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Identifying genetic variation underlying human diseases establishes targets for therapeutic
development and helps tailor treatments to individual patients. Large-scale transcriptomic
profiling has extended the study of such molecular heterogeneity between patients to
somatic tissues. However, the lower resolution of bulk RNA profiling, especially in a
complex, composite tissue such as the skin, has limited its success. Here we demonstrate
approaches to interrogate patient-level molecular variance in a chronic skin inflammatory
disease, psoriasis vulgaris, leveraging single-cell RNA-sequencing of CD45+ cells isolated
from active lesions. Highly psoriasis-specific transcriptional abnormalities display greater
than average inter-individual variance, nominating them as potential sources of clinical
heterogeneity. We find that one of these chemokines, CXCL13, demonstrates significant
correlation with severity of lesions within our patient series. Our analyses also establish
that genes elevated in psoriatic skin-resident memory T cells are enriched for programs
orchestrating chromatin and CDC42-dependent cytoskeleton remodeling, specific
components of which are distinctly correlated with and against Th17 identity on a
single-cell level. Collectively, these analyses describe systematic means to dissect cell
type- and patient-level differences in cutaneous psoriasis using high-resolution
transcriptional profiles of human inflammatory disease.

Keywords: single-cell RNA-sequencing, psoriasis vulgaris, heterogeneity, cytoskeleton, chromatin
INTRODUCTION

Individuals with psoriasis vulgaris broadly share cutaneous features such as erythema, micaceous
scale, and induction at skin sites affected by friction. While the role of Th17 cell-produced cytokines
such as IL17F and IL26 in generating these phenotypes is well-established (1, 2), the distinctive
morphology of these lesions suggests that a broad array of yet uncharacterized downstream effector
org July 2022 | Volume 13 | Article 8426511
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genes are also specific to and shared by psoriatic lesions.
Conversely, individual cases of psoriasis can markedly differ in
presentation. Each patient develops lesions in distinct anatomic
patterns, for example whether the scalp or intertriginous skin is
involved, and lesional itch is also highly variable. These patterns
of difference must reflect underlying molecular heterogeneity,
potentially related to other clinical features such as involvement
of other organ systems (e.g. psoriatic arthritis) or response to the
many pathway-targeting agents now available for treatment. One
well-established example is the involvement of germline
CARD14 variants in psoriasis patients with presentations
overlapping with or including the disease state pityriasis rubra
pilaris (3). However, many more yet undiscovered gene-based
variances on the genetic and epigenetic level are likely to
determine an individual patient’s clinical state.

In the past, bulk RNA-sequencing of tissue obtained from
lesional skin has been used to detect and define such
commonalities and differences, enabling rough estimates of
genetic variance in both psoriasis vulgaris and atopic dermatitis
(4–6). Such approaches, however, conflate gene expression values
from many different immune and stromal cell types, providing
relatively crude estimates of genetic similarity and variance. The
recent emergence of single-cell profiling technologies, such as single
cell RNA sequencing (scRNA-seq) and Cellular Indexing of
Transcriptomes and Epitopes (CITE-seq) (7), offers the ability to
compare instances of chronic skin inflammatory disease with far
greater resolution. We can now ask, for example, what molecular
abnormalities are shared by effector immune cells in most psoriasis
patients, regardless of clinical presentation? Such recurrent
derangements might suggest treatment of psoriasis with existing
drugs affecting those targets. Alternatively, certain molecular
abnormalities are likely to be found in only a subset of individual
cases, nominating them as candidates for specific targeted therapies.

To formally deconstruct discrete levels of molecular
heterogeneity underlying cutaneous psoriatic inflammation,
we analyzed data from a recent study profiling 8 psoriasis
samples and 7 normal controls using single-cell RNAseq (scRNA-
seq) and CITE-seq based on the 10X Genomics Chromium
platform (8). We intended to develop and test approaches to
scRNA-seq datasets profiling chronic inflammatory disease that
could be practically and widely applied as similar datasets
become published.
MATERIALS AND METHODS

