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Rapid estimation of earthquake locations using waveform 
traveltimes

D.W. Vasco , Seiji Nakagawa, Petr Petrov and Greg Newman

Lawrence Berkeley National Laboratory, University of California, Berkeley, CA
94720, USA. E-mail: dwvasco@lbl.gov

SUMMARY

We introduce a new approach for locating earthquakes using arrival times 
derived from waveforms. The most costly computational step of the 
algorithm scales as the number of stations in the active seismographic 
network. In this approach, a variation on existing grid search methods, a 
series of full waveform simulations are conducted for all receiver locations, 
with sources positioned successively at each station. The traveltime field 
over the region of interest is calculated by applying a phase picking 
algorithm to the numerical wavefields produced from each simulation. An 
event is located by subtracting the stored traveltime field from the arrival 
time at each station. This provides a shifted and time-reversed traveltime 
field for each station. The shifted and time-reversed fields all approach the 
origin time of the event at the source location. The mean or median value at 
the source location thus approximates the event origin time. Measures of 
dispersion about this mean or median time at each grid point, such as the 
sample standard error and the average deviation, are minimized at the 
correct source position. Uncertainty in the event position is provided by the 
contours of standard error defined over the grid. An application of this 
technique to a synthetic data set indicates that the approach provides stable
locations even when the traveltimes are contaminated by additive random 
noise containing a significant number of outliers and velocity model errors. It
is found that the waveform-based method out-performs one based upon the 
eikonal equation for a velocity model with rapid spatial variations in 
properties due to layering. A comparison with conventional location 
algorithms in both a laboratory and field setting demonstrates that the 
technique performs at least as well as existing techniques.
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1 INTRODUCTION

Currently, there are a wide range of approaches and algorithms for 
earthquake location, involving both deterministic and stochastic techniques, 
many of which are described in the recent paper by Wuestefeld et al. (2018) 
and the earlier comprehensive review by Lomax et al. (2009). The most 
relevant work for this study is grid search methods that aim to find the 
hypocentre directly (Sambridge & Kennett 1986; Nelson & Vidale 1990; 
Dreger et al.1998; Lomax et al.2001; Langet et al.2014). In spite of its long 
history, dating back to the work of Geiger (1910), the topic of earthquake 
location is still of great importance and the subject of active research.



The accuracy and efficiency are two important issues that must be 
addressed by any proposed technique if it is to be considered useful. They 
are particularly pressing in the monitoring of activities related to fluid flow 
such as hydrofracturing, waste-water injection, geothermal activities and the
geological storage of carbon dioxide (Grigoli et al.2017). For example, many 
of these activities take place in areas with complicated velocity structures 
and are controlled by features such as fracture zones, faults and/or thin high 
permeability layers that contain abrupt variations in material properties. 
Errors in such velocity models or errors in modelling the wave propagation 
from a source to a given receiver can lead to incorrect event locations, even 
when double-difference techniques are used (Michelini & Lomax 2004). High-
frequency asymptotic ray theory, and results based upon the associated 
eikonal equation, can become inaccurate in the presence of rapid spatial 
variations in material properties (Vasco 2018; Vasco & Nihei 2019). As a 
result, some have advocated waveform-based location techniques that go 
beyond conventional ray theory (Angus et al.2014). Such approaches can 
significantly increase the computation time required for locating events 
(Grigoli et al.2018), even with the use of the one-way wave equation 
proposed by Angus et al. (2014).

Alternative approaches for incorporating more accurate wave propagation 
methods have invoked time-reversal and back propagation to focus the 
seismic energy onto the source location (Ishii et al.2005; Larmat et al.2006, 
2008). The same computational issues arise with these approaches though it
is possible to incorporate approximations, such as the use of a 2-D Helmholtz
equation (Boschi et al.2018). Because waveforms can vary significantly from 
one event to another, a full waveform calculation is required for each event. 
Furthermore, the use and interpretation of waveforms involves much greater
data handling and requires a much more accurate background velocity 
structure to correctly model the phases following the first arrival.

