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Systems biology
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Abstract
Motivation: Computational analyses of bulk and single-cell omics provide translational insights into complex diseases, such as COVID-19, by re
vealing molecules, cellular phenotypes, and signalling patterns that contribute to unfavourable clinical outcomes. Current in silico approaches 
dovetail differential abundance, biostatistics, and machine learning, but often overlook nonlinear proteomic dynamics, like post-translational 
modifications, and provide limited biological interpretability beyond feature ranking.
Results: We introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression 
networks with PASNet, a biologically informed sparse deep learning model, to perform explainable predictions for COVID-19 severity. The 
APNet driver-pathway network ingests SJARACNe co-regulation and classification weights to aid result interpretation and hypothesis genera
tion. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers 
and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.
Availability and implementation: APNet’s R, Python scripts, and Cytoscape methodologies are available at https://github.com/ 
BiodataAnalysisGroup/APNet.
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1 Introduction
Machine learning (ML) has significantly advanced biomedi
cal research by computationally deconvoluting high- 
throughput omic datasets to yield insights into potentially 
novel biomarkers, signalling pathways, druggable targets, 
and patient stratification schemas. Deep learning (DL), a 
more intricate form of ML inspired by the neuronal opera
tions of the human brain, has emerged as an even more trans
formative computational approach in omic research. It can 
autonomously learn hierarchical representations from raw 
data, making it essential for identifying complex dependen
cies within datasets, even in the presence of noise and high- 
dimensional data. However, DL models often operate as 
‘black boxes’, lacking transparency and understandability for 
humans. This opacity presents a challenge, particularly in the 
biomedical sciences, where justifying AI-based decisions is 
critical. Consequently, research in explainable AI (XAI) is 
growing, aiming to develop AI models that are more under
standable to humans while maintaining or improving their 
performance (Santorsola and Lescai 2023).

ML and DL computational models on multi-omics with 
variable degrees of XAI have been pivotal in the fight against 
SARS-CoV-2 infections that have caused the 2019 global 
COVID-19 pandemic. This pestilential threat has resulted in 
over 700 million infections and 7 million deaths worldwide. 
Although currently, COVID-19 is not posing an immediate 
threat to public health systems on a pandemic level, the intri
cate immunopathology of this infectious disease, the emer
gence of ‘long-COVID-19 syndromes’ post-infection, the 
need to develop novel antivirals, and the prospect of facing 
similar threats in the near future continue to drive research 
endeavours in this field (Jamison et al. 2022, Williams et al. 
2023, Narayanan et al. 2024).

Plasma proteomics encompasses a broad spectrum of pro
teins from the peripheral blood, including tissue markers, 
immunoglobulins, transcription factors, kinases, metabolites, 
and secreted factors, and is usually a focal point in COVID- 
19 studies (Zhong et al. 2021, Eldjarn et al. 2023). This is 
particularly relevant in severe COVID-19, which besets many 
patients infected with SARS-CoV-2, and involves an inflam
matory ‘cytokine storm’, Acute Respiratory Distress 
Syndrome (ARDS), PANoptosis-induced cell death, and mul
tiorgan failure (Diamond and Kanneganti 2022, Baba�ci�c 
et al. 2023). Plasma proteomics is often analysed together 
with single-cell omic approaches, like scRNA-seq, to trace 
critical circulating proteins’ otherwise-obscure cellular origin 
to specific cell groups of potential translational interest 
(Feyaerts et al. 2022).

Many studies have measured plasma proteomics using 
Olink Proximity Extension Assay (PEA) in COVID-19 re
search due to this technology’s specificity, scalability, and 
multiplexing benefits (Wik et al. 2021). In our recent work, 
we assessed pertinent ML models applied to these high- 
dimensional datasets, such as Random Forest, Gradient 
Boosted Decision Trees, XGBoost, Extra Trees, Logistic 
Regression, Lasso Logistic Regression, Support Vector 
Machines (SVM), and DL (e.g. AutoGluon-Tabular). Some 
models exhibited eXplainable AI (XAI) features by deploying 
Shapley additive explanation (SHAP) values, the minimal- 
optimal variables method, or a random forest explainer. In 
the same work, we integrated an explainable computational 
pipeline to benchmark a wide assortment of ML tools on pre
dicting COVID-19 severity from Olink plasma proteomics, 

which revealed Multi-Layer Perceptron (MLP) as the highest- 
performing algorithm (Dimitsaki et al. 2023).

However, most of these studies can only partially approxi
mate proteomic nonlinear dynamics (e.g. post-translational 
modifications, protein co-expression networks, complex for
mation, and subcellular localisation), thus missing signalling 
proteins that may drive critical COVID-19 pathways. 
Moreover, the outcomes of these ML/DL studies often re
quire more extensive external validation in large, indepen
dent datasets, while their biological explainability is usually 
restricted to feature ranking (Dimitsaki et al. 2023, Paul et al. 
2023). Furthermore, most ML/DL pipelines in COVID-19 re
search are complex to repurpose for data integration between 
plasma proteomics and other omic modalities (e.g. 
scRNA-seq).

Acknowledging these challenges, in this work, we contex
tualize a DL framework that addresses data normalisation, 
data integration, incorporation of biological priors, 
eXplainable AI (XAI), and network biology. Within this 
framework, we present a novel biologically informed DL 
classifier, Activity PASNet (APNet), designed primarily to 
process Olink plasma proteomics and seamlessly bridge them 
with other omic modalities. APNet carries out two key tasks:

1) Supervised clustering to distinguish severe from nonse
vere COVID-19 cases, and 

2) Biological insight generation by creating a protein- 
pathway bipartite graph enriched with protein/gene reg
ulatory motifs and feature-importance weights derived 
from the DL component. 

APNet harmonizes omic expression values by transforming 
them into activity matrices based on the SJARACNe algo
rithm, thereby uncovering the underlying regulatory protein 
or gene networks (PRN or GRN, respectively) (Dong et al. 
2023). Furthermore, APNet uses the PASNet architecture as 
the main biologically informed DL backbone of the entire 
pipeline for supervised clustering and preliminary biological 
explainability (Hao et al. 2018). APNet also incorporates 
SHAP values for enhanced interpretability regarding the most 
predictive molecules from the plasma proteome (Hao et al. 
2018, Dong et al. 2023).

We extensively trained, validated, and tested APNet on ac
tivity matrices derived from three distinct Olink plasma pro
teomic datasets (MGH, Mayo, Stanford) (Filbin et al. 2021, 
Byeon et al. 2022, Feyaerts et al. 2022) and from two PBMC 
scRNA-seq datasets (https://www.covid19cellatlas.org/). 
APNet robustly classified severe COVID-19 cases, pinpointed 
ground-truth drivers of severity, identified novel hidden driv
ers of severity, and highlighted bioenergetic perturbations in 
the liver. Additionally, APNet surpassed other models in 
benchmarking studies not only in terms of accuracy and ro
bustness but also in the extent to which it uncovered COVID- 
19 ground truths.

