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ABSTRACT OF THE THESIS

Point cloud based Target-oriented 3D Path Planning for UAVs

by

Zhaoliang Zheng

Master of Science in Engineering Science (with a specialization in Mechanical Engineering)

University of California San Diego, 2019

Professor Tomas Bewley, Chair
Professor Falko Kuester, Co-Chair

This paper explores 3D path planning for unmanned aerial vehicles (UAVs) in 3D point

cloud environments. Derivative maps such as dense point clouds, mesh maps, octomaps, etc. are

frequently used for path planning purposes. A target-oriented 3D path planning algorithm, directly

using point clouds to compute optimized trajectories for an UAV, is presented in this article. This

approach searches for obstacle-free, low computational cost, smooth, and dynamically feasible

paths by analyzing a point cloud of the target environment, using a modified connect RRT-

based path planning algorithm, with a k-d tree based obstacle avoidance strategy and three-step

optimization. This presented approach bypasses the common 3D map discretization, directly

xi



leveraging point cloud data. Following trajectory generation, the algorithm creates way-point

based, closed loop quadrotor controls for pitch, roll, and yaw attitude angle as well as dynamics

commands for the UAV. Simulations of UAV 3D path planning based on different target points in

the point cloud map are presented, showing the effectiveness and feasibility of this approach.
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Chapter 1

Introduction

In the last decades, Unmanned aerial vehicles (UAVs) have been greatly developed [1].

Nowadays, UAVs, as a relatively simple but powerful, consumer-leveled and easy-to-manipulate

aerial robotic system, play a more and more important role in many areas. UAVs are widely used

in inspection, midair collision surveillance [2], unknown environment exploration [3], mapping

and 3D modeling [4], etc. To have a better and smarter strategy of performing these tasks, 3D

path planning is a necessary and key technique in all these. 3D path planning for UAVs can

be defined as the process of finding an optimal and collision-free path from an initial point to

the target point in the 3D (three-dimensional) workspace while avoiding all the static obstacles

or other mobile agents as well as taking into account kinematic constraints [5]. It has gained

popularity among researchers around the world due to the development of affordable equipment

like GPS, lightweight laser and LIDAR (Light Detection And Ranging) scanners, UAVs as well

as the development of new algorithms like simultaneous localization and mapping (SLAM) [6]

and next-best-view [7].

A huge number of articles have proposed methods and algorithms to deal with 2D path

planning. While in recent years, more and more articles extended their path planning algorithms

into 3D environments for UAVs such as [8][9][10]. Most of the work in this area implement their
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path planning algorithms in the lab environment or 3D occupancy grid maps. However, in the

outdoor real world, derivative maps such as dense point clouds, mesh maps, octomaps, etc. are

frequently used for UAVs path planning purposes. Some researches have done some correlative

work in this area such as [11][12][13], while others have started to implement derivative maps in

SLAM [14]. As for point clouds, most of the work uses extremely dense point cloud or transform

point cloud into other forms of maps after post-processing. The main shortcomings of exiting

methods are: first, the computational complexity will greatly increase as the density of point

clouds grow, situations will get worse in extremely dense point cloud; second, some detailed

information (e.g. color and position)will be lost during the transformation from point cloud to

other forms of maps.

Figure 1.1: The blue trajectory is generated by our path planning algorithm and the red trajectory
is the real UAVs trajectory after implementing the way-point based close-loop quadrotor control.
Video is available at: https://youtu.be/DEHC7H58QWc

In this paper, we propose a target-oriented 3D path planning algorithm, directly using

sparse point clouds as input to compute the optimal trajectories for UAVs in outdoor environment.

Since the algorithm deals with sample data point cloud directly, sample-based path planning

algorithm like RRT would be a good choice and more details are introduced in section III. Our
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algorithm analyzes a point cloud of the target environment, using a modified connect RRT-based

path planning algorithm. Our approach utilize a k-d tree based obstacle avoidance strategy and

three-step optimization to searching for collision-free, low computational cost, smooth, and

dynamically feasible paths. Following trajectory generation, a series of way points are created

along the trajectory by algorithm. By using way-point planning, the closed-loop quadrotor control

algorithm will give out desired velocity command ẋ(t), ẏ(t), ż(t), rotational rate about the vehicle

body ωx, ωy, ωz and desired acceleration for UAVs dynamics.

