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Abstract

Extensions of empirical dynamic modeling for prediction and management in

ecological systems

by

Bethany Johnson

Humans simultaneously depend on and affect the health of natural ecosystems

on a global scale, so it is important to establish ecosystem management practices

that will ensure longevity and mutualism in the relationship between humans and

nature. For decades, scientists have worked in a single-species paradigm to inform

most management decisions in ecology. Specifically, species have traditionally

been modeled and assessed individually, with limited consideration of how they

interact with other species and drivers in their ecosystems. This has led to in-

accurate predictions in the past, so there has been a recent push to account for

more complexity in ecological models, as this would facilitate better management

decisions. While one natural extension is to incorporate multiple variables into

mechanistic models, this is challenging and inefficient with our current under-

standing of ecosystems. Alternatively, data-driven models offer a way to predict

population dynamics without requiring specific inputs for all ecosystem compo-

nents.

In this dissertation, we explore empirical dynamic modeling, a data-driven ap-

proach to forecasting which is derived from principles of dynamical systems theory.

Empirical dynamic modeling is a promising tool that accounts for system complex-

ity without requiring strong assumptions or full system observations. However,

it cannot cope with some limitations that are common in ecological datasets, in-

cluding short time series and missing samples. Thus, we develop extensions of

x



empirical dynamic modeling to address these limitations. We then apply this ap-

proach along with optimal control methods to generate management decisions in

ecological pest control scenarios. Throughout the dissertation, we demonstrate

the effectiveness of our method developments on a wide range of simulated data

examples in addition to empirical data from high-impact terrestrial and aquatic

ecosystems.
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Chapter 1

Introduction

Humans are highly dependent on nature. More than half of the global gross

domestic product relies on food, medicine, and materials sourced from natural

ecosystems (Herweijer et al., 2020). The fisheries and agricultural industries are

some of the primary examples. Every year, fisheries generate over $200 billion

(Dyck and Sumaila, 2010) and provide more than 15% of animal protein consumed

worldwide (Béné et al., 2015), and farming generates over $100 billion annually

and supports approximately 2.6 million jobs in the United States alone (USDA,

2021).

While maximizing economic yield or minimizing loss are often the primary ob-

jectives considered by decision makers in these industries, decision makers should

also ensure that policies avoid exploiting ecosystems in unsustainable ways and

avoid taking actions that could interfere with non-focal ecosystem services. The

best way to achieve this is through the development of sustainable management

practices for natural ecosystems.

Traditional approaches to management in ecology have leaned on a single-

1



species framework. Specifically, decisions have historically been based on sim-

plified models of population dynamics, which do not adequately capture various

aspects of ecosystems, including species interactions, environmental drivers, and

anthropogenic effects. This restrictive framework has led to costly failures in

numerous fields ranging from fisheries collapse (Skern-Mauritzen et al., 2016) to

poisoning of non-target organisms after pesticide applications (Beketov et al.,

2013; van der Werf, 1996) to "threat cascades," which have involved the accidental

suppression of beneficial species through elimination of invasive ones (Bergstrom

et al., 2009; Geary et al., 2019; Zavaleta et al., 2001). In light of this, over the past

several decades, some scientists have claimed that more accurate ecological fore-

casting could resolve most of the current problems in management (Clark, 2001;

Dietze, 2017), which has created a strong push to make ecology a more predictive

science (Dietze et al., 2018; Evans et al., 2012) with the development of complex

ecosystem modeling techniques (Christensen et al., 1996; Pikitch, 2004).

Ecosystem models aim to take a holistic approach by incorporating many

ecosystem components and processes into mathematical models. However, the

natural world makes ecosystem modeling challenging (Geary et al., 2020; Sugi-

hara et al., 1984). Nonlinear interactions between numerous species and exoge-

nous variables occur at different time scales ranging from days to decades. While

some scientific fields have validated laws to abide by when constructing mathe-

matical models, efficient theories derived from first-principles are somewhat sparse

in ecology (Marquet et al., 2014). Realistically, we have limited mechanistic un-

derstanding of how climate inputs, trophic network interactions, anthropogenic

actions, genetic variability, and other factors influence each other. Furthermore,

we typically only have data for a few of these variables on short time scales. This

leads to strong uncertainty in model structures and parameters, so ecosystem

2



CHAPTER 1. INTRODUCTION

models often involve numerous simplifying assumptions. Small changes in these

assumptions can lead to large differences in model predictions and the manage-

ment advice they generate (Wood and Thomas, 1999).

While there has been notable recent progress in quantitative ecosystem model-

ing, some scientists have pointed out that ecological theory has produced minimal

practical value and many developments have yet to meet practice (Arkema et al.,

2006; Mcevoy, 2017). As a result, the same issues have existed for over sixty years

in fisheries management (Maunder and Piner, 2015) and responses to ecological

events are often still reactive in practice, rather than carefully anticipated and

controlled (Oliver and Roy, 2015). Due to these issues, ecosystem modeling and

management has been classified as a "wicked problem" – a seemingly intractable

problem with no generalizable solution (DeFries and Nagendra, 2017).

In light of this, there is a need to establish methods that provide suitable

and practical contributions to ecological management. While there is certainly a

great deal of "wickedness" in ecosystem management, it may be possible to take

steps toward a more generalizable solution by developing flexible methods for

ecological prediction and control that abandon the need for complete mechanistic

understanding of ecosystem complexity.

1.1 Empirical dynamic modeling

As an alternative to ecosystem models, empirical dynamic modeling (EDM)

(Sugihara, 1994; Sugihara and May, 1990; Ye et al., 2015a) is a framework that

allows us to work efficiently and directly with empirical data without requiring

strong assumptions. Each chapter in this dissertation uses EDM and contains

a description of the method, but we provide a more thorough overview here for

pedagogical purposes.

3



1.1. EMPIRICAL DYNAMIC MODELING

EDM is grounded in Takens’s theorem of time-delay embedding (Takens, 1981),

which we paraphrase as: Let M be a compact manifold of dimension m. Then

for generic pairs (ϕ, y), where ϕ : M → M is a diffeomorphism (i.e. a dynamical

system describing the flow on M) and y : M → R is a differentiable observation

function (i.e. time series), the map Φ(ϕ,y) : M → R2m+1 given by

Φ(ϕ,y)(x) :=
(
y(x), y(ϕ(x)), y

(
ϕ2(x)

)
, . . . , y

(
ϕ2m(x)

))

(i.e. time lagged observations) is generically an embedding of M in R2m+1.

An embedding is a global one-to-one, smooth transformation of the manifold

M that preserves all topological properties. Thus, this theorem implies that the

image of the attractor of a multi-dimensional deterministic dynamical system can

be reconstructed using the time series of a single state variable, x0, . . . , xT . From

the single-variable time series, embedding vectors of the form [xt, xt−1, . . . , xt−E]⊤,

t ∈ (E, . . . , T ) can used as synthetic coordinates to reconstruct the attractor, and

all of the important mathematical features of the original attractor will hold in

the reconstructed attractor.

As an illustrative example, consider a tri-trophic food-chain dynamical system

given by

ẋ = rx(1 − x) −
axy

1 + bx

ẏ =
axy

1 + bx
−

cyz

1 + dy
− fy

ż =
cyz

1 + dy
− gz

, (1.1)

(Hastings and Powell, 1991). In an ecological context, these equations model the

change in population size through time of a producer (x), a grazer (y), and a

consumer (z). Figure. 1.1(a) shows the "teacup" attractor of this system, and

4



CHAPTER 1. INTRODUCTION

Fig. 1.1(b) shows the reconstructed attractor, which was constructed by taking

two lags of the x time series and plotting the evolution of the system in the

lagged-coordinate space. Importantly, the reconstruction clearly preserves the

global "teacup" shape of the original attractor.

Figure 1.1: Illustration of Takens’s theorem with the state space attractor of sys-
tem (1.1) and its corresponding reconstructed attractor using time lags of variable
x. With parameter values r = 2, a = 10, b = 3, c = .2, d = 2, f = 0.8, g = 0.016,
we solved the system of ODEs using a fourth-order Runge-Kutta method with
a time step 0.01. (a) The original trajectory of plotted in coordinates for each
variable (x, y, and z) results in a "teacup" attractor. (b) The reconstructed at-
tractor using time lags of x (lag parameter τ = 28) as synthetic corrdinates. The
reconstruction resembles the "teacup" shape of the original attractor.

Takens’s theorem has widespread applications. Fundamentally, it allows any

system analysis to be performed with only partial observations of the system.

For instance, dynamical invariants (e.g. correlation dimension, Lyapunov expo-

nents) of a system can be estimated using observations of just a single state

variable (Sugihara, 1994). Furthermore, it ensures that the evolution of some lo-

cal neighborhood of points in the original system maps directly to the evolution

of a neighborhood of points in the reconstructed system. Thus, forecasts can be

made based on observations of previous ecosystem states that were similar to the

current state. This fundamentally means that forecasting with EDM is not simply

5



1.1. EMPIRICAL DYNAMIC MODELING

an extrapolation of the recent temporal dynamics, but a guided prediction based

on historical ecosystem trajectories.

More specifically, forecasting is possible because the theorem implies that

the present value of a state variable is a function of its past values. That is,

xt = f(xt−1) where xt−1 = [xt−1, . . . , xt−E]⊤ for some unknown function f and

embedding dimension E (Deyle et al., 2016; Perretti et al., 2013; Sugihara, 1994;

Ye et al., 2015a). For a stochastic system, an analogous argument shows that

this approach models the conditional mean E(xt|xt−1, . . . , xt−E) = f(xt−1) (Stark

et al., 2003). Any non-parametric function approximation scheme can be used to

approximate f . As a result, EDM allows us to predict nonlinear dynamics without

requiring data from all variables or an explicit model structure. EDM is used in

a variety of scientific fields and is increasingly being used in ecology to forecast

population size (Deyle et al., 2013; Glaser et al., 2014a; Liu et al., 2012; Perretti

et al., 2013), identify causal connections (Clark et al., 2015; Sugihara et al., 2012;

Van Nes et al., 2015), quantify species interactions (Deyle et al., 2016; Rogers

et al., 2020), and identify chaotic dynamics (Dixon et al., 1999; Hsieh et al., 2005;

Rogers et al., 2022).

The primary benefits of empirical dynamic modeling are (1) it does not re-

quire specification of a model structure, which allows for more flexibility, as it

can capture any patterns present in the historical data, (2) it allows us to work

efficiently with partial observations of a system, and (3) it has been shown to out-

perform standard mechanistic models (Munch et al., 2018). There are, however,

several important limitations of EDM. Since EDM aims to reconstruct dynamics

based on historical data, the quality and quantity of data affect the accuracy of

the method. Since many applications and developments of EDM have been in

high quality, data-abundant fields, such as physics, there has not been much con-
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CHAPTER 1. INTRODUCTION

sideration for how to adapt the method when there are limitations in the data.

One particularly problematic feature that is often encountered in ecological data

is short time series. Another is that many ecological systems are sampled at ir-

regular temporal intervals. This is problematic because Takens’s theorem is valid

only for uniformly sampled time series from a dynamical system. Both of these

issues greatly limit the applicability of EDM in ecology.

1.2 Summary of contributions

In this dissertation we explore and develop extensions of the standard EDM

framework to address some common issues that prevent EDM from being used

in ecological applications. With these extensions, we aim to make EDM a more

generalizable and universal tool for ecological forecasting. Since forecasting is

only one step in ecosystem management, we also address how to make robust

decisions in ecological systems by combining EDM forecasts with optimal control

theory. In all of the chapters of this dissertation, our goal is to provide a proof of

concept and an investigation of generalizability through simulation experiments,

which represent a wide range of ecological scenarios. We use these simulation ex-

periments to identify conditions in the underlying dynamics that might affect the

accuracy of our forecasts and control recommendations. We also aim to provide

additional proof of concept through several empirical examples, which include real

ecological data for a range of species in high-impact industries including fisheries

and agriculture.

In Chapter 2, we address the limitation of short time series in ecology in

an analysis of how to leverage spatial information. Short time series are highly

common, but most ecological surveys also contain data from multiple spatial lo-

cations. In the ecological literature, data from site-specific time series have been

7



1.2. SUMMARY OF CONTRIBUTIONS

concatenated to effectively lengthen the time series and improve predictions. In

the physics literature, however, it is more common to incorporate data from neigh-

boring locations directly into the embedding vectors. We develop a physically-

informed extension of this framework, which accounts for species dispersal. Using

a series of simulations experiments, we evaluate the relative effectiveness of each

of these approaches on short time series. We also apply the methods to empir-

ical data for several commercially valuable fish species. Through this analysis,

we establish general guidelines for coping with short time series within the EDM

framework.

In Chapter 3, we address another major limitation, which is that EDM can

only be applied to uniformly sampled time series data. This creates a particular

challenge in ecological applications because there are many reasons for ecological

data to be missing or sampled irregularly. For example, weather conditions, fund-

ing constraints, equipment malfunctions, and seasonal sampling can all contribute

to irregularity in time series. With this in mind, we develop a framework that

allows EDM to operate robustly on irregularly sampled time series or series with

missing data. We evaluate the framework in numerous scenarios of missing data

through simulations, and we also demonstrate the method on empirical data for

an insect pest which damages grain and potato crops.

While the standard EDM framework allows us to efficiently cope with single-

species data, in many ecological applications, species are influenced by harvesting

or other anthropogenic controls. When we have historical data for these controls,

incorporating them as inputs in the EDM framework can improve prediction ac-

curacy and opens up the possibility of using these tools for quantitative ecosystem

management (Boettiger et al., 2015; Brias and Munch, 2021; Giron-Nava et al.,

2017; Liu et al., 2012). In Chapter 4, we explore connections between EDM fore-
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CHAPTER 1. INTRODUCTION

casts and stochastic dynamic programming in an insect pest management setting.

In this analysis, we quantify how much improvement, if any, is possible by using

EDM forecasting with optimal control theory rather than status quo approaches

in this concrete example. We explore several scenarios of control through simula-

tions and further validate the methods on empirical data for an agricultural pest

and an insect disease vector.

We summarize the proposed method developments and their applications in

Chapter 5. We also address limitations of our methods and extensions of this work

that we have left for future studies. Several supplemental analyses and additional

supporting information about the main chapters are available in the Appendix.

We intentionally made each chapter in this dissertation independent by in-

cluding all relevant background information and method descriptions within each

chapter. Accordingly, there may be some repetition across chapters, but readers

are welcome to approach the chapters out of order.
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Chapter 2

Leveraging Spatial Information

with Empirical Dynamic

Modeling

This chapter is a reprint of Johnson et al. (2021) as it appears in Methods in

Ecology and Evolution (Volume 12, Issue 2, October 2020). Stephan B. Munch

and Marcella Gomez are coauthors of this paper. The dissertation author was the

primary investigator and author of this paper.

2.1 Abstract

1. There has been a recent demand for forecasting in ecology, particularly in the

field of ecosystem management. Empirical dynamic modelling (EDM), an

equation free nonlinear forecasting method, is receiving growing attention,

but it requires long time series to produce accurate predictions. Though
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CHAPTER 2. LEVERAGING SPATIAL DATA WITH EDM

most ecological time series are short, spatial replicates are often available.

