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ABSTRACT OF THE THESIS 
 
 

Helium and carbon systematics of northern Baja California: an assessment of geothermal 

resources 

by 
 
 

Cristian Enrique Virrueta  

Master of Science in Earth Sciences  

University of California San Diego 2018 

Professor Paterno Castillo, Chair 

 

The Baja California Peninsula represents an area of anomalous heat flow 

evidenced by an abundance of subaerial geothermal manifestations and submarine 

hydrothermal vents. We report helium and carbon isotopic and relative abundance data 

from 13 geothermal springs throughout northern Baja California. Results of this study 

reveal 3He/4He values ranging from 0.11 to 1.74 RA (where RA = air 3He/4He) and 

concentrations of 4He, corrected for air contamination, vary from 0.284 to 1207 (×10-6) 

cm3 STP/gH2O. Carbon isotopes (δ13CO2) vary between -19.39 to +9.08‰ (vs. PDB) and 

CO2/3He values vary over several orders of magnitude (2.02 × 105 to 1.06 × 1013). 

3He/4He values are attributed to mixing between mantle-derived helium and a radiogenic 
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component derived from the crust. The highest 3He/4He values lie toward the east in the 

Gulf Extensional Province (GEP), are proximal to spreading centers, and are in 

agreement with low mantle velocity zones observed in recent tomography studies. 

Variable δ13CO2 and CO2/3He values at these localities are consistent with phase 

separation and/or calcite precipitation in shallow-level hydrothermal systems. Both 

processes result in CO2 loss which exacerbates the effects of contamination by crustal 

gases. The value of the majority of samples in the present study lies with discerning the 

potentially complicating effects of degassing and/or crustal contamination on the 

resulting CO2 record. Ultimately, the Puertecitos and Punta Estrella regions can be 

considered a promising geothermal prospect with a potential to satisfy the increasing 

energy demands of the Baja California Peninsula.
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1. INTRODUCTION 

 

The Baja California Peninsula and the Gulf of California have long been 

identified as areas with high geothermal potential (Quijano and Gutierrez-Negrin, 2005). 

Currently, the country of Mexico has a net geothermal-electric capacity of 958 MW, 

produced by four geothermal fields: Cerro Prieto, Los Azufres, Los Humeros, and Las 

Tres Virgenes (Flores-Armenta and Gutierrez-Negrin, 2011). However, there is a 

pressing need to identify and evaluate geothermal areas in the region for future 

development. A geothermal survey of the northern peninsula, targeting subaerial 

geothermal manifestations, will greatly enhance the assessment of the geothermal 

potential of Baja California. In addition, a geochemical perspective will lead to a better 

understanding of the thermal structure and the magmatic evolution of this region.  

Prior studies (e.g. Vidal, 1982, Welhan et al., 1988, and Forrest et al., 2005) have 

identified multiple geothermal springs throughout Baja California, and some of these 

include some small-scale helium and carbon isotopic investigation. Helium is a sensitive 

tracer of mantle-derived fluids, and its distribution throughout Baja California allows for 

the differentiation between various mantle and crustal sources of volatiles (Hilton, 1996; 

Kulongoski and Hilton, 2011). Primordial helium (3He) is a rare isotope that has been 

primarily stored in the Earth’s mantle since accretion, and is relatively, enriched in 

magmas derived through partial melting of the mantle. In contrast, the Earth’s crust is 

enriched in radiogenic helium (4He) due to the radioactive decay of uranium and thorium. 

Thus, the ratio between 3He and 4He in geothermal fluids can indicate the origin (i.e., 

mantle vs. crust). Fluids originating in the crust have low ratios of 3He to 4He – usually 
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0.02 to 0.05 RA (Andrews, 1985) where RA is the standard atmospheric 3He/4He ratio 

(1.38x10-6; Clarke et al., 1976). Mantle-derived helium has a higher 3He/4He ratio, with 

mantle-derived mid-ocean ridge basalts (MORB) having values of 8 RA. Mantle-derived 

helium and high CO2 concentrations have been linked to volcanic arcs, hotspots and mid-

ocean ridges, areas known for high heat flow and mantle partial melting (Hilton and 

Porcelli, 2003). Furthermore, in the absence of magmatic activity, crustal faulting plays 

an important role in the transfer of mantle-derived volatiles through the crust (Hilton, 

2007). Quantifying the CO2 flux, coupled together with helium (CO2/3He ratio), as well 

as the δ13C (CO2), can all be utilized as sensitive indicators of the provenance of carbon 

and successfully discriminate mantle reservoir signatures from those of the crust (Lollar 

et al., 1997).  

Here, we quantify the heat characteristics of northern Baja California utilizing 

chemical and isotopic analyses of 13 geothermal springs located throughout this area. By 

targeting helium isotopes, gas chemistry, and water chemistry, we identified regions of 

mantle degassing with helium and carbon isotopes. Coupled with existing geophysical 

data, a better understanding of the northern Baja California mantle structure has been 

gained.  
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2. GEOLOGIC AND TECTONIC BACKGROUND 

 

2.1 Tectonic History 

 Baja California is a 1200 km long peninsula separated from mainland Mexico by 

the Gulf of California. The Gulf is situated along a plate boundary between the Pacific 

and North American plates and is part of a large rift, dominated by right lateral (dextral) 

faults and active spreading centers that form the San Andreas-Gulf of California fault 

system (Figure 1). Offshore, towards the west, Baja California is bounded by right lateral 

strike-slip faults such as the Tosco-Abreojos and San Clemente-San Isidro faults. 

Baja California is primarily composed of four main structural provinces: (1) the 

Gulf Extensional Province, present along the eastern margin, (2) the unextended central 

and western portion of the peninsula, (3) the Transpeninsular Strike-slip Province, which 

encompasses the northwestern part of the peninsula, and (4) the sheared continental 

borderland west of Baja California (Figure 6). The Gulf Extensional Province is 

constrained to the west by the Main Gulf Escarpment, a north-south striking and east 

dipping normal fault, and to the east by the Sierra Madre Occidental located in mainland 

Mexico (Seiler et al., 2010). This province is a zone characterized by basin and range-like 

extension and topography. In the Main Gulf Escarpment, defined by the northern Sierra 

Juárez, the central and southern Sierra San Pedro Mártir rises steeply to a maximum 

elevation of 1800 meters (Axen 1995). 
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Figure 1: Regional tectonic map of the Baja California Peninsula and the Gulf of California. Faults, 
mountain ranges, and other features are also labeled. Figure modified from Spelz et al., 2017. 
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The Transpeninsular Strike-slip Province is dominated by active faults that 

diverge westward from the main gulf axis. The WNW-striking Agua Blanca fault and the 

NW-striking San Miguel-Vallecitos fault system accumulate strain with a combined slip 

rate of 4 to 8 mm per year (Seiler et al., 2010). The Agua Blanca fault is 130 km long and 

extends from the Punta Banda Peninsula near Ensenada to San Matias Pass on the Main 

Gulf Escarpment (Suarez-Vidal et al., 2007). The San Miguel-Vallecitos fault system is 

comprised of four faults: San Miguel, Vallecitos, Calabazas, and Tres Hermanos.  

