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a b s t r a c t

Stein’s method is a powerful tool for proving central limit theorems along with explicit
error bounds in probability theory, where uniform and non-uniform Berry–Esseen bounds
spark general interest. Nonlinear statistics, typified by Hoeffding’s class of U-statistics,
L-statistics, random sums and functions of nonlinear statistics, are building blocks in
various statistical inference problems. However, because the standardized statistics often
involve unknown nuisance parameters, the Studentized analogues are most commonly
used in practice. This paper begins with a brief review of some standard techniques
in Stein’s method, and their applications in deriving Berry–Esseen bounds and Cramér
moderate deviations for nonlinear statistics, and then using the concentration inequality
approach, establishes Berry–Esseen bounds for Studentized nonlinear statistics in a general
framework. As direct applications, sharp Berry–Esseen bounds for Studentized U- and
L- statistics are obtained.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The classical approach to the central limit theoremand the accuracy of approximations for independent randomvariables
rely heavily on Fourier transformmethods. However, the use of Fourier methods is highly limited without an independence
structure, which makes it far less possible to capture the explicit bounds for the accuracy of approximations. In 1972,
Charles Stein introduced a novel technique, now known as Stein’s method, for normal approximation. The method works
for both independent and dependent random variables. The method also provides bounds of approximation accuracy.
Extensive applications of Stein’s method to obtain uniform and non-uniform Berry–Esseen-type bounds for independent
and dependent random variables can be found in, for example, Diaconis (1977), Baldi et al. (1989), Barbour (1990), Dembo
and Rinott (1996), Goldstein and Reinert (1997), Chen and Shao (2001, 2004, 2007), Chatterjee (2008), Nourdin and Peccati
(2009) and Chen and Fang (2011). In addition to the traditional study of Berry–Esseen bounds, new developments to Stein’s
method have triggered a series of research on Cramér-type moderate deviations, which address the relative error of two
tail probabilities. See, for example, Raič (2007), Chen et al. (2013) and Shao and Zhou (in press), among others. Various
extensions of Stein’s idea have been applied to many other probability approximations, most notably to Poisson, Poisson
process, compound Poisson, binomial approximations and more recently to multivariate, combinatorial and discretized
normal approximations. Stein’s method has also found diverse applications in a wide range of fields, see for example,
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Arratia et al. (1990), Barbour et al. (1992) and Chen (1993). Expositions of Stein’s method and its applications in normal
and other distributional approximations can be found in Diaconis and Holmes (2004), Barbour and Chen (2005). We also
refer to Chen et al. (2011) a thorough coverage of the method’s fundamentals and recent developments in both theory and
applications.

The paper is organized as follows. In the next section, we give a brief review on recent developments on Stein’s method.
In Section 3, we present the main results in this paper, the Berry–Esseen bounds and Cramér type moderate deviations
for Studentized nonlinear statistics. Applications to Studentized U-statistics and L-statistics are discussed in Section 4. The
proofs of the main results are in Section 5, while other technical proofs are postponed to Appendix.

Notation. For the convenience, we summarize here some of the standard notations used throughout this paper. For any
real-valued random variable X , let ∥X∥p = (E|X |

p)1/p for p ≥ 1. For any real number a and b, set a ∨ b = max(a, b) and
a ∧ b = min(a, b). For any event E, denote by I(E) the corresponding indicator function. Letters C , c will denote absolute
constants whose values may change from line to line.

2. A brief survey on Stein’s method

In this section, we briefly revisit Stein’s method and summarize several latest results in this area. Due to the limit of
space, we only focus on some of the fundamental techniques that are required for proving the results in this paper. We refer
to Ross (2011) and Chatterjee (in press), respectively, for an elaborate and an advanced survey of Stein’s method from its
origin to recent developments.

2.1. Stein’s equation

Let Z be a standard normal N(0, 1) random variable and let Cbd be the class of bounded, continuous and piecewise
differentiable functions f : R → R satisfyingE|f ′(Z)| < ∞. Stein’smethod for normal approximation rests on the following
characterization.

Lemma 2.1. Let W be a real-valued random variable. Then W follows a standard normal distribution if and only if

Ef ′(W ) = E{Wf (W )}, (2.1)

for all f ∈ Cbd.

The proof of necessity is essentially a direct consequence of integration by parts. For the sufficiency, let f (w) := fx(w) be
the solution to the equation

f ′(w)− wf (w) = I(w ≤ x)− Φ(x), (2.2)

where x is a fixed number andΦ(x) is the standard normal distribution function. Indeed, Stein (1972) showed that a bounded
solution always exists and can be written as

fx(w) =

√
2πew

2/2Φ(w){1 − Φ(x)} ifw ≤ x,
√
2πew

2/2Φ(x){1 − Φ(w)} ifw ≥ x.
(2.3)

Clearly, fx ∈ Cbd and has the following properties (Chen et al., 2011): for any realw, u and v,

0 < fx(w) ≤ min
√

2π/4, 1/|x|

, (2.4)

and

|f ′

x (w)| ≤ 1, |f ′

x (w)− f ′

x (v)| ≤ 1. (2.5)

In fact, Eq. (2.2) is a particular case of the more general Stein equation

f ′(w)− wf (w) = h(w)− Eh(Z), (2.6)

where h is a given real-valued measurable function with E|h(Z)| < ∞. Similar to (2.3), the solution f = fh is given by

fh(w) = ew
2/2

 w

−∞

{h(x)− Eh(Z)}e−x2/2 dx

= −ew
2/2


∞

w

{h(x)− Eh(Z)}e−x2/2 dx.

If h is bounded, then

∥fh∥ ≤

π/2 ∥h − Eh(Z)∥ ≤ 2∥h∥, (2.7)
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and

∥f ′

h∥ ≤ 2∥h − Eh(Z)∥ ≤ 4∥h∥, (2.8)

where ∥ · ∥ denotes the sup-norm. If h is absolutely continuous, then

∥fh∥ ≤ 2∥h′
∥, ∥f ′

h∥ ≤ ∥h′
∥, ∥f ′′

h ∥ ≤ 2∥h′
∥. (2.9)

2.2. Normal approximation for smooth functions and Berry–Esseen bounds

Let T := Tn be the random variable of interest. Inmany applications, it is useful to have a good estimate onEh(T )−Eh(Z).
In view of (2.6), this is actually equivalent to estimate Ef ′

h(T ) − ETfh(T ), which in some cases proves to be much easier to
deal with. When T is a standardized sum of independent or locally dependent random variables, Stein’s method has been
successfully applied to prove both uniform and non-uniform Berry–Esseen bounds (Chen and Shao, 2001, 2004). A key idea
of Stein’s method is to rewrite E{Tf (T )} as close as possible to Ef ′(T ). Following Chen et al. (2011), we say that T satisfies a
general framework of Stein’s identity if there exist some random function K̂(u) and a ‘‘negligible’’ random variable R, such
that

E{Tf (T )} = E


∞

−∞

f ′(T + u)K̂(u) du + E{Rf (T )} (2.10)

for all absolutely continuous functions f whenever all the above expectations exist. The following theorem provides the
normal approximation for smooth functions.

Theorem 2.1. Let h be absolutely continuous with ∥h′
∥ < ∞ andF be any σ -algebra containing σ(T ). Then, as long as (2.10) is

satisfied,

|Eh(T )− Eh(Z)| ≤ ∥h′
∥(E|1 − K̂1| + 2EK̂2 + 2E|R|), (2.11)

where

K̂1 = E


∞

−∞

K̂(u) du
F 

and K̂2 =


∞

−∞

|uK̂(u)| du.

Chen et al. (2011) provided four different approaches to construct K̂ in (2.10). In particular, for the exchangeable pairs
approach (Stein, 1986), one constructs T ′ so that (T , T ′) is exchangeable. Suppose that there exist a constant α ∈ (0, 1] and
a random variable R, such that

E(T − T ′
| T ) = α(T − R). (2.12)

Then for all f ,

E[(T − T ′){f (T )+ f (T ′)}] = 0,

provided that the expectation exists. It follows that

E{Tf (T )} = (2α)−1E[(T − T ′){f (T ′)− f (T )}] + E{Rf (T )}

= E


∞

−∞

f ′(T + u)K̂(u) du + E{Rf (T )} (2.13)

for all absolutely continuous functions f whenever all expectations exist, where K̂(u) = (2α)−1∆{I(−∆ < u < 0)− I(0 ≤

u < −∆)} and∆ = T − T ′. Therefore, with

K̂1 = (2α)−1E(∆2
|F ) and K̂2 = (4α)−1

|∆|
3. (2.14)

Theorem 2.1 leads to

Theorem 2.2. Let h be absolutely continuous with ∥h′
∥ < ∞ and F any σ -algebra containing σ(T ), and let (T , T ′) be an

exchangeable pair satisfying (2.12). Then

|Eh(T )− Eh(Z)| ≤ ∥h′
∥ × {E|1 − K̂1| + (2α)−1E|∆|

3
+ 2E|R|}. (2.15)

From the L1 bound one can derive a Berry–Esseen bound, as highlighted below:

sup
x∈R

|P(T ≤ z)− Φ(z)| ≤ 2


sup
∥h′∥≤1

|Eh(T )− Eh(Z)|
1/2

. (2.16)
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Unfortunately, the upper bound in (2.16) is usually not sharp.When K̂(u) in (2.10) has a bounded support, Chen et al. (2011)
established the following Berry–Esseen bound under the framework of (2.10).