2 Materials and methods
2.1 APNet overview
APNet is a modular pipeline that aims to facilitate the discov
ery of novel predictive drivers of severe clinical outcomes and 
the formulation of mechanistic hypotheses. In this present 
work, we considered cases experiencing severe and nonsevere 
COVID-19.
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More specifically, APNet constitutes a novel computa
tional framework focused on a biologically informed neural 
network with enhanced biological explainability for super
vised clustering of COVID-19 patients.

APNet entails the following computational ‘building 
blocks’ (for an extended description of the tools involved, 
please see Materials and Methods):

1) NetBID2 and scMINER tools, which reverse-engineer 
context-specific Protein Regulatory Networks (PRNs) or 
Gene Regulatory Networks (GRNs) based on the 
SJARACNe algorithm (Dong et al. 2023). These in- 
silico tools transform typical expression matrices of 
omic datasets into ‘activity’ matrices, reflecting the ca
pacity of transcription factors and signal drivers to regu
late their target proteins/genes. This biologically 
inspired form of data preprocessing has revealed, in sev
eral leukemias, not only strongly differentially regulated 
disease drivers but also nuanced and subtle drivers ex
perimentally corroborated yet missed by typical differ
ential expression/abundance analysis (so-called 
‘hidden’ drivers). 

2) PASNet (Pathway-associated sparse deep neural net
work), which ingests the activity values (from NetBID2 
or scMINER) and uses biological priors [pathway–gene/ 
protein associations from external databases like 
Enrichr-KG (Evangelista et al. 2023)] to perform super
vised clustering, prioritizing the most predictive path
ways and genes/proteins through assigned learning 
weights (Hao et al. 2018). 

3) SHAP values (SHapley Additive exPlanations), which 
estimate each feature’s influence on the DL output via a 
linear function that keeps other features constant. The 
coefficient of this function is the Shapley value. SHAP 
offers (i) a solid theoretical basis for interpretability, (ii) 
broad applicability, and (iii) independence from perturb
ing the model or data. 

By combining the PRNs/GRNs from NetBID2/scMINER 
and the learning weights and SHAP values from PASNet pre
dictions, APNet outputs a protein or gene–pathway bipartite 
network to aid in formulating mechanistic hypotheses for 
clinically predictive molecules and signalling motifs. Figure 1 
schematically represents the main workflow of APNet.

Figure 1. APNet framework as implemented in the herein COVID-19 multi-omic study to discover predictive drivers of severity, and create complex 
graphs for uncovering non-intuitive connections among drivers and pathways. APNet entails initial pre-processing of COVID-19 bulk plasma proteomics 
and scRNA-seq (A) through NetBID2 and scMINER tools (B) which leads to the retrieval of activity matrices from expression matrices. After SJARACNe 
regulatory networks and differential activity analysis (B), key drivers are mapped to pathways through the Enrichr Knowledge Graph (KG) through one-hot 
mapping (C). Then, activity values of differentially active drivers and the driver-pathway mappings are ingested by sparse neural network models called 
PASNet which enables supervised clustering of cases in severe and non-severe COVID-19 (D). Ultimately, APNet facilitates the assembly of network 
models that combine drivers with pathways along with a variety of node weights (e.g., differential activity) and edge weights (e.g., Mutual Information 
metric, learning weights from PASNet) allowing the leveraging of actionable insights and the in silico testing of biological hypotheses (E). The figure was 
created with Biorender software.
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We structured our classification experiments following 
DOME recommendations (Walsh et al. 2021) for a system
atic approach.

2.2 Bulk proteomic APNet model
Using NetBID2, we performed independent differential activ
ity analysis on three plasma proteomic datasets (MGH, 
Mayo, Stanford) to avoid data leakage. Differential activity 
was calculated within each dataset, and 333 commonly active 
proteins were identified. One-hot encoding then mapped 
these proteins to pathways from the Enrichr Knowledge 
Graph (KG), yielding a matrix of 250 proteins and 210 path
ways as prior biological knowledge. The PASNet DL model 
received the MGH activity matrix as input plus the protein– 
pathway map for training. Model optimization and valida
tion occurred on the Mayo dataset, tuning L2 regularization 
and learning rate. We evaluated metrics such as AUC, F1 
score, SHAP values, and protein–pathway graphs. Finally, 
the pretrained model was tested independently on the 
Stanford dataset using the optimal hyperparameters.

2.3 Multi-omic APNet model
Using scMINER, we transformed count matrices from the 
scMGH and Blish PBMC scRNA-seq datasets into activity 
values (again avoiding data leakage). We identified common 
active molecules with the MGH plasma proteomic dataset 
and built a new one-hot encoded molecule–pathway matrix 
to train another APNet model on MGH activity values. 
Model optimization and validation were performed on the 
scMGH dataset (similar to the first scenario). The pretrained 
model from the MGH–scMGH datasets was independently 
tested on the Blish dataset, using its significant feature drivers 
that aligned with the model’s input features.

2.4 Brief description of APNet modular architecture
2.4.1 Activity data preprocessing for DL input
For plasma proteomics, we used NetBID2 (Dong et al. 2023), 
while for scRNA-seq we used scMINER. These tools rely on 
the SJARACNe algorithm to reverse-engineer context-specific 
interactomes, capturing ‘activity values’ for each candidate 
driver (protein or gene). In bulk plasma proteomics, we con
sider all proteins as potential drivers for SJARACNe.

SJARACNe extends the original ARACNe approach 
(Margolin et al. 2006) for big data, focusing on whether mu
tual information or correlation potentials are significantly 
nonzero (Khatamian et al. 2019). NetBID2 uses SJARACNe 
outputs to compute driver ‘activity values’ by a weighted 
mean over each driver’s target proteins: 

Driversi ¼

Pn
j¼1ðSIGNij ×MIij × EXP sjÞ

n
;

where EXP sj is the expression (e.g. NPX) of target protein j 
in sample s, MIij is the mutual information between driver i 
and target j, and SIGNij is the sign of their Spearman correla
tion. Finally, n is the number of targets regulated by i.

Differential activities (severe versus nonsevere) are com
puted via ‘getDE.BID.2G’. In single-cell data, scMINER simi
larly extracts t-test based differential activity (Ding 
et al. 2023).

2.4.2 Biological priors via pathway enrichment
We mapped the joint differentially active severity drivers 
from the three Olink studies to biological pathways using the 
Enrichr KG (Evangelista et al. 2023). We leveraged 30 path
ways each from KEGG, Reactome, GO: BP, and 
Wikipathways 2021 for up- and down-regulated drivers, 
then used one-hot encoding (1 if a driver belongs to a path
way gene set, else 0).

2.4.3 DL Classification with biological priors
APNet’s DL classification uses a sparse neural network, 
PASNet (Hao et al. 2018), which incorporates gene/protein– 
pathway hierarchical connections, enabling more interpret
able, explainable predictions. We tested 3 scenarios:

1) Two bulk-proteomic scenarios (MGH–Mayo, MGH–Stanford). 
2) One single-cell scenario (MGH proteome–MGH scRNA-seq). 

