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Crossing-over between land cover and land use:  

Exploring spatially varying relationships in two large US metropolitan areas  

 

Abstract: Difficulties in identifying actual uses of land space from remote sensing-based land 

cover products often result in lost opportunities to enhance the capacity of applied research on 

human settlements.  In an attempt to address these difficulties, this study investigates how land 

cover and land use are interrelated with each other and what determines the relationship patterns 

by analyzing detailed land use and land cover data for two large US metropolitan areas – the 

five-county Los Angeles and six-county Chicago regions – where a broad spectrum of human 

settlements, ranging from urban cores to less-urbanized edges, coexist.  The analysis shows that 

the land cover-land use relationship substantially varies not only across regions but across 

neighborhoods within each region.  Through multivariate regression, it is also found that the 

intraregional variation is highly associated with the neighborhood’s stage of urbanization, 

median housing age, and other development characteristics, suggesting that the relationship 

pattern can largely be shaped by the history and evolution of urban design/development.   

 

Key words: Land Use, Land Cover, Remote Sensing, Urban Development 
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Crossing-over between land cover and land use:  

Exploring spatially varying relationships in two large US metropolitan areas  

 

 

1. Introduction 

 

Rapid advancement in remote sensing, combined with cutting-edge image processing and spatial 

analysis tools, has provided valuable opportunities for researchers to monitor dynamic changes 

on the earth’s surface more efficiently and to investigate urban development dynamics in a more 

comprehensive manner.  The great potential of these advanced technologies has been 

increasingly recognized not only in the scholarly community of earth system science but also in 

many other disciplines that deal with the environment, human settlements, and coupled natural-

human systems (see e.g., Gutman et al., 2004; Dmowska and Stepinski, 2014; Patino et al., 

2014).  In particular, there has been growing interest in remote sensing-based data products in 

social science and real-world policy-making because the data can enable us to better understand 

human decision making and socio-economic changes that underlies complex land cover changes.  

For instance, the U.S. National Land Cover Database (NLCD) has been increasingly employed to 

analyze the growth, decline, and transformation of many cities and their hinterlands (see e.g., 

Shen and Zhang, 2007; Shrestha et al., 2012; Kim and Hewings, 2013; Dmowska and Stepinski, 

2014).  Furthermore, researchers have also started to utilize the USDA’s Cropland Data Layers – 

produced with the use of advanced wide field sensor and ground surveys (Boryan et al., 2011) – 

to grasp the underlying nature of land owners’ decision making in agricultural production or 
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farmland conversion for urban development (see e.g., Thompson and Prokopy, 2009; Kim, 2010; 

Rashford et al., 2013; Stoebner and Lant, 2014).    

However, the full potential of remote sensing has not been fully realized yet.  Although a 

growing number of social scientists have paid attention to the significant value of remote sensing 

combined with readily available spatial analysis tools and satellite imagery data processing 

techniques, they frequently encounter critical challenges that prevent them from adopting more 

remote sensing tools or data.  One long-standing challenge is the fundamental gap between pixel-

based land cover changes detected through remote sensing and actual human/institutional uses of 

land that represent complex socio-economic processes over space (see e.g., Liverman et al., 

1998; Verburg et al., 2009).  Conflicts exist between the structure of land cover datasets (i.e., 

their pixel- or grid-based structure) and socio-economic theories, in which the unit of analysis is 

individuals, institutions, or land parcels.  Furthermore, it is unclear whether a certain type of land 

cover (say, low intensity developed land surface) indicates residential or commercial uses.  

Systematic investigations are needed to better connect physical land cover and human land use 

and thus to support wider dissemination of valuable remote sensing-based products that are 

increasingly available now and most likely in the future. .   

This study attempts to fill the gap between land cover and land use by exploring the 

complex patterns of their relationship in two large US metropolitan areas in the U.S.  More 

specifically, it examines how land cover and land use are associated with each other and how the 

relationship varies across space by integrating and analyzing detailed land cover and land use 

information for 1) the Los Angeles region, a five-county Southern California metropolitan area 

made up of Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties and 2) the 

Chicago region, a six-county Northern Illinois area made up of Cook, DuPage, Kane, Lake, 
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McHenry and Will counties.  However, before presenting the analysis of these two metropolitan 

regions, the remainder of this paper first reviews the previous research in this arena (section 2).  

The review is followed by an explanation of the study areas and major data sets employed 

(section 3) and a presentation of the land cover-land use relationship patterns in the two 

metropolitan areas (section 4).  Then, section 5 provides an investigation of the determinants of 

the relationship using spatial econometric models.  Finally, section 6 concludes the paper by 

summarizing key findings of the analysis and discussing their implications.   

