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Curvature Approximation for Triangulated Surfaces

B. Hamann, Mississippi State University

Abstract. Given a set of points and normals on o surface and a triangulation associated with them a
simpde scheme for approximating the principal curvatures at these points is developed. The approxima-
thon &5 based on the fect that o surface can locally be represented as the graph of o bivariate function
Crundratic polynomials are used for this local approximation, The principal curvatures at a point on the
graph of such a quadratic palynominl is vsed as the approximation of the principal curvatures af an
original surfioe point.
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1. Introduction

Methods for exactly calculating and approximating curvatures are important in
geometric modeling for two reasons. In order to judge the quality of a surface one
commonly computes curvalures for points on the surface, renders the surface’s
curvature as a texture map onto the surface and can thereby detect regions with
undesired curvature behavior, such as surface regions locally changing from an
clliptic to a hyperbolic shape. On the other hand, surface schemes are being
developed requiring higher order geometric information as input, e.g, normal
vectors and normal curvatures,

Definitions and theorems from classical differential geometry are reviewed as far as
they are needed for the discussion. In classical differential geometry a surface is
understood as a mapping from R? to R,

x{u) = (x{w, o) ¥l o) 2w, )" = R}, weDc R (1)

The standard formulae are then used to derive techniques for approximating normal
curvatures when a two-dimensional triangulation of a finite point set with asso-
ciated outward unit normal vectors is given in three-dimensional space. Conse-
quently, curvature estimates can be incorporated into existing surface generating
schemes allowing curvature input. The quality of the curvature approximation is
tested for triangulated surfaces obtained from a known parametric surface of the
form x(u) = {u, v, f{u,v))".

Introductions to differential geometry are [Brauner '81], [do Carmo '76],
[ Lipschutz "B0], [Strubecker "55, "58, "59], and [Struik '61]. Differential geometry
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15 treated more analytically in [('Neill '69]. One of the most comprehensive works
on this subject s [Spivak "70]. Another reference in this field is [Farin "92].
Estimating Gaussian curvature from a discrete, triangulated point set is described
in [Calladine "86]. Related triangle-based approximation and interpolation
methods are discussed in [Akima "B4], [Hagen & Pottmann "89], [Lawson "84],
[Nielson & Franke 84], and [Renka & Cline "84]. Modelling triangulations arising
in the context of contouring trivariate functions is treated in [Hamann "92].

1. Essential Terms of Differential Geometry

Some basic definitions of differential geometry are reviewed.

Definition 1. A regular parametric two-dimensional surface of class C™ (m = 1) is
the point set § in real three-dimensional space RB* defined by the mapping

x = x{u) = (x(u, v) i, v), 2(u, 0))" (2)

of an open set U = B* into R? such that all partial derivatives of x, y, and z of order
m or less are continuous in U, and x, = x, # (0,0,0)7 for all (u,v) e U.

Definition 2. The tangent plane al a point x;, = x{u;) on a regular parametric
iwo-dimensional surface in three-dimensional space is defined as the set of all points
y in R satisfying the equation

¥ = Xy + ax,(ug) + bx lug), a, beR. (3)

Definition 3. The outward unit normal veetor ny, = nfu,) of a regular parametric
surface at a point x,; is given by

_ Xluwp)  xfmp) X, XX,
[ lmp) 2 xmp)|l  x, % %, °
where || ||” indicates the Euclidean norm.

ny (4)

Definition 4. Let x(u) be a regular parametric surface of class m, m > 2, and eft) =

cluir), v{t)) be a (regular) curve of class 2 on the surface through the point x, = x(u,).
The normal curvature vector to cit) at x, 1s the projection of the curvature vector
k = i/[|il, t = &/||¢}, onto the unit surface normal vector n,

k, = (kmgy)m, . (3)
The proportionality factor k- m,, is called the normal curvature, denoted by x,.
Definition 5. The second degree polynomial
HNdu,dv) = x,*x, du® + 2x,-x, dude + x,* x, dv?
= Edu* + 2F dudv + Gdv?, (65)

where du, dv € R, is called the first fundamental form of a regular parametric surface
x{u). The coefficients E, F, and 7 are called the first fundamental coefficients.
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Definition 6. Assuming that the regular parametric surface x(u) is at least of order
2, the second degree polynomial

Hdudv) = —x -0 dw® — (x,*n, + x, "0, )dudy — x_-n,_dp?
= X Ndu’ + Ix, cndude + x,,*ndr?