In each scenario, training occurred on the MGH dataset; 
we validated and tested on the other datasets. Activity matri
ces from NetBID2 or scMINER served as inputs, plus one- 
hot driver–pathway matrices as priors. Model performance 
was measured via AUC and F1, plus ROC curves.

Mathematically, PASNet enforces layer-wise sparsity and 
cost-sensitive learning. Let WðlÞ be weights at layer l, MðlÞ a 
mask matrix (pruning small weights), and λ a regularization 
hyperparameter: 

hðlþ 1Þ ¼ a
�
ðWðlÞ

� MðlÞÞhðlÞ þbðlÞ
�
;

where � is elementwise multiplication. For imbalanced data, 
the cost function includes class-specific average errors Ck. We 
optimize weights WðlÞ and biases bðlÞ via gradient updates: 

WðlÞ  ð1 − ηλÞWðlÞ − η
XK

k¼1

@Ck

@WðlÞ
; bðlÞ  bðlÞ − η

XK

k¼1

@Ck

@bðlÞ
:

2.4.4 Post-hoc explainable insights
APNet’s final step offers various graph-based visualizations 
and analytics to glean biological insights:

� SHAP-based feature ranking: SHAP values give feature- 
level interpretability (Hao et al. 2018). 

� Regulatory subgraphs: We can isolate top-20 predictive 
drivers by SHAP values and reconstruct their local 
SJARACNe sub-networks. 

� Driver–pathway bipartite graphs: Edges carry MI, corre
lation metrics (from SJARACNe), plus PASNet learning 
weights. Analysts can filter to identify potential transla
tional subgraphs. 

� Shortest-path computations: Using Dijkstra’s algorithm 
(via networkx) to find critical intermediates between two 
drivers of interest. 

� STRINGdb-based verification: Because SJARACNe is un
biased, we can overlay known protein–protein interactions 
from STRINGdb to reduce spurious or unverified edges. 

Formally, Shapley values (ϕi) for feature i among M fea
tures are computed as: 
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ϕi ¼
X

S�Nnfig

jSj!ðM − jSj− 1Þ!
M!

½f ðS [ figÞ− f ðSÞ�;

where f is our model and N the set of all input features (Hao 
et al. 2018).

2.5 Statistical metrics for data distribution analysis
During exploration of pre- and post-activity transformations, 
we assessed mean, standard deviation, kurtosis, and skewness 
for expression versus activity values (Montgomery and 
Runger 2014). Kurtosis gauges ‘tailedness’, skewness meas
ures distribution asymmetry.

2.6 Clustering statistics during PCA analysis
To compare the 4 COVID-19 omic datasets (including MGH 
single-cell RNAseq) via PCA, we first converted scMGH data 
to pseudobulk to reduce complexity. We then computed:

� Silhouette Score (Rousseeuw 1987): from −1 to 1, higher 
is better separation. 

� Davies–Bouldin Index (Davies and Bouldin 1979): lower 
is better; measures cluster similarity ratios. 

� Calinski–Harabasz Index (Cali�nski and Harabasz 1974): 
higher is better; ratio of between- versus within- 
cluster variance. 

2.7 Single-cell analysis and visualization
We used Scanpy (https://scanpy.readthedocs.io/) and Seurat 
v5 (https://satijalab.org/seurat/) for scRNA-seq. Seurat’s 
SCTransform function normalized the data matrix, after 
which t-tests compared expression in severe versus nonse
vere groups.

2.8 Benchmarking and bioinformatic validation 
based on COVID-19 prior knowledge
PASNet baseline:

We built a baseline PASNet model using raw expression 
(rather than activity) from MGH, Mayo, and Stanford. 
Genes with significant differential abundance across these 
datasets were kept. As before, we used Enrichr-KG pathways 
and measured performance by AUC, F1, etc.

Random Forest baseline:
We also trained a Random Forest on activity matrices from 

the four datasets in two rounds:

1) Train on MGH proteomic, test on Mayo/Stanford. 
2) Train on MGH proteomic, test on MGH single- 

cell data. 

For each experiment, we took the top-20 predictive drivers 
(by SHAP or feature importance) and retrieved protein–pro
tein interaction (PPI) networks from STRINGdb (score >
0.4). We computed assortativity and average node degree in 
each PPI (Newman 2002). We also mapped top drivers to 
nine curated COVID-19 immunopathology hallmarks from 
SIGNOR (Level 4 networks in Cytoscape).

2.9 DOME recommendations
APNet’s assembly adheres to DOME guidelines (Walsh et al. 
2021) for reporting supervised ML analyses in biological con
texts (see Supplementary Material S1).

3 Results
3.1 Harmonizing COVID-19 proteomic and 
transcriptomic datasets for APNet deployment
Initially, we harmonized patient stratification for COVID-19 
severity based on WHOscore (‘Severe’ versus ‘NonSevere’) 
across the three Olink proteomic datasets. In particular, 
COVID-19 cases who had a fatal outcome or were admitted 
to the ICU or were intubated were designated as ‘severe’, and 
the remaining cases were defined as ‘nonsevere’. In the MGH 
study, we designated 80 severe and 225 non-severe cases. We 
designated 268 severe and 181 non-severe COVID-19 cases 
in the Mayo study. Furthermore, we determined 24 severe 
and 40 non-severe cases in the Stanford study. Associations 
with respective WHOscores and age can be seen in 
(Supplementary Fig. S1). Summary statistics of the three pro
teomic datasets regarding clinical covariates can be found in 
Supplementary Figs S1–S3. MGH contains extensive clinical 
features, including comorbidities (e.g. hypertension, diabetes, 
heart and kidney disease), biochemical markers (CRP, D-di
mer, LDH), and patient demographics. Mayo and Stanford 
include more limited clinical information.

From all 3 Olink studies, 1463 common plasma proteins 
were bioinformatically studied within APNet and used for 
downstream processing to uncover predictive markers of 
COVID-19 severity (bulk scenario).

Corollary to these proteomic data, our study included two 
single-cell RNA-seq PBMC datasets by the Villani group (4 
severe and 10 non-severe MGH cases, 6665 cells, 15575 
genes) and the Blish group (4 severe and 4 nonsevere, 6500 
cells, 16234 genes). The overarching goal here was to seek 
common signalling motifs on a multi-omic spectrum (i.e. 
across bulk plasma proteomics and PBMC scRNA-seq data), 
given that part of the plasma proteome is produced by circu
lating peripheral blood mononuclear cells (PBMCs) involved 
in COVID-19 immunopathology (single-cell scenario) 
(Supplementary Fig. S4).

3.2 APNet aligns data distributions, mitigates batch 
effects and increases the breadth of jointly 
regulated drivers after activity transformations
At this point, we deployed the NetBID2 tool on the bulk 
plasma proteomic datasets and the scMINER tool on the 
PBMC scRNA-seq datasets to attain the activity-transformed 
omic matrices which will be used subsequently for the analy
ses (see Materials and Methods).