Theorem 2.3. Let T be any random variable and let fx be the solution of the Stein equation (2.2) for x ∈ R. Suppose that there
exist random variables R1 and K̂(u) ≥ 0, u ∈ R, and constants δ and δ1 independent of x, such that |ER1| ≤ δ1 and

E{Tfx(T )} = E


|u|≤δ
f ′

x (T + u)K̂(u) du + ER1. (2.17)

Then

sup
x∈R

|P(T ≤ x)− Φ(x)| ≤ δ(1.1 + E|T K̂1|)+ 2.7E|1 − K̂1| + δ1, (2.18)

where K̂1 = E{

|u|≤δ0

K̂(u) du|T }. In particular, if T , T ′ are zero mean, unit variance exchangeable random variables satisfy-
ing (2.12) for some α ∈ (0, 1] and some random variable R, and if |∆| ≤ δ for some constant δ, then

sup
x∈R

|P(T ≤ x)− Φ(x)| ≤ δ(1.1 + E|T K̂1|)+ 2.7E|1 − K̂1| + E|R|, (2.19)

where K̂1 = (2α)−1E

∆2

|T ) and∆ = T − T ′.

It is also noteworthy that Stein’s exchangeable pairs method has been further developed to solve problems in measure
concentration, in particular for deriving concentration inequalities with explicit constants for functions of dependent
random variables. We refer to Chatterjee (2005, 2007) for this line of research. More recently, Mackey et al. (2014) extend
Chatterjee’s argument to the matrix setting and establish exponential matrix concentration inequalities.

2.3. Randomized concentration inequalities

The concentration inequality approach is a powerful technique for normal approximation by Stein’s method. Chen and
Shao (2001, 2004, 2007) obtain optimal uniform and non-uniform Berry–Essen bounds for independent random variables,
dependent random variables under local dependence and a class of nonlinear statistics by developing uniform and non-
uniform concentration inequalities. More recently, Shao (2010) developed the following exponential-type concentration
inequality, making it possible to obtain Berry–Esseen bounds for Studentized statistics, including the self-normalized sums
as a prototypical example (see Section 2).

Let ξ1, . . . , ξn be independent random variables with zero means and finite second moments. Let W =
n

i=1 ξi, and
∆1,∆2 be measurable functions of {ξi}ni=1.

Theorem 2.4 (Shao, 2010). Assume that there exist c1 > c2 > 0, δ > 0 such that

n
i=1

Eξ 2i ≤ c1 and
n

i=1

E{|ξi|min(δ, |ξi|/2)} ≥ c2. (2.20)

Then, for any λ ≥ 0, the following inequality

E{eλW I(∆1 ≤ W ≤ ∆2)} ≤ (Ee2λW )1/2 exp{−c22/(16c1δ
2)}

+ 2c−1
2 eλδ


E{eλW |Wn|(|∆2 −∆1| + 2δ)}

+ 2
n

i=1

E{eλW
(i)

|ξi|(|∆1 −∆
(i)
1 | + |∆2 −∆

(i)
2 |)}


(2.21)

holds for all measurable functions∆(i)1 ,∆
(i)
2 as long as ξi and (W (i),∆

(i)
1 ,∆

(i)
2 ) are independent, where W (i)

= W − ξi.

The proof relies on the particular construction of an exponential-type testing function that is different from those in Chen
and Shao (2001, 2004, 2007). We refer to Shao (2010) for full details.

All the previous results are essentially about estimating the absolute distributional error; that is, |P(T ≤ x) − Φ(x)|.
In some applications, it is more important to measure the relative error of P(T ≥ x) to 1 − Φ(x), through the Chernoff
large deviation or the Cramér-type moderate deviation. This line of work usually requires different techniques, including
exponential inequalities and themethod of conjugated distributions, also known as themeasure transform approach which
can be traced back to Harald Cramér in 1938. For this purpose, in Shao and Zhou (in press), a new randomized concentration
inequality is developed to establish Cramér-type moderate deviations for general Studentized nonlinear statistics.
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Using the previous notation, we assume that

Eξi = 0 for i = 1, 2, . . . , n, and
n

i=1

Eξ 2i = 1. (2.22)

Moreover, write

β2 =

n
i=1

E{ξ 2i I(|ξi| > 1)}, β3 =

n
i=1

E{|ξi|
3I(|ξi| ≤ 1)}. (2.23)

Theorem 2.5 (Shao and Zhou, in press). For each 1 ≤ i ≤ n, let ∆(i)1 and ∆(i)2 be random variables such that ξi and (∆
(i)
1 ,

∆
(i)
2 ,W − ξi) are independent. Then

P(∆1 ≤ W ≤ ∆2) ≤ 17(β2 + β3)+ 5E|∆2 −∆1| + 2
n

i=1

[E|ξi{∆1 −∆
(i)
1 }| + E|ξi{∆2 −∆

(i)
2 }|]. (2.24)

We remark that a similar result was obtained by Chen and Shao (2007) with E|W (∆2 − ∆1)| instead of E|∆2 − ∆1| in
(2.24). However, using the term E|W (∆2 −∆1)| does not yield the sharp boundwhen Theorem 3.2 is applied to Studentized
U-statistics. This is exactly why we need to develop the concentration inequality (2.24).

2.4. Stein’s method for standardized statistics

Nonlinear statistics are building blocks in various statistical inference problems. It is known that many of them can
be written as a linear statistic plus a negligible term. Typical examples include U-statistics, multi-sample U-statistics,
L-statistics, random sums and functions of nonlinear statistics. More precisely, let X1, X2, . . . , Xn be independent random
variables and let T := Tn(X1, . . . , Xn) be a general sampling statistic of interest that can be decomposed as a standardized
partial sum plus a remainder; that is,

T = W + D, W =

n
i=1

gi(Xi), (2.25)

where D := Dn(X1, . . . , Xn) = T − W and gi := gn,i are Borel measurable functions. Assume that

Egi(Xi) = 0 for i = 1, . . . , n and
n

i=1

Eg2
i (Xi) = 1. (2.26)

It is clear that if D
P

→ 0, then the central limit theorem holds:

sup
x∈R

|P(T ≤ x)− Φ(x)| → 0

provided the Lindeberg condition is satisfied, i.e. for any ε > 0,
n

i=1 E{ξ 2i I(|ξi| > ε)} → 0, where ξi = gi(Xi).
The rate of convergence to normality has been intensively studied in various situations. The classical Berry–Esseen (B–E)

bound for sample means, i.e. D ≡ 0, is well-known. Bounds for other commonly used statistics are also available in the
literature. For example, for U-statistics, B–E bounds were established under different sets of assumptions and in increasing
generality by Bickel (1974), Chan and Wierman (1977), Callaert and Janssen (1978), Helmers and van Zwet (1982) and
Ghosh (1985). For L-statistics, we refer to Bjerve (1977), Helmers (1977) and Helmers et al. (1990), among others. Results for
R-statistics were provided by Hajek (1968).

It should be noted that each of the aforementioned references on B–E bounds for U-, L- and R-statistics focused on the
individual structure of each statistic itself. A first unifying approachwas proposed by Van Zwet (1984) for general symmetric
statistics. Friedrich (1989) removed the symmetry assumption and relaxed the moment conditions. In the following, we
briefly review the contributions of Chen and Shao (2007) in which both the uniform and non-uniform B–E bounds are
established for general nonlinear statistics in the form of (2.25). A direct and unifying treatment is provided and the bounds
are the best possible for many known statistics.

For i = 1, . . . , n, we put ξi = gi(Xi) and assume that (2.26) is satisfied throughout the following. Let β2, β3 be as in (2.23),
and let δ > 0 satisfy

n
i=1

E{|ξi|min(δ, |ξi|)} ≥ 1/2. (2.27)

The following uniform and non-uniform Berry–Esseen theorems are Theorems 2.1 and 2.2 in Chen and Shao (2007),
respectively.
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Theorem 2.6. For i = 1, . . . , n, let D(i) be a random variable such that Xi and (D(i),W (i)
= W − ξi) are independent. Then

sup
x∈R

|P(T ≤ x)− P(W ≤ x)| ≤ 4δ + E|WD| +

n
i=1

E|ξi{D − D(i)}| (2.28)

for δ satisfying (2.27). In particular, we have

sup
x∈R

|P(T ≤ x)− Φ(x)| ≤ 6.1(β2 + β3)+ E|WD| +

n
i=1

E|ξi{D − D(i)}|. (2.29)

Theorem 2.7. Under the assumptions of Theorem 2.6 we have, for every x ∈ R,

|P(T ≤ x)− P(W ≤ x)| ≤ γx + e−|x|/3τ , (2.30)

where

γx = P{|D| > (1 + |x|)/3} +

n
i=1

P{|ξi| > (1 + |x|)/3} +

n
i=1

P{|W (i)
| > (|x| − 2)/3}P(|ξi| > 1),

τ = 22δ + 8.5∥D∥2 + 3.6
n

i=1

∥ξi∥2 × ∥D − D(i)∥2.

In particular, if ∥ξi∥p < ∞ for some 2 < p ≤ 3, then

|P(T ≤ x)− Φ(x)| ≤ P{|D| > (1 + |x|)/3} + C(1 + |x|)−p

∥D∥2 +

n
i=1

∥ξi∥2 × ∥D − D(i)∥2 +

n
i=1

∥ξi∥p


. (2.31)

Remark 2.1. For readers’ convenience, we list several choices of δ such that condition (2.27) is satisfied:
• If β2 + β3 ≤

1
2 , then (2.27) is satisfied with δ =

1
2 (β2 + β3);

• Let δ > 0 be such that
n

i=1 E{ξ 2i I(|ξi| > δ)} ≤
1
2 , then (2.27) holds;

• Assume E|ξi|
p < ∞ for p > 2. Then (2.27) is satisfied with

δ =


2(p − 2)p−2

(p − 1)p−1

n
i=1

E|ξi|
p
1/(p−2)

.