 

 

2. Previous Research – A Brief Review 

 

Existing research rarely acknowledges or investigates the gaps between land cover and land use, 

although these two are fundamentally different from each other in many respects, including their 

concepts, classification schemes, and data collection methods.  Rather, land cover and land use 

are often used interchangeably or viewed as substitutes for one another (Comber, 2008).  This is 

somewhat explicable because land cover and land use are highly associated with each other and, 

in many cases, data for only one of them (i.e., either land cover or land use) are available.  

However, an analysis of land cover or land use can be incomplete or misleading without an 

appropriate understanding and consideration of each concept and their interrelationship.   

In recent years, there have been a handful of studies in which the differences and 

relationship between land cover and land use are examined explicitly.  Cihlar and Jansen (2001), 

for instance, explored how land cover and land use can be associated with each other, focusing 

on the case of Lebanon.  In this study, the authors presented a practical approach for deriving 
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land use maps from remote sensing-based land cover information, considering various types of 

relationship (e.g., one-to-one, one-to-many, many-to-one, and many-to-many), and demonstrated 

the applicability and usefulness of such an approach using the study area (i.e., Lebanon) as an 

example.  Building on that study, Jansen and Di Gregorio (2003) conducted another applied 

research project with the Kiambu District in Kenya, where land use information was in high 

demand for various environmental planning and resource management purposes.  In this project, 

a set of decision rules were developed and tested through a field survey to determine specific 

types of human land uses based on remotely sensed land cover data.  It was found to be crucial to 

reflect the study area’s unique context in understanding the land cover-land use relationship, 

particularly the way in which land resources are utilized in the region.   

Wästfelt et al. (2012) also explored the possibility of identifying detailed land uses based 

on satellite images that detect visible surface characteristics of the area (i.e., land cover).  To do 

this, they conducted a case study in the Sodo district of Ethiopia by employing a rule-based, 

spatial relational post-classification method with emphasis on the importance of the local spatial 

context in shaping the land cover-land use relationship.  The authors reported that the 

identification of land uses and associated socio-economic processes can be enhanced when “the 

analytical focus is shifted from land cover toward land cover configurations” (p.475), as the 

configurations can help capture the critical local context.   

Brown and Duh (2004) attempted to accomplish a reversed translation task: the 

derivation of land cover from land use information.  They paid attention to the major challenges 

that arose in translation, namely the semantic differences between land cover and land use – 

more specifically, differences in category definitions, geometric expressions, and spatial rules 

(p.37-38).  Further, the authors presented a stochastic simulation-based approach that was 
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designed to convert land use to land cover, and applied the method to Livingston County in the 

State of Michigan for demonstration.  There, the spatial variation of the land cover-land use 

relationship within the study area was found to be critical, although it remained unanswered why 

such variation existed.     

It should be noted that the literature has also embraced another group of studies which 

attempt to utilize remote sensing to investigate built environments and land uses in urban areas 

(see e.g., Herold et al., 2002 and 2005; Barr et al., 2004; Mathieu et al., 2007).  In this branch of 

research, attention is primarily directed to the potential that remotely sensed data have in 

identifying morphological characteristics of certain types of urban structures or development 

patterns, rather than land cover-land use relationships.  However, these studies have elucidated 

how a visible formation of the earth’s surface (i.e., patterns that can be identified from remote 

sensing) is associated with various functions of land space (i.e., land uses).  Furthermore, the 

methodologies presented in these studies, such as landscape metrics (e.g., Herold et al., 2002 and 

2005), structural pattern recognition (e.g., Barr et al., 2004), and object-oriented image 

processing (e.g., Blaschke et al., 2000; Mathieu et al., 2007), have opened up new venues to 

utilize high-resolution land cover and other types of satellite images for a variety of research or 

policy-making purposes.  More recently, further methodological advancement has been achieved 

(see e.g., Rashed and Jurgens, 2010; Thunig et al., 2011), even though this progress has often 

been made outside of social science.    

Despite the great contributions of these existing studies, however, still little is known 

about detailed land cover-land use relationship patterns in various human settlement contexts.  In 

particular, we do not know much about how the relationship patterns tend to vary and what 

determines the variation.  The following sections present an empirical investigation of the 
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relationship which focuses on two large metropolitan areas in the U.S. to address the dearth of 

knowledge in this arena and the lost opportunities to take advantage of land cover and land use 

information more effectively.   

 

 

3. Study Areas and Data 

 

In this study, consideration is given to two large U.S. metropolitan regions: 1) the Los Angeles 

region, a five-county Southern California metropolitan (Los Angeles, Orange, Riverside, San 

Bernardino, and Ventura counties) and 2) the Chicago region, a six-county Northern Illinois area 

(Cook, DuPage, Kane, Lake, McHenry and Will counties).  The two large study regions provide 

a valuable opportunity to examine land cover-land use relationship patterns over a broad 

spectrum of human settlements (ranging from urban core to suburban and hinterland), using 

multiple sources of information.   