Here we explore how utilizing available spatial data can improve our ability

to forecast ecological dynamics.

2. There are several ways to incorporate spatial information into EDM and not

all have been applied in ecology. We compare spatial EDM approaches used

in ecology and physics and introduce a flexible Bayesian model that makes

use of prior movement information.

3. We test these methods on simulated data generated with three population

dynamics models with varying levels of complexity, time series length, spa-

tial symmetry and heterogeneity. Adding spatial data generally improves

accuracy, though the best method depends on the spatial process. We ap-

plied the methods to empirical fisheries data, highlighting the complexity of

real population dynamics.

4. Leveraging spatial data is an effective way to overcome the problem of short

ecological time series. Since the best forecasting method depends on the

underlying dynamics, we suggest that users apply several in concert and

that this may be useful in identifying spatial heterogeneity in dynamics.

2.2 Introduction

Over the past three decades there have been numerous calls to make ecology

a more predictive science (Clark, 2001; Dietze, 2017; Dietze et al., 2018; Evans

et al., 2012). One of the most pressing demands for ecological forecasting is in the

field of ecosystem management (Christensen et al., 1996; EPAP, 1999; Pikitch,

2004), which accounts for interactions among competing ecosystem services when

setting management policy. Unfortunately, in most ecosystems, we do not have
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complete knowledge of all the system variables and their interactions. In such

partially observed systems, nonlinear interactions between numerous species and

exogenous variables make mechanistic predictions difficult (Wood and Thomas,

1999).

Alternatively, equation-free approaches, collectively called empirical dynamic

modelling (EDM) (Sugihara and May, 1990; Takens, 1981; Ye et al., 2015a), can

be used to make predictions in partially observed systems. The state variables of

a dynamical system evolve through time and tend to converge on a set of values

(e.g. a fixed point, limit cycle or complex shape) referred to as the attractor for

the system (Chang et al., 2017). Takens’ theorem (Takens, 1981) demonstrates

that time lags of a single variable can be used as synthetic coordinates to re-

construct an image of the attractor. In an ecological context, this means that

it is possible to use historical data from a single species to reconstruct the dy-

namics even when we do not have data for other species in the community. In

practice, this is done by constructing a collection of short segments of the time

series, {xt−E, xt−E+1, . . . , xt} and using this ‘library’ to identify similar segments.

If the segments are long enough and the dynamics are smooth, similar segments

imply similar future states allowing robust, model-free predictions to be made.

See Movie S1 of (Ye et al., 2015a) for an explanation. EDM is increasingly used

in ecology to forecast population size (Perretti et al., 2013), identify causal con-

nections (Sugihara et al., 2012), quantify species interactions (Deyle et al., 2016;

Rogers et al., 2020), and identify chaotic dynamics (Sugihara, 1994; Sugihara and

May, 1990). However, EDM requires long time series at relatively short sampling

intervals in order to fully resolve the attractor. This often limits the accuracy of

EDM in ecology where many time series are fairly short (20-50 years).

There are several avenues to overcome the problem of short time series. For
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instance, libraries from several state variables (i.e. species) can be concatenated

to increase the density of points on a common attractor (Banbrook et al., 1997;

Hsieh et al., 2008; Sugihara, 1994). This method improves predictions, but the

obvious trade-off is that it requires data for multiple species. In cases where data

for only one species are available from multiple locations, it may be possible to

use the available spatial information and improve forecasts.

The state of the art for incorporating spatial information into EDM varies by

discipline. In ecology, it is common to concatenate data from multiple sites to fill

in the attractor more completely (Clark et al., 2015; Glaser et al., 2014b). Hierar-

chical approaches have also been used to combine information across sites (Munch

et al., 2017; Rogers and Munch, 2020). Although these methods often improve

forecasts, they rely on two opposing requirements. First, the spatial replicates

must be similar enough that their dynamics are mutually informative. Second,

the replicates must be different enough to provide new information. For instance,

highly synchronized replicates contribute very little. These methods use only lags

of the local time series to construct an average attractor across multiple sites.

However, nearby populations can exchange migrants or share common drivers. In

this case, the dynamics at a focal site depend on the state of its neighbours, so

lags from neighbouring sites may provide additional information for forecasts.

Spatial EDM (sEDM), uses both spatial neighbours and temporal lags to lever-

age this spatial coupling. sEDM has been used in a variety of fields since its

introduction (Parlitz and Merkwirth, 2000; Ørstavik and Stark, 1998) including

forecasting coastline changes (Grimes et al., 2015) and sunspots (Covas, 2017;

Covas and Benetos, 2019). Although sEDM seems like a promising avenue for

forecasting in ecology, there is, to our knowledge, no ecological application of

it, and it has not been compared to the method of concatenating data. Here
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we aim to determine which of these approaches more effectively utilizes spatial

information to improve ecological forecasts.

Since sEDM is typically applied outside ecology, there are three limitations to

address to make it suitable for ecological forecasting. First, sEDM applications

usually construct predictions for each focal location independently. That is, al-

though sEDM inputs include lags of the focal site and neighbours, the library of

data used to make predictions is based on predictor–target pairs centred at the

focal site. Including predictor–target pairs centred at other locations by concate-

nating libraries (Clark et al., 2015; Glaser et al., 2014a) could possibly improve

sEDM predictions. This would simultaneously account for dynamic influences of

dispersal or gradients and also borrow information across locations on the shape

of the attractor.

Second, standard sEDM implementation makes simplifying assumptions in-

cluding symmetric coupling between sites and identical dynamics across sites.

Since many ecological systems break these assumptions (e.g. with advection and

spatial heterogeneity (Barnett et al., 2019; Kolasa et al., 1991; Largier, 2003)),

these assumptions should be relaxed when evaluating these methods.

Finally, there is no consensus on how to choose which neighbours and lags

to include in attractor reconstructions with sEDM. Mutual information and false

nearest neighbours can be used (Abarbanel, 1997; Covas, 2017; Covas and Benetos,

2019; Kantz and Schreiber, 2004), or combinations of neighbours and lags may be

selected to minimize prediction error on some subset of training data (Bialonski

et al., 2015). However, these methods force the spatial and temporal lags to be

equally spaced, and a more flexible lag spacing may be preferable (Judd and Mees,

1998).

Automatic relevance determination (ARD; (MacKay and Neal, 1994; Neal,
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1996)), a technique used in machine learning, is useful for selecting relevant lags in

Bayesian approaches to EDM (Munch et al., 2017). However, the multivariate em-

bedding theorem (Deyle and Sugihara, 2011) asserts that, from a theoretical per-

spective, sEDM is inherently non-identifiable. Here, it is important to distinguish

between model identifiability, a well-known statistical problem, and dynamical

identifiability which arises because there are multiple ways to exactly reconstruct

dynamics (Deyle and Sugihara, 2011). For instance, in a predator–prey system,

we could write a model using either the current densities of both species, lags

of the predator or lags of the prey. All three formulations are equally valid and

produce identical dynamics. In contrast, statistical identifiability occurs when-

ever multiple parameter combinations produce identical values for the likelihood

and can often be eliminated by reparameterization. The lack of dynamical iden-

tifiability in sEDM implies that different lag selections are equally valid and will

produce nearly equivalent fits, making it highly likely that a standard implemen-

tation of ARD would settle at a local maximum. This is an issue because settling

at a local maximum in-sample could reduce out-of-sample predictive accuracy.

Moreover, lack of identifiability implies that ARD may select different lags for

two realizations of the same dynamics, reducing mechanistic interpretability of

lag selections. Ideally, lag selections should be consistent across repetitions of

equivalent dynamics.

To overcome this problem, we introduce a modification of ARD intended to

resolve this identifiability issue. We use the physical network topology of a spa-

tiotemporal system to derive a Bayesian prior for the expected relevance of each

lag. By using this prior, ARD is more likely to converge to a collection of lags

that are biologically and physically plausible, without restricting the inference to

a fixed set.
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Here we examine how to leverage spatial information with EDM and address

how our modifications of sEDM compare to the standard implementation of sEDM

and other EDM methods that are used in ecology. Specifically, we compare the

performance of several combinations incorporating local lags (EDM) versus spatial

lags (sEDM) and local versus concatenated libraries. For models with spatial lags,

we compare performance with and without the informative prior. We present

results on simulated data generated with population dynamics models and also

on empirical data for several widely distributed marine species.

2.3 Methods

2.3.1 Empirical dynamic modeling and spatial extensions

EDM is grounded in Takens’ theorem of time-delay embedding (Takens, 1981),

which states that an image of the attractor of a multi-dimensional deterministic

dynamical system can be reconstructed using the time series of a single state

variable, x0, . . . , xT . From the single-variable time series, embedding vectors of

the form [xt, xt−1, . . . , xt−E]⊤ for t ∈ (E, . . . , T ) are used as synthetic coordinates

to reconstruct the attractor. This is equivalent to saying that the present value of a

state variable can be written as a function of its past values. That is, xt = f(xt−1)

where xt−1 = [xt−1, . . . , xt−E]⊤ for some unknown function f and embedding

dimension E.

As an intuitive example of why EDM should work, consider a predator-prey

system in which the dynamics fall on a limit cycle. Given a single observation

of the prey abundance, it is impossible to predict the abundance in next step

because the observation can either be on a increasing or a decreasing part of the

cycle. This ambiguity disappears if we augment the current prey abundance with
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any information on which side of the cycle we currently reside. Obviously, the

current predator abundance is one possibility. The current direction of change

in prey abundance (e.g. increasing or decreasing) would also be sufficient. Prey

abundance a short time earlier provides the same information. Thus, time lags

effectively allow us to reconstruct dynamics in partially observed coupled systems.

See (Deyle et al., 2016; Perretti et al., 2013; Sugihara, 1994; Ye et al., 2015a) for

more details on EDM in an ecological context.

For spatial extensions of EDM, consider a single-variable time series at N lo-

cations, x1
0, ..., x

1
T , ..., x

N
0 , ...x

N
T . To make use of these spatial replicates in EDM,

the common approach in ecology is to stitch the N time series together and con-

struct embedding vectors from the long concatenated time series (e.g. Hsieh et al.

(2008)). This approach relies on the assumption that all replicates come from

the same underlying attractor (Banbrook et al., 1997), so data from any site can

inform dynamics of the others.

Alternatively, the idea of spatial EDM (Parlitz and Merkwirth, 2000; Ørstavik

and Stark, 1998) is to use embedding vectors that include lags of both the focal

location as well as its nearest spatial neighbors. Essentially, this says that the

state at time t and site i is a function of the past values of the state in sites

i− S, . . . , i, . . . , i+ S, given by

xi
t =f(xi−S

t−1, . . . ,xi
t−1, . . . ,xi+S

t−1), (2.1)

for some unknown function f and embedding dimensions E and S. Here xi
t−1 =[

xi
t−1, . . . , x

i
t−E

]⊤
.

Regardless of the way spatial data are used, our goal is to approximate the

function f from data so that it can be iterated forward to make predictions.

There is a vast literature on function approximation techniques that can be used
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in this context (Iatan, 2016; Judd, 1999; Stalph, 2014), but the most commonly

used in ecological literature are piece-wise constant models (e.g. Simplex (Sug-

ihara and May, 1990)) , local linear regression (e.g. S-map (Sugihara, 1994)),

splines (e.g. (Ellner and Turchin, 1995)), and Gaussian process (GP) regression

(Munch et al., 2017). We implement EDM and sEDM via GP regression to fa-

cilitate incorporating auxiliary biological and physical information through prior

specification (Thorson et al., 2014). Additionally, the GP framework admits a

hierarchical structure to share information across different locations (Rogers and

Munch, 2020), though we do not pursue this here.

Here we provide a brief introduction to GP regression, define a naive ARD

prior, and then develop a novel ARD prior for sEDM. For additional background,

Rasmussen and Williams provide an overview of modelling with GP regression

(Rasmussen and Williams, 2006), and Munch and colleagues provide examples of

using GP regression specifically for EDM (Munch et al., 2017).

In general, we want to fit a model for

xi
t+1 = f(x) + ϵt (2.2)

where the approximation error, ϵt, has mean 0 and variance V . Note that

the input x has a different structure for EDM and sEDM as described above.

To infer f , we assume a GP prior and update using the observed time series.

The GP is a continuous generalization of the multivariate normal distribution,

completely specified by a mean function, m(x) = E[f(x)], and a covariance func-

tion, c(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (Rasmussen and Williams, 2006).

Without information on the characteristics of f a priori, we use a constant prior

mean function m(x) = 0. Consistent with previous GP applications, we use a

squared-exponential covariance function.
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c(x,x′) = σ2
f exp

(
−1

2(x − x′)⊤M(x − x′)
)

(2.3)

with

M =



ϕ1 0 . . . 0

0 ϕ2 . . . 0
... ... . . . ...

0 0 . . . ϕn


.

Here, ϕi is the inverse characteristic length scale and governs how much f

varies in the direction of the ith input (Rasmussen and Williams, 2006). Note that

Equation (2.3) has n + 1 free parameters, ϕ1, ..., ϕn, σ
2
f . For σ2

f , we use a weakly

informed prior distribution, Beta(1.1, 1.1). we use the same prior distribution for

V , the variance in approximation error, which limits variance in the predictions

to be less than twice the total variance in the observed data (assuming that the

data have been scaled to unit standard deviation prior to analysis).Priors for ϕ are

described below. We estimate these hyperparameters by maximizing the marginal

likelihood using the resilient backpropagation (Rprop) algorithm (Riedmiller and

Braun, 1993). Subsequent predictions are made conditional on these maximum a

posteriori estimates (MAP; Rasmussen and Williams (2006)).

Note that when ϕi = 0, f is constant in the direction of the ith input. To en-

courage sparsity in f , previous GP-EDM applications (Munch et al., 2017; Rogers

and Munch, 2020) have used identical half-normal priors for each ϕ, i.e.

p(ϕj) =
√

2
πγ

exp
(

−
ϕ2

j

2γ

)
, (2.4)

for all 1 ≤ j ≤ n. A value of γ = π
2 is typically chosen so f will have a

single extremum over a unit interval of the input on average (Sacks and Ylvisaker,

1966), which regularizes f and avoids over-fitting (Munch et al., 2017). While this
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prior has been successful for GP-EDM, setting identical priors does nothing to

ameliorate identifiability issues in sEDM (Fig. 2.1(a)) and we refer to this model

as sEDM with a naive prior. Next, we derive an informed prior for ϕ that makes

use of the physical network to promote identifiability.

2.3.2 Physically-informed prior specification

In order to facilitate identifiability, we take advantage of the fact that some

combinations of sites are more likely to have coupled dynamics than others. If

sites are near each other, it is likely for them to be coupled through similar en-

vironmental conditions and dispersal. This coupling decreases for sites that are

far apart, so we expect the length scale parameters to decay with distance. We

modify the ARD framework to account for this by setting independent but in-

formative half-normal priors for the length scale parameters allowing the mean

for each to decrease with distance to the target. For diffusive coupling or, equiv-

alently, nearest neighbour dispersal, the prior expected value of each ϕ is given

by

E(ϕδ,τ ) ≈ aδ,τ√
2σ2

(2.5)

where aδ,τ = 1√
2πvτ

e− δ2
2vτ . Here, δ and τ are the spatial and temporal distance

from the target respectively, v is the mean-square dispersal distance, measured in

whatever units are used to measure distance between sites and σ2 is the variance

of the data. See Appendix A.2 for a derivation of eq. (2.5). Since the expected

value of the half-normal distribution is E(ϕ) =
√

2γ
π

, we set γ = π
2 (E(ϕ))2 in eq.