Prior to the formation of the Gulf of California, the North American continental 

margin in western Mexico had been a convergent boundary for some time. The 

subduction of the eastward-moving Farallon Plate beneath the western edge of the North 

American Plate generated a volcanic arc along the Sierra Madre Occidental in early 

Oligocene to early Miocene time (~34-23 Ma) (Umhoeher et al., 2000; Castillo, 2008). 

Arc volcanism migrated west during the middle Miocene (~15 Ma) and formed the 

Comondú volcanic arc in ancestral Baja California. The central region of the Farallon 

Plate subducted as the leading segment of the East Pacific Rise (EPR) met with the North 

American Plate, ~25 Ma ago in central California, and ~15 Ma ago in northern Mexico 

(Lonsdale, 1989). It was the collision of the EPR with the west coast of North America 

that created the modern San Andreas Fault system. Today, the Mendocino Triple Junction 

marks the northern limit of this transform/divergent boundary system, and the Rivera 

Triple Junction marks the southern limit (Wallace, 1990). 

At 15 Ma, the EPR was obliquely converging with the trench along the 

continental margin. As the rise neared the trench, the plate fragmented into independently 

moving slabs such as the Guadalupe and Magdalena microplates and was ultimately 
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captured by the Pacific plate (Tian et al., 2011). North of the Shirley Fracture Zone, at 

~12.5 Ma, spreading and subduction ceased, with the Magdalena microplate capture 

continuing until 8 to 7 Ma during which the spreading axis broke into short segments and 

rotated clockwise (Michaud et al., 2006; Calmus et al., 2011). The boundary between the 

Pacific and North American plates was located along the Tosco-Abreojos and San Benito 

fault zones from 8 to 7 Ma until ~6 Ma, when the transtensional regime in the Gulf of 

California became established. Since 5 Ma, the EPR propagated northwards, forming 

several extensional centers connected by transform faults, which extend up to the San 

Andreas Fault system (Lonsdale, 1989). From this point in time, the peninsula represents 

a continental block that was captured by the Pacific Plate and is currently moving away 

from the North America mainland. 

 

2.2 Volcanic History 

During its Cenozoic tectonic evolution, Baja California has been the locus of 

numerous volcanic events involving the eruption of calc-alkaline volcanics, tholeiites, 

adakites and magnesian andesites. Volcanic activity has occurred along the eastern 

margin of Baja California since the Oligocene, with calc-alkaline arc volcanism occurring 

along what is now the eastern coast of the peninsula (Negrete-Aranda et al., 2013). 

During middle Miocene time, a transform fault system developed between the Pacific and 

North American plates, shifting the convergent margin of North America to a transform 

plate margin. Despite the cessation of subduction, volcanism has continued up to 

Quartenary times and is manifested in several monogenetic volcanic fields located west 

of the extinct volcanic arc. Focusing on northern Baja California, the most recent 
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volcanic activity in the region has occurred in five volcanic centers: Cerro Prieto, San 

Quintín, Puertecitos, Jaraguay, and San Borja. Cerro Prieto is the name of a Quaternary, 

isolated, and monogenetic volcano northwest of the Cerro Prieto Geothermal Field. The 

volcano rises 260 meters above sea level and is located in the northern peninsula, 

approximately 35 km south of the city of Mexicali (Lindsay and Hample, 1998). The 

dacitic lavas are the only surface evidence of volcanic activity in the Cerro Prieto 

geothermal field, which is the largest field in exploitation in Mexico. Paleomagnetic data 

indicates that the volcanic activity occurred between 100,000 and 10,000 years ago (De 

Boer, 1980).  

The San Quintín volcanic field lies along the Pacific coast of northern Baja 

California, approximately 260 km south of the U.S.-Mexico border. It is primarily 

composed of monogenetic Quaternary lavas with rocks composed of intraplate basaltic 

composition and peridotitic and granulitic xenoliths (Luhr et al., 1995). 

The Puertecitos volcanic province is located along the northeastern margin of the 

Peninsula and consists of andesitic lava flows and rhyolitic pyroclastic flows with ages of 

3.2 to 2.7 Ma (Martín-Barajas et al., 1995). Near the coast, the volcanic province is cut by 

high-angle normal faults, such as the San Perdo Martír fault, due to the region’s 

prevailing extensional tectonics. 

The Jaraguay and San Borja volcanic fields are located in the central part of the 

peninsula. They include lava flows and hundreds of scoria cones with ages from 5 to 0.5 

Ma (Pallares et al., 2008; Negrete-Aranda et al., 2010). 

The higher than average heat flow setting of the peninsula coupled with volcanic 

and tectonic activity, has produced conditions for the occurrence of numerous geothermal 



	 8	

areas along the coasts (Vidal et al., 1981). The fault planes act as conduits and allow 

meteoric and/or seawater to penetrate deep into the crust and be heated by the 

anomalously high geothermal gradient of the region. The geothermal manifestations 

investigated in this study are mostly subaerial hot and warm springs, water wells, and 

springs located off shore (Figure 2). 
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Figure 2: Map of the study area illustrating sample localities (yellow circles = sampled in 2014, purple 
circles = sampled in 2015). Figure modified from Spelz et al., 2017. 
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3. FIELD COLLECTION AND ANALYTICAL METHODS 

 

Groundwater and geothermal samples were collected from 13 different localities 

throughout northern Baja California peninsula during the span of three sampling 

campaigns in 2001, 2014, and 2015. A total of 28 samples (including duplicates and 

triplicates) were collected: 2 in 2001, 12 in 2014, and 14 in 2015. A total of 15 gas and 13 

water samples were included in this study. 

 

3.1 Groundwater Sampling for Dissolved Gases 

Standard sampling protocols were adopted for the collection of volatiles from 

bubbling hot springs (following Hilton et al., 2002). Evacuated 1720 glass flasks and 3/8-

inch copper tubes were utilized to collect samples. The use of copper tubes preserves the 

integrity of the sample even after significant durations of storage due to the low 

permeability of copper to helium (Weiss, 1968). Gases bubbling into hot springs are 

sampled by placing an inverted funnel at the bottom of the spring. A Tygon tube links the 

funnel to one end of the copper tube or glass flask inlet. A second Tygon tube is attached 

to the other end of the copper tube or flask outlet, allowing the discharge water or gas to 

flow through the tube assembly. After flushing the system to avoid air contamination, the 

copper tube is crimped shut using refrigeration clamps on both ends of the tube forming 

an air-tight seal. In the case of the glass flasks, the outlet Tygon tube is clamped shut and 

the valve to the flask is opened to the vacuum and then closed thereby trapping the 

sample into the flask. 
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3.2 Groundwater Sampling for Water Chemistry 

At each locality, hot spring waters were collected in three 125 mL screw-cap 

bottles for alkalinity, cation, and anion analyses. All waters are filtered using a syringe 

equipped with a 0.45 µm filter attachment. Bottles for alkalinity measurement were 

poisoned using HgCl2 (Dickson et al., 2003). Bottles for anion and cation measurement 

were rinsed with native water three times and filled leaving a small headspace, with 

cation bottles later acidified using a few drops of HNO3. The temperature, pH, and total 

dissolved solids of each sampling site were obtained using a YSI Professional Plus multi-

meter. Waters were collected for water chemistry only during the 2014 and 2015 

campaigns. 

