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1. Introduction 

Electroencephalography (EEG) is the measurement of the electric potentials on 

the scalp surface generated (in part) by neural activity originating from the brain.  The 

sensitivity of EEG to changes in brain activity on such a millisecond time scale is the 

major advantage of EEG over other brain imaging modalities such as functional magnetic 

resonance imaging (fMRI) or near-infrared spectroscopy (NIRS) that operate on time 

scales in the seconds to minutes range. Over the past 100 years, neuroscientists and 

clinical neurologists have made use of EEG to obtain insight into cognitive or clinical 

disease state by applying a variety of signal processing and statistical analyses to EEG 

time series. More recently there has been growing interest in making use of statistical 

modeling of EEG signals to directly control physical devices in Brain-Computer 

Interfaces. In this chapter we provide an introduction to EEG generation and 

measurement as well as the experimental designs that optimize information acquired by 

EEG. 

EEG has statistical properties that vary over time and space. That is, we assume 

the data recorded are observations of a spatio-temporal stochastic process.  The starting 

point of most EEG analysis is to consider the properties of the time series at each 

electrode, such as spectral power, in relation to sensory stimulation, cognitive processing, 

or clinical disease state. EEG power is typically split up into bands which correspond to 

different spectral peaks that relate to behavior or cognitive state. These bands are 

typically defined as the delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-20 Hz), 

and gamma (>20 Hz) bands and can have high-power over spatially distinct regions on 

the scalp, as shown by an EEG recording of a subject at rest in Figure 1. Because this 

EEG was recorded using a high-density, 128 electrode net, the topographic scalp maps 

could be found by interpolating values between electrodes. Modern EEG systems 

typically use a large number of electrodes (ranging from 64 to 256) to provide coverage 

over most of the scalp, enabling the analyses of spatial properties of EEG, such as 

correlation or coherence between electrode sites.   

In this chapter we first review physical properties of EEG recordings, in order to 

model the relationship between potentials on the scalp and current sources in the brain.  

Models of volume conduction of current passing through the head imply that EEG signals 
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are strongly influenced by the synchronization of neural current sources; EEG is as much 

a measure of neural synchrony as neural activity.  We then introduce issues in EEG 

recording and preprocessing, with particular emphasis on the problem of artifacts.  The 

last two sections consider the types of EEG analyses appropriate for different 

experimental designs.  

    

2. The neurophysics of EEG  

 

Scalp potentials are believed generated by millisecond-scale modulations of synaptic 

current sources at neuron surfaces (Lopes da Silva and Storm van Leeuwen 1978; Nunez 

1981, 1995; 2000a,b; Lopes da Silva 1999), while single neuron firings of action 

potentials are mainly absent in scalp activity due to other, inactive neurons contributing 

to low-pass temporal filtering (Nunez and Srinivasan, 2006; Buzsáki, 2006).  Action 

potential time scales are typically on the order of less than 1 ms, while synaptic potentials 

occur on the order of 10 ms or more—a time scale more consistent with the oscillations 

observed in EEG.   Any patch of cortex 3-5 mm in diameter and traversing all cortical 

layers contains ~ 106 neurons and perhaps 1010 synapses (Nunez, 1995). Excitatory and 

inhibitory synapses inject current into the cell bodies and induce extracellular potentials 

(via return currents) of opposite polarity. These extracellular currents yield the electrical 

potentials recorded on the scalp with EEG.   

When measurement of the potential is taken at “large” distance away from the 

source region, a complex current distribution in a small volume can be approximated by a 

dipole or more accurately, a dipole moment per unit volume (Nunez and Srinivasan, 

2006). The (current) dipole moment per unit volume is an intermediate scale vector 

function based on the distribution of positive and negative micro-current sources in each 

local tissue mass, typically applied to cortical columns. The dipole approximation to 

cortical current sources provides a basis for realistic models of EEG signals. A “large” 

distance in this case is at least 3 or 4 times the distance between the effective poles of the 

dipole. In the context of EEG recording, the dipole approximation appears valid for 

potentials in superficial cortical tissue with a maximum extent in any dimension of 

roughly 0.5 cm or less. This is because superficial gyral surfaces are located at roughly 
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1.5-2 cm from scalp electrodes, separated by a thin layer of passive tissue, including 

cerebrospinal fluid (CSF), skull, and scalp.  

Thus, the current sources in the brain that generate EEG can be modeled in terms 

of dipole moment per unit volume P(r', t) for any time t where the location vector r' 

spans the volume of the brain.  For convenience of this discussion, the brain volume may 

be parceled into N small tissue masses of volume V (e.g., 3 mm x 3mm x 3mm), each 

producing its vector dipole moment, such that, in an adult brain, N ~ 105 to 106.  The 

strength and orientation of each vector depends on the distribution and synchrony of 

excitatory and inhibitory post-synaptic potentials within the tissue mass (Nunez and 

Srinivasan, 2006). The potential on the scalp surface can then be expressed as a weighted 

sum (or integral) of contributions from all these sources. In most models, each volume 

element V(r') is located only within the superficial cortex since current sources in deeper 

tissues, such as the thalamus or midbrain typically contribute very little to scalp potentials 

(Nunez and Srinivasan, 2006). Thus, the volume integral may be reduced to a surface 

integral over the folded cortical surface 

 

 
( , ) ( , ) ( , ) ( )S H

B

t G t dV


  r r r' P r' r'
 (1) 

 

The weighting term GH is the Green’s function for volume conduction of current passing 

through the tissues of the head. It depends on both the location of source r' and the 

location of the scalp electrode r. The Green’s function can be thought of as the impulse 

response function between sources and surface locations and contains all geometric and 

conductive information about the head as a volume conductor. GH will be larger for 

superficial sources in the visible gyral crowns of the cortex than for deeper sources, such 

as in the sulcal walls (folded surfaces) or sources on the mesial (underside) of the brain.     

Any model of head volume conduction, i.e., any form of the function GH, is only 

an approximation. Magnetic Resonance Imaging (MRI) can provide geometric 

information by imaging the boundaries between tissue compartments with different 

electrical conductivity (the inverse of resistivity).  Numerical methods such as the 

Boundary Element Method (BEM) or Finite Element Methods (FEM) may then be used 
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to estimate GH, by employing MRI to determine tissue boundaries as shown in the 

examples in Figure 2 (b and c).  However, the geometric model obtained from MRI is 

still only approximate due to limits in spatial resolution (typically 2-5 mm).  And even if 

we were able to obtain perfect geometric information, the head model would still only be 

approximate due to the substantial uncertainty in our knowledge of tissue conductivities 

(Nunez and Srinivasan, 2006).   

The poor conductivity of the skull is the feature that most strongly determines 

volume conduction in the head.  Estimates of the conductivity of the skull vary widely 

depending on whether the estimate is in-vivo or in-vitro and differ between skull samples 

from different regions of the head.  Skull itself is composed of three layers of different 

conductivity which vary in thickness across the head (Nunez and Srinivasan, 2006) and 

are not easily measured with MRI (Srinivasan, 2006).  

