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Abstract
Hydropower is a low-carbon energy source, which may be adversely impacted by climate 
change. This work applies the Grasshopper Optimization Algorithm (GOA) to optimize 
hydropower multi-reservoir systems. Performance of GOA is compared with that of par-
ticle swarm optimization (PSO). GOA is applied to hydropower, three-reservoir system 
(Seymareh, Sazbon, and Karkheh), located in the Karkheh basin (Iran) for baseline period 
1976–2005 and two future periods (2040–2069) and (2070–2099) under greenhouse gases 
pathway scenarios RCP2.6, RCP4.5, and RCP8.5. GOA minimizes the shortage of hydro-
power energy generation. Results from GOA optimization of Seymareh reservoir show that 
average objective function in baseline is 85 and minimum value of average objective func-
tion in 2040–2069 would be under RCP2.6 (equal to 0.278). Optimization of Seymareh-
reservoir based on PSO shows that average value of objective function in baseline is less 
(that is, better) than value obtained with GOA (10.953). Optimization results for two-
reservoir system (Sazbon and Karkheh) based on GOA optimization show that objective 
function in baseline is 5.44 times corresponding value obtained with PSO, standard devia-
tion is 2.3 times that calculated with PSO, and run-time is 1.5 times PSO’s. Concerning 
three-reservoir systems it was determined that objective function based on PSO had the 
best value (the lowest energy deficit), especially in future. GOA converges close to the best 
objective function, especially in future-periods optimization, and convergence to solutions 
is more stable than PSO’s. A comparison of performance of GOA and PSO indicates PSO 
converges faster to optimal solution, and produces better objective function than GOA. 
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1  Introduction

Hydropower constitutes a source of clean and renewable energy under suitable condi-
tions. Operation of hydropower multi-reservoir systems under climate change guided 
by meta-heuristic algorithms offers opportunities for improvement compared with rule-
based empirical policies. Numerous methods have been used to optimize hydropower 
generation. For example, Hosseini-Moghari et  al. (2015) used Imperialist Competi-
tive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA) to optimally oper-
ate Karun-4 reservoir (Iran) with aim of maximizing productivity. Bozorg-Haddad et al. 
(2016) applied Biogeography-Based Optimization (BBO) to single- and four-reservoir 
systems operation. Their results showed superiority of BBO over Genetic Algorithm 
(GA) in achieving optimal global solutions. Garousi-Nejad et al. (2016b) implemented 
Firefly Algorithm (FA) for optimal operation of Karun-4 reservoir (Iran) for agricultural 
water supply and hydropower generation purposes. Bozorg-Haddad et al. (2017) evalu-
ated performance of an extended multi-objective developed firefly algorithm (MODFA) 
for hydropower energy generation. Ahmadianfar et  al. (2017) introduced Enhanced 
Differential Evolution (EDE) to improve Differential Evolution (DE) Algorithm. Their 
results indicated high effectiveness of EDE for solving complex multi-reservoir prob-
lems. Chang et al. (2018) proposed a method consisting of simulation and optimization 
models to identify operating rules in a hydropower plant on Hanjian river (China) under 
climate change. Sarzaeim et al. (2018) applied non-dominated sorting genetic algorithm 
(NSGA-II) to maximize simultaneous annual hydropower generation and power plant 
coefficient under climate change in Karkheh river Iran. Fallah-Mehdipour et al. (2018) 
calculated multi-objective optimal tradeoffs between environmental flows and hydro-
power generation with optimization tool of fixed length gene genetic programming 
(FLGGP). Zhang et  al. (2019) reported use of analytical methods for optimal hydro-
power generation in multi-reservoir systems. Ahmadianfar et al. (2019) applied multi-
ple linear rules for multi-reservoir hydropower systems using an effective DE algorithm 
with mutation strategy adaptation (MSA-DE). Fang and Popole (2020) reported the 
improved multi-objective particle swarm algorithm (MOPSO) to maximize hydropower 
generation benefits and environmental protection.

Many studies have been reported on optimization of reservoir systems based on meta-
heuristic algorithms under climate change (Azadi et al. 2021; Ashofteh et al. 2021; Golfam 
et al. 2021). Problem of hydropower optimization is a complex and non-linear problem. 
This work develops GOA and applies it to optimizing hydropower multi-reservoir opera-
tion, and compares performance of GOA with PSO, latter being a proven and success-
ful method in optimizing water resources management (Jahandideh-Tehrani et al. 2020). 
Five operating modes are evaluated in this work, specifically two single-reservoir systems 
[Seymareh and Sazbon reservoir operated separately], two-reservoir systems [Seymareh 
reservoir and its upstream Sazbon reservoir, and Karkheh reservoir and its upstream Sey-
mareh reservoir], and a three-reservoir system [Sazbon, Seymareh, Karkheh]. Reservoir 
operations are optimized under baseline (1976–2005) and two 30-year periods of climate 
change (2040–2069) and (2070–2099) subjected to greenhouse gases pathways RCP2.6, 
RCP4.5 and RCP8.5.
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2 � Methodology

First section presents three math test functions used to evaluate GOA. Second section presents 
simulation of future runoff with Artificial Neural Networks (ANNs). Third section presents a 
model of hydropower generation. Fourth section describes GOA, and fifth section briefly pre-
sents PSO, GOA and PSO results.

2.1 � Mathematical Test Functions

The Ackley, Rastrigin, and Sphere function are used to evaluate GOA. Specifications of math 
test functions are listed in Table 1.

2.2 � Runoff Simulation

An ANN is a special type of learning model that mimics certain functions of human brain. 
ANNs extract patterns embedded in data that are complex and difficult to identify with classic 
statistical methods.

2.3 � Modeling of Hydropower Reservoir System

This work’s objective function consists in minimizing shortage of hydropower-generated 
energy [Eq. (1)]:

where Ei,t = energy generated by power plant of reservoir i in period t (GWh); 
EGCi = energy generation capacity of power plant i (GWh); DI = deficit index, I and T 
denote number of reservoirs and periods of optimization, respectively.