Clinical Sample Acquisition
Patient recruitment and methods are detailed in our companion
publication (8). Briefly, written informed consent was procured
from donors providing both normal and psoriatic lesional skin
under protocols approved by the University of California, San
Francisco Institutional Review Board. Full thickness punch
biopsies (6 mm) were obtained from psoriasis lesions; discards
from abdominoplasties and mammoplasties were used as normal
controls. All patients had not used topical immunosuppressives
for at least 2 weeks before biopsy. All patients were naïve to
Frontiers in Immunology | www.frontiersin.org 2
targeted biologic medications or disease-modifying non-steroidal
agents except for Patient 5, who was under systemic
immunosuppression following a liver transplant. Clinical
details of psoriasis samples in our series are described in
Supplementary Table 1.
CD45+ Immune Cell Isolation, Single-Cell
RNA-seq and CITE-Seq Profiling, and Data
Processing
Details of skin biopsy sample processing, CD45+ immune cell
isolation, 10X Genomics 3’ scRNA-seq and CITE-seq library
preparation, and data analysis are further described in a recent
prior publication (8). Briefly, we initially performed high-
resolution clustering and eliminated populations corresponding
to non-immune and low quality cells (mitochondrial genes
percentage <20%, 100 < nFeatures < 6000). With the
remaining cells, we performed unsupervised clustering with the
following in Seurat (15 harmonies to run UMAP() and 1.0
resolution for FindClusters()to obtain the final 20 clusters used
in this analysis. Marker transcripts for each cluster were
identified using the FindAllMarkers function in Seurat (results
are in Supplementary Table 2). Cluster identities were then
manually annotated based on canonical immune cell
population markers.

Sample-Specific Differential Gene
Expression Identification, Dispersion
Score Calculation, and Metascape
Analysis
We created pseudo-bulk counts for each patient for the cells that
were mapped to CD45+ cell subpopulations using the package
muscat (9) in Bioconductor. The muscat method aggregates the
single-cell data at the cluster-sample level to create pseudo-bulk
data and then applies the methods of edgeR (10) to pseudo-bulk
calculations to identify DEGs between normal and psoriasis
samples (volcano plot, Figure 2A). To calculate dispersion
values of the psoriasis samples, we applied the function
estimateTagwiseDisp from the edgeR package in Bioconductor
to the pseudo-bulk counts from the psoriasis samples. To
identify abnormally elevated, functionally related gene sets (e.g.
Gene Ontology (GO), Reactome) in Trm2, we applied the
Metascape package (11, 12) to significant DEGs identified by
FindMarkers() in comparison to grouped healthy controls
(p < 0.05).

Normalization of T Cell Number
Expressing Specific Immune Cell DEGs for
Each Psoriasis Biopsy
Although all psoriasis biopsies were 0.6 cm in diameter, different
proportions of isolated cells were scRNA-seq processed for each
sample. To determine the number of T cells expressing each
DEG in each biopsy, we took the assessed number of expressing
T cells for a given DEG and adjusted by total number of CD45+

cells obtained from each biopsy/total cell number processed
in Seurat.
July 2022 | Volume 13 | Article 842651
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Statistical Correlation Analysis
Gene values were batch-corrected at the sample level using the
CPCA method in the R package iCellR; missing gene values were
independently imputed within inflamed and unflamed states of
sample-aligned matrices using the PCA method in iCellR/
run.impute. Resulting matrices were then used for the
correlation matrix. Rstudio v.1.4.1717 and GraphPad Prism
(version 8.0; GraphPad Software, La Jolla, California) were
used for statistical analysis and heatmap generation. Pearson
correlation coefficients were calculated for gene-gene
comparisons using the R function cor(). Adjusted p < 0.05 was
considered significant for Seurat-based analyses, while p < 0.05
was used for other analyses.
RESULTS

scRNA-Seq-Based Classification of Major
T and Antigen-Presenting Cell Types
Isolated From Psoriatic and Normal,
Uninflamed Skin
We focused on 7 normal and 8 psoriasis samples from the Liu et al.
study (8) (Supplementary Table 1). Diagnoses were based on
clinical evaluation by a board-certified dermatologist and
confirmed by formal histopathological reading. Six of eight
patients were judged to have moderate to severe disease based on
Psoriasis Area and Severity Index (PASI) scores and two (Patients 2
and 5) were in the mild range (Supplementary Table 1). The only
Frontiers in Immunology | www.frontiersin.org 3
patient known to be taking systemic immunosuppressive
treatments within 4 weeks of biopsy was Patient 5, who was
maintained daily on 4 mg of tacrolimus and 1250 mg of
mycophenolate mofetil following a liver transplant. Normal
controls were taken from discarded tissue obtained from
mammoplasties and abdominoplasties.