Despite these uncertainties in the geometry and conductivity of the head, the gross 

features of volume conduction are captured by any model that includes a poorly 

conducting skull layer in between conductive soft tissue.  A simple estimate of GH can be 

provided by models which consist of three concentric spherical shells (brain, skull, and 

scalp) or four shells when including a CSF layer as shown in Figure 2a, such that these 

models have been useful in a number of simulation studies (Nunez et al., 1994; 

Srinivasan et al., 1998; Nunez and Srinivasan, 2006). These models also have the 

advantage of easy checking of computational accuracy as analytic solutions for these 

models have been obtained (Nunez and Srinivasan, 2006). The following gross features 

of head volume conduction are captured by this model: (1) the poor conductivity of the 

skull results in very little current entering the skull from the brain. (2) Current is expected 

to mostly flow radially through the skull into the scalp as current follows the path of least 

resistance.  Exceptions are holes in the skull like the nasal passages. (3) All of the current 

is contained in the scalp, as no current can enter the surrounding air. (4) Very little 

current is expected to enter the body because of the high resistance of the neck, such that 

the head can be considered a closed object to first approximation. In all models that 

contain these essential features, the tangential spread of current within the scalp leads to 

the “smearing” of the scalp potential, i.e., low-pass spatial filtering, resulting in the low 

spatial resolution of EEG as compared to direct recordings on the brain surface. Thus this 
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model captures the fact that EEG is a direct measurement of the current flowing in the 

scalp.    

 There is considerable interest in the EEG literature in developing methods to 

estimate the current source distribution in the brain P(r', t) from the EEG recording and a 

volume conduction model of the head.  However, this inverse problem is ill-posed; given 

the potential distribution on the surface of the scalp, it is not possible to estimate the 

source distribution without additional assumptions (Nunez and Srinivasan, 2006). That is, 

for any given GH estimate and true scalp potential ΦS(r, t) there are a large number of 

solutions for P(r', t). Although in some cases, for example an epileptic focus in the 

cortex, it may be reasonable to assume a single isolated source P(r', t) in order to find a 

solution. Another popular approach that is widely adopted is to use Tikhanov 

regularization to obtain a minimum L2 norm estimate of P(r', t)  (Hauk, 2004).  While 

this approach is mathematically tractable, there is no apparent theoretical reason why 

neuroscientists should seek solutions with a minimum L2 norm.  More recently, methods 

based on Bayesian inference have been developed which have the advantage of making 

assumptions explicit. These methods allow for the possibility of model validation and 

allow for comparisons between models based on different assumptions (Baillet and 

Garnero, 1997; Wipf and Nagarajan, 2009).  They also allow for the use of prior 

information, for example by making use of fMRI information to influence the source 

solutions (Henson et al., 2010).    

  

3. Synchronization and EEG  

 

The magnitude of the scalp potential recorded with EEG can change for several 

reasons related to source synchronization. The large changes in scalp amplitude that 

occur when brain state changes are believed to be due mostly to distributed 

synchronization changes. That is, large-scale synchronization increases (or decreases) 

over cm scales in the tangential direction across the cortex will cause increases (or 

decreases) in scalp potential if there are no other changes. With this knowledge, EEG 

scientists and clinicians have adopted the label desynchronization to indicate large 

amplitude reductions (Pfurtscheller and Lopes da Silva 1999). Although, at any one 
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location r' in the brain, small-scale changes in synaptic source synchronization will also 

change the magnitude (or source strength) of P(r', t) (Nunez and Srinivasan, 2006), we 

will concentrate in this section on large-scale synchronization that does not change the 

magnitude of each individual dipole moment P(r', t). Instead, we will show that large-

scale changes across different locations r' cause the scalp potential in Eq. 1 to decrease; 

this is because the integral approaches zero as more random positive and negative dipole 

moments P(r', t) at different cortical locations r' cancel. However if multiple locations r' 

have similar dipole moments per unit volume P(r', t) then synchronization occurs which 

leads to larger observed scalp potentials. 

We expect that the source of any EEG signal will never simply correspond to 

source activity in only one of the volume elements. Because neurons are highly 

interconnected, most EEG signals are generated by sources with spatial extent, i.e., 

patches of cortical tissue. Figure 3 shows examples of scalp potentials simulated in a 

concentric spheres volume conduction model due to a single dipole (a; corresponding to a 

patch of diameter < 3 mm) as well as dipole layers of diameter ranging from 3-5 cm (Fig. 

3c, 3e, & 3g).   For simplicity, we only make use of radial dipole sources in this example 

as similar effects could be found with dipole layers of arbitrary orientation.  Each dipole 

layer is composed of dipole sources with time series that are constructed by adding a 6 

Hz sinusoid of fixed amplitude A=15 to a Gaussian random processes with mean =0 and 

standard deviation =150. The 6 Hz components are synchronized across the dipole 

layers, whereas all other frequencies will have random phases. Each source signal is an 

independent random time series representing the potential across the cortical surface 

given by the dipole layer.  The source time series of a single dipole source (i.e. the dipole 

layer of very small size) is plotted in Figure 3a.  The magnitude of the 6 Hz sinusoid is 

only 1% of the total variance of each dipole source, and the sinusoid is not observable in 

the dipole time series.  Figure 3b shows the estimated potential measured at an electrode 

on the scalp directly above the center of a dipole layer of diameter 3 cm, based on a four 

concentric spheres model of the head (see Figure 3 caption for details of the head model).  

The time series exhibits a smoother appearance compared to the source time series.  And 

as the diameter of the dipole layer is increased from 3 to 4 to 5 cm (i.e. increasing 
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synchrony), the calculated surface potential becomes more obviously sinusoidal (Fig. 3c 

through 3h).    

Clearly, spatial synchrony is a least as important as the strength of the source in 

the generation of scalp potentials.  Most (99%) of the source activity in these examples is 

uncorrelated Gaussian noise across the dipoles in a patch of width 5 cm.  Yet, the scalp 

potential will appear smooth and periodic reflecting mostly relatively small magnitude 

(1% of) source activity that is synchronous across all sources in the dipole layer. The 

effect of volume conduction is to sum the source activity at the scalp electrode, so the 

asynchronous source time series contribute minimally due to noise cancellation. The 

synchronized 6 Hz signal is emphasized and the scalp potential is remarkably sensitive to 

the size of the dipole layer.   

We have previously quantified this effect as spatial filtering by volume 

conduction (Srinivasan et al, 1998; Nunez and Srinivasan, 2006; Srinivasan et al, 2007).  

One important implication is that spatial filtering by volume conduction can generally be 

expected to filter the temporal structure of source activity in the scalp EEG.  If sources 

with different time series take place in dipole layers of different sizes, EEG favors signals 

that are synchronized broadly over the cortical surface.  The magnitude of any scalp EEG 

signal is determined not only by the source strength but also by spatial properties of the 

source such as its size and synchrony. Thus, we anticipate that EEG recorded within the 

brain (known as electrocorticography or ECoG) will have quite different properties than 

EEG recorded on the scalp.  Neither signal is a more accurate representation of brain 

activity; instead they emphasize different spatial scales of synchronization in the brain.     

 

4.  Recording EEG 

 

Every EEG recording involves at least 3 electrodes, two measurement electrodes 

and a ground electrode.  Brain sources P(r, t) (current dipole moments per unit volume) 

and biological artifacts generate the majority of scalp potential differences V2(t) – V1(t). 

Environmental electric and magnetic fields also contribute to the measured scalp 

potential due mostly to capacitive coupling of body and electrode leads to power line 

fields. However, the amplifier ground electrode placed on the scalp, nose, or neck 
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provides a reference voltage to the amplifier to prevent amplifier drift and facilitate better 

common mode rejection by serving as a reference for the differential amplifier (Nunez 

and Srinivasan, 2006).   