Ldu* + 2M dudv + N di?, (n

where du, dr e K, 15 called the second fundamental form of x(u). The coefficients L,
M, and N are called the second fundamental coelMicients.

Definition 7. The two (real) cigenvalues x, and x, of the matrix

e fas a\ L M (F F\!
e {-.E.'..I ”1.1)_(-” -""-) F GJ I =

where
L _MF-LG _LF— ME
AT et 4,27 FG — F2°
a - |'hrF - |‘l’f'[l- - .'."{.F — ."HIE
1.1 EG — I_.g ' i3 3 EG —_j-E .

of a regular surface of class of at least 2 at a point x,, are called principal curvatures
of the regular parametric surface at x,,. The associated eigenvectors determine the
principal curvature directions. Therefore, the principal curvatures are the (real) roots
of the characteristic polynomial of — A, the quadratic polynomial

Kt + @, +ay )k +ay a8y, — a6, ,. (%)

Figwre 1. Texture map of mean and Gaussian curvalure onto n tores, (2 + cosulcose, (2 + cosulsmb,
sinu)’, W, ve [0 2n]; green/yellow representing negative curvature values, magenta/blue representing
positive curvalure values
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Definition 8, The average H of the two principal curvatures x, and x, is called the
mean curvature, the product K is called the Gaussian curvature of the regular
parametric surface x(u) at x,,

H - i{h.',_ + *I-ill. K - P;lfl;_!-. {1{}}

3. Curvature Approximation for Triangulated two-Dimensional Surfaces

The graph of an explicit bivariate function f{x,y) can be viewed as a special
parametric surface with the parametrization x{u, v} = w, ylu,v) = v, and z{u, v} =
flu, v),

xiu) = (u. o, fluw, o))", {wv)e D= R?, (11)
The following formulaec will be needed later on. Therefore, some basic lacls are
summarized next. For this particular surface, the unit normal vector is given by

niu) = . ' e (12)
.|xh A ll-" !.‘l'll]- + J"I: + f:lz
and the first and second fundamental coefficients are

E=1+f2, F=ffi G=l1+f}

j b ¢ i
Lo o Mt aid N= : _. (13
J1+IE+ 2 1+ R+ 1 ! JV+SE+ 2 }

The Gauss-Weingarten map is

_ (ma @\ fa 1+8 L\t
ks Pl I | ) IR L

where | = /1 + 2+ f3.

Theorem 1. Each regular parametric two-dimensional surfoce x(u) of classm,m = 2,
can locally be represented in the explicit form 2 = =(x, v) which is at least C*. Choosing
a surface point X, as the origin of a lecal coordinate system and the z-axis in the same
direction as the surface normal n, at x,, = can be written as

2(x,¥) = Heg o + 205 XV + o307 ) + 07, (15)

Choosing appropriate basis vectors yields the representation of the osculating
paraboloid ar x,,, given by

z(x, ¥) = $(c? ox? + 3 107,

such that the two principal curvatures al X coincide with the coefficients of this
paraboloid, k; = ¢3 , and k; = cf ;.

Proof. See [Strubecker '58, '59] or [Struik "61].
The principal curvature approximation method to be introduced is based on
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bivariate polynomials. It is essential to prove a certain property of such functions
before describing the approximation techmique. Given an ongin mn the plane,
the graph of a bivariate polynomial [ consisting of all the points in the set
1, v, f(x, 97| x, v € B} is independent of the choice of the orientation of the two
unit vectors determining an orthonormal coordinate system for the plane. This fact
implies that the principal curvatures of the graph, a two-dimensional surface, are
independent of the two unit vectors as well.

Lemma 1. The equation
Eg, (— i]‘(;:){xms*:t + ysinacosa) ™ —xsin®a + ysinacosaf =x' (16)
k=

holds for all x, y,2 e Band i = 0.
Proof. 1t is easy to show that Eq. (16) is valid for i = (x
o

The induction hypothesis is made that Eq. (16) is true for i — 1. Thereby one proves
that
|

i ’ .
Y- I:“(k)[xmszu + ysinzcosa) M —xsin® ¢ + ysinacosa)t
A=h

= ((xcos®x + ysinacosa) — (—xsin® 2 + ysinzcosa))

— -1 ) e ) )
2 {—1}‘( L )[J:I:'nsi:t + ysinacosa) ' 4 —xsin® 2 + ysinxcosa)t
=0

= xfeos? x + sinfa)x'™! = xx!! = x4, ||

Lemma 2. The equation
tb (‘:){xsin acosa + ysindal (- xsinzcosz + yeostz)f = y/ (17)
g

holds for all x, y,xe B and j = O,
Proof. Follows the proof of lemma 1.

