

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

[u]

oblate
spherical
prolate

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time (s)

X
0

oblate
spherical
prolate

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

time (s)

X
1

oblate
spherical
prolate

Figure 7.15: Representation of the relevant physical parameters as a function of time for
the three different cell shapes decribed in section 7.5.2 and for an array of 3× 3× 3 cells.
Note that X1 is represented with a logarithmic scale.

229

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

2

4

6

8

10

12

14

16

x 10
4

time (s)

S
m

oblate
spherical
prolate

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

[u]

oblate
spherical
prolate

0 0.5 1 1.5 2 2.5 3

x 10
−6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time (s)

X
0

oblate
spherical
prolate

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

time (s)

X
1

oblate
spherical
prolate

Figure 7.16: Representation of the relevant physical parameters as a function of time for
three different cell shapes decribed in section 7.5.2 and for an array of 5 × 5 × 5 cells.
Note that X1 is represented with a logarithmic scale.

230

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

exactly the same shape and volume. Yet, it is possible to determine the distribution of

ellipsoidal shapes and diameters in a sample. Hence, our numerical method makes it

possible to predict quantitatively the average degree of cell permeabilization as well as

the distribution of permeabilized cells in such set up.

0 1 2 3 4 5

x 10
−6

0

0.5

1

1.5

2
x 10

−3

time (s)

X
1

Figure 7.17: Representation of a cluster of 100 cells (left) and the corresponding perme-
abilization X1 (right). The average, maximum and minimum levels of permeabilization
are represented by the red lines.

7.6 Summary

We have presented a Voronoi Interface approach for the simulation of cell electrop-

ermeabilization. In particular, we have considered a nonlinear electropermeabilization

model and imposed the jump condition in electrical potential in a sharp manner. The

numerical treatment at the interface leads to a symmetric positive definite linear system

that can be inverted efficiently. Together with the use of adaptive grids, this approach

enables the study of cell aggregates. Computational experiments have illustrated the

accuracy of the numerical approach and have been used to investigate the shadowing

231

Application of the Voronoi Interface Method to the electropermeabilization problem Chapter 7

effects as well as the influence of cell’s geometries on the degree of permeabilization. We

find that cells with elongated shapes are more prone to be electropermeabilized if the

field is orthogonal to the long axis; this is consistent with the biological experiments of

Corovic et al. in the context of muscles. Our work is a first-step towards studying elec-

tropermeabilization of mesoscale cell spheroids, which provide an interesting biological

model of tumors. Future work will consider the extension to massively parallel architec-

tures, which will provide a computational tool that makes it possible to compare with

macroscale models obtained by either phenomenological considerations or by rigorous

homogenization of a microscale single-cell model. Our approach can also serve as an

advanced numerical tool that can enable the comparison between theoretical models and

biological experiments of electropermeabilization of mesoscale spheroids.

232

Bibliography

[1] E. Brun, A. Guittet, and F. Gibou, A local level-set method using a hash table
data structure, J. Comp. Phys. 231 (2012) 2528–2536.

[2] A. Guittet, M. Theillard, and F. Gibou, A stable projection method for the
incompressible navier-stokes equations on arbitrary geometries and adaptive
quad/octrees, Journal of Computational Physics (2015).

[3] A. Guittet, M. Lepilliez, S. Tanguy, and F. Gibou, Solving elliptic problems with
discontinuities on irregular domains - the Voronoi Interface Method, Journal of
Computational Physics 298 (2015) 747 – 765.

[4] S. Osher and J. Sethian, Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations, Journal of Computational
Physics 79 (1988) 12–49.

[5] J. A. Sethian, Level set methods and fast marching methods. Cambridge
University Press, 1999. Cambridge.

[6] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag, 2002. New York, NY.

[7] D. Adalsteinsson and J. Sethian, A Fast Level Set Method for Propagating
Interfaces, J. Comput. Phys. 118 (1995) 269–277.

[8] M. B. Nielsen and K. Museth, Dynamic Tubular Grid: An Efficient Data
Structure and Algorithms for High Resolution Level Sets, Journal of Scientific
Computing 26 (Jan., 2006) 261–299.

[9] H. Samet, The Design and Analysis of Spatial Data Structures. Addison-Wesley,
New York, 1989.

[10] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image
Processing and GIS. Addison-Wesley, New York, 1990.

[11] J. Strain, Tree methods for moving interfaces, J. Comput. Phys. 151 (1999)
616–648.

233

[12] S. Popinet, Gerris: A tree-based adaptive solver for the incompressible euler
equations in complex geometries, J. Comput. Phys. 190 (2003) 572–600.

[13] F. Losasso, F. Gibou, and R. Fedkiw, Simulating water and smoke with an octree
data structure, ACM Trans. Graph. (SIGGRAPH Proc.) (2004) 457–462.

[14] C. Min and F. Gibou, A second order accurate level set method on non-graded
adaptive Cartesian grids, J. Comput. Phys. 225 (2007) 300–321.

[15] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,
A. Fuhrmann, M. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, et. al.,
Collision detection for deformable objects, in Computer Graphics Forum, vol. 24,
pp. 61–81, Wiley Online Library, 2005.

[16] K. Steele, D. Cline, P. Egbert, and J. Dinerstein, Modeling and rendering viscous
liquids, Computer Animation and Virtual Worlds 15 (2004), no. 3-4 183–192.

[17] T. Cormen, Introduction to algorithms. The MIT press, 2001.

[18] M. Sussman and E. Fatemi, An efficient interface-preserving level set redistancing
algorithm and its application to interfacial incompressible fluid flow, SIAM J. of
Scientific Comput. 20 (1999) 1165–1191.

[19] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory
shock capturing schemes, J. Comput. Phys. 77 (1988) 439–471.

[20] G. Russo and P. Smereka, A remark on computing distance functions, J. Comput.
Phys. 163 (2000) 51–67.