Typically one electrode is singled out as the “reference electrode”; the remaining 

electrodes are characterized as “recording” electrodes. But electrode pairs are always 

required to measure scalp potentials because such recording depends on current passing 

through a measuring circuit (Nunez and Srinivasan, 2006). There are no monopolar 

recordings in EEG; all recordings are bipolar. Every EEG recording depends on the 

location of both recording and “reference” electrodes. Therefore any particular choice of 

reference placement offers possible advantages and disadvantages depending on actual 

source locations.  

But, in general, we do not know the location of the sources prior to recording 

EEG, so no ideal reference location is likely to be found in advance. Reference strategies 

have often been adopted in EEG laboratories without a clear understanding of the 

attendant biases imposed on the recording. The linked-ears or linked-mastoids reference, 

a historically popular reference choice with cognitive scientists, is one such idea with 

minimal theoretical justification, but nevertheless persists in a number of laboratories. In 

EEG, we generally measure potential differences between two locations on the head, and 

these differences depend on both electrode locations, as well as on all brain generator 

configurations and locations.    

In most EEG practice, the potentials at all the other electrode sites (typically 32-

256) are recorded with respect to the reference electrode. The position of these electrodes 

varies considerably across laboratories.  Standard electrode placement strategies make 

use of the 10-20, 10-10, and 10-5 electrode placement systems (Oostenveld and 

Praamstra, 2001). These systems are widely but not universally used. For larger numbers 

of channels (> 64), other electrode placement systems have been developed in order to 

obtain more uniform sampling of scalp potential, which is advantageous for source 

localization and high resolution EEG methods (Tucker, 1993).  The reference point is 

largely arbitrary; it is special only because we choose to record potential differences with 

respect to one fixed location. But we do have the option of changing the effective 

reference to another recording site further down the processing chain by simple 
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subtraction.   

The average reference (also called common average reference or global average 

reference) has become commonplace in EEG studies and has some theoretical 

justification (Bertrand et al. 1985).  When recording from N electrodes located at scalp 

locations rn, n = 1, 2,…, N , the measured potentials V(rn)  are related to the true scalp 

potential (rn) (measured with respect to “infinity”) by  

   

   ( ) ( ) ( )n n RV r r r        (2) 

 

where rn is the position of the nth electrode and rR is the reference electrode site. If we 

sum over all N electrodes, the potential with respect to infinity at the reference site can be 

written in terms of the scalp potentials as  

   
1 1

1
( ) ( ) ( )

N N

R n n

n n

r r V r
N  

 
    

 
     (3) 

 

The first term on the right side of Eq. 3 is the average of the scalp surface potential at all 

recording sites. Theoretically, this term vanishes if the mean of the potentials 

approximates a surface integral over a closed surface containing all current within the 

volume. Only minimal current flows from the head through the neck even with reference 

electrode placed on the body, so a reasonable approximation considers the head to be a 

closed volume that confines all current. The surface integral of the potential over a 

volume conductor containing dipole sources must be zero as a consequence of current 

conservation (Bertrand et al., 1985). If we make this assumption, the reference potential 

can be estimated by the second term on the right side of Eq. 3; that is, by averaging the 

measured potentials at all electrodes and changing the sign of this average. This reference 

potential (i.e. the average across electrodes) can thus be added to each measurement 

V(rn), thereby estimating the reference-free potential (rn) (potential with respect to 

“infinity”) at each location rn.  

However since we cannot measure the potentials on a closed surface surrounding 

the brain, the first term on the right side of Eq. 3 will not generally vanish. The 

distribution of potential on the underside of the head (within the neck region) cannot be 
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measured.  Furthermore, the average potential for any group of electrode positions, given 

by the second term on the right side of Eq 3, is only an approximation of the surface 

integral. For example, the average potential is expected to be a very poor approximation 

if applied with the standard 10-20 electrode system with 21 electrodes. As the number of 

electrodes increases to 64 or more, the error in the approximation is expected to decrease. 

Thus, like any other choice of reference, the average reference provides biased estimates 

of reference-independent potentials. Nevertheless, when used in studies with large 

numbers of electrodes (say 128 or more), we have found that the average reference 

performs reasonably well as an estimate of reference independent potentials (Srinivasan 

et al., 1998).   

 

5.  Preprocessing EEG 

 

Measured EEG signals have been amplified and filtered by analog circuits to 

remove both low and high frequency noise as well as power at frequencies greater than 

the Nyquist limit, established by the sampling rate of the analog to digital converter 

(ADC). The discrete sampling of continuous signals is a well-characterized problem in 

time series acquisition and analysis (Bendat and Piersol, 2001). The central concept is the 

Nyquist criterion:  fdig > 2fmax where fdig is the digitization rate or sampling rate and fmax is 

the highest frequency present in the time series. For instance, if the highest frequency in a 

signal is 20 Hz (cycles/sec), a minimum sampling rate of 40 Hz (one sample every 25 

ms) is required to record the signal discretely without aliasing. Aliasing is the 

misrepresentation of a high-frequency signal as a low-frequency signal because the 

sampling rate used during analog-to-digital conversion is lower than the Nyquist limit. If 

a time series has been aliased by under-sampling, no digital signal processing method can 

undo the aliasing because the necessary information for this procedure has been lost. In 

conventional EEG practice, a sampling rate is selected and the aliasing error is avoided 

by applying (in hardware) a low-pass filter to the analog signal that eliminates power at 

frequencies greater than the maximum frequency determined by the Nyquist limit. The 

low-pass filter is typically applied with a cut-off frequency 2.5 times smaller than the 

sampling rate. This more restrictive limit, known as the Engineer’s Nyquist criterion, 
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accounts for the possibility of phase-locking between the sampling and high-frequency 

components of the signal (Bendat and Piersol, 2001). The analog signal from each 

channel is sampled at perhaps 200 to 1000 times per second, assigned numbers 

proportional to instantaneous amplitude (digitized), and converted from ADC units to 

volts.   These samples can then be stored digitally in conventional EEG practice or further 

processed online (e.g., using an FFT) in certain clinical or BCI applications.    

The choice of filter settings requires some care. Clearly a low-pass filter must be 

set to insure removal of power at the very high frequencies determined by the Nyquist 

criterion. However, severe low pass filtering runs the risk of removing obvious muscle 

artifact at high frequencies (which would indicate time segments of data that potentially 

needs to be discarded), while passing muscle artifact at frequencies overlapping with 

EEG that can be easily mistaken for EEG (Fisch, 1999). For example, imagine using an 

analog filter to remove most power at frequencies greater than 20 Hz, thereby obtaining a 

much cleaner looking signal. However, the remaining signal might well contain 

significant muscle artifact in roughly the 15-30 Hz range (beta band), which is much 

harder to identify without the information at higher frequencies. Such subtle artifact 

could substantially reduce the signal to noise ratio in the beta band.  Some EEG systems 

have notch filters to remove power line interference (60 Hz in the Americas; 50 Hz in 

Europe, Australia, and Asia). However, the presence of power line noise in the recorded 

EEG signal is an easy way to detect electrodes that develop high contact impedances (or 

come off entirely) during the recording.  If EEG processing and analysis is based on FFT 

or other spectral analysis methods, the presence of moderate 60 Hz noise will have no 

practical effect on results at lower frequencies which contain most of the EEG 

information. 

