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ABSTRACT OF THE DISSERTATION

Mathematical Modeling of Hair Follicle Regeneration Dynamics and of Polarization
Initiation

by

Cecilia C. Duran

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, March 2024

Dr. Qixuan Wang, Co-Chairperson
Dr. Weitao Chen, Co-Chairperson

This thesis consists of two parts.

In the first part, we develop an ODE cell differentiation population model to study

the dynamics of hair follicles (HFs). In particular, we wish to understand the mechanisms

underlying the cyclical regenerations that this mammalian organ undergoes throughout an

organism’s lifetime. We’d also like to study the effect of ionizing radiation (IR) on the

regeneration processes. In brief, the cycle of a HF consists of three consecutive phases:

anagen—the active proliferation phase, catagen—the degeneration phase, and telogen—the

resting phase, and while HFs undergo irreversible degeneration during the catagen phase,

recent experimental research on mice shows that when anagen HFs are subject to IR, they

undergo a transient degeneration, followed by a nearly full regeneration that makes the

HFs return to homeostatic state. In our model we propose various feedback mechanisms

and study their role in determining the degenerative and regenerative behavior of HF cells.

The model is built based on current theoretical knowledge in biology and model parameters

are calibrated to IR experimental data. We perform bifurcation and sensitivity analyses to

determine the effect of IR exposure on the stability of the HF homeostatic steady state and

compare with the dynamics of the irreversible degeneration during catagen.
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The second part is motivated by the biological process of cell polarization. Cell polarity

refers to the asymmetrical spatial distribution of molecules and substances within a cell or

cell membrane, which occurs as a response to internal or external stimuli. In this work, we

study autonomous reaction-diffusion models to find mechanisms that can lead to polarization

at a single cell-membrane. In particular, we investigate the role that positive and negative

feedbacks play in the early polarization process. We first perform and document ample tests

for various reaction-diffusion models using three numerical methods; two of them are based

on fast Fourier transform (FFT) differentiation, while the third model is of finite-difference

type. The performance of the numerical methods is compared while simultaneously selecting

those reaction-diffusion models that are likely to attain polarization. We then present a more

detailed investigation of two reaction-diffusion models which include diffusion-inhibiting

negative feedback and a positive production feedback; these models are studied using one of

the FFT-based numerical methods. A similar analysis for the remaining numerical methods

is pending and will be detailed in the discussion section of this part of the thesis.
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Chapter 1

Introduction

Hair follicle (HF) research in mathematical biology holds great significance due to its

potential applications in the medical field. It may be able to inform cancer research by

providing insight on how certain chemotherapy drugs affect hair follicles, or it may help

in screening potential compounds for hair growth-promoting or -inhibiting effects which

can lead to the creation of novel pharmaceuticals. In this work, we focus on studying the

effects of ionic radiation (IR) on the hair follicle growth cycle and its inherent regenerative

dynamics.

This first part of the thesis parallels our recent publication [66] and is organized as

follows. In this introductory chapter, we first present a brief background of the HF cycle

and biology, we also discuss existing modeling literature in the field of hair follicle dynamics.

In section 1.2, we develop a HF model following the classic cell differentiation population

model framework and based on currently known HF biology from literature. In section 1.3,

we derive further parameter constrains from the proposed mathematical model in order to

calibrate the model parameters using experimental data. In the results chapter, we first

describe the calibration process and present the calibrated parameter values as well as

the corresponding simulation results (section 2.1). Then in section 2.2, we apply stability,

sensitivity and bifurcation analyses to our system to identify the key model factors that

regulate IR-induced HF regeneration or anagen-to-catagen degeneration. We then present

2



ongoing work to extend our model to reproduce recent experimental findings that test the

efficacy of a certain drug on IR-induced hair-loss in 2.3. Lastly, we provide our conclusions

and discussion of our work, as well as possible future direction for this project.

1.1 Hair Cycle Biology and Modeling Background

Hair follicles (HFs) are mammalian skin mini-organs which are rich in stem cells. Unlike

other tissues and organs, HFs undergo cyclical regeneration throughout the lifetime of an

organism. Each HF growth cycle consists of three phases: anagen, the active proliferation

phase; catagen, the degeneration phase; and telogen, the quiescent phase. The dynamics of

a HF growth cycle are briefly summarized below.

During telogen, a HF rests in its smallest possible size made up of three main compart-

ments: the bulge, hair germ (HG), and the dermal papillae (DP). (figure 1.1A). The bulge

is a niche of bona fide epithelial stem cells. Underneath the bulge lies the HG, which houses

short-lived epithelial progenitors derived from bulge stem cells. The DP marks the bottom

of the HF, it contains specialized fibroblasts and serves as the signaling ”command center”.

However, the cells of a telogen HF are relatively biochemically and proliferatively quiescent

[1, 3].

During late telogen, DP cells become activated and this marks the onset of anagen.

Once activated, DP cells produce various signaling factors, which cooperatively activate

proliferation of HF epithelial cells and initiate hair growth. At the beginning of anagen, HG

cells give rise to fast-dividing epithelial hair matrix (Mx) cells (figure 1.1B). Mx cells are

transient-amplifying (TA) cell that have limited mitotic potential [2] yet show a fast cell

cycle time of only 12-13 hours in mice and 24 hours in humans [4, 5]. Meanwhile, the bulge

stem cells also become activated and contribute to the formation of the outer root sheath

(ORS) which forms the outer epithelial layer of the HF. Mx cells surround the DP and also

connect to the lower ORS (figure 1.1B)
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As Mx continues to grow, its cells start to differentiate to several types of terminally

differentiated (TD) cells, including the hair shaft (HS) and the inner root sheath (IRS).

On the other hand, ORS cell proliferation drives the downward HF growth in response to

various signaling factors, including Sonic Hedgehog (Shh) and Wingless/Integrated (Wnt)

signaling ligands [16,17,40–44]. When a HF grows to a certain length, further downward

growth stops, and the HF reaches a dynamic equilibrium that can be maintained for an

extended period of time. Despite the relatively constant and stable HF length, its lower

compartments (including DP, Mx and lower ORS) remain active, in the way that: 1) cells

actively participate in signaling dynamics, and 2) epithelial cells actively divide in response

to various signals. In contrast, in the upper HF, as DP and Mx move downward away from

the bulge, the signaling source disappears, thus bulge stem cells and upper ORS cells return

to a telogen-like quiescence.

Throughout anagen there are only very few apoptotic cells [4,5]. However, upon transition

to early catagen, a coordinated apoptotic wave originates in the Mx and propagates upward

through the rest of epithelial HF compartments [7–15]. During catagen, distinct HF

compartments produce factors that either activate or inhibit apoptosis [7, 8, 14,49,50], as

well as factors that terminate pro-proliferation signaling [6,14]. For example, cells could

exchange apoptosis-activating signals, including the Tumor Necrosis Factor (Tnf) which

contributes to its wave-like propagation [23,24]. On the other hand, DP cells do not undergo

apoptosis, but move upward following the shrinking epithelium until the HF returns to its

minimal structure and enters telogen. [14,15,25,27,45,46,59,60]. Catagen typically lasts for

about 2-3 weeks in humans and for 3 days in mice [9, 47,48].

While the anagen-to-catagen degeneration is irreversible, recent experimental studies

revealed that HFs exhibit regenerative dynamics when follicle damage is induced by ionizing

radiation (IR) at the mature anagen stage [22, 57]. It is observed that when weak IR is

applied, a HF experiences minor length shrinkage then returns to its homeostatic state,

compared to strong radiation where a major HF involution accompanied by a high level of

apoptosis occurs, yet the HF is still able to regenerate and return to its normal homeostatic
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Figure 1.1: Illustration of a hair follicle (HF) in telogen (A) and anagen (B).

state. Both regenerative dynamics – after weak and strong IR – are essentially different from

the normal progressive, irreversible degeneration during catagen. This gives rise to critical

questions related to HF regeneration control: while both degenerative dynamics start with

massive apoptosis, why is the degeneration during catagen irreversible while the IR induced

degeneration is transient and followed by regeneration? Are the mechanisms underlying

these degenerative dynamics essentially different?

In recent years, the HF system has caught the interests of many modeling groups.

Automaton models have been adopted to study the HF pattern development [52], [53]. In

[52], the authors develop a ”follicular automaton” model that simulates transitions between

the successive stages of the human HF cycle according to certain stochastic rules. The

model is able to produce patterns resembling those of alopecia consistent with the input

patterns of mean duration of the anagen phase. In [53] a cellular automaton model of a

population of hair follicles is used to study the regenerative behavior of stem cells in mice and

rabbits. They demonstrate that regenerative cycling of SCs can be coordinated by diffusible
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signals of activator and inhibitor type. Other recent models also attempt to investigate

signaling dynamics that control HF growth: in [54] a prototypic feedback-control based ODE

model was developed attributing the HF cyclic growth dynamics to feedback interactions

between Mx and DP cells. To study the coordinated HF activation dynamics and HF wave

propagation behavior, the classic FitzHugh-Nagumo model has been adopted in [55] to

reveal the excitable medium property of skin. An activator-inhibitor-based 3-dimensional

multi-scale model is developed in [56]. In addition, in recent years more models have

been developed to investigate different aspects of HF growth and HF cell fate decisions.

For example, the bio-mechanics of the hair shaft fiber protrusion in mammals is recently

investigated using a multiscale, finite element modeling framework [58], and a probabilistic

Boolean model based on both literature and single cell RNA sequencing data has been

developed to study the HF epithelial cell fate regulation mechanisms [64]. We also refer the

reader to [51] for a recent review of modeling studies in HF morphogenesis.

Despite the HF system being extensively studied in both experimental and modeling

settings, the questions regarding the difference between the catagen degeneration and IR-

induced degeneration dynamics, the latter of which is followed by a regeneration, have not

to our knowledge been studied. Here we investigate possible mechanisms responsible for

a HF’s cyclical, degenerative and regenerative dynamics. We develop an ODE model for

HF cell population whose main components differentiate according to the network in figure

1.2, we call this a HF cell differentiation population model and we use it to investigate the

underlying mechanisms behind the IR-induced regenerative dynamics and compare to those

that drive the catagen degenerative dynamics. The focus will be on the instant dynamic

behaviors of HF cell populations after a one-time application of IR, these will be compared to

the cell population dynamics of nonradiated HF in the anagen-to-catagen phase transition.
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1.2 Development of HF ODE Model

Summary of HF Biology and Model Assumptions

While we have provided a HF introduction above, here we briefly expand upon key biological

components and mechanisms based on which we develop our model.

• The DP is a cluster of specialized fibroblasts that actively participate in the HF

signaling dynamics. It interacts with Mx and active ORS (see explanations below for

ORS) through various signaling pathways that help regulate Mx and ORS cell division

and differentiation. In our model we consider these signals as background regulators

and since DP cells do not divide or undergo cell death, we do not explicitly include the

DP in the dynamics of our model. Instead, we consider the DP as dynamically stable.

• ORS are epithelial cells mostly derived from bulge stem cells; they form the outer

epithelial layer of the HF. At the base of the HF, ORS cells connect with and can

differentiate into Mx cells. In our model, we roughly divide ORS into two sub-parts:

the dynamic part of ORS at the bottom of the HF, referred to as the active ORS

(denoted ORSa), and the rest of the ORS referred to as the quiescent ORS (denoted

ORSq), as they are away from the DP signaling center and do not actively divide

during most of anagen.

• Mx cells are a group of epithelial transient amplifying cells, they divide fast and give

rise to several types of terminally differentiated cells including HS and IRS. When Mx

cells run out of dividing potential, they start apoptotic death. During anagen, Mx

cells produce signals such as Wnt and Shh that activate ORS cell divisions – in the

model we denote these signals as signal B (figure 1.2A).

• During anagen there are only very few apoptotic cells, yet upon the anagen-to-catagen

transition, a coordinated apoptotic wave originates in the Mx and propagates upward

thanks to the exchange of apoptosis-activating signals, such as Tnf. In our model, cells
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undergoing apoptosis are represented as their own population, denoted Apop, which

produce signal A that can activate apoptosis in Mx and ORS cells.

The cell differentiation relations and the feedback controls at the bottom part of an

anagen HF in our model are illustrated in figure 1.2A.

ORS
(quiscent)

ORS
(active)

Mx Apop Φ
IRS/PC

A  HF cell lineage diagram.

B  HF cell lineage diagram with IR exposure.

ORS
(quiscent)

ORS
(active)

Mx Apop Φ
IRS/PC

MxIR

IR

B A

A

A

A

B

Figure 1.2: HF cell differentiation diagram. A HF cell differentiation diagram during anagen,
with green arrows indicating the feedback controls. B HF cell differentiation diagram with IR exposure:
upon IR exposure, all current Mx cells turn into MxIR cells, after that, MxIR cells either return to
normal Mx cells or start apoptosis.

HF Cell Differentiation Population Model

We develop a new cell differentiation population model for HF dynamics and regeneration,

shown in equation 1.1, following the classic cell lineage ODE modeling framework [18–21]
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and described in more detail as follows, as well as in 1.2.

d[ORSq]

dt
= −f ([ORSa]) (1.1a)

d[ORSa]

dt
= f ([ORSa]) +

(
2ppORS − 1

)
νORS[ORSa] (1.1b)

d[Mx]

dt
= 2pdORSνORSa [ORSa] +

(
2ppMx − 1

)
νMx[Mx] (1.1c)

d[Apop]

dt
= paORSνORSa [ORSa] + paMxνMx[Mx]− d[Apop] (1.1d)

where ORSq and ORSa denote quiescent and active ORS cells, respectively, Mx denotes hair

matrix cells and Apop represents cells undergoing apoptosis. In equations 1.1, [·] denotes the

size of a certain type of cell. Since we do not consider spatial information in the HF system,

[·] can be equivalently considered as the cell concentration, which is the usual meaning in

cell population models.