More specifically, the Los Angeles region has experienced rapid growth over the last 

century and is currently home to approximately 18 million people, embracing the following three 

core-based statistical areas: i) Los Angeles-Long Beach-Anaheim, CA; ii) Oxnard-Thousand 

Oaks-Ventura, CA; and iii) Riverside-San Bernardino-Ontario, CA.  It is well known for its 

poly-centricity and cultural diversity and is often referred to as an example of sprawl or 

unchecked expansion, although the region’s density level is actually higher than that of many 

other metropolises in the U.S. (see e.g., Giuliano and Small, 1991; Ewing et al., 2014; Hipp et 

al., 2014).  For this region, the Southern California Association of Governance (SCAG) provides 

parcel-level land use data in a shapefile format, originally constructed in the 1990s and 
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periodically updated based upon local data inputs, aerial photography, and on-site visits.  The 

SCAG land use data set identifies detailed land use information for more than 4 million parcels 

ranging from Downtown LA to farmland and preserved areas, using the organization’s 

disaggregated land use coding system with more than 100 categories.  

The second study area, the Chicago region, also involves a wide spectrum of 

development patterns, although it is relatively small compared with the Los Angeles region in 

terms of both population and territorial size.  Similar to the Los Angeles area, the region’s 

overall spatial structure is largely polycentric (McDonald and McMillen, 1990; McMillen and 

McDonald, 1998).  However, given its historical background (as a city created based on the 

waterways and railroad systems), the region’s urban form is quite distinct from that of Los 

Angeles, whose evolution has been largely shaped by the U.S. interstate highway system (Anas 

et al., 1998).  Detailed land uses in this region can be derived from the Chicago Metropolitan 

Agency for Planning’s (CMAP) spatially-explicit land use inventory databases, produced by 

utilizing a variety of GIS layers, including aerial photography, and other sources of local 

information (CMAP, 2006). .   

For these two metropolitan areas and other parts of the United States, high-resolution 

land cover data sets are also available.  In particular, the NLCD – 30 meter × 30 meter scale land 

cover data products, accessible via the Multi-Resolution Land Characteristics Consortium 

(http://www.mrlc.gov/) – contains valuable land cover information over a large geographical 

scope.  Although it has been reported that NLCD does not perform well enough in capturing tree 

canopy covers or land fragmentation in nonurban areas, the database has been widely used for a 

variety of research projects (see e.g., Irwin and Bockstael, 2007; Nowak and Greenfield, 2010; 

Shrestha et al., 2012).  When combined with land use information for each study area, the NLCD 
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data can also provide an opportunity to investigate the ways in which land cover and land use are 

interrelated with each other and how the interrelationships vary within and across regions.  

Figures 1 and 2 illustrate the land cover patterns in each of the two study regions, using the 2006 

edition of the NLCD 2001 product (Fry et al., 2011) which is employed for the subsequent 

exploration of the land cover-land use relationship. 

<< Insert Figures 1 and 2 about here >> 

Figure 1. Land Cover 2001 in the Los Angeles Region 

Figure 2. Land Cover 2001 in the Chicago Region 

 

 

4. Land Cover-Land Use Relationship Patterns 

 

The NLCD 2001 layer is overlaid with the land use shapefiles for the Los Angeles and Chicago 

metropolitan regions.  In this process, the two regions’ land use data are reorganized to minimize 

the mismatches between their data coding systems and ensure consistency in subsequent 

analyses.  More specifically, a land use classification system with 14 aggregated categories is 

used, and the NLCD’s land cover classification is adopted after excluding several categories, 

absent from both study areas (table 1).   

<< Insert Table 1 about here >> 

Then, based on the overlaid layers, the relationships between land cover (classified into 15 

categories) and land use (classified into 14 categories) are measured in the form of a 14×15 

bridge matrix in which the land cover composition of each land use category is calculated in each 

row.  This is accomplished by computing the surface area for each of the 210 possible 
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combinations (15 land covers × 14 land uses) in ArcGIS.  It should be noted that the matrix 

derivation is performed for every census tract in the Los Angeles and Chicago metropolitan 

regions (3,373 and 1,839 tracts, respectively) to explore how the relationship patterns vary over 

space within and across regions.   

