UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Learning and Problem Solving Under a Memory Load

Permalink
https://escholarship.org/uc/item/5fb552wf
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Reber, Paul J.
Kotovsky, Kenneth

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5fb552wf
https://escholarship.org
http://www.cdlib.org/

Learning and Problem Solving Under a Memory Load

Paul J. Reber
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15217
pri8@andrew.cmu.edu

Abstract

A problem solving experiment is described where the
difficulty Ss experienced in solving a particular puzzle
is manipulated using a dual task paradigm. Although
Ss show impaired performance solving the puzzle the
first time, performance improves considerably on a
second trial and Ss are not impaired by a second trial
memory load. In spite of the improvement in
performance, Ss are unable to report virtually any
information about the problem or their solution
strategies. A model is presented that describes the
pattern of performance across the levels of memory load
and across the two trials. The theoretical implications
of this model are discussed.

Introduction

Problem solving has traditionally been thought of
as search through a problem space (Newell & Simon,
1972). Recent work with "isomorphic” puzzles which
have identical underlying problem spaces but different
surface features has shown that the working memory
demands of the surface features plays an important role
in predicting how difficult a particular problem will be
(Kotovsky, Hayes & Simon, 1985; Kotovsky &
Simon, 1990; Kotovsky & Kushmerick, 1991).

The following experiment demonstrates that the
difficulty of a particular puzzle can be manipulated by
reducing the working memory available for problem
solving using a dual task paradigm. We find that the
performance is impaired in proportion to the demands of
the secondary task. However, when repeating the
problem solving task, the memory load ceases to
interfere with problem solving.

The pattern of results indicates that it is a learning
process associated with problem solving that is impaired
by the secondary task. However, an interesting problem
arises in attempting to assess what and how the subjects
are learning while problem solving as the subjects are
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unable to describe what they know about the puzzle or
how they solved it.

A reasonably simple mathematical model is
presented to attempt to bring together some of the
phenomena observed in this experiment. Focusing on
weak methods and modeling the learning as an
incremental function, the model gives a reasonable first-
order account of the structure of the problem solving
process for this puzzle.

Method

Seventy-six Carnegie Mellon University
undergraduates were asked to solve an isomorph of the
"Chinese Ring Puzzle" (Kotovsky & Simon, 1990)
called the Balls and Boxes puzzle while performing a
secondary task designed to impose a load on working
memory. The Balls and Boxes puzzle was presented via
computer and is described below. While solving the
puzzle, subjects were also asked to listen to a tape
containing a stream of letters at a rate of one letter every
three seconds with beeps mixed in occasionally.
Subjects were divided into four groups, a control group
and three different levels of memory load. The three
memory load groups were instructed to listen to the
letters and remember either the last letter heard (group 1-
back), the last two letters heard (group 2-back) or the
last three letters heard (group 3-back). Since the tape
contains a continuous stream of letters, each time a new
letter is heard by the subject, the set of letter(s) to be
remembered changes. These groups of subjects were
instructed that when they heard a beep they were to write
down the first letter of the letter set being remembered,
i.e. subjects remembering the last letter wrote this at the
beep, subjects remembering two letters wrote the letter
before the last letter heard, etc. The control group was
instructed to ignore the letters but listen for the beeps
and when a beep was heard, write down a random letter.
To be sure that the subjects performed the secondary
task as well as possible, the importance of listening to
the tape carefully was stressed with all subjects and the
experimenter monitored subjects performance to be sure
they wrote down a letter whenever a beep was heard.

An experimental session consisted of brief
instruction on the puzzle and secondary task and two
solutions of the puzzle. Between solutions, subjects
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Figure 1: Appearance of the Puzzle to Subjects

were asked to write "how they solved the puzzle, how
the puzzle works and especially anything they could say
that would help somebody else solve the puzzle." Only
two levels of memory load were used on the second
trial, the control condition and the two-letter memory
load condition.