Reservoir continuity equation is expressed by Eq. (2):

where Si,t+1 = storage of reservoir i at beginning of period t + 1 (106 m3); Si,t = storage of 
reservoir i at beginning of period t (106 m3); Qi,t = river inflow to reservoir i during period t 

(1)MinimizeDI =
1

T

I∑
i=1

T∑
t=1

(
1 −

Eit

EGCi

)2

(2)Si,t+1 = Si,t + Qi,t − REi,t −

(
Ai,t × Evai,t

)
1000

− SPi,t

Table 1   Mathematical test functions

Test function Function Search space Global 
solution

Ackley
20 + e − 20 exp(−0.2

�
1

D
(
D∑
d=1

x
2

d
))

[− 32, 32] 0

Rastrigin
10d +

D∑
d=1

[x2
i
− 10 cos(2�x

i
)]

[− 5.12, 5.12] 0

Sphere D∑
d=1

x
2

i

[− 100, 100] 0
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(106 m3); REi,t = water release reservoir i during period t (106 m3); Ai,t = lake surface area of 
reservoir i during period t (km2); Evai,t = evaporation from lake surface area of reservoir i 
in period t (mm), and SPi,t = spill volume of reservoir i during period t (106 m3). Reservoir-
spill constraint is defined by Eq. (3):

where Smax,i = maximum storage volume of reservoir i (106 m3).
Power generation, net water loss, and energy generation are calculated according to Eqs. (4) 

to (6), respectively:

where g = gravitational acceleration (m/s2); ei = efficiency of power plant i; Hneti,t = net 
water loss of reservoir i during period t (meters); Pi,t = power generated by plant i dur-
ing period t (MW);PFi PFi = power plant performance factor of reservoir i; Mul = unit con-
version factor; ELVi,t = water level of reservoir i during period t (meters above sea level); 
TWi,t = water level power plant i during period t (meters above sea level); day = number 
of days in a month; PeakHouri = peak hour for energy production of power plant i, and 
Ei,t = energy generated by power plant of reservoir i during period t (GWh).

Constraints are applied to reservoir storage, release volume, and production capacity, which 
are expressed by Eqs. (7) through (9), respectively:

where REmin,i = minimum release volume of reservoir i (106 m3); REmax,i = maximum 
release volume of reservoir i (106 m3); Smin,i = minimum storage volume of reservoir i (106 
m3), and PPCi = installed capacity of power plant i.

Penalty functions (PF1 and PF2) are added to (minimization) objective function to 
penalize violations of minimum storage constraint [Eqs. (10) and (11)]:

where D, U, Z = positive constant values (calculated by trial and error).

(3)SPi,t+1 =

{
Si,t+1 − Smax,i if Si,t+1 > Smax,i

0 else

(4)Pi,j =
REij ⋅ g ⋅ ei ⋅ Hnetit

PFi ⋅Mul ⋅ 1000

(5)Hneti,t = ELVi,t − TWi,t

(6)Ei,t =
Pi,t × PeakHouri × day

1000

(7)REmin,i ≤ REi,t ≤ REmax,i

(8)Smin,i ≤ Si,t ≤ Smax,i

(9)0 ≤ Pi,t ≤ PPCi

(10)PF1 = D × (1 + Smin − Si)
2

(11)PF2 = U ×

( ||Smin − Si
||

Smax − Smin

)2

+ Z
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Surface-volume and water level-volume and functions of reservoirs are defined by 
Eqs. (12) and (13), respectively:

where Hi = level of reservoir i (meters above sea level); and parameters ai, bi, ci, d, ei, fi = t 
coefficients corresponding to reservoir i. 

Decision variable of problem is water released from reservoir. Since operating period 
is monthly for 30 years, number of decision variables equals 360. Also, optimization peri-
ods in this study include baseline and future periods (latter under RCP2.6, RCP4.5 and 
RCP8.5). Optimization solution is obtained by averaging results from three-run of GOA.

2.4 � Grasshopper Optimization Algorithm (GOA)

GOA is a population-based meta-heuristic optimization method inspired by grasshopper 
group behavior (Saremi et al. 2017). Zeynali and Shahidi (2018) applied GOA to optimize 
coefficients of river suspended sediment rating equation. Khalifeh et al. (2020) used GOA to 
optimize nonlinear Muskingham flood-routing model. This work develops and applies GOA 
in field of hydropower generation. Grasshopper colonies have large populations. Position of 
grasshoppers is modeled according to Eq. (14):

where Xi′ = position of grasshopper i′ ; Si′ = social interaction of grasshopper i′ ; Gi
′ = Gravi-

tational force applied to grasshopper i′ ; Ai
′ = effect of wind force on grasshopper i′ . Ran-

dom behavior is introduced by rewriting Eq. (14) as Eq. (15):

where r1, r2, r3 = random numbers between zero and one.
Social interaction derives from main concepts of grasshopper behavior and movement, as 

expressed by Eqs. (16) through (19):

(12)Ai = a1S
5

i,t
+ b1S

4

i,t
+ c1S

3

i,t
+ d1S

2

i,t
+ e1Si,t + f1

(13)Hi = a2S
5

i,t
+ b2S

4

i,t
+ c2S

3

i,t
+ d2S

2

i,t
+ e2Si,t + f2

(14)Xi� = Si� + Gi� + Ai�

(15)Xi� = r1Si� + r2Gi� + r3Ai�

(16)
Si� =

NP∑
j = 1

(i ≠ j)

s
(
di�j�

)
d̂i�j�

(17)di�j� =
|||Xj� − Xi�

|||

(18)d̂i�j� =
Xj� − Xi�

di�j�

(19)s = fe
−r

l − e−r
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where NP = Number of grasshoppers; s = power of social forces; di′j′ = distance between 
grasshoppers i′ and j′ ; 

⌢

di′j′ = distance vector between grasshoppers i′ and j′ ; f = intensity of 
gravity; r = random number between zero and one; and l = gravity scale length.