Here we adopt a location algorithm that allows for the efficient use of 
waveform modelling methods to calculate traveltimes. As with the grid 
search method of Nelson & Vidale (1990), the technique utilizes traveltime 
fields from sources positioned at each station. These traveltime fields are 
then stored and used in the location of any event within the volume. If the 
events are similar in size, so that the frequency content does not change 
significantly, then the traveltimes for each wavefield only need to be 
calculated once. The approach gains efficiency when the number of events 
exceeds the number of stations in a given seismic network. As such, it is 
applicable for networks of any size from a small set of borehole stations to a 
large global network.

2 METHODOLOGY

In this section we describe the technique and illustrate it using a synthetic 
set of arrival times. The synthetic test case is based upon a realistic velocity 
model from the Cranfield site (Lu et al.2012) in Mississippi (Fig. 1). The 



elastic model was derived from a logged well and was extended to a layered 
structure and defined over a 3-D grid. Three sets of receivers are used in the 
test from three simulated wells. The receivers are spaced 50 m apart within 
each well. The projections of the wells onto an east–west plane are shown in 
Fig. 1. The structure contains abrupt variations in seismic velocity that are 
characteristic of many sedimentary formation and is intended to highlight 
possible differences between a ray-based location method and one based 
upon waveform calculations. The technique is valid for any given velocity 
model and does not require any particular receiver geometry. We discuss 
each of the main steps of the algorithm in the sub-sections that follow.

2.1 First step: calculate receiver traveltime fields

The location algorithm assumes that some method for computing seismic 
traveltimes exists for a source at any position within a volume of interest. 
That is, a field T(x; xm) is available via some numerical procedure, providing 
the traveltime to a point x, for a source at point xm. As in Nelson & Vidale 
(1990), the calculation may invoke the finite-difference solution of the 
eikonal equation (Vidale 1988; Podvin & Lecomte 1991; Zelt & Barton 1998; 
Sethian 1999)  

where c(x) describes the seismic velocity variation over the volume of 
interest. The traveltime field was calculated using the method of Zelt & 
Barton (1998). A cross-section through an eikonal-based traveltime field, 
corresponding to the layered test model, is shown in Fig. 2. The test event 
used to generate the traveltimes, located at (x, y, z) = (3.58 km, 2.41 km, 
2.82 km), will be used in this section to illustrate our approach.



In this study, the traveltimes come from what is typically a much more time 
consuming procedure: the numerical solution of the elastodynamic equation 
of motion (Virieux 1986; Masson et al.2006; Masson & Pride 2011; Petrov & 
Newman 2012)  

where λ(x) is the Lame parameter, μ(x) is the shear modulus and ρ(x) is the 
density. The general approach involves modelling the entire wavefield and 
applying a traveltime estimation algorithm. The algorithm used to determine 
the numerical waveform traveltimes is the same one that is applied to the 
observed data. This was the procedure we followed in analysing the 
synthetic test, where a finite-difference code for solving the full 
elastodynamic wave equation (Masson et al.2006; Masson & Pride 2011) was



used to determine the traveltime fields shown in Fig. 2. The finite difference 
grid spacing of 50 m is identical to that used for solving the eikonal eq. (1). 
The source function was a sinusoidal function modulated by a Gaussian with 
a dominant frequency peaked around 10 Hz.

The traveltimes were derived from the radial component of the numerical 
waveforms by a simple threshold criterion. That is, the traveltime was 
defined as the instant when the amplitude exceeds 1 per cent of the peak 
amplitude of the first arriving energy at a given location on the finite 
difference grid. The spatial variations of the traveltimes for the two methods 
are compared in Fig. 2. Note that the eikonal-based and waveform-based 
traveltime estimates differ for this particular velocity model, most likely due 
to the presence of thin high-velocity layers. As we shall see, traveltimes 
obtained from full wavefield solutions have some advantages when the 
velocity model has rapidly varying features, such as the layers shown in Fig. 
1. In such models the assumption of smoothly varying elastic properties 
underlying the eikonal equation no longer hold and its solutions may not be 
accurate (Vasco & Nihei 2019).