The remainder of this paper is arranged as follows: in section II, mainly introduce point

cloud application and generation; in section III, mainly build up the point cloud based target-

oriented algorithm and technical details; in section IV, mainly derive the UAV dynamics and

way-point based control method; in section V, simulations of UAV 3D path planning based on

different target points in the point cloud maps are presented to show effectiveness and feasibility

of our approach.
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Chapter 2

Point Cloud Map Representation

Maps (or environment model) are resources that enable robots to better perform their

tasks [15]. Most robot maps are very important and used mainly for robots to proceed localization

and navigation [16]. Many robot maps representation were proposed in the past decades, for

examples: gird maps, polygonal maps, occupancy maps, counter maps, 3D mesh maps, octomap,

point cloud maps. In [17], a map data representation of environment of a mobile robot performing

a navigation task is specified. Nowadays, as the development of AI, computer vision, robotics

and more powerful embedded systems, the functionality of the robot is not limited to positioning

and navigation. The robot is also a mobile platform for real-time localization and mapping, target

tracking, pattern recognition and the digital reconstruction of cultural heritage. Thus, a more

informative and interactive 3D map representation is needed, which is, point clouds.

Point clouds is a set of data points in space which contains color and position information

of the real world. It is relative simple but very powerful and vivid way to represent the real world

as shown in Fig. 2.1. In the Fig. 2.1, the top left is the scenery around Jacumba hot springs, CA;

the top right is the Jacob school of engineering, UCSD; the bottom left is the Yosemite national

park; the bottom right is a underwater coral reef. In the following sections, point cloud generation

and applications will be introduced.
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Figure 2.1: Point clouds representing real-world maps (courtesy of Vid and Eric at Drone
Lab@UCSD)

2.1 Point Cloud Generation

Point cloud generally produced by scanner systems, which measures a large number of

data points on the external surfaces of objects around them. Many researches have proposed

different methods and algorithms to create point cloud models, for example: stereo cameras [18],

LIDAR systems [19], monocular cameras [20], etc.

Nowadays, As development of UAV and high-resolution build-in cameras, high-resolution

point large scale cloud map become possible. More and more researches leverage UAVs and the

build-in cameras as a platform to create large scale point cloud maps such as in [21][22]. The

point clouds in Fig. 2.1 are also created by using the aerial images from UAVs.

2.2 Point Cloud Applications

Recent years, the point clouds are widely used in many aspects. In geographic information

systems, point clouds are one of the sources used to make digital elevation model of the terrain

[23]. It can also be used in feature extraction [18], contextual classifications [24], autonomous

navigation [25], etc. In the Drone LAB@UCSD, we used point clouds as a visualizing way to 3D
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re-construct cultural heritages [26]. Because of the characteristics and practical significance of

point cloud data, it is meaningful to use point cloud maps for path planning purposes.
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Chapter 3

Target-Oriented 3D RRT Algorithm

RRT algorithm was first proposed in [27] as a sampling way of solving the high-

dimensional path planning problems. It has been proven to be probabilistically completed

and computationally efficient [28]. First, RRT algorithm will randomly sample in obstacle-free

space and look for a nearest point to the sample point from the random tree. Second, Extend

function extends from nearest point an incremental distance in the direction of the random point to

get a new vertex. Third, if collision detection happens between new vertex and random point, tree

growth is abandoned, otherwise, the new vertex is added to the tree. Repeating the above process

until the distance between the nearest point and goal point is less than a threshold, RRT algorithm

will return a feasible path. The advantage of RRT algorithm is that it does not need to model the

system or geometrically divide the search space. It has a high coverage in the search space and

a wide search scope, so it can explore the unknown space as much as possible. However, the

disadvantage of RRT algorithm is also obvious.