[21] J. Sethian, A fast marching level set method for monotonically advancing fronts,
Proc. Natl. Acad. Sci. 93 (1996) 1591–1595.

[22] J. Tsitsiklis, Efficient Algorithms for Globally Optimal Trajectories, IEEE Trans.
on Automatic Control 40 (1995) 1528–1538.

[23] D. Xiu and G. Karniadakis, A semi-Lagrangian high-order method for
Navier-Stokes equations, J. Comput. Phys 172 (2001) 658–684.

[24] C. Min and F. Gibou, Geometric integration over irregular domains with
application to level set methods, J. Comput. Phys. 226 (2007) 1432–1443.

[25] J. B. Bell, P. Colella, and H. M. Glaz, A second order projection method for the
incompressible Navier-Stokes equations, J. Comput. Phys 85 (1989) 257–283.

[26] E. Olsson and G. Kreiss, A conservative level set method for two phase flow, J.
Comput. Phys. 210 (2005) 225–246.

234

[27] D. Juric and G. Tryggvason, A front tracking method for dendritic solidification,
J. Comput. Phys 123 (1996) 127–148.

[28] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, and Y.-J. Jan, A front-tracking method for the computations of
multiphase flow, J. Comput. Phys. 169 (2001) 708–759.

[29] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A hybrid particle level set
method for improved interface capturing, J. Comput. Phys. 183 (2002) 83–116.

[30] M. Theillard, F. Gibou, and T. Pollock, A sharp computational method for the
simulation of the solidification of binary alloys, J. Sci. Comput. (2014).

[31] W. Bangerth, R. Hartmann, and G. Kanschat, Deal.II - a general-purpose
object-oriented finite element library, ACM Trans. Math. Software 33 (2007).

[32] G. Karypis and V. Kumar, METIS – Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 2.0, 1995.

[33] G. Karypis and V. Kumar, A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering, Journal of Parallel Distributed Computing 48 (Jan.,
1998) 71–95.

[34] E. G. Boman, Ü. V. Çatalyürek, C. Chevalier, and K. D. Devine, The Zoltan and
Isorropia parallel toolkits for combinatorial scientific computing: Partitioning,
ordering and coloring, Scientific Programming 20 (2012), no. 2 129–150.

[35] O. Sahni, M. Zhou, M. S. Shephard, and K. E. Jansen, Scalable implicit finite
element solver for massively parallel processing with demonstration to 160K cores,
in SC09: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2009.

[36] J. R. Stewart and H. C. Edwards, A framework approach for developing parallel
adaptive multiphysics applications, Finite Elements in Analysis and Design 40
(2004), no. 12 1599–1617.

[37] S. Aluru and F. E. Sevilgen, Parallel domain decomposition and load balancing
using space-filling curves, in Proceedings of the Fourth International Conference
on High-Performance Computing, HIPC ’97, (Washington, DC, USA), pp. 230–,
IEEE Computer Society, 1997.

[38] M. Griebel and G. W. Zumbusch, Parallel multigrid in an adaptive PDE solver
based on hashing and space-filling curves, Parallel Computing 25 (1999) 827–843.

[39] P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco,
Dynamic octree load balancing using space-filling curves, Tech. Rep. CS-03-01,
Williams College Department of Computer Science, 2003.

235

[40] T. Tu, D. R. O’Hallaron, and O. Ghattas, Scalable parallel octree meshing for
terascale applications, in Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, SC ’05, (Washington, DC, USA), pp. 4–, IEEE Computer
Society, 2005.

[41] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox,
and S. Zhong, Scalable adaptive mantle convection simulation on petascale
supercomputers, in Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC ’08, (Piscataway, NJ, USA), pp. 62:1–62:15, IEEE Press,
2008.

[42] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros, Dendro:
Parallel algorithms for multigrid and amr methods on 2:1 balanced octrees, in
International Conference for High Performance Computing, Networking, Storage
and Analysis, 2008. SC 2008., 2008.

[43] R. S. Sampath and G. Biros, A parallel geometric multigrid method for finite
elements on octree meshes, SIAM Journal on Scientific Computing 32 (May,
2010) 1361–1392.

[44] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees, SIAM Journal on
Scientific Computing 33 (2011), no. 3 1103–1133.

[45] C. Burstedde, “p4est: Parallel Adaptive Mesh Refinement on Forests of
Octrees.” http://www.p4est.org/. Last accessed June 19, 2015.

[46] T. Isaac, C. Burstedde, L. C. Wilcox, and O. Ghattas, Recursive algorithms for
distributed forests of octrees, SIAM Journal on Scientific Computing 37 (2015),
no. 5 C497–C531.

[47] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. Staar,
Y. Ineichen, C. Bekas, A. Curioni, and O. Ghattas, An extreme-scale implicit
solver for complex PDEs: highly heterogeneous flow in earth’s mantle, in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, p. 5, ACM, 2015.

[48] A. Müller, M. A. Kopera, S. Marras, L. C. Wilcox, T. Isaac, and F. X. Giraldo,
“Strong scaling for numerical weather prediction at petascale with the
atmospheric model NUMA.” http://arxiv.org/abs/1511.01561, 2015.

[49] F. Losasso, R. Fedkiw, and S. Osher, Spatially adaptive techniques for level set
methods and incompressible flow, Computers and Fluids 35 (2006) 995–1010.

[50] S. Thomas and J. Côté, Massively parallel semi-Lagrangian advection, Simulation
Practice and Theory 3 (1995), no. 4 223–238.

236

http://www.p4est.org/

[51] J. Drake, I. Foster, J. Michalakes, B. Toonen, and P. Worley, Design and
performance of a scalable parallel community climate model, Parallel Computing
21 (1995), no. 10 1571–1591.

[52] J. White III and J. J. Dongarra, High-performance high-resolution
semi-Lagrangian tracer transport on a sphere, Journal of Computational Physics
230 (2011), no. 17 6778–6799.