Briefly, skin biopsies were enzymatically digested and flow
sorted for live CD45+ cells, which were then subjected to
Chromium 3’ single cell RNA-seq and CITE-seq protein
epitope sequencing. Single-cell transcriptomic data was
obtained from an average of ~5,200 single cells per sample
after eliminating doublets, poor-quality, as well as non-
immune cells. To classify cells, a graph-based clustering
approach using Louvain community detection-based
modularity optimization, available in the Seurat package,
was utilized.

We obtained 20 cell types based on previously described
unsupervised clustering approaches (8). Robust representation
of each sample was observed (Supplementary Data 1). As shown
in Figure 1, the most upregulated transcripts in each cluster (so-
called marker genes) define a central memory cell population
(CD3D+/CCR7+/SELL+/KLF2+) we call Tcm, as well as a
migratory memory class Tmm (CD3D+/CCR7+/SELL-). Based
on expression of ITGAE (CD103), CXCR6, and CD69, we
identified three resident memory populations (Trm1, Trm2,
and Trm3). A CD4+ regulatory T cell (Treg) population was
noted based on the expression of FOXP3, TIGIT, CTLA4, IL2RA
(CD25), and IKZF2 (Helios).
A

C

B

FIGURE 1 | CD45+ immune cell types identified from 8 psoriasis vulgaris lesions and 7 normal skin samples. (A) UMAP representation of 11 T cell and 9 APC
classes based on scRNA-seq transcriptional data, in which each point represents a single cell. (B) Expression of critical marker transcripts distinguishing immune cell
classes. (C) Proportion of each immune class in total CD45+ cell populations.
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Two cytotoxic (CD8A+CD8B+) T cell clusters expressing
CCL5, GZMB, and NKG7 were identified. One we annotated as
cytotoxic effector memory cells (CTLem) due to expression of
effector molecules including TNFRSF18 and CD96, as well as
resident markers CD69 and ITGAE. Interestingly, the second
cytotoxic T cell population was quantitatively enriched in the
psoriasis vs. normal samples and contained elevated canonical
exhaustion markers such as PDCD1 and LAG3. Accordingly, this
population was classified as exhausted T cells (CTLex). There
were also two populations with high KLRD1+, GNLY+, PRF1+,
and GZMB+ expression, one with high levels of the CD56 epitope
by CITE-seq (NK cells) and the other defined as ILC/NK cells.

Antigen-presenting cell types (APCs) were also classified
based on canonical markers. A macrophage population was
enriched for CD68 , CEBPB , and FCER1G, as well as
complement transcripts C1QB and C1QC and the scavenger
receptor CD163 (Mac). We also examined four monocyte or
monocyte-derived cell populations with elevated MS4A7, LYZ,
and SERPINA1. There was an inflammatory monocyte
(InfMono) population characterized by increased IL1B and
IL23A and another cluster of classical monocytes (Mono)
which expressed higher S100A9 and CD14. Two of these
clusters also expressed very high MHCII molecule levels (HLA-
DRA, HLA-DRB1) and were identified as monocyte-derived DC
(moDC1 and moDC2). A dendritic cell (DC) class (HLA-DRA+)
was enriched in CLEC10A. A population with EPCAM, and
CD207 was defined as Langerhans cells (LC). A small population
comported with the B cell lineage, with high expression of IGHG,
IGHA, IGKC, JCHAIN, CD19, and MA4A2). Two clusters of
Mast cells (Mast) were distinguished by expression of TPSB2 and
TPSAB1 (Mast1 and Mast2).
Frontiers in Immunology | www.frontiersin.org 4
Psoriasis-Specific Transcriptional
Abnormalities in Skin-Resident Memory
T Cells Show High Patient-Level Variance
We next applied a pseudo-bulk method to identify differentially
related genes (DEGs) that distinguished immune cell
populations in our 8 psoriasis samples from 7 grouped healthy
control biopsies. This approach aggregates scRNA-seq-derived
gene counts for each cell subpopulation in each individual
sample. Standard bulk mRNA-Seq computational approaches
for differential expression were then applied, thereby allowing for
patient-level variance to influence the significance of individual
DEGs (9). One notable feature of our recent comparisons of
psoriasis and other rash types such as atopic dermatitis is that the
large majority of psoriasis-specific transcriptional changes are
detected in Trm (8). For example, in the Tcm compartment,
excluding mitochondrial and ribosomal transcripts, only KLRB1,
IL17R, and JUN were expressed at greater than 0.5 logFC in
psoriasis compared to normal samples. In Tregs, only CPM,
TNFRSF, CD7, FTH1, IL7R,MAGEH1,MAL, TBC1D4, met these
criteria. For APC classes, the far smaller number of cells captured
in our CD45+ cell-centric approach led to detection of even fewer
highly specific DEGs.