(2.4).

Figure 2.1(a) demonstrates the identifiability problem in naive sEDM by dis-

playing length scale estimates for 20 independent but identical simulations of a

two-species competition model with nearest neighbour dispersal (see Appendix
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A.1 for model and parameter values). In each simulation, we generated 20 time

points from random initial conditions on a one-dimensional lattice with seven

sites. Using data from only one species, we included four time lags from each site

in embedding vectors. ARD identified which of those 28 inputs were relevant for

making predictions.
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Figure 2.1: ARD outputs are shown for (a) naive sEDM and (b) informed
sEDM. Each row corresponds to a single simulation of a two-species com-
petition model with 7 spatial patches and 20 time points. sEDM frame-
work included 28 ‘lags’ in attractor reconstructions. Lag indices are ordered
xi

t−1, . . . , x
i
t−4, x

i−1
t−1, . . . , x

i−1
t−4, x

i+1
t−1, . . . , x

i+1
t−4, . . . , x

i+3
t−1, . . . , x

i+3
t−4. Shaded lag indices

were determined by ARD to be relevant for making predictions (darker colors
indicate stronger relevance) and white indices were determined to be irrelevant.
The strength and index of relevant lags is not consistent over the 20 simulations
in (a), highlighting an identifiability issue. More agreement across simulations in
(b) demonstrates the utility of the informed prior.

Since the dynamics for each simulation were generated by the same model,

ARD should select the same inputs across simulations. However, consistent with

the multivariate embedding theorem (Deyle and Sugihara, 2011) and earlier work

(Kantz and Schreiber, 2004), the selected lags varied widely, indicating an identi-
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fiability problem. Although forecasting may or may not suffer, this lack of identi-

fiability makes interpretation of ‘relevance’ based on the estimated length scales

impossible. Figure 2.1(b) shows analogous outputs when the physically informed

prior specification is used and highlights its ability to improve identifiability.

2.3.3 Local vs. spatial methods

Here we describe the distinction between the methods used. Fig. 2.2 shows the

relationship between input embedding vectors and their outputs for EDM versus

sEDM with and without an informed prior. We can construct multiple embedding

vector/output pairs through time so that all N locations have a library of data

available to train the GP. Figure 2.3 shows the different uses of these libraries.

(a)                      EDM          (b)                Naïve sEDM (c)             Informed sEDM

Figure 2.2: Embedding vectors that map to the one-step-ahead target at location
i. The red box shows entries that are included in embedding vectors for EDM (a),
spatial EDM with a naive prior (b), and spatial EDM with a physically-informed
prior (c). The shading of entries in the embedding vectors represents the prior
specification for length scales. Darker colors represent higher values of E(ϕ).
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Figure 2.3: Libraries of embedding vectors used to train the GP and make
predictions at location i. A local library uses only embedding vectors centered
at the focal site (a). A concatenated library combines libraries of data across
multiple sites to train the GP (b). Note that a concatenated library may combine
data from all available locations or just a subset of locations.

2.3.4 Forecasting population dynamics

Here we compare six forecasting methods: EDM (local), EDM (concatenated),

naive sEDM (local), naive sEDM (concatenated), informed sEDM (local) and in-

formed sEDM (concatenated). We evaluate these on both simulated and empirical

data.

Simulated data

Forecast performance of EDM methods are sensitive to a variety of factors

including the length of time series, system dimension (e.g. number of coupled

species), complexity of dynamics (e.g. periodic, chaotic, etc.) and spatial char-

acteristics (e.g. dispersal, heterogeneity,etc.). To understand these factors, we

varied them in three ecological models (Table 2.1). Importantly, these models

cover a range of dimensions and ecological interactions to increase the generality

of our results.
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We used the Table 2.1 models to simulate spatiotemporal data on a one-

dimensional lattice with periodic boundary conditions. For each simulation, we

assigned random initial conditions to every variable in every site and removed the

first 100 time points to avoid transients. We split the time series into ‘training’

data for fitting the GP hyperparameters, and ‘testing’ data for estimating the

one-step-ahead forecast accuracy, out-of-sample. For all models, we used a lattice

size of N = 75, test set of length Ttest = 20. We used the abundance data for

only one species, x, to train and test the methods and ignored the other species

abundances.

The training time series length, Ttrain, varied by simulation. We repeated every

model 100 times to produce summary statistics for forecast errors. GP regression

has O(n3) complexity stemming from a matrix inversion step that is required to

compute the posterior predictive distribution. Hence, to ease the computational

burden, we restricted our forecasting to a subset of locations (i.e. 10 randomly

chosen sites used for both training and testing). Importantly, all methods used the

same locations within each simulation, but locations varied across the repetitions.

Note that the informed sEDM prior (eq. 2.5) has one additional parameter

v for the mean-square dispersal distance. This parameter is not easily estimated

from data. To avoid choosing v arbitrarily, we fit the model with v fixed at

either: v = 10 (i.e. short dispersal distance and steep decay in prior ϕ) or v =

28 · 10 = 2560 (i.e. long dispersal and nearly identical prior). Note that v = 2560

was chosen arbitrarily but is large enough such that all lags are assigned similar

priors, making the naive prior a special case of the informed prior. Importantly,

users applying this method should consider the units of distance in their data and

may need to adjust the candidate values of v. With both sets of hyperparameters

corresponding to the different v values, we evaluated leave-one-out predictions on
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Name Model Parameters
Ricker f(x) = xer(1−x) r = {3, 3, 3.5}

(1 species: x)

Predator-Prey f(x, y) = xea−x− by
(1+αx)(1+βy) a = {2.4, 2.6, 2.8}

(2 species: x,y) g(x, y) = ye−c+ dx
(1+αx)(1+βy) b = 2 , c = 0.1,

d = 1.75, α = 0.1,
β = 0.1

Host- f(x, y, z) = xer(1−x/K)−ay−m+1−bz−n+1
m = 0.7, n = 0.4

Parasitoid- g(x, y, z) = x
(
1 − e−ay−m+1−bz−n+1

)
K = 50, a = 0.4,

Parasitoid h(x, y, z) = x
(
1 − e−ay−m+1−bz−n+1

)
r = {3.2, 3.2, 3.6},

(3 species: x,y,z) b = {0.75, 0.84, 0.84}

Table 2.1: Model structure and parameter values for {periodic, chaotic (high
spatial synchrony), and chaotic (low synchrony)} dynamics of a single-species
Ricker model (Ricker, 1954), a two-species predator prey model (Zhang et al.,
2018), and a three-species host-parasitoid-parasitoid model (Yu et al., 2009). we
simulate spatiotemporal data with these models on a one-dimensional lattice
with time series updates given by

xi
t+1 =

[
(1 − µ)f(•i

t) + µ

2
(
f(•i−1

t ) + f(•i+1
t )

)]
eξi

t

yi
t+1 =

[
(1 − µ)g(•i

t) + µ

2
(
g(•i−1

t ) + g(•i+1
t )

)]
eξi

t

zi
t+1 =

[
(1 − µ)h(•i

t) + µ

2
(
h(•i−1

t ) + h(•i+1
t )

)]
eξi

t

The big dot notation is given by • ≡ x (Model 1), • ≡ x,y (Model 2),
and • ≡ x, y, z (Model 3). µ is the nearest neighbor dispersal rate given by
µ = {0.1, 0.25, 0.25} (Model 1), and µ = {0.25, 0.25, 0.25} (Model 2), µ =
{0.2, 0.3, 0.1} (Model 3). For all simulations, the noise term was drawn inde-
pendently from a normal distribution, i.e. ξi

t ∼ N(−s2/2, s2) with s = 0.1 (Model
1), s = 0.05 (Model 2), and s = 0.1 (Model 3).

the training data. The v associated with the lower prediction error on training

data was used on testing data.

We measured forecast accuracy with the root mean squared error (RMSE)
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given by

RMSE =

√√√√√ 1
N

1
T

N∑
i=1

T∑
j=1

(
xi,j

predicted − xi,j
observed

)2
.

where the sum is over the testing data for each site. We chose to use the RMSE

instead of Pearson’s correlation coefficient—the criterion commonly used in eco-

logical EDM studies—because the RMSE is more widely used in other disciplines

and measures whether the absolute magnitude of the predictions and observations

match. As a performance benchmark we calculated the RMSE obtained when us-

ing the mean of the training data to predict all points in the test data. We refer

to this as the ‘mean predictor’.

For both EDM and sEDM we used a temporal embedding dimension up to

E =
√
Ttrain (Cheng and Tong, 1992). In sEDM, we set the spatial embedding

dimension to S = 2 (i.e. embedding vectors contain five locations) and used ARD

to prune irrelevant inputs.

We used this setup in four simulation experiments. The first two addressed

how dynamical complexity and time series length affect the forecast performance.

These assumed symmetric dynamics (i.e. equal dispersal to nearest neighbours)

and spatial homogeneity (i.e. identical parameter values for all sites). Since this

may not apply for ecological dynamics (Barnett et al., 2019; Kolasa et al., 1991;

Largier, 2003), two additional experiments addressed the impact of asymmetry

and heterogeneity.

Effects of dynamical regime

We determined how dynamical complexity influences forecast performance by sim-

ulating each model in Table 3.1 with three parameter sets generating periodic dy-

namics, chaotic dynamics with high spatial synchrony and chaotic dynamics with

low synchrony for Ttrain=25. See Table 3.1 for parameter values and Table A.1 in

Appendix A.3 for synchrony measures.
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Effects of time series length

To examine the effect of time series length on forecasts, we simulated each model

using the parameters for chaotic (high synchrony) dynamics for time series lengths

Ttrain = 25, 50 and 75.

Effects of asymmetric coupling

To test whether advection influences forecasts, we simulated dynamics with uni-

directional dispersal. That is, updates were given by

xi
t+1 =

[
(1 − µ)f(•i

t) + µ

3
(
f(•i+1

t ) + f(•i+2
t ) + f(•i+3

t )
)]
ϵξi

t . (2.6)

Dynamics were simulated with Ttrain = 25 and chaotic (high synchrony) pa-

rameters. Figure 2.6 illustrates the difference between the two types of coupling

compared.

Effects of spatial heterogeneity

To generate heterogeneity, we set a spatial gradient in the growth rate of x for

each model (Model 1: r, Model 2: a, Model 3: r). Since simulations had periodic

boundary conditions, the gradient was given by a sinusoidal function with period

N . For example, for Model 1, we defined ri = Hr sin
(

2π
N
i
)

+r0 for each location i.

The amplitude Hr scales the heterogeneity in growth rate, which we varied from 0

to 1. This measure of heterogeneity requires model-specific knowledge that would

not be accessible in real applications. As a practical empirical measure, we used

the spatial variance in mean abundance given by Hm = max x̄i−min x̄i

min x̄i
, where x̄i is

the average abundance of the species in site i over the time series. Models in this

analysis were simulated with Ttrain = 25 and chaotic (high synchrony) parameters.
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Empirical data

To further evaluate the forecasting utility of these methods, we compared them

on data for several marine species from the northeast United States continental

shelf. The NOAA Northeast Fisheries Science Center (NEFSC) fall bottom trawl

survey has sampled from Cape Hatteras, North Carolina to the Gulf of Maine since

1963 (Politis et al., 2014). To avoid any effects of survey design changes, we re-

stricted our analysis to offshore strata from 1973 to 2008. We predicted dynamics

of three different species: longfin squid (Loligo pealeii), silver hake (Merluccius bi-

linearis) and butterfish (Peprilus triacanthus). These species were chosen because

they are widely distributed and have short generation times.

We compared forecast performance for data aggregated at both coarse and

fine spatial resolutions. The coarse resolution aggregated the data into four major

regions: Mid-Atlantic Bight, Southern New England, Georges Bank and Gulf

of Maine. These regions are grouped to have similar biophysical characteristics

and have been used in previous studies (Lucey and Nye, 2010; Nye et al., 2009;

Walsh et al., 2015). The fine resolution used the survey strata as spatial sites.

Figure 2.9 shows the midpoint of all strata and their corresponding major regions.

At both resolutions, we used the Euclidean distance between midpoints as δ in

Equation (2.5). We selected a temporal embedding dimension between E = 5 and

E = 7 depending on which minimized the average forecast errors. At the coarse

resolution, lags from the nearest site to the focal site were included in the sEDM

embedding vectors and libraries from all regions were used in the concatenated

methods. In the fine resolution analysis, the embedding vectors used lags from the

two strata closest to the focal site, and concatenated methods included libraries

from sites within the same major region as the focal site.

At both resolutions, population abundance was estimated by averaging the
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number of individuals in the catch over all tows in the site each year. We computed

sequential forecasts (i.e. forecasts that only used data earlier in the time series to

predict the next point) through the entire time series and reported errors on the

last 10 time series points. We predicted log population abundance, ln(xt+1), for

all species.

2.4 Results

2.4.1 Results on simulated data

Overall, simulations show that utilizing spatial information in EDM is advan-

tageous. However, the characteristics of the dynamics influence which method

most effectively leverages spatial information.

Effects of Dynamical Regime

Figure 2.4 shows the mean and standard deviation RMSE of one-step-ahead

forecasts of the Table 2.1 models with three levels of complexity. Even with a

short training time series of Ttrain = 25, concatenating spatial replicates provides

accurate predictions ( 75% average error reduction from the mean predictor), and

these methods consistently outperform local EDM, which ignores spatial data.

Alternatively, including spatial lags without concatenating libraries (local sEDM)

does not improve prediction over local EDM, and these methods are more sensi-

tive to dynamical complexity; forecast errors increase as dynamics become more

complex and less synchronized. See Table A.2 for RMSE and variance explained

(R2) for greater interpretability.

Dynamical complexity plays a role in the forecasting ability of these methods

but does not qualitatively change their performance compared to one another.
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Complexity primarily influences how much improvement is made by using spatial

data. For instance, when dynamics are simple (e.g. periodic) all methods perform

well and concatenated libraries only reduce forecast errors from local libraries by

about 20on average, but concatenated libraries reduce errors by much more ( 65%)

when the dynamics are complex (i.e. chaotic and asynchronous).

Figure 2.4: Average RMSE (points) and standard deviation (error bar) on testing
data over 100 simulations of each model from Table 2.1. Results are shown for local
(open boxes) and concatenated (closed circles) informed sEDM (purple), naive
sEDM (pink), and EDM (yellow). Each model was simulated with 3 parameter
sets generating periodic dynamics (left), highly synchronous chaotic dynamics
(middle), and asynchronous chaotic dynamics (right).