Once the activity transformations were complete, data explo
ration was conducted to document the extent of alterations in 
the datasets after pre-processing with NetBID2/ScMINER. 
Noticeably, the distributions of the activity values for the bulk 
proteomics across the three datasets aligned almost entirely 
(Mean: 0.32, 0.32, 0.45 and Standard Deviation: 0.12, 0.15, 
0.16 for MGH-Mayo-Stanford respectively), which was not the 
case for the distributions of the expression values (Mean: -0.74, 
1.56, 4.88 and Standard Deviation: 1.48, 1.69, 2.38 for MGH- 
Mayo-Stanford respectively) (Supplementary Table S1) 
(Supplementary Figs 5A–C and 6A–C). Similarly, pre- 
processing of MGH scRNA-seq data with scMINER almost 
doubled the mean values and standard deviations of the distri
bution of activity values compared to those of expression val
ues, entailing negative values. Focusing on the positive values, 
the two distributions differed significantly in kurtosis and skew
ness (0.76 and 0.88 for activity; 5.32 and 2.02 for expression), 
which indicated that the positive activity values had fewer 
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outliers and were more evenly distributed than the expression 
ones. A similar trend was observed also in the Blish scRNA-seq 
dataset, post-scMINER (Supplementary Table S2) 
(Supplementary Fig. S7). Overall, these results suggested that 
the activity transformations aligned data distributions from 
COVID-19 bulk proteomics and scRNA-seq data (by increasing 
the ‘signal-to-noise’ ratio in the latter since more genes acquired 
stronger activity signal), paving the way for more accurate 
multi-omic DL predictions (Supplementary Table S1).

Next, we performed PCA analysis with calculations of clus
tering statistics (Silhouette Score/Silh.S.; Davies-Bouldin Index/ 
DBI; Calinski-Harabasz Index/CHI) on the activity and expres
sion matrices of the four COVID-19 datasets (scRNA-seq were 
included after pseudo-bulk calculation—see Section 2). Activity 
transformations ameliorated the batch effect across the four 
studies and attenuated data clustering, as demonstrated by the 
lower Silh.S. and CHI and higher DBI (0.18, 163.91, 1.49) com
pared to the corresponding outcomes from expression matrixes 
(0.52, 718.56, 0.57) (Fig. 2A–D).

After batch effect inspection, the differentially active proteins 
and genes (DAPs, DAGs) and their differentially expressed 
counterparts (DEPs, DEGs) were calculated for the severe and 
nonsevere COVID-19 cases across the four studies.

Strikingly, the activity transformations led to the detection 
of 333 jointly DAPs (150 differentially hyper-active and 183 
hypo-active) across the 3 Olink bulk plasma proteomic stud
ies, in contrast to the 163 proteins indicated by typical differ
ential abundance analysis (Fig. 2E and F). Cumulative logFC 
plotting across the three studies revealed that activity analysis 
prioritized plasma proteins distinct from those obtained from 
expression analysis, in terms of which molecules had the 
higher magnitude of differential change in severe COVID-19 
(Supplementary Figs S5D–G and S6D–G). Consequent en
richment of implicated biological processes (GO: BP) 
revealed that activity analysis ranked terms related to inflam
matory viral infection (high logFC drivers, Supplementary 
Fig. S5H) and the systemic multi-organ failure (low logFC 
drivers, Supplementary Fig. S5I) at the top positions com
pared with the respective enrichment analysis of expression 
matrices (Supplementary Fig. S6H and I).

APNet captured 282 differentially active drivers between 
the MGH plasma proteomic and scRNA-seq datasets, con
trary to the 140 joint drivers detected by the differential 
abundance analysis (Fig. 2G and H). Cumulative logFC plot
ting showed again divergent results between activity and ex
pression values in this scenario. Ensuing pathway enrichment 
revealed that top logFC drivers based on activity gravitated 
towards metabolic alterations for hyper-active drivers and 
immunological defects, especially for T-cells, for hypo-active 
drivers compared to expression analysis (Supplementary 
Fig. S8).

In the bulk plasma proteomic scenario, the 333 joint DAPs 
were almost equally categorized in overt (170) and hidden 
drivers (163). MGH was the one that had the highest fraction 
of hidden drivers (111/333), followed by Stanford (81/333) 
and Mayo (23/333) (Supplementary Fig. S9A). In the bulk/ 
single-cell scenario, across the three datasets MGH Olink, 
MGH scRNAseq, and Blish scRNAseq, most common drivers 
were hidden (71/85), and their percentage in bulk and MGH/ 
Blish scRNA-seq datasets approximated almost 40%, 36%, 
and 53%, respectively (34/85, 31/85, and 45/85 respectively) 
(Supplementary Fig. S9B).

3.3 Pathway enrichment on APNet’s severity drivers 
reveals hallmarks of COVID-19 immunopathology
In the second part of the APNet framework, pathway enrich
ments of the common hyper-active and hypo-active DAPs 
across the three proteomic datasets were conducted using 
Enrichr KG (https://maayanlab.cloud/enrichr-kg) to create bi
ological priors for the MGH–Mayo and MGH–Stanford 
training/validation/testing scenarios that would ensue. A sim
ilar approach was also followed for the bulk/single-cell train
ing/testing scenario, entailing common hyper-active and 
hypo-active DAPs/DAGs between the bulk MGH proteomic 
dataset and the MGH PBMC scRNA-seq dataset.

Based on the Enrichr combined score, the enrichments for 
the hyper-active drivers revealed pathways documented in 
the literature as COVID-19 ground-truths like COVID-19 
adverse effects, neuroinflammatory responses, apoptosis, vi
ral infection, deregulation in NADþ metabolism, lung fibro
sis, atherosclerotic incidents, and aberrant interleukin 
signalling (Supplementary Fig. S10A and C). On the contrary, 
the analysis of the hypo-active drivers showed opposite 
trends for pathways concerning cell adhesion, heart morpho
genesis, organization of the extracellular matrix, B and T cell 
function, and hematopoietic stem cell homeostasis 
(Supplementary Fig. S10B and D).

3.4 Explainable APNet models robustly classify 
severe and nonsevere COVID-19 in bulk proteomic 
and scRNA-seq scenarios
Next, we used the common DAPs across the three Olink 
plasma proteomic studies to predict severe versus nonsevere 
COVID-19 cases. During the MGH–Mayo experiment (ini
tial training and model optimization-evaluation), APNet ac
curately predicted severe COVID-19 patients with significant 
robustness (AUC¼ 0.96, F1-score¼0.89). During the testing 
phase, the pre-trained bulk proteomic APNet model emerged 
as a performant classifier for COVID-19 severity on the 
Stanford dataset (AUC¼0.91, F1-score¼0.68).

Subsequently, we created a new multi-omic APNet model, 
trained on MGH plasma proteomics and optimized/evaluated 
on the scMGH dataset, which exhibited strong performance 
in classifying severe COVID-19 cases (AUC: 0.99, F1-score: 
0.975). This new pre-trained model was also robust during 
its independent testing phase with the Blish dataset (AUC: 
0.98, F1-score: 0.79) (Fig. 3A–C).