Range of f is between zero and 1 and that of l is between 1 and 2. The s function divides 
space between two grasshoppers into areas of attraction force, comfort zone, and repulsion 
force. Force between two grasshoppers vanishes if distance separating them is large; there-
fore distance between any two grasshoppers is assumed between 1 and 4 (Sarmi et al. 2017). 
Gravitational ( Gi

′Gi′ ) and wind ( Ai
′Ai′ ) forces applied to grasshopper i are calculated according 

to Eqs. (20) and (21):

where g = gravity constant; ⌢eg = unit vector oriented towards center of earth; u = constant 
thrust; and ⌢ew = unit vector along wind direction.

Substituting Eqs.  (16) through (21) in Eq.  (14) produces Eq.  (22) expressing expanded 
position ( Xi′ ) of particle i:

Equation (22) is suitable for modeling movement of grasshoppers in open space. Grass-
hopper or particle i’s position ( Xd

i′
 ) used in optimization is given by Eq. (23):

where ubd = upper limit in d dimension; lbd = lower limit in d dimension; T̂d = position of 
the best solution found; and C = decrease coefficient.

The first C (before parentheses) in Eq. (23) strikes a balance between exploration and 
extraction, and second C (within parentheses) reduces attraction, comfort, and repulsion 
regions between grasshoppers. C is calculated by Eq. (24):

where Cmax = maximum value of C (normally close to or equal to 1); Cmin = minimum 
value of C (close to zero); T ′ = maximum number of algorithmic iterations. Flowchart of 
optimization algorithm is shown in Fig. 1.

2.5 � Particles Swarm Optimization

PSO is inspired by social behavior of animals, including fish or birds living in small 
and large groups (Kennedy and Eberhart 1995). PSO introduces a number of variables 
called particles that are scattered in search space. Rules of self-organization in PSO 

(20)Gi� = −gêg

(21)Ai� = uêw

(22)Xi� =
∑Np

j�=1

i�≠j�

s(
|||Xj� − Xi�

|||)
Xj� − Xi�

di�j�
− gêg + uêw

(23)Xd
i�
= C

⎧
⎪⎪⎨⎪⎪⎩

Np�
j� = 1

i� ≠ j�

C
ubd − lbd

2
s
���xj� − xi�

���
xj� − xi�

di�j�

⎫
⎪⎪⎬⎪⎪⎭

+ T̂d

(24)C = Cmax − t�
Cmax − Cmin

T �
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algorithmic iterations require that a particle must move some in direction of its current 
motion, some in direction of its best memory, and some in direction of the best mem-
ory of particle swarm to reach a new position. Particle it’s new velocity vector ( Vt+1

i
 ) 

and position ( Xt+1
i

 ) are calculated from three vectors according to Eqs. (25) and (26):

where Vt+1
i

 = new particle velocity; � = coefficient of inertia (whose optimal value is 
between 0.4 and 0.9, the lower the coefficient of inertia, the faster the algorithm con-
verges);  Xi,best = best position experienced by particle i; Xglobalbest = best position experi-
enced by swarm; c

1
 = personal learning factor; c

2
 = coefficient of collective learning; r1, r2 

= vectors of position.

3 � Study Area

This work assesses the operation of single-purpose hydropower reservoirs, namely, 
Sazbon, Seymareh and Karkheh reservoir in Iran. Seymareh reservoir is under opera-
tion, Sazbon and Karkheh reservoirs are in study phase. Power plants’ installed capac-
ity at Sazbon, Seymareh, and Karkheh equal 300, 480 and 360 MW, respectively.

Reason for choosing baseline (1976–2005) is that meteorological and hydromet-
ric information and other items are available for this period. Fifth Intergovernmental 
Panel on Climate Change (IPCC) report includes historical data until 2005. In period 
1976–2005 reservoirs were in their initial phase of operation.

(25)Vt+1
i

= �vt
i
+ c1r1

(
Xi,best − Xt

j

)
+ c2r2(X

globalbest − Xt
j
)

(26)Xt+1
i

= Xt
i
+ Vt+1

i

Adjust the number of 

grasshoppers, 

parameter C and the 

random position of the 

grasshoppers 

Evaluate the objective 

function for each grasshopper 

and select the best answer 

(grasshopper)

The best solution 

in the grasshopper 

group

Check the 

stopping 

criterion

Update the position 

of each grasshopper 

and parameter C

Yes No

Fig. 1   GOA’s flowchart
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4 � Results

4.1 � GOA Evaluation Based on Mathematical Test Functions

Optimal values of parameters f, l, Cmin, Cmax and number of iterations for all three test 
functions are listed in Table 2. Optimal GOA parameters were calculated by trial and 
error. GOA values are listed in Table 3. GOA approached global minimum of Rastrigin 
function better than those of two other functions (see Fig.  2). Convergence curve of 
Ackley function has smaller concavity than other two functions. In fact, it exhibits faster 
convergence to optimal solution. In general, GOA exhibits accurate convergence rate to 
global optima of three test functions.

Table 2   Optimal value of GOA and PSO parameters (for mathematical test functions and hydropower prob-
lem)

GOA (for mathematical test functions)

Number of iterations Number of populations f L Cmax Cmin

1000 50 0.5 1.3 1 10−6

GOA (for hydropower problem)

Number of iterations Number of populations f L Cmax Cmin

1000 100 0.5–0.6 1.3–1.5 1 10−6

PSO (for hydropower problem)

Number of iterations Number of population W �1,�2 C1, C2

1000 100 0.6721–0.7298 2.05–2.08 1.3979–1.4962

Table 3   Values of objective function (dimensionless) and run-time (in seconds) obtained from GOA for 
mathematical test functions

Run specifications Mathematical test function

Ackley Rastrigin Sphere

Value Time Value Time Value Time

Run I 8 × 10−6 13.78 3 × 10−11 13.7 2 × 10−10 14.73
Run II 6 × 10−6 13.85 4 × 10−11 12.92 5 × 10−11 13.37
Run III 7 × 10−5 14.32 2 × 10−10 13.56 4 × 10−10 13.03
Best run 6 × 10−6 3 × 10−11 5 × 10−11

Worst run 7 × 10−5 2 × 10−10 4 × 10−10

Average runs 2 × 10−5 9 × 10−11 2 × 10−10

Standard deviation of runs 2 × 10−5 9.5 × 10−11 2 × 10−10

Best run time 13.78 12.9 13.03
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4.2 � Runoff Simulation Results