Effects of Time Series Length

Longer time series yield better predictions for all methods (Figure 2.5; Ta-

ble A.3). As the length of the training time series increases from 25 to 75, the

RMSE decreases from about 50% to at least 70% average error reduction from
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mean predictor. As with dynamical complexity, the performance ranking of the

methods does not change with time series length; concatenated methods are con-

sistently best and local sEDM methods are consistently worst. For short time

series (Ttrain = 25), concatenation reduces forecast error compared to local li-

braries by about 50%, but all methods produce similar accuracy for long time

series (Ttrain = 75), so the benefit of concatenation decreases with time series

length.

Figure 2.5: Average RMSE (points) and standard deviation (error bar) on testing
data over 100 simulations of each model from Table 2.1. Results are shown for
local (open boxes) and concatenated (closed circles) informed sEDM (purple),
naive sEDM (pink), and EDM (yellow). Each model was simulated with 3 time
series lengths: Ttrain = 25 (left), Ttrain = 50 (middle), and Ttrain = 75 (right).

Effects of asymmetry

Interestingly, the results are qualitatively different when dispersal is unidirec-

tional compared to symmetric (Figure 2.7; Table A.4). When advection is present,
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local sEDM outperforms local EDM ( 10% average reduction in RMSE) even on

the short time series of 25 points. Concatenating time series still produces a sub-

stantial improvement. Hence, any method of incorporating spatial data is better

than implementing the standard local EDM method in this case.

Figure 2.6: Illustration of dispersal for symmetric and asymmetric coupling
schemes.

Effects of spatial heterogeneity

As we increase spatial heterogeneity, the RMSEs for all concatenated methods

increase until they become worse than their corresponding local methods (Figure

2.8). In contrast, local methods are relatively insensitive to spatial heterogeneity.

This demonstrates that when spatial replicates become too different, they can no

longer be concatenated.

One final result that pertains to all simulations is that sEDM with a physically

informed prior provides minimal predictive advantage over the naive implementa-

tion, typically providing no more than 10% reduction in forecast error.

32



CHAPTER 2. LEVERAGING SPATIAL DATA WITH EDM

Figure 2.7: Average RMSE (points) and standard deviation (error bar) on testing
data over 100 simulations of each model from Table 2.1. Results are shown for local
(open boxes) and concatenated (closed circles) informed sEDM (purple), naive
sEDM (pink), and EDM (yellow). Each model was simulated with symmetric
nearest neighbor dispersal (left) and asymmetric unidirectional dispersal (right).

2.4.2 Results on empirical data

Results from simulations suggest that utilizing spatial information is likely to

provide the strongest advantage over standard local EDM when time series are

short and dynamics are complex and asynchronous. This is closely analogous to

the data from NEFSC bottom trawl survey. The time series is only 36 years long,

the dynamics vary irregularly and they are not highly synchronized (Table A.1

in Appendix A.3). In general, these data are ideal for evaluating EDM methods

because they come from a system that is estimated to support over 5,000 species

(Fautin et al., 2010) and we do not have complete understanding of all relevant

species and drivers.

Concatenated methods always provide more accurate predictions than their
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Figure 2.8: Average RMSE on testing data over 50 simulations of each model
from Table 2.1 for various degrees of heterogeneity. Results are shown for lo-
cal (dotted lines) and concatenated (solid lines) informed sEDM (purple), naive
sEDM (pink), and EDM (yellow). The measure of heterogeneity in growth rate
is given by the amplitude of the sinusoidal function used to vary the growth rate
parameter. The auxiliary x-axis at the top of each figure is the empirical mea-
sure of heterogeneity in mean abundance (see Methods). Note that this empirical
measure is not linear nor monotonic due to complexity and noise in dynamics.

corresponding local methods, but the improvement is more substantial at the fine

spatial resolution where local methods lose accuracy (Figure 2.10). Specifically,

concatenating data from all regions at the coarse resolution produces forecast

errors that are approximately 12% lower than corresponding local methods on av-

erage. Concatenating data from sites within the local region at the fine resolution

reduces error by 20% on average. In most cases, there are only slight differences

between EDM and sEDM performance, and the best-performing method is not

consistent across species. See Tables A.5 and A.6 for exact RMSE and R2.
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Figure 2.9: Strata locations from the NEFSC fall bottom trawl survey. Dots are
midpoints of offshore strata, and colors indicate which major region each stratum
is in.

2.5 Discussion

Here we explored various ways to leverage spatial data when forecasting eco-

logical dynamics in partially observed systems. Specifically, we evaluated the fore-

cast performance of the ecologists’ approach (concatenated EDM), the physicists’

approach (local naive sEDM) and our dispersal-motivated prior to combine infor-

mation from multiple sites. We compared these methods to classic local EDM,

which does not use spatial information. Results indicate that when dynamics are

primarily homogeneous, any concatenated method produces substantially better

forecasts than local EDM. If dynamics differ significantly among spatial replicates,

however, concatenated methods produce poorer predictions since they rely on the

assumption that spatial replicates have comparable dynamics. Applying both ap-
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Coarse

Fine

Figure 2.10: Sequential forecast RMSEs on NEFSC bottom trawl survey data
for three species: longfin squid, silver hake, and butterfish. Results are shown
for local (open boxes) and concatenated (closed circles) informed sEDM (purple),
naive sEDM (pink), and EDM (yellow). Top (bottom) panels show results for
coarse (fine) spatial resolution data separated by major biophysical region (survey
strata).

proaches to a given data set may provide a direct way of identifying heterogeneous

dynamics.

Dynamic complexity and time series length play a role in the forecasting ability

of all methods. Generally, as complexity decreases and time series length increases,

forecasts improve (Figures 2.4 and 2.5). Intuitively, when dynamics are regular

(e.g. periodic), the attractor can be filled with a short time series and all methods

predict dynamics well. When dynamics are chaotic, more data are required to

reconstruct the attractor.

Regardless of complexity and time series length in Figures 2.4 and 2.5, local

sEDM methods consistently have higher errors than local EDM, implying that it

is not advantageous to incorporate spatial data through embedding vectors alone.

This result is somewhat counterintuitive since EDM is a special case of sEDM. But
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we can understand this as a trade-off between in-sample fitting and outof- sample

forecasting: sEDM has more length scale parameters and better in-sample fits on

training data, but local EDM is more robust out-of-sample. ARD is insufficient

to eliminate the unnecessary spatial lags when dynamics are complex and time

series are short.

In the first two simulation experiments, concatenated methods have lower

prediction errors than local methods. This is likely because concatenated methods

fit a single GP on data from 10 locations while local methods fit a separate GP on

data from each location. Therefore, concatenation uses 10 times more data than

local methods. Figure A.2 shows that the forecast errors of local and concatenated

methods converge as the time series length for local methods increases. Thus,

under homogeneous conditions, concatenating data from 10 locations is essentially

equivalent to having a time series that is 10 times longer. Therefore, concatenation

is an effective way to overcome limitations of short time series provided that the

spatial replicates contribute independent information, which is easily determined

by measuring the improvement in forecast performance.

With symmetric dispersal, local EDM outperforms local sEDM, but the oppo-

site occurs with unidirectional dispersal (Figure 2.7) as the length scale parameters

in sEDM can accommodate asymmetry. Spatial heterogeneity is also important

because it hinders the utility of concatenated methods (Figure 2.8) since they

assume stationarity across replicates (i.e. all replicates must come from the same

attractor; Banbrook et al. (1997)). This assumption is reasonable if the underly-

ing dynamical equations are identical for all spatial replicates. However, if they

vary across sites, information is not easily shared between them.

Given the simulation results, it is reasonable to imagine cases that could yield

different qualitative outcomes. Figure A.3 shows that when strong heterogeneity
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and asymmetry are both present, local sEDM methods are most accurate and

concatenated methods are least accurate, contradicting the results in Figures 2.4

and 2.5 in nearly every way. Importantly, we cannot identify precise thresholds of

asymmetry or heterogeneity at which these changes occur. We present this simply

as an important area for future work and a proof of concept that these aspects of

the dynamics are instrumental in the utility of spatial extensions of EDM.

Although simulations reveal that none of these methods perform uniformly well

in every scenario, the fact that their performance depends on characteristics of

the dynamics offers interesting potential for diagnosing ecological conditions. For

example, if we did not know anything about the dynamics of a system, comparing

forecast performance across all of these methods may provide insights into whether

advection and heterogeneity are influencing the dynamics. This knowledge of

ecological conditions could be useful when making management decisions.

In our empirical analysis on coarse resolution data from the NEFSC survey, lo-

cal sEDM outperformed local EDM on silver hake and butterfish data but did not

on longfin squid data. In light of simulations, this is consistent with advective dis-

persal of silver hake and butterfish. Interestingly, there is empirical evidence that

dynamics in this region are advection-dominated from particle tracking oceano-

graphic models (Lynch et al., 2014), stable isotope studies (Clarke et al., 2009)

and genetic data (Mach et al., 2011). Furthermore, concatenated methods pro-

duced slightly lower forecast errors than local methods at the coarse resolution.

Given the complexity and asymmetry in the empirical data (Table A.1), we might

expect concatenation to provide a stronger improvement (e.g. right panels of Fig-

ure 2.4). However, it is possible that a moderate level of heterogeneity hinders

the utility of concatenation in these cases. There is ample spatial heterogeneity in

environmental drivers (e.g. temperature, salinity, dissolved oxygen) that are often
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linked to differences in population growth (Hofmann and Powell, 1998), and the

ecological communities (e.g. prey, predators, competitors) also differ substantially

between these regions. The empirical measures of heterogeneity on these for all

species at the coarse resolution further support this deduction: Hm = 1.54 for

longfin squid, Hm = 1.23 for silver hake and Hm = 1.82 for butterfish.

In contrast, at fine resolution, concatenated methods provided greater predic-

tive improvement. This is likely due to the geographic ranges spanned: At the

coarse resolution, concatenated methods used data from along the entire coast

whereas at the fine resolution, concatenation was restricted within biophysical

regions. As a result, there is lower heterogeneity in concatenated data at the fine

resolution (Hm = 1.10 for longfin squid, Hm = 0.97 for silver hake, and Hm = 1.06

for butterfish) allowing for information to be more easily shared across sites.

Note that local methods performed more accurately at the coarse spatial res-

olution data than they did at the fine resolution. One explanation for this is that

averaging abundance measures over several strata at the coarse resolution distorts

nonlinear signals that appear at the fine resolution (Glaser et al., 2014a; Sugihara

et al., 1999, 1990; Ye et al., 2015a), making it easier to predict coarse dynamics

accurately.

All analyses reveal that informed sEDM usually produces more accurate pre-

dictions than naive sEDM, but the improvement is typically no more than 1%–5%

(Tables A.2, A.3, A.4, A.5, A.6). This suggests that although our informed prior

helps resolve the lack of identifiability (Figure 2.1) and improves interpretability,

it does not substantially improve predictive accuracy. This is consistent with the

multivariate embedding theorem’s notion that different combinations of lags can

produce equivalent predictions (Deyle and Sugihara, 2011). Thus, using the in-

formed prior is not necessarily helpful if the goal is to improve predictions, though
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it may facilitate inference about ecological mechanisms based on the ARD selec-

tion of relevant lags (Browne et al., 2008; Marwala, 2015; Munch et al., 2018).

Regardless of whether EDM is used for inference or prediction, it is crucial for

EDM users to understand the importance of temporal and spatial scale. If the

temporal scale of the dynamics is too large for EDM to capture with time lags

or if samples are not taken with high frequency, none of these methods will give

accurate forecasts (e.g. Appendix A.9) and a linear or other parametric modelling

approach may be more suitable. Similarly, the spatial scale at which data are

collected may influence the heterogeneity across sites. For example, if data are

collected over a large geographic range at distant sites, dynamics likely vary across

locations due to environmental gradients. In this case, concatenated methods are

unlikely to perform well. Generally, given the ubiquity of spatial heterogeneity in

ecological systems at the scale we typically observe (Aksnes et al., 1989; Juanes

and Conover, 1995; Tommasi et al., 2014), we suggest that concatenating libraries

should be done in conjunction with the sEDM approach presented here.

Although we have identified asymmetry and heterogeneity as factors that in-

fluence the efficacy of each method there are many other factors that could also

play a role but were not addressed in our simulations. For example, variation

in dispersal strength and distance, and differences in movement between species

and age classes are likely to affect which method performs best. In light of this,

it would be helpful to develop specific diagnostic tests that provide guidelines

for choosing among methods (e.g. a measure of information flow between sites).

In early attempts, we considered embedding dimension and spatial synchrony as

potential indices, but these proved inconsistent. More work is needed on this

topic.

Our main simulations also did not address how these methods perform as
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we predict multiple steps into the future. However, Figure A.4 shows that all

methods produce better predictions than the mean up to 10 steps into the future.

Changing the forecast horizon generally does not influence relative performance

across methods and we expect our conclusions about complexity, asymmetry and

heterogeneity extend to multi-step predictions.

We compared the six methods here because they are commonly used, they

are easy to implement and they are good starting points for integrating spatial

information into EDM. In the future, it would be valuable to evaluate hierarchi-

cal approaches (Munch et al., 2017; Rogers and Munch, 2020), approaches that

average over several sub-optimal embeddings (Okuno et al., 2020), diffusion maps

(Coifman and Lafon, 2006) or deep-learning (Chattopadhyay et al., 2020) to de-

termine which methods are more robust.

All of our analyses made inferences from single time series. This was intended

to provide proof-of-concept and determine general conditions that influence our

ability to integrate spatial information. However, time series for several species are

often available at multiple locations, and studies on multiview (Ye and Sugihara,

2016) and multivariate (Deyle and Sugihara, 2011; Dixon et al., 1999) embedding

suggest that predictions may improve if we include information from other species

and drivers. We could do this by simply including lags of other species as addi-

tional inputs in embedding vectors, we could construct a hierarchical version to

share information across species, or we could combine the method of multiview

embedding with sEDM. Comparing the benefits of these approaches is potential

territory for future work. Additionally, many species are influenced by harvesting

or other anthropogenic effects. In these cases, incorporating the past history of

exploitation or anthropogenic inputs is likely to improve prediction accuracy. This

is an important next step that opens up the possibility of using EDM as a tool
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for quantitative ecosystem management (Boettiger et al., 2015; Giron-Nava et al.,

2017).

The flexibility of EDM to describe complex dynamics with incomplete data

makes this a promising avenue for making strong inferences of ecological dynamics

and developing multi-species management policies that are robust to structural

uncertainty. However, these methods require long time series for convergence.

Although typical ecological time series are fairly short, aggregating information

across multiple sites—either through concatenation or sEDM—can substantially

improve the utility of empirical approaches to ecological dynamics.
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Chapter 3

Empirical Dynamic Modeling for

Missing or Irregular Data

This chapter is a reprint of Johnson and Munch (2022) as it appears in Ecolog-

ical Modelling (Volume 468, Article 109948, June 2022). The dissertation author

was the primary investigator and author of this paper.