The expressions ppORS, p
p
Mx denote the proliferation rates of ORS and Mx cells, respec-

tively; pdORS, p
d
Mx denote the differentiation rates of ORS and Mx cells, respectively; and

paORS, p
a
Mx the apoptosis rates of ORS and Mx cells, respectively. Notice that pdMx does not

explicitly appear in the system, rather it plays an implicit role since we impose that these

rate functions should satisfy the following constraints:

ppORS + pdORS + paORS = 1 (1.2a)

ppMx + pdMx + paMx = 1 (1.2b)

νORS, νMx are the dividing frequencies of ORS and Mx cells, which relate to the cell cycle

time T by the relation ν = ln 2/T . The average cell cycle time of Mx cells in mice is ∼ 12

hours [3, 5], in our model we take it as 1 computational time unit, i.e., T = 1 is equivalent

to 12 hours, and we have νMx = ln 2. d is the degradation rate of apoptosis cells, that is,

the rate at which they exit the system. The function f ([ORSa]) describes the transition

between the quiescent ORS and active ORS cells, and we assume the following simple form
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of f :

f ([ORSa]) = hORS (CORS − [ORSa]) (1.3)

where CORS stands for the equilibrium size of active ORS cells, and hORS is the transition

rate.

The feedback controls are modeled as follows. Apop cells may produce signals to activate

apoptosis in ORSa and Mx cells, we assume that the apoptosis rates of ORS and Mx cells

paORS, p
a
Mx depend on the size of Apop cells via the following Hill-function type of controls:

paORS ([Apop]) = p2

[
s2 +

α2[Apop]n2

1 + α2[Apop]n2

]
(1.4a)

paMx ([Apop]) = p3

[
s3 +

α3[Apop]n3

1 + α3[Apop]n3

]
(1.4b)

Mx cells may produce signal A that activates ORSa cells’ proliferation, thus we assume that

the ORSa proliferation rate, ppORS depends on the size of Mx cells:

ppORS ([Mx], [Apop], [ORSq]) = (1− paORS ([Apop])) g([ORSq])p1
α1[Mx]n1

1 + α1[Mx]n1
(1.5)

where we include another control function g to describe the control of the HF length. The

functional forms of equations 1.4ab and 1.5 are illustrated in figure 2.2 using calibrated

parameter values (table 2.1). Finally, all probability functions (p’s) in our model are forced

to be bounded between 0 and 1.

Derivation of Model Equations 1.1

The formulation of the HF model (equations 1.1) mostly follows the classic cell differentiation

population model, which can be found in literature including [18–21]. Below we briefly

justify the formulation of equations 1.1 together with the constraints equations 1.2.

Consider equation 1.1b for ORSa. First, in the case that f([ORSa](t)) > 0, that is, there

is an inflow from ORSq to ORSa, during a short time period [t, t+ ∆t), the change in ORSa
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cell number consists of two parts: the part that comes from ORSq transition (denoted by

I1), and the part that comes from ORSa cells’ proliferation / differentiation / apoptosis

(denoted by I2):

[ORSa](t+ ∆t)− [ORSa](t) ≈ I1 + I2

It is easy to see that during the short time period [t, t+ ∆t),

I1 ≈ f([ORSa](t))∆t

ORSa cell divisions happen at the frequency of νORS. The classic cell differentiation

population model assumes that on the population level, on average, all cells undergo

divisions at the same frequency; or in plain words, all cells divide into two at the frequency

νORS. In addition, here we adopt the symmetric division assumption, that is, as a cell

divides, it gives rise to two daughter cells of the same type. With the symmetric division, if

the two daughter cells are of the same type of their dividing mother cell, we refer it to as

proliferation; otherwise, if the two daughter cells are of a progeny type of their diving mother

cell, then it is referred to as differentiation. In our follicle model, since we also consider

the apoptosis cells as a transient cell type, we adopt the “differentiation” formulation for

apoptosis cells, with the difference that instead of dividing into two, one ORSa cell turns

into one apoptosis cell. The dividing relations of ORSa are summarized in Figure 1.3.

ORSa

ORSa ORSa

Mx Mx

Apoptosis

Symmetric Division

Proliferation

Di�erentiation

Apoptosis

Figure 1.3: An illustration diagram of the symmetric divisions of ORSa cells in the
HF model.
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From these assumptions, that all ORSa cells divide at the frequency νORS, and each

dividing cell either proliferates, differentiates, or undergoes apoptosis, we obtain the constraint

equation 1.2a, that is, the portion of proliferating, differentiating and apoptosis ORSa cells

should sum up to 1. Therefore, the net change in ORSa cell number due to cell division

during [t, t+ ∆t) is

I2 ≈
(
2ppORS − 1

)
[ORSa](t)∆t

where −1 comes from that all ORSa cell divide, and 2ppORS comes from that ppORS of the

dividing ORSa cells proliferate, that is, turn into 2 daughter ORSa cells. Similarly, it can

be derived that after the dividing, there will be 2pdORS[ORSa] newly differentiated Mx cells

from ORSa, and paORS[ORSa] apoptosis cells from ORSa – again notice that unlike the

proliferating and differentiating cells, we assume that one ORSa cell turns into only one

apoptosis cell. Therefore we obtain

[ORSa](t+ ∆t)− [ORSa](t) ≈ I1 + I2

= f([ORSa](t))∆t+
(
2ppORS(t)− 1

)
νORS[ORSa](t)∆t

which gives equation 1.1b:

d[ORSa]

dt
= lim

∆t→0

[ORSa](t+ ∆t)− [ORSa](t)

∆t

= f([ORSa]) +
(
2ppORS − 1

)
νORS[ORSa]

In the case that f([ORSa](t)) < 0, that is, there is an outflow from ORSa to ORSq, we

assume that |f([ORSa](t))| ∼ O(1). In addition, since generally speaking, the ORSa-to-

ORSq transition and ORSa cell divisions happen at different frequencies, we may roughly

consider that in a short time period [t, t+ ∆t), the ORSa-to-ORSq transition and the ORSa

cell division happen successively. That is, if the transition happens in the interval [t, t+ ∆t),

then the ORSa cells divide at t+ ∆t. Therefore, the ORSa cell number right before the cell
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division is

lim
τ→(t+∆t)−

[ORSa](τ) ≈ [ORSa](t) + f([ORSa](t))∆t

then at t+ ∆t, ORSa cell divisions will lead to a change in the ORSa cell number as

(
2ppORS(t)− 1

)
([ORSa](t) + f([ORSa](t))∆t)

Notice that the constraint equation 1.2a still holds as we are only considering the dividing

ORSa cells, and the ORSa to ORSq transition mostly happens at a different frequency and

we have included the transition term inside the current ORSa cell number. Therefore, we

get the estimate

[ORSa](t+ ∆t)− [ORSa](t) ≈[
f([ORSa](t)) +

(
2ppORS(t)− 1

)
νORS ([ORSa](t) + f([ORSa](t))∆t)

]
∆t

Under the assumption of |f([ORSa](t))| ∼ O(1), we have

[ORSa](t+ ∆t)− [ORSa](t)

∆t
≈ f([ORSa](t)) +

(
2ppORS − 1

)
νORS[ORSa] + o(∆t)

Let ∆t→ 0, again we get equation 1.1b:

d[ORSa]

dt
= f ([ORSa]) +

(
2ppORS − 1

)
νORS[ORSa]

We point out that though we could not rigorously prove it, but the assumption

|f([ORSa](t))| ∼ O(1) mostly holds true when f([ORSa](t)) < 0 in our system. Notice that

f([ORSa](t)) < 0, or equivalently, the ORSa-to-ORSq transition, only happens when the

ORSa cell number ([ORSa]) exceeds the equilibrium size (CORS). To break the constraint

|f([ORSa](t))| ∼ O(1), it needs a very large ORSa cell number, which is rarely the case in
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either a controlled system or a radiated system. This can also be seen from our simulation

results (for example, figure 2.4).

We have shown that in either ORSa inflow or outflow case, equation 1.1b holds, though

in the outflow case, some condition applies. We also point out that if we consider the size

of the entire ORS as [ORSq] + [ORSa], the only change in the cell number comes from cell

proliferation, differentiation and apoptosis, which can be obtained by adding up equations

1.1a and b:

d[ORSq]

dt
+
d[ORSa]

dt
=
(
2ppORS − 1

)
νORS[ORSa]

Analogously, equation 1.1cd for Mx and apoptosis cells can be derived in a similar way.

In 1.1c,
(
2ppMx − 1

)
νMx[Mx] comes from the dividing of Mx cells, and 2pdORSνORSa [ORSa]

comes from the differentiating ORSa cells, with the constraint equation 1.2b for dividing Mx

cells. In 1.1d, paORSνORSa [ORSa] comes from the apoptosis ORSa cells, paMxνMx[Mx] comes

from the apoptosis Mx cells, and apoptosis cells die, or say, leave the system at the rate d,

which leads to the −d[Apop] term.

On the control function g HFs grow during the early stage of anagen until they reach

their maximum length, then they stop further downward growth but keep producing hair

shaft. Up to date, the mechanisms that determine the HFs’ maximum length and maintain

their homeostasis are still unclear. An intuitive guess would be that there might be some

signal X produced by Mx cells that inhibits ORS cell proliferation, so that when the HF

reaches its maximum size, the ORS cell proliferation is greatly inhibited by this signal,

allowing the HF to stay at that length. However, to our knowledge, no such signal X has

been identified. Due to the lack of further evidence on the HF length control mechanism,

in our model, we include this control as a function g in the ORS cell proliferation rate ppORS.

Moreover, we would like to emphasize that the feedback mechanism from Mx to ORS cells

through signal A serves to activate instead of to inhibit ORS cell proliferation.
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We use the size of quiescent ORS as a rough measure of the HF length, and phenomeno-

logically model the length control in the following way:

g([ORSq]) =
Eq

[ORSq]
(1.6)

where Eq represents the equilibrium size of quiescent ORS cells [ORSq]. We point out that

without the HF length control, i.e. g ≡ 1, equations 1.1bcd will form a closed system

of [ORSa], [Mx], [Apop], while [ORSq] can be considered as an output of the subsystem

(equations 1.1bcd) by equation 1.1a. In this case, it is easy to see the following:

Lemma 1. If ([ORSq], [ORSa], [Mx], [Apop]) is an equilibrium state of the system 1.1 with

g ≡ 1, then for any c such that [ORSq] + c ≥ 0, ([ORSq] + c, [ORSa], [Mx], [Apop]) is also an

equilibrium state.

Proof. With g ≡ 1, the equation system 1.1 can be written as

d[ORSq]

dt
= φ1 ([ORSa]) (1.7a)

d[ORSa]

dt
= φ2 ([ORSa], [Mx], [Apop]) (1.7b)

d[Mx]

dt
= φ3 ([ORSa], [Mx], [Apop]) (1.7c)

d[Apop]

dt
= φ4 ([ORSa], [Mx], [Apop]) (1.7d)

If ([ORSq], [ORSa], [Mx], [Apop]) is an equilibrium state of the system 1.7, then

Φ([ORSq], [ORSa], [Mx], [Apop]) = ~0 (1.8)

where Φ = (φ1, φ2, φ3, φ4)T . Since the φi, i = 1, ...4 do not depend on [ORSq], we can

write equation 1.8 as

Φ([ORSa], [Mx], [Apop]) = ~0
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Therefore, for any constant c such that [ORSq] + c ≥ 0, we have

Φ([ORSq] + c, [ORSa], [Mx], [Apop]) = Φ([ORSa], [Mx], [Apop]) = 0

which indicates that ([ORSq] + c, [ORSa], [Mx], [Apop]) is also an equilibrium state of the

system 1.7.

The above Lemma indicates that if g ≡ 1, then any constant value of the ORSq

compartment size is an equilibrium of the HF model. This violates the biological fact that

the homeostatic HF length (roughly represented by size of [ORSq] ) during anagen is well

determined. This shows that a growth control mechanism that possibly depends on the HF

length, or equivalently, the size of ORSq in our model is necessary for the HF system.

Modeling IR Effect on HF Regeneration

In the experimental study from [22], different strength of IR (2 Gy and 5.5Gy) is applied to

mouse HFs, and the effects are observed and analyzed in the following days. In [22] (also see

figure 2.1), proliferative Mx cells are identified as BrdUrd+ Mx cells. There are no BrdUrd+

Mx cells detected at 6 hours post-exposure of either 2 Gy or 5.5 Gy IR, effectively causing

a pause in the Mx cellular processes, thus we can interpret this as Mx cells entirely being

affected by IR as follows. We assume that during t < 0, the system 1.1 is at equilibrium,

corresponding to the homeostatic state in non-radiated, or controlled, mice HFs. At t = 0, we

introduce in a new quantity MxIR denoting the Mx cells that pause their cellular processes

due to IR exposure, and we assume that at t = 0, all current Mx cells become MxIR, i.e.,

Simulated IR exposure: [MxIR](0) = lim
t→0−

[Mx](t), [Mx](0) = 0

Also according to [22], after IR exposure, Mx cells restart their cellular processes including

both cell proliferation and apoptosis, and there is an inflow of ORS cells into the hair bulb

to replenish the Mx cell population. Thus, we assume that after the simulated IR exposure,
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MxIR cells can either return to normal Mx cells at a rate of q, or they can start apoptosis at

the rate of 1− q. The dynamics of the MxIR are described by the following equations, and

illustrated in figure 1.2B.

d[MxIR]

dt
= −γ[MxIR] (1.9a)

d[Mx]

dt
= γq[MxIR] + 2pdORSνORSa [ORSa] +

(
2ppMx − 1

)
νMx[Mx] (1.9b)

d[Apop]

dt
= γ(1− q)[MxIR] + paORSνORSa [ORSa] + paMxνMx[Mx]− d[Apop] (1.9c)

γ is the “degradation” rate of MxIR, which can be understood as the rate at which the

MxIR cells quit their interrupted state, and equations 1.9bc are modified from equations

1.1cd to include the post-radiation transitions of MxIR just described. That is, return to

normal (γq[MxIR] in equation 1.9b), or start apoptosis (γ(1− q)[MxIR] in equation 1.9c).