Consistent with these recent findings, our pseudo-bulk
analysis primarily detected upregulation of Th17 cytokines
such as IL17F and IL26, as well as established psoriasis
inflammatory markers such as IFNG and CXCL13 (13), in a
skin-resident memory T cell compartment (Trm2). Therefore,
we mainly focused on this T cell class for further analysis.
Overall, in Trm2 we identified 1,425 transcripts that
distinguished psoriasis from healthy controls at a p value of <
0.05 (Supplementary Table 3).
A B

FIGURE 2 | Elevated patient level variance in psoriasis-specific skin-resident memory T cell (Trm2) DEGs. (A) Volcano plot showing psoriasis DEGs identified using a
pseudo-bulk approach charted as a function of logFC difference from normal, uninflamed cells (x-axis) and the log of the dispersion score (a proxy for patient-level
variation, y-axis). Significant DEGs are shown in red, non-significant DEGs in grey. Labelled in blue are immune activation genes with relatively high dispersion scores,
which may have prevented them from reaching statistical significance. (B) LogFC (x-axis) and dispersion score (y-axis) shown for established pathogenic psoriatic
cytokines (red), mitotic cell division transcripts (green), psoriasis-specific abnormalities not elevated in atopic dermatitis (orange), and as in (A), immunologically
activating DEGs with high end dispersion scores (blue).
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Understanding patient-level variance, alongside fold-change
magnitudes, is foundational to the conceptualization and use of
disease biomarkers. Transcripts that distinguish psoriatic from
normal tissue at higher log-fold change and relatively low patient-
specific variance may perform well in broad screening efforts.
Conversely, DEGs with high patient-level variance should be
investigated as possible sources of phenotypic variance between
affected individuals. To assess the contribution of patient-level
variation to DEG identification in the skin-resident memory T
cell population Trm2, we calculated dispersion values using edgeR
(14) across our dataset. Lowerdispersion scores correlatewith lesser
patient-level variation,which increases the significance of a pseudo-
bulk-identified DEGs at a given logFC. Figure 2A plots logFC (x-
axis) and dispersion score (y-axis), with transcripts with p < 0.05
adjusted value shown in red. In addition to the Th17 cytokines
noted above, this representation shows significant elevation of
immune activation markers such as CTLA4, CCR5, CD109, and
ZEB2. We also saw clear suppression of other inflammatory
pathways, including the interferon signaling genes IFITM1,
IFITM3, and IFI6 and the chemokines CXCL3 and CXCL8. This
representationalso illustrateshowgreater patient-level variation for
a givenDEG (higher dispersion score along the y-axis) decreases its
significance. For example, IL1R1, implicated in licensing Th17
cytokine production (15), ADA2, an adenosine deaminase central
to T cell maturation (16), and the psoriasis-associated CD161
receptor gene KLRB1 (17) show psoriasis-specific elevation in the
logFC0.5 range, but Log10dispersion scoresof greater than -1, likely
contributing to their failure to reach statistical significance in
comparison to healthy control skin-residency T cells (annotated
in blue in Figure 2A, data in Supplementary Table 3).

We more closely examined inter-individual variance in
psoriasis DEGs that were identified in the prior analysis as
elevated not only relative to normal controls, but also to atopic
dermatitis samples, indicating greater disease-specificity (8).
Notably, many of these genes showed dispersion scores greater
than the median of 0.086 (Figure 2B). In fact, for the six psoriasis
DEGs with a logFC > 3 and significantly elevated compared to
atopic dermatitis, the average dispersion score was 0.484 with a
standard deviation of 0.273. In addition to the cytokines noted
above such as IL17F (0.967), and CXCL13 (0.325), this set
contained identified psoriasis-specific genes with less
established functional roles, such as ARHGEF12 (0.303),
ENTPD1 (0.628), LAYN (0.122) and HAVCR2 (0.560).