Regarding the most predictive drivers of severity, the first 
APNet model, through top SHAP values, highlighted severity 
drivers involved in members of the TNF family 
(TNFRSF10A, TNFRSF10B, TNFRSF1A, TNFSF11), the 
transcription factor JUN, cytokines/chemokines (IL6, CCL7), 
apoptosis regulators (BAX, TRIAP1, PTEN), cell adhesion 
and ECM regulators (ITGB1, ITGA5, COL9A1, COL1A1, 
PLAUR, PRTN3), the stress response chaperone HSPA1A, 
signal transducers (MAPK9, LYN, POLR2F), and immuno- 
metabolic regulators (ACAA1, CKAP4, S100P). Notably, 
JUN, TNFRSF10, BAXA, and LYN were predictive plasma 
proteins, while ACAA1, BAX, LYN, PLAUR, PRTN3, 
PTEN, and S100P were also distinguished (Fig. 3D and G).

On the other hand, the biological explainability of the sec
ond APNet model revealed some divergent results based on 
SHAP values, possibly due to its multi-omic nature. The top- 
predictive drivers included various biological motifs, such as 
signal transduction (JUN, IKBKG, IL6, NFATC1, LYN, 
GRAP2), immune response and inflammation (IL6, ITGAM, 
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ITGB2, IL2RB, IL10RA, IL17RA, CD4, TIMP1), extracellu
lar matrix remodelling (TIMP1, ITGAM, ITGB2, ACTN4, 
LAMP2), stress response and apoptosis (BID, BIRC2, 
HMOX1, DUSP3, ATP6AP2), vesicle trafficking (SNAP23, 
LAMP2, CD63), and calcium signalling (S100A11, 

S100A12). Of note, most of these multi-omic drivers were 
hidden drivers of COVID-19 severity (ACTN4, ATP6AP2, 
CD4, DUSP3, GRAP2, HMOX1, IKBKG, IL10RA, IL17RA, 
IL6, JUN, LAMP2, LYN, NFATC1, S100A11, and SNAP23) 
(Supplementary Fig. S11).

Figure 2. APNet harmonizes diverse data distributions, reduces batch effects, and broadens the range of joint differentially active drivers. (A) PCA plot 
illustrating data separation with activity values, colored by Severe versus NonSevere. (B) Same as (A) but colored by dataset. (C) PCA plot with 
expression values colored by Severe versus NonSevere. (D) Same as (C) but colored by dataset. (E) UpSet plots for the common significant proteomic 
drivers (MGH, Mayo, Stanford) using activity. (F) Same as (E) but with expression. (G) UpSet plots for differentially active drivers across MGH, scMGH, 
and Blish. (H) Same as (G) but with expression values.
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3.5 APNet connects predictive proteins to predictive 
pathways, revealing clinically relevant motifs
After identifying highly predictive drivers in bulk 
proteomic and single-cell scenarios, APNet’s enhanced 
explainability was utilized to gain insights into biological 
pathways predictive for COVID-19 severity. This approach 
is based on the rationale that drivers involved in 
common pathways likely fall into co-regulation, which 

APNet can identify, revealing significant predictive biologi
cal motifs.

In Fig. 4A and B, the explainability of the bulk pre-trained 
APNet model (MGH training–Mayo validation/parameter tun
ing–Stanford independent testing) is showcased by a bipartite 
protein–pathway network assembled from (a) the proteomic 
MGH SJARACNe regulatory network of the most predictive 
SHAP protein drivers and (b) predictive driver–pathway 

Figure 3. Explainable APNet classifies robustly severe and nonsevere COVID-19 cases in bulk proteomic and scRNA-seq scenarios. (A) An overview of 
the APNet pipeline with an emphasis on the biologically informed and explainable neural network component from PASNet. (B and C) ROC curves 
showing the AUC scores (B) and barplots showing the F1 score (C) for the various APNet deployments (MGH-Mayo training-optimization/tuning and 
Stanford testing, MGH-scMGH training-optimization/tuning and Blish testing). (D and E) The top 20 SHAP values from APNet models. (F) Bulk MGH-Blish 
scRNA-seq datasets. (H and I) Heatmaps displaying the Z scores for differential activity (DA) and expression analyses (D and E) for the top SHAP proteins 
across various APNet deployments. Values between −20 and 20 are considered statistically nonsignificant, given that the degrees of freedom (df) are set 
to 30 and the significance level (alpha) is 0.05 for a two-tailed test.
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connections from the Enrichr Knowledge Graph (KG) map
pings, thresholded by the highest APNet learning weights 
assigned during the MGH–Mayo training–validating stages.

Apart from S100P, PTEN, ACAA1, BAX, and LYN, all 
other predictive drivers participated in a single SJARACNe reg
ulatory subgraph, with CKAP4, POLR2F, and TRIAP1 

Figure 4. APNet connects predictive drivers of COVID-19 severity with predictive pathways and offers clinico-biological insights. (A) Protein–protein and 
protein–pathway bipartite graphs for the top 20 most predictive drivers (SHAP values, SJARACNe regulatory networks) with their highly predictive 
pathways (PASNet learning weights), for the Model 1 scenario; node color is determined based on network communities, while node size is based on 
betweenness-centrality. (B) SJARACNe regulatory subgraph focusing on the top 20 predictive drivers, where nodes are colored by logFC and weights by 
SJARACNe MI value. (C–D) Same as (A) and (B) but for the Model 2 scenario. (E) Pearson correlation heatmap for top SHAP predictive drivers and clinical 
covariates from the MGH dataset; these covariates are established clinical markers associated with severe COVID-19.
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sharing the most substantial connection in terms of MI (> 0.6) 
(Fig. 4A and B). The bipartite APNet graph contained a large 
community connecting several drivers (IL6–JUN–CCL7– 
MAPK9–POLR2F–HSPA1A–BAX–TRIAP1), associated with 
interleukin signalling (IL4/13/17/18), cytokine stimulation, 
liver disease, and lung fibrosis. A smaller community con
nected ACAA1, CKAP4, PLAUR, and TNFSF11 with neutro
phil activation and inflammation. Meanwhile, LYN formed a 
small subgraph with the PI3K signalling pathway, adaptive im
mune system, NF-κB pathway, and neurotoxicity. Another 
small cluster contained TNF family proteins (TNFRSF1A/10A/ 
10B) and caspase-induced apoptosis. Overall, these results in
dicated the destructive nature of severe COVID-19 tied to sys
temic organ failure.

Lastly, in the bulk/single-cell scenario, no SJARACNe reg
ulatory subgraph was found among these predictive drivers, 
apart from a ‘network island’ of NFATC1, IKBKG, GRAP2, 
and SNAP23 and smaller dyadic subgraphs of ITGAM– 
ITGB2, IL6–S100A12, and ACTN4–IL10RA. The respective 
APNet bipartite graph contained a large cluster (IL10RA, 
ACTN4, ITGB2, IL2RB, BIRC2, ITGAM, HMOX1, TIMP1) 
linked with established COVID-19 inflammatory and im
mune signalling cascades. Other noticeable network clusters 
included NFATC1–GRAP2 (viral infection), IL6–S100A12 
(neutrophil activation), and IKBKG (complement and B cell 
activation). Interestingly, no SJARACNe regulatory subgraph 
was obtained among these predictive drivers apart from a 
‘network island’ of NFATC1, IKBKG, GRAP2, and SNAP23 
and smaller dyadic subgraphs of ITGAM–ITGB2, IL6– 
S100A12, and ACTN4–IL10RA (Fig. 4C and D).