Modeling of Mx Lineage Tracing after IR

In the IR simulations, we are also interested in how much the ORS-to-Mx differentiation

contributes to the Mx regeneration, therefore we would like to inspect the post-radiation

Mx lineage tracing. At t = 0, all current Mx cells turn into MxIR. For t > 0, we mark the

Mx cells derived from ORS cells and their progeny cells as Mx+, and those that recover

from MxIR as Mx−. The dynamics of [Mx] in equation 1.9 are further decomposed into the

following two equations:

d[Mx+]

dt
= 2pdORSνORSa [ORSa] +

(
2ppMx − 1

)
νMx[Mx+] (1.10a)

d[Mx−]

dt
= γq[MxIR] +

(
2ppMx − 1

)
νMx[Mx−] (1.10b)

where [Mx+] + [Mx−] = [Mx] gives the total Mx cell population.
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1.3 Model Parameters

In this section, we derive additional constraints using relations obtained from the steady

state of system 1.1 which corresponds to the non-radiated, or control case in mice from

experimental study [22]. We then summarize the main findings in the same work, and use

their experimental data to calibrate the parameters in our HF model. Lastly, we show

simulation results using the parameter set obtained from the calibration.

Information from Control Case

In the control case, or equivalently, 0 Gy IR, apoptosis is hardly detected during anagen until

the initiation of catagen. Therefore, [Apop] ≡ 0, paORS = paMx = 0 in the system without IR

exposure (equations 1.1), and equations 1.4 give

paORS ([Apop] = 0) = p2s2 = 0, paMx ([Apop] = 0) = p3s3 = 0

Since p2, p3 cannot be zero otherwise the feedback controls from Apop to Mx and ORSa

will be trivially zero (equations 1.4) , the above relations indicate that s2 = s3 = 0. That is,

the spontaneous apoptosis rates in Mx and ORS cells during anagen are both zero.

Without radiation exposure, HF growth should stay homeostatic during anagen, thus

the system 1.1 should stay in its equilibrium state. We have discussed above that at

the equilibrium state, [Apop] = 0. Furthermore, we use data from [22] to estimate the

equilibrium size of Mx, denoted EMx, by extracting the control average value of Mx, which

gives EMx ≈ 128. There is no direct clue from the data about the equilibrium values of

[ORSq] and [ORSa], yet from system 1.1,

d[ORSq]

dt
= f([ORSa]) = hORS (CORS − [ORSa]) = 0

thus we should have [ORSa] = CORS. Finally, considering the length control function g

(equation 1.2), we take [ORSq] = Eq as the equilibrium value. Therefore, we obtain the

18



equilibrium state in HF growth dynamics system 1.1:

([ORSq], [ORSa], [Mx], [Apop]) = (Eq, CORS, EMx, 0)

where EMx ≈ 128, while the values of Eq and CORS are to be determined.

Two other constraints for the parameters can be obtained by the steady state of the

system 1.1. At the steady state, equation 1.1bc can be reduced to

d[ORSa]

dt
=

(
2ppORS − 1

)
νORS[ORSa] = 0

d[Mx]

dt
= 2pdORSνORS[ORSa] +

(
2ppMx − 1

)
νMx[Mx] = 0

with

ppORS = p1
α1E

n1
Mx

1 + α1E
n1
Mx

, ppORS + pdORS = 1, ppMx + pdMx = 1

From the above relations, we obtain the following constraints at the equilibrium:

p1
α1E

n1
Mx

1 + α1E
n1
Mx

=
1

2
(1.11a)

ppMx =
1

2

(
1− νORSCORS

νMxEMx

)
∈
[
0,

1

2

]
(1.11b)

Notice that we did not specify any conditions between the proliferation and differentiation

rates of Mx cells, i.e., ppMx, pdMx in equation 1.2b. Published studies suggest that Mx cells

mostly respond to both proliferation (including Fgf7/10) and differentiation signals (including

Bmp and its antagonist Noggin) sent from the DP [1,2, 26–38], and that Bmp ligands might

have a longer effective range than Fgf and Noggin ligands, which results in an upward-oriented

pro-proliferation-to-pro-differentiation signaling gradient [30]. Since DP is relatively stable,

we assume that such a pro-proliferation-to-pro-differentiation signaling gradient imposed on

Mx is also stable, from which we may assume that ppMx/p
d
Mx keeps the same ratio during

anagen. Therefore, we take the value from equation 1.11b as r, and assume the following
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relations for Mx cells:

r =
1

2

(
1− νORSCORS

νMxEMx

)
, ppMx = r (1− paMx) , pdMx = (1− r) (1− paMx) (1.12)

Finally, we point out that studies also show that there are other dynamic supplementary

resources for Bmp ligands that promote Mx cells differentiation, which may include ORS

and another group of transient amplifying cells derived directly from Mx, called precortex

[30,39]. However, considering that DP serves as the main source of Mx cell proliferation

and differentiation signals, for now we do not consider these additional sources in our model

and adopt the simplified assumption (equations 1.12).

With all considerations described above, we first calibrate our model parameters to data

from [22] and summarize the major discoveries about IR induced HF regenerative dynamics

and list them below. In the results chapter, we present discuss in more detail how the

parameters are calibrated and present simulation results.

Summary of Major Discoveries from IR Experimental Results

• IR is applied to two distinct groups of mice; one is applied IR of strength 2 Gy, and

the other a strength of 5.5 Gy. Through staining techniques, researchers from [22] are

able to quantify the number of proliferative cells, the percent of apoptotic cells in the

matrix, the HF length, as well as the tracking of Mx cells lineage post-radiation.

• Apoptotic Mx cells. With either 2 or 5.5 Gy IR, apoptosis is detected in Mx cells

shortly after exposure during (0 - 6 h) (referred to as TUNEL+ Mx cells in [22]). With

2 Gy IR, the number of apoptotic Mx cells returns to zero at ∼ 24 h; with 5.5 Gy IR,

it takes until ∼ 72 h for the number of apoptotic Mx cells to return to zero. See plots

in figure 2.1AA’ regenerated from data from [22].

• Mx cells. With 2 Gy IR, the number of Mx cells decreases to about half the initial

number at ∼ 24 h, then returns to the equilibrium level at ∼ 72 h; with 5.5 Gy IR,

the number of Mx cells continues to decrease until ∼ 72 h, then increases from ∼
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72 h to day 7, however catagen starts at day 7 before Mx is fully regenerated (figure

2.1BB’). Moreover, In both 2 Gy and 5.5 Gy IR, no proliferating Mx cells (referred

to as BrdUrd+ in [22]) are detected at 6 h. After that, with 2 Gy IR, the number of

proliferating Mx cells increases significantly until ∼ 48 h after which point it remains

at more or less the same level until day 7; with 5.5 Gy IR, the number of proliferating

Mx cells shows a slightly recovery and stays at a low level during 6 - 72 h, then it

returns to zero at 72 h, followed by a second recovery attempt until day 7, referred

to as the second regeneration attempt ( figure 2.5BB’).

• HF length. With 2 Gy IR, there is a small decrease in the HF length with minimum

occurring at ∼ 48 h before returning to a normal level; with 5.5 Gy IR, the HF shrinks

significantly to about half original length by 72 h then returns to normal by day

7 (figure 2.1CC’). In both cases the HF length is fully regenerated by day 7, when

catagen starts.

• ORS to Mx flow. In normal HFs, keratin 5 (K5+) is present exclusively in cells in the

basal area of the hair bulb. With 2 Gy or 5.5 Gy IR, K5+ is found in cells upwards

of the basal area, indicating that these cells contribute to the bulb regeneration.
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Chapter 2

Results

2.1 Parameter Calibration

In our model system, we classify some parameters as closely related to IR strength and

apoptosis signaling dynamics. Therefore, we divide the parameters into the two groups:

Group 1: γ, q, α2, α3, p2, p3, s2, s3, n2, n3, d (2.1a)

Group 2: hORS, CORS, νORS, νMx, p1, α1, n1, Eq, EMx (2.1b)

Group 1 parameters either directly relate to IR (γ, q) or they participate in the apoptosis

signaling pathway (α2, α3, p2, p3, s2, s3, n2, n3, d). Group 2 includes all other parameters.

The parameter νMx = ln 2, and we have determined s2 = s3 = 0, EMx = 128 as discussed in

section 1.3. We further assume that the Hill exponents n1 = n2 = n3 = 2 for simplicity. For

other parameters, we impose that group 2 parameters should have the same value despite of

IR strength, while group 1 parameters can be selectively different depending on IR strength.

We first tried to use the least square method by creating an optimization problem using

Matlab functions fcn2optimexpr and optimproblem. The data to be fitted are 2 Gy and

5.5 Gy data of apoptosis Mx cells (figure 2.1AA’ blue boxes), bulb cells (figure 2.1BB’

blue boxes) and the percentage of HF length (figure 2.1CC’ blue boxes), at time points
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Figure 2.1: Parameter calibration of the IR induced HF regeneration model. Red
lines show simulations results, blue boxes show experimental data. ABC show the simulations /
experimental observations with 2 Gy IR, and A’B’C’ show simulations / experimental observations
with 5.5 Gy IR. Parameters are calibrated to apoptotic Mx cells (AA’), bulb cells (BB’) and the
percentage of HF length (CC’) – modeled as the ratio of current ORS cell number to that in controlled
mice.

hour 0, 6, 12, day 1, 1.5, 2, 3, 4, 5 and 7. We use the same parameters from group 2 (2.1b)

for both 2 Gy and 5.5 Gy data, while parameters from group 1 (2.1b) are allowed to be

different to fit separately to the 2 Gy and 5.5 Gy data. Initial guesses of the parameter

values are randomly chosen. Unfortunately, the better results from the least square method

give parameters that predict biologically unrealistic dynamics when observing the long-term

behavior after the last experimental observation at time point ( day 7): for example, some of

the results do not show the HF regeneration observed in the 5.5 Gy IR experiments, or some

others show large amplitude of oscillations in HF length. Therefore, instead of seeking the

optimal fitted parameter values, we chose a set of parameter values that numerically matches
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the experimental data to a reasonable extent, while remaining biologically meaningful and

captures the major characteristic behaviors in IR induced HF regeneration.

The calibrated parameter values are given in table 2.1, where altogether we have 18

free variables, with p2, p3, α2, α3, q having separate values for 2 Gy and 5.5 Gy data.

s2, s3, νMx, EMx
are pre-determined from literature thus are not included in these 18 free

variables. The simulation results with the calibrated parameter values are shown in figure

2.1AA’BB’CC’ by the red solid lines, in comparison to the IR experiment data shown by

the blue boxes.

Table 2.1: Parameter values of the HF model calibrated from the IR experimental data.

Parameters Values

s2 0

s3 0

νMx ln 2

EMx 128

hORS 2.2532

νORS 0.21907

d 2.0755

CORS 27.844

ORSmax 108.8424

γ 3.5262

p1 0.99507

p2 0.059416 (2 Gy) 0.9985 (5.5 Gy)

p3 1.5273× 10−4 (2 Gy) 0.99977 (5.5 Gy)

α1 6.1642× 10−5

α2 0.071299 (2 Gy) 0.022659 (5.5 Gy)

α3 0.0032523 (2 Gy) 0.042646 (5.5 Gy)

q 0.64089 (2 Gy) 0.64679 (5.5 Gy)
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Figure 2.2: Figures of paORS (equation 1.4a), paMx (equation 1.4b), and ppORS (equation
1.5). Parameters values are taken from the the 2 Gy (AB) and 5.5 Gy (A’B’) simulations,
respectively (table 2.1). In the plots of ppORS (BB’), we take [ORSq] = Eq so that ppORS depends on
[Apop] and [Mx].

Comparing the simulation results with the IR experimental data, we find that apoptotic

Mx cell number and bulb cell number show good agreement with the data (figure 2.1AA’BB’).

On the other hand, there is some difference between the simulation and data of the HF

length percentage. This is mostly because of the following two reasons. First, our model does

not have spatial information, and the HF length is approximated as the ratio of the current

number of ORS cells in the radiation systems to the number of ORS cells in the control

case. Second, it is possible that the simple assumption of the HF length control function
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Figure 2.3: Trajectories of ORSq with parameters generated by LHS in the PRCC
performance.

g (equation 1.2) may lead to a slow HF regeneration, compared to the real biological

HF length control mechanism. Considering these two model simplifications and that the

calibrated results still capture the characteristics of the HF length regeneration dynamics, we

accept this set of parameter values. From both the IR data and simulation results in figure

2.1AA’BB’CC’, we see that in either 2 Gy or 5.5 Gy case, IR induces massive apoptosis but

only during the early stage. 5.5 Gy IR causes significant decrease in both bulb cells and

the HF length in comparison to 2 Gy IR, yet in both cases, the HF is able to return to its

homeostatic state, though the simulation predicts longer time for HF length recovery.

Finally, we also point out that another dataset at day 10 post-IR is presented in [22],

which clearly shows drops in both the HF length and Mx cell numbers, indicating that the

HF has entered the degenerating catagen phase. Since our model does not count for the

dynamics of the whole HF growth cycle, we ignore this day 10 catagen dataset as our model

cannot predict an automatic onset of catagen. We also extend most of our simulations to

day 20 to better assess the long-term regenerative behavior, since, as is shown in figure

2.1A’B’C’, in the 5.5 Gy simulations it takes a longer time than 7 days for the HF to fully

regenerate to a pre-IR level – this also seems to be true for the 5.5 Gy IR experiment; indeed,
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catagen begins after day 7 before the Mx can fully return to its pre-IR level (figure 1E from

[22]).

Simulation Results

In figure 2.4, we show the simulated dynamics of each HF compartment after 2 Gy or 5.5

Gy IR (figure 2.4) which show regenerative patterns. In both cases, after IR exposure, a

wave of apoptosis cells is triggered but quickly goes away (black solid lines). The radiated

Mx cells (MxIR) also quickly disappear from the system (magenta dashed lines); the regular

Mx compartment (magenta solid lines) quickly regenerates in the 2 Gy IR simulation (2.4A),

while in the 5.5 Gy IR simulation, it first regenerates quickly, but is then followed by another

drop, then regenerates again (2.4B). For ORS, we notice that the ORSa compartment

mostly maintains its size despite the strength of IR (blue solid lines); while ORSq relatively

maintains its regular size in the 2 Gy IR simulation (2.4A), indicating little change in the HF

length, yet in the 5.5 Gy IR simulation, a clear drop in the ORSq size is observed, followed

by a slow regeneration, which indicates an early degenerating HF followed by a regeneration.