[53] K. Wang, A. Chang, L. V. Kale, and J. A. Dantzig, Parallelization of a level set
method for simulating dendritic growth, Journal of Parallel and Distributed
Computing 66 (2006), no. 11 1379–1386.

[54] M. Sussman, A parallelized, adaptive algorithm for multiphase flows in general
geometries, Computers & structures 83 (2005), no. 6 435–444.

[55] O. Fortmeier and H. M. Bücker, A parallel strategy for a level set simulation of
droplets moving in a liquid medium, in High Performance Computing for
Computational Science–VECPAR 2010, pp. 200–209. Springer, 2011.

[56] J. M. Rodriguez, O. Sahni, R. T. Lahey Jr, and K. E. Jansen, A parallel adaptive
mesh method for the numerical simulation of multiphase flows, Computers &
Fluids 87 (2013) 115–131.

[57] M. Herrmann, A parallel Eulerian interface tracking/Lagrangian point particle
multi-scale coupling procedure, Journal of Computational Physics 229 (2010),
no. 3 745–759.

[58] M. Sussman, P. Smereka, and S. Osher, A level set approach for computing
solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–159.

[59] S. Osher and R. P. Fedkiw, Level Set Methods: An Overview and Some Recent
Results, Journal of Computational Physics 169 (2001) 463–502.

[60] H. Zhao, A fast sweeping method for eikonal equations, Mathematics of
Computation 74 (2004), no. 250 603–627.

[61] M. Herrmann, A domain decomposition parallelization of the fast marching
method, tech. rep., DTIC Document, 2003.

[62] M. C. Tugurlan, Fast marching methods-parallel implementation and analysis.
PhD thesis, Louisiana State University, 2008.

[63] M. Breuß, E. Cristiani, P. Gwosdek, and O. Vogel, An Adaptive
Domain-Decomposition Technique for Parallelization of the Fast Marching
Method, Applied Mathematics and Computation 218 (Sept., 2011) 32–44.

237

[64] H. Zhao, Parallel implementations of the fast sweeping method, Journal of
Computational Mathematics 25 (2007) 421–429.

[65] M. Detrixhe, F. Gibou, and C. Min, A Parallel Fast Sweeping Method for the
Eikonal Equation, Journal of Computational Physics 237 (Mar., 2013) 46–55.

[66] A. Chacon and A. Vladimirsky, A parallel heap-cell method for eikonal equations,
arXiv preprint arXiv:1306.4743 (2013).

[67] W. Jeong and R. Whitaker, A Fast Iterative Method for Eikonal Equations, SIAM
Journal on Scientific Computing 30 (2008), no. 5 2512–2534.

[68] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data
structures for massively parallel generic adaptive finite element codes, ACM
Transactions on Mathematical Software (TOMS) 38 (2011), no. 2 14.

[69] T. Hoefler, C. Siebert, and A. Lumsdaine, Scalable communication protocols for
dynamic sparse data exchange, ACM SIGPLAN Notices 45 (2010), no. 5 159–168.

[70] T. Isaac, C. Burstedde, and O. Ghattas, Low-cost parallel algorithms for 2:1
octree balance, in Parallel Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pp. 426–437, 2012.

[71] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and
N. Wilkens-Diehr, Xsede: Accelerating scientific discovery, Computing in Science
and Engineering 16 (2014), no. 5 62–74.

[72] V. Alexiades, A. D. Solomon, and D. G. Wilson, The formation of a solid nucleus
in supercooled liquid. I, J, Non-Equilib. Thermodyn. 13 (1988) 281–300.

[73] V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting and Freezing
Processes. Hemisphere, Washingotn, DC, 1993.

[74] H. Chen, C. Min, and F. Gibou, A numerical scheme for the Stefan problem on
adaptive Cartesian grids with supralinear convergence rate, J. Comput. Phys. 228
(2009), no. 16 5803–5818.

[75] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang, Petsc web page, 2014.

[76] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics.
Springer-Verlag Berlin Heidelberg, 2002.

[77] J. W. Purvis and J. E. Burkhalter, Prediction of critical mach number for store
configurations, AIAA J. 17 (1979) 1170–1177.

238

[78] R. Gaffney, H. Hassan, and M. Salas, Euler calculations for wings using cartesian
grids, in AIAA 25th Aerospace Sciences Meeting, 1987.

[79] B. Grossman and D. Whitaker, Supersonic flow computations using a
rectangular-coordinate finite-volume method, in AIAA 24th Aerospace Sciences
Meeting, 1986.

[80] M. Vinokur, On one-dimensional stretching functions for finite difference
calculations, Journal of Computational Physics 50 (1983), no. 2 215–234.

[81] E. J. Avital, N. D. Sandham, and K. H. Luo, Stretched cartesian grids for
solution of the incompressible navier-stokes equations, International Journal for
Numerical Methods in Fluids 33 (2000), no. 6 897–918.

[82] M. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial
differential equations, J. Comput. Phys. 53 (1984) 484–512.

[83] L. H. Howell and J. B. Bell, An adaptive mesh projection method for viscous
incompressible flow, SIAM Journal on Scientific Computing 18 (1997), no. 4
996–1013, [http://dx.doi.org/10.1137/S1064827594270555].

[84] M. Sussman, A. Almgren, J. Bell, P. Colella, L. Howell, and M. Welcome, An
adaptive level set approach for incompressible two-phase flows, J. Comput. Phys.
148 (1999) 81–124.

[85] M. Berger and P. Colella, Local adaptive mesh refinement for shock
hydrodynamics, J. Comput. Phys. 82 (1989) 64–84.

[86] D. DeZeeuw and K. G. Powell, An adaptively refined cartesian mesh solver for the
euler equations, Journal of Computational Physics 104 (1993), no. 1 56 – 68.

[87] S. Karman, Splitflow: A 3d unstructured cartesian/prismatic grid cfd code for
complex geometries, in 33rd Aerospace Sciences Meeting and Exhibit, 1995.