   

6. Artifact removal 

 

 A substantial portion of the electrical signals recorded from EEG systems 

originate from outside the brain (Nunez and Srinivasan, 2006; Whitham et al., 2007). For 

example, in some areas on the head, close to the ears, eyes, and neck, we expect electrical 

signals originating in the cortex to have magnitude as much as 200 times lower than 



 1

3 

 

electrical signals from muscle activity (Fitzgibbon et al., 2015). Furthermore, movement 

of the head will generate artifacts over a large number of electrodes.  Potentials generated 

from sources other than cortical activity are dubbed artifact, and a major challenge in 

EEG analysis is to detect these signals and remove them from EEG recordings.  

 Artifact can either be biological in nature, such as muscle activity, or due to 

environmental factors such as electric fields caused by the common AC standard and 

temporary potential shifts due to movement. Biological artifact is typically caused by 

electrical potentials generated by muscle activity. The recording of muscle activity is 

known as electromyography (EMG) and typically originates from the eyes, face, and 

neck, but also from muscles all over the body (Whitham et al., 2007). Another source of 

common artifact is the rhythmic beating of arteries in the temples or neck and potentials 

from distant but large muscles in the heart (electrocardiography or EKG). Transient 

muscle artifact can be due to head movements, eye blinks, lateral eye-movement, or jaw 

clenching; all of which may display different spatio-temporal patterns of potentials on the 

scalp.  

In order to better draw inference about brain activity, multiple procedures have 

been developed to reduce the contribution of artifact in EEG recordings. Ocular artifact 

such as eye blinks and lateral eye movements can be automatically removed using 

regression methods (Gratton et al., 1983). In a typical ocular regression method, 

electrodes are placed near the eyes to record electrooculographic (EOG) signals, 

potentials generated by musculature associated with the eyes. The effect of these EOG 

signals on the other EEG channels is then estimated with linear regression. The total 

influence of the EOG signals on the EEG is then removed by subtracting the product of 

the EOG signals and the regression coefficient estimates (Schlögl et al., 2007).   

Independent Component Analysis (ICA; Bell & Sejnowski, 1995) has become an 

important tool for identifying and removing artifact. Independent component analysis 

(ICA) refers to a class of blind source-separation algorithms used to decompose linear 

mixtures of data. For example, some ICA algorithms find linear mixtures of variables that 

are maximally non-Gaussian by searching for mixtures with either minimum mutual 

information or maximum kurtosis (Makeig et al. 1996; Jung et al., 1998). In practice 

these methods often yield non-normal mixtures that have distributions with outliers. The 
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two most widely used algorithms in the EEG literature are the FastICA (Hyvärinen & 

Oja, 1997) and InfoMax ICA (Bell & Sejnowski, 1995; Delorme & Makeig, 2002). 

ICA assumes that there is a linear mixture of the EEG data V (a channels c by 

time t matrix) such that the independent components M (a component k by time t matrix) 

are given by VWM 1  where W-1 is the matrix consisting of k by c weights.  Some of 

the resulting components have been shown to well represent some specific types of 

artifact (Delorme et al. 2007).  The components evaluated to reflect artifact can then be 

removed from the data by inverting the equation using a reduced matrix WL to remove the 

artifact components.   

There are two caveats with this approach.  First, the identification of the artifact 

component is inherently a subjective judgement. Some artifact sources are easy to 

identify such as eye blinks, eye movements, and temporary electrical discontinuities 

(perhaps due to a reference electrode or ground electrode displacement during head 

movement).  But artifacts due to muscle are far more subtle.  Second, the effect of 

reducing the number of sources in M is to reduce the rank of the data matrix, which 

potentially influences further analysis by reducing the amount of possible EEG mixtures. 

 To perform an ICA based artifact removal procedure, the continuous recording is 

first split into 1-3 second epochs, usually based on the trial structure of the experiment in 

cognitive experiments. Epochs that obviously contain artifact rather than EEG, usually 

due to gross movements by the subject, can then be rejected by visual inspection, or by 

examining trials with high variance compared to other trials. Not removing this one-off 

data hinders the ability of the ICA algorithm to isolate typical artifacts such as eye blinks. 

After this “precleaning” step, an algorithm is run with the EEG data as input to obtain an 

ICA decomposition.  

Typical graphical representations of Independent Components (ICs) are 

topographic maps of the inverse weights, component spectra, and component time series 

or average component time series across epochs. Figure 4 provides typical graphical 

representations of the 12 components that describe the most variance in a subject's EEG 

data using InfoMax ICA. The EEG was collected from a subject at rest who fixated on a 

cross on a monitor for 42 seconds. Due to properties of the weight matrix W (columns 

represented as the circular head plots in Figure 4 corresponding to each component), the 
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component spectra and the component time series, we identified 4 components that could 

be indicative of artifact. Component 1 (IC1) most likely captures the electrical potentials 

due to eye blinks. Indicative of eye blinks, the channel weights indicate that all the 

component information is located near the eyes. The power spectrum has one peak in a 

low frequency band because the time series has high amplitude waveforms located 

sparsely in time (which occur once per blink). IC12 is probably muscle artifact, perhaps 

due to facial tension. It contributes to the EEG recording mainly at peripheral electrodes, 

and its spectrum has high power at high frequencies and low power at typical resting 

EEG frequencies (such as alpha rhythm, around 10 Hz). Furthermore, the topography’s 

spatial frequency is too high (i.e. too focal) as this spatial frequency is near impossible 

for EEG to obtain due to the properties of head volume conduction which acts as a low-

pass spatial filter. Similarly, IC6 captures data that cannot be due to brain activity 

because its weight is only at one electrode and the power spectrum exhibits a 1/f 

frequency falloff (a property of electrical “pink” noise). As indicated by its time course, 

this component is probably a mix of a temporary electrical discontinuity at about 6 

seconds and a horizontal eye movement at about 12 seconds.  IC7 is similar in its 

properties to IC6 and captures only a temporary electrical discontinuity at 41 seconds. 

The rest of the ICs most likely reflect cortical electrical activity or mixtures of cortical 

electrical activity and muscle artifact. These ICs contain peaks in alpha (8-13 Hz) and/or 

beta frequency bands (13-20 Hz) and have lower spatial frequency distributions typical of 

EEG.  

We recommend keeping EEG and artifact mixtures in the data unless very 

specific properties of the EEG are of interest a priori. There is empirical evidence to 

suggest that ICA algorithms do not isolate many types of muscle artifact, especially task 

related artifact, and thus rejecting ICs that do not clearly represent artifact becomes very 

subjective (Shackman et al., 2009). Furthermore, the efficacy of ICA to reduce all EMG 

artifact remains controversial at best (Olbrich et al., 2011; McMenamin et al., 2011). 

However if one must analyze a dataset that has a large quantity of muscle artifact, there 

may be a few indicators of EEG data that do not originate in the brain. For instance, an IC 

representing EEG or an EEG-EMG mixture may have a constant distribution of sample 

variances over all trials if the subject is in the same cognitive state and is doing the same 
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task. In contrast, irregular EMG components will typically only have large variances on 

only a few trials. 