Time series of projected temperature was obtained from GFDL-ESM2M and projected rain-
fall was calculated with CNRM-CM5 for future. GFDL-ESM2M (with correlation coeffi-
cient equal to 99.3% and Root Mean Square Error (RMSE) equal to 2.1 °C) and CNRM-
CM5 (with correlation coefficient equal to 87% and RMSE equal to 17.9 mm) had the best 
performances in simulating temperature and rainfall in baseline, respectively. ANN estab-
lishes a functional association between temperature, rainfall, and runoff in baseline, and 
simulates future runoff with future temperature and rainfall. ANNs with Nash–Sutcliffe effi-
ciency (NSE) coefficient equal to 0.5 in training and test period for Seymareh and Karkheh 
rivers have the best performance with respect to runoff simulation. Simulated runoff in two 
rivers in future is displayed in Fig. 3.

Fig. 2   Convergence diagram of mathematical test functions based on GOA for a Ackley, b Rastrigin, and c 
Sphere functions

Fig. 3   Comparison of Seymareh river runoff in baseline, a 2040–2069, and b 2070–2099; and Karkheh 
River in baseline, c 2040–2069, and d 2070–2099
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It is seen in Fig. 3a, b that Seymareh river’s runoff in near future (2040–2069) under 
RCP2.6, RCP4.5 and RCP8.5 would increase by 3.9%, decrease by 6.5 and 10.2% com-
pared to baseline, respectively; runoff in far future (2070–2099) would decrease by 4, 4.53, 
and 6% under RCP2.6, RCP4.5 and RCP8.5, respectively, compared to baseline. Compari-
son of long-term average monthly runoff in climate change with baseline reveals that peak 
flows would decrease in wet months, and would increase under some scenarios in relatively 
dry months. Also, long-term average monthly runoff for autumn shows an increase under 
climate change relative to baseline. According to Fig. 3c, d Karkheh River runoff in future 
would decrease under climate change compared to baseline. This rate of runoff reduction in 
2070–2099 would be larger than in 2040–2069, so that long-term average monthly runoff 
in 2040–2069 under RCP2.6, RPC4.5, and RCP8.5 would decrease compared to baseline 
by 0.7, 2 and 0.7%, respectively, and in 2070–2099 it would decrease by 0.2, 0.6 and 2.6%, 
respectively. Rate of reduction of RCP8.5 in 2070–2099 is the largest compared to other 
climate change scenarios (2.6% reduction compared to baseline).

4.3 � Results of Hydropower Optimization Obtained with GOA

In this work GOA parameters were optimized by trial and error for baseline and future. 
Parameter values in all periods and scenarios are listed in Table  2. Results of three-run 
of objective function and corresponding run-time for five operating modes are listed in 
Table  4. The best objective function obtained with first-mode of operation decreases in 
climate change compared to baseline. Minimum objective function in 2040–2069 is under 
RCP2.6 and maximum corresponds to baseline. Minimum run-time in 2070–2099 is under 
RCP8.5. Insofar as second-mode of operation is concerned minimum objective function 
in 2040–2069 is under RCP2.6 and maximum objective function corresponds to baseline. 
Minimum run-time in 2040–2069 is under RCP8.5. Objective function decreases in future 
compared to baseline. The best objective function calculated with third-mode of opera-
tion improves in future. Objective function in fourth-mode of operation decreases during 
climate change compared to baseline. Minimum objective function in 2040–2069 is under 
RCP4.5 and its maximum corresponds to baseline. In addition, minimum run-time of opti-
mization corresponds to baseline. Objective function in fifth-mode of operation decreases 
in future compared to baseline.

Convergence diagram for five operating modes is displayed in Fig.  4. Reservoir sys-
tem in first-mode of operation in 2040–2069 under RCP2.6 exhibits a better performance 
in achieving optimal objective function than under RCP4.5 and RCP8.5. Also, system 
in 2070–2099 under RCP2.6 would perform better than other two scenarios in achiev-
ing optimal objective function. GOA performed better in second-mode of operation and 
2040–2069 under RCP2.6 in achieving desired objective function. The best performance 
of GOA in achieving optimal objective function in 2070–2099 compared to baseline is 
under RCP2.6. GOA performed better in third-mode of operation and 2040–2069 under 
RCP2.6 to achieve optimal objective function. Convergence diagrams for future show 
less concavity than in baseline, and under RCP8.5 it performs better in reaching solution. 
GOA’s performance with fourth-mode of operation in 2040–2069 under RCP2.6 was better 
than RCP4.5 and RCP8.5. GOA calculated the lowest objective function in fourth-mode of 
operation for 2070–2099 under RCP2.6. In fifth-mode of operation GOA had better perfor-
mance in achieving optimal objective function in future than baseline, and in 2070–2099 it 
calculated the best objective function.
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Calculated generated energy (average energy obtained from three-run) for five operating 
modes is depicted in Fig. 5. For first-mode of operation energy production of Sazban power 
plant would increase in future compared to baseline, that is, it would generate entire energy 
production capacity. Long-term production energy of power plant in baseline increases by 
8.8% compared to future. Insofar as second-mode of operation is concerned energy produced 
in future would increase compared to baseline. Maximum energy production in 2040–2069 
would be under RCP2.6. Maximum energy production in 2070–2099 is under RCP2.6 and 

Fig. 4   Convergence diagram of average of three-run of GOA for first-mode in a baseline, b 2040–2069, c 
2070–2099; with second-mode in d baseline, e 2040–2069, f 2070–2099; with third-mode in g baseline, h 
2040–2069, i 2070–2099; with fourth-mode in j baseline, k 2040–2069, l 2070–2099; with fifth-mode in m 
baseline, n 2040–2069, o 2070–2099
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RCP4.5. Energy produced with third-mode of operation in future would increase compared 
to baseline, and rate of increase in 2070–2099 would be larger than in 2040–2069. Rate of 
increase in energy generation in 2040–2069 under RCP2.6 would be higher. Increase in 
energy for 2070–2099 would approximately the same under all three-scenario. Approxi-
mately total energy generation capacity would be generated in 2040–2069 under RCP2.6. 
Long-term energy generated in 2040–2069 under RCP2.6 with fourth-mode of operation 
would provide total energy capacity. Energy generation capacity in 2070–2099 with fourth-
mode of operation under RCP2.6 and RCP4.5 would be achieved. Minimum energy produced 
under RCP8.5 would be in 2040–2069. Concerning fifth-mode of operation energy produc-
tion would increase in future. Total energy generation capacity would be provided under 
RCP2.6 and RCP4.5 with fifth-mode of operation. In general, more energy would be gener-
ated in 2070–2099 than in 2040–2069.