To improve RRT algorithm, many of its variants are proposed in the past 20 years, for

example: RRT-connect [29], RRT* [30], Bidirectional RRT* [31], RRT*-Smart [32], SRRT*

[33]. These variants improve the efficiency and rate of convergence, and solve the problem of

asymptotic optimization. However, for UAVs autonomous control, these pure algorithms are not
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enough since the dynamics constrains of vehicles are not considered. In [34] a closed-loop RRT

(CL-RRT) is proposed to involve non-holonomic constraints of the four-wheel vehicle dynamics.

In [35] the CL-RRT idea was improved and implemented on quadrotor UAVs. Although the UAV

non-holonomic constraints and RRT-based controller design method is provided, the Simulation

environment is too ideal and final path is not smooth enough and not cost optimal.

This paper proposes a point cloud-based target-oriented 3D RRT (PT-RRT) algorithm that

obtains obstacle-free, smooth, dynamically-feasible trajectories in real world and in real time. In

the following sections, section A introduces the core algorithm description and overall workflow;

section B introduces the point cloud map analysis to determine step size before algorithm running;

section C introduces the obstacle avoidance strategy in point cloud maps; section D introduces

three-steps optimization to get a smooth trajectory.

3.1 Algorithm Design and Workflow

PT-RRT algorithm we develop is a RRT-connect based path planning algorithm. Some

modifications is made in RRT-connect. In order to be target-oriented and to reduce computational

cost, we modify the extension condition in “EXTEND tree function” as shown in Alg. 1.

Fig. 3.1 shows the overall workflow of our algorithm. Dotted boxes specify the differences

between our algorithm and RRT-connect algorithm. Point cloud maps analysis and three-step

optimization are added to our algorithm.

3.2 Point Cloud Map Analysis

According to the analysis in previous part, it is difficult to do path planning in a very

sparse point cloud map. In the PT-RRT algorithm, given a point cloud map, analysis is necessary

before our algorithm runs.
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Algorithm 1 EXTEND(T,x)

1: FLAG← 0; i← 0;
2: if COLLISIONDETECT = NOCOLLISION then
3: xrand ← x
4: else
5: xrand ← Sample(i)
6: end if
7: xnearest ← NEARESTNODE(T,x)
8: xnew← STEER (xnearest ,x)
9: if COLLISIONDETECT = NOCOLLISION then

10: V ← {xnew}; E←{xnew,xnear}
11: T←{V, E}
12: if |xnew− x|< StepSize then
13: return FLAG = 1
14: end if
15: end if
16: return T , FLAG

Point cloud density is one of the most important properties. In the map analysis, point

cloud density has to be maintain at an acceptable level for the application of UAV path planning.

According to [36] and [37], point cloud density δ is classified as in TABLE I. In the outdoor

space, UAV 3D path planning can successfully run in sparse point cloud maps where its 0.5 < δ

< 1, and lower than is this level, it may be problematic. Jacob school of engineering of UCSD

will be used as the point cloud environment in the simulation. The δ of this model is 0.597 ±

0.02 pts/m2.

The point cloud analysis algorithm to calculate δ is shown in Algorithm 2 To reduce

computational complexity, algorithm 3 randomly selects 1% sample of the whole point cloud

data as the sub data to analyze maps, which is in Line 1. In Line 4, “Find Nearest Neighbor”

(FINDNN) function returns back the Euclidean distance between the K nearest neighbor points to

the ith subdata. In Line 6, “Find Nearest Neighbor in Radius” (FINDNR) function returns back the

index of the nearest neighbor to the ith subdata in radius. The principle of FINDNN and FINDNR

will be discussed in detail in next section C. In Line 9, “Surface Density” (SURFDENSITY)

9



Figure 3.1: PT-RRT algorithm workflow

Table 3.1: Point Cloud Density Classification

Density level δ (pts/m2) Applications

Sparse point clouds [0.5,1) Normally collected for large scale digital
height models.

Low density point clouds [1,2) For flood modelling applications.

Medium density point clouds [2,5) Suitable for satisfying most usages.

High density point clouds [5,10) For capturing the details of buildings.

Extremely dense point clouds [10,∞) For capturing more and all the details.
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function returns the point cloud density based on average number of index indexnumber and readius.