[88] J. Melton, Automated three-dimensional cartesian grid generation and euler flow
solutions for arbitrary geometries. PhD thesis, Univerty of California, Davis, 1996.

[89] J. Melton, M. Berger, M. Aftosmis, and M. Wong, 3d applications of a cartesian
grid euler method, in 33rd Aerospace Sciences Meeting and Exhibit, 1995.

[90] J. Melton, F. Enomoto, and M. Berger, 3d automatic cartesian grid generation
for euler flows, in 11th Computational Fluid Dynamics Conference,
AIAA-93-3386-CP, 1993.

239

http://xxx.lanl.gov/abs/http://dx.doi.org/10.1137/S1064827594270555

[91] D. Young, R. Melvin, M. Bieterman, F. Johnson, S. Samant, and J. Bussoletti, A
locally refined rectangular grid finite element method: Application to
computational fluid dynamics and computational physics, J. Comput. Phys. 92
(1991) 1–66.

[92] C. R. Corporation,
“http://www.calmarresearch.com/nf/stg/tranair/tranair.htm.”

[93] M. Aftosmis, M. Berger, and M. Nemec,
“http://people.nas.nasa.gov/aftosmis/cart3d/cart3dhome.html.”

[94] A. Chorin, A numerical method for solving incompressible viscous flow problems,
J. Comput. Phys. 2 (1967) 12–26.

[95] D. Brown, R. Cortez, and M. Minion, Accurate projection methods for the
incompressible navier-stokes equations, J. Comput. Phys. 168 (2001) 464–499.

[96] F. Harlow and J. Welch, Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface, Phys. Fluids 8 (1965) 2182–2189.

[97] K. Lipnikov, J. Morel, and M. Shashkov, Mimetic finite difference methods for
diffusion equations on non-orthogonal non-conformal meshes, J. Comput. Phys.
199 (2004) 589–597.

[98] C. Min and F. Gibou, A second order accurate projection method for the
incompressible Navier-Stokes equation on non-graded adaptive grids, J. Comput.
Phys. 219 (2006) 912–929.

[99] C. Peskin, Flow patterns around heart valves: A numerical method, J. Comput.
Phys. 10 (1972) 252–271.

[100] E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, Combined
immersed-boundary finite-difference methods for three-dimensional complex flow
simulations, Journal of Computational Physics 161 (2000), no. 1 35 – 60.

[101] C. Batty, F. Bertails, and R. Bridson, A fast variational framework for accurate
solid-fluid coupling, ACM Trans. Graph. (SIGGRAPH Proc.) 26 (2007), no. 3.

[102] Y. T. Ng, C. Min, and F. Gibou, An efficient fluid–solid coupling algorithm for
single-phase flows, Journal of Computational Physics 228 (Dec., 2009) 8807–8829.

[103] F. Hermeline, Two coupled particle-finite volume methods using delaunay-voronoi
meshes for the approximation of vlasov-poisson and vlasov-maxwell equations,
Journal of Computational Physics 106 (1993) 1–18.

240

[104] F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang, A second–order–accurate
symmetric discretization of the Poisson equation on irregular domains, J.
Comput. Phys. 176 (2002) 205–227.

[105] X. Long and C. Chen, General formulation of second-order semi-lagrangian
methods for convection-diffusion problems, Abstract and Applied Analysis 2013
(2013).

[106] R. E. English, L. Qiu, Y. Yu, and R. Fedkiw, An adaptive discretization of
incompressible flow using a multitude of moving cartesian grids, Journal of
Computational Physics 254 (2013) 107 – 154.

[107] C. H. Rycroft, Voro++: A three-dimensional voronoi cell library in c++, Chaos
19 (2009) 041111.

[108] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Users Manual.
Argonne National Laboratory, 2012.

[109] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of
parallelism in object oriented numerical software libraries, in Modern Software
Tools in Scientific Computing (B. user Press, ed.), pp. 163—202, 2012.

[110] H. Chen, C. Min, and F. Gibou, A supra-convergent finite difference scheme for
the poisson and heat equations on irregular domains and non-graded adaptive
cartesian grids, J. Sci. Comput. 31 (2007) 19–60.

[111] F. Gibou and R. Fedkiw, A fourth order accurate discretization for the Laplace
and heat equations on arbitrary domains, with applications to the Stefan problem,
J. Comput. Phys. 202 (2005) 577–601.

[112] U. Ghia, K. N. Ghia, and C. T. Shin, High-re solutions for incompressible flow
using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48
(1982) 387–411.

[113] E. Erturk, T. Corke, and C. Gokcol, Numerical solutions of 2-d steady
incompressible driven cavity flow at high reynolds numbers, International Journal
for Numerical Methods in Fluids (2005).

[114] S. Dennis and G. Chang, Numerical solutions for steady flow past a circular
cylinder at Reynolds number up to 100, J. Fluid. Mech. 42 (1970) 471.

[115] M. Braza, P. Chassaing, and H. H. Minh, Numerical study and phyiscal analysis
of the pressure and velocity fields in the near wake of a circular cylinder, Journal
of Fluid Mechanics 165 (1986) 79–130.

241

[116] D. Calhoun, A cartesian grid method for solving the two-dimensional
streamfunction-vorticity equations in irregular regions, J. Comput. Phys. 176
(2002) 231–275.

[117] M. Laroussi, M. Djebbi, and M. Moussa, Triggering vortex shedding for flow past
circular cylinder by acting on initial conditions: A numerical study, Computers &
Fluids 101 (2014) 194 – 207.

[118] C. Min and F. Gibou, Robust second order accurate discretizations of the
multi-dimensional heaviside and dirac delta functions, J. Comput. Phys. 227
(2008) 9686–9695.

[119] M. S. Engelman and M.-A. Jamnia, Transient flow past a circular cylinder: A
benchmark solution, International Journal for Numerical Methods in Fluids 11
(1990) 985–1000.