Theorem 2. Ler [ be the bivariate polynomial
fle, )= ¥ &x'y, (18)

i+j=n
iz

where a point in the plane has coordinates x and y with respect to a coordinate system
given by an origin o and two orthonormal basis vectors d, and d,; rotaring d, and d,
around the origin o changes the representation of the bivariate polynomial, but not its
graph.

Proof. Letd, and d, be two unit vectors determining a first orthonormal coordinate
svstem together with the origin o, and let d, and d; be a second pair of unit vectors
obtained by rotating d, and d, by an angle « around o. A point in the plane may
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have coordinates (x, y)' with respect to the first coordinate system and coordinates

(:) ) (fz:'g:a ::;:.;)(f) (19

with respect to the second coordinate system, Assuming (18) is the representation
of the polynomial f with respect to the first coordinate system, f can be rewritten
using the inverse map of (19)

flx = Xcosa — ysina, ¥y = ¥sinx + ycosa)
= Y ¢ ¥cosa— Fsina)f(¥sina + jeosap. (20)
itj<n
1o 2= AF

Evaluating f at the point (%, ¥)" = (xcosa + ysina, —xsina + ycosa)”, consider-
ing the binomial theorem, lemma 1, and lemma 2, one derives the equation

fl¥=xcosx+ ysine, 7= —xsinx + ycosa)
= ; ¢;dcos2(xcosa + ysina) — sinal - xsino + yeosa))
i+i<m

i jz0
(sinz(xcosx + ysing) + cos x| —xsina + ycosa)y

Y r.u.( E {—1r (L){uuwums: + psina)) Msin#(—xsinx + ycosz))
itjem [}
LJA=0

=

tﬂ (‘D {sina{xcosa + ysina)¥ '(cosaf — xsin & + ycos a]}’)
-

i I : , )
¥ i'f.,(z (-1 (k)" cosfa + ysinacosa)l ™ —xsin’a + ysinzcosalt
|"‘]'5.I A=
i.j=0

I

2’(':,) (xsinzcosx + ysin®af " —xsinxcosa + yms’al')
I-J

L Xy = foen. O

i+l=n
Lf=0

The curvature approximation method is based on a localization of a two-
dimensional triangulation. The local neighborhood around a point x; is its platelet.

Definition 9. Given a two-dimensional tnangulation in two- or three-dimensional
space, the platelet 2, associated with a point x; in the triangulation is the set of all
triangles (determined by the index-triples( j, . js. f;) specifying their vertices) sharing
X; 45 4 Common vertex,

ﬂEU[”:-hJJ]“ =..|:L vi=j;wv i=j,1|‘- {21)
The vertices constituting # are referred to as platelet points,

In order to approximate the principal curvatures at a point x; in a two-dimensional
triangulation a bivariate polynomial is constructed for a certain neighborhood
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around this point. Considering the facts that a two-dimensional surface can locally
be represented exphicitly {theorem 1) and that the graph ol a bivariate polynomial
15 independent of the orientation of the two unit vectors delermining an ortho-
normil coordinate system for the plane (theorem 2), the following sequence of
computations is proposed.

(i} Determine the platelet points associated with x,.

(1)  Compute the plane P passing through x; and having n, (exact or approximated
normal at x;) as its normal,

(i) Define an orthonormal coordinate system in P with x, as its origin and two
arbitrary unit vectors in P,

(iv)  Compute the distances of all platelet points from the plane P,

(¥} Project all platelet points onto the plane, P and represent their projections
with respect to the local coordinate system in P.

(vi} Interpret the projections in P as abscissac values and the distances of the
original platelet points from P as ordinate values.

{vi) Construct a bivariate polynomial [ approximating these ordinate values,

{vin) Compute the principal curvatures of (s graph at x,.