3.1 Abstract

Empirical dynamic modeling (EDM) is a powerful method for forecasting and

analyzing nonlinear dynamics. However, typical applications of EDM assume that

samples are evenly spaced over time. This presents problems in ecology, in which

data are often missing or sampled irregularly. Standard methods for handling

irregularity in EDM suffer under conditions that are common in ecology, such as

short time series and large dynamic fluctuations, so there is a need to adapt the

framework to cope with these challenges more effectively. Here we consider a vari-
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able step-size extension of EDM, which incorporates the temporal spacing between

samples into EDM delay-coordinate vectors and circumvents the challenges faced

by other approaches. We evaluated the forecast accuracy of the variable step-size

method along with that of two other methods: (1) exclusion of delay- coordi-

nate vectors with missing data and (2) linear interpolation along with ordinary

EDM. We tested these methods using simulated data from three chaotic ecologi-

cal models with various amounts and patterns of missing data. We also evaluated

them using two empirical datasets: laboratory rotifer dynamics and aphid dynam-

ics from the field. Results showed that while exclusion and linear interpolation

can produce accurate forecasts in some scenarios, the variable step-size method

consistently gives accurate forecasts in a wide range of scenarios. Our analysis

demonstrates that variable step-size EDM is an effective method for coping with

missing or irregular samples and expands the number of datasets to which EDM

can be applied. Furthermore, EDM can be extended to estimate Lyapunov expo-

nents from irregularly sampled time series and approximate continuous dynamics

from discrete-time data.

3.2 Introduction

The ability to make predictions is crucial in fields ranging from economics (Liu

et al., 2016; Poon and Granger, 2003) to environmental sciences and climatology

(Betts et al., 1996; Pau et al., 2011). It is particularly relevant for ecological

decision makers who must make policies to mitigate impacts of pest outbreaks,

natural disasters, harmful algal blooms, and diseases, or maximize economic yields

from commercial fisheries, agriculture, and forestry. Since these policy decisions

depend on – and influence – the future state of the ecosystem, accurate forecasts

are critical to effective management (Clark, 2001; Dietze et al., 2018).
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The natural world makes ecological forecasting challenging; ecosystems are

typically sparsely observed complex systems that display strongly nonlinear dy-

namics on a wide range of time scales (Clark and Luis, 2020; May, 1976). Since sci-

entists have imperfect understanding of nonlinear interactions among the variables

in these complex systems, they are forced to make many simplifying assumptions

when they use traditional mechanistic modeling approaches for forecasting. Small

changes in these assumptions can lead to large differences in model predictions

and the management advice they generate, which can lead to extreme uncertainty

in decision making. As a consequence, linear forecasting tools (Hampton et al.,

2013; Ives et al., 2003) and standard model-fitting approaches (Perretti et al.,

2013) may not be optimal for forecasting ecological dynamics.

Empirical dynamic modeling (EDM) (Sugihara and May, 1990), on the other

hand, avoids these problems by making minimal structural assumptions and using

only observed dynamics to make forecasts. Furthermore, EDM does not require

observations of all variables in a system. Takens’ theorem of time delay embedding

(Takens, 1981) provides the foundation for EDM by showing that an attractor

(i.e. the point, set of points, or orbit to which a dynamical system converges) can

be faithfully reconstructed using time lags from the time series of a single state

variable, xt, where t = 0, 1, . . . , T . Given an attractor reconstruction, a variety of

function approximation tools (e.g., local linear regression (Farmer and Sidorowich,

1987; Sugihara, 1994), Gaussian processes (Munch et al., 2017; Wang et al., 2008),

neural networks (Bakker et al., 2000)) can be used to predict the future state of

the system by fitting models of the form

xt+h = f(xt−1, xt−2, . . . , xt−E) + ϵt (3.1)

where {xt−1, xt−2, . . . , xt−E} are the ‘delay-coordinate vectors’ composed of time
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lags of the observed states, h is the number of time steps into the future the model

predicts, f is the map that converts the past states to the future state, E is the

‘embedding dimension’, and ϵ is process or approximation error.

EDM has outperformed standard modeling approaches in predicting fish re-

cruitment (Deyle et al., 2018; Munch et al., 2018), quantifying interactions among

species (Deyle et al., 2016; Rogers et al., 2020; Ushio et al., 2018), and iden-

tifying causal interactions (Sugihara et al., 2012). Various recent developments

have made EDM more applicable to ecology by incorporating information from

multiple sources through hierarchical modeling (Munch et al., 2017; Rogers and

Munch, 2020), using spatial replicates (Clark et al., 2015; Hsieh et al., 2008;

Johnson et al., 2021), and including information from interacting species and en-

vironmental drivers (Deyle and Sugihara, 2011; Ye and Sugihara, 2016). Takens’

theorem was also extended to stochastic systems by Stark (1999), and Munch

et al. (2020) demonstrated via simulation that EDM efficiently captures the con-

ditional expectation for stochastic processes. Predictions from EDM can be used

to make short-term management decisions (Deyle et al., 2013) and identify opti-

mal management policies (Boettiger et al., 2015; Brias and Munch, 2021). More

information and intuitive descriptions of EDM can be found in Ye et al. (2015a),

Chang et al. (2017), and Munch et al. (2020).

While EDM shows substantial promise for contributing to management in ecol-

ogy and circumvents problems associated with mechanistic models, there are still

several challenges to applying it to ecological time series (Munch et al., 2020).

One common obstacle arises from the sampling design of many ecological surveys,

in which varying degrees of sampling effort result in missing samples or data oth-

erwise being collected at irregular intervals. Randomly allocating sampling effort,

while effective at mitigating bias (McGarvey et al., 2016), is problematic for recon-

46



CHAPTER 3. EDM FOR MISSING DATA

structing attractors. The resulting datasets are not amenable to standard EDM

approaches, which typically rely on uniform temporal spacing between points.

There are many reasons for samples to be non-uniform in ecological data,

and they represent all of the categories that are typically used to classify missing

data in the statistical literature (Little and Rubin, 2002; Rubin, 1976). One

common scenario is when weather conditions prevent or limit sampling during

certain periods of the year. This results in regular sampling seasons followed

by extended periods of missing or less frequent samples (e.g. Harrington and

Woiwod (2007)). Funding constraints, lapses in funding, or convenience may also

lead to data being sampled unevenly over time. For instance, experimenters may

sample a collection only on weekdays (Laan and Fox, 2020). These are examples of

data that are “missing at random” because the probability that a point is missing

depends on an observed variable (i.e. the season or day) but not on the value itself.

Equipment malfunction or interference from external factors also contributes to

irregularity. For instance, unmanned aerial systems cannot detect populations

that are obscured by trees or clouds (Brack et al., 2018). This is an example of

“missing completely at random” because the probability that a point is missing

does not depend on any measured variable. Finally, missing samples also emerge

when sampling instruments have fundamental limitations. For instance, satellites

cannot detect algal density when chlorophyll a concentrations lie below 1 mg/m3

(Gokul et al., 2019). Similarly, high jellyfish densities can destroy nets during trawl

surveys, so sampling stations are sometimes skipped when they have too many

jellyfish (Field et al., 2021). These are examples of data that are “missing not at

random” because the values of the data influence the probability of missingness.

Since all of these are possibilities in ecology, it is important to have a robust

method to cope with them.
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The statistical literature highlights two primary ways to handle nonuniform

samples (Little and Rubin, 2002). One approach is to remove all missing observa-

tions from the data and analyze only the set of complete data. This is known as

deletion or complete-case analysis (Little, 1992). The other approach is to fill the

gaps in the data, which can be done in many ways. Missing points can be filled

with the mean of the complete data, the previous value in the data, or a predic-

tion from linear interpolation or splines. It is also possible to use more intricate

imputation methods by fitting a model to the complete data and using it to esti-

mate the missing points. A model is then fit again to all of the data including the

estimated points, and the new fit is used to refine the estimates. When this pro-

cedure is iterated until convergence, it is known as the expectation-maximization

(EM) algorithm (Dempster et al., 1977). Various adaptations of the EM algo-

rithm are commonly used in ecological analyses when observations are missing.

For instance, Bayesian hierarchical imputation has been used in analyses of Peary

caribou (Kaluskar et al., 2020) and tuna (Horswill et al., 2019) populations. Im-

portantly, these methods are typically used when a parametric model structure

permits imputation. With EDM, however, the goal is to infer a nonparametric

model with delay-coordinate vectors, and missing data are not easy to impute us-

ing standard tools because an a priori model function is not available. Since there

are no examples of these imputation tools using nonparametric time lags, another

way to handle missing data directly within the EDM framework is needed.

Although EM imputation approaches are not easily implemented with EDM,

other standard approaches to cope with missing data have been used in EDM

applications. The first is complete-case analysis, which excludes delay-coordinate

vectors that have incomplete observations (Little, 1992). The exclusion method

includes the following steps: 1) given a time series of length T that contains some
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missing values, create the lag matrix for EDM, X =



x1 ... xE

x2 ... xE+1
... . . . ...

xT −E+1 ... xT


, 2)

identify and remove rows of X that have at least one missing value to obtain the

submatrix Xsub, and 3) perform EDM using Xsub. The second way that missing

data have been handled in EDM is to interpolate the missing observations. Linear

interpolation is the most common type of interpolation used in ecological EDM

analyses with irregular samples (Ness-Cohn and Braun, 2020; Ye et al., 2015b),

and it has been used as a benchmark in other studies (Lekscha and Donner,

2018). Although exclusion and interpolation tend to be the default approaches for

handling missing data in EDM, excluding points does not use the data efficiently,

and pre-analysis gap filling may introduce bias or uncertainty to predictions. Thus,

both methods are typically not robust if the time series are short and the dynamics

have highly irregular fluctuations (Hummel, 1946). More efficient approaches

for dealing with missing samples and irregular sample spacing will substantially

expand the utility of EDM in ecological forecasting.

One promising option is to use the bundle-embedding theorem (Stark, 1999;

Stark et al., 1997), which extends Takens’ theorem to forced dynamical systems.

Essentially, bundle-embedding expands the input space for equation (3.1) from

{xt−1, ..., xt−E} to {xt−1, . . . , xt−E, ωt−1, . . . , ωt−E} where the ωt−i are time lags

of the forcing variable. This idea has been used repeatedly in ecology to in-

clude environmental drivers (e.g. Deyle et al. (2016), Rogers and Munch (2020))

and harvesting (Brias and Munch, 2021). Importantly, Stark (1999) notes that

if we assume that the ‘forcing’ at time t is given by the time between sam-

pling intervals, τi = ti+1 − ti, then the bundle-embedding theorem implies that

{xi−1, . . . , xi−E, τi−1, . . . , τi−E} can be used to reconstruct the dynamics of irregu-
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larly sampled systems, and we can forecast dynamics by approximating the func-

tion xi+h = f(xi−1, . . . , xi−E, ωi−1, . . . , ωi−E) + ϵ. To our knowledge, however,

this ‘variable step-size’ idea has never been evaluated using simulations of realis-

tic lengths of time series or patterns of missing data, nor has it been applied to

ecological time series.

Here, we evaluate the performance of the variable step-size algorithm using

Gaussian process regression for five scenarios of missing data at varying levels

of severity in simulated data. We also evaluate the method using two empirical

datasets: one from the laboratory and one from the field. To provide a relevant

benchmark, we also evaluate the performance of exclusion and linear interpola-

tion in each scenario. We find that, while exclusion and linear interpolation can

produce accurate forecasts in some scenarios, the variable step-size method consis-

tently gives accurate forecasts in a wide range of scenarios and is the most robust

to large amounts of missing data.

3.3 Methods

3.3.1 Variable step-size EDM

Rigorous justification of the variable step-size approach to EDM is provided by

Stark (1999) using the bundle-embedding theorem; however, the proof of this the-

orem requires topological ideas that are not particularly transparent. Fortunately,

an intuitive justification is straightforward. To see this, start with an autonomous

continuous-time system,

ẋ = g(x) (3.2)

50



CHAPTER 3. EDM FOR MISSING DATA

If we start at time ti from state xti
and integrate (2) from ti to ti + τi, the next

state will be

xti+τi
= xti

+
∫ ti+τi

ti

g(xs)ds = G(xti
, τi) (3.3)

That is, the next step map is a function of both the current state, xti
, and time

interval τi. We can simplify this notation somewhat by denoting the state at the

ith observation time, xti
, as xi and recognizing that the (i+ 1)th observation time

is ti+1 = ti + τi, so that xi+1 = G(xi, τi).

Variable step-size embedding combines this expanded state space with the

standard EDM idea of using time lags to account for unobserved state variables.

That is, we can account for variable time steps and hidden state variables when

forecasting by estimating

xi = f(xi−1, τi−1, ..., xi−E, τi−E) (3.4)

for a given embedding dimension E. Note that when the sampling intervals are

constant, the dependence on τi is irrelevant, and this model reduces to standard,

fixed-lag EDM.

By approximating function f in eq. (3.4), we can make predictions for x

using EDM, even with irregular sampling. We call this “variable stepsize” EDM

(VS-EDM) since it incorporates the differing intervals between samples into EDM

inputs.

In this analysis, we approximate f via Gaussian process (GP) regression (Ras-

mussen and Williams 2006; Munch et al., 2017). The GP is a continuous general-

ization of the multivariate normal distribution, completely specified by a mean

function, m(x) = E[f(x)], and a covariance function, C(x,x′) = E[(f(x) −
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m(x))(f(x′) −m(x′))]. We use the GP to estimate f such that

xi = f(xi−1) + ϵi

where xi−1 = {xi−1, .., xi−E, τi−1, . . . , τi−E}, and ϵi is the approximation error,

with mean 0 and variance V .

To infer f , we assume a GP prior and update the mean and covariance using

the observed data. Lacking any a priori information on the shape of the delay-

embedding map f , we set the prior mean function m(x) = 0. In keeping with

other ecological applications of GPs in EDM (e.g. Brias and Munch (2021); Munch

et al. (2018, 2017); Rogers and Munch (2020)), we used a squared-exponential

covariance function to control the wiggliness of f . Specifically, we set

C(x,x′) = σ2
f exp

(
−

n∑
i=1

ϕi(xi − x′
i)2
)
. (3.5)

where n is the input dimension, ϕi is the inverse length scale that governs how

much f can vary with the ith input, and σ2
f is the pointwise variance. In standard

EDM, n = E, since the input includes E time lags of x. For VS-EDM, n = 2E for

each state, step-size pair. However, note that setting ϕE+1, . . . , ϕ2E to 0 eliminates

the dependence of f on τ , so that standard EDM is a special case of the VS-EDM.

As detailed by Munch et al. (2017), we standardize the inputs to zero mean and

unit variance prior to fitting, which facilitates the use of standardized priors for

the GP hyperparameters. We assign identical half-normal priors to each ϕ, with

variance π/(
√

12), which regularizes f by asserting that, on average, f will have

a single extremum over a unit interval of the input. This prior places most of the

weight on ϕ = 0, resulting in ‘automatic relevance determination’ (ARD) (Neal,

1996), which is used in the machine-learning literature to automatically remove
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irrelevant inputs from a model. For σ2
f and V , we use weakly informed prior distri-

butions, Beta(1.1, 1.1), which conservatively limits uncertainty in the next state to

twice the observed total variance in order to avoid numerical artifacts during pa-

rameter tuning. With these priors, we use resilient back-propagation (Riedmiller

and Braun, 1993) (ϕ1, . . . , ϕn, σ
2
f , V ) that maximize marginal likelihood (see Ras-

mussen and Williams (2006) for further details). We make predictions conditional

on these maximum a posteriori estimates. Fully Bayesian inference with the GP

is also feasible, though considerably more computationally demanding (Munch

et al., 2005; Poynor and Munch, 2017; Thorson et al., 2014). For more informa-

tion on GP regression, Rasmussen and Williams (2006) and Munch et al. (2017)

provide overviews and examples of using GP regression and EDM.

