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Analysis on the Possibility of RISC-V Adoption

Abstract:

As the interface between hardware and software, Instruction Set 

Architectures (ISAs) play a key role in the operation of computers. While both

hardware and software have continued to evolve rapidly over time, ISAs 

have undergone minimal change. Since its release in 2010, RISC-V has 

begun to erode the industry aversion to ISA innovation. Established on the 

principals of the Reduced Instruction Set Computer (RISC), and as an open 

source ISA, RISC-V offers many benefits over popular ISAs like Intel’s x86 and

Arm Holding’s Advanced RISC Machine (ARM). 

In this literature review I evaluate the literature discussing: 

● What makes changing Instruction Set Architectures difficult

● Why might the industry choose to implement RISC-V 

When researching this topic, I visited the IEEE (Institute of Electrical 

and Electronics Engineers), INSPEC (Engineering Village), and ACM 

(Association for Computing Machinery) digital library databases. I used the 

search terms, “RISC-V”, “Instruction Set Architecture”, “RISC-V” AND “x86”, 

and “RISC-V” AND “Instruction Set Architecture”. This literature review 

evaluates 10 papers on implementation of RISC-V. As this paper was 
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intended to cover recent developments in the field, publication dates were 

limited to from 2015 to present. 

Foreword:

Instruction Set Architectures (ISAs) translate software instructions into 

simple, strictly defined operations. These simple instructions can then be 

translated directly to binary (on/off) instructions interpretable by processors. 

These instructions fall into one of four categories: load/store instructions, 

register based instructions, immediate based instructions, and jump 

instructions. All processes handled by a computer are eventually broken 

down to instructions on this level. ISAs all handle instructions in different 

ways however, fundamentally the purpose of an ISA is to allow 

communication between computer software and computer hardware. 

Historical Approaches to Instruction Set Architecture:

Instruction Set Architectures (ISAs) are implemented directly onto the 

processor during manufacturing. As a result, the choice of ISA defines the 

types of fundamental instructions that the processor can interpret [1]. Part of

the reason that ISAs undergo few changes is that they provide somewhat of 

a stable ground between rapidly changing hardware and software [1].

Every implementation of an ISA belongs to an established ‘architecture

family’ such as x86, ARM, MIPS, RISC-V, etc. [1]. However, on a processor 
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level, there are multiple implementations of each ISA [2]. Each of these 

individual implementations is known as Microarchitecture [2]. While 

microarchitectures can deviate from their parent ISA to some degree, in 

general the parent ISA determines what instructions the processor can 

execute [2]. 

Modern processors fall into two general categories: Complex 

Instruction Set Computer (CISC), and Reduced Instruction Set Computer 

(RISC) [2]. RISC processors emphasize instructions which can be run by the 

processor efficiently [2]. CISC processor instructions tend to favor more 

complex instructions which means a shorter program, but instructions which 

take longer for the processor to run [2].

In recent years, a new ISA named RISC-V has seen a rise in popularity 

[3]. RISC-V is an ISA based on the principals of Reduced Instruction Set 

Computing (RISC) which emphasizes processing efficiency over program 

length [3]. Developed out of University of California, Berkeley in 2010, RISC-

V is an atypical ISA [3]. While RISC-V is not the first ISA built on the principles

of RISC, its open source nature allows customizations not possible under 

most ISAs [1][3]. Historically, popular ISAs have been closed source because 

they were developed by companies which wanted to charge money for their 

ISAs and protect their intellectual property by hiding the source code [1]. 

When new architectures develop, it becomes necessary to develop 

compilers and language libraries alongside them [4]. Compilers are programs

which assemble code and translate it into assembly language (binary 
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instructions) for the processor. Language libraries are tools which provide 

documentation about different program instructions. When working with 

ISAs, these programs help engineers detect flaws in code may not be 

immediately apparent [4]. This is a complex task because in some cases 

problems manifest only after long periods of time or in different hardware 

[4]. This issue is complicated by the relaxed memory model used by RISC 

modeled ISAs in which instructions can be executed out of order based on 

type [1]. For example, when a RISC processor handles a store instruction, 

which moves information from a processor register back to storage in RAM, it

will only execute once all prior memory accesses have resolved [1]. Some of 

the literature discusses the practicalities of creating and maintaining 

appropriate tools for the validation of ISA level codes [1][4].