Comparing the 2 Gy vs. 5.5 Gy IR simulations, we find that while all HF compartments

regenerate relatively quickly in the 2 Gy IR simulations, it takes much longer to regenerate

in the 5.5 Gy IR simulations, especially for Mx and ORSq. The slow regeneration of the Mx

compartment predicted from our 5.5 Gy IR simulations seems to coincide with that shown

by the 5.5 Gy IR experiment (figure 1E from [22]), although the experiment shows a faster

regeneration in the HF length.

We now show our model results when simulating Mx proliferation and the ORS-to-Mx

differentiation dynamics and compare to the experimental data. We mention that we did

not use this data in our parameter calibration, since, as we will explain below, the simulated

terms are only approximations to what is measured in experiments.

We first compare the proliferating Mx cells (defined as νMxp
p
Mx[Mx]) to the BrdUrd+

Mx cell data (figure 2.5AA’). In the experimental 2 Gy IR case, BrdUrd+ Mx data indicates

that Mx cells return to proliferation soon after radiation, while in the 5.5 Gy IR case, two
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Figure 2.4: Simulations of IR induced HF regenerative dynamics. A 2 Gy IR, B 5.5 Gy
IR.

proliferation restoration attempts can be observed, both of which stay at low levels. The

increase in proliferation after day 3 is what we characterize as the second regeneration

attempt. When observing the simulation results, proliferation in the 2 Gy case exhibits an

immediate sharp increase which quickly appears to settle at a similar level as the experimental

data. On the other hand, proliferation in the 5.5 Gy simulations fail to capture the two

regeneration attempts (figure (2.4C), although when looking close, we do see a small sharp

increase and decrease in proliferation very early, followed by another, much more slow

increase. Additional mechanisms might contribute to this second regeneration attempt,

which need to be investigated.

Next,we simulated the K5+ Mx cell lineage by tracking the Mx cells that were derived

either from Mx ([Mx-]) or ORS ([Mx+]) after IR is applied, which indicate the ORS-to-Mx

flow in the model. We compare the results with the K5+ Mx cell data. Both the 2 Gy and

5.5 Gy IR experimental observations show a quick increase in K5+ Mx cells at early stage

(figure 2.5B’ blue squares), indicating a fast upward migration of Mx cells after radiation,

which is possibly driven by a quick ORS-to-Mx flow. Computationally, in the 2 Gy IR

simulation, during the early stage, ORS cells steadily flow into Mx (figure 2.5B red solid

line); while in the 5.5 Gy IR simulation, a slow early ORS-to-Mx flow is followed by a

sudden increase in the flow speed (figure 2.5B’ red solid line), occurring significantly later
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Figure 2.5: Model-data comparison of the IR induced HF regeneration model. Red lines
show simulations results with the red y-axis on the right, blue boxes show experimental data with
the blue y-axis on the left. AB show the simulations / experimental observations with 2 Gy IR, and
A’B’ show simulations / experimental observations with 5.5 Gy IR. AA’ compare the simulated
proliferation Mx cells and the BrdUrd+ Mx cells from experimental observations. BB’ show the K5+
Mx cells and simulated ORS-to-Mx flow, with red solid lines showing the percentage of post IR Mx
cells that are derived from ORS, and red dashed lines showing the percentage of post IR Mx cells
that are derived from Mx cells.

than in the experimental observations. This may indicate that additional mechanisms are

needed to drive the early ORS-to-Mx flow when subject to strong IR. We point out that

observing K5+ Mx cells is not exactly the same as a lineage tracing experiment. This can

be easily understood from the decrease in the K5+ Mx cell number soon after the early

sudden increase (figure 2.5BB’, blue boxes), which would not be seen in a lineage tracing

experiment. This results in the long term behavior of K5+ Mx cell data being essentially

different from our simulations, though they share some similarity at the early stage. Finally,

in both 2 Gy and 5.5 Gy simulations, there is a quick and significant increase in Mx cells
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derived from radiated Mx cells returning normal and their proliferation (figure 2.5B red

dashed lines).

2.2 Stability of the Homeostatic State of Anagen HF

The major goal of this modeling research is to understand the control mechanisms of the HF

regenerative dynamics. In particular, why is the HF able to regenerate itself from the IR

induced degeneration during anagen, but cannot stop the progressive degeneration during

the catagen? In this part, we apply linear stability analysis, sensitivity analysis, and

bifurcation analysis to address this question.

Linear Stability Analysis

In our model, several parameters are identified as directly related to the IR and apoptosis

dynamics (group 1 from equation 2.1a). Within these parameters, γ and q depend on the

IR strength, Hill exponents n2 and n3 are assumed to be a constant, d is the “death” rate

of apoptosis cells – the rate at which they quit the system, and usually such a rate is

considered to be stable. This leaves six other parameters in this group: the spontaneous

apoptosis rates in ORS and Mx cells – s2, s3, and the Apop-to-ORS, Apop-to-Mx feedbacks

strength – α2, p2, α3, p3 that control the coordinated apoptosis dynamics in ORS and Mx.

In controlled mice, during anagen, spontaneous apoptosis in the HF epithelium is hardly

detected, as is reported in [22]. Based on this observation, we set the spontaneous apoptosis

rates in ORS and Mx, s2 = s3 = 0 as discussed in section 1.3. Furthermore, the anagen

HF homeostasis is characterized by the steady state (Eq, CORS, EMx, 0) in our model, as

discussed above. Interestingly, linear stability analysis reveals the following result:

Lemma 2. During anagen with s2 = s3 = 0, the homeostatic state (Eq, CORS, EMx, 0)

is stable, and the stability does not depend on the apoptosis feedback strength parameters

α2, p2, α3, p3.
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Proof. We apply the linear stability to the system equation 1.1 and at the steady state

(Eq, CORS, EMx, 0). For simplicity, we denote [ORSq], [ORSa], [Mx], [Apop] as x1, x2, x3, x4,

respectively. During anagen, with the assumption s2 = s3 = 0, the Jacobian at this steady

state is

J =



0 hORS 0 0

E A B 0

F C D 0

0 0 0 −d


where

E = −νORSCORS

Eq

A = −hORS

B = 2νORSCORSp1
2α1EMx

(1 + α1E2
Mx)2

=
2νORSCORS

EMx(1 + α1E2
Mx)

C = νORS

D = − 2νORSCORS

EMx(1 + α1E2
Mx)

+ νMx(2r − 1)

With the fitted parameter values from the IR experiment data, the above Jacobian yields

four eigenvalues:

λ1 = −d = −2.0755, λ2 = −2.1785, λ3 = −0.0258, λ4 = −0.1440

all of which are negative, indicating that the steady state of anagen HF homeostasis is stable.

Moreover, notice that the parameters participating in the apoptotic events (α2, p2, α3, p3)

do not show up in the Jacobian, indicating that this steady state stays stable and is

independent of these parameter values.
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This Lemma explains the highly regenerative ability of the HF during anagen, even when

subject to high dose of IR. Since the anagen homeostasis is stable and presumably the IR

only affects the apoptosis events, the system is able to return to the homeostatic steady

state despite strong IR, or equivalently, large α2, p2, α3, p3 values.

Local Sensitivity Analysis

To further understand the effects of each parameter on the HF regenerative dynamics,

we perform both local and global sensitivity analysis in this and the next parts.

For the local sensitivity analysis, we use the one-factor-at-a-time (OFAT) method, that

is, changing the value of a particular parameter within a range while keeping the other

parameter values fixed. For each parameter, we take the parameter values ranged from

0.5 to 1.5 folds, centered at the calibrated value, and we compare the numerical results of

the number of quiescent ORS cells (ORSq) at day 20, since the number of ORSq long after

application of IR can reflect the HF’s ability of regeneration. The parameter sensitivity

results from controlled mice (0 Gy IR, no radiation), 2 Gy and 5.5 Gy IR simulations are

shown in figure 2.6, where in the 0 Gy simulations (figure 2.6A) we also use the calibrated

values of α2, p2, α3, p3 from the 2 Gy IR data. First, as is already shown by the stability

analysis, the HF homeostatic state does not depend on the apoptosis feedback strength

parameters α2, p2, α3, p3, and the size of ORSq does not change (figure 2.6A). Next, the

0 Gy system is very sensitive to the parameters p1, α1,ORSmax, where ORSmax is defined

as ORSmax = Eq + CORS, the total number of ORS cells at homeostasis in controlled mice.

Decreasing the values of these parameters will greatly inhibit the HF regeneration ability

(figure 2.6A). The 0 Gy system is also sensitive to CORS. Notice that these parameters

directly relate to the ORS cell proliferation, thus our results imply that during anagen

when spontaneous apoptosis is at a very low level, the regenerative ability of the HF highly

depends on its ORS cell proliferation and less on the apoptosis dynamics control. In

particular, the sensitivity on p1, α1 should be easy to understand, as we pointed earlier in

section 1.3, p1 and α1 have to satisfy the constraint equation (1.11) to keep the HF in the
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homeostatic state. Therefore changing only one of their values at a time will surely break

homeostasis and lead to abnormal regeneration behavior of the HF.

When subjected to radiation (figure 2.6BC), first, as we pointed earlier in parameter

calibration (for example, see figure 2.1C’), especially at 5.5 Gy IR, it may take > 20 days

for our modeled HF to fully return to the length at homeostasis, therefore all parameter

values return a slightly shorter HF at day 20 (figure 2.6C). Next and more important, the

system becomes sensitive to more parameters than in the controlled case. These parameters

include νORS and d, as well as p3, α3 which control the apoptosis feedback on Mx cells. As

these parameters are varied, there is a subtle decrease in modeled HF length (ORSq) in

the 2Gy case and a much more visible one in the 5.5Gy case. However, no clear change

in the sensitivity to the parameters controlling apoptosis feedback on ORS cells (p2, α2) is

observed in either 2Gy or 5.5Gy case.
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Figure 2.6: Sensitivity of the parameters. At each time, only one parameter value changes,
ranged from 0.5- to 1.5-fold of the calibrated value. Heatmap shows the number of quiescent ORS
cells (ORSq) at day 20, as a measure of the HF regeneration ability. Simulations are taken from
A 0 Gy IR, no radiation, B 2 Gy IR and C 5.5 Gy IR models. In 0 Gy simulations, we use the
calibrated values of α2, p2, α3, p3 from the 2 Gy IR data.
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Global Sensitivity Analysis

Next, we perform a global sensitivity analysis on the parameters using the partial rank

correlation coefficient (PRCC) measure [63]. Latin hypercube sampling (LHS) is implemented

to generate sample parameters, with parameter values uniformly distributed from 0.5 to 1.5

folds of the calibrated value. Similar to the local sensitivity analysis, we assess the number of

quiescent ORS cells (ORSq) at day 20. The PRCC results of 2 Gy and 5.5 Gy IR simulations

are shown in figure 2.7, and the trajectories of the [ORSq] from day 0 (application of the

IR) to day 20 are given in figure 2.3. In figure 2.7, the first index on the top of each panel

gives the PRCC of that parameter, and the second index gives the p-value.

In 2 Gy simulations, five parameters give nearly zero p-values: p1, α1, CORS, ORSmax,

q, indicating that the output ([ORSq] at day 20) is sensitive to these parameters. Among

them, four (p1, α1, ORSmax, q) show large positive PRCC measures, indicating a positive

correlation between them and the output; while CORS shows a negative correlation with the

output. Comparing with the local sensitivity results (figure 2.6B), the system appears to be

sensitive to p1, α1, CORS, ORSmax with both local and global sensitivity analyses, while the

PRCC further reveals the sensitivity on q.

In 5.5 Gy simulations, first, we notice that most parameters have smaller p-values

comparing to the 2 Gy simulations, indicating that the the system is more sensitive to

the parameters comparing to the 2 Gy simulations – this is mostly due to that in the 5.5

Gy simulations, at day 20 mostly the HF has not fully returned to the length at the 510

homeostatic state, as we discussed in the local sensitivity analysis. Next, several parameters

show close to 0 p-values. These are p1, α1, p3, α3, νORS, d, CORS, ORSmax; they also show

large, positive or negative PRCC values. We also notice that the results no longer show

sensitivity to q, as in the case of 2 Gy simulations. Moreover, comparing these results with

the local sensitivity results (figure 2.6B), we see that they present the same list of sensitive

parameters. Among these parameters, p1, α1, d, ORSmax show positive PRCC measures,

indicating positive correlations between the parameters and the output, while p3, α3, νORS,

CORS show negative PRCC measures thus negative correlations with the output.
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Figure 2.7: PRCC performed on the A) 2 Gy and B) 5.5 Gy IR models. Parameter
values are sampled using LHS, with each parameter uniformly distributed between 0.5 to 1.5 folds of
the calibrated value. The first / second index on top of each panel shows the PRCC / p-value of that
parameter. Parameters showing large PRCC and small p-value are highlighted by the green boxes.
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Bifurcation Analysis

At the late stage of anagen, spontaneous apoptosis becomes prominent in Mx, which later

triggers the upward propagating apoptosis wave, marking the anagen-to-catagen transition.

Unlike the IR induced HF degeneration, the degeneration during catagen is irreversible and

only comes to a stop when the HF enters the resting telogen phase.

In our model, the spontaneous apoptosis rate in Mx is controlled by the parameter

s3, previously set to zero to represent the absence of spontaneous apoptosis in anagen. To

understand it’s effect, we apply bifurcation analysis with respect to s3 on the following

systems. System 1.1 with the 2Gy calibrated parameter values, system 1.1 with the 5.5

Gy calibrated parameter values, and a few more “intermediate systems” (IS) with values

of p2, α2, p3, α3 varying between the 2 Gy and 5.5 Gy calibrated values (figure 2.8, all

bifurcation diagrams generated by XPPAuto, parameter values of p2, α2, p3, α3 listed in

table 2.2).

Table 2.2: Parameter values of p2, α2, p3, α3 in the bifurcation diagrams from figure 2.8. IS
stands for “intermediate system”.