In Line 13, “Statistical Analysis” (SA) function returns back the step size for target-oriented RRT

algorithm. And to ensure safety, 120% offset is added to StepSize. In Line 14, “Configuration

Space Analysis” (CSA) function returns back the configuration space CSpace for UAV, which

includes the x,y,z limitation of the UAV flight space.

Algorithm 2 POINTCLOUDANALYSIS(ptClMap)
1: subdata← 1%RANDOMSAMPLE(ptClMap);
2: K ← {NeighborNumber}; r← {radius};
3: for i =1...subdata.Size() do
4: dists← FINDNN(subdata(i),ptClMap,K)
5: distsmin(i)← MIN(dists)
6: index← FINDNR(subdata(i),ptClMap,r)
7: indexnumber(i)← index.Size()
8: end for
9: ptClDensity←SURFDENSITY(indexnumber,r)

10: if ptClDensity ≤ LowerBound then
11: return FAIL

12: else
13: StepSize← SA(distsmin)
14: CSpace← CSA(ptClMap)
15: return StepSize,CSpace
16: end if

3.3 Algorithm Design and Workflow

In path planning, designing a feasible path is the first priority task. The maps environment

that most path planning algorithms are dealing with are all full information geometrical maps like

girds maps, occupancy maps, 3D mesh maps and so on. Under the condition that assuming all the

geometry information is known, it is easier to apply obstacle avoidance strategy.

In a set of sampling data points like point cloud, things will become more complicated.

The challenges of path planning in point cloud maps are obvious as discussed in previous point

cloud chapter 2. Researcher normally will not deal with point cloud environment directly. A

11



tensor voting framework is proposed in [11] to transform point cloud into a promising outcome

for application of 3D path planning. Ortherwise, a direct way to do global path planning on

point cloud maps is using an extremely dense point clouds as in [13]. According to the test

dataset parameters table in [13], its point cloud density is δ ≥ 970 pts/m2. Such point cloud is

not just computationally expensive, but also too difficult for SLAM to realize under the current

technology. Thus, a novel collision avoidance strategy is proposed in this paper.

Algorithm 3 COLLISIONDETECT(xcurr,xnext , ptClMap)

1: Status← NOCOLLISION;
2: if OUTOFRANGE(xcurr, ptClMap) = TRUE then
3: return Status← COLLISION

4: end if
5: xmid ← INTERP (xcurr,xnext)
6: if CHECKPOINT(xmid, ptClMap)=HIT then
7: return Status← COLLISION

8: end if
9: return Status

10: function CHECKPOINT(xmid, ptClMap)
11: Sa f eDist ← {S};
12: for i = 1...K do
13: if FINDNN(xmid, ptClMap, i) ≤ S then
14: return HIT

15: end if
16: end for
17: end function

The collision detection algorithm is shown in Algorithm 3. In Line 2, “out of range”

(OUTOFRANGE) function checks whether current point x is outside the map. In the CHECKPOINT

function, a safety distance S is specified to check if the current point is potentially about to hit

the obstacle. In the algorithm, the value of S is based on StepSize we got from Algorithm 2. A

reference value is given in equation 3.1.

S = (0.5 0.8) × StepSize (3.1)
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Figure 3.2: Obstacle avoidance strategy 2D presentation

In the left subfigure of Figure 3.2, node 3 actually “sees” the goal point and try to expand

a random new node on that direction (gray dashed line). The algorithm will calculate distances

between the nearest point cloud neighbors to that node and check if it is in the ball-shape safe

region, which is defined by S. Eventually, the node on dashed line is discarded and node 4 is added

to the tree. In the right subfigure of Figure 3.2, same rules are applied and since CHECKPOINT

function returns “no hit” between node 5 and the goal point, node 6 is added to the tree on that

direction.

In the CHECKPOINT function, FINDNN function is the key to determine if current point

potentially hits the obstacle. FINDNN function and FINDNR function (in the previous section

3.2) can be regarded as feature point matching query. Normally, there are two types of feature

matching operators: one is the linear scanning method, which compares the distance between the

points in the dataset and the query points one by one, that is also known as exhaustive; another is

to index the data and then match it quickly. One kind of representative index tree for the second

method is kd-Trees and both FINDNN function and FINDNR function are all based on kd-Trees

search algorithm.