[120] M. Rosenfeld, D. Kwak, and M. Vinokur, A fractional step solution method for
the unsteady incompressible navier-stokes equations in generalized coordinate
systems, Journal of Computational Physics 94 (1991), no. 1 102 – 137.

[121] N. Mah́ır and Z. Altaç, Numerical investigation of convective heat transfer in
unsteady flow past two cylinders in tandem arrangements, International Journal
of Heat and Fluid Flow 29 (2008), no. 5 1309 – 1318.

[122] S. Muddada and B. Patnaik, An active flow control strategy for the suppression of
vortex structures behind a circular cylinder, European Journal of Mechanics -
B/Fluids 29 (2010), no. 2 93 – 104.

[123] H. Dutsch, F. Durst, S. Becker, and H. Lienhart, Low-reynolds-number flow
around an oscillating circular cylinder at low keulegan-carpenter numbers, Journal
of Fluid Mechanics 360 (1998) 249–271.

[124] J. H. Seo and R. Mittal, A sharp-interface immersed boundary method with
improved mass conservation and reduced spurious pressure oscillations, Journal of
Computational Physics 230 (2011), no. 19 7347 – 7363.

[125] C.-C. Liao, Y.-W. Chang, C.-A. Lin, and J. McDonough, Simulating flows with
moving rigid boundary using immersed-boundary method, Computers & Fluids 39
(2010), no. 1 152 – 167.

[126] R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, and A. von Loebbecke,
A versatile sharp interface immersed boundary method for incompressible flows
with complex boundaries, Journal of Computational Physics 227 (2008), no. 10
4825 – 4852.

242

[127] S. Marella, S. Krishnan, H. Liu, and H. Udaykumar, Sharp interface cartesian
grid method i: An easily implemented technique for 3d moving boundary
computations, Journal of Computational Physics 210 (Nov., 2005) 1–31.

[128] B. L. Clair and A. Hamielec, A numerical study of the drag on a sphere at low and
intermediate reynolds numbers, Journal of the atmospheric sciences 27 (1969).

[129] T. A. Johnson and V. C. Patel, Flow past a sphere up to a reynolds number of
300, Journal of Fluid Mechanics 378 (1, 1999) 19–70.

[130] P. Bagchi, M. Y. Ha, and S. Balachandar, Direct numerical simulation of flow and
heat transfer from a sphere in a uniform cross-flow, Journal of Fluids Engineering
123 (2001), no. 2 347–358.

[131] M. Mirzadeh, A. Guittet, C. Burstedde, and F. Gibou, Parallel level-set methods
on adaptive tree-based grids, Journal of Computational Physics, in review.

[132] K. Shahbazi, P. F. Fischer, and C. R. Ethier, A high-order discontinuous galerkin
method for the unsteady incompressible navier-stokes equations, Journal of
Computational Physics 222 (2007), no. 1 391 – 407.

[133] V. Girault, B. Riviere, and M. F. Wheeler, A discontinuous galerkin method with
nonoverlapping domain decomposition for the stokes and navier-stokes problems,
Mathematics of Computation 74 (2005) 53–84.

[134] M.-C. Lai and C. S. Peskin, An immersed boundary method with formal
second-order accuracy and reduced numerical viscosity, Journal of Computational
Physics 160 (2000), no. 2 705 – 719.

[135] R. LeVeque and Z. Li, The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources 31:1019–1044, 1994, SIAM J.
Numer. Anal. 31 (1994) 1019–1044.

[136] J. A. Benek, J. Steger, and F. C. Dougherty, A flexible grid embedding technique
with applications to the Euler equations, 6th Computational Fluid Dynamics
Conference, AIAA, 373–382. (1983).

[137] R. Finkel and J. Bentley, Quad trees a data structure for retrieval on composite
keys, Acta Informatica 4 (1974), no. 1 1–9.

[138] D. Meagher, Geometric modeling using octree encoding, Computer Graphics and
Image Processing 19 (1982), no. 2 129 – 147.

[139] W. J. Coirier, An adaptively-refined, cartesian, cell-based scheme for the euler and
navier-stokes equations, tech. rep., 1994.

243

[140] A. Khokhlov, Fully threaded tree algorithms for adaptive refinement fluid
dynamics simulations, Journal of Computational Physics 143 (1998), no. 2 519 –
543.

[141] J. Strain, Semi-lagrangian methods for level set equations, Journal of
Computational Physics 151 (1999) 498–533.

[142] H.-J. Bungartz, M. Mehl, and T. Weinzierl, A parallel adaptive Cartesian PDE
solver using space–filling curves, Euro-Par 2006 Parallel Processing (2006)
1064–1074.

[143] T. Weinzierl and M. Mehl, Peano—a traversal and storage scheme for octree-like
adaptive Cartesian multiscale grids, SIAM Journal on Scientific Computing 33
(Oct., 2011) 2732–2760.

[144] I. D. Mishev, Finite volume methods on voronoi meshes, Numerical Methods for
Partial Differential Equations 14 (1998), no. 2 193–212.

[145] J. Kim and H. Choi, An immersed-boundary finite-volume method for simulation
of heat transfer in complex geometries, KSME International Journal 18 (2004),
no. 6 1026–1035.

[146] G. Constantinescu and K. Squires, Les and des investigations of turbulent flow
over a sphere at re = 10,000, Flow, Turbulence and Combustion 70 (2003),
no. 1-4 267–298.

[147] J.-I. Choi, R. C. Oberoi, J. R. Edwards, and J. A. Rosati, An immersed boundary
method for complex incompressible flows, Journal of Computational Physics 224
(2007), no. 2 757 – 784.

[148] I. Babus̆ka, The finite element method for elliptic equations with discontinuous
coefficients, Computing 5 (1970) 207–213.

[149] J. Bramble and J. King, A finite element method for interface problems in
domains with smooth boundaries and interfaces, Adv. Comput. Math. 6 (1996)
109–138.

[150] Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and
parabolic interface problems, Num. Math. 79 (1996) 175–202.