2Gy IR IS 1 IS 2 IS 3 IS 4 5.5 Gy IR

p2 0.059416 0.1 0.4 0.7 0.8 0.9985

α2 0.071299 0.05 0.03 0.02 0.021 0.022659

p3 0.00015273 0.1 0.4 0.7 0.8 0.99977

α3 0.0032523 0.01 0.02 0.03 0.04 0.042646

First, in the 2 Gy case we observe that the stability of the steady state does not change

with s3 (figure 2.8A). Considering that the 2 Gy IR system has very weak apoptosis

feedbacks on both Mx and ORS cells, determined mostly by the values of p2, p3 (table 2.2),

this implies that increasing the spontaneous apoptosis rate (s3) alone cannot lead to the

apoptosis wave or the catagen HF degeneration. On the other hand, in the 5.5 Gy IR system

(figure 2.8F), due to the strong apoptosis feedback on both ORS and Mx cells (p2, p3), an
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Figure 2.8: Bifurcation diagrams of the HF regeneration dynamics with respect to the
Mx cells’ spontaneous apoptosis rate s3. A, 2 Gy IR system. BCDE, intermediate systems
1-4, F 5.5 Gy IR system. Parameter values of p2, p3, α2, α3 of the systems are provided in table
2.2. Red solid line - stable state, black solid line - unstable state, green dots - stable periodic solution,
blue circles - unstable periodic solution. A close up view in D shows a small region of unstable
periodic solution. Close up views of the stable (red) and unstable (black) solutions near the anagen
HF homeostatic state are shown in F, with the does indicating periodic solutions removed.
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increase in the spontaneous apoptosis rate in Mx cell (s3) quickly breaks down the stability

of the homeostatic state: first, a Hopf bifurcation is triggered leading to a periodic solution

region (figure 2.8F, green dots), followed by another stable steady state representing the

degenerated HF (figure 2.8F, red solid lines).

The intermediate systems show how the steady state evolves as the apoptosis feedbacks

get stronger. With weak apoptosis feedbacks (figure 2.8BC), the steady state is able to

remain stable as s3 increases, pushing the HF system from the homeostatic state to the

degenerated state. Then at a certain level of apoptosis feedback, a Hopf bifurcation occurs

and a transient periodic domain shows up (figure 2.8DEF). The Hopf bifurcation is identified

as subcritical, that is, an unstable periodic solution region (shown by blue circles in the

close-up plot in figure 2.8D), is quickly followed by a stable periodic solution region (green

dots in figure 2.8DEF). We point out that the unstable periodic-solution region is very

small, and difficult to identify in XPPAuto, showing a jump from the homeostatic stable

steady state to the periodic solution (figure 2.8EF).

Dynamic simulations of system 1.1 with 5.5 Gy calibrated parameter values p2, α2, p3, α3

and different s3 values are shown in figure 2.9. In agreement with the bifurcation diagrams

(figure 2.8), with s3 = 0, that is, no spontaneous apoptosis in Mx cells, the HF stays in the

stable homeostatic state (figure 2.9A). A small value of s3 results in the degeneration of

the HF, followed by periodic dynamics (figure 2.9B), while further increasing s3 results in

the full degeneration of the HF without showing periodic dynamics (figure 2.9C), which

could represent the full degeneration dynamics of the catagen phase. This reveals the

important roles of the Mx spontaneous apoptosis rate (s3) and the apoptosis feedback

strengths (p2, α2, p3, α3) on the HF degeneration dynamics.

We continue our bifurcation analysis on the apoptosis feedback strengths by making

a simplifying assumption on the model and letting p = p2 = p3. The values of α2 and α3

are fixed as the 5.5 Gy calibrated values. For small values of s3, increasing the bifurcation

parameter p induces a decrease in both ORSq and Mx cells in the stable steady state,

together with a slight increase in apoptosis cells (figure 2.10A). As the apoptosis feedback
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Figure 2.9: Dynamic simulations of the HF cell population system with different Mx
spontaneous apoptosis rate values (s3). A, s3 = 0, no spontaneous apoptosis in Mx cells, HF
stays in the stable homeostatic state. B, s3 = 0.05, HF degenerates, followed by small amplitude of
periodic dynamics. C, s3 = 0.2, HF fully degenerates.
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strength (p = p2 = p3) keeps increasing, a Hopf birfurcation is triggered and the system

enters the periodic solution domain. On the other hand, when s3 is larger, no bifurcation

occurs with p, and increasing the apoptosis feedback strength causes a decrease in ORSq

and Mx cells in the stable steady state, together with an increases in the apoptosis cells.

Also refer to example dynamic simulations in figure 2.9.
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Figure 2.10: Bifurcation diagrams of the HF regeneration dynamics with respect to
the apoptosis feedback strength p = p2 = p3. α2, α3 values are taken from the 5.5 Gy IR system.
A, s3 = 0.05. B, s3 = 0.2.

Finally, we point out that catagen is a transient phase that is typically much shorter

than anagen or telogen. If the Mx cells’ spontaneous apoptosis rate (s3) quickly increases

at the anagen-to-catagen transition, it may push the system from the anagen homeostatic

state (small s3) to the degenerating state (large s3), completely bypassing the periodic

behavior. This is illustrated by our simulation of the anagen-to-categen transition dynamics

in figure 2.11, where we set up a linear increase of s3 from day 5 to day 10 (figure 2.11A).

The resulting deterministic dynamics are shown in figure 2.11B, from which we see that the

increase in s3 steadily induces the degeneration of the HF, and we hardly see any periodic

dynamics. This may explain why periodicity is not observed in experiments. In addition,

during catagen, more complicated morphological deformations occur in the HF, therefore

40



at the late catagen stage, our cell differentiation population model might no longer be

adequate.
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2.3 Modeling Effect of PGE2 Treatment on IR-exposed HF

New experimental results testing effectiveness of Prostaglandin E2 (PGE2) drug against

radiotherapy-induced alopecia (RIA) reveal that PGE2 treatment reduced hair loss in mouse

HF by preventing premature termination of anagen and enhancing HF self repair. PGE2

did not activate HF stem cells, but it preserved more transit amplifying cells (TACs) for

regenerative attempts. Pretreatment of PGE2 lessened radiosensitivity of TACs and reduced

TAC apoptosis and therefore mitigated HF dystrophy [65].

We would like to further validate our mathematical model by replicating the new

experimental results in simulations. Modeling results should show regenerative dynamics

in Mx and ORS (which are TACs), and simultaneously a delay and decrease in apoptosis

cells. We hope that by perturbing certain parameters in our model, we can observe the

expected behavior. We point out that a stronger dose of 8.5Gy IR is administered in the

recent experiments; given the current fit of apoptosis feedback parameters p2, p3, in our

model (2.1) for the 5.5Gy system being nearly at their maximum value of one, we attempt

to model the stronger 8.5Gy IR effect by instead perturbing the spontaneous apoptosis rates

(s2 or s3) and IR-related parameters q and γ, where the terms γq and γ(1− q) in equations

1.9 represent the rate at which IRMx return to normal Mx and the rate at which IRMx start

apoptosis, respectively. In our current 2Gy and 5.5Gy models, s2 or s3 are set to zero to

represent the absence of spontaneous apoptosis in the anagen phase, however our bifurcation

analysis revealed that by increasing s3, those systems with strong enough apoptosis feedback

i.e. systems IS3, IS4 and 5.5 Gy, show a bifurcation pushing the homeostatic steady state

of the anagen HF away from stability (see Figure 2.8). Thus, we further explore the s3

bifurcating region in search of similar dynamics to those observed in experiments with PGE2

treatment.

We arbitrarily choose a region of s3 that contains the bifurcating region in each system,

q ranges along its domain which is (0, 1), and the γ region is chosen arbitrarily with the

only requirement that it contains it’s fitted value. Thus by means of LHS on s3, q, γ ∈
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(0.01, 0.04) × (0, 1) × (0, 5) for the systems IS3, IS4 and 5.5Gy, we run N = 2000 sample

dynamics using our model and categorize each as either being of regenerative or degenerative

trend; the criteria is that if the last trajectory point value is greater than the previous, the

trajectory is considered regenerative, and it is considered degenerative if the opposite is true.

In Figure 2.12, degenerative trajectories are the black open dots, all other sold dots are

regenerative trajectories. We also plot the sample trajectories of ORSq with respect to time.

Figure 2.12: s3, q, γ parameter space (top) and trajectories (bottom) for systems IS3,
IS4 and 5.5Gy In parameter space, degenerative trajectories of ORSq are represented as black open
dots, other solid dots are regenerative trajectories. The bottom figures are the sample trajectories of
ORSq over time.

The LHS reveals what that the ORSq (which we take as a rough indicator of HF length)

can display regenerative dynamics, even when IR- related parameters q and γ are high.

However we also hope to see a general delay and/or decrease in the dynamics of apoptotic

cells. Logically, we can deduce that a higher q value, or higher rate of return to normalcy,

implies a lower (1− q) value and thus a lower rate of apoptosis in IRMx. In Figure 2.13,

we choose two values of s3 and a high q value, while γ is fixed at its originally 5.5Gy fitted

value.
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Figure 2.13: HF dynamics for IS3, IS4 and 5.5Gy systems with increased s3 and q.
Increase in Mx cells’ spontaneous apoptosis rate s3 and rate q at which IRMx returns to Mx, results in
a less abrupt spike in Apop cells compared to the dynamics from Figure 2.4, which can be considered
a slight delay in apoptosis. When we compare the trajectories of the 5.5Gy system with s3 = 0.05
and q = 0.8 to the dynamics of 5.5G in Figure 2.9 B , we note that the increase in q results in
less-oscillating dynamics for all compartments. Here, γ is fixed at the 5.5Gy fitted value.

Additionally, in Figure 2.14 we also choose a low γ value, representing a lower frequency

at which IRMx quits its interrupted state. Here we point out that indeed the apoptosis cells

dynamics seem to change into a gradual increase and decrease in the population size that

rather than a spike as in the previous cases. We also note that the Mx population seems to

make a substantial recovery.
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Figure 2.14: HF dynamics for IS3, IS4 and 5.5Gy systems with increased s3 and q and
decreased γ. Increase in Mx cells’ spontaneous apoptosis rate s3 and rate q at which IRMx returns
to Mx while also reducing the frequency at which IRMx quits interrupted state, γ, results in a less
abrupt wave of apoptosis that is subtle yet prolonged over time.

These preliminary results show that the model can produce desirable effect on the

dynamics of the apoptosis cells in agreement with those observed in the experiments, however

we realize that ideally all other compartments would also show regenerative dynamics. Thus

we discuss possible future directions in the next chapter that can potentially help to improve

our model and better replicate the newest experimental findings.
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Chapter 3

Conclusions and Discussion

In this work, we developed a new ODE type of HF cell differentiation population model, and

used it to investigate the underlying mechanisms of the IR induced HF regeneration and the

catagen HF degeneration. The model for controlled mice includes four cell states – quiescent

ORS, active ORS, Mx and apoptosis cells. While the last three types of cells together make

up the dynamic part at the bottom of an anagen HF, the HF length can be estimated

by the size of ORS – including both quiescent and active ORS – as ORS forms the outer

concentric epithelial layer of the HF (Figure 1.1B), and it connects the bulge stem cell niche

near the top of the HF and the HF dynamic part at the bottom. We also extend this model

by adding another state representing the radiated Mx cells, and apply this extended model

to study the IR induced HF regeneration dynamics. Model parameters are calibrated from

IR experimental data, subjected to either 2 Gy or 5.5 Gy IR. Data calibration results show a

good match between the model and the data, especially in the 2 Gy IR system, though in the

5.5 Gy IR system, the model shows a slower HF regeneration compared to the data. However

our ODE model still validates the regenerative dynamics induced by IR to a reasonable

extent. Furthermore, the stability, sensitivity and bifurcation analyses reveal that during

anagen, due to the extremely low spontaneous apoptosis rates in epithelial cells (s2, s3),

the homeostatic anagen HF steady state is stable, and does not depend on the apoptosis

feedback strength (p2, α2, p3, α3). This explains why an anagen HF is able to return to its
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homeostatic state despite large scale degeneration caused by strong IR. Sensitivity analysis

reveals a few factors that are important to the HF regenerative ability, including ORS

cell proliferation, and that though the apoptosis feedback strength does not affect the HF

regeneration in controlled mice, Mx cells’ apoptosis feedback strength (p3, α3) may indeed

affect the HF regeneration when subjected to IR. Further bifurcation analysis reveals that

to push the HF from the anagen homeostasis to the irreversible degeneration in catagen, the

system needs both Mx cells’ spontaneous apoptosis rate (s3) and the apoptosis feedback

strength (p2, p3) to be strong. A transient periodic domain is revealed from the bifurcation

analysis and the simulations, though in reality, a fast anagen-to-catagen transition may

quickly push the system from the anagen steady state to the catagen steady state, without

clearly showing the periodic dynamics – yet further experimental and modeling research

would be needed to confirm this prediction. We also point out that in our current parameter

calibration, while the results show good match with the 2 Gy IR data, in the 5.5 Gy IR

case, it seems that the data shows a faster ORS-to-Mx flow right after the IR application

as well as a faster HF regeneration when compared to our model. We suspect that this is

partially due to our simple assumption of the HF length control mechanism (equation 1.2).

We expect more biological evidence to emerge in the future, from which we can improve on

the HF length control function in a more mechanistic way.