 Tables 2 and 3 present the bridge tables that disclose the overall (aggregated) land cover-

land use relationship patterns in the two regions, respectively.  Each numeric value in a given 

cell (i,j) of the matrix represents j-th land cover’s share of the total area of i-th land use 

categories.  In table 3, for instance, 0.402 (in the cell of LU01 and LC22) indicates that 40.2% of 

the total single-family residential areas (i.e., 263.4 / 655.2 thousand acres) are found to have 

developed, low intensity land cover in the Los Angeles region.  

<< Insert Tables 2 and 3 about here >> 

As shown in the tables, the land cover-land use relation patterns are substantially different 

between the study regions, although some commonalities exist, such as high percentages of 

LC23 (Developed, Medium Intensity) and LC24 (Developed, High Intensity) among Multi-

family Residential, Commercial & Services, and Industrial land uses.  The outcomes can be 

sensitive to the spatial resolution of land cover data (e.g., a higher resolution can lead to smaller 

differences than found here using the 30 meter × 30 meter scale NLCD data).  Also, to some 

extent, this interregional variation can be attributed to a discrepancy in the land use coding 

system that cannot be completely removed, although attempts were made to minimize it.  The 

variation may also occur due to each region’s uniqueness in terms of spatial organization and 

urban development schemes.   

 A larger extent of the variation can be found if attention is directed to the land cover-land 

use relationship patterns across neighborhoods within each region.  For instance, the percentage 
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of LC22 (Developed, Low Intensity) in LU01 (Single-family Residential) significantly varies 

across census tracts in the Los Angeles metropolitan area, as demonstrated in figure 3.  The wide 

dispersion of the value – from 20% or below to over 80% – is also apparent in the Chicago 

region, where a high percentage value tends to be found in its middle ring (figure 4).  The core 

areas show relatively lower values of the percentage, because there the single-family residential 

lands are more likely to contain other land cover types, particularly LC23 (Developed, Medium 

Intensity) and LC24 (Developed, High Intensity).  Census tracts at the edge are also found to 

exhibit relatively lower percentages of LC22, since land cover types, such as LC21 (Developed, 

Open Space), are more frequently involved in the single-family residential areas of these parts of 

the region.  

<< Insert Figures 3 and 4 about here >> 

Figure 3. LC22's Share in SF-Residential Areas – the Los Angeles Region 

Figure 4. LC22's Share in SF-Residential Areas – the Chicago Region 

Figure 5 demonstrates three distinct patterns of single-family residential development in the 

Chicago metropolitan area, specifically Cook County, Illinois (Data source: USGS High 

Resolution Orthoimagery, Acquisition date: April 10, 2002).  The second image (i.e., top right) is 

drawn from a census tract with a high percentage (over 80%) of low-intensity developed covers 

in its single-family residential land.  The remaining two locations exhibit much lower levels of 

the percentage, but for different reasons.  The first case (top left) has a large share of open spaces 

or undeveloped land cover categories, while the single-family residential areas in the third 

neighborhood (bottom right) primarily consist of medium-intensity developed land.   

<< Insert Figure 5 about here >> 

Figure 5. Single-family Residential Development Patterns 
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5. Determinants of the Relationship between Land Cover and Land Use 

 

Why does such variation exist?  What determines the land cover-land use relationship patterns?  

To answer these questions, which are essential in making it possible to cross-over between land 

cover and land use, a multivariate regression analysis is conducted focusing on single-family 

residential areas (i.e., LU01) as an example, among many land use types.  This is accomplished 

first by measuring the land cover composition of the single-family residential areas in each 

census tract based on the following three categories for simplicity: 1) share of LC23+LC24 (i.e., 

medium- or high-intensity developed) in LU01, 2) share of LC22 (i.e., low-intensity developed) 

in LU01, and 3) share of the remainder (i.e., all other land cover categories, including LC21, that 

represent open space with a limited amount of developed surface) in LU01.  For the explanatory 

variables that can account for the variation in the composition, a range of tract attributes are 

compiled using Census 2000 and other sources of spatial information, as summarized in table 4.  

These include the median age of housing, household income, relative position of the tract with 

respect to the central business district (CBD) and employment sub-centers in the region.       

<< Insert Table 4 about here >> 

In analyzing the composition, two major statistical issues can arise.  First, the nature of the 

dependent variable (i.e., compositions, having a fixed range, [0,1]) makes it inappropriate to 

conduct the analysis using a straightforward least squares regression (see e.g., Aitchison, 1986; 

Pawlowsky-Glahn and Buccianti, 2011).  To address this issue, a log-ratio transformation 
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approach is employed in this study.  More specifically, the following two variables are derived 

from the three shares of land covers.  