[151] M. Dryja, A neumann-neumann algorithm for mortar discretization of elliptic
problems with discontinuous coefficients, Num. Math. 99 (2005) 645–656.

[152] J. Huang and J. Zou, A mortar element method for elliptic problems with
discontinuous coefficients, IMA J. Numer. Anal. 22 (2001) 549–576.

244

[153] B. Lamichhane and B. Wohlmuth, Mortar finite elements for interface problems,
Computing 72 (2004) 333–348.

[154] Sandia National Laboratory, International meshing roundtable, (Thistle Marble
Arch, London, United Kingdom), 2014.

[155] Z. Li, T. Lin, and X. Wu, New cartesian grid methods for interface problems using
the finite element formulation, Numerische Mathematik 96 (2003), no. 1 61–98.

[156] Y. Gong, B. Li, and Z. Li, Immersed-interface finite-element methods for elliptic
interface problems with nonhomogeneous jump conditions, SIAM Journal on
Numerical Analysis 46 (2008), no. 1 472–495.

[157] R. E. Ewing, Z. Li, T. Lin, and Y. Lin, The immersed finite volume element
methods for the elliptic interface problems, Mathematics and Computers in
Simulation 50 (1999), no. 1–4 63 – 76.

[158] T. Chen and J. Strain, Piecewise-polynomial discretization and krylov-accelerated
multigrid for elliptic interface problems, Journal of Computational Physics 227
(2008), no. 16 7503 – 7542.

[159] Z. Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer.
Anal. 35 (1998) 230–254.

[160] Z. Li and K. Ito, The Immersed Interface Method – Numerical Solutions of PDEs
Involving Interfaces and Irregular Domains, vol. 33. SIAM Frontiers in Applied
mathematics, 2006.

[161] A. Wiegmann and K. Bube, The explicit-jump immersed interface method: finite
difference methods for PDEs with piecewise smooth solutions, SIAM J. Numer.
Anal.J 37 (2000) 827–862.

[162] P. A. Berthelsen, A decomposed immersed interface method for variable coefficient
elliptic equations with non-smooth and discontinuous solutions, Journal of
Computational Physics 197 (2004) 364–386.

[163] L. Adams and T. Chartier, New geometric immersed interface multigrid solvers,
SIAM J. of Scientific Comput. 25 (2004) 1516–1533.

[164] L. Adams and T. Chartier, A comparison of algebraic multigrid and geometric
immersed interface multigrid methods for interface problems, SIAM J. of
Scientific Comput. 26 (2005) 762–784.

[165] L. Adams and Z. Li, The immersed interface/multigrid methods for interface
problems, SIAM J. of Scientific Comput. 24 (2002) 463–479.

245

[166] A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular
regions, SIAM J. Numer. Anal. 21 (1984) 285–299.

[167] S. Zhao and G. Wei, High-order {FDTD} methods via derivative matching for
maxwell’s equations with material interfaces, Journal of Computational Physics
200 (2004), no. 1 60 – 103.

[168] S. Yu, Y. Zhou, and G. Wei, Matched interface and boundary (mib) method for
elliptic problems with sharp-edged interfaces, J. Comput. Phys. 224 (June, 2007)
729–756.

[169] A. J. Lew and G. C. Buscaglia, A discontinuous-Galerkin-based immersed
boundary method, Int. J. for Num. Meth. in Eng. 76 (2008) 427–454.

[170] G. Guyomarch, C.-O. Lee, and K. Jeon, A discontinuous Galerkin method for
elliptic interface problems with application to electroporation, Commun. Numer.
Methods Eng. 25 (2009) 991–1008.

[171] N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth
without remeshing, Int. J. for Num. Meth. Eng. 46 (1999) 131–150.

[172] C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko, Arbitrary
branched and intersecting cracks with the extended finite element method, Int. J.
for Num. Meth. Eng. 48 (2000) 1741–1760.

[173] T. Belytschko, N. Moës, S. Usui, and C. Parimi, Arbitrary discontinuities in finite
elements, Int. J. for Num. Meth. Eng. 50 (2001) 993–1013.

[174] N. Moës, M. Cloirec, P. Cartraud, and J. Remacle, A computational approach to
handle complex microstructure geometries, Comput. Methods Appl. Mech. Eng.
192 (2003) 3162–3177.

[175] H. Ji and J. Dolbow, On strategies for enforcing interfacial constraints and
evaluating jump conditions with extended finite element method, Int. J. for Num.
Meth. in Eng. 61 (2004), no. 2508-2535.

[176] T. Fries and T. Belytschko, The intrinsic XFEM: a method for arbitrary
discontinuities without additional unknowns, Int. J. for Num. Meth. in Eng. 68
(2006) 1358–1385.

[177] S. Groß and A. Reusken, An extended pressure finite element space for two-phase
incompressible flows with surface tension, J. Comp. Phys. 224 (2007) 40–58.

[178] F. van der Bos and V. Gravemeier, Numerical simulation of premixed combustion
using an enriched finite element method, J. Comp. Phys. 228 (2009) 3605–3624.

246

[179] R. Crockett, P. Colella, and D. Graves, A cartesian grid embedded boundary
method for solving the poisson and heat equations with discontinuous coefficients
in three dimensions, Journal of Computational Physics 230 (2011), no. 7 2451 –
2469.

[180] M. Oevermann, C. Scharfenberg, and R. Klein, A sharp interface finite volume
method for elliptic equations on Cartesian grids, Journal of Computational
Physics 228 (2009) 5184–5206.

[181] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A non-oscillatory Eulerian
approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput.
Phys. 152 (1999) 457–492.

[182] X. Liu, R. Fedkiw, and M. Kang, A boundary condition capturing method for
Poisson’s equation on irregular domains, J. Comput. Phys. 154 (2000) 151.

[183] X.-D. Liu and T. Sideris, Convergence of the ghost-fluid method for elliptic
equations with interfaces, Math. Comp. 72 (2003) 1731–1746.