To corroborate that these predictive drivers and, by exten
sion, their neighbouring pathways bear clinical connotations, 
Pearson correlations were calculated among these top SHAP 
drivers and the MGH clinical covariates. The hyper-active 
drivers in severe COVID-19 exhibited strong positive correla
tions with typical adverse prognosticators, such as increased 
D-dimer, CRP, LDH, absolute neutrophil count, and specific 
comorbidities (kidney disease, hypertension). By contrast, the 
hypo-active drivers had negative correlations with those clini
cal covariates and showed a positive correlation with abso
lute lymphocyte count (Fig. 4E).

Overall, during the DL predictions, APNet efficiently con
nected predictive drivers to pathways deemed relevant to the 
clinical course of COVID-19. Supplementary Table S2 sum
marizes the implications of such pathways in COVID-19 im
munopathology, citing relevant publications from the 
literature and underlining the relevance of APNet’s analysis 
in this disease context.

3.6 APNet reveals underlying biological motifs in 
severe COVID-19: the case of ACAA1
To showcase APNet’s capacity to expose non-obvious connec
tions among clinically predictive drivers and pathways, we in
vestigated how ACAA1 (acetyl-Coenzyme A acyltransferase 1), 
a key regulator of fatty acid β-oxidation in peroxisomes and a 
highly predictive COVID-19 severity driver (based on APNet 
from the bulk proteomic scenario), is connected to other equally 
predictive proteomic drivers. ACAA1 was also selected because 
it shared a direct SJARACNe co-regulatory connection with 
ACE2, the cardinal molecule for SARS-CoV-2 viral tropism.

When random walks were initialized from the ACAA1 
node on the pertinent APNet driver–pathway bipartite graph 
(Fig. 4A), several top-20 SHAP drivers (CKAP4, IL6, 

PLAUR, TNF family proteins, JUN, MAPK9, TRIAP1, 
HSPA1A, POLR2F, CCL7) emerged as highly visited nodes, 
along with nodes representing pathways of neutrophil hyper- 
activation (Fig. 5A).

Using Dijkstra’s algorithm with the aforementioned SHAP 
proteins as sources (and ACAA1 as the target), we captured 
several intermediate proteins involved in immune and inflam
matory responses (CCL20, IL7R, CD58, ICOSLG), apoptotic 
regulation (FASLG), and stress response (SOD2). Most of the 
shortest paths reached ACAA1 through the neuro-hormonal 
mediator PTPRS, a negative co-regulator of ACAA1 
(Fig. 5B–D, F, and G). Only one path (successive positive co- 
regulations) reached ACAA1 via a different immediate neigh
bour (HSPA1A ! SOD2 ! ACAA1) (Fig. 5E). To validate 
the directionality rationale for considering ACAA1 as the tar
get, we applied the GENIE3 algorithm to the top SHAP 
plasma proteins identified by the bulk APNet model. The 
analysis confirmed that other top SHAP proteins indeed 
propagate signals toward ACAA1. Notably, HSPA1A 
emerged as the most critical regulator influencing ACAA1, 
followed by MAPK9, ITGA5, POLR2F, TNFRSF1A, and 
ITGB1 (Supplementary Fig. S12).

To evaluate the credibility of the retrieved shortest paths, we 
hypothesized that clinical drivers participating in plausible 
shortest paths might reflect common underlying molecular regu
lation. For this purpose, we queried the Enrichr KG with 
ACAA1, source proteins, and intermediates, focusing on the 
Chea3 database (https://maayanlab.cloud/chea3/) for transcrip
tion factor enrichment. Notably, two ACAA1-related transcrip
tion factors, PPAR and STAT4, emerged as significant, 
each connecting to HEXIM1/IL7R and other distinct drivers: 
IGFBP3–CD58–PTPRS (PPAR) and GZMB–IL6–JUN 
(STAT4). Considering that STAT4 participates in interferon sig
nalling hyperstimulated during SARS-CoV-2 infection and the 
implications of peroxisome proliferator-activated receptors 
(PPARs) in COVID-19 hyperinflammation (Lee et al. 2020, 
Hasankhani et al. 2023), these results further corroborate the 
biological relevance of APNet’s insights regarding the broader 
involvement of ACAA1 and other highly predictive plasma pro
teins in severe COVID-19 pathobiology (Fig. 5H and I).

3.7 APNet outperforms alternative ML/DL classifiers 
in predicting severe COVID-19 cases
To benchmark APNet’s robust performance on classifying se
vere COVID-19 cases, we initially retrieved from the litera
ture the predictive models published by the authors of the 
MGH study (Filbin et al. 2021), the Stanford study (Feyaerts 
et al. 2022), and from an independent study in Qatar (which 
used MGH for external validation). As shown in Table 1, 
APNet outperformed both the MGH and Stanford models. 
Although APNet showed similar performance to Qatar’s pre
dictive model (AUC>0.95, training/testing on the authors’ 
in-house data) in demarcating severe COVID-19 cases, it out
performed Qatar’s model in terms of generalizability. Indeed, 
the latter achieved an AUC of 0.79 when independently 
tested on the MGH study (Table 1).

At this point, we performed more specific benchmarking 
experiments using:

1) Normalised expression values of COVID-19 plasma 
proteomics, omitting any activity transformations with 
a PASNet model (BenchPASNet); 
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2) Activity values of COVID-19 plasma proteomics and 
scRNA-seq but with a Random Forest (RF) classi
fier (BenchRF). 

The training, validation, and testing datasets remained the 
same (Fig. 6A and B).

Notably, all alternative models underperformed relative to 
APNet in predicting severe COVID-19. Specifically, 
BenchPASNet performed poorly in the MGH–Mayo scenario 
(AUC: 0.71, F1-score: 0.78), although slightly better in 
MGH–Stanford (AUC: 0.88, F1-score: 0.54), and it failed to 

identify hidden drivers. Strikingly, the RF-based model 
underperformed even more in both scenarios (AUC: 0.65, F1- 
score: 0.73 for MGH–Mayo; AUC: 0.47, F1-score: 0.65 for 
MGH–Stanford) (Fig. 6C and D).