We also presented some preliminary modeling results in an attempt to replicate new

experimental findings that strong-IR-induced HF damage can be attenuated with treatment

of PGE2 drug. Despite the model producing some desirable attributes on the dynamics of

the apoptotic cells that could correspond to PEG2 treatment, we realize that ideally all

other compartments would also show a regenerative trend. Some ways to improve our model

in the future model is to recalibrate the model parameters incorporating the newly obtained

experimental data. However, before performing new parameter calibrations, we also propose

a reformatting of the apoptosis feedback signal functions that could potentially reduce the
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number of parameters to calibrate. We can modify the functions in 1.4 as

paORS ([Apop]) = p2

s2 +
1

1 +

(
[Apop]

α2

)n2

 (3.1a)

paMx ([Apop]) = p3

s3 +
1

1 +

(
[Apop]

α3

)n3

 (3.1b)

Note that in this notation, the parameters α2, α3, n2, n3 are not the same as in equations

1.4. Here, α2 represent the amount of [Apop] at which the apoptosis feedback rate of

ORSa is p2/2, and similarly for α3 and the apoptosis feedback rate of Mx. Additionally,

imposing better constrains may also help improve the apoptotic feedback signals, for example,

future fittings should add the constrains that intuitively α2, α3 be larger for 2Gy than for

5.5Gy, indicating that the apoptosis feedback mechanism activates with a smaller current

quantity of apoptosis cells in the 5.5Gy case than in the 2Gy. Furthermore, we can also

let n2, n3 be some negative integer of larger magnitude such as n2 = n3 = −10, this way

the feedback mechanism exhibits a more instantaneous activation rate. The parameters

p2, p3 then represent the magnitude of such feedback signals and intuitively should have

lower values for lower IR and higher values for higher IR systems. Using this representation,

we may be able to perturb these parameters manually and remove from the fitting process.

This essentially entails repeating the entire calibration process and is an avenue that may or

may not want to be explored.

All in all, our current model still provides a mathematical explanation of the underlying

mechanisms of an anagen HF, IR-induced regenerative dynamics and the catagen degenerative

dynamics, and it provides potential guidance in future HF biology experimental research

and radio-therapeutic study. Other directions that can be further improved in the future

are the following. Currently in our model, there are two major simplifying assumptions:

1) while ORS is a continuum whose activation and quiescence is regulated by signaling

gradients, in our model we assume them to be two sub-states as active and quiescent ORS,
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and 2) the HF length control in our system is currently modeled phenomenologically by

equation 1.2, where in reality, this mechanism has not yet been identified in current HF

biology. In the future, a PDE type of cell differentiation population model incorporating

the spatial information in HF growth – or more specifically, the growth of the ORS, might

well substitute our assumption of the active and quiescent ORS sub-states, and provide

more accurate description and better insights of the HF generation dynamics. In addition,

further modeling development on the signaling regulation might also be helpful. Currently

in our model we include signal A - which may represent for example Tnf - that regulates

HF epithelial cells’ apoptosis, and signal B - which may represent Wnt and Shh - that

regulates ORS cells’ proliferation. However, Shh may also play a role in regulating Mx cell

proliferation, by either directly signaling to Mx or indirectly signaling to DP to perturb other

signals affecting Mx cell proliferation. Furthermore, there are other well-known signaling

pathways that cooperatively regulate HF growth, for example, Bmp, Tgf-β and Fgf. How

these signals react to IR and thus regulate the HF regeneration needs to be explored from

both experimental and modeling sides.

Finally, recent experimental research also reveal the HF degenerative / regenerative

dynamics after chemotherapy [61, 62]: when the HF is exposed to a low level of chemo-drug,

the HF is able to stay in anagen despite a damaged hair fibre, referred to as the dystrophic

anagen; on the other hand, when exposed to a high level of chemo-drug, the HF enters

catagen and starts degeneration, followed by telogen until it enters the next anagen phase,

referred to as the dystrophic catagen. While the low level chemo-drug induced dystrophic

anagen shares some similarities with the 2 Gy IR-induced HF regeneration, the high level

chemo-drug induced dystrophic catagen is very different from the 5.5 Gy IR-induced HF

regeneration. What causes the difference between the chemo- vs. IR-induced HF degenerative

/ regenerative dynamics is an interesting question and needs further investigations on both

experimental and modeling sides, and we suspect that though some similarities probably exist,

chemotherapy and IR may trigger different signaling pathways that lead to the different

regenerative dynamics. For example, it is reported that Shh may play a bigger role in
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the chemo-drug induced HF degenerative dynamics, comparing to in the IR-induced HF

regenerative dynamics [22,61,62]. Considering that disrupting the Shh signal may inhibit

Mx cell proliferation leading to HF degeneration, and that Mx is a major source of Shh

signal, how such feedback affects the chemo- vs. IR-induced HF degeneration / regeneration

should be studied in the future.
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Chapter 4

Introduction

Cell polarity, a fundamental aspect of cellular development, plays a pivotal role in a

multitude of biological functions such as cell division, morphology, migration, and signaling.

At the single-cellular level, it refers to the asymmetrical distribution of components or

substances within a cell from an initially homogeneous distribution. The study of polarity

establishment in cells is vital for unraveling the mechanisms underlying growth patterns,

tissue differentiation, and environment interactions. Popular model organisms to study the

polarization process include budding yeast, Saccharomyces cerevisiae, where polarization

initiates the processes of budding and mating. The Drosophila wing disc is another prominent

model used to study tissue development and growth regulation, processes which are strongly

dependent on mechanical reactions to polarized chemical gradients. Arabidopsis thaliana is a

plant organism whose leaf pavement cells (PCs) form multiple specialized molecule clusters

along the cell membrane until shape-change is initiated and the cell terminally differentiates

into its distinctive puzzle-piece shape.

These organisms are optimal models due to their genetic tractability and experimental

accessibility. Furthermore many fundamental mechanisms and signaling pathways are

conserved across other organisms, including humans for the case S. cerevisiae and Drosophila,

and crops of agricultural importance for the case of A. thaliana. Thus understanding such
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mechanisms can inform research on similar processes for higher organisms. In addition, it has

now been experimentally shown that the polarized arrangement of molecular and structural

components of the cell into one or multiple isolated high-concentration regions, activates

a variety of chemical signals which intricately coordinate successive events like cell-shape

change and cell division. The mating process of S. cerevisiae, in which the growth of a

projection breaks the cellular symmetry as a response to sensing of a pheromone gradient,

has been shown in [1,2] to be initiated by the rearrangement of the actin skeleton which then

mediates transport of proteins and GTPases and directs the cell to localize the concentration

of Cdc42 at a single location towards the direction of the pheromone. In [3], the development

of the Drosophila wing is initiated at the single-cellular level by establishing and maintaining

domains of multiple target genes as well as controlling the distribution of the small GTPase

Rho1, activating regulatory mechanisms that later specify the different compartments of the

adult tissue. In [4], polarization of the PCs of A. thaliana as a response to the pytohormone

auxin begins by the accumulation of proteins and lipids into multiple clusters on the cell

membrane, activating the ROP6 signaling pathway which then coordinates intracellular

component arrangement towards the clustering site until cell-shape change is initiated.

Irrespective of the organism, it has now become standard to use mathematical modeling

to complement experimental observations. In particular, the use of reaction-diffusion models

to simulate polarization via signaling and regulatory mechanisms has now widely been

adopted due to their high success in the study of pattern formation [5]. In this work, we

study autoregulated reaction-diffusion models using three numerical methods for simulating

polarization at a single cell membrane. In particular, we test various diffusion mechanisms

in order to determine the role of positive and negative feedbacks in the early polarization

process. We begin in the preliminaries section 4.1 by giving a brief mathematical background.

We then describe the numerical methods in section 4.2 and present various preliminary

simulation results to their performance, and asses which model mechanisms have potential

to achieve polarization. In the results chapter, we focus on two selected models and proceed

to systematically explore their respective parameter space to find regimes that can produce
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polarization, as well as observe changes in each model’s behaviors as parameters vary. We

finish by giving our conclusions and discussion of future direction for this project.

4.1 Preliminaries

A single-component, or autonomous, reaction-diffusion system on a specified domain is a

partial differential equation (PDE) of the form

ut = · (D∇u) + f(u, x, t)

where the solution u(x, t) gives information about the concentration distribution over space

and time. The first term on the right-hand side of the equation is the diffusion term, while

the function f represents any number of reaction terms. In the diffusion term, if the diffusion

coefficient is a constant D, then the diffusion rate is homogeneous across the domain and we

can write the diffusion term as D∆u. If D is a function of x, the diffusion rate is spatially-

dependent (SD) nonhomogenous; if D is a function of u, it is concentration-dependent (CD)

nonhomogeneous.

Since we are interested in a diffusion process along a single cell membrane, we assume

that the cell has circular shape and we take our domain to be the topologically equivalently

one-dimensional interval (0, 2π] with endpoints identified. This naturally implies periodic

boundary conditions

u(0, t) = u(2π, t) ∀t

ux(0, t) = ux(2π, t) ∀t

We also point out that because of the domain equivalence, the diffusion operators involve

the usual one-dimensional spatial derivatives ∆ = ∂2

∂x2 and ∇ = ∂
∂x . If the domain was any

other non-circular closed curve, say parametrized by (u(x), v(x)), x ∈ [0, L], one should use
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the surface diffusion operator ∇s(D∇s) = 1
η
∂
∂x

(
D 1
η
∂
∂x

)
, where η =

√
u2
x + v2

x, where again,

D can be either constant, SD or CD nonhomogeneous.

To solve the reaction-diffusion problem on the interval with periodic boundary conditions,

we develop numerical models using Fourier spectral methods and compare their performance

with a traditional finite difference model. More specifically, we use the central finite difference

for derivative approximations; from Taylor’s Theorem, if f is smooth in a neighborhood of

x, and h is a mesh point in that neighborhood, then f ′(x) ≈ f(x+h)−f(x−h)
h and f ′′(x) ≈

f(x+h)−2f(x)+f(x−h)
h2 .

In contrast, Fourier spectral methods refer to a class of numerical algorithms which use

the fast Fourier transform (FFT) to approximate derivatives. The Fourier transform takes

functions of Euclidean time or space to functions of frequency in the Fourier domain. If f is

a smooth function of x ∈ R, the Fourier transform pair, meaning the Fourier transform of f

and its inverse, is defined as

f̂(k) = F(f(x)) =

∫ ∞
−∞

f(x)e−ikx dk

f(x) = F−1(f̂(k)) =
1

2π

∫ ∞
−∞

f̂(k)eikx dk

The number f̂(k) can be interpreted as the amplitude of the density of f at the frequency

or wavenumber k. One key property of the Fourier transform is how it interacts with the

derivative operator. Specifically, obtaining the derivative of a function in the spatial domain

corresponds to multiplying its Fourier transform by ik in the frequency domain and then
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inverting:

F
(
d

dx
f(x)

)
=

∫ ∞
−∞

f ′(x)e−ikx dx

=
[
f(x)e−ikx

]∞
−∞
−
∫ ∞
−∞

f(x)[−ike−ikx] dx

= ik

∫ ∞
−∞

f(x)e−ikx dx

= ikF(f(x))

=⇒ d

dx
f(x) = F−1ikF(f(x))

The order of the derivative is the number of factors of ik we must multiply by in the

Fourier domain such as

F
(
d2

dx2
f(x)

)
= −k2F(f(x))

and so on. This is the basis of FFT-differentiation in the class of Fourier spectral methods.

In a discrete spatial domain, if xn = nh ∈ (0, 2π] for n = 1, ..., N and with h = 2π/N

where N is even, then the frequency domain is by convention the interval (−π/h, π/h] =

(−N/2, N/2]. Then the discrete Fourier transform (DFT) pair is defined as

f̂k = h

N∑
n=1

fne
−ikxn , k = −N/2 + 1,−N/2 + 2, ..., N/2

fn =
1

2π

N/2∑
k=−N/2+1

f̂ke
ikxn , n = 1, ..., N

Given a vector of data [f1 f2 . . . fN ], naively computing f̂ from the above definition

is computationally expensive for large N , with O(N2) computations. However it is now

standard to perform this operation by using the fast Fourier transform (FFT) algorithm

which reduces the number of operations to O(N logN). Most computing software comes

with a built-in FFT function and inverse; in this work, we use MATLAB to build our
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numerical models and perform FFT-based differentiation which we describe in more detail

in the next section. For a more detailed review of the Fourier transform and Fourier spectral

methods, we refer the reader to [6, 7].

4.2 Numerical Methods

We develop three numerical models and compare simulations of various reaction-diffusion

processes; two of the numerical models are developed using Fourier spectral methods, or

FFT-based differentiation, and the third one is of finite difference type. Simultaneously,

we aim to analyze what mechanisms contribute to cell polarization, in particular we are

interested in the role of positive and negative feedbacks in the reaction-diffusion process. To

begin, we take a diffusive molecule whose concentration is u(x, t), bound in a circular cell

membrane equivalent to the interval (0, 2π] with endpoints identified and thus with periodic

boundary conditions. Here, we let diffusion rates be either homogeneous with constant

diffusion rate D, spatially-dependent (SD) nonhomogeneous, or concentration-dependent

(CD) nonhomogenous; the latter in the form of negative Hill-function feedback. More

specifically, we will test the following diffusion terms in various reaction-diffusion models

• D∆u = ∂2

∂x2u with constant diffusion rate D.

• ∇ (D(x)∇u) = ∂
∂x

(
D(x) ∂

∂xu
)

= d
dxD(x) ∂

∂xu−D(x) ∂2

∂x2u, with SD diffusion rate of the

form D(x) =
∑

i die

(
−x−θi

σi

)2

.

• ∇ (D(u)∇u) = ∂
∂x

(
D(u) ∂

∂xu
)

= d
duD(u)

(
∂
∂xu
)2 −D(u) ∂2

∂x2u, with CD diffusion rate

of the form D(u) = Dmin + Dmax−Dmin

1+
(
u
kD

)nD .

using the three numerical methods. Each numerical method is different in the diffusion term

approximation; method 1 and method 3 approximate the derivatives u′ :≈ ∂
∂xu, u

′′ :≈ ∂2

∂x2u

so that switching to prime notation for derivatives, we have

• ∇ (D(x)∇u) ≈ D′(x)u′ +Du′′′, for SD diffusion rate.

• ∇ (D(u)∇u) ≈ (D′(u)u′)u′ −D(u)u′′, for CD diffusion rate.

61



(all other derivatives in the above expression are analytically computed). The spatial interval

(0, 2π] is discretized into N equidistant nodes x1, ..., xN with N = 512, h = 2π/N so that

xn = 2πn/N . Method 1 uses FFT-based algorithms 1 and 2 from [8], and reiterated below

Algorithm 1 - First Derivative

Obtain the first derivative approximation u′ ≈ u′n = u′(n2π/L) from the discrete

vector function un = u(n2π/L)

1. Use the fft MATLAB function to obtain the Fourier coefficients Uk, 0 < k ≤ N .

2. Multiply Uk by ik for k < N/2, by zero if k = N/2 and by i(k−N) for k > N/2

to obtain U ′k.