Limitations of Current ISAs:

Throughout the literature it became clear that many authors felt that 

current ISAs had significant issues. This section will discuss the flaws that 

authors pointed out in their papers.

One problem present in many modern Instruction Set Architectures 

(ISAs) is that most ISAs used commercially are proprietary [5]. This means 

that their source code is privately owned, therefore hidden and uneditable 

[5]. In his thesis paper, “Design of the RISC-V Instruction Set Architecture,” 

Andrew Waterman makes the claim that opening ISAs to modification would 
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be beneficial to the field of computing because it would allow for greater 

optimization [5].

Another problem that authors encountered is that in many cases 

popular commercial ISAs perform worse than their newer counterparts [2]. In

his thesis paper, “A Study on the Impact of Instruction Set Architectures on 

Processor’s Performance,” Ayaz Akram investigated how processors handle 

the execution of code in different ISAs [2]. His study measured the efficiency 

of execution from different ISAs by tracking the number of cycles it took for 

the processor to execute instructions [2]. According to the results of his 

study, on average x86 had the highest number of instructions and used more

registers while running [2].  

A large part of Akram’s thesis discussed Macro-Operation Fusion (M-Op

Fusion). M-Op Fusion refers to the process of combining multiple small 

instructions into one larger instruction either in the compiler or in runtime 

[2]. The purpose of M-Op fusion is to consolidate instructions which run 

through the processor and reduce the number of cycles which a given 

program takes to run [2]. Akram’s data indicates that x86 instructions 

generated the greatest number of runtime Macro-Operation (M-Op) fusions 

on average among all ISAs tested [2]. RISC based ISAs tend to require fewer 

M-Op fusions because they carry a more efficiently compilable instruction 

base [2]. In Akram’s testing, ARMv8, which is a RISC based ISA never 

exceeded the number of M-Op fusions used by x86, which is a CISC based 

ISA [2].
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Another trouble spot for modern ISAs is that tools provided by 

compilers, architecture specifications, and languages libraries for validating 

program stability are at best inefficient, and at worst non-existent [1][4]. In 

their paper "ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS" presented 

at the Principles of Programing Languages (POPL) conference in 2019, 

Alasdair Armstrong, Thomas Bauereiß, Brian Campbell, Alastair David Reid et

al. claimed that architecture specifications (materials intended to guide 

engineers on the use of a particular ISA) rarely amount to more than 

pseudocode documents [1]. They explain that, due to this, it is difficult to 

verify software [1]. The authors of “Promising ARM/RISC-V: A Simpler and 

Faster Operational Concurrency Model,” Christopher Pult, Jean Pichon-

Pharabod, Jeehoon Kang, Sung-Hwan Lee et al. agree that most available 

programs fail to provide any kind of ISA model or debugging tools, choosing 

instead to focus on surface level instruction documentation [4]. Both teams 

went on to present their own verification tools: Sail and Promising 

respectively [1][4]. 

Sail is a custom language that was developed to verify ISA code [1]. In 

order to do this Sail emulates the selected ISA, while providing debugging 

tools [1]. During the creation of Sail, the developers struggled to balance 

including enough features to help engineers debug against the increased 

processing expenses that this incurred [1]. Promising, like Sail, is an 

emulator intended to aid in debugging [1][4]. Because Promising was 

developed after Sail, as such it makes use of some parts of Sail [4]. However 
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Promising focuses more on verification of edge cases by performing an 

exhaustive number of test cases [4].

Despite their contributions in the area, both sources agreed that the 

field could benefit from greater research into performance and debugging 

modeling for ISAs [1][4].

Problems With Changing to RISC-V:

In the literature, authors agreed that changing Instruction Set 

Architectures (ISAs) is problematic for various reasons [4][6][10]. According 

to the developers of RISC-V, the main problems were porting software to a 

new ISA and acquiring hardware which understood the ISA [6]. Other authors

found difficulty in ISA emulation and verification [4][10]. This section will 

discuss the literatures’ take on the difficulties of replacing existing ISAs.

