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The relative contributions of genetic variation and experience in shaping the morphology of the adolescent brain are not fully
understood. Using longitudinal data from 11,665 subjects in the ABCD Study, we fit vertex-wise variance components including family
effects, genetic effects, and subject-level effects using a computationally efficient framework. Variance in cortical thickness and surface
area is largely attributable to genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify
areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using data from cortical
regions. We discuss the biological importance of subject-specific variance and its implications for environmental influences on cortical
development and maturation.

Key words: mixed effects models; heritability; intra-class correlation.

Introduction
The heritability of cortical brain imaging phenotypes has been
a subject of investigation for several years. Prior studies have
employed both twin datasets (Chen et al. 2013) and genome-wide
association studies (GWAS; Yang et al. 2017; Shadrin et al. 2021;
van der Meer et al. 2021) to estimate the contribution of genetic
variation to variance in cortical morphometry at the region of
interest (ROI) and vertex level (Eyler et al. 2012; Chen et al. 2015;
Maes et al. 2023). Longitudinal datasets that capture changes
in brain structure over time can provide novel insights into the
heritability of brain structure. However, until recently, vertex-wise
mixed-effects models assessing the influence of shared genetic
variance, as well as family- and subject-specific variance, on
cortical morphometry have not yet been available, due in part to
the computational demand of running complex models on tens
of thousands of cortical vertices. Here, we used a novel computa-
tional method to apply mixed-effects models to the large sample
and the longitudinal design of the Adolescent Brain Cognitive
DevelopmentSM Study (ABCD Study), to estimate the contribution

of genetic relatedness (heritability), shared family environment,
and subject-specific variance to vertex-wise measures of brain
morphometry.

To examine the spatial distributions of random effects across
vertex-wise cortical measures, we applied a novel method, Fast
and Efficient Mixed-Effects Algorithm (FEMA; Parekh et al. 2023),
which can model genetic relatedness as a continuous value rang-
ing from 0 to 1, rather than assigning categorical variables based
on kinship. FEMA also allows for the flexible specification of
several random effects simultaneously including shared family,
subject ID, and others (Parekh et al. 2023). By using the full
ABCD Study sample (n = 11,880) rather than restricting our anal-
yses to twins, we were able to better approximate the variance
components that exist in a general population. This approach
to heritability analysis also has the potential to capture more
shared variance than the heritability estimates obtained from
GWAS, which only model the additive effects that can be inferred
from common SNPs and therefore may not capture variance
attributable to structural variants, rare variants, or non-additive
effects (Génin 2020). In addition, incorporation of genetic, family,
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and subject-specific effects in the same model allows us to inves-
tigate the differential effects of genetics, shared environment,
and otherwise unexplained contributions to within-subject sta-
bility.

We estimated the contribution of additive genetic relatedness
(akin to a heritability estimate), shared family environment (the
extent to which siblings and twins share variance, coded as shared
family ID), and the effect of subject (variance that is not explained
by fixed effect covariates nor genetic/family structure, but nev-
ertheless remains stable for a given subject over time). Of note,
classical additive genetic/common environment/unique environ-
ment (ACE) models typically include data from a single timepoint
and therefore cannot inspect the contribution of subject-specific
variance in this manner. Using longitudinal neuroimaging data
from the ABCD Study release 4.0, we derived vertex-wise cortical
thickness, cortical surface area, and sulcal depth. Then, for each
vertex, we used the FEMA package (Parekh et al. 2023) to fit the
model,

y ∼ 1 + age + sex + scanner + software + A + C + S + E (1)

where y represents the phenotype at each vertex; age, sex, MRI
scanner, and scanner software version are fixed effect covariates;
A, C, S, and E are the random effects, with their estimates
corresponding to the proportion of variance in the phenotype
(not explained by fixed effects) attributable to genetic similarity
(A, modeled as the genetic relatedness between each pair of
individuals within the same family, computed from SNP data),
common family environment (C, coded as family ID), subject
(S), and the remaining unexplained variance (E), respectively.
Of note, the contribution of the random effect of subject (S)
is equivalent to the intra-class correlation coefficient (ICC)
estimated using a mixed effects model to measure test–retest
reliability (Zuo and Xing 2014). Thus, a high value for S denotes
a phenotype with high test–retest reliability, high values for A
reflect phenotypes that are highly heritable, and high values for
C reflect phenotypes that are highly attributable to shared family
environment.