The Balls and Boxes Puzzle

The Balls and Boxes puzzle is an isomorph of the
"Chinese Ring Puzzle" which is a particularly difficult
puzzle studied by Kotovsky & Simon (1990). The
Balls and Boxes isomorph was designed to be a simpler
version of the puzzle where the surface structure was
modified so that all legal moves can easily be seen and
the operators were "digitized" to reduce the working
memory load associated with moving within the
problem space. This version of the puzzle was found to
be much easier to solve, generally taking 5-10 minutes.
The puzzle was presented on a MicroVAX II computer
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and is shown in Figure 1. This puzzle consists of five
balls and five boxes. The object is to get all five balls
out of their boxes. A ball may only be moved if its
box top is open. As balls are moved in and out of their
boxes, the box tops open and close according to a rule
that defines the problem. The rule dictates that a ball
may be moved (and hence the box top is open) if and
only if the ball immediately to its right is in its box and
all other balls to the right are out of their boxes. For
the subjects, the trick to solving the puzzle is to figure
out how to move the balls to get the right boxes to
open up so that you can get all the balls out of their
boxes.

The problem space, shown in Figure 2, is rather
small, containing only 31 possible states, but the
starting position was chosen to be 21 moves from the
goal (21 moves is the minimum number required to
solve the puzzle). Additionally, the problem space is
linear, meaning that from any place in the problem
space (except the top state) there are exactly two moves
that can be made, one leading toward the solution
(moving toward lower numbered states in Figure 2) the
other leading directly away (moving toward the higher
numbered states). Hence, after making a move, the only
choices one has are to undo that move or make a new
move. If one never retracts or undoes a move when it is
not necessary, then one is guaranteed to easily solve the
puzzle. However, it is extremely rare for a subject to do
this when attempting to solve the puzzle for the first
time.

Results

The effect of the memory load the first time the
puzzle is solved is clearly seen in Figure 3. As the
memory load increases, the number of moves required to
solve the puzzle increases. A regression analysis shows
this increase is significant (8=25.82, F=10.82, p<0.01).
The results from the second solution of the puzzle are
shown in Figure 4. This figure is shown on the same
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Figure 2: Problem Space of the Balls and Boxes Puzzle
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scale as Figure 3., It is clear that there is significant
speed up in that the number of moves to solve the
puzzle drops dramatically from trial 1 to trial 2 (paired t-
test, t=4.57, p<0.001). These results are also broken
down by memory load on trial one to demonstrate that
there is no difference between the groups in the amount
learned on the first trial. It is clear that the memory
load did not impair performance on the second trial.
This is verified by an ANOVA of trial 2 performance by
trial 1 condition and trial 2 condition where neither
condition nor the interaction are significant (F=1.5,
p>0.22, F=1.85, p>0.17, F=1.76. p>0.33 for the effects
of trial 1 condition, trial 2 condition and their
interaction respectively).

Examining the progress of a single subject on the
puzzle shows that the process of solving the puzzle can
be broken down into two phases: exploratory and final
path. The exploratory phase contains most of the
moves made by the subject and little or no actual
progress toward the goal is made during this phase. The
final path is a sequence of rapid totally error-free moves
directly toward the goal. Progress made by subjects
over the course of solving the puzzle on the first trial
can be seen in Figure § (the x-axis is move number and
the y-axis measures distance from the goal). The
average length of the final path was 18.5 moves and
does not vary across groups. The second time the
puzzle is solved, 66 of 76 subjects show both
exploratory phase and final path behavior while 10
subjects solved the puzzle perfectly the second time
(immediate final path). The average length of the final
path on the second trial was 19 moves.
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Level of Memory Load

Figure 3: Number of Moves to Solve the Puzzle
on Trial 1

The written protocols collected from each subject in
between trials were analyzed and rated on a five point
scale with 1 indicating that the description had no
relevant information about the puzzle; a rating of 2
indicates very little information in the description, i.e.
one statement of value; and so on up to 5, indicating
that the subject provided a complete description of how
to solve the puzzle. The median value of these ratings
was 1.5. The average rating did not vary across groups
indicating that all groups were equally poor at describing
the structure of the puzzle or the strategies that they
used to solve it.