Remark 2.2. The choices of D(i) and gi are rather flexible. The most common approach in the literature is to choose
D(i) = Dn(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) and gi(x) = E(T |Xi = x), which is also the main choice in this paper.

The main idea of the proof for bounds (2.28) and (2.30) comes from the simple observation that, for every x ∈ R,
−P(x − |D| ≤ W ≤ x) ≤ P(T ≤ x)− P(W ≤ x) ≤ P(x ≤ W ≤ x + |D|).

This motivates us to develop uniform and non-uniform randomized concentration inequalities via Stein’s method.
Theorems 2.6 and 2.7 provide a very general framework.We refer to Chen and Shao (2007, Sect. 3) for further applications

toU-, multi-sampleU-, L-statistics, random sums and functions of nonlinear statistics. Amore specific statistical implication
arises in the study of certain properties of the Pitman asymptotic relative efficiency (ARE) between Pearson’s, Kendall’s
and Spearman’s correlation coefficients. It is well known that the standard expression for the Pitman ARE is applicable
when the distribution of the corresponding test statistics is close to normality uniformly over a neighborhood of the null
set of distributions (Noether, 1955). Such uniform closeness can usually be provided by B–E bounds. In fact, Kendall’s and
Spearman’s correlation coefficients are instances of U-statistics and the Pearson statistic can be regarded as a function of
sums of independent random vectors. We refer to Pinelis and Molzon (2009) for further extensions of Theorems 2.6 and 2.7
and B–E bounds for smooth nonlinear functions of sums of independent random vectors.

3. Stein’s method for Studentized statistics

Since the standardized statistics often involve certain unknownnuisance parameters, the Studentized analogues aremost
commonly used in practice. We are thus motivated to consider the following Studentized (self-normalized) counterpart
of T ,

TSN =
W + D1n

(1 + D2n)1/2
. (3.1)

Here, both D1n and D2n are measurable functions of {X1, . . . , Xn}. Examples satisfying (3.1) include Student’s t-statistic,
Studentized U- and L-statistics and Studentized functions of the sample mean. See, for example, Wang et al. (2000).
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Without loss of generality, we assume that the Studentized statistic TSN of interest converges in distribution to the
standard normal. Asmentioned in the beginning, there are twoways tomeasure the error of the normal approximation. One
is to study the absolute error in the central limit theorem via the Berry–Esseen bounds or Edgeworth expansions (Petrov,
1975). The other way is to evaluate the relative error of the tail probability of TSN against the tail probability of its limiting
distribution, i.e. 1 −Φ(·). One of the typical results in this direction is the Cramér-type moderate deviation. In this section,
we study these two types of problems in general schemes. Applications to particular statistics are provided in Section 4.

3.1. Berry–Esseen bounds

Motivated by practical considerations, in this section we study the B–E bounds of optimal order on the closeness of
normality for a class of Studentized statistics, say, TSN given in (3.1), under minimal or near minimal conditions. The B–E
bounds for Studentized statistics, including the Studentized U- and L-statistics, have been studied by various authors. We
refer to Wang et al. (2000) for a general treatment.

First, let {Xi, ξi = gi(Xi)}
n
i=1, TSN , W , D1n and D2n be defined as above, and write

Wb = Wn,b =

n
i=1

ξb,i, ξb,i = ξiI(|ξi| ≤ 1), i = 1, . . . , n. (3.2)

For j = 1, 2 and i = 1, . . . , n, put W (i)
= W − ξi and let D(i)jn be a random variable such that Xi and D(i)jn are independent.

Moreover, for j = 1, 2, define truncated versions of Djn and D(i)jn as

D̄jn = Djn(ξb,1, . . . , ξb,n)I(|Djn| ≤ 1/2), D̄(i)jn = D(i)jn (ξb,1, . . . , ξb,n)I{|D
(i)
jn | ≤ 1/2}. (3.3)

We now present the following main result.

Theorem 3.1. Let 2 ≤ p ≤ 3 and 1/p + 1/q = 1. There exists a positive absolute constant C such that

sup
x∈R

|P(TSN ≤ x)− Φ(x)| ≤ C

β2 + β3 + ∥D̄1n∥2 + E{D̄2

2n(1 + eWb)} + P(|D2n| > 1/2)

+

2
j=1

n
i=1

∥ξi∥p × ∥D̄jn − D̄(i)jn ∥q + sup
x∈R

|xE{D̄2nfx(Wb)}|


, (3.4)

where fx denotes the unique solution of Stein equation (2.2) and β2, β3 are defined as in (2.23).

The proof of Theorem 3.1 is postponed to Section 5.

3.2. Cramér-type moderate deviations

The Cramér-typemoderate deviation theory addresses the problem of estimating the relative error of the tail probability
of T against that of the limiting distribution; that is, P(T ≥ x)/P(Z ≥ x), x ≥ 0. The most interesting problem is to find the
largest possible an (an → ∞) so that

P(T ≥ x)
P(Z ≥ x)

= 1 + on(1)

holds uniformly for 0 ≤ x ≤ an. The problem is important for statistical hypothesis testing. Assume that the p-value of the
test is P(T ≥ x). Because the exact p-value is usually unknown, it is a common practice to use the limiting tail probability
P(Z ≥ x) to estimate the p-value. The Cramér-type moderate deviation quantifies the accuracy of the estimated p-value.
The moderate deviation results have been successfully applied to multiple hypothesis tests based on t-statistics in Fan et al.
(2007), Clarke and Hall (2009) and Delaigle et al. (2011). Regarding feature selection in classification and square-root Lasso
for recovery of sparse signals, see Fan and Lv (2010) and Belloni et al. (2011) and the references therein. The moderate
deviation result for Hotelling’s T 2 statistic (Liu and Shao, 2013) is a key ingredient in controlling the false discovery rate for
multiple tests on the equality of mean vectors. In summary, moderate deviation probabilities have played an important role
in high dimensional data analysis.

The moderate deviation for the Student t-statistic is now well-understood. Let X1, X2, . . . be i.i.d. non-degenerate real-
valued randomvariableswithmeanµ and variance σ 2. Let X̄n =

1
n

n
i=1 Xi and s2n =

1
n−1

n
i=1(Xi−X̄n)

2 be the samplemean

and the sample variance, respectively. Student’s t-statistic is defined by Tn =

√
n

sn
(X̄n−µ). Assumewithout loss of generality

that µ = 0. In contrast to the moderate deviation for the z-statistic
√
nX̄n/σ , which requires a finite moment generating

function of
√

|X1|, Shao (1999) established a Cramér-type moderate deviation theorem under a finite third moment. More
precisely, he showed that if E|X1|

3 < ∞, then

P(Tn ≥ x)
1 − Φ(x)

= 1 + o(1) holds uniformly for 0 ≤ x ≤ o(n1/6). (3.5)
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Note that t-statistic is closely related to the self-normalized sum Sn/Vn via the following identity

Tn =
Sn
Vn


n − 1

n − (Sn/Vn)2

1/2

, (3.6)

where Sn =
n

i=1 Xi, V 2
n =

n
i=1 X

2
i . Result (3.5) is equivalent to the moderate deviation for the self-normalized sum

P(Sn ≥ xVn)

1 − Φ(x)
= 1 + o(1) holds uniformly for 0 ≤ x ≤ o(n1/6). (3.7)

Result (3.7) has been further extended to independent (not necessarily identically distributed) randomvariables by Jing et al.
(2003) under a Lindeberg type condition. In particular, for independent random variables with EXi = 0 and E|Xi|

3 < ∞,
the general result in Jing et al. (2003) gives

P(Sn/Vn ≥ x)
1 − Φ(x)

= 1 + O(1)(1 + x)3

n
i=1

E|Xi|
3


n

i=1
EX2

i

3/2 (3.8)

for 0 ≤ x ≤ (
n

i=1 EX2
i )

1/2/(
n

i=1 E|Xi|
3)1/3.

The past two decades have also witnessed significant progress on the development of self-normalized limit theory. For
a systematic presentation of general self-normalized limit theory and its statistical application, we refer to de la Peña et al.
(2009).

In this subsection, we present the main results of Shao and Zhou (in press), which extend (3.8) to a general class of
Studentized nonlinear statistics in the form

Tn =
Wn + D1n

Qn(1 + D2n)1/2
, (3.9)

where as before, {ξi := gi(Xi)}
n
i=1 satisfies (2.26),

Wn =

n
i=1

ξi, Q 2
n =

n
i=1

ξ 2i

and Djn = Djn(X1, . . . , Xn), j = 1, 2 are measurable functions of {Xi}. Note that the expression ofTn is slightly different from
that of TSN given in (3.1). When D1n = D2n = 0,Tn reduces to the self-normalized sumWn/Qn.

It is noteworthy that the proof in Jing et al. (2003) is lengthy and complicated and their method can hardly be adopted
for general Studentized ratios. Enlightened by the work of Chen and Shao (2007), Shao and Zhou (in press) developed a new
randomized concentration inequality (Theorem 2.5) to establish a general Cramér-type moderate deviation theorem. The
proof was more transparent and direct.