 

3.3 Fluid Extraction, Noble Gas Separation, Quadrupole Mass Spectrometer System  

(FENG-QMS) 

Samples were processed using the Fluid Extraction, Noble Gas Separation, 

Quadrupole Mass-Spectrometer System (FENG-QMS) at Scripps Institution of 

Oceanography (Kulongoski and Hilton, 2002). This system extracts water and gas from a 

variety of sampling media (copper tubes, flasks, etc.), removes water vapor and reactive 

gases, and isolates noble gases for mass spectrometric analyses. The extraction line is 

comprised of three sections: a sample release section, gas separation section, and gas 

measurement section. In the sample release section, the sample is mounted vertically onto 

the line and opened. With water samples, a bulb containing phosphorous pentoxide is 

attached to the line to drive CO2 out of solution. Water vapor is isolated using a 1720 

glass water trap submerged in an (-78°C) acetone and dry ice mixture. Thereafter, the 
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CO2 is condensed onto a stainless steel U-trap submerged in (-196°C) liquid nitrogen. At 

this stage, the remaining gases enter the gas preparation section, where an aliquot of gas 

is collected in 1/4-inch copper tube for further purification and nitrogen isotopic 

measurement. Next, helium and neon are isolated using an activated charcoal finger 

submerged in liquid nitrogen to adsorb argon, krypton, and xenon. Then, residual gas is 

exposed to a hot (700°C) titanium getter to remove nitrogen and other reactive gases. A 

split of helium and neon is taken in a 1/4-inch copper tube for isotopic measurement on a 

MAP 215 noble gas mass spectrometer. The residual helium and neon is transferred to 

the gas measurement section where a quadrupole mass spectrometer (QMS) estimates the 

helium and neon abundance. Lastly, the CO2 is released from the U-trap by removing the 

liquid nitrogen and condensing it to a 1/4-inch copper tube. The CO2 is then transferred to 

a separate line for further purification prior to δ13C analysis. 

 

3.4 Magnetic Sector Mass Spectrometer (MAP-215) 

The helium and neon aliquot taken from the FENG-QMS line is processed 

through a noble gas mass spectrometer (MAP-215) to determine helium and neon 

abundance as well as the 3He/4He ratio. The gas is inlet from the breakseal to the 

preparation line where charcoal fingers held at liquid nitrogen temperature (-196°C) and a 

titanium getter (700°C) purify the gas. The helium and neon are condensed using a 

cryogenic trap cooled to 15K and released sequentially by increasing the temperature to 

35K and 90K for helium and neon, respectively. Once inlet into the MAP-215, helium 

and neon peak intensities are measured and the 3He/4He ratio of the sample is normalized 

to standards of atmospheric air. 
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3.5 CO2 Clean Up Line and Isotope Ratio Mass Spectrometer (IRMS) 

The CO2 fraction previously isolated from the extraction line is processed in a 

Pyrex glass preparation line. Using a variable temperature trap, the CO2 and any 

undesirable gases (e.g., SO2) are separated and the total amount of CO2 is quantified in a 

calibrated volume using a capacitance manometer. Thereafter, the purified CO2 is 

condensed into a Pyrex glass tube and transferred to a Thermo Finnigan Delta XPplus 

isotope ratio mass spectrometer for carbon isotope (δ13C) measurement. Values are 

reported relative to the international standard Vienna Pee Dee Belemnite (V-PDB) and 

have a precision of less than 1‰ (Barry et al., 2013). 

 

3.6 Water Chemistry and Total Alkalinity 

The concentrations of major anions (F-, Cl-, NO3
-, and SO4

-2) and cations (Ca+2, 

Mg+2, Na+, and K+) were ascertained using a Metrohm 850 Professional Ion 

Chromatograph operated by the California Water Science Center (part of the U.S. 

Geological Survey) in San Diego, California. The anion and cation analyses were 

performed following the protocols outlined in the EPA Method 300.0 (U.S. 

Environmental Protection Agency, 1993) and Metrohm’s analysis and instrument 

monograph (Bruttel and Seifert, 2007). The ion chromatograph is calibrated with 

National Water Quality Laboratory (NWQL) blank water and stock solutions of varying 

dilutions (1:5 through 1:1000) utilizing a multi-ion standard solution containing the 

analytes of interest. A calibration curve is formulated by plotting peak area versus known 

concentrations of blank water and working standards. After conducting a simple 

regression analysis and achieving a correlation coefficient of 0.995 or greater, the 
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unknown sample analysis is carried out. NWQL blank water, standard reference samples 

with known concentrations, and working standards are evaluated in conjunction with our 

unknown sample analyses to ensure instrument accuracy and precision. When analyte 

concentrations exceed the calibration range, samples are diluted accordingly to match 

standards and ensure reproducibility.  

Total alkalinity was determined using a two-stage open-cell titration technique as 

described in Dickson et al., (2003) at the Scripps Institutions of Oceanography. Samples 

were first acidified to a pH between 3.5 and 4.0 using HCl and titrated until the solution 

reached an approximate pH of 3.0. Utilizing a least-squared procedure, the total alkalinity 

and equivalence point were calculated. Normal laboratory quality control samples were 

run in conjunction with unknown samples being analyzed. For total alkalinity, seawater 

reference materials were used. In addition, tap water was used for precision 

measurements because of its similarity in composition to the groundwaters being 

analyzed. Because of the source of the water, it was not uncommon to find sediment in 

the sample bottles that made its way to the titration cell. It is possible that this could have 

had an effect on the electrode during titrations, so tap water was measured to ensure 

normal electrode responses and high precision. 
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4. RESULTS 

 

The helium and carbon results of all samples are presented in Table 1. Table 2 

contains the end-member contributions from each sample, and these are graphically 

presented in Figure 3. Lastly, major ion water chemistry is presented in Table 3, with 

Figure 4 containing a graphical representation of the water chemistry in the form of a 

Piper diagram, a useful way to detect general trends and define hydrochemical facies. 

 

4.1 Helium Isotope Ratios (3He/4He) 

The measured 3He/4He ratios as well as the air-corrected 3He/4He ratios are 

reported in Table 1 in the RA notation. The 3He/4He in the atmosphere is 1.38 x 10-6 and 

is represented by RA (Clarke et al., 1976). Corrections for atmospheric contamination 

were completed utilizing the following equation (Craig et al., 1978; Hilton, 1996): 

𝑅!/𝑅! =  𝑅!/𝑅! 𝑋 − 1 / 𝑋 − 1  

where RC/RA is the air-corrected helium ratio and X is the air-normalized 4He/20Ne ratio 

defined as: 

𝑋 = 𝐻𝑒! / 𝑁𝑒!"
!
/ 𝐻𝑒! / 𝑁𝑒!"

!
𝛽!"/𝛽!"  

where (4He/20Ne)M  is the measured ratio, (4He/20Ne)A is the ratio of air, and β is the 

Bunsen solubility coefficient calculated for Ne and He. A coefficient of 1.22 was utilized 

assuming an average recharge temperature of 15°C (Weiss, 1971; Ozima and Podosek, 

1983). 
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Figure 3: Plot of measured He isotopes versus solubility-corrected, air normalized He/Ne ratio (X) to 
assess the integrity of the He isotopes results. Curves represent mixing between air-saturated water (1 RA, 
X=1), MORB (8 RA), and crust (0.02 RA). 
 