Given a network of M stations, we can consider M traveltime fields, each 
defined over a 3-D grid. For a source at the location of the m-th station, xm, 

denote the traveltime field over the grid as , where ȷ is a 3-D index 
vector whose entries range over the nodes of the grid J. For a fixed velocity 
model, the traveltime field for each station must only be calculated once and
may then be used for any number of events. If the velocity model is updated,
as during iterative tomographic imaging, then the traveltime fields need to 
be recalculated after each update.

2.2 Second step: use time-reversal or back-propagation from receivers

Each seismic event will produce a collection of observed arrival times, , 
for some subset of stations in the network denoted by ε. We can invoke 
reciprocity and time reversal to calculate the possible positions of the 
incoming wave front at various times in the past. Specifically, for each 

element ȷ of the grid we subtract the traveltime field  from the 
observed arrival time

All of the back-propagated traveltime fronts, the values of  for all of the
stations that recorded an arrival, will attain roughly the same value at the 
event location. Random and/or systematic variations, such as those due to 
noise in the observed arrival times and an incorrect velocity model, will 
introduce errors into the location estimates.



2.3 Third step: estimate traveltime dispersion over the grid

Because the shifted and back-projected traveltime fields approach the event 
time at the source location, a measure of central tendency, such as the 
mean, re-weighted mean or median of the shifted traveltimes (3), will 
approximate the origin time of the event at the gridpoint nearest to the 
source. For illustration we will consider the mean value of the back-
propagated times, as it has a simple and explicit expression

where Ne denotes the number of observed arrival times for the given event. 
However a more robust measure of central tendency, such as the median, is 
often more desirable in the face of non-Gaussian noise and outliers (Huber 

1981). Fig. 3 presents a horizontal slice through the grid  at the depth 
of the source, which is indicated by the filled circle. The contour line of 100.0
s, the origin time for this synthetic test, intersects the source location.



At the event location the back-propagated arrival times converge to the 
origin time and measures of dispersion about this value attain a minimum 
value over the grid. The sample standard error  

or the more robust average deviation  

provide easily computed measures of dispersion at each grid location. The 
average deviation, a(ȷ) , the l1 norm of the residual or error vector, is plotted 
in Fig. 4 for the eikonal-based and waveform-based location algorithms. The 
horizontal cross-sections in Fig. 4 are taken at the depth of the event, z = 
2.82 km. The contours can be used to assess the degree of uncertainty in the
event location.



2.4 Final step: determine the region where the dispersion is a minimum

The event location is given by the value of ȷȷ at which the statistical 
dispersion about the mean or median is a minimum, either 

can be used, though the latter is less influenced by non-Gaussian outliers. 
Because the grid J is at most 3-D, we can minimize s(ȷ) or a(ȷ) using a simple 
grid search. The locations estimated by a grid search for the eikonal- and 
wavefield-based algorithms are shown in Fig. 4, indicated by the filled circle. 
The actual location used to generate the synthetic arrival times is denoted 



by the filled square. The eikonal-based solution displays a horizontal location 
error of about 100 m due to the limitations of the high-frequency 
approximation in this layered model.