Results of reservoir storage and release based calculated with GOA in climate change 
compared to those for baseline are listed in Table  5 as minimum, average, and maxi-
mum corresponding to five operating modes. Reservoir storage volume would increase in 
future compared to baseline, and rate of increase in 2070–2099 would be greater than in 
2040–2069. Release from reservoir in future shows an increase compared to baseline. Rate 
of increase in release in 2040–2069 would be higher than in 2070–2099.

4.4 � Results of PSO Based Optimization

Performance of GOA in optimizing hydropower generation was compared with hydro-
power optimization based on PSO. Optimized PSO parameters are listed in Table 2.

Results of three-run and their run-times for five operating modes are listed in Table 6. In 
first-mode of operation minimum objective function in 2070–2099 corresponds to RCP4.5, 
and its maximum in baseline equals 0.6. The best objective function obtained with sec-
ond-mode of operation in future is reduced compared to baseline, and minimum objective 
function in 2040–2069 is under RCP2.6, and in 2070–2099 it is under RCP4.5. Minimum 
run-time of objective function corresponds to baseline. The best objective function calcu-
lated with third-mode of operation decreases in future compared to baseline, and reduc-
tion would be higher in 2040–2069 under RCP2.6. Minimum run-time in 2070–2099 is 
under RCP2.6. Minimum objective function obtained with fourth-mode of operation in 
2070–2099 is under RCP4.5, and its maximum corresponds to baseline. In general, objec-
tive function in future shows a significant decrease compared to baseline. Minimum objec-
tive function with fifth-mode of operation in 2070–2099 is under RCP2.6, and its maxi-
mum corresponds to baseline.

Convergence diagrams for five modes of operating obtained with PSO are depicted in 
Fig. 6. For first-mode of operation PSO converge faster in future than baseline. Maximum 
objective function has an average value of 0.6 in baseline. PSO exhibited a good perfor-
mance in calculating the best objective function with second-mode of operation, in future 
compared to baseline. In general, performance of PSO in future is better than baseline. 
The best objective function in this mode of operation based on PSO in 2040–2069 is under 
RCP2.6. The best performance of PSO with third-mode of operation under RCP2.6 is in 

Fig. 5   Comparison of monthly long-term generation energy in baseline by GOA in first-mode of operation 
in a 2040–2069 and b 2070–2099; with second-mode in c 2040–2069 and d 2070–2099; with third-mode 
in e 2040–2069 and f 2070–2099; with fourth-mode in g 2040–2069 and h 2070–2099; with fifth-mode in i 
2040–2069 and j 2070–2099

▸
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2040–2069, and PSO calculated much lower initial objective function. In general, PSO 
performs better in future than baseline for achieving optimal objective function. Maximum 
objective function is in baseline. Convergence rate with fourth-mode of operation obtained 
with PSO is high in baseline and future. PSO converges rapidly with fifth-mode of opera-
tion in baseline and future, and objective function in 2040–2069 and 2070–2099 under 
RCP2.6 is close to best value compared to other climate change scenarios.

Energy generation for five modes of operation and energy generation capacity of power 
plant are depicted in Fig. 7. In first-mode of operation energy produced by Sazbon power 
plant in future would increase compared to baseline and rate of increase in 2070–2099 
would be larger than in 2040–2069. Minimum energy production with second-mode of 
operation, at Seymareh power plant in 2040–2069 is under RCP8.5 and maximum is under 

Table 5   Minimum, average and maximum reservoir storage and release (106 m3) in baseline and future for 
different operating modes based on GOA

Mode Characteristic Scenario 1976–2005 2040–2069 2070–2099

Min Ave Max Min Ave Max Min Ave Max

First Storage volume RCP2.6 926 1377 1576 1092 1481 1575 1025 1441 1575
RCP4.5 937 1406 1575 1090 1428 1575
RCP8.5 942 1351 1575 1023 1422 1575

Release RCP2.6 45 141 287 108 170 269 126 168 182
RCP4.5 122 168 230 121 170 225
RCP8.5 130 168 207 126 168 225

Second Storage volume RCP2.6 1669 2153 2474 1665 2156 2473 1663 2083 2473
RCP4.5 1665 2101 2473 1663 2097 2473
RCP8.5 1664 2112 2473 1663 2112 2473

Release RCP2.6 1 188 444 165 226 294 86 213 328
RCP4.5 119 211 238 70 211 332
RCP8.5 89 191 408 42 208 333

Third Storage volume RCP2.6 1767 2179 2473 1689 2181 2473 1682 2102.9 2473
RCP4.5 1678 2111 2473 1680 2106 2473
RCP8.5 1683 2117 2473 1738 2078 2473

Release RCP2.6 4 194 438 158.6 225.2 312.7 78 212.5 352
RCP4.5 47 203 383 97 211 340
RCP8.5 14 195 369 99 209 336

Fourth Storage volume RCP2.6 93 128 131 107 104 131 106 129 131
RCP4.5 94 128 131 97 129 131
RCP8.5 94 128 131 106 129 131

Release RCP2.6 16 148 252 47 154 264 54 151 242
RCP4.5 10 147 272 69 152 246
RCP8.5 36 145 271 51 152 255

Fifth Storage volume RCP2.6 92 127 131 108 130 131 108 130 131
RCP4.5 93 128 131 105 129 131
RCP8.5 92.5 128 131 101 129 131

Release RCP2.6 100 127 260 108 150 305 108 130 301
RCP4.5 23 147 255 105 129 295
RCP8.5 92 128 200 101 129 305