Figure 3 illustrates an A-M-C plot, where the measured 3He/4He ratio and the 

4He/20Ne ratio are utilized to estimate the degree of air contamination and/or mantle-

derived and crustal helium contributions (Sano and Wakita, 1985). On the x-axis, a low X 

value results in greater corrections to the measured 3He/4He ratio, representing a larger 

input of air. Table 2 presents mantle, air, and crustal values calculated with the following 

equations (Sano and Wakita, 1985): 

𝐻𝑒! / 𝐻𝑒!
!
= 𝑓! 𝐻𝑒! / 𝐻𝑒!

!
+ 𝑓! 𝐻𝑒! / 𝐻𝑒!

!
+  𝑓! 𝐻𝑒! / 𝐻𝑒!

!
 

1/ 𝐻𝑒! / 𝑁𝑒!"
!
= 𝑓! 𝐻𝑒! / 𝑁𝑒!"

!
+ 𝑓! 𝐻𝑒! / 𝑁𝑒!"

!
+  𝑓! 𝐻𝑒! / 𝑁𝑒!"

!
 

𝑓! + 𝑓! + 𝑓! = 1 
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Table 2: Calculation of mantle, air, and crustal helium contributions (in %), based on equations described 
above. 
 

 

 

Location Name Mantle % Air % Crust % 
CAG BAJA-21 4.76 0.01 95.23 
SM BAJA-12 1.13 0.02 98.85 

 BAJA-14 1.13 0.01 98.86 
RAC BAJA-11 3.82 0.54 95.64 

 BAJA-20 3.99 0.17 95.84 
RSC BAJA-07 2.74 0.17 97.10 

 BAJA-17 2.74 0.16 97.10 
LJ-V BAJA-22 2.50 0.03 97.47 

 BAJA-23 2.49 0.13 97.38 
EU BAJA-01 7.48 0.33 92.19 

 BAJA-06 7.86 0.24 91.89 
EU resample BAJA-24 6.63 0.06 93.31 

LP BAJA-25 6.64 0.02 93.33 
PE BAJA-16 13.91 0.02 86.07 

 BAJA-19 11.03 5.10 83.87 
PNA BAJA-26 3.51 0.01 96.48 

 BAJA-27 2.93 0.63 96.44 
 BAJA-28 2.76 0.01 97.23 

P BAJA-15 20.74 1.51 77.75 
 BAJA-18 21.38 0.36 78.25 

EV-1 BAJA-29 8.28 26.44 65.27 
 BAJA-30 7.42 6.92 85.66 

EV-2 BAJA-31 11.95 19.05 69.01 
SB BAJA-32 4.50 0.06 95.44 

 BAJA-33 5.11 0.21 94.68 
 BAJA-34 6.70 3.62 89.68 

ENS ENS-1 6.63 0.07 93.30 
 ENS-2 6.88 0.08 93.04 
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where the subscripts O, M, and C represent the observed, mantle, atmospheric, and crustal 

3He/4He and 4He/20Ne ratios respectively, and 𝑓 stands for the fraction of each end-

member. The end-members for mantle, atmosphere, and crust are 8 ± 1 RA (Graham 

2002), 1 RA, and 0.02 RA (Andrews, 1985) respectively. 

All samples, including duplicates, range from 0.11 RA (Santa Minerva) and 1.74 

RA (Puertecitos), well below typical values of Mid-Ocean Ridge Basalts (MORB = 8 ± 1 

RA) and the Global Arc Average (GAA = 5.4 RA; Hilton et al., 2002). However, all 

samples plot above typical values for radiogenic helium with a minimum 1% mantle 

contribution. At all localities, duplicate samples were taken and analyzed to better assess 

each locality’s true source characteristics. In this study, we adopt the highest X value 

from each sampling site, which is highlighted in bold font in Table 1. At any rate, 

duplicate and triplicate samples generally show good agreement between their helium 

isotope ratios with <1 RA difference.     

Helium concentrations from our samples are given in Table 1 and have been 

corrected for air contamination utilizing the following equation (Craig et al., 1978; 

Hilton, 1996): 

𝐻𝑒!
!
= 𝐻𝑒!

!
 × (𝑋 − 1)/𝑋 

The measured concentration values range between 0.284 x 10-6 (El Volcan) and 8.86 x 

10-6 cm3 STP/gH2O (Ensenada) for fluid phase samples, significantly greater than air-

equilibrated water (~4 x 10-8 cm3 STP/gH2O). Helium concentrations in the gas phase 

samples range between 170,000 x 10-6 and 0.986 x 10-6 cm3 STP. 
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4.2 δ13C (CO2) Values 

Gas and water phase samples were analyzed for their carbon isotope values (δ13C) 

and the results are reported in Table 1 in the per mil notation (‰). The measured values 

range between -19.39 to +9.08‰. Localities Santa Minerva (-10.83 and -19.39‰), PNA 

(-9.86, -12.60, -17.38‰), and San Borja (-12.46, -13.13, -17.62‰) show considerable 

variability in their duplicates. Water phase samples collected in 2014 have positive values 

with the exception of the Puertecitos sampling site. The highest value observed in this 

study is +9.08‰ found in the Ejido Uruapan site, which was re-sampled a year later and 

displayed a -4.47‰ signature. The lowest value of -19.39‰ is located in Santa Minerva. 

Heavier δ13C signatures representative of MORB (-6.5‰; Sano and Marty, 1995) were 

found towards the eastern side of the Baja peninsula. 

 

4.3 CO2/3He Ratios 

CO2/3He ratios of the samples range between 0.000202 and 3257 (x109) and are 

given in Table 1. Samples collected in the El Volcan region exhibit the largest CO2/3He 

ratios (x1013), akin to crustal sources (x1011 to 1013; O’Nions and Oxburgh, 1988), 

whereas a majority of other sites exhibit MORB-like values (2 x 109; Marty and Jambon, 

1987) with the only exception being Santa Minerva, which exhibits the lowest value of 

0.000202 (x109). 
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4.4 Water Chemistry 

The major ion water chemistry of the samples is reported in Table 3. The majority 

of groundwater samples collected from the 2014 and 2015 campaigns are classified as 

chloride waters with the exception of two samples identified as mixed CaNaHCO3. Water 

samples for chemistry from Punta Estrella and Ensenada were not collected. Total 

dissolved solids (TDS) values range from 390 to 27729 ppm and alkalinity (as CaCO3) 

values range between 45.1 and 2711.2 mg/kg of solution. Charge balance error 

calculations were conducted for our water samples utilizing the following equation 

(Hiscock, 2005): 

𝐶𝐵𝐸 % =  
( 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 −  𝑎𝑛𝑖𝑜𝑛𝑠) 
( 𝑐𝑎𝑡𝑖𝑜𝑛𝑠 +  𝑎𝑛𝑖𝑜𝑛𝑠)  × 100 

An error of approximately ± 5% (Freeze and Cherry, 1979) is considered an acceptable 

value; however, charge balances calculated for some waters in this study are higher, in 

some instances, up to 9%. According to Fritz (1994), it becomes more difficult to achieve 

a good charge balance in dilute groundwater of very low TDS because errors become 

pronounced on samples with low concentration. For example, the groundwater sample 

from San Borja has the lowest TDS (390 mg/L) and the highest charge balance error 

(9.35%). On the other hand, waters with a TDS greater than 1000 mg/L tend to have large 

concentrations of few components and as a result the charge balance may not sufficiently 

evaluate the accuracy of minor components, thus also leading to large charge balance 

errors (Trick et al., 2008). 