For 1 ≤ i ≤ n and x ≥ 1, let

δi,x = x2Eξ 2i I{x|ξi| > 1} + x3E|ξi|
3I{x|ξi| ≤ 1} (3.10)

and

Ln,x =

n
i=1

δi,x, In,x = E exp(xWn − x2Q 2
n /2) =

n
i=1

E exp(xξi − x2ξ 2i /2). (3.11)

Let D(i)1n and D(i)2n, for each 1 ≤ i ≤ n, be arbitrary measurable functions of {Xj}1≤j≤n, j≠i. For x > 0, set

Rn,x = I−1
n,x ×

E

(x|D1n| + x2|D2n|)e

n
j=1
(xξj−x2ξ2j /2)


+

n
i=1

E

(x|ξi| ∧ 1){|D1n − D(i)1n| + x|D2n − D(i)2n|}e

n
j≠i
(xξj−x2ξ2j /2)

 . (3.12)

The following results are Theorems 2.1 and 2.2 in Shao and Zhou (in press).
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Theorem 3.2. Let Tn be as in (3.9). Then there exists positive absolute constants C1–C4 and c1 such that

exp{−C2Ln,x}{1 − Φ(x)}(1 − C1Rn,x) ≤ P(Tn ≥ x) (3.13)

and

P(Tn ≥ x) ≤ {1 − Φ(x)}(1 + C3Rn,x) exp{C4Ln,x} + P(x|D1n| > Qn/4)+ P(x2|D2n| > 1/4) (3.14)

for all x ≥ 1 satisfying

max
1≤i≤n

δi,x ≤ 1 (3.15)

and

Ln,x ≤ c1x2. (3.16)

Theorem 3.2 provides the upper and lower bounds of relative errors for x ≥ 1. To cover the case of 0 ≤ x ≤ 1, we present
a rough estimate of the absolute error in the next theorem.

Theorem 3.3. There exists a positive absolute constant C such that

|P(Tn ≤ x)− Φ(x)| ≤ C(Ln,1+x +Rn,x) (3.17)

for x ≥ 0, where

Rn,x = E(|D1n| + x|D2n|)+

n
i=1

E[|ξi{D1n − D(i)1n}| + x|ξi{D2n − D(i)2n}|]. (3.18)

4. Applications

In this section, we apply the main results presented in Section 3.1 to several well-known examples; namely, the
Studentized U- and L-statistics. The B–E bounds for these statistics have been studied byWang et al. (2000), also in a general
scheme, particularly for Studentized U-statistics where the optimal B–E bound is of order O(n−1/2) when E|h(X1, X2)|

3 <
∞. Using the explicit bound given in Theorem 3.1, we extend this result to more general heavy-tailed cases; that is,
E|h(X1, X2)|

2+δ < ∞ for some 0 < δ ≤ 1.

4.1. U-statistics

Let X1, X2, . . . , Xn be a sequence of independent identically distributed (i.i.d.) random variables and let h(x, y) be a real-
valued Borel measurable function, symmetric in its arguments with θ = Eh(X1, X2). The U-statistic of degree 2 for the
estimation of θ with kernel h(x, y) is

Un =
2

n(n − 1)


1≤i<j≤n

h(Xi, Xj).

The U-statistic is a basic statistic and its asymptotic properties have been extensively studied in the literature. Write
g(x) = Eh(x, X1) and assume σ 2

g = Var{g(X1)} > 0, then the standardized (non-degenerate) U-statistic is given by

Zn =

√
n

2σg
(Un − θ). (4.1)

A systematic presentation of U-statistics theory was given by Korolyuk and Borovskikh (1994). Studies on the uniform B–E
bounds for U-statistics arose successively in Filippova (1962), Grams and Serfling (1973), Bickel (1974), Chan andWierman
(1977), Callaert and Janssen (1978), Serfling (1980), Van Zwet (1984) and Friedrich (1989). In particular, Friedrich (1989)
obtained the order O(n−1/2) when E|h(X1, X2)|

5/3 < ∞. We refer the readers to Bentkus et al. (1994) and Jing and Zhou
(2005) for discussions on the necessity of thismoment condition. For the non-uniform B–E bound, see Zhao and Chen (1983)
and Wang (2002).

Applying Theorems 2.6 and 2.7 to the U-statistics with the kernel of degree 2 yields the following results. We refer to
Theorem 3.1 of Chen and Shao (2007) for general results on U-statistics with degree 2 ≤ m < 1

2n.

Theorem 4.1. Assume that θ = Eh(X1, X2) = 0, σ = ∥h(X1, X2)∥2 < ∞ and σg = ∥g(X1)∥2 > 0. Then,

sup
x∈R

P(Zn ≤ x)− P


1
σg

√
n

n
i=1

g(Xi) ≤ x
 ≤

(1 +
√
2)σ

σg
√
2(n − 1)

+
c0
√
n

(4.2)
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for Zn as in (4.1), where c0 is a constant such that Eg2(X1)I{|g(X1)| > c0σg} ≤
1
2σ

2
g . If σp := ∥g(X1)∥p < ∞ for some

2 < p ≤ 3, then

sup
x∈R

|P(Zn ≤ x)− Φ(x)| ≤
(1 +

√
2)σ

σg
√
2(n − 1)

+
6.1σ p

p

σ
p
g np/2−1

, (4.3)

and for every x ∈ R,

|P(Zn ≤ x)− Φ(x)| ≤
18σ 2

σ
p
g (1 + |x|)2(n − 1)

+
13.5

√
2e−|x|/3σ

σg
√
n − 1

+
Cσ p

p

σ
p
g (1 + |x|)pnp/2−1

. (4.4)

Moreover, if ∥h(X1, X2)∥p < ∞ for some 2 < p ≤ 3, then for every x ∈ R,

|P(Zn ≤ x)− Φ(x)| ≤ C


∥h(X1, X2)∥
p
p

σ
p
g (1 + |x|)p

√
n

+
σ

p
p

σ
p
g (1 + |x|)pnp/2−1


. (4.5)

In the case where σ 2
g = Var{g(X1)} is unknown, we consider the Studentized U-statistic (Arvesen, 1969) defined as

Tn =

√
n

2rn
(Un − θ), (4.6)

where r2n is the Jackknife estimator of σ 2
g ,

r2n =
(n − 1)
(n − 2)2

n
i=1

(qi − Un)
2 with qi =

1
n − 1

n
j=1,j≠i

h(Xi, Xj).

In contrast to the standardized U-statistics, few optimal limit theorems are available for Studentized U-statistics in the
literature. A uniform B–E boundwas proved inWang et al. (2000) when E|h(X1, X2)|

3 < ∞. However, a finite thirdmoment
of h(X1, X2)may not be an optimal condition.

As a direct but non-trivial consequence of Theorem 3.1, we establish the following uniform bound for Studentized
U-statistic Tn.

Theorem 4.2. Assume that θ = Eh(X1, X2) = 0, ∥h(X1, X2)∥2 < ∞ and for some 2 < p ≤ 3, σp := ∥g(X1)∥p < ∞. Set
g(x) = Eh(x, X1) for x ∈ R and σg = ∥g(X1)∥2 > 0. Then there exists an absolute constant C > 0 such that, for all n ≥ 3,

sup
x∈R

|P(Tn ≤ x)− Φ(x)| ≤ C


∥h(X1, X2)∥2

σg
√
n

+
σ

p
p

σ
p
g np/2−1


. (4.7)

Remark 4.1. The uniform upper bound given in (4.7) is more general than the one provided in Wang et al. (2000). In
particular, when p = 3, the right-hand side of (4.7) is of order

n−1/2
{σ−1

g ∥h(X1, X2)∥2 + σ−3
g ∥g(X1)∥

3
3},

which is in line with (4.3) and is slightly different from that in Wang et al. (2000), i.e. n−1/2σ−3
g ∥h(X1, X2)∥

3
3.

Remark 4.2. It remains an open question whether the moment conditions in Theorem 4.2 can be further weakened to
∥g(X1)∥3 < ∞, ∥h(X1, X2)∥ 5

3
< ∞ and σ 2

g > 0, while our result requires ∥h(X1, X2)∥2 < ∞ and provides the explicit rate
of convergence.

4.2. L-statistics

Let X1, . . . , Xn be i.i.d. real random variables with distribution F . Denote by Fn the empirical distribution; that is,
Fn(x) = n−1 n

i=1 I(Xi ≤ x). Let J(t) be a Borel function on [0, 1]. An L-functional is defined as

T (G) =


∞

−∞

xJ{G(x)} dG(x), G ∈ F0,

where F0 contains all cumulative distribution functions on R for which T is well-defined. The statistic T (Fn) is called an
L-statistic (or L-estimator) of T (F). The variance of T (F) can be written as

σ 2
:= σ 2(J, F) =


∞

−∞


∞

−∞

J{F(s)}J{F(t)}F(s ∧ t){1 − F(s ∨ t)} ds dt.

Clearly, a natural estimate of σ 2 is given by σ̂ 2
:= σ 2(J, Fn).
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Uniform B–E bounds for the L-statistic with J satisfying some smoothness conditions were first studied by Helmers
(1977) and Helmers et al. (1990). Applying Theorems 2.6 and 2.7 yields the following uniform and non-uniform bounds
for standardized L-statistics. Put

g(x) =


∞

−∞

{I(x ≤ s)− F(s)}J{F(s)} ds.

The following result is Theorem 3.3 in Chen and Shao (2007).