• �_�������. 	�
 = log �[����� �� ����&���� �  �!"#] %& 
[����� �� ���� �  �!"#] %& '  

• �_()��. �)*+� = log �[����� �� ,�� ��-�� .�� �  �!"#] %&
[����� �� ���� �  �!"#] %& '   

where / indicates a small constant (e.g., 0.001) that is introduced to avoid the problems of 

log (0) and log (∞).  The magnitude of the first � variable (i.e., �_�������. 	�
) is larger, when a 

bigger proportion of the single-family residential areas is medium- or high-intensity developed 

cover.  In contrast, �_()��. �)*+� exhibits a high value in the census tracts where single-family 

residential land contains a large share of less-developed or un-developed surface, compared with 

the common denominator: the share of low-intensity developed cover.     

 Though the above transformation provides two unbounded � variables – i.e., having a 

range of (−∞, ∞) as opposed to [0,1] – there is another issue to be handled: spatial 

autocorrelation.  The tract-level land cover composition presents a highly correlated pattern of 

spatial distribution.  Consequently, the residuals from ordinary least squares are likely to be 

correlated, even if the transformed � variables are used.  Therefore, a spatial error model is 

adopted to identify the determinants of the variation in the land cover-land use relationships 

more accurately, as follows. 

� = 78 + :   ,  : = ;<: + = 

where 8 and 7 represent the explanatory variables (including the constant) and their coefficients, 

respectively; the error vector, :, is assumed to be spatially autocorrelated and thus expressed 

with a spatial autoregressive coefficient (;), a spatial weight matrix (<), and an uncorrelated and 

homoskedastic residual term (=).   
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 For each of the two study regions, the model is estimated through a maximum likelihood 

estimation approach using the ‘spdep’ package in R; and the estimation results are presented in 

table 5.1  Overall, the results suggest that a substantial proportion of the variation across 

neighborhoods can be explained by the factors considered (the pseudo R-squared ranges from 

0.46 to 0.78).  In addition, it is apparent that the land cover composition involves substantial 

spatial dependence, as indicated by the statistically significant spatial autoregressive coefficients 

(;).  More specifically, these coefficients are found to have a relatively greater magnitude (0.838 

and 0.823) under the models for �_�������. 	�
 in both study areas, suggesting that the model 

for this variable is more likely to bear a high degree of spatial autocorrelation.  

<< Insert Table 5 about here >> 

Regarding the determinants tested, Share.UrbanLandUse is found to be highly associated with 

the transformed composition variables in both the Los Angeles and Chicago regions.  The 

significant, positive coefficients of Share.UrbanLandUse in the models explaining 

�_�������. 	�
 (+1.069 and +1.498, respectively) suggest that the single-family residential areas 

are more likely to be medium- or high-intensity developed covers in largely urbanized 

neighborhoods.  Share.UrbanLandUse’s negative coefficients as predictors of �_()��. �)*+� (-

2.260 and -2.273 in Los Angeles and Chicago, respectively) indicate a reversed pattern of the 

relationship – i.e., these highly urbanized tracts tend to have a smaller proportion of undeveloped 

surface in their single-family residential areas. 

                                                           

1 A contiguity-based weight matrix is used in the estimation.  It should also be noted that census tracts 

with less than 10 acres of single-family residential areas are excluded, because the land cover composition 

derived from small land areas would not be reliable.  As a result, the actual sample size used in the model 

estimation is smaller than the total number of census tracts in each study region – i.e., 2,913 tracts in the 

Los Angeles region and 1,410 tracts in the Chicago metropolitan area.  
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 In contrast, Share.SFResidential exhibits significant, negative coefficients in explaining 

the intraregional variation of �_�������. 	�
 (-0.640 and -0.988).  This finding shows that 

medium- or high-intensity developed covers are generally large in highly urbanized tracts but not 

in those that have built out mainly for single-family housing rather than other urban purposes.  In 

the case of �_()��. �)*+�, however, Share.SFResidential’s effect turns out to be insignificant, 

suggesting that the proportion of single-family residences land among various urban land uses 

does not make a substantial difference in terms of the share of open space. 

 According to the model estimation results, income effects also appear to exist.  The 

median household income of the tract (logged – i.e., Log.MedHHINC99) shows significant 

negative and positive effects on �_�������. 	�
 (-0.831 and -0.774) and �_()��. �)*+� (+0.535 

and +0.641), respectively.  In other words, all other factors being equal, the single-family 

residential areas in relatively wealthier neighborhoods tend to involve more open space covers 

than high-intensity developed surface.   

 One additional finding to be stressed is the estimated coefficients of MedHousingAge.  