Most of the advice subjects gave was very general
in nature. The most common statement in the
protocols (29 occurrences in 76 protocols) was general
advice to remember the combinations or patterns that
lead to different boxes opening. In spite of this advice,
virtually no subjects described any of these patterns or
combinations correctly. Other general advice such as
"Be systematic” and "Use trial and error” also occurred
frequently (20 times). Subjects did seem to be aware of
certain aspects of the problem space: 21 subjects
reported that the left ball was hardest, 12 noted that it
was important to work from left to right and 10 realized
that it was occasionally necessary to put balls back into
boxes. No other statement occurred as often as 10
times. Only one subject stated that not undoing the
previous move would be a good strategy and two others
hinted that not reversing is important. In summary, the
protocols were surprisingly uninformative, especially
given the fact that most subjects went on to solve the
puzzle quite rapidly on the second trial.

200, Trial 2 Condition
1804
/A No Memory load
1604
A Memory load
1404
4
2 120
=
S 100
£
80+
E \
60-.
40 4
20-
O T L L L
None 1 2 3

Level of Trial 1 Memory Load

Figure 4: Number of Moves to Solve the Puzzle
on Trial 2

1070



The protocols present an interesting contrast to the
final path behavior of the subjects. The sudden shift to
error-free solution initially seems to suggest insight, yet
the protocols suggest that subjects have not settled on a
strategy even as simple as consistently avoiding
reversals. The fact that most subjects also show
exploratory behavior on the second trial also indicates
that while subjects know something about the puzzle
after the first solution, they don't understand it
completely.

204
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-

0 80 100 1680 200
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Figure 5: Sample move record

A Model

Although the pattern of results across the two trials
1s counter-intuitive, a relatively simple model provides a
reasonable approximation of the subjects’ behavior. The
model is based on two basic problem solving strategies:
(1) hill-climbing, that is preferring to remove balls from
their boxes; and (2) no-reversal, a general preference not
to undo the most recent move. Of course, since the
problem space is linear, relying solely on the second
strategy would lead to optimal solution of the puzzle.
Although hill-climbing based on the increasing the
number of balls out of their boxes may initially appear
useful, reliance on this strategy actually impedes
solution of the puzzle. The existence of the barrier areas
suggest that at least at the beginning, subjects appear to
rely on hill-climbing.

These strategies come into conflict on moves where
balls must be replaced to make progress. If there is a
decision between two balls is to be replaced (e.g. state
24, Figure 2), then the model will prefer not to make
the reversal. However, when the choice is between
taking a ball out that was just put in and putting a
different ball in, then there is a higher probability of a
reversal. An example of this situation would be
arriving at state 25 (see Figure 2) from state 24 (the last
move was to place the rightmost ball in). The hill
climbing strategy indicates taking the rightmost ball out
(and returning to state 24) while the no-reversal strategy

indicates continuing on to state 26 and putting the
secondmost ball from the right back into its box.

The relationship between these two strategies is
controlled by a parameter, bp (for backup-penalty)
describing the relative importance of the no-reversal
strategy. The value of the hill-climbing strategy is held
constant at +1 for removing a ball and -1 for replacing a
ball. To select a move, the values of the two possible
moves are calculated. The value of a move is the +1 if
a ball is being moved out, -1 if a ball is being replaced.
The move that reverses or undoes the previous move is
penalized by an additional -bp. A small amount of
normally distributed noise (mean=0, sd=2) is added to
each value. The noise makes the model's behavior
more variable and is meant to capture factors that affect
subjects’ move choice that are not captured by the
model. The higher of these values is selected and this
move is made. This process repeats until the goal state
is reached.