3.3.2 Forecasting Simulated Data

To evaluate forecast performance when the correct answer is known, we used

three ecological models to simulate chaotic time series: Ricker dynamics, host-

parasitoid dynamics, and three-species competition dynamics (Table 3.1). For

each simulation, we assigned a random initial value to each variable, iterated the

model for 170 time steps, and then removed the first 100 points to avoid transient

dynamics. This left time series of length 70, which we split into 50 ‘training’

data points for fitting the GP, and 20 ‘testing’ data points for estimating one-

step-ahead forecast accuracy from out-of-sample data. For each model, we used

the time series of a single variable and subsampled the training data to generate

various amounts of missing data with different patterns. From the sampled time

series, we constructed EDM delay-coordinate vectors with a maximum embedding

dimension of E = 4, and used ARD to prune irrelevant inputs. Each model,

sampling structure, and level of missing data was simulated 100 times with random
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initial conditions to produce summary statistics of forecast accuracy.

# Name Model Parameters
1 Ricker xt+1 = xte

r(1−xt)+ξt r = 3.0

2 Host-parasitoid xt+1 = (1 − γ)xte
r(1−xt)+ξ1

t r = 3.0
+γxte

r(1−xt−yt)+ξ1
t γ = 0.1

yt+1 = γβxt(1 − e−yt)eξ2
t β = 12

3 Three-species xt+1 = xte
r(1−xt−ayt−bzt)+ξ1

t r = 3.0
competition yt+1 = yte

r(1−yt−azt−bxt)+ξ2
t a = 0.65

zt+1 = zte
r(1−zt−axt−byt)+ξ3

t b = 0.6

Table 3.1: Models used to generate ecological time series. Models and parameter
values for chaotic dynamics of a single-species Ricker model (Model 1), a two-
species host-parasitoid model (Model 2), and a three-species competition model
(Model 3). Here, ξi

t is a noise term that is drawn independently from a normal
distribution, N

(
− s2

2 , s
2
)
. We used s = 0.05 for Models 1 and 3, and s = 0.1 for

Model 2.

Both the amount and pattern of missing data may influence the ability to

forecast and analyze time series. To address this, we simulated five scenarios that

represent the most common patterns of missing data in ecological time series: (I)

points missing at random (e.g., a single site of a survey was skipped), (II) points

missing during an interval (e.g., equipment malfunctioned and failed to collect

samples for a period), (III) regular missing intervals (e.g., winter snow prevents

data from being sampled), (IV) points missing below a threshold (e.g., equipment

cannot observe a state below its detection limit), and (V) mixed-interval sampling

(e.g. samples combine weekly and monthly observations). Implementation details

for each scenario are as follows:

I Missing at random: For each time series, points were independently selected

at random and removed from the training data. We varied the proportion of

missing points from 0-0.5 in increments of 0.1.
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II Missing intervals: We selected a point in the time series at random and re-

moved subsequent observations over a randomly chosen period. The duration

of this inoperative period was sampled from a uniform distribution, U(a, b),

in which we varied a from 0-5 in increments of 1 and simultaneously varied

the associated b from 5-10 in increments of 1.

III Regular missing intervals: We simulated monthly data and varied the number

of consecutive months sampled within a year from 6 to 11. Specifically, the

first case had 6 sampled points followed by 6 missing points, and the last case

had 11 sampled points, followed by 1 missing.

IV Missing below a threshold: We removed all points below a set percentage of

the simulated range of states, which we varied from 0-15% in increments of

3%.

V Mixed intervals: We evaluated sub-scenarios in which (A) sampling occurs for

seven consecutive months, then every other month for the rest of a year; (B)

biweekly sampling occurs in two different seasons, resulting in eight consecu-

tive points, a gap of seven, then five consecutive samples followed by a gap of

five; and (C) five consecutive samples followed by a gap of two, corresponding

to experiments in which data are not collected on weekends.

Using these simulations, we evaluated three ways of handling missing samples

in EDM: (1) the exclusion method, (2) linear interpolation followed by standard

EDM, and (3) VS-EDM. For each method, we measured forecast accuracy using

the mean-square error scaled by variance, which we converted to an out-of-sample

coefficient of determination R2 given by

R2 = 1 −
∑T

n=1(xtn − x̂tn)2∑T
n=1(xtn − x̄)2 ,
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where xtn for n = 1, . . . , T is the testing data, x̂tn is the EDM forecast for xtn ,

and x̄ is the mean of testing data.

Note that a perfect forecast yields R2 = 1, while a naïve forecast of predicting

the mean for all points yields R2 = 0. The R2 of out-of-sample forecasts can be

negative, but forecasts with a score this low are considered ‘unusable’ since they

are worse than a naive mean predictor. As a performance benchmark, we also

calculated the R2 obtained when using the complete time series with no missing

data as an upper bound of predictability. All analyses were performed in Matlab

version 9.8.0.1538580 R2020a.

3.3.3 Forecasting Empirical Data

Following our simulation analysis, we tested the irregular sampling methods

on one empirical dataset from the laboratory and one from the field. The lab-

oratory data were for population dynamics of the rotifer Brachionus calyciflorus

(Halbach, 1984). In this study, the rotifers were cultured in controlled conditions

with constant water volume, temperature (20◦C), and light. In two separate ex-

periments, the population density was sampled over 55 days at irregular intervals

that ranged from 0.5 to 1.5 days.

Importantly, these time series do not have clear missing values, but the in-

tervals between samples are quite irregular. Although we framed our simulated

scenarios as ‘missing’ data, they can be considered special cases of unevenly sam-

pled data. Therefore, these empirical data fit with the conditions that we tested in

simulations. Since the laboratory data have a relatively small range of step sizes

and relatively smooth dynamics (Figure B.1), it would be possible to simply ignore

the irregular time step and forecast the time series using standard EDM. This ap-

proach, which can be considered ‘piecewise constant interpolation’, has been used
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in previous studies when the data were in a similar form (Clark and Luis, 2020).

Additionally, to be consistent with the simulation experiments, we also compared

the methods to linear interpolation and the exclusion method using an even grid

of daily time steps (i.e. samples taken on the same day were averaged, and if no

sample was taken on a given day, we assigned a missing value). Since these time

series were shorter than our simulated time series, we used leave-one-out cross

validation to evaluate the methods. We tested a range of E from 2–4 (Cheng

and Tong, 1992) for each series and reported results for the best-performing E for

each method. This analysis represents a ‘best-case’ scenario in that the dynamics

are simple, the time series are relatively long by ecological standards, and the

abundance estimates are quite accurate.

To contrast the carefully controlled laboratory data, we also evaluated the

methods using long-term field data of aphid abundance from the Rothamsted

Insect Survey (Bell et al., 2015; Shortall et al., 2009). Aphid abundances were

estimated using 12.2 m suction traps that sample migrating aphids at height across

the United Kingdom (Macaulay et al., 1988). The traps are emptied weekly in

the winter and daily in the spring, summer, and fall (i.e. the “aphid season”), and

aphids are identified and counted at Rothamsted (Shortall et al., 2009).

We used the Rothamsted data to forecast the population dynamics of Sitobion

avenae, the English grain aphid. Because field data are typically far more difficult

to predict than simulated or laboratory data, we restricted our analysis to sites

with few inoperative periods and treated the data prior to analysis to ensure that

there were no missing points in the time series. We did this to compare our

forecasts to the complete data benchmark, as we did for the simulations, which

allowed us to fully evaluate the sensitivity to missing data rather than dynamic

complexity. To obtain complete time series, we aggregated samples into monthly
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data by averaging the number of aphids caught each month from February 1972-

January 2012. We focused our analysis on five sites: Brooms Barn S, Rothamsted,

Writtle, Newcastle, and Hereford, because the English grain aphid is frequently

found at these sites and they have operated consistently since early in the survey

(Figure B.2).

Treating each site independently, each time series was split into 75% training

data (February 1972-January 2002) and 25% testing data (February 2002-January

2012). We first evaluated standard EDM using the complete data and E from 4 to

12. Since higher embedding dimensions provided little predictive advantage and

were more computationally demanding, we used E = 4 in remaining analyses. To

evaluate forecasts for irregularly sampled data, we randomly selected and removed

a proportion of points (from 0 to 0.5) from the training time series and repeated

this procedure 100 times for each site and proportion.

3.4 Results

3.4.1 Results for Simulated Data

Based on the quartiles ofR2 for 100 replicates of scenario I, all methods perform

equally well and nearly perfectly when no points are missing, which indicates

that despite doubling the input size with VS-EDM, VS-EDM produces identical

forecasts because the ARD effectively drops irrelevant τs out of the model when

no points are missing (Figure 3.1a-c). As the proportion of data missing from

the training time series increases, the accuracy of all methods decreases, but VS-

EDM has the smallest rate of decline, producing usable forecasts when up to 40%

of points are missing. The exclusion method provides accurate forecasts when up

to 20% of points are missing but rapidly declines for higher proportions of missing
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data. For all three models, interpolation is the most sensitive to data that are

missing at random.

All methods perform relatively well for scenario II, with intervals of missing

values ranging from a maximum of 5-10 steps (Figure 3.1d-f). However, linear

interpolation of missing blocks reduces forecast accuracy regardless of interval

length. The exclusion method is effective for this scenario because there are few

interruptions to the original time series, so the data are sufficient to cover the

attractor. The decline in accuracy for interpolation is likely due to introducing

biased estimates by linearly interpolating over an extended interval. In scenario

III, with regular missing intervals, the forecast accuracy of all methods improves

as the number of months sampled per year increases from 6-11 months (Figure

3.1g-i). VS-EDM maintains the highest accuracy over the full range of sampling

intervals evaluated and is roughly 30% more accurate than the exclusion method

when sampling intervals are short. In contrast, using linear interpolation reduces

forecast performance greatly.

In scenario IV, when missing values are state-dependent (i.e. missing below

a threshold), all methods perform poorly, although VS-EDM is considerably less

sensitive than the other two methods (Figure 3.1j-l). For all three models, the

interpolation and exclusion methods produce unusable forecasts (R2 < 0) once the

threshold exceeds 5%. Alternatively, VS-EDM tends to produce usable forecasts

for thresholds up to 9%, though its forecast accuracy is low at that threshold.

Importantly, all methods are extremely sensitive to state-dependent missing values

because they must forecast in a region of state space that is never observed in the

training data. The sensitivity may depend on which region of state space is missing

and the divergence of the map in that region. Assigning missing values to other

regions of the state can result in less sensitivity (Appendix B.3).
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Figure 3.1: Median (solid line) and first and third quartiles (lower and upper
limits of colored band, respectively) of R2 vs. (a-c) the proportion of random
missing training data, (d-f) the maximum number of consecutive time steps miss-
ing in the training data, (g-i) the number of consecutive points sampled for every
12 points in the training data, and (j-l) the lower proportional threshold at which
values are missing. Results are shown for variable step-size EDM (red), the exclu-
sion method (yellow), and the interpolation method (blue). The dashed black line
shows the mean R2 when the data have no missing points. Results are shown for
(a,d,g,j) Ricker dynamics, (b,e,h,k) host-parasitoid dynamics, and (c,f,i,l) three-
species competition dynamics.

Finally, in scenario V, VS-EDM provides the most accurate forecasts for all

three sub-scenarios, with a median R2 close to that of the benchmark for complete

data (Figure 3.2). Generally, the interpolation method reduces the forecast accu-

racy significantly. The exclusion method is adequate in sub-scenarios A (mixed

monthly and bimonthly sampling) and B (disjointed biweekly sampling periods)

because there are usually enough data to cover the attractor. In contrast, the ex-

clusion method suffers in sub-scenario C (weekday sampling), in which VS-EDM

60



CHAPTER 3. EDM FOR MISSING DATA

is 80% more accurate.

Figure 3.2: Median (dots) and first and third quartiles (lower and upper limits of
error bars, respectively) for three sub-scenarios: (A) monthly sampling for seven
months followed by bi-monthly sampling for the rest of a year, (B) sampling in
two separate seasons of a year, and (C) sampling only on weekdays. Results
are shown for variable step-size EDM (red), the exclusion method (yellow), the
interpolation method (blue), and EDM of complete data (dashed black line) for (a)
Ricker dynamics, (b) host-parasitoid dynamics, and (c) three-species competition
dynamics.

3.4.2 Results for Empirical Data

Out-of-sample forecast accuracy (R2) for the experimental time series from

Halbach (1984) (Table 3.2) and predicted vs. observed values were evaluated

(Figure B.3). Results indicate that VS-EDM can accurately forecast empirical

data that are sampled irregularly. Overall, VS-EDM increased forecast accuracy

for experiment 1 but made no significant difference for experiment 2. Compared

to VS-EDM, linear interpolation reduced forecast accuracy by 23% for experi-

ment 1 and 5% for experiment 2. Exclusion reduced forecast accuracy the most

for experiment 1 (by 34%) but performed similarly to VS-EDM for experiment 2.

Piecewise constant interpolation (i.e. ignoring the irregular step-size) performed

relatively well for these data, reducing accuracy by 23% for experiment 1 and

providing similar accuracy for experiment 2. Overall, since the range of step sizes
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was small and the largest gap was one day, all of the methods produced reason-

able forecasts of these time series. We hypothesize that VS-EDM makes a larger

difference for experiment 1 because its time series is not as smooth as that of

experiment 2. Like for to laboratory data and simulated data, VS-EDM appears

# Linear interpolation Exclusion VS-EDM Piecewise constant
interpolation

1 0.54 0.46 0.70 0.54
2 0.63 0.67 0.66 0.66

Mean 0.59 0.57 0.68 0.60

Table 3.2: Forecast accuracy of each method on laboratory data. R2 values for
two experimental time series from Halbach (1984)

to have an advantage over the other methods for one-month-ahead forecast accu-

racy of English grain aphid dynamics from February 2002-January 2012 at five

Rothamsted survey sites. (Figure 3.3). With 50% of the data missing, VS-EDM

gives a median R2 > 0 for all sites, while the other methods generally produce

unusable forecasts at 50% missing. It is important to recall, however, that these

results summarize 100 replicates of each scenario, and the results can depend on

which points in the data are missing. Interestingly, interpolation outperforms ex-

clusion for these laboratory data, unlike for the simulations, likely because the

simulated data are highly variable and discrete-time, while the laboratory data

are seasonal or smooth. When a value goes missing during a smooth period, the

interpolated data are unbiased and similar to the complete data. Generally, for

highly seasonal or very smooth data, interpolation is expected to provide accurate

forecasts.
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3.5 Discussion

Overall, VS-EDM handles missing data effectively in most scenarios for all

simulation models we assessed. Despite doubling the effective input dimension,

VS-EDM was never significantly worse, and it was often much better, than the

standard approaches of interpolating the data or excluding missing inputs for all

scenarios, particularly when many data points were missing. This was most clear

when data were missing at random (scenario I) or had seasonal gaps (scenario

III), or when the sampling design combined short and long intervals (scenario V).