For the multi-omic experiment, we did not test a PASNet 
expression-driven model due to the intrinsic sparsity of 
scRNA-seq expression and the need for complex data harmo
nization beyond our project scope. Instead, we used RF on 
the shared perturbational space of plasma proteomics and 
scRNA-seq activity data. This approach again underper
formed APNet’s single-cell model, achieving AUC: 0.87, F1- 

Figure 5. APNet enables the assembly of complex graphs that can be leveraged to discover nonapparent connections of ACAA1 with other predictive 
drivers of COVID-19 severity. (A) Barplot displaying the number of visits during random walks initiated using the NetworkX package, starting from ACAA1 
in the driver-pathway bipartite graph generated by the bulk APNet model. (B–G) Based on Dijkstra’s algorithm, several shortest paths from top SHAP 
predictive drivers to ACAA1, with Spearman correlation coefficients (positive ¼ activation, negative ¼ inhibition) as edge weights. (H and I) Enrichr KG 
gene-transcription factor bipartite graphs leveraging information from the Chea3 database concerning ACAA1, top SHAP drivers, and intermediate 
proteins based on the bulk proteomic scenario of APNet. These Enrichr KG graphs serve as independent biological evaluation of the aforementioned 
APNet shortest paths from top SHAP drivers towards ACAA1.

Table 1. Published ML/DL analyses of MGH and Stanford Olink datasets.a

Study AI model AUC

MGH study Random Forest 0.85
Stanford study (LASSO) linear regression 0.77–0.79 (Stanford study)
Qatar study MUVR >0.959 (Qatar data), 0.76 (D0) (MGH validation)

a This table shows previously published models for COVID-19 severity classification.
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score: 0.73 (MGH–scMGH) and AUC: 0.64, F1-score: 0.80 
(MGH–Blish) (Fig. 6C and D).

Regarding the top-20 most predictive drivers across all 
experiments, there were significant deviations between APNet 
runs and other benchmark models (Supplementary Fig. S13), 
as shown by the Supervenn plot (Supplementary Fig. S14). 
Only 10 proteins appeared in four or more experiments among 
all top SHAP drivers (98) from the eight total models tested.

3.8 APNet outperforms alternative ML/DL classifiers 
in capturing COVID-19 biological ground truths
In this final part, we evaluated the potential of each model to 
recapitulate the biological ground truths associated with 

severe COVID-19 and provide biological insights into the 
outperformance of APNet in clinical predictions over the rest 
ML/DL models.

Primarily, we assembled driver-pathway bipartite graphs from 
BenchPASNet deployment on MGH-Mayo and MGH-Stanford 
scenarios and discovered that inflammation and neutrophil acti
vation were the most predictive pathways in these benchmarking 
models. Compared to APNet results (Fig. 4), these benchmark
ing models could only partially capture clinically significant 
pathways, which could explain their inferior performance as se
vere COVID-19 classifiers (Supplementary Fig. S15).

Furthermore, STRINGdb PPI networks were reconstructed 
for each group of top predictive drivers from each APNet and 
benchmark model, and specific network metrics to evaluate 

Figure 6. APNet outperforms alternative models for severe COVID-19 predictions. (A and B) Schematic representations of BenchPASNet (A) and 
BenchRF (B) approaches competing with APNet. (C and D) ROC curves with the AUC scores (C) and barplots showing the F1 score (D) across various 
benchmarking approaches.
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the degree of the biological content captured in each instance 
were calculated. We focused on the average node degree (the 
higher it is, the denser the network is in terms of connections) 
as the initial metric of choice. The APNet STRINGdb graphs in 
the bulk proteomic scenarios exhibited higher average node de
gree than the BenchPASNet STRINGdb graph, hence exhibit
ing higher interconnectivity among more homogenous nodes in 
terms of degree distribution. The differences were even more 
pronounced when comparing APNet STRINGdb graphs with 
their BenchRF counterparts since the latter were significantly 
smaller in size (Fig. 7). Furthermore, APNet’s STRINGdb 
graphs contained an equal or larger number of biologically sig
nificant edges (i.e. edges with STRINGdb combined score >
0.6, almost on par with the BenchPASNet, outperformance of 
RF models). Interestingly, the distribution of the edge weights 
were much more uniformal in the APNet models (closer to 
Gaussian distribution based on kurtosis-skeweness and log- 
likehood score) compared to the BenchPASNet which followed 
a bimodal distribution with many edges close 0,8–0,9 com
bined STRINGdb score and to the opposite end of 0,4 
(Supplementary Table S4, Supplementary Fig. S16).

Next, we evaluated the correlations between the most predic
tive drivers from each benchmarking experiment with the clini
cal covariates of MGH. Unlike the APNet predictive drivers, 

the Pearson correlation heatmaps from the hierarchical cluster
ing showed less distinct correlation profiles. These results indi
cated that the top predictive drivers from the benchmark 
experiments did not correlate with established adverse prognos
ticators as clearly as the APNet ones (Supplementary Fig. S17).

Lastly, to evaluate the degree of COVID-19 ground truths 
that APNet and the other classification models recovered, we 
mapped each model’s top 20 most predictive proteins from 
the various experiments to the SIGNOR 3.0 COVID-19 
Hallmark pathways (i.e. Virus Entry, Cytokine storm, 
Inflammation, Fibrosis, Apoptosis, Innate response to 
dsRNA, MAPK Activation, ER stress and Stress granules, 
https://signor.uniroma2.it/covid/). The top SHAP predictive 
drivers from the APNet models exhibited a higher number of 
edges within the following curated networks (dsRNA-re
sponse, granules, fibrosis, inflammation) compared to the 
SHAP proteins from the benchmark models but the most 
stark difference was spotted in the apoptosis graph 
(Supplementary Table S3) (Supplementary Fig. S18).

4 Discussion and conclusion
In the herein work, we present APNet, a novel interpretable 
DL framework that is oriented towards supervised patient 

Figure 7. APNet prioritizes predictive drivers in severe COVID-19 that better capture underlying biological ground-truths. (A–E) STRINGdb protein–protein 
interaction (PPI) networks of the most predictive drivers based on SHAP values from the various APNet and benchmark models. APNet_model_1: APNet 
on the MGH-Mayo-Stanford datasets. APNet_model_2: APNet on the MGH-scMGH-Blish datasets. BenchPASNet: Original PASNet on bulk proteomic 
expression (NPX) values. BenchPASNet_MS: Original PASNet on MGH-Stanford expression values. BenchRF_model_bulk: RF classifier on bulk 
proteomic datasets. BenchRF_single_cell: RF classifier on bulk/single-cell experiments. (F) Average degree scores from STRINGdb networks are shown 
in (A–E). Network statistics were calculated using the NetworkX package in Python.
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classification and explainable biological insights. To do so, it 
draws inspiration from two pillars of current DL trends in 
Systems Biology, which are biologically informed neural net
works and DL models that entail extensive post-hoc explain
ability (Sapoval et al. 2022, Santorsola and Lescai 2023, 
Wysocka et al. 2023).

Regarding the first pillar, APNet ensures that the biologi
cally informed DL component (PASNet model) ingests activ
ity values of pre-processed omic datasets as data input and 
the protein/gene-to-pathway connections as biological priors 
(Hao et al. 2018). The concept of activity (NetBID2/ 
scMINER tools, SJARACNe algorithm) goes beyond the 
static snapshot that typical differential expression analysis 
provides, as it captures linear and nonlinear molecular inter
actions, like post-translational modifications, in which the 
cause-and-effect relationships can arise at different time 
points and sub-cellular compartments (Wang et al. 2021, 
Ding et al. 2023). Hence, APNet guides the PASNet model to 
make predictions upon the post-activity transformations of 
omic data which: (a) align the distribution of diverse omic 
datasets and mitigate potential batch effects—two paramount 
factors in DL data pre-processing, (b) reflect the regulatory 
relationships among the various proteins and genes more reli
ably and (c) generate more biologically accurate driver- 
pathway mappings.