When bp=2, these parameters exactly oppose each
other in the difficult states described above (choosing
between replacing a ball and removing a ball that was
replaced on the previous move). When bp is less than
2, the model relies more on hill-climbing and when bp
is greater than 2, the model makes fewer reversals.
Since fewer reversals leads to more rapid problem
solving, average number of moves to solve the puzzle
decreases as bp increases.

When bp is 2 (or close to 2), the model essentially
"wanders" around the problem state. At most states the
model prefers moves that avoid reversals, but a number
of situations provide problems (generally where two
balls must be replaced in succession). These states
correspond to the barrier areas observed in the subjects’
behavior. The fit between barrier areas can be assessed
by tracing subjects' move records with the model and at
each point recording whether the model predicts a high,
medium or low chance for reversal. This is then
compared to the actual rate of reversal for each subject in
each of these categories. The mean reversal rates across
subjects was 9.7%, 13.6%, and 14.2%, for the states
where the model predicted low, medium, and high
reversal rates respectively. A repeated measures
ANOVA across the reversal rates in each of the three
categories for all 76 subjects shows a significant within
subject effect (F=13.6, p<0.001). This indicates that
subjects are indeed making reversals at different rates in
the three categories and that the hill-climbing nature of
the model reflects this strategy in the subject data.
From this we can conclude that the explorarory behavior
of the model is similar to the exploratory behavior
shown by subjects.

In order 1o model the daia pattern for the experiment
across the groups and across trials, the model learns. In
the subjects' data, the existence of the final path
behavior initially appears to suggest insightful
behavior, but the stunning lack of information in the
protocols strongly suggests otherwise.
Correspondingly, the model is constructed using a
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simple, incremental function to model learning effects.
The theoretical implications of this decision are
discussed below.

The leamning across the two trials is modeled by
increasing bp incrementally throughout the first trial
solution. This has the effect of reducing the model's
reliance on hill-climbing over the course of solving the
puzzle. Since these strategies compete with each other,
the model cannot disambiguate between leamning that
reduces the perceived value of hill-climbing or increases
the perceived value of not making a reversal.

Increasing the value of bp increases the likelihood
of achieving a final path sequence of moves and solving
the puzzle. A higher value of bp speeds problem
solution but does not guarantee immediate final path.
Hence, carrying the value of bp across from the end of
trial one to trial two reduces the number of moves
needed to solve the puzzle but does not guarantee
immediate final path.

The rate at which bp increases also affects the
average number of moves it takes the model to solve the
puzzle on the first trial. The difference across the
memory load conditions can therefore be modeled by
having bp increase at different rates for the different
memory load groups. Since all groups perform with
similar efficiency on the second trial, it follows that the
value of bp carried over to the second trial should be
approximately equal for all groups. Accordingly, bp
increases incrementally, per move, according to the
following general formula:

(1) bp=bpo+bpmax-ce"™

1804
160+
1404
1204

1004

Number of Moves

0 T T T T

None 1 2 3

Level of Memory Load

Figure 7: Model data, Trial 1
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This formula describes exponential learning from
the initial bpp toward some maximum value of bp,
bpmayx. The overall shape of the learning curve is
determined by the quantities ¢ and a. The parameter ¢,
indexes the number of moves made. Several forms of
the leaming functions were considered. The function
used mirrors the learning function previously used to
d;scribe classical conditioning (Rescorla & Wagner,
1972).

The parameters bpg and bpp,,x and ¢ are the same
for all runs of the model. Differences across the groups
are captured by using different values of @. The higher
memory load groups have smaller values of «,
indicating that it takes more moves to reach the same
level of bp. This implies that the groups are learning at
different rates toward the same endpoint.