4340 K. Rahmati et al.



1 3

Ta
bl

e 
6  

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
es

 (d
im

en
si

on
le

ss
) a

nd
 ru

n-
tim

e 
(in

 se
co

nd
s)

 o
bt

ai
ne

d 
fro

m
 P

SO
 w

ith
 fi

rs
t t

o 
fif

th
-m

od
e 

of
 o

pe
ra

tio
n 

in
 b

as
el

in
e 

an
d 

fu
tu

re

Ru
n 

sp
ec

ifi
ca

tio
ns

B
as

el
in

e
20

40
–2

06
9

20
70

–2
09

9

RC
P2

.6
RC

P4
.5

RC
P8

.5
RC

P2
.6

RC
P4

.5
RC

P8
.5

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Fi
rs

t-m
od

e 
of

 o
pe

ra
tio

n
 R

un
 I

0.
5

13
4

0.
00

3
14

0
0.

3
13

5
0.

02
13

5
0.

03
13

6
0.

00
2

13
6

0.
02

13
4

 R
un

 II
0.

6
13

4
0.

02
13

6
0.

07
13

6
0.

01
13

4
0.

00
1

13
6

0.
00

1
13

6
0.

00
7

13
5

 R
un

 II
I

0.
7

13
5

0.
01

13
6

0.
2

13
7

0.
04

13
5

0.
00

1
13

7
0.

02
13

5
0.

00
7

13
4

 B
es

t r
un

0.
5

0.
00

3
0.

07
0.

01
0.

00
1

0.
00

1
0.

00
7

 W
or

st 
ru

n
0.

7
0.

01
0.

2
0.

04
0.

03
0.

02
0.

02
 A

ve
ra

ge
 ru

ns
0.

6
0.

01
0.

16
0.

02
0.

01
0.

00
7

0.
01

 S
ta

nd
ar

d 
de

vi
at

io
n 

of
 ru

ns
0.

1
0.

00
08

0.
00

07
0.

00
1

0.
00

1
0.

00
1

0.
00

07
 B

es
t r

un
 ti

m
e

13
4

13
6

13
5

13
4

13
6

13
5

13
4

Se
co

nd
-m

od
e 

of
 o

pe
ra

tio
n

 R
un

 I
10

13
5

0.
01

13
6.

3
1.

3
13

7.
7

3.
7

13
7.

8
0.

5
13

8.
7

0.
01

13
6.

1
1.

1
13

5.
5

 R
un

 II
11

.3
13

4
0.

02
13

5.
7

2.
2

13
7.

6
4.

2
13

6.
1

0.
3

13
5.

1
0.

03
13

5.
6

0.
5

13
6.

9
 R

un
 II

I
11

.6
13

5
0.

01
13

4.
9

2.
9

13
5.

5
6

13
6.

9
0.

2
13

4.
2

0.
4

13
5.

8
0.

6
13

4.
1

 B
es

t r
un

10
0.

01
1.

3
3.

7
0.

2
0.

01
0.

5
 W

or
st 

ru
n

11
.6

0.
02

2.
9

6
0.

5
0.

4
1.

1
 A

ve
ra

ge
 ru

ns
10

.9
0.

1
2.

15
4.

9
0.

3
0.

1
0.

8
 S

ta
nd

ar
d 

de
vi

at
io

n 
of

 ru
ns

0.
8

0.
01

0.
8

1.
6

0.
1

0.
2

0.
3

 B
es

t r
un

 ti
m

e
13

4
13

4.
9

13
5.

5
13

6.
1

13
4.

2
13

5.
6

13
4.

1
Th

ird
-m

od
e 

of
 o

pe
ra

tio
n

 R
un

 I
17

.6
28

0.
7

2.
7 ×

 10
−

6
28

0.
9

2.
1

27
8.

8
1.

3
28

1.
7

6.
9

28
1.

7
1.

5
28

1.
2

1
28

8.
7

 R
un

 II
17

.1
28

8.
5

0.
01

28
1.

3
1.

8
27

8.
4

0.
9

28
3.

4
12

.2
28

4.
9

1.
5

29
5.

3
1.

3
28

7.
7

 R
un

 II
I

20
.5

28
4.

2
0.

01
28

0.
8

2.
1

27
9.

5
0.

6
28

8.
6

16
.9

27
9.

3
1.

6
29

1.
8

1.
3

28
9.

4
 B

es
t r

un
17

.1
2.

7 ×
 10

−
6

1.
8

0.
6

6.
9

1.
5

1
 W

or
st 

ru
n

20
.5

0.
01

2.
1

1.
3

16
.9

1.
6

1.
3

4341Application of the Grasshopper Optimization Algorithm (GOA)…



1 3

Ta
bl

e 
6  

(c
on

tin
ue

d)

Ru
n 

sp
ec

ifi
ca

tio
ns

B
as

el
in

e
20

40
–2

06
9

20
70

–2
09

9

RC
P2

.6
RC

P4
.5

RC
P8

.5
RC

P2
.6

RC
P4

.5
RC

P8
.5

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

Va
lu

e
Ti

m
e

 A
ve

ra
ge

 ru
ns

18
.4

0.
00

7
2.

02
0.

9
12

1.
5

1.
2

 S
ta

nd
ar

d 
de

vi
at

io
n 

of
 ru

ns
1.

8
0.

00
6

0.
2

0.
2

5
0.

05
0.

2
 B

es
t r

un
 ti

m
e

28
0.

7
28

0.
9

28
7.

4
28

1.
7

28
0.

3
28

1.
2

28
7.

7
Fo

ur
th

-m
od

e 
of

 o
pe

ra
tio

n
 R

un
 I

1
27

9
0.

00
8

27
2

0.
00

7
27

9
0.

00
2

27
8

0.
05

27
9

0.
00

8
27

7.
9

0.
00

1
27

8.
3

 R
un

 II
1

27
7

0.
00

04
29

0
0.

06
27

8
0.

06
27

7
0.

01
27

9
0.

02
27

8.
5

0.
05

27
7.

4
 R

un
 II

I
1

29
0

0.
00

1
27

9
0.

01
27

7
0.