Materials and methods
Sample
The ABCD Study is an ongoing longitudinal multisite study within
the United States that includes data from 11,880 adolescents
recruited from 21 data acquisition sites (Garavan et al. 2018;
Volkow et al. 2018). Each site obtained approval from their Insti-
tutional Review Board, and all participants and caregivers under-
went verbal and written consent/assent. Exclusion criteria for
the ABCD Study include (1) lack of English proficiency in the
child; (2) the presence of severe sensory, neurological, medical
or intellectual limitations that would inhibit the child’s ability to
comply with the study protocol; (3) an inability to complete an
MRI scan at baseline. In this study, we used baseline and the first
follow-up imaging data (acquired two years after the baseline)
from ABCD release 4.0. We included all individuals with imaging
and genomics data that passed quality control; analyses were
restricted to observations with complete imaging and covariate
data (final n = 11,402 at baseline, 7695 at two-year follow-up, for a
total of 19,097 observations; mean age at first visit = 9.92 years
(SD = 0.62), mean age at second visit = 11.94 years (SD = 0.65).
Table 1 shows the demographics of the analytic sample at base-
line and at the follow-up.

Genotyping, genetic principal components, and
genetic relatedness
Methods for collecting genetic data have been described in detail
elsewhere (Uban et al. 2018). Briefly, a saliva sample was collected
at the baseline visit, as well as a blood sample from twin pairs.
The Smokescreen Genotyping array (Baurley et al. 2016) was used
to assay over 500,000 single nucleotide polymorphisms (SNPs),
which were used for genetic relatedness calculation using PC-
Air (Conomos et al. 2015) and PC-Relate (Conomos et al. 2016).
PC-AiR captures ancestry information that is not confounded
by relatedness by finding a set of unrelated individuals in the
sample that have the highest divergent ancestry and computes
the PCs in this set; the remaining related individuals are then
projected into this space. PC-Relate computes a GRM that is
Independent from ancestry effects as derived from PC-AiR. PC-AiR
was run using the default suggested parameters from the
GENESIS package (Gogarten et al. 2019), as described in previous
work (Smith et al. 2023). Supplementary Fig. 6 displays a
histogram of the pairwise genetic relatedness values across the
full sample (Supplementary Fig. 6A) as well as the subset of pairs
of participants with shared family ID (Supplementary Fig. 6B). Of
the 2,011 pairs of individuals that shared a family ID, 1,868 pairs
had genomic relatedness data; of these, 1,378 pairs had genetic
relatedness between 0.25 and 0.75 (most likely full siblings or
dizygotic twins) and 389 pairs had genetic relatedness greater
than 0.75 (most likely monozygotic twins).

MRI acquisition and image processing
The ABCD Study MRI data were collected across 21 research sites
using Siemens Prisma, GE 750, and Philips Achieva and Ingenia
3 T scanners. Scanning protocols were harmonized across sites.
Details of imaging acquisition and processing protocols used in
the ABCD Study have been described previously (Casey et al. 2018;
Hagler et al. 2019). Briefly, T1-weighted images were acquired
using a 3D magnetization-prepared rapid acquisition gradient
echo (MPRAGE) scan with 1-mm isotropic resolution and no multi-
band acceleration. T1w structural images were corrected for gra-
dient nonlinearity distortions using scanner-specific, nonlinear
transformations provided by MRI scanner manufacturers (Wald
et al. 2001; Jovicich et al. 2006). Intensity inhomogeneity correction
was performed by applying smoothly varying, estimated B1-bias
field (Hagler et al. 2019). Images were rigidly registered using a
cross-sectional framework and resampled into alignment with
a pre-existing, in-house, averaged, reference brain with 1.0-mm
isotropic resolution (Hagler et al. 2019). Cortical surface recon-
struction was conducted using FreeSurfer v7.1.1, which includes
tools for estimation of various measures of brain morphometry
and uses routinely acquired T1w MRI volumes (Dale and Sereno
1993; Dale et al. 1999; Fischl et al. 1999a; Fischl et al. 1999b;
Fischl and Dale 2000; Fischl et al. 2001, 2002, 2004; Ségonne et al.
2004, 2007). The cortical parcellation used in this analysis was
conducted in FreeSurfer using the Desikan-Killiany cortical atlas
(Desikan et al. 2006). All analyses included only those participants
who were recommended for inclusion in postprocessed sMRI
quality control (imgincl_t1w_include==1).