These parameters were fit to the data pattern with
bpo=1.5, bpmar=2.6, ¢=2.0, a=0.0428, 0.0331,
0.0228, 0.0120 for the control, 1-back, 2-back and 3-
back groups respectively. These parameter settings start
the model out with a reliance on hill-climbing,
gradually shifting to relying more on not reversing any
moves. The performance of the model on the first and
second trial is shown in Figures 7 and 8. The same
regression analyses used for the subjects show a
significant effect of memory load on the first trial
(B=37.4, F=56.9, p<0.001) and no effect of either first
or second trial memory load on the second trial (F<1 in
all cases). The model also shows final path behavior
with average final path being 22.9 moves on the first
trial and 26.6 moves on the second trial.

Trial 2 Condition

180
/A No Memory load

160
A Memory load

1404
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Number of Moves

o T L T L]
None 1 2 3

Level of Trial 1 Memory Load

Figure 8: Model data, Trial 2



Discussion

The experiment demonstrated that it is possible to
manipulate problem difficulty by reducing available
working memory using a dual task paradigm. The fact
that the effect of the first trial memory load does not
carry over into the second trial and that the second trial
memory load does not impair second trial performance
indicates that a learning process is impaired on trial
one. It follows that subjects from different groups are at
essentially the same level of knowledge going into the
second trial. The knowledge they have allows them to
solve the puzzle much more efficiently on the second
trial; but subjects in the high memory load groups on
trial one take much longer to reach this level of
knowledge.

Interestingly, the knowledge that is acquired about
the puzzle is not easy for the subjects to communicate.
Other work with this puzzle has similarly found that
subjects are unable to describe the puzzle retrospectively
and requiring subjects to give a concurrent protocol has
also been unenlightening (Reber & Kotovsky, in
preparation).

The inability of subjects to report what they are
leaming or describe the structure of the puzzle after they
have demonstrated that they can solve it implies that
they are learning to solve the puzzle implicitly or
automatically, It follows then that it is critically
important to understand when these processes are an
integral part of problem solving and how this type of
learning is affected by environmental factors such as an
additional load on working memory. The research
presented here demonstrates that the learning process is
impaired by an external memory load, but later
application of this knowledge is not impaired by a
memory load (witness the lack of an effect of memory
load on the second trial).

We also present a model that captures the overall
data pattern fairly effectively. The reliance on hill-
climbing with a general tendency not to reverse moves
generates "search” behavior like the exploratory phase
found in the subject data. The asymptotic nature of the
learning function of the model guarantees that all runs
of the model will be at essentially the same "level of
knowledge" after the first trial. Changing the learning
rate causes the model to take different amounts of time
to reach this asymptotic level and hence take different
number of moves to solve the puzzle. Thus the model
shows differential performance on the first trial based on
the learning rate, but performance on the second trial is
not affected by changing the learning rate. The match of
the model to the subject data further strengthens our
claim that the memory load impairs the process of
learning to solve the puzzle.

The model also provides a convincing
demonstration of how a gradual, incremental learning
function can capture the apparently sudden shift in
subject behavior from exploratory to final path
behavior. The success of the model provides additional
support to the idea that subjects may be learning to

solve the puzzle by some implicit, incremental function
that gradually acquires enough information about the
problem space to lead to improved performance.

While the model has been tailored to capture the
mathematical structure of the data pattern, it also
highlights some important theoretical points. First,
the model provides support for the notion that subjects
rely heavily on hill-climbing with some attention to not
reversing the last move made. Second, the incremental
learning function shows how a gradual learning process
can result in final path behavior. The shape of the
learning function further demonstrates how the effect of
the memory load can be eliminated across the two trials.
Although the model is designed to mathematically
describe the data, rather then provide an explicit account
of the underlying cognitive processes, it heavily
constrains the development of a process model and
expands our understanding of the process of solving this
puzzle.

Further experimental work is underway that is
aimed at uncovering the knowledge acquired on the first
trial, together with constraints imposed by the model
presented here should allow us to develop a more
detailed model of the cognitive processes involved in
this and other related tasks. This research represents
progress toward a good understanding of the interaction
between working memory and learning in problem
solving that promises to greatly enhance our overall
understanding of problem solving processes.
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