The measure of dispersion that is minimized in order to locate the event 
should be tailored to the statistical properties of the traveltimes. That is, we 
would like to determine the location that maximizes the likelihood of the 
observed traveltimes, obtaining a maximum likelihood estimate (James et 
al.2017). The appropriate estimator to use, specifically the correct likelihood 
function to maximize, depends upon the statistical properties of the errors in 
the observations (Hoel 1971). For example, the sample standard error s(ȷ) 
given by eq. (5) is an appropriate function when the errors in the 
observations are from a Gaussian distribution (James et al.2017). Hence, it 
may not be the best function to use because traveltime errors have been 
studied by several authors and are found to be non-Gaussian (Jeffreys 1932; 
Bolt 1960; Buland 1984, 1986; Pulliam et al.1993). The main issues are that 
traveltime estimates contain a significant number of outliers due to the 
picking of the wrong onset for the first arrival. In fact, a chi-square test 
applied to compressional wave traveltime residuals from the International 
Seismological Centre (ISC) found that the hypothesis that their cumulative 
distribution and that of a Gaussian distribution are the same could be 
rejected with a confidence level of 99  per cens (Pulliam et al.1993). A 
histogram of the traveltime residuals reveals that the tails of the distribution 
are simply too broad to be represented by a Gaussian (Vasco et al.1994).

There are other probability distributions that may be used to model 
traveltime residuals. For example, it is not possible to reject the hypothesis 
that the cumulative distribution function of the ISC traveltime residuals and 
that of a two-sided exponential probability distribution are the same (Pulliam 
et al.1993). The two-sided exponential distribution is given by the probability
distribution 

where N is the number of residuals and σ is the standard error associated 
with the residuals. The distribution (9) has broad tails that can match those 
typically observed in traveltime residuals. It can be shown that the maximum
likelihood estimator associated with residuals containing errors following a 
two-sided exponential distribution is obtained by minimizing a(ȷ), the 
absolute deviation of the residuals (Menke 2018). Thus, minimizing the 
average deviation function a(ȷ) will usually provide a more reliable location 
estimate than the minimum of the sample standard error s(ȷ). This is the L1 
norm of the traveltime residual vector and its use will reduce the influence of



outliers on the location estimates (Nelson & Vidale 1990; Pulliam et al.1993; 
Shearer 1997; Schweitzer 2001; Shearer 2009).

3 APPLICATIONS

In this section we test the approach for locating events on three different 
data sets in order to assess the reliability of the algorithm and the utility of 
waveform arrival times. The first test involves locating events using synthetic
traveltimes containing additive two-sided exponential random values. We 
compare locations that rely upon traveltimes computed using the eikonal 
equations with our approach based on traveltimes from a full wavefield 
simulation. The second test involves high-quality traveltimes from a 
laboratory experiment where the creation of a fracture is monitored. Finally, 
compressional and shear arrival times from an event associated with the 
creation of a hydraulic fracture are used to estimate the location and origin 
time. These data appear to contain several outliers and are representative of
arrival times used for locating seismic events.

3.1 A synthetic test with traveltime picking errors

The analysis in this sub-section is a continuation of the Cranfield illustration 
introduced earlier. In particular, the velocity model shown in Fig. 1 is the 
basis for calculating traveltimes, using both the eikonal equation and the 
extraction of arrival times from numerical solutions of the elastodynamic 
equation of motion. A stochastic algorithm generated 3000 artificial test 
events arranged around a fracture plane. The probability of an event 
decreases with distance from the plane, leading to a clustering around the 
hypothetical fracture (Fig. 5). A finite-difference solution to the 
elastodynamics equation of motion is used to calculate the traveltimes to 
seven observation points in each of the three simulated wells (Fig. 5) for a 
total of 21 stations in the local network. The synthetic traveltimes, with 
added random noise to simulate errors, are then used in the location 
algorithm presented above. Because the velocity model does not change, we
only need to conduct 21 forward simulations in order to generate the 
traveltime fields from each observation point to all points in the grid, the 
quantities T(ȷ,xm) in expression (3). The traveltime fields T(ȷ,xm) are stored 
and used to compute the mean and median of the backpropagated times. 
The median is a more robust measure of central tendency than the mean 
value given in eq. (4). However, because non-Gaussian behaviour is 
indicated by any significant differences between the median and mean 
values, it is useful to compute and compare both quantities. The 
computational requirements of the eikonal and waveform location algorithms
are shown in Table 1.