[184] J. Papac, F. Gibou, and C. Ratsch, Efficient symmetric discretization for the
Poisson, heat and Stefan-type problems with Robin boundary conditions, Journal
of Computational Physics 229 (Feb., 2010) 875–889.

[185] J. Papac, A. Helgadottir, C. Ratsch, and F. Gibou, A level set approach for
diffusion and stefan-type problems with robin boundary conditions on
quadtree/octree adaptive cartesian grids, Journal of Computational Physics
(2012), no. 0 –.

[186] F. Gibou, C. Min, and R. Fedkiw, High resolution sharp computational methods
for elliptic and parabolic problems in complex geometries, J. Sci. Comput. 54
(2013) 369–413.

[187] A. Coco and G. Russo, Second order multigrid methods for elliptic problems with
discontinuous coefficients on an arbitrary interface, i: One dimensional problems,
Numerical Mathematics: Theory, Methods & Applications 5 (2012) 19.

[188] A. Coco and G. Russo, Finite-difference ghost-point multigrid methods on
cartesian grids for elliptic problems in arbitrary domains, Journal of
Computational Physics 241 (2013) 464 – 501.

[189] M.Latige, T.Colin, and G.Gallice, A second order cartesian finite volume method
for elliptic interface and embedded dirichlet problems, Computers and Fluids 83
(2013) 70–76.

[190] S. Hou, W. Wang, and L. Wang, Numerical method for solving matrix coefficient
elliptic equation with sharp-edged interfaces, Journal of Computational Physics
229 (2010), no. 19 7162 – 7179.

247

[191] N. Molino, J. Bao, and R. Fedkiw, A virtual node algorithm for changing mesh
topology during simulation, ACM Trans. Graph. (SIGGRAPH Proc.) 23 (2004)
385–392.

[192] Z. Bao, J.-M. Hong, J. Teran, and R. Fedkiw, Fracturing rigid materials, IEEE
Trans. on Vis. and Comput. Graph. 13 (2007) 370–378.

[193] A. Hansbo and P. Hansbo, A finite element method for the simulation of strong
and weak discontinuities in solid mechanics, Comput. Meth. in Appl. Mech. and
Eng. 1993 (2004) 3523–3540.

[194] J.-H. Song, P. Areias, and T. Belytschko, A method for dynamic crack and shear
band propagation with phatom nodes, Int. J. for Num. Meth. in Eng. 67 (2006)
868–893.

[195] J. Dolbow and I. Harari, An efficient finite element method for embedded interface
problems, Int. J. for Num. Meth. in Eng. 78 (2009) 229–252.

[196] E. Sifakis, K. Der, and R. Fedkiw, Arbitrary cutting of deformable tetrahedralized
objects, in Proceedings of SIGGRAPH 2007, pp. 73–80, 2007.

[197] C. Richardson, J. Hegemann, E. Sifakis, J. Hellrung, and J. Teran, An XFEM
method for modeling geometrically elaborate crack propagation in brittle materials,
Int. J. for Num. Meth. in Eng. 88 (2011) 1042–1065.

[198] J. L. J. Hellrung, L. Wang, E. Sifakis, and J. M. Teran, A second order virtual
node method for elliptic problems with interfaces and irregular domains in three
dimensions, Journal of Computational Physics 231 (2012), no. 4 2015 – 2048.

[199] M. Cisternino and L. Weynans, A parallel second order Cartesian method for
elliptic interface problems, Commun. Comput. Phys. 12 (2012) 1562–1587.

[200] R. Vanselow, Relations between fem and fvm applied to the poisson equation,
Computing 57 (Sept., 1996) 93–104.

[201] N. Sukumar, Voronoi cell finite difference method for the diffusion operator on
arbitrary unstructured grids, International Journal for Numerical Methods in
Engineering 57 (2003), no. 1 1–34.

[202] R. D. Falgout and U. M. Yang, hypre: A library of high performance
preconditioners, in Computational Science - ICCS 2002 (P. M. Sloot, A. G.
Hoekstra, C. K. Tan, and J. J. Dongarra, eds.), vol. 2331 of Lecture Notes in
Computer Science, pp. 632–641. Springer Berlin Heidelberg, 2002.

[203] Z. Chen and J. Zou, Finite element methods, based on nitsche’s, method for
elliptic interface problems, Numer. Math. 79 (1998) 175 – 202.

248

[204] A. Hansbo and P. Hansbo, An unfitted finite element method, based on nitsche’s,
method for elliptic interface problems, Comput. Methods Appl. Mech. Eng. 191
(2002) 5537 – 5552.

[205] L. Parussini and V. Pediroda, Fictious Domain approach with hp-finite element
approximation for incompressible fluid flow, J. Comput. Phys. 228 (2009) 3891 –
3910.

[206] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2003.

[207] Z. Tan, D. Le, Z. Li, K. Lim, and B. Khoo, An immersed interface method for
solving incompressible viscous flows with piecewise constant viscosity across a
moving elastic membrane, Journal of Computational Physics 227 (Dec., 2008)
9955–9983.

[208] J. Beale and A. Layton, On the accuracy of finite difference methods for elliptic
problems with interfaces, Commun. Appl. Math. Comput. 1 (2006) 207 – 208.

[209] A. Weigmann and K. Bube, The explicit-jump immersed interface method: finite
difference method for pdes with piecewise smooth solutions, SIAM J. Sci. Comput.
37 (2000) 827 – 862.

[210] Z. Jomaa and C. Macaskill, The embedded finite difference method for the poisson
equation in a domain with and irregular boundary and dirichlet boundary
conditions, J. Comput. Phys. 202 (2005) 488–506.

[211] I.-L. Chern and Y.-C. Shu, A coupling interface method for elliptic interface
problems, J. Comput. Phys. 225 (2007) 2138–2174.