Theorem 4.3. Let n ≥ 4. Assume that EX2
1 < ∞ and ∥g(X1)∥p < ∞ for some 2 < p ≤ 3. If the weight function J(t) is Lipschitz

of order 1 on [0, 1]; that is, there is a constant c0 such that |J(t)− J(s)| ≤ c0|t − s| for all 0 ≤ s, t ≤ 1. Then,

sup
x∈R

|P[
√
nσ−1

{T (Fn)− T (F)} ≤ x] − Φ(x)| ≤
(1 +

√
2)c0∥X1∥2

σ
√
n

+
6.1∥g(X1)∥

p
p

σ pnp/2−1
. (4.8)

Moreover, for every x ∈ R,

|P[
√
nσ−1

{T (Fn)− T (F)} ≤ x] − Φ(x)| ≤
9c20∥X1∥

2
2

σ 2(1 + |x|)2n
+

C
(1 + |x|)p


c0∥X1∥2

σ
√
n

+
∥g(X1)∥

p
p

σ pnp/2−1


. (4.9)

As for Studentized L-statistics, a B–E bound was given by Helmers (1982) under a stronger moment condition E|X1|
4.5 <

∞. This conditionwas finally relaxed toE|X1|
3 < ∞ byWang et al. (2000). Applying our Theorem 3.1 also leads to a uniform

bound for Studentized L-statistics whenever the third moment of |X1| is finite.

Theorem 4.4. Let n ≥ 4. Assume that E|X1|
3 < ∞ and σ 2 > 0. If the weight function J(t) satisfies that J (2)(t) is bounded on

t ∈ [0, 1], then there exists a positive constant C(J) such that

sup
x∈R

|P[
√
nσ̂−1

{T (Fn)− T (F)} ≤ x] − Φ(x)| ≤ C(J)
E|X1|

3

σ 3
√
n
. (4.10)

Here, the constant C(J) depends on J only through the quantities cj = max1≤t≤1 |J (j)(t)| for j = 0, 1, 2.

5. Proof of Theorem 3.1

We start with some preliminary observations. Note that D2n is close to 0, the key ingredient of the proof is first
transforming (1 + D2n)

1/2 to 1 +
1
2D2n plus a small term, in the spirit of Taylor’s expansion, and then applying the

concentration inequality (5.14).
Without loss of generality, we assume x ≥ 0. Otherwise we consider −TSN instead. Recall that

TSN =
Wn + D1n

(1 + D2n)1/2
.

Applying the elementary inequalities

1 + s/2 − s2/2 ≤ (1 + s)1/2 ≤ 1 + s/2, s ≥ −1

to s = D2n and set∆n,x = D1n −
1
2xD2n, we have

{TSN ≥ x} ⊆ {Wn +∆n,x ≥ x
 

x + x(D2n − D2
2n)/2 ≤ Wn + D1n ≤ x + xD2n/2


(5.1)

and

{TSN ≥ x} ⊇ {Wn +∆n,x ≥ x}. (5.2)

The remainder of the proof will be formulated into two parts by deriving upper bounds for

|P(Wn +∆n,x ≤ x)− Φ(x)| (5.3)

and

P0 := P{x + x(D2n − D2
2n)/2 ≤ Wn + D1n ≤ x + xD2n/2} (5.4)

separately, where the second part requires a randomized concentration inequality. In fact, using the standard truncation
argument, we only need to estimate (5.3) and (5.4) with Wn, D1n and D2n replaced with Wb, D̄1n and D̄2n and with
|D̄1n| ∨ |D̄2n| ≤

1
2 , |∆n,x| = |D̄1n −

1
2xD̄2n| ≤

1
2 +

1
4x. The difference is bounded by

β2 + P(|D1n| > 1/2)+ P(|D2n| > 1/2).
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5.1. First part of the proof

In this subsection we derive an upper bound on P(Wb +∆n,x ≤ x)−Φ(x) for x ≥ 0 fixed. For brevity of notation, we use
f := fx to denote the solution of (2.2) when there is no ambiguity. For each i, setW (i)

b = Wb − ξb,i and define

kb,i(t) = E[ξb,i{I(0 ≤ t ≤ ξb,i)− I(ξb,i ≤ t ≤ 0)}]. (5.5)
It is straightforward to verify that kb,i(t) ≥ 0 for all t ∈ R and

∞

−∞

kb,i(t) dt = Eξ 2b,i,


∞

−∞

|t|kb,i(t) dt =
1
2

E|ξb,i|
3. (5.6)

By Stein’s equation (2.2) we can rewrite P(Wb +∆n,x ≤ x)− Φ(x) as
Ef ′(Wb +∆n,x)− E(Wb +∆n,x)f (Wb +∆n,x)

= Ef ′(Wb +∆n,x)− E{Wbf (Wb +∆n,x)}

− E[∆n,x{f (Wb +∆n,x)− f (Wb)}] − E{∆n,xf (Wb)}

=

 n
i=1

E
 1

−1
{f ′(Wb +∆n,x)− f ′(W (i)

b +∆(i)n,x + t)}kb,i(t)dt


(5.7)

+


β2Ef ′(Wb +∆n,x)−

n
i=1

Eξb,if (W
(i)
b +∆(i)n,x)− E∆n,xf (Wb)


+


−

n
i=1

Eξb,i{f (Wb +∆n,x)− f (Wb +∆(i)n,x)}


+


−E∆n,x ×

 ∆n,x

0
f ′(Wb + t)dt


:= R1 + R2 + R3 + R4. (5.8)

The estimates of R1, R2, R3 and R4 are presented in the following proposition. The proof is postponed to Section 5.3.

Proposition 5.1. Let 2 ≤ p ≤ 3 and 1/p + 1/q = 1. There exists a universal constant C > 0 such that

R1 ≤ C

β2 + β3 +

2
j=1

n
i=1

∥ξb,i∥p × ∥D̄jn − D̄(i)jn ∥q


, (5.9)

R2 ≤ 2β2 + ∥D̄1n∥2 + x|E{D̄2nfx(Wb)}|, (5.10)

R3 ≤ C
2

j=1

n
i=1

∥ξb,i∥p × ∥D̄jn − D̄(i)jn ∥q (5.11)

and

R4 ≤ C

∥D̄1n∥

2
2 + ∥D̄2n∥

2
2 + E(D̄2

2ne
Wb)


. (5.12)

Putting (5.9)–(5.12) together, we conclude that

|P(Wn +∆n,x ≤ x)− Φ(x)| ≤ C

β2 + β3 + ∥D̄1n∥2 + ∥D̄2n∥

2
2 + E(D̄2

2ne
Wb)

+

2
j=1

n
i=1

∥ξb,i∥p × ∥D̄jn − D̄(i)jn ∥q + |xE{D̄2nfx(Wb)}|


. (5.13)

5.2. Second part of the proof

In this subsection, we estimate the probability P0 given in (5.4). The main technical tool is a randomized concentration
inequality (Theorem 2.4) developed by Shao (2010). To this end, put ∆n,x = ∆n,x +

1
2xD̄

2
2n so the target probability (5.4)

reads
P0 = P(x − ∆n,x ≤ Wb ≤ x −∆n,x).

Set δ :=
1
2 (β2 + β3). We will give the upper bound of P0 by using the following lemma, which is Theorem 2.4 with a slight

modification.
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Lemma 5.1. If β2 + β3 ≤
1
2 , then

E{eWb/2I(x − ∆n,x ≤ Wb ≤ x −∆n,x)}

≤ (EeWb)1/2e−1/(32δ2)
+ 4eδ/2


E{eWb/2|Wb|(|∆n,x −∆n,x| + 2δ)}

+ 2
n

i=1

E[eW
(i)
b /2

|ξb,i|{|∆n,x − ∆(i)n,x| + |∆n,x −∆(i)n,x|}]


. (5.14)

Because |∆n,x| ≤
1
2 (1 + x), the left-hand side of (5.14) is bounded from below by

e(x−1)/4P(x − ∆n,x ≤ Wb ≤ x −∆n,x).

For the right-hand side of (5.14), by Lemma 5.4 and the assumption that δ ≤
1
4 , we have

EeWb ≤ exp(e − 2) and e−1/(32δ2)
≤ 4e−1/2δ ≤ e−1/2.

Moreover, by definition,

E{eWb/2|Wb(∆n,x −∆n,x)|} ≤
x
2

E(D̄2
2n|Wb|eWb/2) ≤ xED̄2

2n(1 + eWb) (5.15)

and

E[eW
(i)
b /2

|ξb,i|{|∆n,x − ∆(i)n,x| + |∆n,x −∆(i)n,x|}]

≤ CE[eW
(i)
b /2

|ξb,i|{|D̄1n − D̄(i)1n| + x|D̄2n − D̄(i)2n|}]

≤ C∥eW
(i)
b /2ξb,i∥p{∥D̄1n − D̄(i)1n∥q + x∥D̄2n − D̄(i)2n∥q}

≤ C∥ξb,i∥p{∥D̄1n − D̄(i)1n∥q + x∥D̄2n − D̄(i)2n∥q}.

Together with (5.15) and Lemma 5.1, this implies

P0 ≤ C

β2 + β3 + E{D̄2

2n(1 + eWb)} +

2
j=1

n
i=1

∥ξb,i∥p × ∥D̄jn − D̄(i)jn ∥q


. (5.16)

Combining (5.1), (5.2), (5.13) and (5.16) yields (3.4). �

5.3. Proof of Proposition 5.1

We begin by collecting a few useful technical lemmas. The first one follows directly from Theorem 2.4, which serves as
a key tool to bound |R1|. Recall thatWb =

n
i=1 ξiI(|ξi| ≤ 1).