 In order to reduce subjectivity of the artifact independent component (IC) removal 

process and reduce the time demand on performing artifact removal, some progress has 

been made on automatic rejection of artifact components. ADJUST is an algorithm that 

uses properties of the components such as spatial weight distributions on the scalp, 

variance, and kurtosis of the components’ potentials to automatically label components as 

eye blinks, vertical eye movements, horizontal eye movies, or generic potential 

discontinuities so that they can be subtracted from the recording (Mognon et al., 2011) 

 No known modern artifact correction technique is perfect for muscle artifact 

removal, and no EEG recording is completely immune to muscle artifact (Whitham et al., 

2007). This is particularly the case for the neck and face muscle variety; thus, good 

recording and analysis practices are still the best approach for reducing artifact in EEG 

recordings. Subjects should be told to remain still and minimize jaw clenching, and the 

electrode cap or net should be positioned tightly (but comfortably) on the subject. Muscle 

artifact exhibits broadband frequency spectra with substantial relative power above 15 

Hz; therefore analyses of the delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and mu (11-

14 Hz) bands are typically more robust to muscle artifact contamination.  

 

7.  Stationary Data Analysis 

 

The starting point of most EEG data analysis is spectral analysis to assess 

statistical properties of amplitude and phase of multiple EEG frequency bands.  Even 

when the final goal of the analysis does not involve spectral analysis, examining the 

spectrum of the EEG is a useful starting point for evaluating data quality and for 

communication of more complex methods. The spectrum obtained by applying the 

Fourier transform to a single EEG epoch or time window provides information about its 

frequency content. Fourier transform algorithms yield estimates of Fourier coefficients 

that reflect both the amplitude and phase of the oscillations within one frequency band. 

Fast Fourier Transforms (FFT) are one class of algorithms that are particularly useful, 

and a number of important issues in practical FFT analysis are detailed in several texts 
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(see Bendat & Piersol 2011 for examples).  Other Fourier analysis or spectra-like 

algorithms such as multi-taper analysis (Percival & Walden, 1993), autoregressive 

models (Ding et al., 2000), wavelet analysis (Lachaux et al. 2002), and Hilbert transforms 

(Bendat & Piersol 2011; van Quyen et al. 2001; Deng & Srinivasan, 2010) have potential 

applications in EEG, particularly in the analysis of short epochs characterizing EEG 

behavior after an experimental stimulus. Any of these algorithms can be used to carry out 

spectral analysis of time series, but an FFT based analysis provides a quick and easy 

assessment of the spectrum.  

 The amplitude spectrum of one epoch of EEG is an exact representation of the 

frequency content of that particular time window, but only provides one observation 

about the random process generating the signal.  The full ensemble of K epochs {Vk(t)} 

can be used to estimate statistical properties of the random process generating the EEG 

under the assumption of weak stationarity (Bendat and Piersol, 2011).  Weak stationarity 

is obtained if the mean and variance of the signal do not change with time. This can be 

verified by obtaining an estimate of mean and variance at each time point across epochs.  

Typically, the weak stationarity assumption is reasonable in the analysis of spontaneous 

EEG in resting-state experiments; it is not reasonable in any experiment where a sensory 

stimulus is presented and/or a motor response is obtained from the subject.   

Estimating the power spectrum from an ensemble of epochs yields an estimate of 

the variance of the signal as a function of frequency. This is a particularly useful 

approach because EEG contains oscillatory activity in distinct frequency bands that are 

associated with different brain states.  First, for each epoch Vk(t), Fourier coefficients 

Fk(fn) are obtained by applying a Fourier Transform, perhaps using the FFT. Then the 

power spectrum may be estimated from the ensemble of observations by summing over K 

epochs, given in Eq. 4. 
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When applying the FFT, the frequency resolution f = 1/T of the resulting power 

spectrum depends inversely on the length of each observation T as nf n T  where n 
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indexes the frequency band.  The equation for the power spectrum is multiplied by a 

factor of two because the Fourier transform provides amplitudes split between positive 

and negative complementary phases and only amplitudes at positive phases are usually 

calculated. If the mean value of the signal is zero, the power spectrum summed over all 

frequencies is equal to the variance in the signal, a relationship known as Parseval’s 

theorem (Bendat and Piersol 2011). The square root of the power spectrum, the amplitude 

spectrum, places more emphasis on non-dominant spectral peaks. Any algorithm used to 

obtain Fourier coefficients can be used to approximate Eq. 4; although the definition of 

frequency bands depends on the algorithm. Eq. 4 provides a definition of the EEG power 

spectrum in units that depend on the frequency resolution f.  In order for the results to 

be compared across all choices of epoch length, the power spectrum is sometimes 

normalized by the frequency resolution f to express power in units of V2 per Hz.  

 Before the rise of widespread access to computational power and use of the Fast 

Fourier Transform, the power spectrum of a time series was typically calculated in a two 

stage procedure.  First the autocorrelation function was estimated and then the Fourier 

transform of the autocorrelation function was calculated. The result is equivalent to the 

power spectrum of the signal. The autocorrelation function is the covariance of the signal 

with itself as a function of lag: 

 

  ( ) ( ) ( )VVR E V t V t    (5) 

 

Like the power spectrum, the true autocorrelation function is an unknown statistical 

property of the time series and can only be estimated. In Eq. (5) the lag variable  is 

defined over positive and negative values. The autocorrelation function contains exactly 

the same spectral information as the time series of epoch length T if the domain of  is [-

T/2, T/2]. The Fourier transform of the autocorrelation function is then equal to the power 

spectrum of the signal (Bendat and Piersol, 2001). However in modern spectral analysis 

the Fourier transform is usually directly calculated before calculating the power 

spectrum. 

 Estimation of the power spectrum involves tradeoffs in frequency resolution, 

statistical power, and weak stationarity. For example, consider the choices involved in 
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analyzing a 60 second EEG record.  Figure 5 demonstrates power spectra of two EEG 

channels, one occipital and one frontal, recorded with the subject’s eyes closed and at 

rest. The power spectra were obtained using an epoch length T = 60 seconds (f =0 .017 

Hz) and no epoch averaging (K = 1 epochs). With this choice, the FFT of the entire 

record is obtained (exact spectra of the two EEG signals), but no information about the 

statistical properties of the underlying random process is gained. Note that the power 

spectrum of the occipital channel (Fig. 5a) contains two peaks, one below 10 Hz and a 

larger peak above 10 Hz.  The frontal channel (Fig. 5b) shows a larger peak below 10 Hz. 

By examining the other channels it was found that the two peaks have distinct spatial 

distributions over the scalp, suggesting they have different source distributions. Each 

peak is surrounded by power in sidebands (adjacent frequency bins) of the two peak 

frequencies. The signals are stochastic processes occupying relatively narrow bands in 

the frequency spectrum.      

To analyze the 60 sec signal properly, we must decide how to divide the record 

into epochs to implement Eq. 4.  The choice is a compromise between the advantage of 

good frequency resolution yielded by long epochs (large T and small K) and the statistical 

power of our estimate gained by using a larger number of epochs (small T and large K). If 

a frequency resolution of f = 0.5 Hz is chosen, the record is segmented into K = 30 

epochs of length T = 2 sec. If frequency resolution is reduced to f =1 Hz, we divide the 

record into K = 60 epochs of length T = 1 sec. Figures 5c and 5d show the power spectra 

of the frontal and occipital channels with f = 1 Hz (grey circles) and f = 0.5 Hz (black 

circles).  The power spectra at the occipital and frontal channels are both dominated by 

alpha rhythm oscillations. At the occipital electrode (Fig. 5c) two separate peak 

frequencies are at 9.5 and 10.5 Hz are evident with f = 0.5 Hz, but this separation is not 

revealed with f = 1 Hz, where only a single peak frequency at 10 Hz is evident.  