At the ACM Design Automation conference, some of the engineers who 

designed RISC-V commented on the difficulty of making a new ISA [6]. Elad 

Alon, Krste Asanović, Jonathan Bachrach, Borivoje Nikolić et al. claimed that, 

while they had initially expected to finish RISC-V in a single summer, the 

process had actually taken the better part of four years of work [6]. They 

claimed that while building software capable of interfacing with given 

hardware was relatively easy, porting and maintaining software functionality 

on a new ISA was extremely difficult and time consuming [6]. This leads 

them to conclude that the primary difficulty with changing ISAs was 

rebuilding the software one wants to use with it [6]. 
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Exacerbating the previous issue, authors in the literature noted that 

due to a lack of established tools, programming software for RISC-V is 

extremely difficult [10][4]. The authors of “Towards a High Performance 

RISC-V Emulator,” Leandro Lupori, Vanderson Rosario, and Edson Borin claim

that programs allowing efficient RISC-V emulation are unavailable [10]. 

Currently the most efficient emulation of RISC-V carries a 12% overhead in 

x86 and a 35% overhead in ARM [10]. Overhead in this instance refers to the

amount of additional work done by the processor compared to direct 

compilation to its native ISA. The authors go on to assert that the availability 

of efficient RISC-V emulation would both validate it as a useful architecture 

and ease deployment of RISC-V based systems [10]. In “Promising ARM/RISC-

V: A Simpler and Faster Operational Concurrency Model,” Christopher Pult et 

al. assert that the reason it is difficult to write software without these tools is 

that in memory-relaxed languages such as RISC-V, non-deterministic 

behaviors can occur with extraordinary infrequency (on the order of once in 

a million executions), or only in hardware different from what it is being 

tested on [4]. Code exhibiting non-deterministic behaviors will offer variable 

output for a single input. This type of behavior is problematic because it 

makes code execution unpredictable [4]. 

Advantages of RISC-V Architecture:

It is the consensus of the literature that RISC-V carries some unique 

advantages over traditional ISAs. According to some of the creators of RISC-
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V, the goal was to create an ISA equally suited to both simple and complex 

applications which could be easily updated and branched by the community 

[6]. Branching a piece of open source software refers to the process by which

an engineer would add or remove parts of the source code in order to make 

the program better suit their needs.

Across the board, authors in the literature claimed the fact that RISC-V 

is open source software was a distinct advantage [1][6][7][8][9]. In fact, 

some of the literature reviewed document branches of RISC-V and how they 

optimize it for a specific, unique targeted task [7][8][9].

In their research paper, “Adding Tightly-Integrated Task Scheduling 

Acceleration to a RISC-V Multi-core Processor,” Lucas Morais, Vitor Silva, 

Alfredo Goldman, Carlos Alvarez et al. presented at the 52nd Annual 

IEEE/ACM International Symposium on Microarchitecture. The authors 

presented their research into optimizing RISC-V for multithreaded workloads 

[7]. One problem which occurs with multithreading is that if two cores 

attempt simultaneous access to the same location in memory, it will be 

inaccessible to one of them [7]. This error, known as ‘deadlock’, can cause 

execution of code to slow down or freeze up entirely [7]. To solve this 

problem, the authors branched RISC-V and modified its instructions to be 

non-blocking in order to ease the development of deadlock-free systems [7].

In their journal article, “Leveraging the Openness and Modularity of 

RISC-V in Space,” Stefano Di Mascio and Alessandra Menicucci discuss the 

possibility of developing special branches of RISC-V for use in space [8]. The 
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authors claim that one of the most appealing aspects of RISC-V is its 

modularity, which makes it an appropriate choice for a far broader number of

use cases than a standard ISA [8]. In their article they cite the goals of 

space-oriented RISC-V branches to be increased ability to detect system 

faults, and increased stability in the case of faults [8]. According to their 

research, specially branched RISC-V implementations are capable of fault 

detection on par with processors specifically designed for use in space [8]. 

The advantage of using RISC-V in space over the traditional ground up 

specialized ISAs is that they are cheaper, easier to work on, and do not fall 

several years behind modern standards as specially engineered processors 

tend to [8]. 