Saturation indices with respect to calcite are calculated using the USGS sponsored 

program PHREEQC (Parkhurst and Appelo, 2013). The saturation index is the state of 
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saturation of a mineral in an aqueous solution. By calculating the saturation indices, it is 

possible to determine the equilibrium state of groundwater with respect to a given 

mineral: in this case, calcite (Hiscock 2005). Saturation indices for the samples range 

between -0.87 and +1.34, with 4 having positive values and the majority (8) exhibiting 

negative values. Positive values indicate oversaturation with respect to calcite, which 

would be expected to result in its precipitation. A negative value indicates 

undersaturation with respect to calcite and thus dissolution of calcite is expected 

(Hiscock, 2005). 

A trilinear, or Piper, diagram is a useful way of visualizing the results of a large 

number of samples in a single plot (Piper, 1944). The percentage of total meq/L of 

cations is plotted on the left ternary, using Ca2+, Mg2+ and (Na+ + K+) as the three axes of 

the triangle. Similarly, anions are plotted in the right ternary using the percent meq/L of 

Cl-, SO4
2-, and (CO3

2- + HCO3
-) as the three axes. The diamond between the two triangles 

shows projections from the anion triangle and the cation triangle to a field that shows the 

overall major ion water chemistry. Based on where the data points lie in the center 

diamond, the classification of water types or hydrochemical facies can be determined. 
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Figure 4: Piper plot of groundwaters from northern Baja California. Numbered regions represent the 
classification of waters. 1) CaCl2, 2) CaHCO3, 3) NaCl, 4) NaHCO3, 5) Mixed CaMgCl, 6) Mixed 
CaNaHCO3.  
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5. DISCUSSION 

 

 In the following sections, we discuss the distribution and provenance of helium 

and carbon collected from hot springs throughout northern Baja California. we interpret 

data the identify primary source characteristics and any potential secondary modification. 

In order to better understand the mantle structure of this region, the geochemical data will 

be compared to other geophysical work for a broader perspective.  

 

5.1 Spatial Variations in Helium Isotope Ratios (3He/4He) 

The helium isotope ratios identified in northern Baja California region are 

consistent with previous studies conducted within the area (Vidal et al., 1982; Forrest et 

al., 2005). All samples exhibit 3He/4He a lot higher than the 0.02-0.05 RA crustal helium 

value (Andrews, 1985), signifying a higher mantle helium contribution. As discussed 

below, a number of parameters such as proximity to faults, the structural geology of 

sampling sites, and the distance to volcanic centers may affect controls on helium isotope 

ratios.  

 

5.1.1 Fault Proximity 

Previous work conducted in the central and southern portion of the San Andreas 

Fault (Kennedy et al., 1997; Kulongoski et al., 2005; 2013) has revealed significant 

mantle helium contributions, ranging from 1 to 50% of the total helium. More 

importantly, a modest trend is observed between the helium isotopic composition of 

samples and the distance from the strike of the fault. Higher 3He/4He (~0.5 to 2.1 RA) 
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were recorded within a 20 km distance from the San Andreas Fault, whereas lower 

3He/4He (~0.2 to 1.0 RA) were observed at distal localities of 20-80 km from the fault 

(Kennedy et al., 1997; Kulongoski et al., 2013). 

 

Table 4: Relationship between helium isotopes and distance to a fault 
Sample Location Distance to Fault RC/RA 
La Jolla-Villarino 0.05 km (Agua Blanca) 0.22 

Cascada Arroyo Guadalupe 0.8 km (Vallesitos fault) 0.40 
Las Positas 1.0 km (Agua Blanca) 0.55 

Rancho Agua Caliente 2.3 km (Tres Hermanos) 0.33 
Ejido Uruapan 3.3 km (Agua Blanca) 0.65 

Ejido Uruapan (re-sample) 3.3 km (Agua Blanca) 0.55 
Santa Minerva 3.7 km (Vallesitos faut) 0.11 

Plan Nacional Agrario 5.2 km (San Pedro Mártir) 0.30 
Rancho San Carlos 8.0 km (Tres Hermanos) 0.24 

Punta Estrella 33 km (MOR) 1.13 
San Borja 47 km (MOR) 0.37 
Puertecitos 61 km (MOR) 1.74 
El Volcan 72 km (MOR) 1.31 
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Figure 5: Helium isotopes (RC/RA) of samples collected in Baja California plotted as a function of distance 
(km) to the nearest fault. 
 

Helium isotope ratios significantly higher (> 0.1 RA) than crustal values may 

result from the transport of helium and other fluids from the upper mantle through faults 

that reach the shallow crust (Ballentine et al., 2002). However, radiogenic helium 

produced by the decay of uranium and thorium in the crust effectively dilutes mantle 

helium to produce the helium ratios observed at the surface. In order to further elucidate 

this effect on our samples, a plot of 3He/4He versus distance to the nearest fault (with 

color representing helium concentration) is shown in Figure 5. The sample locations, 

respective 3He/4He, and the distance between the sampling sites and the nearest fault are 

given in Table 4. Surprisingly, our samples demonstrate the opposite effect from that 

observed in the San Andreas Fault. The 3He/4He (0.11 to 0.65 RA) of samples located 
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closest to a fault (~10 km distance) are lower when compared to the 3He/4He (0.53 to 

1.74 RA) of samples located farther away from a fault (> 30 km). This indicates that 

although strike-slip faulting in the west plays a role in facilitating volatiles to the surface, 

other controls may be responsible for the eastern localities’ elevated 3He/4He values. 

 

5.1.2 Structural Provinces 

A second possible influence on helium isotopes may be the structural geology of 

sampling sites. The main continental regions where mantle helium is found include areas 

undergoing extension, subduction-type volcanoes, major fault systems as well as 

kimberlite pipes and other xenolith-bearing localities (Hilton and Porcelli, 2003). In Baja, 

3He/4He >1 RA have also been associated with regions of active extension as a result of 

crustal thinning (Forrest et al., 2005; Kulongoski et al., 2005). Thus, we examine the 

relationship between the 3He/4He of our samples and the four main structural provinces 

within the peninsula and the Gulf of California: the Gulf Extensional Province (GEP) 

along eastern Baja, the relatively unextended central and western portion of the 

peninsula, the transpeninsular strike-slip province north of the Agua Blanca fault, and the 

sheared continental borderland (Gastil et al., 1975). Two of our sample localities lie 

within the boundary of the GEP, three are in the central portion of the peninsula, the 

majority (7) of our samples are in the transpeninsular strike-slip province, but no sample 

from the offshore continental borderlands (Figure 6). Punta Estrella and Puertecitos 

exhibit some of the highest 3He/4He ratios (1.13 and 1.74 RA) and are located near the 

east coast within the GEP boundary. To the west, the Main Gulf Escarpment serves as a 

boundary between the stable central region and the GEP. The escarpment is formed by a 
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series of concave normal faults (primarily the north-south striking San Perdo Martír fault) 

that dip to the east, terminating near Puertecitos. The province is underlain by Cretaceous 

granodiorite and tonalite of the Peninsular Range batholith that intruded Paleozoic and 

Mesozoic arc and continental margin rocks (Gastil et al., 1975).  