Let |y, = (x; ¥,.2)71j = 0...m;} be the set of all platelet points associated with the
point x; such that ¥, = x;,, and let n = {n*, n”, n*)7 be the outward unit normal vector
al ¥4 The implicit equation for the plane P is then given by

ne(x — ¥g) = n%(x — xg) + #'(y — yo) + 0’z — =Y
=n*x +n'y + n'z —(n*x, + 0y, + nzg)
=Ax+ By +Cz+ D=0, 122)

Depending on the outward unit normal vector n one chooses a vector & perpen-
dicular to m (a-n = 00} among the possibilities

3.

1
”il—ln" + n¥)n*, n*)7, n® # 0,

1
i 'rFEﬂ*-—{n*+n‘Ln'JT. n %0,

H_z{ﬂ=r"11 —(=*+ 0N, a"£0,

in order to obtain the first unit basis vector b,

a , r
by = —, lall = ./ /la-a).

o
The second unit basis vector b, is defined as the cross product of nand b,
b, =mnxb,.

The perpendicular signed distances d;, j = 0...n,, of all platelet points y, from the
plang P are
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JAA+ B+ C

d, = dist(y;, P) = = Ax; + By, + C5;+D.  (23)

Projecting all platelet points y; onto P yields the points yJ,
¥ =¥ —dn. (24)

Considering v, as the origin and b, and b, as the two unit basis vectors of a local
two-dimensional orthonormal coordinate sysiem for the plane P, each point r:' in
P can be expressed in terms of that coordinate system. Therelore, one computes the
difference vectors

'

dj=Fj Yo+ i=0...m,

and expresses them as linear combinations of the two unit basis vectors b, and b,
in P. Each difference vector d, can be represented in the form

d-] == [dJ'hl}h! + ‘d-‘-'b1'b= " [15}

defining the local coordinates u, and r; of the point y| in terms of the local coordinate
system:

[lll;.i-‘_|:|r ’{dj'hpd_."b]]r- {26)
Interpreting the local coordinates w, and v, as abscissae values and the signed
distances d, as ordinate values (in direction of the normal m), a polynomial f{w, v) of

degree two (see theorem 1) is constructed approximating these ordinate values.
Forcing the polynomial f to satisfy f{0,0) = £i0,0) = [ (0,0) = 0, the constraints

j-:u:l* L'r} = i:f:ln‘”} -+ zcillulfi-';l 4+ fﬂ‘_zl-:j:} - d W j“ 1-..“.‘,

remain. Written in matrix representation these constraints are

ui w0 €30 d,
E f._l_ - [-'I¢ == 'd - E . {I?}
g, Dy vy, Us) |Coa iy,

This overdetermined system of linear equations is solved using a least squares
approach (see [ Davis '75]). The resulting normal equations are

UTUe = U, (28}
Provided the determinant of UYL does not vanish this system can immediately be
solved using Cramer’s rule. In the case that the determinant of UTU vanishes

(e.g, when x, is a point on the boundary of the triangulation) one considers
additional points connected to x,'s platelet by an edge in the tnangulation.

Theorem 3. The principal curvatures x, and x4 of the graph (u,v, flu, )7 = B, u,
p e H, of the bivariate polynomial

Stu,v) = Yey ot* + 29, u0 + €o,30°) (29)
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at the point (0,0, f{0,0))" are given by the twa real roots of the quadratic equation
K* = (€2,0 + Co,2)K + €2,060,3 — €1, = 0. (30)

Proaf. According to definition 7 and Eq. (14), the principal curvatures of s graph
are the eigenvalues of the matrix

1fh N+ Lf \*
"“f’(r.p fw)( Af, 1+f..=) '

where | = /1 + £ + f;?. Evaluating — A for u = v = 0, one obtains the matrix

i (f:,n 1’-'|.;-)1
Cy,1 T,
having the characteristic polynomial in (30). O

Solving the normal Eq. (28) and determining the roots of the characteristic
polynomial in (30), one finally obtains the desired approximations for the principal
curvatures at the point x,.

The above construction is illustrated in Fig. 2. Shown are the platelet points around
the point x;, the tangent plane P, its local orthonormal coordinate system (origin
X, and basis vectors by and b, ), and the projections of the platelet points (¥) onto P.