For post-hoc explainability, APNet offers a dynamic 
graph-based approach that incorporates SHAP values, driver- 
driver and driver-pathway connections, various node attrib
utes (e.g. logFC of differential activity) and edge attributes (e. 
g. Mutual Information or Spearman correlation statistics 
from the SJARACNe algorithm, learning weights of driver- 
pathway connections from PASNet model). Network analysis 
is a significant asset for systems biology analysis since it is vi
sually tractable by humans and can reveal biological motifs 
that connect diseases, pathways, omics, and patients. APNet 
provides a wide variety of graph visualization and analytical 
tools via the Networkx package, like clustering and shortest 
path discovery, which are critical in discovering obscure pat
terns across multi-omics (Zitnik et al. 2024).

In this work, we showcase the functionality of APNet in pre
dicting severe from nonsevere COVID-19 cases across five dif
ferent studies (3 bulk plasma proteomics 2 ancillary PBMC 
scRNA-seq datasets). Following DOME recommendations, 
APNet was trained and validated on separate datasets to ensure 
generalizability and avoid overfitting. APNet successfully identi
fied severe COVID-19 cases by capturing well-known and hid
den drivers along with ground-truth signalling pathways of 
severe COVID-19 immunopathology (Supplementary Table 
S2). APNet’s cross-modal prediction capabilities were notewor
thy, as it identified similar pathways in bulk proteomic and in 
PBMC scRNA-seq data (e.g. neutrophil activation, T cell dereg
ulation), without the need for pseudo-bulking for the latter 
case, hence preserving cellular heterogeneity (You et al. 2023). 
Furthermore, APNet uncovered nascent connections among 
ACAA1 and other predictive plasma proteins for severe 
COVID-19, like IL6 (Pro-inflammatory cytokine), CKAP4 
(Cytoskeleton-Associated Protein involved in PI3K pathway), 
HSP1A1 (stress-induced Heat Shock Protein), and PLAUR 
(Plasminogen Activator—Urokinase Receptor, extracellular ma
trix regulator and tissue remodeller) through pertinent proteins 
(e.g. PTPRS), transcription factors (PPAR, STAT4) and path
ways which reflect important COVID-19 hallmarks: lipid per
oxidation, bioenergetic-metabolic deregulations, aberrations in 

the extracellular matrix and immune signalling impairments 
(Wang et al. 2023, Kamdar et al. 2024). Considering that 
ACAA1 was recently associated with high rates of Intensive 
Care Unit (ICU) admittance for patients with severe COVID-19 
(Penrice-Randal et al. 2022), this outcome highlights the trans
lational potential of APNet to uncover nuanced driver motifs 
with significant theragnostic value.

APNet outperformed published models in the field of 
COVID-19 plasma proteomics, but also alternative models 
that operated on the expression values of omic datasets 
(BenchPASNet) or used an RF classifier (BenchRF) instead of 
PASNet. APNet outperformed not only in terms of accuracy 
and robustness but also in capturing the biological ground 
truths associated with severe COVID-19. Compared to the 
benchmarking models, APNet prioritized the drivers that 
shared stronger STRINGdb interactions and connected them 
with biological pathways highly representative of COVID-19 
immunopathology, as shown from our focused SIGNOR 
analysis (i.e. apoptosis). The distribution of STRINGdb com
bined scores in APNet networks displayed a more unimodal 
pattern (with a variety of STRINGdb combined scores rang
ing from 0.4 to 0.9), in contrast to the sharply bimodal distri
bution observed in the STRINGdb BenchPASNet network. 
This difference may reflect APNet’s inherent ability to cap
ture a broader range of connections, enabling the identifica
tion of more subtle biological motifs for severe COVID-19.

Additionally, driver–pathway bipartite networks derived 
from the BenchPASNet indicated only a small number of im
plicated pathways (cytokine storm, neutrophil degranula
tion), whereas APNet revealed a broader set of pathways 
with highly predictive scores (e.g. PI3K–Akt pathway, 
Hippo–Merlin pathway). In line with the above, APNet’s pre
dictive drivers were more clearly associated with known clini
cal markers of severity (e.g. LDH, CRP) compared to the 
benchmarking prioritized drivers, thereby highlighting its ca
pacity to better decipher the intricate immunopathology of 
severe COVID-19 involving multiple-organ failure and exac
erbated inflammation across tissues (Ahern et al. 2022, 
Jamison et al. 2022).

Despite the valuable advantages of APNet, this study holds 
the limitation of focusing on a short number of omic datasets, 
on a particular and well-studied disease, i.e. severe COVID- 
19. However, APNet can be disease agnostic; thus, it should 
be implemented in datasets obtained from several diseases, 
especially rare ones, in the future. In terms of data, using the 
activity transformations as a gateway, APNet could also be 
trained on plasma proteomics, RNA-seq or scRNA-seq and 
then tested on spatial transcriptomics, which would allow for 
a more spatially aware approach regarding multi-omic dy
namics [e.g. Mothes et al. (2023) for COVID-19 lung spatial 
transcriptomics]. Another limitation of this study is the use of 
Enrichr KG to construct biological priors through one-hot 
encoding with joint differentially active drivers across studies. 
Alternative experimentation with priors based on clusters 
from the SJARACNe networks or pathways after GSEA 
(based on activity) could lead to more fine-tuned models with 
increased accuracy and better explainability.

In the future, we would also like to explore switching 
PASNet with more versatile DL models for clinical predic
tions. Considering the emergence of novel models, like Cox- 
PASNet (Hao et al. 2019) that incorporate clinical along with 
biological priors, or sparse interpretable autoencoders 
(AutoSurv) (Jiang et al. 2024), APNet could serve as a 
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modular framework to ‘mix and match’ several DL architec
tures with activity-transformed omic datasets to create be
spoke pipelines. Lastly, another limitation of this work is the 
script-based logic of APNet as it may prove suboptimal for 
seamless operations across cloud-based or High Performance 
Computing (HPC) infrastructures. A potential assembly of 
relevant NextFlow pipelines could be a promising avenue for 
improving APNet’s usability and scalability.

Overall, APNet is a robust DL framework that can facili
tate the extraction of intricate biological insights from com
plex biological data along with predictions on clinical 
outcomes and evaluation of mechanistic hypotheses. In an 
optimized version of our tool, we aim to escalate the scalabil
ity to other multi-factorial disease-omic datasets (such as can
cer and neurodegenerative diseases) and explore its potential 
across various bulk, single-cell, and spatial multi-omic 
experiments. In vitro/in vivo validations of the predicted indi
cations will strengthen the credibility of our framework and 
represent the actual benchmark standard of APNet.
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