These results indicate that exclusion is adequate whenever data are plentiful and

that linear interpolation fills short or smooth gaps effectively but creates problems

when filling gaps during which substantial fluctuations occur.

All of the methods struggled when observations were missing below a threshold

(scenario IV), although VS-EDM worked over a wider range of thresholds. The

extreme sensitivity to missing data in this case is likely a result of the strong

divergence of these models for small population sizes. When we instead removed

points in a different region of the state space where the dynamics diverge less

(e.g., above a given proportion of the range of states), all methods are less sensitive

(Appendix B.3). Furthermore, although we treated observations below a threshold

as missing, they are often recorded as zeros in real data. That is, when samples

are taken but nothing is detected (e.g., low chlorophyll-a concentrations), the

observed abundance is zero even though the true abundance is not. Zero-inflated

models are often used to handle the large number of zeros in general linear models

(Hall and Zhang, 2004), but no analogous method is available for EDM. Lacking

a zero-inflated model, one may ask whether it is better to treat these zeros as

missing data using VS-EDM or as ordinary observations. We tested this idea by

comparing the forecast accuracy of VS-EDM when values below the threshold are
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treated as missing versus using standard EDM when values below the threshold are

treated as zero (Appendix B.3). Broadly, we found that the results are relatively

case-specific; they likely depend on the curvature in the delay embedding map

over the interval treated as zero. Consequently, it may be valuable to apply both

approaches when zeros are inflated in a real application.

Although we have shown that VS-EDM produces accurate forecasts in a variety

of scenarios, it is useful to consider cases in which one of the other methods may

be a better choice. Most obviously, when data are plentiful (scenario II or a very

long time series), the exclusion method will be sufficient and less computationally

expensive than VS-EDM. At the other extreme, interpolation or ignoring the

irregular step may be more useful for short, smooth time series with short gaps,

as exemplified by the rotifer data from Halbach (1984). In these cases, VS-EDM

is likely to suffer since it requires estimating E additional hyperparameters from

the limited data.

As with all EDM approaches, the performance of VS-EDM may depend on

time series length. Although not a major focus of this study, we reevaluated VS-

EDM for time series lengths of 20, 35, and 50 training points (Appendix B.4). As

expected, shorter time series consistently yield worse predictions; however, it is

generally better to have 25 points of complete data than 25 scattered points from

a time series of length 50 (i.e., 50% missing). This shows that increasing the input

dimension using VS-EDM can be unfavorable for extremely short time series.

Some data sets have only a few observations at a given τ (e.g., a single inopera-

tive period, a few points missing at random), making it challenging to approximate

f using the available data. In principle, it may be possible to circumvent this by

inserting artificial missing values to make a longer set of training data with a wider

range and more replicates of s in different areas of the attractor. We tested this
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approach on the three models (Table 3.1), and our preliminary results indicate

that it can improve forecast accuracy greatly (Appendix B.5). Specifically, when

we used standard VS-EDM with these models, forecasts were typically unusable

once 50% of the data was missing. However, augmenting the training data with

artificial missing values produced accurate forecasts (up to R2 = 0.80) at 50%

missing (Figure B.10). Although our preliminary tests show promise, there are

statistical concerns with reusing the data in this way. By duplicating the time

series to create artificial missing values, the outputs are not independent, which

may bias GP fitting. More work is needed on this topic to determine whether

inserting artificial missing values is a reliable way to supplement VS-EDM.

Having demonstrated its utility for simulated and empirical data, we now high-

light two additional ideas that emerge from the VS-EDM framework but have not

appeared in the literature. First, although we focus on forecasting in this study,

EDM is increasingly used to understand species interactions (Deyle et al., 2016)

and dynamic stability (Ushio et al., 2018). One of the most widely used metrics

of dynamic stability is the Lyapunov exponent (LE). Since previous approaches to

calculating LE require equal sampling intervals, we demonstrate how to calculate

the dominant LE using VS-EDM (Appendix B.6). Second, although EDM is typ-

ically applied to discrete-time data in ecology, many systems are best understood

in continuous time. Another facet of VS-EDM that has not appeared in the liter-

ature is that the variable step-size method could be used to extrapolate back to

continuous-time dynamics from discretely sampled data. We present an outline

of this framework and a preliminary test of the idea (Appendix B.7). Being able

to flexibly extract continuous-time dynamics from discretely sampled data would

be particularly useful for connecting theoretical models expressed using ordinary

differential equations to field observations; this approach will be the subject of a
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future study.

To summarize, VS-EDM has several useful implications in ecology, the most

obvious of which is that it expands the range of ecological datasets that can be

analyzed with EDM to those in which some data are missing or irregularly sam-

pled. Moreover, this analysis can help mitigate effects of lost sampling effort due

to the COVID-19 pandemic and implies that more flexible and less expensive eco-

logical surveys could be designed without sacrificing significant forecast accuracy.

For instance, VS-EDM forecasts differ little when sampling occurs every day vs.

only on weekdays. We presented several possible extensions of VS-EDM that al-

lowed us to characterize the complexity of ecological dynamics and approximate

continuous-time models. Together, these results can contribute to advancements

in understanding and managing complex ecological systems.

3.6 Acknowledgments for Chapter 3

This study was supported by funding from the Lenfest Oceans Program,

NOAA’s HPCC Program, and NOAA Grant #NA19OAR4170353 through the

Fisheries-Sea Grant Joint Graduate Fellowship Program in Population and Ecosys-

tem Dynamics. The statements, findings, conclusions, and recommendations are

those of the authors and do not necessarily reflect the views of Sea Grant. We

are grateful to collaborators, including Chris Shortall, James Bell, and Lynda

Alderson, who contributed data from the Rothamsted Insect Survey, a National

Capability, which is funded by the Biotechnology and Biological Sciences Re-

search Council under the Core Capability Grant BBS/E/C/000J0200. We also

thank Marcella Gomez, George Sugihara, Erik Saberski, Tom Lorimer, Ethan

Deyle, Tanya Rogers, Uttam Bhat, Marc Mangel, and Hongyun Wang for thought-

provoking conversations about these ideas and for many helpful comments on this

66



CHAPTER 3. EDM FOR MISSING DATA

manuscript.

67



3.6. ACKNOWLEDGMENTS FOR CHAPTER 3

Figure 3.3: Median (solid line) and first and third quartiles (lower and upper
limits of colored band, respectively) of R2 values for out of sample forecasts of
the English grain aphid from February 2002-January 2012 at five sites (Brooms
Barn S, Rothamsted, Writtle, Newcastle, and Hereford). Results are shown as the
proportion of missing values in the training data was varied for the interpolation
method (blue), the exclusion method (yellow), variable step-size EDM (red), and
EDM of the complete data (dashed black line).
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Chapter 4

Empirical Dynamic Programming

for Insect Pest Management

The material in this chapter will be submitted to the Proceedings of the Na-

tional Academy of Sciences by Johnson, B., Gomez, M., Munch, S.B. The disser-

tation author was the primary investigator and author of this paper.

4.1 Abstract

Insect pests pose a major threat to humans by jeopardizing food security in

agricultural systems, acting as vectors for infectious diseases, and damaging forests

and other ecosystems. Despite decades of research aimed at controlling pest pop-

ulations to mitigate their harmful impacts, effective pest management remains

challenging in many systems. This stems, in part, from incomplete knowledge of

the mechanisms that drive population dynamics, making it difficult to develop ac-

curate models that predict insect outbreaks. Due to the challenges of mechanistic
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modeling and historical tendencies of pest managers, most theoretical develop-

ments in this space have yet to meet practice. Pest management is often reactive

in practice, meaning control actions are taken once outbreaks have already be-

gun, allowing for damage to occur. It is possible to improve pest management,

however, by acting in anticipation of an outbreak. We show that a data-driven

model can effectively predict outbreaks, thereby, circumventing the need to un-

derstand the underlying network driving population dynamics. This allows us to

target pests before outbreaks occur. We also show that optimal control can be

used with our data-driven model to optimize pest management strategies taking

into consideration cost of application. In particular, we explore the use of em-

pirical dynamic modeling and Gaussian process regression paired with stochastic

dynamic programming to keep insect populations within acceptable bounds of tol-

erance. We show that this framework effectively prevents outbreaks on simulated

and empirical data in a variety of scenarios. Our study provides a management

framework that has potential to reduce losses from pests.

4.2 Introduction

Insect outbreaks have significant consequences. Every year, insects destroy

approximately 18-20% of major crops worldwide (Sharma et al., 2017), which ac-

count for over 40% of calories consumed by humans globally (Deutsch et al., 2018;

FAO, 2014). Insects also spread diseases, which cause more than 700,000 deaths

annually (WHO, 2020). In addition, insects disturb up to 85 million hectares of

global forest area per year (van Lierop et al., 2015) and put a large proportion of

the total U.S. forest biomass at risk for invasion (Fei et al., 2019), which can have

cascading effects that contribute to climate change. Together, the damages and

mitigation efforts bring the total estimated cost of pest outbreaks to at least $76
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billion per year globally (Bradshaw et al., 2016), and these costs are expected to

increase as climate change progresses (Deutsch et al., 2018).

Given the high impact of the insect pests, there is a growing need to work

toward minimizing the damage they cause and the cost of pest management. In

an effort to achieve this, over the last several decades, there have been increased

efforts in integrated pest management (IPM) research, which aims to use informa-

tion about the state of the environmental, economic, and social system to guide

decisions for the use of biological (e.g. addition of a natural enemy of the pest),

behavioral (e.g. the use of pheromones to disrupt mating behavior and hinder

reproduction), and chemical (e.g. application of pesticides) control recommenda-

tions to suppress pest populations (Stern et al., 1959). A successful IPM program

involves carefully monitoring the pest and the damage it causes, using that ob-

servational data to set guidelines for when control is needed, and assessing the

effect of the control techniques (Dara, 2019; Kogan, 1998). However, since eco-

logical systems are highly complex with numerous interacting variables, common

modeling methods cannot always accurately predict when pests pose the highest

risk of an outbreak and, more importantly, how various control actions impact

the pest dynamics (Garrett et al., 2013; Tonnang et al., 2017). This – among

other obstacles (Parsa et al., 2014) – has led to slow and weak adoption of IPM

in practice (Stenberg, 2017).

Instead, in practice, pest management often follows a reactive program or a

calendar-based program. In a reactive program, farmers or local governments are

advised to apply control once the population of a pest exceeds an unacceptable

threshold (Stern, 1973), so interventions often occur once damage has already

begun (Oliver and Roy, 2015). A calendar-based program, on the other hand,

errs on the side of caution. Interventions are made at regular intervals throughout
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a year or growing season, often leading to the overuse of pesticides (Afun et al.,

1991). Although both of these management programs are fairly common, there

are limitations to each and there is likely room for improvement.

Some theoretical ecologists have proposed to improve pest management by

using optimal control theory. Several examples in the literature use classic pop-

ulation dynamics models with control methods such as Pontryagin’s Maximum

Principle (Fitri et al., 2021; Kar et al., 2012; Whittle et al., 2008), model predictive

control (Zangina et al., 2021), and dynamic programming (Hackett and Bonsall,

2019; Yokomizo et al., 2009) to generate pest management strategies. However,

optimal control methods for pest management have primarily been developed in

noise-free theoretical settings, and the studies have assumed that we have a perfect

model of the system dynamics. In reality, we rarely have a model that describes

system dynamics perfectly, and we must make many assumptions. Since opti-

mal policies are highly sensitive to model structure, small changes in assumptions

can lead to drastically different management advice (Wood and Thomas, 1999).

Furthermore, these methods tend to yield advice that is not feasible in real appli-

cations (e.g. they suggest applying pesticides in continuous time (Whittle et al.,

2008)) and theoretical studies rarely incorporate empirical data to validate their

methods. Together, these issues have led to skepticism from farmers and managers

(Deguine et al., 2021). In fact, one recent study claimed that although ecological

theory holds promise for contributing to pest control, it has produced minimal

practical value in the past (Mcevoy, 2017).

In this paper, we aim to bridge the gap between theory and practice through

a data-driven approach to prediction and control. Importantly, the idea of com-

bining data-driven forecasts with optimal control methods has been used to make

short-term management decisions and identify optimal management policies in
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fisheries contexts (Boettiger et al., 2015; Brias and Munch, 2021). However, to

the best of our knowledge, data-driven control in insect pest management is not

widely used and has had limited exposure in the literature (Meisner et al., 2016).

Ecosystems are highly complex, and with our current understanding, it is not

feasible to take a bottom-up approach of developing mechanistic models to pre-

dict pest dynamics and intervention effects. However, it might not be necessary

to construct complete ecosystem models to effectively control pests. Data-driven

models have improved predictive capabilities over mechanistic models when popu-

lation dynamics are complex and external perturbations are not modeled (Munch

et al., 2018). In this work, using only time series for species abundance and his-

torical control actions, we consider a Gaussian process (GP) model (Rasmussen

and Williams, 2006) to forecast population dynamics and their responses to con-

trol. To take it a step closer to reality, even when we do not have data for the

full system and we only have a time series for the pest, we use empirical dynamic

modeling (EDM), which utilizes lags of the pest data (Sugihara and May, 1990;

Takens, 1981) (Material and Methods), to make the predictions. This approach

is advantageous for this application because it allows us to avoid making strong

assumptions about insect dynamics, it allows us to cope with incomplete obser-

vations of the system, and it is more flexible than standard mechanistic models

(Perretti et al., 2013). By leveraging the data-driven forecasts, we solve a multi-

objective optimal control problem with stochastic dynamic programming (SDP)

to generate control policies (Bellman, 1958; Clark and Mangel, 2000). This combi-

nation of EDM with SDP is called empirical dynamic programming (EDP)(Brias

and Munch, 2021). See Figure 4.1 for an illustration of the EDP workflow.

To demonstrate this idea, we used a series of simulations that represent com-

mon pest management strategies I) biological control, II) chemical control, III)
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Figure 4.1: A 2D example of data-driven prediction and control for pest man-
agement. Ecosystem dynamics in the real world (top box) include the population
dynamics of a pest (x), a species that interacts with the pest (y), and human
interventions in the form of insecticide sprays (u) which control the pest. We con-
sider two cases of data availability. In case 1, data for the full ecosystem (x, y, u)
are available, and we perform "full-state" EDP. In case 2, data for only the pest
and interventions (x, u) are available, so we implement "partial-state" EDP and
use lags to account for the unobserved variable. In both cases, the first step is
data-driven forecasting (second box) where we fit the function xt+1 = f(xt, ut)
with GP regression (surface) to the available data (black dots). In the full-state
scenario, xt = [xt, yt] (i.e. x1

t = xt and x2
t = yt). For the partial-state scenario,

xt = [xt, xt−1] (i.e. x1
t = xt and x2

t = xt−1). Given the predictive model, the
next step is to determine the optimal control policy with stochastic dynamic pro-
gramming (third box). This generates the optimal action u (color) to take in any
given state xt = [x1

t ,x2
t ]. Finally, we implement the optimal policy through time

(bottom box). At each time step, we determine the current state, xt, and apply
the optimal action (light blue) to the ecosystem. This results in new dynamics
for the pest (dark blue), which we compare to an economic threshold (grey dotted
line) to evaluate cost. The total amount of control also contributes to the cost.

behavioral control, and IV) IPM (e.g. the use of both chemical and biological

controls) (Table C.1). We compared the performance of our data-driven approach

against 1) the optimal policy, which uses the perfect data-generating model to
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generate policies and 2) a policy based on a reactive program, which only applies

control after the pest has exceeded an unacceptable threshold. These benchmarks

represent the best case scenario and status quo, respectively. We evaluated the im-

portance of stochasticity by simulating all scenarios with various levels of noise. In

addition, we compared trade-offs between two competing objectives, (1) minimize

the cost of pest pressure and (2) minimize the cost of applying interventions.