The central portion of the peninsula has been the most stable area of Baja 

California, with major faults uncommon throughout this region. This structural province 

extends from the Agua Blanca fault to the north to the Rosarito fault to the south and the 

Main Gulf Escarpment to the east (Gastil et al., 1975). The sampling locations of PNA, 

El Volcan, and San Borja are located within this area of the peninsula along the western 

edge of the Main Gulf Escarpment. The 3He/4He of PNA and San Borja are low (0.30 and 

0.37 RA) with El Volcan being the highest (1.31 RA). PNA is located within the Sierra 

San Perdo Martír, a batholithic terrain with thick continental crust. To the south, near San 

Borja, the area is dominated by a large high-magnesian andesite volcanic field. Here, the 

Cretaceous igneous and metamorphic basement is overlain by Tertiary sedimentary rocks 

and Miocene calc-alkaline lavas from the Comondú arc (Pallares et al., 2008; Negrete-

Aranda et al., 2010).   
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Figure 6: Four major structural provinces of Baja California: I) Gulf Extensional Province along eastern 
Baja (pink), II) unextended central and western Baja (red), III) sheared continental borderland (orange), IV) 
transpeninsular strike-slip province (tan). Figure modified from Spelz et al., 2017. 
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The transpeninsular strike-slip province contains major strike-slip fault systems 

that transect the peninsula in northern Baja California. The majority of our samples (7) lie 

in this region and exhibit 3He/4He ratios with a significant (1 to 8%) mantle component. 

The Agua Blanca Fault is associated with La Jolla-Villarino, Ejido Uruapan, and Las 

Positas hot springs, the Vallecitos Fault is associated with the Cascada Arroyo Guadalupe 

and Santa Minerva hot springs, and the Tres Hermanos Fault is associated with Rancho 

Agua Caliente and Rancho San Carlos hot springs. The largest structural element in this 

region is the Agua Blanca Fault, which extends 140 km from the San Matias pass in the 

east, to Ensenada Bay in the west, and continues offshore. This fault has a transitional 

strike-slip to normal fault behavior, which forms a half-graben that characterizes the 

Todos Santos Plain and Punta Banda Peninsula (Gastil et al., 1975). In terms of geology, 

three main rock groups, pre-batholitic, batholitic and post-batholitic, constitute the main 

lithologic assemblages in this region. The pre-batholitic group is made up of 

volcaniclastic Alisitos Formation of the Lower Cretaceous, which consists of an arc 

assemblage of andesitic flows and volcaniclastic deposits (Perez-Flores et al., 2004). The 

rugged ranges that extend towards the east are the batholitic group composed of 

crystalline plutonic rocks of the tonalite, gabbro and granodiorite type (Perez-Flores et 

al., 2004). The post-batholitic group is made up of the Upper Cretaceous marine 

sedimentary Rosario Formation, Miocene basalt, andesites, and Quaternary alluvium and 

beach deposits (Arango-Galvan et al., 2011).  
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5.1.3 Volcanic Proximity 

Another possibility that may influence helium isotopes is the distance of sampling 

locality to a nearest volcanic center. Previous studies (Sano et al., 1984; Marty et al., 

1989; Barry et al., 2013) have shown that the highest 3He/4He ratios are found closest to 

volcanic edifices and 3He/4He ratios decrease with increasing distance from the volcanic 

center. However, all but three sampling sites from our study are in excess of 100 km to 

the nearest volcanic center. The Puertecitos (1.74 RA) and San Borja (0.53 RA) sampling 

localities are in close proximity to ancient volcanic fields that do not exhibit, present day 

activity. The Puertecitos Volcanic Province is composed of Tertiary volcanic sequences, 

the youngest being Pliocence ignimbrites (~3 Ma; Martín-Barajas et al., 1995) and the 

San Borja Volcanic Field is comprised of hundreds of scoria cones with the latest 

volcanic activity occurring around 3.5 Ma (Negrete-Aranda et al., 2010). Lastly, El 

Volcan (1.31 RA) is approximately 30 km to the nearest volcanic center of San Luis 

Island, a volcanic island located offshore that last erupted in the Quaternary. Despite this, 

it is unlikely this has an effect on helium isotopes due to the volcano’s small 4.5 km2 area 

and elevation of 180 meters (Paz Moreno and Demant, 1999). 

 

5.1.4 Helium Isotopic Characteristics of Northern Baja California 

We conclude that variations in the observed 3He/4He are multi-faceted and 

complex. The modest mantle contribution in the 3He/4He from the majority of our 

samples can be attributed to the proximity (<10 km) to active faults that lie in the 

tectonically active transpeninsular strike-slip province. This setting suggests that these 

faults act as conduits,  
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Figure 7: Map of the study area illustrating sample localities with corrected helium isotopes (RC/RA), 
carbon isotopes δ13C (CO2) VPDB, and CO2/3He values (109). Figure modified from Spelz et al., 2017. 
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allowing meteoric water to be heated by the higher than average heat flow, and produce 

numerous geothermal areas that facilitate the release of mantle helium (Gullec et al., 

2002). However, the localities that display the highest 3He/4He in this study are located in 

the east, within the GEP and the stable region of the peninsula, with the exception of the 

PNA (0.30 RA) and San Borja (0.37 RA) localities. To visualize the 3He/4He aerial 

distribution, Figure 7 presents adopted values (RC/RA, δ13CCO2, and CO2/3He) for each 

locality in order to gain a west-east perspective. With respect to helium, modest 3He/4He 

ratios lie in the west, followed by a slight decrease in the middle of the peninsula, and an 

increase in the east. The crustal thickness of the Peninsular Ranges and the GEP may play 

an important role in this scenario. According to teleseismic studies, the depth to the Moho 

beneath northern Baja California varies 33 km near the Pacific coast, thickens gradually 

toward the east to 40 km beneath the western Peninsular Ranges, and then abruptly thins 

to 15-18 km beneath the center and margins of the Gulf of California (Lewis et al., 2001). 

Furthermore, the region of extension may permeate the lower crust of the eastern 

Peninsular Ranges, tens of kilometers west of the zone of extensional deformation 

observed at the surface (Lewis et al., 2001). Thus, lower helium isotopes values observed 

at PNA may be the result of fluids traversing thicker crust, increasing the potential of 

radiogenic helium addition, while still displaying a mantle contribution of 3.5%. The high 

3He/4He values in Punta Estrella, Puertecitos, and El Volcan reflect extensional 

deformation of the lower crust in response to adjacent rifting of the GEP. In addition, the 

distance of a sampling locality to a continental volcanic center does not exhibit a notable 

influence due to the lack of recent volcanic activity and vast distance (>100 km in some 

instances) between sampling sites and the nearest volcanoes. 
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5.2 Observed CO2 – 3He – 4He Characteristics   

In order to evaluate whether the water and gas samples taken from northern Baja 

California are representative of MORB-like or arc-like volatiles with or without a strong 

(superimposed) crustal input, we use a CO2-3He-4He ternary plot (Giggenbach et al., 

1993). This type of plot has been used in previous studies, e.g., the East African Rift in 

Tanzania (Barry et al., 2013) and the North Anatolian Fault in Turkey (De Leeuw et al., 

2010) to identify and assess controls on the He-CO2 features of gas and water samples. 