Lowering frequency resolution has a similar effect at the frontal channel (Fig. 5d), but 

since there is very little power at 10.5 Hz, the only clear peak appears at 9 Hz. Thus, by 

choosing a lower frequency resolution we observe different peak frequencies at the two 

sites, while choosing higher frequency resolution results in pairs of frequency peaks at 

both sites but with different magnitudes.   
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By examining the power spectra for the occipital (Fig. 6a) and frontal sites (Fig. 

6b) for individual epochs with f = 0.5 Hz, evidence is found for two different 

oscillations within the alpha band. At the occipital channel, individual epochs display two 

distinct peaks at 9.5 Hz and 10.5 Hz.  The first 15 epochs show a strong response at 10.5 

Hz but the later epochs show a stronger response at 9.5 Hz. The dominant frequency in 

each epoch is summarized in the peak power histograms in Fig. 5c showing that 

individual epochs displayed peak frequencies at both 9.5 Hz and 10.5 Hz.  By contrast, 

very few epochs have a peak frequency of 10.5 Hz at the frontal site (Fig. 5d); most 

epochs have peak frequencies either at 9.5 Hz or in the delta band (< 2 Hz).  Note that 

during most epochs with strong delta activity in Fig. 5d the alpha peaks are attenuated.   

In the previous example, electrodes at different locations show different 

magnitudes of two distinct oscillations with center frequencies at 9.5 Hz and 10.5 Hz.  

The natural next step is to measure correlation between electrode sites to assess spatial 

statistics of the EEG. This is motivated by the idea that correlation of EEG signals should 

reflect functional connectivity of the brain. Neurons in distant (and nearby) cortex are 

connected by axons which form the white-matter beneath the gray-matter consisting more 

of cell bodies (Nunez, 1995). Coherence between two electrodes is a correlation 

coefficient (squared) that measures the consistency of relative phase between signals in a 

specific frequency band (and is weakly dependent on large amplitude changes). In EEG 

signals, coherence mainly reflects the consistency of phase differences across epochs, 

potentially reflecting axon transmission delays (Nunez and Srinivasan, 2006). Coherence 

ranges from 0 (indicating random phase differences) to 1 (indicating identical phase 

differences).   Like the Pearson correlation coefficient, coherence is a unknown statistical 

property whose true value depends on the entire theoretical population of all similar 

epochs and can only be estimated using the given sample of epochs. 

One way to estimate coherence between an electrode pair is to first calculate the   

cross spectrum (Bendat and Piersol, 2011). The cross spectrum, provided in Equation 6, 

is a measure of the joint spectral properties of two channels (i.e. a measure of the Fourier 

coefficient covariance). Fourier coefficients at a certain frequency fn  at each electrode are 

multiplied and averaged over K epochs to calculate the cross spectrum. 
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Where  refers to the complex conjugate of the Fourier coefficient at channel v. Note 

that the cross spectrum between a channel and itself (u = v) is equal to the power 

spectrum (Eq. 4) and is real valued. 

 In general, the cross spectrum is complex valued and can be thought of in terms of 

its magnitude (or cross-power) Auv and phase uv information. The phase of the cross 

spectrum is the average phase difference between the two channels. This average phase 

difference is called the relative phase.   The magnitude information Auv is analogous to 

the ordinary covariance between two time series, i.e. the covariance across observations 

between two channels in one frequency band.  Coherence at fn is defined by the squared 

magnitude of the cross spectrum standardized by the product of the power spectra (which 

are variances) of each signal 
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Coherence can be thought of as the fraction of variance at frequency fn  in channel u that 

can be explained by a constant amplitude and phase change (i.e. a linear transformation 

of Fourier coefficients) of the data at frequency fn obtained at channel v. 

Coherence between channels is most sensitive to phase differences. For instance, 

if the phase difference is constant over epochs between channels u and v, coherence is 

maximized and is equal to 1. If the relative phase between channels u and v varies across 

epochs, coherence will be less than one. Furthermore, if the phase difference is random 

across all epochs, the coherence estimate will approach zero as the number of epochs (K) 

increases. A coherence of 0.4 in frequency band fn indicates that at that 40% of the 

variance at one channel can be explained by a linear transformation of the other channel. 

However this does not imply that a linear relationship actually exists, only that the 

relationship (or part of the relationship) can be approximated by a linear transformation. 

If the activity at the two channels is truly related nonlinearly (e.g. have a quadratic 
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relationship), the coherence would provide information as to how well the nonlinear 

relationship can be approximated by a linear relationship. 

 If the goal is to estimate phase synchronization independent of amplitude 

fluctuations, Fourier coefficients in Equation 7 could be normalized by amplitude to 

obtain phase-only coherence.  Phase synchronization can also be evaluated with measures 

of the relative phase distribution across or within epochs (Tass et al., 1998). On the other 

hand, one reason to include amplitude as in Eq. 6 and 7 is that coherence measures are 

weighted in favor of epochs with large amplitudes. Trials with large amplitudes are 

preferred if large amplitudes are indicative of high signal to noise ratios. If only epoch 

phase information were used, equal emphasis would be placed on low and high amplitude 

epochs in estimates of phase synchronization. This would potentially reduce the overall 

signal-to-noise ratio of the analysis. 

Typically the goal of EEG coherence studies is to estimate the functional 

connectivity of the brain. Coherent activity between pairs of electrode sites may be either 

synchronous (zero phase difference) or asynchronous (constant phase difference). In 

other words asynchronous coherent signals are essentially “synchronous with a time lag.” 

Figure 7 shows the coherences between an electrode x and a ring of electrodes at 

progressively greater distances from x, labeled 1-9. The subject is at rest with eyes 

closed, a state in which coherence is usually high in the alpha band (Nunez, 1995).  The 

estimated coherence between electrode x and electrode n is labeled x:n.  The electrode 

positions are shown and the distance between adjacent electrodes is about 2.7 cm.  At the 

closest electrode pair x:1, coherence is very high (above 0.75) at all frequencies (i.e. 

coherence is generally independent of temporal frequency).  This effect was predicted by 

the observed effect of volume conduction of current spreading through the head; the 

effect of volume conduction is to mix the brain signals at each electrode, which correlates 

them at all frequencies. This theoretical prediction of coherence due to volume 

conduction suggests that the main effect of volume conduction is to artificially inflate 

coherences at short to moderate distances, and that this effect is  independent of 

frequency.   

As the electrode separation is increased, the pair x:2 shows lower coherences, but 

at most frequencies coherence is still above 0.4 suggesting a strong component of 
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coherence that is independent of frequency. A peak is visible in the alpha band at 9.5 Hz, 

but it is difficult to evaluate this peak, since there is also a broad elevation of coherence. 