Statistical analysis
The classic ACE model used to estimate heritability is equiv-
alent to a linear mixed-effects (LME) model specified as
follows:

yi = μ + x′
iβ + Ai + Ci + Ei (2)
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Table 1. Demographic data for age in months (mean, SD), sex at birth, household income, parental education, parental marital status,
self-declared race, and endorsement of Hispanic ethnicity, stratified by time point (baseline and two-year follow-up). Variable names
from the tabulated data release are included in the table for replication.

Baseline Two-year follow-up P

n 11,402 7,695
Number of families 9,529 6,524
Interview_age (years), mean (SD) 9.92 (0.63) 11.94 (0.65) <0.001
Sex = M (%) 5,931 (52.0) 4,129 (53.7) 0.027
Household income (%) <0.001

[<50 K] 3,074 (29.5) 1,718 (24.2)
[> = 50 K and <100 K] 2,949 (28.3) 2,006 (28.3)
[> = 100 K] 4,409 (42.3) 3,374 (47.5)

High education (%) 0.026
<HS diploma 560 (4.9) 334 (4.4)
HS diploma/GED 1,078 (9.5) 677 (8.8)
Some college 2,950 (25.9) 1,908 (24.9)
Bachelor 2,902 (25.5) 2,022 (26.3)
Postgraduate degree 3,898 (34.2) 2,734 (35.6)

Married = Yes (%) 7,710 (68.2) 5,251 (68.8) 0.405
race.4level (%) 0.004

White 7,267 (64.7) 5,075 (66.8)
Black 1,754 (15.6) 1,059 (13.9)
Asian 263 (2.3) 157 (2.1)
Other/Mixed 1,950 (17.4) 1,307 (17.2)

Hisp = Yes (%) 2,332 (20.7) 1,487 (19.6) 0.054

where yi is the trait value of the ith scan; μ is the overall mean;
xi denotes a vector of covariates; and Ai, Ci, Ei represent latent
additive genetic, common family, and unique environmental ran-
dom effects, respectively. Over subjects, the covariance of these
three terms are σ 2

A�A, σ 2
C�C, and σ 2

E I; �A is given by the genetic
relatedness, which could be a kinship coefficient (e.g. 1/2 for sib-
lings or dizygotic twins) or, as we have done, the SNP-wise genetic
similarity similar to previous methods (Yang et al. 2011); �C has
1s on off-diagonals for any family pairs, 0 otherwise.

For longitudinal datasets incorporating data from multiple
timepoints for a given participant, an additional random effect
S can be incorporated:

yi = μ + x′
iβ + Ai + Ci + Si + Ei (3)

where Si is the random effect of subject (e.g. subject ID), and
the vector of covariates xi includes a fixed effect to incorporate
multiple timepoints (e.g. age). The covariance of the subject effect
is σ 2

S �S, where �S has 1s on off diagonals observation pairs from
the same subject; with a subject effect modeled, the final effect Ei

corresponds to a pure intrasubject measurement error. Note that
the total residual variance, σ 2

total = σ 2
A + σ 2

C + σ 2
S + σ 2

E , is the same
variance that would be estimated in a cross-sectional analysis of
unrelated subjects, and demonstrates how this approach decom-
poses all phenotypic variance into meaningful components.

Vertex-wise analysis
Univariate linear mixed effects models (LMMs) were applied at
each vertex to model cortical morphometry (cortical thickness,
cortical surface area, sulcal depth) as the dependent variables.

All of the results shown are from a model including age, sex,
MRI scanner, and software version as fixed covariates. Random
effects were modeled as genetic relatedness (A) and subject (S)
nested within shared family groups (C). All LMMs were run using
the publicly available FEMA software package (Parekh et al. 2023),

which handles voxel- and vertex-wise data and can incorporate a
matrix of SNP-derived genetic relatedness.