 Samples from this study are plotted in Figure 8 with MORB (CO2/3He = 2 x 109, 

8 RA), crustal (CO2/3He = 5-50 x 1012, 0.02 RA) and air (CO2/3He = 5.47 x 107, 1 RA) 

end-members (O’Nions and Oxburgh, 1988). The majority of the samples lie towards the 

right of the ternary diagram pointing to contributions from radiogenic (crustal) helium, 

and plot below the narrow MORB CO2/3He ratio of 2 x 109. The three samples (Punta 

Estrella, Puertecitos, and El Volcan) with the highest 3He/4He ratios plot on a trajectory 

towards the CO2 apex (high CO2/3He), suggesting mixing between crustal and mantle 

end-members. Similar trends have been found in the Rungwe Volcanic Province (Barry 

et al., 2013), where samples plotting at the apex have unusually high CO2/3He ratios and 

are usually representative of samples that have experienced hydrothermal phase 

separation, due to the fact that CO2 is more soluble in water than He. Samples plotting at 

the base of the diagram, those with very low CO2/3He values, are thought to have 

experienced CO2 loss by processes such as calcite precipitation. These shallow level 

processes act to modify source signatures of CO2/3He (and δ13C) during transport to the 

surface (Barry et al., 2013). In the following discussion, we assess whether the variations 
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of CO2-3He-4He of the samples reflect binary mixing between different end-member 

components or if other processes are involved. 

 
 
Figure 8: Ternary plot of CO2, 3He, and 4He for gas and water samples from northern Baja California. For 
reference, we plot MORB (8 ± 1 RA) with a black circle and Air (1 RA) with a green circle. 
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5.2.1 Controls on He – CO2 Systematics I: Sampling Gas vs. Water  

Phase separation within a hydrothermal system can significantly alter CO2/3He 

and δ13C values due to solubility differences between CO2 and He in water (Ellis and 

Golding, 1963). In this situation, where CO2 has a higher solubility in aqueous fluids than 

He (Ozima and Podosek, 1983), He will preferentially partition into the vapor phase 

relative to CO2 leaving the residual water phase with a higher CO2/3He relative to starting 

values. Phase separation can also have an effect on the δ13C as fractionation occurs 

between 13CO2 and 12CO2 during partitioning of CO2 between water vapor and liquid 

(Vogel, 1970). 

 Since six of our localities display low (105-108) CO2/3He values, there is an 

indication that hydrothermal phase separation may play a role in modifying some 

samples. These localities (Cascada Arroyo Guadalupe, Santa Minerva, Las Positas, PNA, 

San Borja, and Ensenada) exhibit low CO2/3He ratios ranging between 105 and 108 and 

low δ13C values ranging between -9.86 to -19.39‰. In an ideal scenario, both gas and 

water samples would be collected for each locality to allow a comprehensive comparison 

between the two phases. Unfortunately, not all sampling sites allowed for both water and 

gas sampling with the exception of San Borja, El Volcan, and Ejido Uruapan. In this 

case, there is little difference in the CO2/3He ratios between the San Borja water phase 

sample (BAJA-32) and its corresponding gas phase sample (BAJA-34, see Table 1). 

Therefore, it is not clear whether hydrothermal phase separation alone can explain the 

CO2/3He characteristics of this particular locality. However, δ13C fractionation is 

apparent in the water and gas values at El Volcan (-5.72 and -9.05‰, respectively) and 
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San Borja (-12.46 and -17.62‰, respectively), consistent with the ~4‰ difference that 

Vogel predicted (see Figure 9). 

 
Figure 9: δ13C plotted versus longitude for gas and fluid samples from northern Baja California. Vertical 
tie-lines connect gas and fluid phase samples form the same locality. 
 

5.2.2 Controls on He – CO2 Systematics II: Calcite Precipitation 

A process that can act to lower the CO2/3He ratios and fractionate δ13C is the loss 

of CO2 through calcite precipitation (Ray et al., 2009). Interaction with country rock 

during the cooling and/or mixing of fluids deep within the hydrothermal system tends to 

leave fluids abundant in Na+, Ca2+, Mg2+, and HCO3-/CO3
2- ions (Spane and Webber, 

1995; McLing et al., 2001). The CO2 rich fluids and gases react with these ions to 

precipitate carbonate minerals. During this reaction, CO2 remains in the form of calcite, 
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leading to lower CO2/3He ratios and more positive δ13C in residual fluids. This would 

result in samples plotting on the base of the CO2-3He-4He diagram.  

 

5.3 CO2/3He – δ13C Mixing Model 

Figure 10 is a plot of a three-component mixing model, frequently used to resolve 

MORB, marine limestone, or organic sediment derived carbon contributions using 

CO2/3He and δ13C data (Sano and Marty, 1995; Kulongoski et al., 2013). Thus, we plot 

the CO2/3He ratios as a function of δ13C for water samples with three end-members: 

Limestone (L), Mantle (M), and Sediment (S) in Figure 10. The assumed end-member 

composition for both δ13C and CO2/3He compositions are δ13C = -6.5‰, CO2/3He = 

2x109 for (M), δ13C = 0‰, CO2/3He = 1013 for (L) and δ13C = -30‰, CO2/3He = 1013 for 

(S) (Sano and Marty, 1995). In addition, binary mixing trajectories and fractions between 

end-members are illustrated on the plot. 
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Figure 10: Plot of CO2/3He versus δ13C for northern Baja California fluid samples. Mantle (M) values: 
δ13C=-6.5‰, CO2/3He=2x109. Limestone (L) values: δ13C=0‰, CO2/3He=1013. Sediment (S) values: 
δ13C=-30‰, CO2/3He=1013. Note that Cascada Arroyo Guadalupe, Santa Minerva, Ejido Uruapan, Las 
Positas, Plan Nacional Agrario, San Borja, and Ensenada are not shown. 
 

As seen in Figure 10, the majority of our samples (except El Volcan and 

Puertecitos) plot outside the theoretical mixing lines and are therefore unrepresentative of 

mixing. Typically, the L-M-S model works well in high temperature volcanic systems 

coupled with samples that undergo little to no modification. While the Puertecitos and El 

Volcan samples may be explained by L-M-S end-member mixing, the remaining samples 

have been modified due to phase separation and calcite precipitation. Using a simple 

calcite precipitation model (see Figure 11), we observe that Rancho Agua Caliente, 

Rancho San Carlos, Ejido Uruapan, Puertecitos, El Volcan, and Ensenada fluid phase 

samples that plot outside the L-M-S mixing lines can be explained by CO2 loss. 



	 41	

Assuming a crustal starting composition of CO2/3He = 2x1011 and δ13C = -4‰, as carbon 

is subsequently removed by calcite precipitation, we observe highly fractionated carbon 

isotopes with atypical and positive δ13C signatures.  

 
Figure 11: Plot of CO2/3He versus δ13C for northern Baja California fluid samples. Mantle (M) values: 
δ13C=-6.5‰, CO2/3He=2x109. Limestone (L) values: δ13C=0‰, CO2/3He=1013. Sediment (S) values: 
δ13C=-30‰, CO2/3He=1013. Starting composition assumed to be CO2/3He = 2x1011 and δ13C = -4‰. 
 