Figure 2. Construction of a bivarite polynomial for platelet points in a two-diménsional trinngulation

4. Test Results

The presented technique for principal curvature approximation is tested for graphs
of several bivariate functions, The exact principal curvatures x* and x%* are
compared with the approximated principal curvatures x§™" and x4°7; the exact mean
curvature H* = §{(x{* + x5*) is compared with the average of the approximated
principal curvatures H*™ = ${x}"* + x3*F) and the exact Gaussian curvature K** =
k1 k3" with the product of the approximated principal curvatures K=" = 97717,

All bivariate test functions f{x, y) are defined over [ — 1, 1] = [ -1, 1] and evaluated
on a 5151 —gnd with equidistant spacing,
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T i RY .
(X, 1) = —1+E.—I+E . i.j=0...50,

determining a finite set of three-dimensional points on their graphs,

{03 Yo SUx ¥ 718 j = 0., 50},

The triangulation of a function’s graph is obtained by splitting each quadrilateral
specihied by its index quadruple

(L + L0+ L+ )i+ 1))
nto the two triangles T, and T, identified by their index triples,
=+ LG+ i+ 1) and T = ({00 + L+ 1 + 1).

The root-mean-square error (RMS error) is 8 common error measure and is
computed for each test example and curvature type. The RMS error is defined as

‘I m—]
£ E 'Jﬁ:ﬂ _Jr!nrr]] - {31}

n =l

where n 15 the total number of exact (or approximated) values f**( /*"). Here, n
equals 51 - 51; depending on the curvature type approximated f;** can represent the
exact values for k7%, k3", H** or K**, and f{""" can represent the approximated values
for k{PF, k37, H*7 or K*™, respectively. Table 1 summarizes the test results for the
approximation of the principal curvatures, the mean, and the Gaussian curvature.

Table 1. EMS errors of curvature approximation for graphs of hivariate

functions
Function Ky K H K

I. Cylinder:

W 000291 000035 000132 (00028
2. Sphere

L (x* + ), 000159 00Di&a  O0DDRG (ORI
3. Parnbalobd:

Al + F) DOMWTY 001342 001358 DO16R4
4. Hyperboloid:

Aix® — L DOXOSE  DOXSE 000057 001767
3, Monkey saddle:

2% = Ixy?), 004483 DO44E 001391 007247

6. Cubic polynomial:
A5(x" + Aty — xy =+ 2yt D0O2258 003598 001665 002242
7. Exponential function:

gl 001757 00S%46 027X 02602

& Trigonometric function;
Jfposinx) + cosinyll 0020908 02E Aot L TR




Figure 4. Approsimated curvatures &5, K7, H", and K™ on the graph of fix, y) = $(x* = y*), x,
yve[=1.1}



. = . i
Figure 5. Exact curvatures 7", k5%, H™. and K™ on the graph of fix, ¥) = .15(x? 4+ 2x%y — xy + 27,
pE[—1,1]

Figure 6. Approximated curvatures k7™, 3™, H**, and K*™ on the graph of /{x. v} I5{x" + 2x%y
i+ 2l x rel=1,1]



Figare 7. Exact curvatures w7, k3%, H™, and K™ on the graph of fix, ¥l = licos(zx) + cosimyll x,
vel[—1,1]

Fhire H Approvimaled curvatures g7, k537, PP pnd K**F on the graph of f{x, vl = llcosizg) +
ominyib .y [ =1.1]
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In the hgures, the four particular curvatures used in Table | are mapped as
lextures onto the hyperbolowd (function 5), the graph of the cubic polynomial
ifunction 7) and the graph of the trigonometric function (lunction 9). Pairs of
consecutive figures show the exact (upper figure) and the approximated curvatures
ilower figure). The principal curvature x, is visualized in the upper-left, x, in the
upper-right, the mean curvature H in the lower-left and the Gaussian curvature K
in the lower-right corner of cach figure. The Figs. 3 and 4 show the exact and
approximated curvature values for function 5, the Figs. 5 and 6 for function 7, and
the Figs. 7 and & for function 9.

&, Conclusions

A technique for approximating the two principal curvatures at the vertices in
a two-dimensional surface triangulation has been developed. The test examples
chosen are all graphs of bivanate functions leading to an obvious error measure.
Nevertheless, the scheme should perform well for general surface triangulations,
since all surfaces can locally be viewed as graphs of bivariate functions. At this point,
it has not been investigated how to adjust the scheme to platelets which can not be
described in terms of a lunction. One could use an implicit surface approximation
whenever necessary,
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