01
27

8
0.

02
27

7
3 ×

 10
−

5
27

7.
2

0.
00

6
27

7.
5

 B
es

t r
un

1
0.

00
3

0.
00

7
0.

00
2

0.
00

1
3 ×

 10
−

5
0.

00
1

 W
or

st 
ru

n
1

0.
00

4
0.

06
0.

00
6

0.
00

5
0.

02
0.

05
 A

ve
ra

ge
 ru

ns
1

0.
00

3
0.

02
0.

02
0.

03
0.

00
9

0.
02

 S
ta

nd
ar

d 
de

vi
at

io
n 

of
 ru

ns
0

0.
00

4
0.

00
3

0.
00

3
0.

02
0.

01
0.

03
 B

es
t r

un
 ti

m
e

27
7

27
0.

7
27

7.
2

27
7.

5
27

6.
6

27
7.

9
27

7.
3

Fi
fth

-m
od

e 
of

 o
pe

ra
tio

n
 R

un
 I

1
40

2.
2

9 ×
 10

−
5

42
0

0.
00

01
40

7.
06

0.
04

40
7.

9
0.

00
09

42
3

0.
05

41
0

0.
06

40
5.

8
 R

un
 II

1
40

3.
6

2 ×
 10

−
5

40
9.

8
0.

01
41

2.
7

0.
01

40
6.

1
6 ×

 10
−

5
41

9.
8

0.
02

41
3.

7
0.

02
40

6.
2

 R
un

 II
I

1
40

4.
9

2 ×
 10

−
5

41
0.

3
0.

00
08

40
6.

2
0.

00
1

40
2.

9
8 ×

 10
−

7
41

8.
3

0.
00

7
41

6.
2

0.
01

40
4.

6
 B

es
t r

un
1

2 ×
 10

−
5

0.
00

01
0.

00
1

8 ×
 10

−
7

0.
00

7
0.

01
 W

or
st 

ru
n

1
9 ×

 10
−

5
0.

01
0.

01
6 ×

 10
−

5
0.

05
0.

06
 A

ve
ra

ge
 ru

ns
1

4 ×
 10

−
5

0.
00

4
0.

01
7

4.
3 ×

 10
−

5
0.

03
0.

03
 S

ta
nd

ar
d 

de
vi

at
io

n 
of

 ru
ns

0
4 ×

 10
−

5
0.

00
5

0.
02

4 ×
 10

−
5

0.
02

0.
02

 B
es

t r
un

 ti
m

e
40

2.
2

40
9.

8
40

6.
2

40
2.

9
41

8.
3

41
0

40
4.

6

4342 K. Rahmati et al.



1 3

RCP2.6. Energy produced by Seymareh power plant would increase in 2070–2099 com-
pared to baseline. Increase in energy production in 2070–2099 would be larger than in 
2040–2069. Under RCP2.6 in 2040–2069 entire energy production capacity would be pro-
vided. Energy produced with third-mode of operation during future would increase com-
pared to baseline, and this increase in energy generation would be larger in 2040–209 than 
2070–2099. Maximum energy production in 2040–2069 is under RCP2.6 and minimum 
in 2070–2099 is under RCP8.5. Under RCP2.6 in 2040–2069 entire energy production 

Fig. 6   Convergence diagram of average of three-run of PSO with first-mode in a baseline, b 2040–2069, c 
2070–2099; with second-mode in d baseline, e 2040–2069, f 2070–2099; with third-mode in g baseline, h 
2040–2069, i 2070–2099; with fourth-mode in j baseline, k 2040–2069, l 2070–2099; with fifth-mode in of 
m baseline, n 2040–2069, o 2070–2099
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capacity would be provided. Energy production obtained with fourth-mode of operation 
at Karkheh power plant would equal to energy capacity in baseline and future. Energy 
production at Karkheh power plant with fifth-mode of operation in 2040–2069 under 
RCP2.6 would decrease by 0.09% compared to baseline. Reduction of energy production in 
2070–2099 compared to baseline with respect to three scenario would be equal to 0.04%, 
and this reduction would occur in July.

Fig. 7   Comparison of monthly long-term generation energy in baseline from PSO with first-mode of operation 
in a 2040–2069 and b 2070–2099; with second-mode in c 2040–2069 and d 2070–2099; with third-mode in e 
2040–2069 and f 2070–2099; with fourth-mode in g 2040–2069 and h 2070–2099; with fifth-mode in i 2040–
2069 and j 2070–2099

▸

Table 7   Minimum, average and maximum volume of reservoir storage and release (106 m3) in baseline and 
future for different operating modes based on PSO

Mode Characteristic Scenario 1976–2005 2040–2069 2070–2099

Min Ave Max Min Ave Max Min Ave Max

First Storage volume RCP2.6 920 1357 1575 1067 1480 1575 1074 1437 1575
RCP4.5 964 1407 1575 1070 1436 1575
RCP8.5 935 1359 1575 1029 1426 1575

Release RCP2.6 91 174 288 127 171 237 121 168 220
RCP4.5 113 167 243 112 169 229
RCP8.5 117 167 226 120 167 223

Second Storage volume RCP2.6 1673 2127 2473 1762 2175 2473 1702 2173 2473
RCP4.5 1677 2135 2473 1720 2169 2473
RCP8.5 1700 2086 2473 1728 2134 2473

Release RCP2.6 75 208 375 167 231 359 147 215 331
RCP4.5 105 209 383 118 209 372
RCP8.5 80 201 366 84 213 354

Third Storage volume RCP2.6 1703 2160 2473 1079 2275 2473 1617 2130 2473
RCP4.5 1873 2234 2473 1752 2229 2473
RCP8.5 1788 2188 2473 1844 2182 2473

Release RCP2.6 62 190 386 129 127 343.5 102 211 365
RCP4.5 101 201 372 123 207 371
RCP8.5 112 198 372 122 205 342

Fourth Storage volume RCP2.6 104 129 131 113 131 131 113 130 131
RCP4.5 107 130 131 106 130 131
RCP8.5 105 130 131 112 130 131