Lemma 5.2. Let 1/p + 1/q = 1 and 2 ≤ p ≤ 3. Then for every a ∈ R,

P(D1n ≤ Wb ≤ D2n,D1n ≥ a) ≤ Ce−a/2

∥D2n − D1n∥2 + β2 + β3 +

2
j=1

n
i=1

∥ξb,i∥p × ∥Djn − D(i)jn ∥q


,

where D(i)1n and D(i)2n are arbitrary measurable functions of {ξj}j≠i.

To bound the remaining terms, we need the following properties of functions fx and f ′
x . The proof is based on direct

computations from the explicit formula of fx and thus is omitted.

Lemma 5.3. For arbitrary x ≥ 1, let fx be the solution of (2.2) whose explicit form is given in (2.3). Then we have

fx(w) ≤


2.1e−x, w ≤ x − 1,
1, w > x − 1, (5.17)

0 ≤ f ′

x (w) ≤

e1/2−x, w ≤ x − 1,
1, x − 1 < w ≤ x,
(1 + x2)−1, w > x.

(5.18)
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Moreover, let g(w) = {wfx(w)}′. Then g(w) ≥ 0 for allw ∈ R,

g(w) ≤


2{1 − Φ(x)}, w ≤ 0,
2(1 + w3)−1, w ≥ x,

and g(w) is increasing for 0 ≤ w < x with

g(x − 1) ≤ xe1/2−x and g(x−) ≤ x{2 − Φ(x)} + 2(1 + x3)−1
≤ 2(1 + x).

Lemma 5.4. For a > 0,

EeaWb ≤ exp(ea − 1 − a),

and for x > 1 and t ∈ R,

Efx(Wb + t) ≤ 2.1e−x
+ 5.6 exp(t − x), Ef ′

x (Wb + t) ≤ e1/2−x
+ 5.6 exp(t − x).

Proof of Proposition 5.1. ForR1, define functionsG(w) = wf (w) and g(w) = G′(w) ≥ 0 forw ∈ R, such that the integrand
in R1 can be written as

G(Wb +∆n,x)− G(W (i)
b +∆(i)n,x + t)+ I(Wb +∆n,x ≤ x)− I(W (i)

b +∆(i)n,x + t ≤ x)

=

 ξb,i+∆n,x

t+∆(i)n,x

g(W (i)
b + u) du + I(Wb +∆n,x ≤ x)− I(W (i)

b +∆(i)n,x + t ≤ x).

Accordingly, we have R1 = R11 + R12, where

R11 :=

n
i=1

 1

−1
E
 ξb,i+∆n,x

t+∆(i)n,x

g(W (i)
b + u) du


kb,i(t) dt,

R12 :=

n
i=1

 1

−1
{P(Wb +∆n,x ≤ x)− P(W (i)

b +∆(i)n,x + t ≤ x)}kb,i(t) dt.

Put η1 = t +∆
(i)
n,x, η2 = ξb,i +∆n,x, then

|R11| ≤

n
i=1

 1

−1
E


g(W (i)

b + u)I(η1 < u < η2) du kb,i(t) dt

+

n
i=1

 1

−1
E


g(W (i)

b + u)I(η2 < u < η1) du kb,i(t) dt.

When x ≥ 1, using Lemma 5.2, Lemma 5.3, Hölder’s inequality and the following identity

1 ≡ I{W (i)
b + u ≤ x − 1} + I{W (i)

b + u > x − 1, u ≤ 3x/4} + I{W (i)
b + u > x − 1, u > 3x/4}

gives

E


g(W (i)
b + u)I(η1 < u < η2) du

≤ xe1/2−x
∥η2 − η1∥1 + 2(1 + x)P(W (i)

b + 1 > x/4)1/p × ∥η2 − η1∥q

+ 2(1 + x)P(η2 > 3x/4)1/p × ∥η2 − η1∥q

≤ xe1/2−x
∥η2 − η1∥1 + 2(1 + x)[{e1−x/4EeW

(i)
b }

1/p
+ (e−3x/4Eeξb,i+∆n,x)1/p] × ∥η2 − η1∥q.

Together with Lemma 5.4 and the fact that |∆n,x| ∨ |∆
(i)
n,x| ≤

1
2 (1 + x), this implies that

E


g(W (i)
b + u)I(η1 < u < η2) du ≤ Cxe−x/(4p)

{∥ξb,i∥q + ∥∆n,x −∆(i)n,x∥q + |t|}.

A similar argument holds for the case with indicator function I(η2 < u < η1), which leads to the same bound. Plugging the
above calculations into the expression of R11, we get, for x ≥ 1,

|R11| ≤ Cxe−x/6

β2 + β3 +

n
i=1

∥ξb,i∥p × ∥∆n,x −∆(i)n,x∥q


. (5.19)
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In contrast, when 0 ≤ x ≤ 1, the function g(w) = {wfx(w)}′ satisfies that 0 ≤ g(w) ≤ 2 for all w and ∥∆n,x − ∆
(i)
n,x∥q ≤

∥D̄1n − D̄(i)1n∥q +
1
2∥D̄2n − D̄(i)2n∥q. It follows that

|R11| ≤ β2 + 3β3 +

n
i=1

∥ξb,i∥p ×


2∥D̄1n − D̄(i)1n∥q + ∥D̄2n − D̄(i)2n∥q


. (5.20)

For R12, the integrand is bounded by

P{x −∆n,x ≤ Wb ≤ x −∆(i)n,x + ξb,i − t} + P{x −∆(i)n,x + ξb,i − t ≤ Wb ≤ x −∆n,x}.

Note that, for |t| ≤ 1,

x −∆n,x ≥ x/2 − 1/2, x −∆(i)n,x + ξb,i − t ≥ x/2 − 5/2.

By Lemma 5.2, we see that the sum of the above two probabilities is bounded by some multiple of

e−x/4

|t| + ∥ξb,i∥q + β2 + β3 +

n
i=1

∥ξb,i∥p × ∥∆n,x −∆(i)n,x∥q


,

which further yields, for x ≥ 0,

|R12| ≤ Ce−x/4

β2 + β3 +

n
i=1

∥ξb,i∥p × ∥∆n,x −∆(i)n,x∥q


. (5.21)

Putting (5.19)–(5.21) together proves (5.9).
The bound (5.10) for R2 follows directly by independence and the facts that 0 ≤ f ≤ 1 and |f ′

| ≤ 1. Turning to R3, when
0 ≤ x ≤ 1,

|f (Wb +∆n,x)− f (Wb +∆(i)n,x)| ≤

2
j=1

|D̄jn − D̄(i)jn |

and when x ≥ 1, it follows from (5.18) that

|f (Wb +∆n,x)− f (Wb +∆(i)n,x)| = |f (Wb +∆n,x)− f (Wb +∆(i)n,x)|{I(Wb ≤ x/2 − 3/2)+ I(Wb > x/2 − 3/2)}

≤ |∆n,x −∆(i)n,x|{e
1/2−x

+ I(Wb > x/2 − 3/2)}.

Furthermore, this implies

|Eξb,i{f (Wb +∆n,x)− f (Wb +∆(i)n,x)}| ≤ e1/2−xE|ξb,i{∆n,x −∆(i)n,x}| + E[|ξb,i{∆n,x −∆(i)n,x}|I(Wb > x/2 − 3/2)]

≤ e1/2−x
∥ξb,i∥p × ∥∆n,x −∆(i)n,x∥q

+ {e3/2−x/2E(|ξb,i|peξb,i)× EeW
(i)
b }

1/p
× ∥∆n,x −∆(i)n,x∥q

≤ (e1/2−x
+ ee/p+1/2p−x/2p)∥ξb,i∥p × ∥∆n,x −∆(i)n,x∥q.

This proves (5.11).
For the last term R4, it follows from Lemma 5.3 thatE∆n,x

 ∆n,x

0
f ′(Wb + t)dt

 ≤ {(1 + x2)−1
+ e1/2−x

}E∆2
n,x + E∆2

n,xI{(x − 3)/2 ≤ Wb ≤ (1 + 3x)/2}

≤ 4∥D̄1n∥
2
2 + ∥D̄2n∥

2
2 + 3x2e−x/2E(D̄2

2ne
Wb),

whereas when 0 ≤ x ≤ 1, it is straightforward thatE∆n,x

 ∆n,x

0
f ′(Wb + t)dt

 ≤ E∆2
n,x ≤ 2∥D̄1n∥

2
2 +

1
2
∥D̄2n∥

2
2.

The proof of Proposition 5.1 is now complete. �
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Appendix

Proof of Theorem 4.2. Observe that, if we put h̃ = σ−1
g h and g̃ = σ−1

g g , then g̃(x) = Eh̃(x, X1) and g̃(X1), . . . , g̃(Xn) are
i.i.d. random variables with zero mean and unit variance. By the scaling invariance property of Studentized U-statistic, we
can replace h and g with h̃ and g̃ , respectively, which does not change the definition of Tn. For brevity of notation, we still
use h and g but assume without loss of generality that σ 2

g = 1.
Again, by the scaling invariance of Tn and the fact that

|P(Tn ≤ x)− Φ(x)| = |P(−Tn ≤ −x)− Φ(−x)|, ∀x ∈ R,

we only need to prove that the upper bound in (4.7) holds for supx≥0 |P(Tn ≤ x) − Φ(x)|. To begin with, write ψ(x, y) =

h(x, y)− g(x)− g(y), ξi = n−1/2g(Xi) for i = 1, . . . , n and set

Sn =

n
i=1

ξi, V 2
n =

n
i=1

ξ 2i , Ψn =
1

n − 1


i<j

ψ(Xi, Xj)
√
n

,

Λ2
n =

n
i=1

Ψ 2
n,i, Ψn,i =

n
j=1,j≠i

ψ(Xi, Xj)
√
n

.