Although a majority of the explanatory variables tested are found to have one sign for 

�_�������. 	�
 and an opposite sign for �_()��. �)*+� (suggesting that they are indicative of a 

direction toward one extreme, either highly developed or undeveloped covers), MedHousingAge 

has negative coefficients in predicting both �_�������. 	�
 (-0.012 and -0.031) and 

�_()��. �)*+� models (-0.003 and -0.023).  These results demonstrate that in old 

neighborhoods, the single-family residential areas are likely to have a large proportion of low-

intensity developed covers, which falls in the middle of a spectrum of land covers between 

undeveloped and high-intensity developed surfaces.   
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Some other factors are also found to show significant coefficients.  For instance, similar 

to MedHousingAge, the presence of rail transit stations (i.e., RailTransitStation) has significant 

and negative coefficients in both models for the Chicago metropolitan area, whereas its 

coefficients are insignificant in the case of the Los Angeles region.  Proximity to the CBD or 

employment sub-centers also seems to have an ability to explain the spatially varying pattern of 

the land cove-land use relationship in these large, polycentric metropolitan regions.   

 

 

6. Summary and Discussion  

 

Rapid advancement in remote sensing and image-processing technologies has significantly 

improved our ability to monitor dynamic changes on the earth’s surface, including areas where 

access is denied or restricted.  Furthermore, the advanced technologies have provided a variety of 

data products that bear great potential for the investigation of various human activities that are 

highly associated with the earth’s surface changes.  However, it remains challenging to utilize 

these products for such research purposes due to the lack of knowledge (or references) about 

complex patterns of the relationship between human activities (land use) and the earth’s surface 

changes (land cover).  

 To fill this niche, the present study investigates how land cover and land use are 

associated with each other and what determines the relationship patterns by analyzing the data 

for two large US metropolitan areas where a broad spectrum of human settlements, ranging from 

highly developed to preserved areas, coexist.  The analysis demonstrates that the land cover-land 

use relationship varies not only across regions but also across neighborhoods within each region.  
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It is also found that the way in which land cover and land use are interrelated is highly associated 

with the neighborhood’s stage of urbanization, land use composition, and median housing age.  

This finding suggests that the land cover-land use relationship pattern can largely be shaped by 

the history and evolution of urban design/development schemes in the region. 

The findings of this study and further research in this area can support a variety of social 

science research, urban planning, and other public policy-making practice.  Limited data 

availability or consistency has been a major obstacle to understanding the dynamics and 

complexity of urban development processes, and the emerging remote sensing technologies 

present a promising vehicle for overcoming this barrier.  In particular, based on the revealed land 

cover-land use patterns, researchers can examine the land use changes and associated socio-

economic issues more broadly using high-resolution land cover information that can cover a 

larger geographical scope (compared with alternative sources of information, such as local land 

use data) in a cost-efficient manner.   

Furthermore, a more thorough understanding of the land cover-land use relationship can 

contribute to using land cover or land use simulation tools more broadly and effectively.  In 

recent years, cellular automata and other types of land cover simulation models have been 

increasingly developed (Irwin, 2010; Kim, 2013), but the use of the simulation outputs has been 

somewhat limited due to the difficulties in translating cell- or pixel-based model outcomes (e.g., 

land cover changes from grassland to developed) into socio-economic variables (e.g., travel 

demand increases).  It has also remained difficult to convert certain land use analysis outcomes 

into land cover metrics, needed for a range of environmental assessment and planning projects.  

These challenging transition tasks can be better accomplished by using the information about the 

varying patterns of land cover-land use relationship and their determinants revealed in this study.   
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Multiple disciplines can also enjoy the economies of scale (or the economies of scope) in 

terms of data availability by adding remote sensing-based products to their data inventory.   

Combining multiple types of information can open a new avenue for measuring, analyzing, and 

understanding urban spatial structures and detailed design/development schemes at various 

scales, as well as other important dimensions of our communities and regions.  This line of 

research can also lead to a more salient dialogue concerning the strategies for crossing-over 

between land cover and land use to better understand visible changes on the earth’s surface and 

the underlying socio-economic mechanisms.   
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Table 1. Land Use and Land Cover Classification System 

Land Use Land Cover a 

Code Description Code Description 

LU01 Single-family Residential, including Duplex & 

Townhouses 

LC11 Open Water 

LU02 Multi-family Residential LC21 Developed, Open Space 

LU03 Other Types of Residential LC22 Developed, Low Intensity 

LU04 Commercial & Services LC23 Developed, Medium Intensity 

LU05 Industrial LC24 Developed High Intensity 

LU06 TCU (Transportation, Communication, and Utilities) 

Facilities 

LC31 Barren Land (Rock/Sand/Clay) 