Cell cycle transcripts, which are elevated in both psoriasis and
atopic dermatitis Trm2 compared to healthy controls, also show
higher than median dispersion scores, including MKI67 (0.358),
TOP2A (0.276), and CENPF (0.356). Similar to Figure 2A,
Figure 2B displays examples of psoriasis-implicated genes
whose expression is elevated in Trm2, but whose high inter-
individual variance reduces their overall significance level (i.e.
KIT, CCL5, TTN, and GNLY, blue, open circles).

CXCL13 and CD84 Expression in
Cutaneous T Cells Corresponds With
Lesional Psoriasis Severity
We were next curious to understand if expression of psoriasis-
specific immune DEGs correlated with clinical features such as
Frontiers in Immunology | www.frontiersin.org 5
PASI score. Such relationships might further narrow the search for
genetic factors influencing clinical heterogeneity in psoriasis. We
chose 16 established immune activation genes from our Trm2
DEGs including IL17F, CXCL13, IL26, CCR5, and CD82
(Supplementary Table 4) and quantified the T cells in each
sample that detectably expressed each. We normalized these
cell numbers between patients by bioinformatically deducing the
total number of such cells existing in each sample, based on the total
number of CD45+ cells obtained from each biopsy, as well as the
total number of scRNA-seq profiled cells processed in Seurat
(Materials and Methods, Supplementary Table 4). To generate
accompanying measures of clinical severity, we reasoned that the
phenotype of a biopsied and molecularly profiled lesion would be
best represented by summing its individual Erythema, Induration,
and Desquamation PASI descriptors, rather than the overall patient
score, and derived such a lesion-specific severity score for each
sample (Supplementary Table 1).

We then assessed Spearman correlation of T cell expression of all
16 immune cell DEGs with lesion-specific severity score. Three of
these genes correlated strongly with lesion-specific scores: a single
gene coefficient of 0.851 for CXCL13, and IKZF4 (p = 7.3 x 10-3) and
0.801 for CD84 (p = 1.7 x 10-2) (Bonferroni unadjusted, eight
selected genes displayed in Figure 3; Supplementary Table 5).
When the patient-level PASI score was used as an alternative
comparator, none of the 16 immune genes showed significant
correlations at unadjusted p values.

Psoriatic CD45+ Cells Show Programmatic
Activation of Mitotic Cell Division,
Chromatin Remodeling, CDC42 Signaling,
and Leukocyte Activation
We next asked how functionally related groups of genes activated
during psoriatic inflammation might vary in expression from
patient to patient. We first applied the Metascape analysis
package to detect overrepresentation of Gene Ontology and
Reactome functional categories in the 662 genes significantly
elevated (logFC > 0.4) in psoriatic skin-resident memory cells
(Trm2), compared to healthy, controls, identifying 316 functional
categories with a log (q value) < -2 (Supplementary Table 6;
Supplementary Data 2). Statistically significant functional classes,
included expected categories such as mitotic cell division and
leukocyte activation (21 members, log (q value) < -9.97), but also
highlighted the role of cytoskeletal reorganization (CDC42
signaling) and chromatin remodeling (Figure 4A). For example,
ARHGEF12 selectively regulates RhoA subfamily GTPases to
coordinate cell migration and invasion (19), while PAK2
influences actin cytoskeleton reorganization (20). DOCK8
deficiencies impair immune cell migration in both the innate and
adaptive immune system (21). Changes in psoriatic Trm also
include elevated transcripts levels of the linker histone H1FX (22),
histone chaperone NAP1L4 (23), and the chromatin-modifying
enzyme SMARCA5 (24). Figure 4B globally displays psoriasis
Trm2 abnormalities in these four programs on a per-patient level.

Considerable patient-specific fluctuations in these
functionally related gene sets were easily appreciable. Most
obviously, patient 5, the lone patient with psoriasis who was
under systemic immunosuppression (mycophenolate and
July 2022 | Volume 13 | Article 842651
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cyclosporine for a liver transplant) showed substantial
attenuation of all these programs, corresponding to the lowest
lesional psoriasis severity score (Supplementary Table 1). We
sought to systematically assess these correlations between
expression and phenotype, first averaging transcriptional
log2FC for all genes in each of the four individual functional
Frontiers in Immunology | www.frontiersin.org 6
programs. Average scores for all four programs showed positive
correlation with lesional severity score: CDC42 cytoskeletal
reorganization at a Spearman rho value of 0.57, cell division
at 0.55, chromatin reorganization at 0.48, and leukocyte
activation at 0.36. None of these associations reached statistical
significance, likely a factor of our limited sample size. However,
A B