The performance of any practical location algorithm should degrade 
gradually in the presence of realistic traveltime errors. The two-sided 
exponential distribution, discussed in the Methodology section, provides a 
reasonable probability model for generating random deviations with 
properties similar to traveltime errors. We use this distribution to generate 



errors in our test data set. We adopt the approach for generating two-sided 
exponentially distributed random deviates given in Press et al. (1992). Such 
a distribution can simulate the large deviations that are due to picking an 
incorrect first pulse. Initially, only small errors, with magnitudes of 1 percent 
of the peak variability of the traveltimes, were added to the calculated times 
prior to the location. The peak variability is the largest deviation from the 
average of the arrival times. The distribution of location errors incurred by 
the algorithms using the eikonal and wavefield methods to compute 
traveltimes are shown in Fig. 6. The approach based upon traveltimes 
calculated using wavefield simulations and arrival time extraction from the 
wavefields produces mislocation errors that peak at 50 m (Fig. 6, right-hand 
panel), the spacing of the simulation grid. The number of mislocation errors 
larger than 50 m drops rapidly and very few exceed 100 m. Because the 
eikonal equation is an approximation that assumes a smoothly varying 
model, and the velocity model contains many fine layers with abrupt 
boundaries (Fig. 1), there may be considerable modelling error for this case. 
This suggestion is supported by the fact that the location errors associated 
with an eikonal equation based approach peak at 100 m, twice the error of 
the wavefield-based locations, and that the tail of the distribution extends to 
errors of several hundred meters (Fig. 6).



Let us now increase the root-mean-squared magnitude of the errors and 
examine the resulting location errors. The effects of increasing errors are 
evident in Fig. 7, where we plot histograms for various levels of added error. 
As the range of the deviations increases, the distributions develop longer 
and longer tails with increasing mislocation errors. The shape of the 
mislocation histograms resemble log-normal distributions after the errors 
reach 20 per cent of the peak traveltime variation. For error magnitudes that 
are 10 per cent of the traveltime signal the peak of the wavefield locations is 
still around 50 m with a secondary peak at 100 m. The peak of the eikonal-
based mislocation distribution is at 100 m, with a much larger tail to values 
approaching 400 m. After the traveltime errors reach 20 per cent of the peak 
traveltime signal the distribution of wavefield mislocation errors peaks at 75 
m and the tail extends to 400 m. The eikonal-based locations still have larger
mislocation errors and the peak of the distribution has shifted to values 
somewhat greater than 100 m. When errors reach 30 per cent of the peak 
traveltime signal both distributions have long tails, though the wavefield-



based histogram has a peak that is about 50 m smaller than the eikonal-
based location errors.

These results are likely influenced by the spacing of the grid used to model 
the traveltime field. We did not use any interpolation methods to try and 
obtain subgrid spacing accuracy. That is, we did not try and interpolate 
between a local network of gridpoints surrounding the minimum of a(ȷ) in 
order to refine the location. Such adjustments could improve the location 
precision and reduce the data misfit.

3.2 A synthetic test with velocity model errors

Another common source of error is associated with the use of an incorrect 
velocity model. Velocity models are almost always approximate and involve 
some assumptions or averaging. For example, sonic log variations are often 
spatially averaged along the length of the well when estimating the 
compressional and shear velocity variations as a function of depth. The 
model in Fig. 1 was constructed in this fashion by averaging sonic log 
variations in order to derive a 150 layer model. While it is difficult to fully 
characterize the wide variety of possible modelling errors, we can consider a 
simple and common issue. Specifically, we consider the case in which the 
velocity model is under parametrized and smaller scale spatial variations are
averaged into larger-scale features. The reference model for this test case is 
the 150 layer model plotted in Fig. 1.