Kd-Trees is a binary data structure inveted in 1970s by Jon Bentley [38]. Kd-Trees

algorithm can separate into two parts[39]: first part is the algorithm of constructing the kd-tree;

second part is algorithm of searching for the nearest neighbor. According to the complexity

analysis in [39], the time complexity of kd-trees nearest neighbor algorithm is O(n1−1/d + k),

where d is the d-dimension and k is the k nearest neighbors need to retrieve. It is far more efficient

13



than exhaustive O(nd) and more flexible than octrees.

3.4 Trajectory Optimization

Normally, the paths generated by RRT-based algorithm are tree-like, branch-like and

zigzag. Even though traditional RRT* can find a globally shortest path in a complicated environ-

ment without considering the convergence rate and time cost, it will still connect the resulting

path in straight lines. And because of the randomness of the tree, the final path will eventually be

a stiff trajectory, which, however, is not kinetically feasible and not optimal for quadrotor UAVs.

To solve for this problem, we propose three-step optimization method in this paper.

Three-step optimization method includes (1) down sample optimization (2) up sample

optimization (3) B-spline curves optimization. After three-step optimization, the final trajectory

will be smooth, kinetically feasible and locally shorter.

3.4.1 down sample optimization

Down sample starts from the initial point, and keeps checking the collision status between

next vertex and previous break point along the connected tree. In Fig. 3.3, the orange trajectory is

the outcome after down sample optimization. The down sample algorithm is shown in Algorithm

4.

3.4.2 Up Sample Optimization

After down sample, compared with connect-tree path, the trajectory we get is locally

shorter but it is not short enough since the down sample trajectory is fully based on connected

tree, which is not closed enough to obstacles especially at the corner. Up sample generates more

sample points that are closed to the nearest obstacle and its safe boundary compared with down

14



Algorithm 4 DOWNSAMPLE(Path)

1: Pathbreak ← {Path(1)};
2: for i =2...Path.size do
3: dis(i)← EURDIST(Pathbreak,Path(i));
4: if dis(i)> dis(i−1) OR dis(i)> 0 then
5: if COLLISIONDETECT = COLLISION then
6: indxnew← {i−1}
7: Pathbreak ← {Path(i−1)}
8: end if
9: end if

10: end for
11: Path← Path.indxnew
12: return Path

sample trajectory which will further shorten the trajectory. In Fig. 3.3, the green line is the

outcome after up sample optimization. The up sample algorithm is shown in Algorithm 5.

3.4.3 B-Spline Curve Optimization

To make sure that the final trajectory generated by PT-RRT algorithm is smoother, this

paper uses cubic B-Spline Curves to smooth the final trajectory. In [40] properties of B-spline

curves are described to show the advantages of B-spline curves to smooth trajectories in path

planning compared with Bezier curve. According to lecture [41], a B-spline curve P(t) is defined

in equation 3.2:

P(t) = ∑
n
i=0 PiNi,k(t) (3.2)

where,

• The control points Pi = {1,2,3...n} are given by up sample optimization algorithm.

• k is the order of the polynomial segments of the B-spline curve, and in our case k = 3.

• The Ni,k(t) are the “normalized B-spline blending functions”. They are described by k and

a non-descending sequence of breaking points ti = {t0, . . . , tn+k}.
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Algorithm 5 UPSAMPLE(Path)

1: dist ← {0}; iter← 1;
2: for k = 2...Path.Size() do
3: dist(k)← EURDIST(Pathk,Pathk−1)
4: dist(k)← {distk +distk−1}
5: end for
6: while iter ≤ itermax do
7: R1← RANDOMSAMPLE(distend)
8: R2← RANDOMSAMPLE(distend)
9: if S2 ≤ S1 then