In their conference paper presented at the 56th ACM/IEEE Design 

Automation Conference, Gai Liu, Joseph Primmer, and Zhiru Zhang presented

their study on RISC-V ISA branches [9]. The team studied RISC-V branches 

which add custom instructions for use in cryptography and machine learning 

[9]. In testing of more than 60 processor implementations, branches of RISC-

V demonstrated up to nine times the performance of a baseline RISC-V 

processor in cryptographic and machine learning applications [9]. In one 

particular case, the researchers observed a cryptographic RISC-V branch 

complete an encryption task 9.3 times faster than a baseline RISC-V 

processor [9]. It accomplished this with negligible increase to resources 

overhead and only increased cycle time by eight point four percent [9]. The 
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authors claim that the results of their paper demonstrate the benefits of 

RISC-V over traditional processors [9].

As shown by the examples, the literature seems to be in agreement 

that RISC-V carries some significant benefits over traditional ISAs [1][6][7][8]

[9]. Authors cite operational efficiency due to RISC construction as a reason 

to choose RISC-V, although RISC architecture is available on some other ISAs 

[2][6]. Authors seem to agree that the main thing that sets RISC-V ahead of 

the competition is the possibility of branching to better fit specific use cases 

[6][7][8][9].

Modern Applications of RISC-V:

The literature provided examples in which RISC-V is used in current 

computing processes [3][6][8][9]. 

In Invited: Open-Source EDA Tools and IP, A View from the Trenches, 

Elad Alon et al. discussed the fields in which RISC-V is beginning to see use 

[6]. They also commented on what they understand to be the reasons which 

RISC-V has seen adoption in modern fields [6]. The literature claimed that in 

order for RISC-V to be adopted, it was important for them to provide proven 

useful implementations of the software [6]. To this end, the team ported 

many useful open source programs to RISC-V [6]. The authors claim that, 

today, there are around six major companies manufacturing RISC-V cores 

[6].
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In “Leveraging the Openness and Modularity of RISC-V in Space,” 

Stefano Di Mascio and Alessandra Menicucci wrote about modern 

applications of RISC-V in space [8]. They claimed that the idea of adapting 

commercial processors for use in space was becoming increasingly popular 

[8]. The main reason for this is that specialized processors tend to lag far 

behind commercially available ones in terms of performance [8]. The authors

predict that the European space industry will likely flight test RISC-V cores in 

anticipation of future implementation in space [8].

In the literature “Design and Implementation of CNN Custom Processor

Based on RISC-V Architecture,” Zhenhao Li, Wei Hu, and Shuang Chen make 

the claim that traditional ISAs are not optimized to take full advantage of 

parallel computing [3]. The authors predict that, as Moore’s Law slows and 

processor efficiency looks for other ways to improve, the industry may turn 

to RISC-V implementation in order to improve parallel processing 

performance [3].

In the conference proceeding "Rapid Generation of High-Quality RISC-V

Processors from Functional Instruction Set Specifications," Gai Liu, Joseph 

Primmer, and Zhiru Zhang made a similar claim to that of the authors of 

“Design and Implementation of CNN Custom Processor Based on RISC-V 

Architecture” [3][9]. They claimed that the need for additional performance 

in the fields of encryption and machine learning would drive the adoption of 

RISC-V due to its ability to be branched for improved performance in these 

workloads [9].
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Conclusion:

In reviewing this literature, I hoped to answer the following questions: 

what makes changing Instruction Set Architectures difficult? And why might 

the industry choose to implement RISC-V architecture?

According to the literature, the main problem with changing Instruction

Set Architectures (ISAs) revolve around the amount of work required to 

translate existing programs and maintain supporting programs for new ISAs. 

The literature shows that the industry may go towards implementing 

RISC-V architecture as a result of its open source nature. This, according to 

the literature, would allow companies the opportunity to better optimize their

processors to their use case.

It seems that for RISC-V to continue to grow there will need to be 

improvement in emulation and translation. Further research in the field 

should focus on the optimization to translation and validation to improve the 

accessibility of the language for software engineers.
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