[212] Y. Zhou, S. Zhao, M. Feig, and G. Wei, High order mathced interterface and
boundary method for elliptic equations with discontinuous coefficients and singular
sources, J. Comput. Phys. 213 (2006) 1 – 30.

[213] C. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25
(1977) 220–252.

[214] C. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479–517.

[215] C. Peskin and B. Printz, Improved volume conservation in the computation of
flows with immersed elastic boundaries, J. Comput. Phys. 105 (1993) 146–154.

[216] T. Ho, Z. Li, S. Osher, and H. Zhao, A hybrid method for moving interface
problems with application to the Hele–Shaw flow, J. Comput. Phys. 134 (1997)
236–252.

249

[217] L. Mir, Therapeutic perspectives of in vivo cell electropermeabilization,
Bioelectrochemistry 53 (2001) 1–10.

[218] B. Gabriel and J. Teissié, Time courses of mammalian cell electropermeabilization
observed by millisecond imaging of membrane property changes during the pulse.,
Biophys. J. 76 (1999), no. 4 2158–2165 (electronic).

[219] M. Vernhes, P. Cabanes, and J. Teissié, Chinese hamster ovary cells sensitivity to
localized electrical stresses., Bioelectrochem. Bioenerg. 48 (1999) 17–25.

[220] J. Teissié, M. Golzio, and M. Rols, Mechanisms of cell membrane
electropermeabilization: A minireview of our present (lack of ?) knownledge,
Biochimica et Biophysica Acta 1724 (2005) 270–280.

[221] K. DeBruin and W. Krassowska, Modelling electroporation in a single cell. I.
Effects of field strength and rest potential., Biophysical Journal 77 (Sept, 1999)
1213–1224.

[222] J. Weaver, Electroporation of cells and tissues, IEEE Trans. on Plasma Sci. 28
(2000).

[223] Z. Vasilkoski, A. T. Esser, T. R. Gowrishankar, and J. C. Weaver, Membrane
electroporation: The absolute rate equation and nanosecond time scale pore
creation., Phys Rev E Stat Nonlin Soft Matter Phys 74 (Aug, 2006) 021904.

[224] O. Kavian, M. Leguèbe, C. Poignard, and L. Weynans, “Classical”
electropermeabilization modeling at the cell scale, J. Math. Biol. 68 (2014), no. 1-2
235–265.

[225] M. Leguèbe, A. Silve, L. Mir, and C. Poignard, Conducting and permeable states
of cell membrane submitted to high voltage pulses: Mathematical and numerical
studies validated by the experiments, Journal of Theoretical Biology 360 (2014)
83–94. cited By 0.

[226] M. Mirzadeh, M. Theillard, and F. Gibou, A Second-Order Discretization of the
Nonlinear Poisson-Boltzmann Equation over Irregular Geometries using
Non-Graded Adaptive Cartesian Grids, Journal of Computational Physics 230
(Dec., 2010) 2125–2140.

[227] M. Leguèbe, C. Poignard, and L. Weynans, A second-order Cartesian method for
the simulation of electropermeabilization cell models, J. Comput. Phys. 292 (2015)
114–140.

[228] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A.
Kunz-Schughart, Multicellular tumor spheroids: an underestimated tool is
catching up again, Journal of Biotechnology 148 (July, 2010) 3–15.

250

[229] L. Gibot, L. Wasungu, J. Teissié, and M.-P. Rols, Antitumor drug delivery in
multicellular spheroids by electropermeabilization, Journal of Controlled Release:
Official Journal of the Controlled Release Society 167 (Apr., 2013) 138–147.

[230] K. Foster and H. Schwan, Dielectric properties of tissues and biological materials:
a critical review, CRC in Biomedical Engineering 17 (1989), no. 1 25–104.

[231] E. Fear and M. Stuchly, Modelling assemblies of biological cells exposed to electric
fields., IEEE Trans Biomed Eng 45 (Oct, 1998) 1259–1271.

[232] C. Min, Local level set method in high dimension and codimension, J. Comput.
Phys. 200 (2004) 368–382.

[233] G. Pucihar, T. Kotnik, J. Teissié, and D. Miklavčič, Electropermeabilization of
dense cell suspensions, European Biophysics Journal 36 (2007), no. 3 173–185.

[234] S. C̆orović, A. Z̆upanic̆, S. Kranjc, B. Al Sakere, A. Leroy-Willig, L. M. Mir, and
D. Miklavc̆ic̆, The influence of skeletal muscle anisotropy on electroporation: in
vivo study and numerical modeling, Medical & Biological Engineering &
Computing 48 (july, 2010) 637–648.

251

	Curriculum Vitae
	Abstract
	Permissions and Attributions
	Introduction
	Hash table structures for sparse grids storage
	Introduction
	The Hash Table structure
	Implementation of the local level-set method
	Validation
	Summary

	Parallel Level-Set methods on adaptive tree-based grids
	Introduction
	The level-set method
	Parallel algorithms
	Scaling results
	Application to the Stefan problem
	Summary

	Solving the incompressible Navier-Stokes equations on Quad/Oc-tree grids
	Introduction
	The numerical method
	Discretization and stability on the quadtree data structure
	Numerical examples
	Summary

	Extension of the incompressible fluid solver to parallel environments
	Introduction
	The computational method
	Parallel algorithms
	Scalability
	Numerical validation
	Summary

	The Voronoi Interface Method for discontinuous elliptic problems
	Introduction
	The geometrical tools
	Solving a Poisson equation on Voronoi diagrams
	Numerical validation on uniform meshes
	Extension to adaptive meshes
	Summary

	Comparison of the Voronoi Interface Method with the Ghost Fluid Method
	Introduction
	Governing Equations and Numerical Methods
	Numerical Experiments
	Summary

	Application of the Voronoi Interface Method to the electropermeabilization problem
	Introduction
	Electrical model for a single cell
	Description of the computational method
	Numerical results
	Computational study of the permeabilization of three dimensional cell arrays
	Summary

	Bibliography