As the sensor separation is further increased (x:3) the floor of the coherences reduces 

further to about 0.2, and a peak becomes more evident in the 18 Hz range. This electrode 

is about 10 cm away from electrode x consistent with model predictions of volume 

conduction effects on EEG coherence for electrodes separated by less than 10 cm 

(Srinivasan et al., 1998).  For pairs of electrodes involving sites over the temporal lobes, 

x:4 and x:5, the floor of the coherences approaches zero at most frequencies except for 

the alpha band where a second peak at 10.5 Hz is visible.  At a very long distance (x:8) 

the coherences are again elevated across all frequencies, suggesting a very small volume 

conduction effect at long distances as also observed in modeling studies (Srinivasan et 

al., 1998; Srinivasan et al., 2007).   

  Spatial statistics, like coherence, will always be influenced by volume conduction 

effects. In the case of coherence, a simple rule of requiring a separation distance of 10 cm 

or more can be used to minimize volume conduction effects.  Another approach is to use 

the surface Laplacian to spatially high-pass filter the EEG signals, minimizing the effect 

of volume conduction (Nunez et al., 1994; Srinivasan et al., 1998). And as new methods 

are deployed to evaluate EEG spatial statistics (e.g. to make inferences about 

connectivity), more modeling studies are needed to evaluate the impact of volume 

conduction in order to interpret these new measures.  

 

8. Nonstationary Data Analysis 

    

 A stationary time series is a random process whose statistical distribution is 

invariant over time. A weakly stationary time series is one in which the mean, variance, 

and autocorrelation of the random process are invariant to shifts in the time at which the 

sample records are obtained. Many EEG analyses assume weak stationarity in order to 

evaluate EEG in different brain states such as resting with eyes closed or eyes open, 

during mental calculations, or during different stages of sleep. 

However, in many experiments, especially those related to cognitive functions, a 

stimulus is presented and/or a motor response is elicited and often both.  This structure of 
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events in an experimental trial implies that the EEG time series is nonstationary, as we 

can reasonably expect that the statistics of the signals will depend on time relative to the 

events.  Clearly the EEG before a stimulus is presented has a different statistical structure 

than EEG following the stimulus. In fact we are interested in uncovering these 

differences!      

 Many experimenters analyze the time-varying mean of EEG data epochs 

following an experimental stimulus. The mean responses are called evoked potentials 

(EP) or event related potentials (ERP). These types of experimental designs are 

ubiquitous in the cognitive neuroscience literature. Because we may postulate that only 

the signals relevant to the stimulus to remain after we average many trials of EEG 

response data, the EP or ERP is calculated as the ensemble mean of observations across 

epochs. If the subject views the same stimulus (or stimulus category) in all epochs (e.g. 

separate experimental trials) then we can expect the average EEG signal to approximate 

the response of ongoing EEG activity to the stimulus, such that the mean of the potential 

at each electrode varies as a function of time and is given by 
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Note that in order to calculate an evoked response, EEG is averaged across the dimension 

of epochs, not across the dimension of time. 

Figure 8 shows an example of a visual evoked potential, or the time-varying mean 

at 124 electrodes of a high-density EEG cap, following presentation of a visual stimulus. 

Much of the ERP literature focuses on the peaks and troughs of this waveform (Fig. 8a) 

and its relationship to perception and cognition.  These are labeled P1, N1, P2, etc, 

reflecting the direction and order of the peaks (Luck et al., 2000). The inset topographic 

maps of the potential at the peaks indicate some spatial distribution, although naturally 

most of the response is over the back of the head, where visual cortex is located.  Visual 

inspections suggests that this signal is an oscillation with a period of about 120 ms, which 

is confirmed by the wavelet spectrogram (Fig. 8b) at one channel.    
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 Spectral analysis methods as defined in section 7 can be used to evaluate time-

varying power and coherence of the EEG signals.  The assumption in these analyses is 

that over narrow windows of time, e.g., 200 ms, the EEG can be considered stationary.  

This window is then moved over the epoch.  A more convenient approach to calculate 

time-varying power and coherence is to use the complex Morlet wavelet transform to 

estimate time-varying Fourier coefficents (Lachaux et al., 2002). Two examples of time-

varying power calculated using the Morlet wavelet transform are presented in Figures 8b 

and 9. Fig. 8b shows the phase-locked change in alpha power after a visual stimulus is 

presented. In order to calculate phase-locked power, power of the time-average of epochs 

given in Eq. 8 can be calculated such that K=1 in Eq. 4, which removes all signal that is 

not phase-locked. Fig. 9 shows a non-phase-locked “desynchronization” (i.e. decrease) in 

alpha power in electrode C3 (an electrode close to the left motor-cortex) before the 

subject responded with a button press. Power in the alpha band at electrodes over motor 

cortex are sometimes called the “mu rhythm” to differentiate it from spectral changes in 

the alpha band not associated with a motor response. 

Steady-state evoked potentials (SSEPs) are another type of evoked potential, 

associated with experimental designs known as “frequency-tagging” (Ding et al., 2006; 

Deng and Srinivasan, 2010). SSEPs refer to a frequency-tagging paradigm where EEG 

responses are observed in narrow frequency bands corresponding to the frequencies and 

harmonics of a stimulus (Regan, 1977). Steady-state responses can be evoked with 

flickering visual stimuli (steady-state visual evoked potentials; SSVEPs), modulated 

auditory stimuli (steady-state auditory evoked potentials; SSAEPs), or rhythmic 

somatosensory stimuli (steady-state somatosensory evoked potentials, SSSEPs). SSEP 

paradigms are preferred by many neuroscientists due to their large signal to noise ratios, 

minimizing the problem of artifacts which are typically broadband. SSVEPs, SSAEPs, 

and SSSEPs have also been shown to track attention (Tiitinen et al., 1993, Morgan et al., 

1996, and Giabbiconi et al., 2004). Our group has also shown that SSVEP data can be 

used to classify video game players versus non-gamers (Krishnan et al., 2013), 

differentiate individual differences in attention (Ding et al., 2006; Bridwell et al., 2013), 

and predict individual differences in perceptual decision making (Nunez et al., 2015).  
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9. Summary  

 

 In this chapter we introduce the physical basis of EEG recording and its 

implications for the type of brain processes observable with EEG.  Practical EEG 

recording poses additional challenges, especially in relation to physiological artifacts 

such as muscle artifacts.  We recommend that EEG analysis begin with spectral analysis 

methods, which provide a foundation from which more advanced statistical models can 

be developed and foster better communication with other EEG scientists.  Spectral 

analysis is ubiquitous in the EEG literature in both stationary and non-stationary 

experimental designs.  Finally, in research involving spatial statistics, the effect of 

volume conduction must be explicitly considered to make meaningful inferences about 

functional connectivity in the brain.  
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Figure 1. Typical power spectra of 124 EEG channels of 66 seconds (epoch length T = 2 

sec with K = 33 epochs) of data from a subject (male, 25 yrs) who fixated on a computer 

monitor with his eyes open. While EEG spectral band definitions vary from lab to lab and 

across different fields, bands are typically defined as follows: delta 1-4 Hz, theta 4-8 Hz, 

alpha 8-13 Hz, beta 13-20 Hz, and gamma > 20 Hz. Some groups also identify the mu 

rhythm which exists as a peak either in the alpha or beta bands and typically has high 

power over the motor cortex. In the eyes-open resting data, with some artifact power 

removed using Independent Component Analysis (ICA), we see peaks in the delta, theta, 

and alpha bands and some power in the beta band. However the dominant peaks in the 

spontaneous EEG are in the theta and alpha bands, which have different spatial 

distributions over the electrodes and are associated with different cognitive functions. 