We consider two coarser representations constructed using 100 layers and 
50 layers (Fig. 8). In these tests, the times are generated using the fine scale
model shown in Fig. 1 along with a numerical code to calculate the 
waveforms and a picking routine to identify the first arrivals. These values 
are then used as the arrival times to be matched via the location algorithm 
described above. Both the eikonal equation and the waveform codes are 
used for the earthquake location algorithm but with traveltime fields T(ȷ;xm) 
calculated using the coarser scale models shown in Fig. 8. The 3000 test 
events plotted in Fig. 5 are used to generate the distributions of locations 
errors shown in Fig. 9 for both velocity models. Comparing these results with 
the error-free distributions in Fig. 6 we see that the location errors are 
greater for both the eikonal and waveform estimates. Using the 100 layer 
model results in mean errors peaking at around 190 m for the eikonal-based 
location algorithm and of 150 m for the waveform-based approach. When 50 
layers are used to represent the velocity model, the errors for the eikonal-
based algorithm do not increase by much and the distribution remains close 
to that of the 100 layer model. Similarly, the waveform-based location 
method produces a distribution that is very close to the previous 100 layer 
model results. The error distribution peaks at about 140 m with the 
differences due to the variability within the histogram.



3.3 A laboratory injection test

Our second test involves a data set from a laboratory injection experiment in
an acrylic block subjected to uniaxial loading. This setting is not as tightly 
controlled as a numerical test, yet better constrained than the field 
experiment described below. The geometry of the experiment is shown in 
Fig. 10, and the block is approximately 14.93 cm long, 14.58 cm high and 
4.88 cm thick. A 6.4 mm diameter borehole containing stainless steel tubing 
is located at 6.95 cm above the base of the block. The tubing has a pair of 1 
mm diameter perforations at the centre, and the injection section is sealed 
by a pair of O-rings that are located approximately 1 cm from the sides of the
block. During the experiment pure glycerol (viscosity 1000 cP) containing red



dye was injected into the borehole via a screw pump. For the duration of the 
experiment the block was subjected to an axial stress of 6.9 MPa.

The time variation of the injection volume and pressure are shown in Fig. 10 
along with the sequence of detected seismic events. The breakdown 
occurred 17 s from the start of the injection at a maximum injection pressure
of 13.5 MPa. In order to guide the propagation direction of an induced 
fracture, a notch was introduced at the top side of the centre of the 
borehole. Once the fracture was initiated from this notch, it propagated 
upwards towards a saw-cut surface oriented 75° from the vertical (17 to 26 
s). This dipping surface was flattened and roughened by using a 220-grit 
sanding paper. As soon as the fracture reached the pre-cut surface, the 
sheared surface was destabilized, resulting in catastrophic slip. Note that in 
Fig. 10, the detection threshold for the acoustic emission transducers was 
set at 37 dB, and the transducers were triggered multiple times when an 
incoming wave had a large amplitude and a long duration. Most events did 
not trigger enough of the transducers, that is at least six instruments, to 
provide a useful location.

The locations of the 12 transducers that recorded the arrivals from the 
acoustic emission events are shown in Fig. 11. These transducers are 4.7-
mm wide and 5.8-mm tall micro acoustic emission sensors (PICO-Z, Score 
Dunegan) with a frequency band of 200–800 kHz for less than 20 dB drops in 
the sensitivity from the peak frequency of 650 kHz. The transducers are 
glued to the block surface via Loctite superglue. The transducers were used 
in both active mode to conduct seismic wave transmission tests between the
transducers and in passive mode to detect and record acoustic emission 
signals. The collected waveforms from both active and passive 
measurements were processed and recorded by a digital multichannel 
acoustic emission measurement system (AMSY-6, Vallen Systeme). The 
locations of the acoustic emission sources were determined from the 
traveltime of the first-arriving compressional waves. We do not expect 
detectable change in the velocity of the homogeneous and intact matrix of 
the acrylic block during the injection. Also, because the induced fracture was 
less than 100 microns and filled with highly viscous glycerol, it should have 
little impact on the propagation of the observed high-frequency 
compressional waves. Traveltime fields from the 12 transducer locations 
were used to construct the functions T(ȷ,xm) needed for the location 
algorithm. The numerical grid used to compute the traveltime fields had a 
spacing of 0.5 mm and was 100 (x) by 300 (y) by 300 (y), extending slightly 
beyond the boundaries of the physical block. The spacing was considered 
adequate because the tranducers themselves were several millimetres in 
lateral extent.