3. Obtain u′n by inverting U ′k via the inverse fft Matlab function (ifft).

Algorithm 2 - Second Derivative

Obtain the second derivative approximation u′′ ≈ u′′n = u′′(n2π/L) from the sampled

function un = u(n2π/L)

1. Use the fft MATLAB function to obtain the Fourier coefficients Uk, 0 < k ≤ N .

2. Multiply Uk by −k2 for k ≤ N/2 and by −(k −N)2 for k > N/2 to obtain U ′′k .

3. Obtain u′′n by inverting U ′′k via the inverse fft Matlab function (ifft).

Method 3 uses the central finite difference to approximate u′, and u′′. Method 2 is FFT-based

but uses algorithm 4 in [8] to approximate the diffusion as

• ∇ (D(x)∇u) ≈ (D(x)u′)′, for SD diffusion rate.

• ∇ (D(u)∇u) ≈ (D(u)u′)′, for CD diffusion rate..

We also reiterate algorithm 4 below
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Algorithm 4 - Position-varying Derivative Operator

Obtain the position-varying derivative approximation (D(x)u′)′ ≈ (Du′n)′ =

(Du′(n2π/L))′ from the sampled function un = u(n2π/L)

1. Use Algorithm 1 to compute u′n, except set U ′k=N/2 = πi
LNUk=N/2 for N even.

2. Compute vn = Du′n for 0 ≤ n < N .

3. Obtain (Du′n)′ applying Algorithm 1 to vn except set Vk=N/2 = πi
LNVk=N/2 for

N even.

We use Gaussian initial conditions, that is, u0 =
∑

i = cie
−
(
x−θi
σi

)2

for all our simulation

tests presented below. We use the Euler temporal scheme with dt = 1e−7. Simulation time

is from t = 0 to t = 1, with evolution plotted at time points t = 0, 0.1, 0.2, ..., 0.9, 1 over the

interval (0, 2π], with initial concentration u0 in blue.

Simulation Tests

Spatially-dependent (SD) Nonhomogeneous Diffusion

ut = ∇(D(x)∇u)

u0 = e−
(x−θ1)2

σ2 + e−
(x−θ2)2

σ2 , θ1 =
π

4
, θ2 =

5π

4
, σ = 0.25

D(x) = 0.5 + e−
(x−θ1)2

σ2 − 0.25e−
(x−θ2)2

σ2

This diffusion rate is chosen to be faster near θ1 and slower near θ2, with D(θ1) = 1.5 >

.25 = D(θ2), so it is expected that the concentration will diffuse faster near θ1 than near θ2.

This is confirmed in figure 4.1, where we observe that methods 1 and 2 yield similar results,

while method 3 results in a more drastically fast diffusion near θ1. Successful polarization

appears unlikely for either numerical method.

Concentration-dependent (CD) Nonhomogeneous Diffusion
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Figure 4.1: SD Nonhomogeneous Diffusion. Temporal evolution of u on (0, 2π], that is the
family of functions {ut|t = 0, 0.1, 0.2, ..., 1}. A Method 1. B Method 2. C Method 3.

ut = ∇(D(u)∇u)

u0 = e−
(x−θ)2

σ2 , θ =
π

4
, σ = 0.25

D(u) = Dmin +
Dmax −Dmin

1 +
(
u
kD

)nD
The diffusion rate in this model is a negative Hill-function feedback that indicates that u

self-inhibits its diffusion depending on the parameter kD. If at any time the concentration

u > kD, the diffusion inhibition mechanism is activated, and it is unactivated otherwise.

More specifically, those locations in the domain where the concentration u > kD will have

slower diffusion rate, and those locations where u ≤ kD will have faster diffusion rate. The

Hill exponent is fixed at nD = 15 and we let the parameters Dmin = 0.01, Dmax = 20; this

large choice of diffusion maximum reflects the fast-diffusing nature of biological substances

at the molecular level. From figure 4.2, it seem plausible that this model may achieve

polarization. The results for methods 1 and 2 are qualitatively similar in the shape of the

polarization site, except that method 2 diffuses more quickly and also exhibits oscillatory

behavior at the base of the polarization site, this is more noticeable at earlier times then

appears to attenuate later. Method 3 also produces plausible polarizing results that are

slightly qualitatively different in shape.

Next we add reaction terms to the previous models. We start by adding a constant

production term M and linear degradation with rate d fixed at d = 0.5. Since degradation

rates are difficult to measure experimentally, this choice is arbitrary.
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Figure 4.2: CD Nonhomogeneous Diffusion. Temporal evolution of u on (0, 2π], that is the
family of functions {ut|t = 0, 0.1, 0.2, ..., 1}. Diffusion-related parameters kD = 0.05, nD = 15,
Dmin = 0.01, Dmax = 20. A Method 1. B Method 2. C Method 3.

SD Nonhomogeneous Diffusion with Constant Production and Linear Degradation

ut = ∇(D(x)∇u) +M − du

u0 = e−
(x−θ1)2

σ2 + e−
(x−θ2)2

σ2 , θ1 =
π

4
, θ2 =

5π

4
, σ = 0.25

D(x) = 0.5 + e−
(x−θ1)2

σ2 − 0.25e−
(x−θ2)2

σ2

The diffusion rate here is the same as in the firs case. This model also seems unlikely to

achieve polarization as can be seen in figure 4.3 below.

Figure 4.3: SD Nonhomogeneous Diffusion, Constant Production, Linear Degradation.
Temporal evolution of u on (0, 2π], that is the family of functions {ut|t = 0, 0.1, 0.2, ..., 1}. Parameter
values M = 0.2, degradation d = 0.5. A Method 1. B Method 2. C Method 3.
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CD Nonhomogeneous Diffusion with Constant Production and Linear Degradation

ut = ∇(D(u)∇u) +M − du

u0 = e−
(x−θ)2

σ2 , σ = 0.25

D(u) = Dmin +
Dmax −Dmin

1 +
(
u
kD

)nD
This model has the same Hill-function feedback as the second case. Here, from figure 4.4 we

see that method 2 and method 3 yield similar results at the end of simulation time; at earlier

times the solutions differ moderately with method 2 again exhibiting oscillatory behavior.

Method 1 yields an artificial polarization site that is not observed in the other two methods.

Overall, polarization seems plausible for this model and will be investigated further.

Figure 4.4: CD Nonhomogeneous Diffusion, Constant Production, Linear Degradation.
Temporal evolution of u on (0, 2π], that is the family of functions {ut|t = 0, 0.1, 0.2, ..., 1}. Parameter
values M = 0.2, degradation d = 0.5. Diffusion-related parameters kD = 0.05, nD = 15, Dmin =
0.01, Dmax = 20. A Method 1. B Method 2. C Method 3.

For now we proceed to further modify the production term by letting f be a positive

Hill-function feedback, M now denotes the magnitude of the production feedback; additional

production feedback parameters are set to kf = 0.15 and nf = 15. The production feedback

works similarly to the diffusion feedback. Any time the u > kD, production is activated, and

is unactivated otherwise. This means that those locations where u > kD will have greater

production than where u ≤ kD. The role of this feedback is of high interest; we’d like to

know whether positive production feedback alone can generate polarity, thus we also perform

a simulation test for the case of homogeneous diffusion with constant rate D. We also point

out that in this case, we only perform methods 1 and 3.
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Homogeneous Diffusion with Positive Production Feedback and Linear Degradation

ut = D∆u+M

 1

1 +
(
u
kf

)nf
− du

u0 = e−
(x−θ)2

σ2 , θ =
π

4
, σ = 0.25

Figure 4.5 shows that both methods 1 and 3 produce indistinguishable results for this model,

which are unlikely to polarize. This means that a production feedback mechanism alone is

not sufficient for polarization in a reaction-diffusion model.

Figure 4.5: Homogeneous Diffusion, Positive Production Feedback, Linear Degradation.
Temporal evolution of u on (0, 2π], that is the family of functions {ut|t = 0, 0.1, 0.2, ..., 1}. Parameter
values M = 0.2, degradation d = 0.5. Diffusion-related parameters kD = 0.05, nD = 15, Dmin =
0.01, Dmax = 20. Production feedback parameters kf = 0.15, nf = 15. A Method 1. B Method 3.
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SD Nonhomogeneous Diffusion with Positive Production Feedback and Linear Degradation

ut = ∇(D(x)∇u) +M

 1

1 +
(
u
kf

)nf
− du

u0 = e−
(x−θ1)2

σ2 + e−
(x−θ2)2

σ2 , θ1 =
π

4
, θ2 =

5π

4
, σ = 0.25

D(x) = 0.5 + e−
(x−θ1)2

σ2 − 0.25e−
(x−θ2)2

σ2

Again, the diffusion rate here works the same as the respective previous cases, while the

production term has a positive Hill-function feedback. Simulation results in figure 4.6 show

that it is unlikely that polarization can be attained.

Figure 4.6: SD Nonhomogeneous Diffusion, Production Feedback, Linear Degradation.
Temporal evolution of u on (0, 2π], that is the family of functions {ut|t = 0, 0.1, 0.2, ..., 1}. Parameter
values M = 0.2, degradation d = 0.5. Production feedback parameters kf = 0.15, nf = 15. A Method
1. B Method 2. C Method 3.

CD Nonhomogeneous Diffusion with Positive Production Feedback and Linear Degradation

ut = ∇(D(u)∇u) +M

 1

1 +
(
u
kf

)nf
− du

u0 = e−
(x−θ)2

σ2 , θ =
π

4
, σ = 0.25

D(u) = Dmin +
Dmax −Dmin

1 +
(
u
kD

)nD
The simulation results in figure 4.7 show the three methods give slightly different results.

Methods 1 and 2 have the polarization site conserve a similar shape as it diffuses, although
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method 2 shows faster diffusion and oscillatory behavior at early times. The polarization

site for method 3 is slightly qualitatively different in shape. In all cases the results seem

promising so we will continue to study this model in the next chapter.

Figure 4.7: CD Nonhomogeneous Diffusion, Production Feedback, Linear Degradation.
Temporal evolution of u on (0, 2π], that is the family of functions {ut|t = 0, 0.1, 0.2, ..., 1}. Parameter
values M = 0.2, degradation d = 0.5. Diffusion- related parameters kD = 0.05, nD = 15, Dmin =
0.01, Dmax = 20. Production feedback parameters kf = 0.15, nf = 15. A Method 1. B Method 2. C
Method 3.

From these preliminary simulation tests we learn that some mechanisms are unlikely to

result in a polarized concentration. The reaction-diffusion models with CD nonhomogeneous

diffusion, constant production and linear degradation and with CD nonhomogeneous diffusion,

positive production feedback and linear degradation are selected for further study. We

describe the methodology in the following section.
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4.3 Methodology

Testing different reaction-diffusion mechanisms allowed us to asses the role of positive and

negative feedbacks in the polarization process. For the remainder of this work, we select two

promising reaction-diffusion models from the previous section, which we refer to as model 1

and model 2 from this point forward.

• Model 1. ut = ∇ · (D(u)∇u) +M − du

• Model 2. ut = ∇ · (D(u)∇u) +Mf(u)− du

Both models have negative feedback in the diffusion D(u) = Dmin + Dmax−Dmin

1+
(
u
kD

)nD which

has a self-inhibiting effect. Model 2 has an additional positive feedback in the production

term f(u) = 1

1+

(
u
kf

)−nf , while model 1 has constant production M . The feedbacks work

in the following way; the diffusion rate is a Hill function such that diffusion is slower in

those regions x where the concentration u(x, t) > kD (the diffusion inhibition mechanism is

activated), diffusion is faster in those regions x where the concentration u(x, t) ≤ kD (the

diffusion inhibition mechanism is unactivated). The positive production feedback in Model

2 is a Hill function that works similarly; the production is greater in those regions x where

the concentration u(x, t) > kD (the production mechanism is activated), and production is

lower in those regions x where the concentration u(x, t) ≤ kD (the production mechanism is

unactivated).

To investigate the extent to which these feedback mechanisms contribute to the polariza-

tion process, we first modify the initial condition by introducing white noise. Instead of initial

Gaussian curves which already consist of high-concentration regions, we use randomized

initial conditions of the form u0 = c0 + εc0χ with c0 = 0.25, ε = 0.5 and χ ∼ N(0, 1) as seen

in figure 4.8.

We’d also like to continue to compare the performance of the three numerical methods

described earlier. However since this is currently ongoing work, in this thesis we only present

our analysis for numerical method 1. Similar analyses will be performed for all methods for

any potential upcoming publications.
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Figure 4.8: Random initial concentration. u0 = c0 + εc0χ, c0 = 0.25, ε = 0.5, χ ∼ N(0, 1)

We proceed to study reaction-diffusion models 1 and 2 using numerical method 1,

by assessing simulation results as parameters are varied. That is, we systematically run

simulations with random initial conditions over their respective parameter space. The

varying-parameter space for model 1 is {(M,kD) | M = 0.2, 0.4, 0.6, 0.8, 1, 1.2 and kD =

0.02, 0.03, ..., 0.07}, while for model 2 it is {(M,kD, kf ) | M = 0.4, 0.6, 0.8, 1, kD =

0.03, 0.04, 0.05, 0.06, and kf = 0.1, 0.15, 0.2, 0.25}.