10: SWAP(R1,R2)
11: end if
12: for k = 2...Path.Size() do
13: determine index i:=k−1 if dist(k) > R1
14: end for
15: for k = (i+1)...Path.Size() do
16: determine index j:=k−1 if dist(k) > R2
17: end for
18: if j ≤ i then jump to the next iteration
19: end if
20: α← INTEPL(disti,disti+1,Pathi,Pathi+1)
21: β← INTEPL(dist j,dist j+1,Path j,Path j+1)
22: Pairwise CollisionDetect in {Pathi,α,β,Path j+1}
23: if ANY(Line 22) = COLLISION then
24: jump to the next iteration
25: end if
26: Path← {Pathi,α,β,Path j+1}
27: iter← {iter+1}
28: end while
29: return Path,ψ
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The Ni,k(t) are described in equation 3.3, and starts with equation 3.4.

Ni,k(t) =
t−ti

ti+k−1−ti
Ni,k(t)+

ti+k−t
ti+k−ti+1

Ni+1,k−1(t) (3.3)

Ni,k(t) = {
1,i f ti≤t≤ti+1
0,otherwise

(3.4)

Since using third-degree B-spline curves, it should be noted that the generated trajectory is

2nd-order continuous and it is discontinuous in acceleration. Compared with Bezier curves,

B-spline curves are more flexible: by adding controlling points locally to the line segment, we can

locally optimize the final trajectory. After finishing fitting, the collision detection is needed for

the generated trajectory. When a trajectory segment collides with an obstacle, the nearest control

point to the collision point needs to be located and re-fitted after interpolation. The midpoint

between the located control point and the previous control point is selected as the interpolation

point. Collision detection is carried out after each fitting until an obstacle-free safety trajectory is

generated.

Figure 3.3: Trajectory optimization and interpolation process
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In the Fig. 3.3, the smooth blue curve line is the final trajectory after B-spline optimization.

Subplot (a) shows that the B-spline optimal trajectory may be able to hit the obstacle and subplot

(b) shows that the outcome after interpolation process. After one red control point is interpolated

into the trajectory segment, the re-fitted B-spline optimal trajectory could avoid bumping into the

obstacle. The safe region is a virtual space around the obstacles where RRT sample points cannot

appear in, and it is defined by S.
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Chapter 4

WAY-POINT BASED CLOSED-LOOP

QUADROTOR CONTROL

According to the method in [42], a quadrotor system has the differential flatness property,

makes it possible to reduce optimal trajectories to a sequence of 3-D position and yaw angle and

their derivatives. And also, as presented by Hehn et al. [43], trajectory feasibility constraints

includes vehicle dynamics and input constraints, in which control inputs can be calculated from

the generated trajectory. In this section, we adapt ideas from these two papers and design the

way-point based closed-loop control.

4.1 Way-Point Based Closed-Loop Control

The way-point based closed-loop control design is shown in Fig. 4.1. The control input

here is the desired trajectory state Trastate ∈ R11, which is given in equation 4.1. The output state

from quadrotor dynamics is the quadrotor state xstate ∈ R12, given in equation 4.2. In order to

make the dimensions consistent, both Trastate and xstate have to transform into a middle quadrotor

state Qstate ∈ R13 before feeding in the quadrotor controller, given in equation 4.4.
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Figure 4.1: Way-point based closed-loop control block diagram

Trastate =

[
pxyz νxyz axyz ψxyz ψ̇xyz

]T
(4.1)

xstate =

[
pxyz νxyz qxyz ωpqr

]T
(4.2)

Qstate =

[
pxyz νxyz elxyz ωpqr

]T
(4.3)

where,

pxyz =
[

x y z

]
, is the position in world coordinates;

νxyz =
[

ẋ ẏ ż

]
, is the velocity in world coordinates;

axyz =
[

ẍ ÿ z̈

]
, is the acceleration in world coordinates;

elxyz =
[

φ θ ψ

]
, is the Euler roll, pitch and yaw;

ωxyz =
[

p q r

]
, is the angular velocity around body xyz-axis;

qwxyz =
[

qw qx qy qr

]
, is the quaternion.

The whole control system has to be initialized every time before system runs. The

trajectory generator will first give out an initial trajectory state Trastate and quadrotor state xstate
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will be assigned by Trastate in the initialization.