The arrival times of the observed compressional waves were determined 
using an Akaike Information Criterion-based first-arrival picking algorithm 
(Akaike 1974; Maeda 1985; Kuperkoch et al.2010). Using the traveltimes and
the functions T(ȷ,xm) we can compute the mean or median backpropagated 
traveltimes over the grid and the average deviation a(ȷ). We plot cross-
sections through misfit functions for two events in Fig. 12. The cross-sections
through the misfit function for Event 4 indicates a relatively well-constrained 
location. The event was located using 11 traveltime observations providing 
adequate convergence. Note that the misfit function, a(ȷ) given by eq. (6), is 
not smooth and has some sharp bends and kinks due to the use of the 
absolute deviation of the residuals. Also, there seems to be less constraints 
on the depth of the event below 0.0 cm. The poor constraints are due to the 
lack of tranducers below 0.0 cm as shown in Fig. 11. The misfit function 
associated with event 17, also plotted in Fig. 12, appears to be well 
constrained in x, but have a trade-off between y and z positions. This event 
is only constrained by six observations, leading to some degree of trade-off. 
However, its position well within the network of transducers, that is above a 
depth 0.0 cm, leads to a somewhat better-constrained location.



There were 20 events that had six or more identified arrivals and could be 
reliably located (Fig. 13). The locations tend to organize along two linear 
trends that follow the intersection of the fracture with the borehole and with 
a dipping fracture that was cut into the block lying at a height of about 2.5 
cm (Fig. 13). None of the located events appear to lie between the borehole 
and the saw-cut angled fracture. There are two exceptional events near the 
edge of the block, one at the right edge along the extension of the upper 
linear trend and another at the very top of the acrylic block. In general, the 
events agree with locations produced by a simplex-based location algorithm 
shown as open circles in Fig. 13. The modified simplex method utilized 
straight rays under the assumption of a homogeneous medium to calculate 
the traveltimes from the source to the receiver. The original simplex 
technique of Nelder & Mead (1965) for optimization in an n-dimensional 
parameter space progressively updates a simplex of n + 1 vertices by the 
systematic application of reflection, expansion and contraction operations in 
order to replace the vertex (model) with the highest misfit by one with a 



lower misfit. Huang & McColl (1996) proposed improving the convergence of 
the original method by using a vertex value-weighted centroid, rather than 
the geometric centroid. The simplex approach is applicable to misfit 
functions that are not smooth, allowing it to be used for minimizing the 
median of the traveltime residuals. Furthermore, because it works with a 
distribution of solutions there is a reduced probability that it will become 
trapped in a local minimum. The locations produced by our approach do 
appear to define the two linear patterns that would be expected in this 
experiment better than the conventional location technique. The first is from 
the intersection of two planes, the hydraulic fracture plane and the dipping 
fracture. The second is from the intersection of the hydraulic fracture plane 
and the top of the borehole.

3.4 Locating an event associated with the creation of a hydrofracture

The final application involves observations from the monitoring of a 
hydrofracture in a producing oil field. Four vertical observation wells, each 
containing 20 seismometers, surround the fracture location, as shown in Fig. 
14. As in the Cranfield example, the velocity structure contains layers with 
sharp boundaries. A layered elastic model is available from well logs in the 
area, providing compressional and shear velocity as well as density. Velocity 
contrasts of up to 50 per cent from around 4 to 6 km s−1 occur over depth 
intervals of around 100 m or so. The 1 km (x) by 1 km (y) by 2 km (z) volume
was discretized onto a grid with 10 m spacing for the purpose of computing 
traveltimes associated with each of the 80 receiver locations. Because both 



compressional and shear arrivals were available, we included both phases in 
the location algorithm. That required computing a total of 160 traveltime 
grids for the 80 stations and both the compressional and shear phases. For a 
single event, the approach requires greater overhead than a conventional 
location algorithm. However, the approach is more efficient when several 
hundred or thousand locations need to be determined.