In order to quantify the relative proportions of CO2 derived from each respective end-

member component, the mass fractions of three major sources of carbon are 

quantitatively calculated using the following equations (Sano and Marty, 1995):  

(13C/12C)O = f M(13C/12C)M + f L(13C/12C)L  + f S(13C/12C)S 

1/(12C/3He)O = fM/(12C/3He)M + fL/(12C/3He)L + fS/(12C/3He)S 

fM + fL + fS = 1 



	 42	

 

Table 5: Carbon Provenance 
Sample Location Mantle % Limestone % Sediment % 

Puertecitos 14.2 85.8 0.0 
El Volcan 0.0 80.9 19.1 

 

where subscripts M, L, and S correspond to end-members Mantle, Limestone, and 

Sediment with end-member compositions as mentioned above. Calculated results are 

given in Table 5. Of the samples that fall within the L-M-S model, El Volcan has CO2 

contribution primarily from limestone (81%) and sediment (19%) and Puertecitos has a 

similar limestone input (86%) coupled with a minor mantle contribution (14%). 

 

5.4 He – CO2 Crustal-Mantle End-member Contributions 

 Figure 12 illustrates a R/RA – CO2/3He plot containing a series of curves 

representing binary mixture of mantle-derived gas and crustal-derived gases of various 

CO2/3He values on logarithmic scales. It can be used to evaluate correlations between 

mantle-derived and crustal gases (O’nions and Oxburgh, 1988). Volatiles released from 

MORB result in nearly constant CO2/3He values (~2 x 109; Marty and Jambon, 1987), 

whereas crustal rocks are characterized by several orders of magnitude higher (1011-1013) 

(O’Nions and Oxburgh, 1988) CO2/3He values. In Figure 12, the observed CO2/3He 

varies from 105-1013. Significantly, half of the samples plot close to the mantle value but 

are characterized by much lower 3He/4He (0.22 - 0.65 RA) than a typical mantle signature 

(8 RA). Low 3He/4He and low, mantle-like CO2/3He ratios suggest that the crustal 

component has low CO2/3He ratios or the CO2/3He ratio has been modified (De Leeuw et 

al., 2010). Across all samples, 3He/4He ratios are generally constant within one order of 
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magnitude, but lie on different mixing trajectories, suggesting the trends cannot be 

explained by simple binary mixing. 

Figure 12: CO2/3He versus He-isotopes with mixing trajectories between MORB and various crustal 
CO2/3He end-members (1 x 107 – 1 x1014). 
 

 

5.5 Mantle Velocity Anomalies and Helium Isotope Ratios (3He/4He) 

To better understand regional mantle degassing in northern Baja California, we 

compared the results of our regional survey of helium isotope measurements with the 

mantle velocity structure produced by tomographic studies. Previous studies (Di Luccio 

et al., 2014; Persaud et al., 2015) have utilized velocity measurements to gain a better 

insight of the lithospheric structure of Baja California.  
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Figure 13 is a regional map of Baja California showing our 13 sampling localities 

superimposed on tomographic data from 25-40 km depth. In this region, areas of low 

mantle velocity (LVZ) are generally indicative of hot or partially molten mantle, whereas 

regions of high mantle velocity are reflective of old and dense slab remnants (Wang et 

al., 2009). To a first order, the regional LVZ is spatially correlated with the 3He/4He 

ratios observed at the surface. A major LVZ is situated between the Main Gulf 

Escarpment and the Delfin spreading centers in the Gulf of California. The anomaly is 

centered around Puertecitos, the locality with the highest 3He/4He ratio (1.74 RA) in our 

study. In addition, three other localities, Punta Estrella, El Volcan, and Plan Nacional 

Agrario, are also in close proximity to this LVZ. El Volcan and Punta Estrella have 

similarly high 3He/4He ratios (1.31 and 1.13 RA respectively) with the only exception 

being PNA, with the lowest 3He/4He ratio (0.30 RA) recorded within this area. One 

possible explanation for this low ratio in PNA is that it is situated within the San Pedro 

Mártir mountain range, an area with a crustal thickness of up to 40 km (Lewis et al., 

2001). The greater crustal thickness in the area allows for greater mixing between mantle 

volatiles and crustal/radiogenic materials, resulting in a more diluted helium signature.  

 Figure 14 is the same regional map of Baja California shown above but with 

tomographic data from 50 to 90 km depth. Here, we observe that most of the LVZs are 

found to be generally displaced off axis from the spreading centers in the rift basins. This 

indicates that the pathway for melt migration is more complex than in an axis-centered 

LVZ source aligned above a deeper region of mantle melt and likely reflects the spatial 

evolution of rift segment magamtism. Conversely, the high velocity anomalies beneath 
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west-central Baja (shown in blue) have been interpreted as a fossil slab now captured by 

the Pacific plate (Di Luccio et al., 2014). 

 

Figure 13: Regional tectonic map of Baja California and the Gulf. Sampling localities are labeled and 
shown in circles. Velocity anomalies reflect a depth of 25 to 40 km (adapted from Forsyth et al., 2007 and 
Wang et al., 2009). Figure modified from Spelz et al., 2017.  
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Figure 14: Regional tectonic map of Baja California and the Gulf. Sampling localities are labeled and 
shown in circles. Velocity anomalies reflect a depth of 50 to 90 km (adapted from Forsyth et al., 2007 and 
Wang et al., 2009). Figure modified from Spelz et al., 2017.  
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6. CONCLUSION 

 

This study presents the results of the first detailed helium and carbon isotope 

investigations of 13 hot springs in northern Baja California. The results reveal that helium 

isotopes along the northwest region are primarily controlled by the presence of transform 

faults in the transpeninsular strike-slip province, allowing geothermal fluids to reach the 

surface through these conduits. The elevated helium isotopes observed along the central 

and eastern regions may be associated with the proximity of active spreading centers in 

the Gulf aided by extensional tectonic structures of the Gulf Extensional Province. 

Helium characteristics reveal that radiogenic crustal input has modified the original 

sample source characteristics. However, significant mantle volatile contributions (1.1 to 

21.4%) are still observable in our samples. 

Coupling our helium isotope data with tomography data, we observe a general 

correlation between high helium isotope ratios and low shear wave velocity anomalies, 

akin to the results of previous studies focused in the western United States (Newell et al., 

2005). These low velocity zones have been interpreted as regions of partial melting and 

are primarily located near the axis of spreading centers in the rift basins in the Gulf of 

California. This agreement suggests that low mantle velocity is linked to observed 

regional degassing as evidenced by ubiquitous mantle helium contribution in spring and 

groundwater samples.  

Determining carbon provenance is limited due to atypical δ13C values and low 

CO2/3He ratios in our samples. Notably, the L-M-S model does not accurately reflect the 

carbon origin of our samples due to extensive modification via phase separation and 
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calcite precipitation. Only the carbon from Puertecitos and El Volcan could be identified 

(with a degree of uncertainty) in relation to the mantle, sediment, and limestone end-

members, with the CO2 being dominated by limestone input.  

The coastal region of Puertecitos and Punta Estrella can be considered as 

promising geothermal prospects due to their high heat flow and proximity to populated 

areas. In addition, the offshore Wagner and Consag basins output an average heat flow of 

1875 mW/m2 (Prol-Ledesma et al., 2013), significantly higher than the mean oceanic heat 

flow. Expanding our study to incorporate more hot springs for analysis, as well as 

coupling our geochemical data with existing geothermometry data, may prove the 

feasibility for future development and exploitation of each of the peninsula’s geothermal 

system prospects, and discovery of new prospects that presently are not economically 

viable using today’s technology. 
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