4.2 Quadrotor Controller

The inputs of controller are desired quadrotor middle state Qdes
state and current quadrotor

middle state Qstate. The desired middle state is Qdes
state calculated based on desired trajectory state

Trastate. The current quadrotor middle state Qstate is calculated from the quadrotor current state

xstate The controller is given in euqation 4.4 4.5 4.6 4.7.

axyz = ades
xyz + Kν(νdes

xyz −νxyz)+Kp(pdes
xyz − pxyz) (4.4)

φ = 1
g(axsinψdes−aycosψdes)

θ = 1
g(axcosψdes−aysinψdes)

ψ = ψdes

(4.5)

F=m(g+az) (4.6)

M = Ixyz(Kvm(ω
des
xyz −ωxyz)+Kpm(eldes− el)) (4.7)

The outputs of quadrotor controller are F,M,φ,θ,ψ and xstate. These outputs will be feeding

into the quadrotor dynamics plane to solve for the state space equations.
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Chapter 5

Simulation and Result Discussion

In this paper simulation tests for three different targets are involved. Three simulations

are all based on a real world point cloud map, which is the Jacob School of Engineering at UCSD.

The parameters of point cloud dataset are given in TABLE . The dataset is provided by Drone

Lab@UCSD.

Table 5.1: Test Dataset Parameters

Dataset Jacob School of Engneering@UCSD
3D model .ply format size 10.8mb

Number of points 405934

Point cloud density 0.597±0.01pts/m2

Actual size (270×270×52)m

According to point cloud analysis, the histogram of the distance and number of the nearest

neighboring points of the point cloud is shown in figure 5.1. The SA function gives out the step

size for PT-RRT algorithm: StepSize = 5m, and safety distance: Sa f eDist = 3m.

The simulation settings are shown in TABLE 5.2. We design three simulation tasks based

on different initial and target points in order to show target orientation, three-step optimization
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Figure 5.1: Statistical analysis of test dataset

and interpolation process of our algorithm.

Table 5.2: Simulation Setting

No. Description
Initial point Goal point Verification

1 (100,200,300) (100,200,300) Target orientation

2 (230,120,120) (90,225,95) Up-Sample Optimization

3 (158,150,96) (175,185,100) B-Spline Optimization

In the Fig. 5.2, Fig. 5.3, and Fig. 5.4, blue and red star dots are the vertexes in tree 1(starts

from initial point) and tree 2(starts from target point); the red polyline is connected tree 1 and 2;

the yellow line is the down sample trajectory, the green line is the up sample trajectory, and the
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blue curve is the final trajectory. In Fig. 5.4, the top right and left pictures show the comparison

between no interpolation process and after interpolation process. Fig. 5.5, Fig. 5.6, Fig. 5.7

Figure 5.2: test1

show way-point close-loop quadrotor flight control simulation running in test 1, test 2, test 3, the

blue line is trajectory generated by PT-RRT algorithm, the red line is the real quadrotor flight

trajectory with the respect of quadrotor dynamics constrains. This simulation shows that the

effectiveness and feasibility of our algorithm.

24



Figure 5.3: test2

Figure 5.4: test3
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Figure 5.5: UAV flight control simulation for test 1,run time t=24.5s

Figure 5.6: UAV flight control simulation for test 2,run time t=39.6s

Figure 5.7: UAV flight control simulation for test 3,run time t=12.4s
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Chapter 6

Conclusion and Future Work

This paper propose a RRT based 3D path planning algorithm and a way-point based closed-

loop quadrotor control for UAVs in 3D point cloud environment. The trajectory generated by our

algorithm is obstacle free, smooth, target-oriented, computationally low-cost, and dynamically

feasible for UAVs. The closed-loop quadrotor control treats 3-D position and yaw angle and their

derivatives as control inputs, satisfying the dynamics constraints while following the way points.

The simulations for different target points show the effectiveness and feasibility of our algorithm

and control method.

For future work, the author plans to run experimental testing using real quadrotor with

GPS, cameras, IMU and altimeter. In the outdoor space, more noise will be involved. We will

check how good is our trajectory planning in real world and how robust is our control system will

be.
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