The main purpose of this example is to compare the new approach with a 
conventional location algorithm on an application to real field data. The 
backpropagated and shifted times were used to calculate the mean time and
the average deviation a(ȷ). Horizontal and vertical cross-sections through the
average deviation grid are shown in Fig. 15. The event is located in the 
interior of the array, near the bottom edge of the volume defined by the 
wells. The calculated location is indicated by the filled circle in the top panel 
of Fig. 15. The location estimated by a conventional approach, based upon 



ray theory, is denoted by a filled square. The conventional approach involved
an iterative minimization of the sum of the squares of the residuals using a 
gradient-based algorithm with a Levenberg–Marquardt approximation to the 
second derivative terms. The two locations are roughly 10 m apart, which is 
the spacing of the modelling grid. From Fig. 15 it is evident that there is 
greater uncertainty in the depth of the event, probably due to its location 
near the base of the well array. Including both compressional and shear 
arrivaltimes reduced the trade-off between the origin time and the depth of 
the event. The fit to the observed traveltimes is shown in Fig. 16. In general 
both compressional and shear arrivals are matched. However, there are 
some notable outliers that are offset from the 45° line indicating a good 
match. These arrivals are significantly early and may be early picks of a 
precurser to the actual arrival.



4 CONCLUSIONS

The method that we have described, an extension of eikonal-based approach
of Nelson & Vidale (1990), is well suited for incorporating waveform 
modelling into the location algorithm. This can be advantageous in the 
presence of thin layers or rapid variations in velocity which may cause the 
eikonal equation to break down (Vasco & Nihei 2019). Seismic events are 
often associated with such complex velocity structures as found in shear 
zones, subducting slabs and areas of volcanic activity. Our results indicate 
that such fine-scale structure and rapid variations in properties can produce 
location errors of 300 m or more in a realistic elastic model.

The final application demonstrated that the approach can incorporate both 
compressional and shear arrivals into the location algorithm. It should also 
be possible to include arrivaltimes and take-off angles derived from three 
component instruments. The station traveltime fields can be used to trace 
paths down the gradient of the traveltime field in the direction of the take-off
angles. For example, paths from all stations can be used to find the location 
in the grid where the trajectories converge and the backpropagated times 
display the least scatter. Take-off angles from a traveltime field calculated 
using the eikonal equation can deviate significantly from angles calculated 
from a full numerical solution of the elastodynamic equation. Thus, the use 
of take-off angle can introduce significant errors in models with rapid 
variations in elastic properties, such as layers with sharp boundaries.



Any numerical technique may be used to calculate the traveltime fields that 
are the basis for the algorithm and it should be straightforward to 
incorporate effects such as anisotropy, poroelasticity and attenuation into 
the approach. The only requirement is that numerical methods be available 
to handle such effects. As the modelling becomes more complicated and 
time consuming, an approach that scales as the number of stations, rather 
than as the number of events, should be more efficient when there are a 
significant number of events. Because the technique works with traveltime 
fields, instead of backpropagating waveforms, we do not need to recalculate 
the wave fields for each event. Rather, as long as the size of the events are 
of the same order of magnitude and similar in frequency content, a single 
waveform calculation should suffice for each station.

The technique should be applicable to a wide range of monitoring networks 
from the smale-scale laboratory and borehole arrays treated in this work to 
large-scale global networks. However, the overhead associated with the 
calculation of the receiver traveltime fields will grow as the number of 
stations increase and the volume of interest becomes larger. Thus, form of 
parallel computation might be required for very large networks of stations. In
addition, operations such as the search for the minimum will require greater 
computational resources for a larger grid. To some degree, these issues may 
be treated by decimating the representation of the traveltime field and 
interpolating between active node points when searching for the minimum.
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