By Hoeffding’s decomposition,
√
n
2 Un = Sn + Ψn. Moreover, observe that

n
i=1(qi − Un)

2
=

n
i=1 q

2
i − nU2

n , then we can
rewrite Tn as

Tn =

√
nUn

2rn
= T ∗

n


1 −

4(n − 1)
(n − 2)2

T ∗2
n

1/2

, (A.1)

where

T ∗

n =

√
nUn

2sn
, s2n =

n − 1
(n − 2)2

n
i=1

q2i . (A.2)

By the one-to-one relationship between Tn and T ∗
n as in (A.1), we have

{Tn ≥ x} = {T ∗

n ≥ x/{1 + 4x2(n − 1)/(n − 2)2}1/2}.

Therefore, we only need to prove the result for T ∗
n , instead of Tn. To see this, note that

qi =
1

n − 1

n
j=1,j≠i

h(Xi, Xj) =

√
n

n − 1
{(n − 2)ξi + Sn + Ψn,i},

which further leads to

(n − 2)2(n − 1)
n

s2n = (n − 2)2V 2
n +Λ2

n + (3n − 4)S2n + 2(n − 2)
n

i=1

ξiΨn,i + 2Sn
n

i=1

Ψn,i.

By the Cauchy–Schwarz inequality, the last term in the above identity is bounded by 2
√
n|Sn|Λn. Then we can write

s2n =
n

n − 1
(V 2

n + δn), (A.3)

where δn := δn(ξ1, . . . , ξn, X1, . . . , Xn) is such that δn = δ1n + δ2n with

|δ1n| ≤
4(n − 1)
(n − 2)2

S2n +
2

(n − 2)2
Λ2

n and δ2n =
2

n − 2

n
i=1

ξiΨn,i. (A.4)

Combining (A.2) and (A.3) gives

T ∗

n =
Sn + Ψn

dn

1 + (V 2

n − 1)+ δn
, (A.5)

where dn =


n

n−1 . By (A.4), we have

E|δ1n| ≤
4(n − 1)
(n − 2)2

+
2(n − 1)
(n − 2)2

Eψ2(X1, X2) =
2(n − 1)
(n − 2)2

Eh2(X1, X2).
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Therefore, for n ≥ 3,

P(|δ1n| > n−1/2) ≤
2
√
n(n − 1)
(n − 2)2

Eh2(X1, X2).

Consequently, by (A.2) and the fact |dn − 1| = O(n−1), it suffices to bound

sup
x≥0

|P(T ∗∗

n ≤ x)− Φ(x)|,

where in line with the notation in Theorem 3.1,

T ∗∗

n =
W + D1n

(1 + D2n)1/2
(A.6)

with

W = Sn, D1n = Ψn, D2n = (V 2
n − 1)+

1
2
√
n

+
2

n − 2

n
i=1

ξiΨn,i.

For 1 ≤ ℓ ≤ n, taking D(ℓ)1n and D(ℓ)2n in a natural way (cf. Chen and Shao, 2007) such that Xℓ and (D
(ℓ)
1n ,D

(ℓ)
2n ) are independent

and

D1n − D(ℓ)1n =
1

√
n(n − 1)


i≠ℓ

ψ(Xi, Xℓ),

D2n − D(ℓ)2n = ξ 2ℓ − Eξ 2ℓ +
2

√
n(n − 2)


ξℓ


j≠ℓ

ψ(Xj, Xℓ)+


i≠ℓ

ξiψ(Xi, Xℓ)

.

Moreover, set ξb,i = ξiI(|ξi| ≤ 1) for i = 1, . . . , n, Wb =
n

i=1 ξb,i and

D̄2n = D2n(X1, . . . , Xn, ξb,1, . . . , ξb,n)I(|D2n| ≤ 1/2)

with

D2n(X1, . . . , Xn, ξb,1, . . . , ξb,n) =

n
i=1

ξ 2b,i − 1 +
1

2
√
n

+
2

n − 2

n
i=1

ξb,iΨn,i.

Now with the above preparations, the final conclusion (4.7) follows from Theorem 3.1 and Lemma A.1, whose proof is
postponed to the end of the Appendix.

Lemma A.1. We have, for all n ≥ 3,

∥D1n∥
2
2 ≤

∥h(X1, X2)∥
2
2

n − 1
,

∥D̄2n∥
2
2 ≤

2σ p
p

np/2−1
+ C

∥h(X1, X2)∥
2
2

n
,

P(|D2n| ≥ 1/2) ≤ C


σ
p
p

np/2−1
+

∥h(X1, X2)∥
2
2

n


,

and for any i = 1, . . . , n,

∥D1n − D(i)1n∥2 ≤
∥h(X1, X2)∥2
√
n(n − 1)

,

∥D̄2n − D̄(i)2n∥2 ≤ ∥ξ 2b,i∥2 + C
∥h(X1, X2)∥2

n
.

Moreover,

E(D̄2
2ne

Wb) ≤ C


σ
p
p

np/2−1
+

∥h(X1, X2)∥2
√
n


, (A.7)

sup
x≥0

|xE{D̄2nfx(Wb)}| ≤ C


σ
p
p

np/2−1
+

∥h(X1, X2)∥2
√
n


. (A.8)
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This completes the proof of Theorem 4.2. �

Proof of Theorem 4.4. Let ψ(t) =
 t
0 J(s) ds for 0 ≤ t ≤ 1. As in Serfling (1980, p. 265), we have

T (Fn)− T (F) = −


∞

−∞

{ψ(Fn(x))− ψ(F(x))} dx.

For brevity, we introduce the following notation

J0(x) = J(F(x)), Jn(x) = J(Fn(x)),
ηi(x) = Ii(x)− F(x), Ii(x) = I(Xi ≤ x), Īi(x) = 1 − Ii(x),

gi(Xi) = −σn−1/2

ηi(x)J0(x) dx, K(s, t) = F(s ∧ t){1 − F(s ∨ t)}

and write

σ−1√n{T (Fn)− T (F)} = Wn +∆n, Wn =

n
i=1

gi(Xi),

where

∆n =
−

√
n

σ


[ψ(Fn(x))− ψ(F(x))− {Fn(x)− F(x)}J0(x)] dx.

For each i, let Fn,i(x) = E{Fn(x) | Xj, 1 ≤ j ≤ n, j ≠ i} and

∆(i)n = σ−1√n


[ψ(Fn,i(x))− ψ(F(x))− {Fn,i(x)− F(x)}J0(x)] dx,

so that∆(i)n and Xi are independent. It was already shown in Chen and Shao (2007) that

σ 2E∆2
n ≤ c21n

−1EX2
1 , σ 2E|∆n −∆(i)n |

2
≤ 2c21n

−2EX2
1 , (A.9)

where c1 = max0≤t≤1 |J ′(t)|. For the variance part, following Wang et al. (2000), we have σ̂ 2/σ 2
= 1 + Qn + Rn, such that

√
n
σ̂

{T (Fn)− T (F)} =
Wn +∆n

(1 + Qn + Rn)1/2
, (A.10)

where

Qn = n−3

i≠j≠k

γi,j,k, γi,j,k = ξi,j + ϕi,j,k,

ξi,j = σ−2


J0(s)J0(t){Ii(s ∧ t)Īj(s ∨ t)− K(s, t)} ds dt,

ϕi,j,k = σ−2


J ′0(s)J
′

0(t)ηi(t)Ij(s ∧ t)Īk(s ∨ t) ds dt,

and where Rn = R1n + R2n + R3n with

R1n = 2σ−2


[Jn(s)− J0(s)− J ′0(s){Fn(s)− F(s)}] × J0(s)K(s, t) ds dt,

R2n = σ−2


{Jn(s)− J0(s)}{Jn(t)− J0(t)}K(s, t) ds dt,

R3n =
1
n3


j≠k

(ξj,k + ϕj,j,k + ϕk,j,k)−
1

nσ 2


F(s ∧ t){1 − F(s ∨ t)} ds dt.

Recall that aj = max0≤t≤1 |J (j)(t)|, j = 0, 1, 2. Similar to the proof of Lemma A in Serfling (1980, p. 288), we can show that

|gi(Xi)| ≤ c0σ−1n−1/2(|Xi| + E|X1|), (A.11)

|ξi,j| ≤ Cc20σ
−2(X2

i + X2
j + EX2

1 ), (A.12)

|ϕi,j,k| ≤ Cc21σ
−2(X2

j + X2
k ), (A.13)
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leading to

E|R1n| ≤ Cc0c2σ−2n−1


[F(t){1 − F(t)}]1/2 dt
2

,

E|R2n| ≤ Cc1σ−2n−1


[F(t){1 − F(t)}]1/2 dt
2

,

E|R3n| ≤ C max(1, c20 , c
2
1 )σ

−2n−1EX2
1 ,

where

[F(t){1 − F(t)}]1/2 dt ≤ 4σ−1/2(E|X1|

3)1/2. Subsequently, by the Markov inequality we have

P(|Rn| ≥
√
n) ≤ C max(1, c20 , c

2
1 , c

2
2 )n

−1/2(σ−2EX2
1 + σ−3E|X1|

3). (A.14)

For Qn = n−3 
i≠j≠k γi,j,k, observe that

i≠j≠k

γi,j,k =
1
6


i≠j≠k

(γi,j,k + γi,k,j + γj,i,k + γj,k,i + γk,i,j + γk,j,i)

:=
1
6


i≠j≠k

Γ (Xi, Xj, Xk) =


i<j<k

Γ (Xi, Xj, Xk).