LU07 Public Facilities, including Military  LC41 Deciduous Forest 

LU08 Mixed Developed LC42 Evergreen Forest 

LU09 Open Space and Recreational LC43 Mixed Forest 

LU10 Urban Vacant or Under Construction LC52 Shrub/Scrub 

LU11 Agricultural LC71 Grassland/Herbaceous 

LU12 Non-urban Vacant LC81 Pasture/Hay 

LU13 Water and Water Facilities LC82 Cultivated Crops 

LU14 b Undetermined LC90 Woody Wetlands 

  LC95 Emergent Herbaceous Wetlands 
a The original NLCD classification system includes the following five additional categories – 12: Perennial Ice/Snow, 51: Dwarf 

Scrub, 72: Sedge/Herbaceous, 73: Lichens, and 74: Moss.  However, these categories are excluded, as there are no land areas with any 

of these types of land covers in the two study regions.  b Only available in the Los Angeles metropolitan region. 
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Table 2. Land Cover – Land Use Relationship Pattern: Los Angeles Metropolitan Region in 2001  

 LC11 LC21 LC22 LC23 LC24 LC31 LC41 LC42 LC43 LC52 LC71 LC81 LC82 LC90 LC95 

LU01 0.000 0.138 0.402 0.390 0.005 0.001 0.000 0.009 0.004 0.030 0.019 0.001 0.001 0.000 0.000 

LU02 0.000 0.045 0.217 0.582 0.138 0.000 0.000 0.001 0.000 0.010 0.005 0.001 0.001 0.000 0.000 

LU03 0.001 0.165 0.081 0.158 0.034 0.032 0.000 0.014 0.004 0.318 0.167 0.010 0.014 0.001 0.000 

LU04 0.000 0.042 0.121 0.478 0.329 0.008 0.000 0.001 0.000 0.014 0.007 0.001 0.001 0.000 0.000 

LU05 0.002 0.074 0.084 0.220 0.255 0.130 0.000 0.006 0.001 0.186 0.035 0.002 0.003 0.001 0.000 

LU06 0.009 0.125 0.108 0.109 0.063 0.083 0.000 0.005 0.003 0.388 0.079 0.010 0.012 0.005 0.001 

LU07 0.000 0.014 0.013 0.018 0.005 0.132 0.000 0.000 0.000 0.810 0.007 0.000 0.001 0.000 0.001 

LU08 0.000 0.021 0.064 0.481 0.423 0.001 0.000 0.000 0.000 0.004 0.006 0.000 0.000 0.000 0.000 

LU09 0.003 0.052 0.019 0.010 0.001 0.056 0.000 0.005 0.002 0.806 0.040 0.001 0.002 0.003 0.001 

LU10 0.001 0.213 0.199 0.120 0.013 0.109 0.000 0.000 0.001 0.070 0.226 0.022 0.027 0.000 0.001 

LU11 0.001 0.096 0.036 0.008 0.001 0.030 0.000 0.003 0.007 0.140 0.123 0.191 0.361 0.003 0.001 

LU12 0.001 0.019 0.005 0.001 0.000 0.093 0.000 0.037 0.012 0.785 0.042 0.003 0.002 0.001 0.000 

LU13 0.757 0.049 0.027 0.019 0.004 0.013 0.000 0.002 0.003 0.077 0.029 0.001 0.004 0.005 0.010 

LU14 0.049 0.051 0.039 0.038 0.004 0.015 0.000 0.003 0.007 0.673 0.112 0.003 0.004 0.000 0.001 

 

 

 

Table 3. Land Cover – Land Use Relationship Pattern: Chicago Metropolitan Region in 2001  

 LC11 LC21 LC22 LC23 LC24 LC31 LC41 LC42 LC43 LC52 LC71 LC81 LC82 LC90 LC95 

LU01 0.002 0.112 0.580 0.163 0.004 0.000 0.050 0.000 0.010 0.001 0.014 0.039 0.013 0.011 0.000 

LU02 0.000 0.011 0.237 0.623 0.123 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.000 