FIGURE 4 | Significant functional associations for the 662 genes significantly elevated in psoriasis samples compared to grouped healthy controls in Trm2. (A) Ten
example classifications are shown, with functions such as immune cell activation, mitotic cell division, and cytoskeletal reorganization. (B) Heatmaps visually represent
average log2FC between individual psoriasis samples and normal controls using ComplexHeatmap (18). Heterogeneity is detected between patients, most prominently
the dampened amplitude of transcript abnormalities in Patient 5, who was on systemic tacrolimus and mycophenolate at time of biopsy.
FIGURE 3 | Inter-individual variation in lesional psoriasis severity score parallels that of CXCL13 and CD84. Leftmost graph shows severity scores for biopsied lesion
for each patient. Subsequent graphs display deduced number of cells with positive expression for each gene, as a percentage of the maximum number of positive
cells in any sample, multiplied by 1 x 103 (i.e. normalized to 10). Significant correlations for CXCL13 and CD84 are denoted by asterisks.
July 2022 | Volume 13 | Article 842651
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in each pathway, activation parallels severity of individual
lesions, revealing a potential source of some proportion of
clinical heterogeneity.

Psoriasis Single Cells Expressing High
Levels of Pathogenic Cytokines Display
Elevated T Cell Activation and
Cytoskeletal Reorganization Genes
While pervasive elevation of transcripts regulating mitosis or
CDC42-centric functional reorganization coincided with
induction of pathogenic cytokines in the Trm compartment,
we were uncertain whether these programs were related on the
single-cell level. In one model, members of these programs might
simply be stochastically elevated in any given, pathogenically
IL23-polarized single T cell. Alternatively, we hypothesized that
some of these transcriptional programs could be shared on the
single-cell level, a pattern that could impact approaches to
therapeutic targeting. For example, if the single T cells most
likely to express Th17 cytokines also showed robust
reprogramming of cytoskeleton genes, strategies restraining
actin reorganization might impede the mobility and infiltration
of the most pathogenic skin-resident T cells.

We therefore calculated the Pearson correlation coefficients
for expression of pathogenic cytokines in single Trm2 cells
against those of genes in our cytoskeletal and secretory classes,
finding striking instances of both positive and negative
correlation (Figure 5). For example, Figure 5A shows positive
correlation of the RORA transcription factor with IL17F
Frontiers in Immunology | www.frontiersin.org 7
expression, as would be expected given its role in Th17
programming (R = 0.3, p = 2.2 x 10-16) (25), as well as for the
TCR component CD3G (R = 0.29, p = 2.2 x 10-16). Similarly, in
Figure 5B, the cytoskeletal re-organization genes PAK2 and
APBB1IP robustly positively correlate with IL17F expression in
single skin-resident memory T cells, supporting a model in
which more highly pathogenically activated cells are also more
motile and capable of tissue infiltration. In sharp contrast, the
single cells expressing maximum IL17F and those expressing
elevated levels of a number of chromatin-modifying transcripts
are negatively correlated, for example, a R of -0.30 forHIST1H1E
(Figure 5C). Such instances of mutual exclusivity suggest the
presence of a second, abnormal, non-Th17 population within
psoriatic Trm, whose influence on disease state is yet
undetermined. A comprehensive single-cell correlation table in
Trm2 for IL17F , CXCL13 , and IL26 is available in
Supplementary Table 7.
DISCUSSION

While a vast landscape of transcriptional abnormalities in
immune and stromal cell types characterizes chronic
inflammatory skin disease (26, 27), clinical improvement
following inhibition of the IL12/23 pathway or blockade of
IL17 isoforms validates the central role of psoriatic T cells. Our
single-cell profiles of 8 psoriasis samples, along with normal
controls, begin to illuminate patient-specific variation of
A B C