For the main results, vertex-wise statistical maps present σ 2,
the proportion of residual variance that is explained by variance
in the random effect of interest. Unthresholded σ 2 maps are pre-
sented in the main figures to provide a comprehensive description
of the continuous distribution of effects. Supplementary Fig. 1
displays the total residual variance, σ 2

total, which is the total unex-
plained variance after accounting for the fixed effects in the
model (age, sex, scanner, and software). σ 2

total is displayed in units
that match the units of the phenotype of interest (mm or mm2)
and represents the total phenotypic variance that is then parti-
tioned into A, C, S, and E components.

Region-of-interest analyses
To visualize the distribution of test statistics by region of interest
(ROI), the vertex-level test statistics were mapped to the cor-
responding regions of interest (ROIs) in the Desikan-Killiany 40
Atlas (Desikan et al. 2006). Violin plots were generated to show
the distribution of vertex-level effects across all vertices within
each ROI mask, stratified by hemisphere, to highlight the range of
effects within each ROI.

All statistical analyses were conducted using custom code in
MATLAB v2020a. FEMA is publicly available on GitHub (https://
github.com/cmig-research-group/cmig_tools).

Results
Supplementary Figure 1 presents the total residual variance,
σ 2

total, for cortical thickness, cortical surface area, and sulcal
depth. The total residual variance σ 2

total represents the phenotypic
variance that is unexplained by the fixed effects included in our
model; σ 2

total is partitioned into A, C, S, and E components. Cortical
thickness had a relatively uniform distribution of total residual
variance, with the largest variances occurring in the temporal
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pole. Cortical surface area exhibited the largest residual variances
in the lateral frontal and occipital cortices, with notably lower
residual variances occurring in the primary motor cortex, primary
sensory cortex, medial frontal, and medial temporal cortices.
Sulcal depth exhibited the largest range in total residual variance,
with most regions exhibiting relatively smaller variances whereas
the superior parietal lobule exhibited larger residual variances
bilaterally. Regions with lower residual variances may represent
portions of the cortex that are genetically conserved, whereas
regions with higher residual variance may be prone to exhibiting
individual differences based on genetic and environmental
factors.

Figure 1 presents vertex-wise variance component estimates
for cortical surface area as a fraction of total residual variance,
σ 2

total. The shared environment (C) component accounted for a
small proportion of residual variance across the whole brain
(Fig. 1), mostly limited to the bilateral temporal poles, medial
frontal and occipital cortices, and parts of the primary motor and
primary somatosensory cortices. Supplementary Figure 2 displays
the distribution of random effects estimates within each region of
interest (ROI); C estimates ranged from 0.11 (supramarginal gyrus)
to 0.26 (temporal pole; Supplementary Fig. 2). The A component
accounted for a larger proportion of variance, with the strongest
contributions in the medial frontal and occipital cortices, as well
as the superior frontal gyrus and subregions of the superior tem-
poral and insular cortices (Fig. 1). When grouping vertices by ROI,
mean A component estimates ranged from 0.28 (entorhinal cor-
tex) to 0.57 (pericalcarine cortex; Supplementary Fig. 2). Subject-
specific variance S accounted for the largest proportion of vari-
ance in cortical surface area across several regions that were not
clearly circumscribed by atlas parcellations, including parts of the
posterior cingulate, supramarginal, superior parietal, and inferior
parietal cortices, reflecting that there is a substantial amount of
variance in cortical surface area that is unexplained by genetic or
common environmental factors that nonetheless remains stable
within subjects over time. After grouping vertices into ROIs, the
mean S estimates ranged from 0.19 (rostral anterior cingulate cor-
tex) to 0.51 (inferior parietal cortex; Supplementary Fig. 2). Inspec-
tion of the distribution of random effects estimates within each
region showed evidence for right–left asymmetry in some regions
(e.g. the banks of the superior temporal sulcus, the entorhinal
cortex, A and C components in the parahippocampal cortex, and
C in pars orbitalis and pars triangularis). In addition, some par-
cellated regions exhibited wide distributions of vertex-level effect
estimates (e.g. posterior cingulate, precentral, superior frontal,
superior parietal, and superior temporal cortices), reflecting the
heterogeneity within these regions, whereas others exhibited nar-
rower distributions (e.g. medial orbitofrontal cortex, pars opercu-
laris, pericalcarine cortex, and rostral anterior cingulate cortex).