Topographic scalp maps were generated by summing power across frequencies in the 

theta (left) and alpha (right) frequency bands and interpolating between electrodes, such 

that brighter values correspond to higher power. Alpha, which is empirically associated 

with the resting state, has maximum power over parietal channels as indicated by the 

right topographic scalp map.
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Figure 2.  Volume conduction models for EEG. (a) A dipole is shown in the inner sphere 

of a 4-concentric spheres head model consisting of the inner sphere (brain) and three 

spherical shells representing CSF (cerebral spinal fluid), skull and scalp. The parameters 

of model are the radii (r1, r2, r3, r4) of each shell and the conductivity ratios 

(). Typical values are: radii (8, 8.1, 8.6, 9.2 cm) and conductivity ratios 

(0.2, 40, 1).  This model is used in the simulations in this chapter. (b) A realistic shaped 

boundary element model (BEM) of the head.  The brain and scalp boundaries were found 

by segmenting the images with a threshold, and opening and closing operation 

respectively, while the outer skull boundary was obtained by dilation of the brain 

boundary (ASA, Netherlands). Although geometrically more accurate than the spherical 
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model, the (geometrically) realistic BEM may be no more accurate than a concentric 

spheres model because tissue resistivities are poorly known. (c) A realistic finite element 

model (FEM) obtained from MRI.  This model has potentially better accuracy than the 

BEM model because the skull is subdivided into three layers corresponding to hard 

(compact) and spongy (cancellous) bone layers. 
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Figure 3.  (a) Time series of a dipole meso-source P(r, t) composed of a 6 Hz, 15 V 
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sine wave added to Gaussian random noise with a standard deviation of  = 150 V. The 

Gaussian random noise was low pass filtered at 100 Hz.  The sine wave has variance 

(power) equal 1% of the noise.  (b) Power spectrum of the time series shown in Part (a).  

The power spectrum has substantial power at many frequencies other than 6 Hz.  (c) 

Time series recorded by an electrode on the outer sphere (scalp) of a four concentric 

spheres model above the center of a dipole layer of diameter 3 cm.  The dipole layer is 

composed of 32 dipole sources P(r, t) with time series constructed similar to Part (a) with 

independent Gaussian noise (uncorrelated) at each dipole source. Scalp potential was 

calculated for a dipole layer at a radius rz = 7.8 cm in a four concentric spheres model.  

The model parameters were radii (r1, r2, r3, r4) = (8, 8.1, 8.6, 9.2) and conductivity ratios 

(1/2, 1/3, 1/4) = (0.2, 40, 1).   Notice that the time series is smoother than in the 

case of the individual dipole source.  (d) Power spectrum of the time series shown in Part 

(c).  Note the peak at 6 Hz.   (e) Time series similar to Part (c), but due to a dipole layer 

of diameter of 4 cm composed of 68 dipole sources. (f) Power spectrum of the time series 

shown in Part (e).  (g) Similar time series to Part (c), but with a dipole layer of diameter 5 

cm composed of 112 dipole sources.   The presence of the 6 Hz sinusoid is obvious from 

the time series. (h) Power spectrum of the time series shown in Part (g).  A large spectral 

peak at 6 Hz is evident. 
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Figure 4. (From top-left, clockwise) Power spectra, time courses, and spatial loading 

topographies of the first twelve independent components (ICs) from an Independent 

Component Analysis (ICA) of an EEG recording while a subject (male, 25 yrs) was 

fixating on a computer monitor.  The ICs are ordered by their contribution to the total 

variance in the raw data. ICs that are likely to reflect artifact contribution can be removed 

from the raw EEG data. IC1 is indicative of an eye blink. IC6 and IC7 are indicative of 

temporary electrical discontinuities. IC12 is indicative of muscle artifact. 
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Figure 5.  Example power spectra from a single subject (female, 22 yrs).  The subject is 

at rest with eyes closed. (a) Power spectrum of a midline occipital channel with epoch 

length T = 60 sec and K = 1 epochs.  The power spectrum appears to have two distinct 

peaks one below 10 Hz and one above 10 Hz.  (b) Power spectrum at a midline frontal 

channel with epoch length T = 60 sec and K = 1 epochs.  Here only the peak below 10 Hz 

is visible. (c) Power spectra of a midline occipital channel calculated with two different 

choices of epoch length T and number of epochs K.  The grey circles indicate the power 

spectrum with T = 1 sec and K = 60 epochs.  The black circles indicate the power 

spectrum with T = 2 sec and K = 30 epochs. (d) Power spectra of a midline frontal 

channel calculated as in Part (c).  
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Figure 6. (a) Plots of 30 (individual epoch) power spectra for the occipital channel 

shown in Figs. 5a and 5c.  (b) Plots of the same 30 individual epoch spectra for the 

frontal channel shown in Figs. 5b and 5d.  (c) Peak power histograms show the 

distribution of peak frequencies for the 30 epochs shown in Part (a). (d) Peak power 

histograms for the 30 epochs shown in Part (b).   
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Figure 7.  Scalp potential coherence spectra from a subject (female, 22 yrs) at rest with 

eyes closed in order to maximize alpha coherence. Coherence was estimated with T = 2 

sec (f = 0.5 Hz) in a 60 sec record. The head plot shows the location of 9 electrodes, 

labeled x and 1 through 8.  Coherence spectra between electrode x and each of the other 

electrodes 1-8 are shown, with increasing separations along the scalp.  Note that very 

close electrodes have higher coherence independent of frequency as predicted by the 

theoretical volume conductor model. Alpha band coherence is high for large electrode 

separations, apparently reflecting the large cortical source coherence. 
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Figure 8. (a)  A typical Visual Evoked Response (VEP; also known as an Event Related 

Potential; ERP) to a large, high contrast sinusoidal grating stimulus recorded at 124 

electrodes of a high-density 128 Electrical Geodesics, Inc. (EGI) cap. The VEP was 

calculated by averaging low-pass Butterworth filtered data (with a 20 Hz passband) 

across all trials in one subject (male, 23 yrs) and by subtracting each trial by the time 

average of 200 milliseconds before that trial’s stimulus onset (to baseline the VEP). 

Topographies of traditional local peaks (Luck et al., 2000) are labeled with P1, N1, P2, 

and N2 indicating the first and second positive and negative peaks over posterior 

electrodes. The N1 and P2 components evoke typical bilateral responses over parietal 

electrodes. The P1 and N2 reflect other network behavior related to processing of the 

visual stimulus. (b) A time-varying, phase-locked power spectrum of the same average 

data at an electrode over the left parietal cortex calculated with a Morlet wavelet 

transform. As shown by the wavelet, the VEP can also be thought of as a phase-locked 

alpha response to the visual stimulus. 
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Figure 9. A non-phase-locked time-varying power spectrum from the same subject and 

visual task as in Fig. 8 such that power was calculated using all K=157 epochs time-

locked to the motor response (button press given by the right or left hand).  Data from a 

left-central electrode C3 in the 10-20 electrode placement system is presented. Mu power 

“desynchronizes” (i.e. decreases) approximately 200 ms before the button press, likely 

reflecting cognitive control over the motor response. Similar magnitude of mu power 

before the desynchronization is observed after the motor response. 
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