For each model and for each parameter point we run ten sample simulations. The

simulation time interval is [0, 10]. We would like to know if simulations with random initial

concentrations can be successful at achieving and maintaining polarization; by maintaining

we mean that steady state of the reaction-diffusion process is reached and the final con-

centration profile exhibits a pattern of isolated high-concentration regions. To make this

assessment, we produce video simulations where, in the time interval [0, 1] we save and plot

data more frequently at times t = 0, 0.1, 0.2, ..., 0.9, 1 since the diffusion process initiates

immediately and quickly, while for the time interval (1, 10] data is saved and plotted at every

integer t i.e. t = 2, 3, 4, ...10. We then make the assumption that simulations reach steady

state if the concentration profile does not exhibit significant qualitative change in the last

three time units t = 8, 9, 10.
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Simulations results presented in this thesis will consist of final concentration simulation

results, meaning the concentration u(x, tfinal) = u(x, 10). The data collected for each

simulation is the number of polarization sites of the concentration profile of utfinal
, and each

of their height and their width. We will often refer to utfinal
simply as u for brevity, unless

emphasizing is needed. The height of a polarization site refers to the respective local max

of the concentration profile; the width of a polarization site refers to the distance from the

left and the right of the peak where u intersects the horizontal line passing through the

corresponding peak’s half-height value. This data is then used to compute the average µ

and coefficient of variation σ/µ of each property at each parameter point, and they are

then plotted as heatmaps over the parameter space. In the next chapter, we describe each

model’s results by analyzing simulation data and dividing the parameter space into zones

characterized by distinct qualitative behavior.
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Chapter 5

Results

In this chapter, we investigate model 1 and model 2 using numerical method 1 in the way

just described in section 4.3. We systematically explore the parameter space for each model

to find regimes where polarization can be achieved and maintained, as well as to asses

parameter sensitivity and robustness.

We point out that most simulations reach a steady state by the temporal choice tfinal = 10,

however some parameter sets produce simulations where it is not evident that steady state

has been reached. Regardless of this, any such simulation that renders distinguishable

polarization sites at the end of simulation is measured and included in the computed

averages and coefficients of variation of each property.
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5.1 Model 1

The first model we study is

ut = ∇s (D(u)∇su) +M − du

where
D(u) = Dmin +

Dmax −Dmin

1 +
(
u
kD

)nD
This model features a CD nonhomogeneous diffusion rate that is self-inhibiting, constant

production M and linear degradation du.

The varying parameters in this model are kD in the diffusion rate and M in the production

term, so that the parameter space explored is {(M,kD) |M = 0.2, 0.4, 0.6, 0.8, 1, 1.2 and kD =

0.02, 0.03, ..., 0.07}. The other model parameters are fixed at the values Dmax = 20, Dmin =

0.01, nD = 15 and d = 0.5. We use random initial condition for each simulation

u0 = c0 + εc0χ, c0 = 0.25, ε = 0.5, χ ∼ N(0, 1).

In what follows, we proceed to examine the average and coefficient of variation heatmaps

for the number of polarization sites. In figure 5.1, the left map displays the average value

at each parameter point, furthermore, some cells also display a percentage quantity which

represents the proportion of successful simulation results, meaning those simulations that

both reach steady state and and yield polarization. In figure ??, the parameter space is

divided into zones that separate different qualitative behaviors observed in simulations,

which we will describe momentarily.
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Figure 5.1: Model 1. Average number of polarization sites heatmaps. (Left) Average (µ)
number of polarization sites with percentages in zone 3 cells representing the proportion of successful
simulations; all other cells have a success rate of 70% or higher. (Right) Heatmap zone designation.

We first describe the general trend along the horizontal and vertical directions of the

parameter space. From figure 5.1, we can observe that for kD < 0.05 and as the production M

increases, there’s an increasing then decreasing trend in the average number of polarization

sites, whereas in the case of kD ≥ 0.05, the trend is only increasing. However, it may be

possible that a decreasing trend eventually occurs if the parameter space is extended to

further values of M . On the other hand, fixing a production value M while increasing kD

produces a trend of increase then decrease in average number of polarization sites, which is

amplified with M .

We now proceed to describe the different zones and the behavior that characterize them,

we illustrate by including some simulation results. We identify zone 1 in the parameter

space as the main region that is successful in maintaining polarization and the resulting

polarized concentration has the right attributes. It is surrounded by zone 2 on the left and

zone 3 to the upper right side. We choose a parameter point in zone 1 to show some sample

simulation results (see figure 5.2).

In zone 2, simulations reach steady state however they fail to produce polarization sites

that are sufficiently spatially isolated. Simulations for parameter values in the left-most

part of this zone render low number of large polarization sites in very close proximity. On
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Figure 5.2: Model 1, zone 1 simulation results Sample simulations for parameter pair
(kD,M) = (0.06, 1).

the other hand, the region of zone 2 that has higher average number still renders very close

polarization sites and the domain is overcrowded with both large and small polarization

sites; thus results in zone 2 are not considered optimal. We choose a parameter point in

zone 2 to show some sample simulation results (see figure 5.3). Despite the outcome, the

simulation results in zone 2 are not physically unreasonable since a low kD value implies

larger domain regions with low diffusion rate, or a ”stronger” diffusion-inhibition effect

which helps establish large polarization sites early on.

Figure 5.3: Model 1, zone 2 simulation results Sample simulations for parameter pair
(kD,M) = (0.04, 0.8).
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On the other hand, zone 3 is characterized by a low success rate in reaching steady state

or in maintaining polarization. More specifically, the boundary between zone 3 and zone

1 is defined in a way that if the percent of successful simulations is larger than 70%, the

parameter point belongs to zone 1, otherwise it belongs to zone 3, and similarly for the

boundary between zone 3 and zone 2. Notice that this does not imply zone 3 is incapable of

maintaining polarization; boundary values with higher percent success rate are sometimes

able to produce good results, however, as parameter values move away from the boundary,

simulations yield polarization sites of irregular shapes and the ability to produce steady

state, polarized concentration decreases. Despite these irregularities in polarization site

shape, those final concentration profiles that rendered ”measurable” polarization sites are

still included in our statistics calculations. In upper-right-most region of the parameter space,

where the average of number of polarization sites is zero, polarization fails to be attained

and the final concentration is high everywhere and tending towards the value M/d. Due to

weak production and weak diffusion-inhibition effect, any early polarization attempt is lost

as the concentration diffuses to a uniform level just above the value of kD. At some further

time, the concentration surpasses kD in the entirety of the domain, this completely stops any

further diffusion and the constant production causes the concentration to steadily increase

toward M/d. We choose a parameter point in zone 3 to show some sample simulation results

(see figure 5.4).

Figure 5.4: Model 1, zone 3 simulation results Sample simulations for parameter pair
(kD,M) = (0.06, 0.6).
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Comparing the behavior of zone 3 and zone 1 reveals that there’s an intricate relationship

between parameters kD and M , more specifically, increasing the production M tends to

stabilize the polarization process, and the larger kD is, the larger M has to be as well.

Overall, the results for model 1 suggest that the polarization process strongly depends

on the diffusion-inhibition feedback mechanism.

We present all other heatmaps in section 5.3 at the end of this chapter and compare

results with model 2.

5.2 Model 2

The second model we investigate is

ut = ∇s (D(u)∇su) +Mf(u)− du

where

D(u) = Dmin +
Dmax −Dmin

1 +
(
u
kD

)nD , and f(u) =

 1

1 +
(
u
kf

)−nf


This model features the same CD nonhomogeneous diffusion rate as model 1, but also a

positive feedback mechanism in the production term, and linear degradation du. We point

out that model 1 is the limit of model 2 as kf → 0, thus for low values of kf we expect

similar results to model 1.

The varying parameters for model 2 are kD, M and kf , so that the parameter space

explored is {(kD,M, kf )} where kD = 0.03, 0.04, 0.05, 0.06, M = 0.4, 0.6, 0.8, 1 and kf =

0.1, 0.15, 0.2, 0.25. Similar to model 1, remaining parameters are fixed at the values Dmax =

20, Dmin = 0.01, nD = 15, nf = 15, d = 0.5. To make the description of model 2 results

similar to model 1, we plot heatmaps over the {(kD,M)} parameter space for each fixed value

of kf , which are slices of the three-dimensional model 2 parameter space. Notice that we

reduce the size of the parameter space in the kD and M dimensions due to the computational

expense of having two feedback mechanisms and having an additional parameter dimension
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with kf . Nonetheless, we believe we will still be able to capture optimal polarization results

for model 2.

Same as before, we initiate ten sample simulations for each parameter set using random

initial conditions of the form u0 = c0 + εc0χ, c0 = 0.25, ε = 0.5, χ ∼ N(0, 1). Each slice is

divided into zones that separate different qualitative simulation behaviors in terms of the

average number of polarization sites, similar to the classification of model 1. Figure 5.5

shows the heatmaps for the average number of polarization sites, with those cells displaying

a percent quantity also indicating the proportion of successful polarization, i.e. simulations

reaching steady state and polarized concentration profile.

Figure 5.5: Model 2 Average number of polarization sites heatmaps. Each heatmap is a
slice of the parameters space for different values of kf , with the average value (µ) displayed in each
cell. Percentages in zone 3 cells represent the proportion of successful simulations, all other cells have
a success rate of 70% or higher.
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Zone 1 is the bottom-right region in all parameter space slices and is the region that

produces the most optimal results. We include simulation samples in this zone for low and

high kf values in figure 5.6.

Figure 5.6: Model 2, zone 1 simulation samples for low and high kf . Simulation results
for parameter points (kD,M, kf ) = (0.05, 0.6, 0.1) and (kD,M, kf ) = (0.05, 0.8, 0.25)

Zone 2 behavior is also similar to zone 2 in model 1. That is, for any fixed kf , zone 2

produces either large polarization sites or a combination of small and large polarization

sites that cover almost the entire domain. The boundary is defined similarly as before,

meaning that simulations in this zone reach steady state with 70% success rate or higher.

Furthermore, the size of polarization sites increases with M . One difference between the

slices is that as kf increases, the proximity of polarization sites decreases. When kf is

low, the simulation results are very similar to model 1, while for high kf value, simulations

yield polarization sites that have larger low-concentration regions that separate them. We

illustrate this by including simulation samples for low and high kf values where the average

number of polarization sites is comparable (figure 5.7).
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Figure 5.7: Model 2, zone 2 simulation samples for low and high kf . Simulation results
for parameter points (kD,M, kf ) = (0.03, 0.8, 0.1) and (kD,M, kf ) = (0.03, 0.8, 0.25)

Zone 3 for this model is also characterized by none to low average number of polarization

sites, with low rate of successful polarization. We note that this zone has transitioned inward

in the parameter space for model 2. We also note that unsuccessful polarization simulations

here render near-zero concentration everywhere in the domain, this contrasts with the same

zone in model 1, where unsuccessful polarization simulations rendered high concentration

everywhere, approaching the value M/d.

Overall, the results for model 2 suggest that the positive production feedback mechanism

may help improve the polarization process by increasing the size of the separating low-

concentration regions in the domain, this effect is most noticeable in zone 2. Comparing

the zones among the kf slices of the parameter space, we observe that the optimal zone 1

increases in size then decreases again, with the slice of kf = 0.15 having the largest optimal

region. We also report that the two feedback mechanisms result in significantly longer

simulation times, compared with model 1.

We present all other heatmaps in section 5.3 below and compare results with model 1.

81



5.3 Model 1 and Model 2 Comparison

In this section we present the heatmaps for model 1 agains those for model 2 for comparison.

All heatmaps contain their respective zone outline, where the zones represent different

qualitative behavior observed in simulations as described above. From just the heatmaps

alone it is uncertain whether one model is superior or more robust than the other.

Figure 5.8: Model 1 average number of polarization sites.

Figure 5.9: Model 2 average number of polarization sites.
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Figure 5.10: Model 1 coefficient of variation of number of polarization sites.

Figure 5.11: Model 2 coefficient of variation of number of polarization sites.
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Figure 5.12: Model 1 average height of polarization sites.

Figure 5.13: Model 2 average height of polarization sites
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Figure 5.14: Model 1 coefficient of variation of height of polarization sites.

Figure 5.15: Model 2 coefficient of height variation of polarization sites
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Figure 5.16: Model 1 average width of polarization sites.

Figure 5.17: Model 2 average width of polarization sites
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Figure 5.18: Model 1 coefficient of variation of width of polarization sites.

Figure 5.19: Model 2 coefficient of variation of width of polarization sites

In the next chapter we will summarize our conclusions and discuss possible improvements

for this and future analyses.
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Chapter 6

Conclusions and Discussion

In this work, we developed numerical models to test various autonomous reaction-diffusion

mechanisms; in particular to investigate the role of positive and negative feedback in the

polarization process. We performed ample simulation tests and compared the performance

of the three numerical methods on those reaction-diffusion mechanisms. In the results

section we presented a deeper study of two particular models using numerical method 1,

which is FFT-based. The two reaction-diffusion models, which we refer to as model 1 and

model 2, exhibit the same negative feedback mechanism in the diffusion rate, which means

diffusion is self-inhibiting depending on a threshold value kD. Model 2 also has a positive

feedback in the production term that is self-promoting depending on a threshold value

kf . The results for both models reveal that feedback mechanisms are essential components

to achieve and maintain a polarized concentration using a reaction-diffusion model. In

particular, we can deduce that a diffusion-inhibition negative feedback is necessary to achieve

polarization; model 1 further suggests that it may also be sufficient. Model 1 also reveals

the intricate, positive relationship between the threshold kD, which dictates the diffusion-

inhibition activation, and the production M . More specifically, even though polarization

is achieved in the majority of the parameter space, only zone 1 is capable of producing

suitable results for a biological model. Zone 1 consists of those parameter sets with high kD

and large production M , this suggests that some initial diffusion must occur, that is, the
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diffusion-inhibition effect should not be immediately activated as in the case of lower kD

values. Model 2 reveals that the additional feedback in the production serves to enhance the

polarization results. In particular, we notice that polarization sites are more isolated as kf ,

the production feedback activation threshold, increases. This effect is most noticeable in

zone 2, where for model 2, despite the large size and number of polarization sites, they are

separated by larger low concentration regions. This desirable attribute that the additional

feedback provides comes at the price of more than twice the computation time than model

1. Additionally, when comparing the qualitative zones among the kf parameter space slices

for model 2, we observe that intermediate values of kf have larger optimal zone. Based on

these results, we are not yet able to draw a conclusion on whether one model outperforms

the other. One way to improve this analysis would be to remove all simulations that do

not reach steady state from our computations of averages and coefficients of variation to

help improve the heatmap results. Then proceed to perform the corresponding analysis for

numerical methods 2 and 3.
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