Figure 2 presents vertex-wise variance component results for
cortical thickness; ROI-wise results are presented in
Supplementary Fig. 3. The A component accounted for a large
proportion of residual variance, with particularly strong effects
in subregions of the superior frontal and pericalcarine cortices as
well as the cuneus, and very small areas in the precentral cortex
and insula (Fig. 2). After grouping vertices into ROIs, the mean
A component estimates across all vertices within an ROI ranged
from 0.19 (temporal pole) to 0.44 (cuneus; Supplementary Fig. 3).
The S component also accounted for a substantial proportion
of variance in several areas, particularly in the isthmus of the
left cingulate cortex and a larger portion of the right cingulate
cortex, as well as portions of the superior parietal cortex and
the precuneus (Fig. 2). After grouping vertex-level estimates

into ROIs, mean S estimates across vertices within ROIs ranged
from 0.25 (pericalcarine cortex) to 0.42 (isthmus of cingulate
cortex; Supplementary Fig. 3). Similar to cortical surface area,
the C component accounted for relatively smaller proportions of
residual variance across the cortex, with the highest estimates
occurring in areas that also exhibited strong S effects (e.g.,
precuneus and parts of superior parietal cortex; Fig. 2). At the
ROI level, mean estimates for the C component ranged from 0.09
(pars opercularis) to 0.17 (lingual cortex; Supplementary Fig. 3).
As with cortical surface area, there were regions that exhibited
right–left asymmetry (e.g. A estimates in the pars opercularis and
pericalcarine cortex) as well as wide or irregular distributions of
vertex-level estimates (e.g. S estimates in the supramarginal and
transverse temporal cortices).

Figure 3 presents vertex-wise variance component estimates
for sulcal depth. Similar to cortical surface area and thickness, the
C component accounted for a very small proportion of variance
across the whole brain. Unlike the prior phenotypes; however, the
A effect estimate was also relatively small across most of the
brain, with substantial effects limited to portions of the posterior
cingulate cortex and isthmus of the cingulate cortex, as well as a
very anterior subregion of the precuneus. Conversely, S accounted
for a large proportion of variance across the entire cortex, with
variance component estimates ranging from 0.34 (temporal pole)
to 0.74 (caudal middle frontal gyrus; Supplementary Fig. 4). Areas
with lower S estimates were mainly limited to the insula and parts
of the entorhinal cortex. Once again, we observed regions with
apparent right–left asymmetry (e.g. lingual cortex, pars triangu-
laris, posterior cingulate cortex), though this phenomenon was
most apparent for the estimates of the A random effect. We also
observed wide and/or irregular distributions of vertex-level effects
within several regions (e.g. A estimates in the precuneus and ros-
tral middle frontal cortex, and S estimates in the supramarginal
cortex). Supplementary Figure 5 presents the A, C, and S variance
components in a single summary figure using a red-green-blue
color map for ease of interpretation.

Discussion
Our analysis extends previous investigations of heritability based
on twin data (Maes et al. 2023) and SNP-derived genetic related-
ness data (Shadrin et al. 2021; van der Meer et al. 2021) in multiple
ways. First, whereas prior heritability estimates used region-of-
interest level data (Maes et al. 2023), this analysis represents a
mass univariate approach in which separate models were run for
each vertex of the cortical surface, allowing for the estimation
of random effects at a more granular level. This fine-grained
analysis led to the observation of heterogeneous effects even
within individual cortical regions. Second, while twin heritabil-
ity studies typically estimate variance components attributable
to additive genetic relatedness and shared family, this analy-
sis leverages the ABCD Study

®
longitudinal data to estimate an

additional variance component that is attributable to subject-
specific variance, i.e. the variance that is stable within a given
participant over multiple study visits. This S component, which
can be considered a measure of test–retest reliability indepen-
dent of genetic heritability, accounted for a large proportion of
phenotypic variance in all cortical phenotypes studied, repre-
senting that this phenotype has a large proportion of variance
that is not attributable to genetics, common family environment,
or the fixed effects, but nevertheless remains stable in a given
participant.
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Fig. 1. Additive genetic (A), common environment (C), and subject-specific variance (S) components in cortical surface area, presented vertex-wise as a
fraction of total residual variance.