In particular,
 n
3

−1 
i<j<k Γ (Xi, Xj, Xk) is a U-statistic with EΓ (X1, X2, X3) = 0. Set γ1(x) = E{Γ (X1, X2, X3)|X1 = x} and

γ2(x1, x2) = E{Γ (X1, X2, X3)|X1 = x1, X2 = x2} −

2
j=1

γ1(xj),

γ3(x1, x2, x3) = Γ (x1, x2, x3)−

3
j=1

γ1(xj)−


1≤i<j≤3

γ2(xi, xj).

Hoeffding’s decomposition gives Qn = n−3 
i≠j≠k γi,j,k = Q1n + Q2n, where

Q1n = n−3
n
3

 3
n

n
i=1

γ1(Xi), (A.15)

Q2n = n−3
n
3

 
3 n
2

 
i<j

γ2(Xi, Xj)+
1 n
3

 
i<j<k

γ3(Xi, Xj, Xk)


. (A.16)

By Lemma 4 in Korolyuk and Borovskikh (1988) and inequalities (A.11)–(A.13), we have

E|Q1n|
3/2

≤ C(c30 + c31 )n
−1/2σ−3E|X1|

3,

E|Q2n|
3/2

≤ C(c30 + c31 )n
−1σ−3E|X1|

3.

Next, we apply (3.4) in Theorem 3.1 to the Studentized statistic given in (A.10). To this end, let X̄i = XiI(|Xi| ≤ σ
√
n) and

define the event

En =


max
1≤i≤n

|Xi| ≤ σ
√
n

.

By the Markov inequality, P(E c
n ) ≤ n−1/2σ−3E|X1|

3. Further, in view of (A.14), we haveP
Wn +∆n

(1 + Qn + Rn)1/2
≥ x


− P


W +∆

(1 +
1
2n

−1/2 + Q̄n)1/2
≥ x


≤ C


1 ∨ max

0≤k≤2
c3k


n−1/2(σ−3E|X1|

3
+ σ−2EX2

1 ), (A.17)

where Q̄n = Q̄1nI(|Q̄1n| ≤
1
8 )+ Q2nI(|Q2n| ≤

1
8 ), where

Q̄1n = n−3
n
3

 3
n

n
i=1

γb,i, γb,i := γ1(Xi)(|Xi| ≤ σ
√
n). (A.18)
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By the above calculations, put D2n =
1
2n

−1/2
+ Q̄n, so that |D2n| ≤

1
2 whenever n ≥ 4 and

E|D2n|
3/2

≤ C(c30 + c31 )n
−1/2σ−3E|X1|

3. (A.19)

Moreover, by Lemma 5.4,

E(D2
2ne

Wb) ≤ C

n−1

+ (E|Q2n|
3/2)1/2 + E(Q̄ 2

1ne
Wb)


. (A.20)

Recall thatWb =
n

i=1 ξb,i =
n

i=1 gi(Xi)I{|gi(Xi)| ≤ 1}. For γb,i as in (A.18), it follows from (A.12) and (A.13) that

|Eγb,i| = |Eγ1(Xi)I{|Xi| > σ
√
n}| ≤ C(c20 + c21 )n

−1/2σ−3E|X1|
3,

leading to

E
 n

i=1

γb,i

2

eWb =

n
i=1

E(γ 2
b,ie

ξb,i)× E{eW
(i)
b } +


i≠j

E(γb,ieξb,i)E(γb,jeξb,j)E{eW
(i,j)
b }

≤ C(c20 + c21 )
2

nσ−4(EX2

1 )
2
+

√
nσ−3E|X1|

3


+ C(1 + c0)2(c20 + c21 )
2n(σ−3E|X1|

3)2.

Substituting the above calculations into (A.20) yields

E(D2
2ne

Wb) ≤ C(J)

n−1/2σ−3E|X1|

3
+ n−1(σ−3E|X1|

3)2

. (A.21)

Here, and in what follows, C(J) is a constant depending only on cj, j = 0, 1, 2.
Next, we estimate xE{D2nfx(Wb)} for all x ≥ 0. By (2.5) and Lemma 5.3, we have

sup
x≥0

{xEfx(Wb)} ≤ C

and

sup
x≥0

|xE{Q̄2nfx(Wb)}| ≤ 8−1/4(E|Q2n|
3/2)1/2 × sup

x≥0
x{Ef 2x (Wb)}

1/2
≤ C(J)n−1/2(σ−3E|X1|

3)1/2.

By independence,

E{Q̄1nfx(Wb)} =
(n − 1)(n − 2)

2n3

n
i=1

E[γb,i{fx(Wb)− fx(W
(i)
b )}]

=
(n − 1)(n − 2)

2n3

n
i=1

Eγb,i

 ξb,i

0
f ′

x (W
(i)
b + t) dt.

This, together with (A.12) and (A.13) yields

sup
x≥0

x|E{Q̄1nfx(Wb)}| ≤ Cn−1
n

i=1

E|γb,iξb,i| × sup
x≥0

max
|t|≤1

E|xf ′

x (W
(i)
b + t)|

≤ C(J)n−1/2σ−3E|X1|
3.

Putting pieces together, we conclude that

sup
x≥0

|xE{D2nfx(Wb)}| ≤ C(J)n−1/2σ−3E|X1|
3. (A.22)

For each 1 ≤ i ≤ n, |D2n − D(i)2n| can be bounded by

(n − 1)(n − 2)
2n3

|γb,i| +

n − 2
n3


j(≠i)

γ2(Xi, Xj)+
1
n3


j<k(≠i)

γ3(Xi, Xj, Xk)

.
By similar arguments that lead to (A.15) and (A.16), we can show that

E|D2n − D(i)2n|
3/2

≤ C(c30 + c31 )n
−3/2σ−3E|X1|

3

and therefore,

n
i=1

∥ξb,i∥3 × ∥D2n − D(i)2n∥ 3
2

≤ C(J)n−1/2σ−3E|X1|
3. (A.23)
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Assembling (A.9), (A.10), (A.17), (A.19), (A.21), (A.22) and (A.23) proves (4.10) for all x ≥ 0. Applying this result to −T
with weight function −J covers the case of x ≤ 0 and hence completes the proof of Theorem 4.4. �

Proof of Lemma A.1. We only prove the last two inequalities, i.e. (A.7) and (A.8), as the others can be obtained by routine
computations. Observe that

D2n(ξb,1, . . . , ξb,n) =

n
i=1

(ξ 2b,i − Eξ 2b,i)+
2

n − 2

n
i=1

ξb,iΨn,i +
1

2
√
n

− β2

:= Π1 +Π2 +Π3,

whereΠ1 =
n

i=1 ηi =
n

i=1(ξ
2
b,i − Eξ 2b,i),Π2 =

2
n−2

n
i=1 ξb,iΨn,i andΠ3 =

1
2
√
n − β2. Clearly, |D2n(ξb,1, . . . , ξb,n)| ∧ 1 ≤

|Π1| ∧ 1 + |Π2| ∧ 1 + |Π3| ∧ 1.
Observe that conditional on Xi, Ψn,i is a sum of independent random variables with zero means. By Hölder’s inequality

we have

E{(|Π2| ∧ 1)2eWb} ≤ (EΠ2
2 )

1/2(Ee2Wb)1/2 ≤ Cn−1/2
∥h(X1, X2)∥2

and it is straightforward to verify that E{(|Π3| ∧ 1)2eWb} ≤ C(n−1/2
+ β2). ForΠ1, a direct calculation gives

E(Π2
1 e

Wb) =

n
i=1

E(η2i e
ξb,i)E{eW

(i)
b } +


i≠j

E(ηieξb,i)E(ηjeξb,j)E{eW
(i,j)
b }

≤ C
n

i=1

Eξ 4b,i + C
 n

i=1

E|ξb,i|
3
2

≤ C(βp + β2
p ),

where βp :=
n

i=1 E|ξi|
p

≤ σ
p
p n1−p/2. Putting the above calculations together implies (A.7).

Finally, we prove (A.8). For 0 ≤ x ≤ 1, the boundedness of fx implies

|xE{(Π2 +Π3)fx(Wb)}| ≤ E(|Π2| + |Π3|) ≤ C{n−1/2
∥h(X1, X2)∥2 + β2}.

When x ≥ 1, it follows from (5.17) that

|xE{(Π2 +Π3)fx(Wb)}| ≤ Cxe−x

E(|Π2| + |Π3|)+ E{(|Π2| + |Π3|)eWb}


≤ C{n−1/2

∥h(X1, X2)∥2 + β2}.

As forΠ1, note that

E{Π1fx(Wb)} =

n
i=1

E[ηi{fx(Wb)− fx(W
(i)
b )}] =

n
i=1

Eηi

 ξb,i

0
f ′

x (W
(i)
b + t) dt.

This, together with Lemma 5.4, yields

sup
x≥0

|xE{Π1fx(Wb)}| ≤ C
n

i=1

E|ξb,i|
3

≤ Cβ3.

Consequently, (A.8) follows from the above calculations and the fact that β2 + β3 ≤ σ
p
p n1−p/2. �
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