FIGURE 5 | Single-cell correlations and anti-correlations between functional class transcripts and IL17F expression. (A) T cell activation markers like RORA and
CD3G are elevated in the highest IL17F expressing cells, (B) Key cytoskeletal reorganization transcripts (PAK2, APBB1IB) are most elevated in the single skin-
resident T cells expressing maximal psoriatic inflammatory mediators. (C) Chromatin remodeling transcripts (EZH2, HIST1H1E), are elevated in the lowest IL17F
expression cells, suggesting a distinct, pathologic cell population in psoriatic Trm. Density plots show imputed single cell expression of T cell activation, chromatin
remodeling, or cytoskeletal transcripts (y-axis) vs. IL17F (x-axis). Dots represent single Trm2 cells (psoriasis samples).
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transcriptional abnormalities in psoriatic Trm (Figure 2).
Psoriasis DEGs with greater than average patient-level
variance, reflected in higher dispersion scores, include the most
recognizable Th17 cytokines such as IL17F and IL26, recently
implicated inflammatory psoriatic mediators such as CXCL13
(13), and genes orchestrating cell division in mitotically active T
cells. Such psoriasis DEGs with higher dispersion scores may
represent sources of patient-specific phenotypic and clinical
variability, such as lesion intensity or anatomic distribution.

Expression of CXCL13 and CD84 correlated significantly with
lesional severity score in our study, a predicate for further
investigation as sources or important associations of disease
state. Our data adds to increasing evidence that CXCL13
represents a particularly Th17-specific abnormality (8) and
positively associates with psoriasis severity (13, 28),
nominating it as a clinically useful biomarker for cutaneous
disease. CD84 is a known T cell activation marker, genetic
variants of which have been associated with response in
psoriasis to TNF blockade (29). Interestingly, IL17F expression
in our series correlated poorly with lesional severity score but was
highly elevated in scalp psoriasis, suggesting it might show
anatomic specificity in more highly powered studies. This
finding comports with an earlier scRNA-seq report that Th17
cytokine expression and overall inflammatory state is
surprisingly prominent in healthy scalp cells (27). The key
constraint of our study is patient number, limited by the
current costs of scRNA-seq. It is very likely additional such
correlations will reach significance as these approaches are
extended to larger data sets.

Conversely, psoriasis-specific DEGs harboring lower dispersion
scores may be more suitable for broader screening to identify
psoriasis-like molecular profiles, a feature that may help direct
biological treatment for the subset of rashes demonstrating both
psoriasiform and spongiotic histopathology (30). Within the set of
psoriasis-specific skin-resident DEGs that are overexpressed
relative to analogous T cells in atopic dermatitis, examples of such
lower variance Th17 biomarkers include the GTPase-activator
CHN1 (0.069) and PTMS (0.077).

We also undertook a systematic search of coordinated
functional derangements in skin-resident T cells, based on the
increased resolution afforded by single-cell transcriptomics. Such
groups of pathologic transcriptional alternations may function as
quantitative traits, collectively modifying disease phenotype
beyond the impact of dysregulated single genes. Applying this
method, we detected not only expected elevations in
inflammatory signalling and cell division, but also global
increases in pathways coordinating CDC42-centric cytoskeletal
reorganization and chromatin remodeling. In one sense, broad
alterations in these programs are not surprising, given the
profound changes in cell polarity and motility that accompany
T cell activation. However, this is the first report describing
recurrent upregulation of dozens of these transcripts in
pathologically inflamed T cells. All 8 patients in our series
show abnormalities in these programs (Figure 4), whose
elevation trends with lesional psoriasis severity scores,
supporting a role in the pathogenicity of skin inflammation.
Frontiers in Immunology | www.frontiersin.org 8
We also show that single T cells expressing the highest levels
of psoriatic inflammatory mediators such as IL17F are markedly
enriched for cytoskeletal remodeling transcripts, suggesting such
programs may facilitate tissue infiltration and cytokine secretion.
Combination therapeutic approaches targeting both Th17
polarization and cytoskeletal activity may thus synergistically
target a common population of particularly pathogenic skin T
cells. We also find that certain chromatin remodeling DEGs peak
in single T cells distinct from those maximally expressing IL17F,
indicating these data can also identify additional, abnormally
reprogrammed subpopulations within the Trm compartment.

In summary, the analyses presented here describe a suite of
quantitative approaches to evaluate high-resolution transcriptional
variation between psoriasis patients. The most distinguishing
abnormalities are identified in skin-resident T cells, and even our
limited test set identifies credible associations between specific
genes and lesion phenotype. Greater numbers of scRNA-seq
datasets are now becoming publicly accessible. Systematic
identification of such instances of inter-individual molecular
heterogeneity will make it possible to test clinically predictive
associations for both single genes and aggregate molecular
disease signatures.
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