Fig. 2. Additive genetic (A), common environment (C), and subject-specific (S) variance components in cortical thickness, presented vertex-wise as a
fraction of total residual variance.

Compared to a recent ROI-based study using the ABCD Study
®

twin sample (Maes et al. 2023), our A estimates were smaller,
though larger than single nucleotide polymorphism (SNP) heri-
tability estimates derived from GWAS (Shadrin et al. 2021; van der
Meer et al. 2021). This is consistent with prior comparisons of twin

versus non-twin analyses in the ABCD Study
®

(Smith et al. 2023).
Notably, compared to classical twin studies, the present analysis
incorporated the full ABCD Study

®
sample including siblings

and unrelated participants, which may lead to narrower confi-
dence intervals when estimating heritability (Smith et al. 2023).
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Fig. 3. Additive genetic (A), common environment (C), and subject-specific (S) variance components in sulcal depth, presented vertex-wise as a fraction
of total residual variance.

Consistent with previous findings that heritability estimates tend
to be lower for phenotypes measured at the regional level com-
pared to global metrics (Maes et al. 2023) and vertex-wise heri-
tability estimates can differ from ROI-based estimates (Eyler et al.
2012), the present study provides evidence that genetic contribu-
tions to cortical structure can vary continuously even within a
region of the cortex. In addition, the vertex-level distribution of
random effects within ROIs confirms that traditional anatomi-
cal parcellations do not necessarily match genetic parcellations
(Chen et al. 2012, 2013). For example, the supramarginal cortex
represented an area with widely distributed effects estimates for
all three phenotypes studied, indicating that this region of the
cortex may contain several subregions with different amounts of
genetic and environmental influence.

This analysis also extends prior heritability estimation by
employing a model that incorporated the random effect of
subject S. Compared to classical twin models that include
additive genetic variance, common environment, and one E
component encompassing both unique environmental influences
and measurement error (see Neale and Maes 2004), this analysis
allows us to partition unshared variance between siblings into
portions that are stable within participants (analogous to test–
retest reliability) versus an E component that in our model reflects
the unshared variance that is not stable, potentially representing
change within a participant over time and/or measurement
error. Importantly, because S was included in a model that also
contains additive genetic contributions (A), the S component
represents variance that differs between identical twins while
remaining stable for a given participant over time, akin to a
“cortical fingerprint.” This variance component was large in
several distinct regions of the brain for each phenotype assessed,
indicating that similar to genetic heritability (Panizzon et al.
2009), subject-specific variance has differential influences on

cortical surface area, cortical thickness, and sulcal depth. The S
component for cortical surface area was particularly strong in a
portion of the occipitoparietal cortex that included parts of the
supramarginal, superior parietal, and inferior parietal cortices.
On the other hand, the S component for cortical thickness was
largest in parts of the cingulate cortex, superior parietal cortex,
and the precuneus. Notably, sulcal depth exhibited very large
S estimates globally with few exceptions. This “fingerprint”-like
phenomenon is particularly interesting given the associations
that have previously been found between sulcal depth and
aging (Rettmann et al. 2006) as well as mental health (Shin
et al. 2022). These results imply that all three phenotypes, and
particularly sulcal depth, are subject to a substantial amount of
influence from environmental factors that are not shared among
twins or siblings, which may include random influences during
development or unique experiences that influence individual
patterns of cortical maturation (Tamnes et al. 2017).

The present study confirms and extends prior literature
estimating heritability of cortical phenotypes in adolescents
(Maes et al. 2023), using a novel statistical package to leverage the
full ABCD Study sample across multiple timepoints. The results
of this large-scale analysis are intended to provide benchmarks
for the vertex-wise estimation of variance components including
not only the standard ACE model but also the subject-specific
variance component, which provides and estimates for the
component of test–retest reliability that is not accounted for
by shared genetics and family environment. The ABCD Study
cohort is a diverse adolescent sample that was recruited to
reflect the adolescent population in the United States; it is
possible that the results of this analysis may not generalize to
populations with different genetic and cultural backgrounds (Fan
et al. 2023). In addition, while the mixed-effects models used in
this work remain agnostic regarding the specific sources of genetic
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influence, future work should aim to incorporate genomic data
to better understand the specific longitudinal contributions of
genetic variation to adolescent brain development.
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