Release RCP2.6 65 148 256 95 154 232 102 153 216
RCP4.5 93 152 206 94 152 229
RCP8.5 91 151 218 103 153 209

Fifth Storage volume RCP2.6 107 130 131 97 128 131 123 131 131
RCP4.5 103 129 131 103 130 131
RCP8.5 99 129 131 99 129 131

Release RCP2.6 65 151 228 46 148 249 75 157 222
RCP4.5 74 151 212 88 152 225
RCP8.5 60 149 239 44 143 264
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Reservoir storage and release in future compared to baseline are listed as minimum, 
average, and maximum for five operating modes calculated with PSO are listed in Table 7. 
First-mode of operation produces a decreases of reservoir release in future compared to 
baseline, and this reduction would be larger in 2070–2099 than 2040–2069. Reservoir 
storage under climate change would increase compared to baseline. Reservoir releases 
increase significantly with second-mode of operation. Increase in reservoir release in 
2040–2069 under RCP2.6 would be greater than in baseline. Reservoir storage increases 
significantly under climate change compared to baseline. Reservoir storage with third-
mode of operation in future would increase significantly compared to baseline. Maximum 
reservoir storage in 2040–2069 is under RCP4.5. Reservoir releases would increase dur-
ing future compared to baseline, and this increase would be greater in 2070–2099 than 
2040–2069. Reservoir storage increases during future compared to baseline with fourth-
mode of operation. Reservoir storage would increase in 2040–2069 under RCP2.6, 
RCP4.5 and RCP8.5 by 1.3, 0.5, and 0.6%, respectively. Reservoir releases increase during 
future compared to baseline, and this increase is greater in 2070–2099 than 2040–2069. 
Reservoir storage with fifth-mode of operation in future would increase significantly com-
pared to baseline. This increase would be larger in 2070–2099 than 2040–2069. Reservoir 
releases would increase during future compared to baseline, and this increase would be 
greater in 2070–2099 than 2040–2069.

5 � Concluding Remarks

GOA was applied to optimize multi-reservoir hydropower system. Optimization was per-
formed for Sazbon, Seymareh and Karkheh reservoirs Iran. Objective function was to 
minimize hydropower energy shortage. Objective function based on GOA was imple-
mented for five operating modes in baseline and future. Objective function in climate 
change calculated with first-mode of operation shows a significant decrease compared 
to baseline. Minimum objective function in 2040–2069 is under RCP2.6. Sazbon 
power plant produces entire energy production capacity. Optimization for second-mode 
of operation based on GOA showed that maximum objective function in baseline and 
minimum objective function in 2040–2069 are under RCP2.6. Objective function with 
third-mode of operation in future would decline compared to baseline, and its minimum 
in 2040–2069 is under RCP2.6. The best objective function with fourth-mode of opera-
tion in 2040–2069 is under RCP4.5, and maximum objective function corresponds to 
baseline. Power plant provides entire energy production capacity with fourth-mode of 
operation. Minimum objective function with fifth-mode of operation in future is under 
RCP4.5, and its maximum is in baseline. In general, GOA produces more energy in 
future than in baseline.

Increase in energy production and consequently decrease in deficit of energy supply in 
climate change context compared to baseline are due to change in runoff. Reducing peak 
flows in wet months, mainly in February to June, reduces reservoir spill and increases res-
ervoir storage, and reservoir releases would increase to meet hydropower requirements, 
and, thus, shortages during future would decrease compared to baseline. For example, in 
second-mode of operating, Minimum energy production in baseline would be in September 
and November, and maximum percentage of changes in energy production in future com-
pared to baseline in corresponding months (i.e., maximum percentage of changes in energy 
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production compared to baseline in 2040–2069 under RCP2.6) would will increase by 65 
and 55% in September and November, respectively.

PSO results for first-mode of operation showed that energy produced by power plant 
increases in future compared to baseline. Objective function in baseline equals 0.6. Objec-
tive function calculated with second-mode of operation decreases in future compared to 
baseline. Minimum objective function in 2040–2069 is under RCP2.6 and maximum cor-
responds to baseline. Minimum objective function obtained with third-mode of operation 
in 2040–2069 is under RCP2.6, in 2070–2099 is under RCP4.5, and its maximum corre-
sponds to baseline. PSO optimizes energy production to its installed capacity in fourth and 
fifth-modes of operation.

The better performance of PSO than GOA in achieving optimal objective function is 
due to differences in structure of algorithms. GOA’s C parameter C (which balances explo-
ration and exploitation) depends on number of iterations, and because of this dependence, 
it seems that at beginning of optimization equilibrium between exploration and exploita-
tion does not occur. On the other hand, equivalent parameter � in PSO is independent of 
iterations and optimizes well in modified algorithmic version.

In general, PSO has shorter run-time than GOA in achieving the best objective function, 
however GOA has better performance and more stable solutions. This paper results indicate 
that if current version of GOA is modified it has potential to perform close to or even better 
than PSO in terms of run-time. Previous works have shown that algorithmic improvement 
can lead to increased computational accuracy, reduced run-time, and improved conver-
gence. For example, Garousi-Nejad et al. (2016a) reported the Modified Firefly Algorithm 
(MFA). MFA results were compared with other optimization methods. MFA results proved 
superior solving test problems and exhibited potential for exploiting multi-reservoir prob-
lems over other methods. Xu and Mei (2018) proposed a modified Water Cycle Algorithm 
(WCA) based on diversity evaluation and Chaos theory (DC-WCA). Six mathematical 
test functions were examined to evaluate DC-WCA. The latter authors also applied four 
algorithms to optimize multi-reservoir hydropower systems. Their results suggest that 
DC-WCA has higher computational accuracy, shorter run-time, and faster convergence 
than other methods. Feng et al. (2020) proposed Quasi-opposition Sine Cosine Algorithm 
(QSCA). They compared proposed method with several well-known evolutionary meth-
ods. Their results indicate that convergence speed and quality of QSCA solution was better 
than those of other methods. Therefore, it seems that further studies on GOA could lead to 
better results by modifying parameter C (i.e., creating a balance between exploration and 
exploitation as well as reducing gravitational, neutral, and repulsion areas of grasshoppers).
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