LU03 0.000 0.068 0.294 0.174 0.012 0.000 0.024 0.000 0.004 0.000 0.054 0.163 0.202 0.002 0.000 

LU04 0.003 0.039 0.153 0.351 0.429 0.001 0.004 0.000 0.001 0.000 0.009 0.006 0.003 0.002 0.000 

LU05 0.011 0.029 0.117 0.268 0.462 0.029 0.007 0.000 0.001 0.000 0.021 0.010 0.040 0.002 0.001 

LU06 0.008 0.088 0.234 0.292 0.289 0.002 0.013 0.000 0.001 0.001 0.027 0.014 0.025 0.004 0.001 

LU07 0.003 0.127 0.257 0.262 0.129 0.001 0.045 0.001 0.008 0.001 0.052 0.042 0.052 0.021 0.000 

LU08 0.001 0.015 0.119 0.382 0.457 0.000 0.003 0.000 0.001 0.000 0.008 0.006 0.008 0.001 0.000 

LU09 0.015 0.216 0.139 0.028 0.003 0.001 0.192 0.002 0.027 0.025 0.067 0.043 0.095 0.125 0.023 

LU10 0.004 0.088 0.302 0.273 0.086 0.002 0.013 0.000 0.002 0.001 0.039 0.033 0.136 0.016 0.004 

LU11 0.001 0.036 0.046 0.007 0.001 0.000 0.014 0.000 0.001 0.001 0.019 0.081 0.791 0.002 0.000 

LU12 0.017 0.124 0.156 0.039 0.005 0.001 0.253 0.001 0.035 0.006 0.062 0.076 0.123 0.085 0.016 

LU13 0.758 0.030 0.092 0.026 0.007 0.001 0.017 0.001 0.005 0.000 0.008 0.003 0.008 0.036 0.007 

LU14 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
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Table 4. Explanatory Variables & Data Sources 

Variables Description Data Sources 

Share.UrbanLandUse Share of urban land uses (i.e., LU01, 02, 04, 05, 06, 07, 08) in the tract  SCAG a, CMAP b  

Share.SFResidential 
Proportion of single-family residential areas (i.e., LU01) among urban land 

uses 
SCAG, CMAP 

Log.MedHHINC99 Log of household income in the tract Census2000 

MedHousingAge Median age of housing units  Census2000 

RailTransitStation Presence of rail transit stations, 1: yes, 0: no Metrolink c, CTA d 

Road.FC1 Presence of interstate highways (functional class: 01), 1: yes, 0: no NHPN e 

Road.FC2 Presence of other major expressways (functional class: 02), 1: yes, 0: no NHPN  

Dist.CBD Distance to the region’s central business district  Lee & Lee (2014) f 

Dist.SubCenter Distance to the nearest employment sub-centers Lee & Lee (2014)  
a Southern California Association of Governance, b Chicago Metropolitan Agency for Planning, c Metrolink, d Chicago Transit 

Authority, e National Highway Planning Network data layer, f Central business districts and employment sub-centers, identified by Lee 

and Lee (2014) through a geographically weighted regression approach 
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Table 5. Spatial Error Model Estimation Results  

***: 0.1% level, **: 1% level, *: 5% level significant, n = 2,913 (Los Angeles Region) and 1,410 (Chicago region) 

 

 
  

Variable 

Los Angeles Metropolitan Area Chicago Metropolitan Area 

y_intense.dev y_open.space y_intense.dev y_open.space 

Estimated  

Coefficient 

Standard  

Error 

Estimated  

Coefficient 

Standard  

Error 

Estimated  

Coefficient 

Standard  

Error 

Estimated  

Coefficient 

Standard 

Error 

C (Intercept) 10.791 *** 1.183 -6.502 *** 1.159 10.244 *** 1.527 -7.941 *** 1.649 

Share.UrbanLandUse 1.069 *** 0.170 -2.260 *** 0.177 1.498 *** 0.252 -2.273 *** 0.281 

Share.SFResidential -0.640 *** 0.157 0.059  0.167 -0.988 *** 0.211 -0.405  0.234 

Log.MedHHINC99 -0.831 *** 0.104 0.535 *** 0.102 -0.774 *** 0.135 0.641 *** 0.146 

MedHousingAge -0.012 *** 0.004 -0.003  0.004 -0.031 *** 0.004 -0.023 *** 0.004 

RailTransitStation 0.215  0.156 0.080  0.173 -0.390 ** 0.151 -0.536 ** 0.172 

Road.FC1 0.020  0.069 -0.017  0.074 -0.132  0.089 -0.014  0.099 

Road.FC2 0.084  0.071 -0.126  0.075 -0.053  0.153 -0.048  0.170 

Dist.CBD -0.036 *** 0.006 0.001  0.003 -0.121 *** 0.014 0.034 ** 0.010 

Dist.SubCenter 0.007  0.018 0.022 * 0.010 0.139 *** 0.034 -0.002  0.030 

Lambda (;) 0.838 *** 0.636 *** 0.823 *** 0.712 *** 

Pseudo R-squared 0.702 0.462 0.778 0.651 

Log likelihood -4866.7 -4946.5 -2197.5 -2315.4 
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Figure 1. Land Cover 2001 in the Los Angeles Region
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Figure 2. Land Cover 2001 in the Chicago Region 
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Figure 3. LC22’s Share in SF-Residential Areas – the Los Angeles Region 
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Figure 4. LC22’s Share in SF-Residential Areas – the Chicago Region 
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Figure 5. Single-family Residential Development Patterns  

 