For completeness, we followed the simulation analysis with an empirical anal-

ysis in which we applied the method to data for a cotton pest, Lygus hesperus,

and a West Nile virus vector, Culex pipiens, in California. This empirical analy-

sis allowed us demonstrate the predictive power of our models on ecological data

which contains realistic levels of noise and imperfections, and it also allowed us to

begin evaluating the utility of the control method in real management scenarios.

Through our simulation and empirical studies, we show that this method offers

potential to improve pest management practices for a wide range of species and

systems.

4.3 Material and Methods

There are two main steps required to develop data-driven pest management

decisions. First, we use historical time series data and GP regression with EDM

to approximate a function which takes the current state of a system along with

a control variable as inputs, and outputs forecasts of the future pest population.

Then, we use the approximated function to determine a control policy via stochas-

tic dynamic programming. In this section, we will first describe our process of

approximating the model with GP regression and EDM, then we discuss details

of the optimal control problem and how to solve it with dynamic programming.

Finally, we provide details about our simulation experiments and empirical case
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studies.

4.3.1 Gaussian process regression

We use GP regression (Munch et al., 2017; Rasmussen and Williams, 2006) to

approximate the function, xt = f(xt−1) + ϵt−1 where ϵt−1 ∼ N(0, V ), ut−1 is the

control action at time t−1, and xt−1 are the inputs containing each state variable

at time t − 1 if we have data for the full system state. If the full system state is

not available, EDM is necessary, so xt−1 = [xt−1, xt−2, ..., xt−E] (see next section).

The GP is specified by a mean function m(x), and a covariance function

C(x,x′). To remain consistent with previous applications of GP regression in

ecology (e.g. (Brias and Munch, 2021; Munch et al., 2018, 2017; Rogers and

Munch, 2020)), we begin by standardizing the input data of the GP to have a

mean of zero and a standard deviation of one. We set priors for the mean and

covariance functions and update them based on the observed data. Specifically,

we set the prior mean function to m(x) = 0 assuming that we do not have prior

knowledge about the functions characteristics, and we use the squared-exponential

covariance function, C(x,x′) = σ2 exp(−∑n
i=1 ϕi(xi −x′

i)2), where σ2 is the point-

wise variance in the function f , n is the dimension of each input (i.e. dimension

of the system for the full-state case or number of lags for the EDM case), and ϕi

is the input-specific inverse length scale parameters, which govern the flexibility

of the function. Note that when ϕi = 0, f is constant in the ith input direction. In

order to avoid overfitting, we use a regularization technique is called ‘automatic

relevance determination’ (ARD) (Neal, 1996). This encourages sparsity by assign-

ing half-normal priors such that the prior mode is at 0. Priors for V and σ2 come

from a beta distribution β(1.1, 1.1) to place limits on the uncertainty in the next

step (see (Munch et al., 2017) for details). We update the hyperparameters using
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resilient back propagation (Rprop) (Blum and Riedmiller, 2013) to maximize the

marginal log likelihood. Although it is possible to infer f in a fully Bayesian way

(e.g. with MCMC), we make predictions by fixing the hyperparameters at their

posterior modes in order to save computation time, and then predictions are made

by using updating rules that come from standard formulae for conditioning in a

multivariate normal distribution (Rasmussen and Williams, 2006).

4.3.2 Empirical dynamic modeling

Empirical dynamic modeling is a data-driven method that uses time series

from partially observed systems to make forecasts. In cases where we do not have

observations of all of the variables in a system, Takens’ theorem of time delay

embedding (Takens, 1981) provides the foundation for EDM by stating that the

attractor (i.e. the point, set of points, or orbit to which a dynamical system

converges) can be reconstructed using lags of the time series of a single state

variable. From the attractor reconstruction, the future state of the system can be

predicted by fitting a model of the form xt = f(xt−1, xt−2, ..., xt−E) + ϵt−1 where

x is the observed state variable, E is the ‘embedding dimension’, ϵ is the process

error, and f is the map taking lags of the state variable to the future. Many

function approximation methods can be used (e.g., local linear regression (Farmer

and Sidorowich, 1987; Sugihara, 1994) or neural networks (Bakker et al., 2000).

In this paper, we fit f via Gaussian process regression (Munch et al., 2017). More

examples and overviews of EDM can be found in (Chang et al., 2017; Munch

et al., 2020; Ye et al., 2015a), and extensions of EDM for stochastic systems can

be found in (Munch et al., 2020; Stark et al., 2003).
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4.3.3 Using forecasts for optimal control

Importantly, the EDM frameworks can be extended to include additional co-

variates. For instance, previous studies have incorporated multiple interacting

species, environmental drivers, and spatial replicates (Deyle and Sugihara, 2011;

Johnson et al., 2021; Rogers and Munch, 2020; Ye and Sugihara, 2016). If we in-

clude historical management actions (e.g. pesticide applications, biological control

releases) as covariates, this opens up the possibility of using EDM to construct

robust management policies. Concretely, suppose we would like to control the

dynamics of an insect population by applying pesticides and we are given the

time series of previous insect abundance (xt) and pesticide applications (ut) for

t = 0, 1, ..., T . For simplicity, assume that the insect is not interacting with any

other species or drivers. Using the observed time series, we can a fit a GP to

model xt = f(xt−1, ut−1) + ϵt−1 , which results in an approximation of the Markov

decision process (MDP), P (xt|xt−1, ut−1). This can then be used directly to solve

an optimal control problem and generate management policies.

4.3.4 The optimal control problem

Once we have approximated the dynamics with GP regression, our goal is to

minimize the cumulative discounted cost of pest management from the current

time until some time in the distant future. We can express this goal as an optimal
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control problem given by

min
u
J(x,u) =

∞∑
t=1

γtc(xt,ut)

subject to (4.1)

xt = f(xt−1,ut−1)

x(0) = x0

where x is the state variable (e.g. pest abundance and enemy abundance), u

is the control variable (e.g. amount of pesticide applied), γ is the discount factor,

f represents the system dynamics, and c is the step-wise cost of being in state xt

and taking control action ut.

One important step in setting up an applied optimal control problem is specify-

ing the cost function. In pest control applications, there are typically two primary

objectives: (1) to minimize the cost caused by pests (e.g. through yield loss), and

(2) to minimize the cost of applying interventions. There is a trade-off between

these two objectives, and we might adjust their priority in different scenarios. To

capture these competing objectives, we define a cost function given by

c(xt, ut) = θ
xt

1 + e−10(xt−xthresh) + (1 − θ)ut. (4.2)

The first term in Eq. 4.2 captures the cost associated with pest pressure where the

cost is negligible if the abundance of the pest (xt) is below a threshold (xthresh) and

high above it. This is similar to the "economic threshold" or “action threshold”

concept that is used in practice, except that it is based on the abundance of

the pest at a future point in time rather than the current state. This facilitates

proactive control rather than reactive control. We use the threshold (xthresh) in
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the first term of the cost function because it has been stated that pest management

methods should aim to drive pest populations within acceptable bounds rather

than eliminate them completely (Lewis et al., 1997). The second term in Eq. 4.2

captures the cost of applying control, assuming that the cost is linearly related

to the amount of control applied. θ is used to tune the priority of the competing

objectives by varying it from 0 to 1. For example, θ = 0.99 places high priority

on minimizing the cost of pests.

The IPM strategy involved two control variables, so the step-wise cost was in

the form

c(xt, u
c
t , u

b
t) = θ1

xt

1 + e−10(xt−xthresh) + θ2u
c
t + θ3u

b
t (4.3)

where uc is the chemical control variable, ub is the biological control variable, and

θi places weight on the ith term of the cost function.

4.3.5 Dynamic programming

Bellman’s principle of optimality (Bellman, 1958) shows that the optimal con-

trol problem Eq. 4.1 can be solved via the dynamic programming equation

V (x) = min
u
E [c(x̃,u) + γV (x̃)|x,u]

where V (x) is the long term discounted cost of being in state x, c(x̃,u) is

the cost of applying u and ending up in state x̃, γ is the discount rate. E is the

expectation over the next state given the previous state and control.

We solve the dynamic programming equation with value iteration, which is

done with the following procedure. (1) Create an evenly spaced grid of possible

states; we use 30 evenly spaced points between 0 and 1.25*max(x) in the training

data. (2) Create an evenly spaced grid of possible actions u; we use 5 evenly
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spaced points between 0 and 1. 3) To solve the DP equation, we approximate the

expectation as

E{c(x̃,ul) + V (x̃)|xj,ul} ≈
size(state grid)∑

i

Pjl(xi){c(xi,ul) + γV (xi)}.

In our case, we estimate Pjl(xi) with GP regression, though this can also be

inferred with a mechanistic model. 4) From the dynamic programming equation,

update the value function as V (xj) = minu E{c(x̃,ul) + V (x̃)|xj,ul}, and also

extract the policy as u∗(xj) = arg minu E{c(x̃,ul) + γV (x̃)|xj,ul}. 5) Iterate

steps 3) and 4) until the approximated value function and the optimal policy

converge. Convergence is achieved when the change in the value function and

optimal policy between successive iterations is below some tolerance, which we

set to 0.001.

Note that as the dimensionality of the system increases, we must create a

grid of possible states for each state variable. Thus, dynamic programming has

exponential computational complexity making it suffer greatly from the curse

of dimensionality. In high dimensional cases, where dynamic programming is

not computationally tractable, other control methods such as model predictive

control (i.e. ignoring future costs) can be used, though this will not yield an

optimal solution.

4.3.6 Simulations

To evaluate our methods, we simulated population dynamics data with a host-

parasitoid model, which in the absence of control, is given by
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Ht+1 = Hte
r(1−Ht/K)−αPt

Pt+1 = βHt(1 − e−αPt) + γ

where r is the growth rate of the host, K is the carrying capacity of host, β is

the searching efficiency of the parasitoid, is the number of parasitoids that emerge

from each parasitized host, and γ is a migration coefficient for the parasitoid. We

assume that H represents the pest population that we aim to control and P is a

natural enemy of the pest (Hassell, 2000; Jang and Yu, 2012).

There are various ways in which a manager might try to control an insect pest

population. To evaluate generalizability of EDP, we simulated multiple control

strategies. See Table C.1 for functional forms and parameter values of each con-

trol scenario. A description of each control is given below.

I. Biological control

There has been substantial effort to develop control techniques that can sup-

press pests naturally while causing minimal damage to the surrounding environ-

ment. One option is to introduce natural enemies of the pest into the system to

increase pest mortality. In the context of the host-parasitoid system, biological

control is modeled by adding parasitoids to the system (Table C.1).

II. Chemical control

We simulated the effects of chemical control (i.e. insecticide applications) as a

direct reduction in the pest population. Since it is rare for insecticide applications

to remove all pests in the system, we assumed that only a fraction of the popula-

tion was removed after a pesticide application. We set this "pesticide efficiency"
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parameter (i.e. the maximum proportion of the population that can be reduced

by spraying pesticides) to 0.6 (Table C.1).

III. Behavioral control

Another non-chemical form of pest control is behavioral control in the form of

mating disruption (MD). The goal of this type of control is to decrease the growth

rate of the pest population, by releasing pheromones into the pests’ environment,

which makes it more difficult for males to find females. Another method used

to decrease the growth rate of a pest is sterile insect technique (SIT), in which

sterile insects that cannot effectively reproduce with females are released into the

environment. While this isn’t strictly behavioral control, it does impact the pest’s

ability to reproduce. We modeled both these control methods as a reduction in

the growth rate of the pest. The parasitoid was not effected by this method (Table

C.1).

IV. Integrated pest management

Although more natural forms of control are desirable for sustainable pest man-

agement, there is a lot of experimental work that needs to be done to determine the

efficacy and reliability of these methods. The development of natural pest control

is still an active area of research, and as a result, many insect pest managers are

unlikely to completely abandon the use of chemicals to control insects. A more rea-

sonable approach is to use some combination of chemicals and natural approaches

to optimally suppress pests. This is one of the primary goals of IPM. We simulated

an IPM approach by using a combination of chemical control and biological control

to suppress the pest. As a result, instead of approximating xt = f(xt−1, ut−1)+ϵt−1

with GP regression, we approximated xt = f(xt−1, u
c
t−1, u

b
t−1) + ϵt−1, where uc is
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chemical control, and ub is biological control. The objective was to find the optimal

combination of chemical and biological control to minimize a cost function given

by 4.3, where there is a trade-off between all three therms in the cost function.

We simulated strategies I-IV above with three levels of process noise (low,

moderate, and high) in the dynamics (Table C.1). In all scenarios, we simulated

600 data points. After removing 300 transient points, we split the remaining 300

points into 100 points of training data, 100 points of testing data to evaluate the

R2 forecast accuracy, and 100 points of secondary testing data to evaluate the

control methods. We call this last set of points the “control” set. To generate

the initial time series, we applied a random amount of control periodically (to

approximately target the peaks in the pest population) in the training and testing

sets and applied no control in the control set. For strategies I-III, we evaluated the

methods at eleven evenly spaced values of θ between 0.001 and 0.999. For strategy

IV, we evaluated methods at 21 different values of (θ1, θ2, θ3) where θ1+θ2+θ3 = 1.

Our ability to effectively manage the pest population depends on the quality

and type of data that is available. Thus, we explored two cases of available data.

Case 1: Data for both species - "full-state" EDP

In the first case, we assumed that we had access to the abundance of both the

host and the parasitoid and the control variable in the training data. Given the

training data, we fit a GP to approximate [Ht+1, Pt+1] = f(Ht, Pt, ut), then we

tested the forecast accuracy on the subsequent testing data. Then, we performed

the dynamic programming method with the steps outlined above to get the op-

timal policy for all possible combinations of H and P . To evaluate the dynamic

programming policy, we continued the simulations in the control set by using the

same parameters from the original simulation, but added a control input following
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the optimal policy. Note that since the simulation models gave outputs that did

not fall directly on the grid that we used for the SDP algorithm, we performed

a linear interpolation of the policy, to get the optimal control for each current

state. We iterated this procedure in the simulation model for the 100 steps in the

control set.

Case 2: Data for only the pest - "partial-state" EDP

Next we assumed that the parasitoid was unobserved, and we only had ac-

cess abundance for the pest in the training data. In this case, EDM was nec-

essary since we had incomplete observations, so we fit a GP to approximate

Ht+1 = f(Ht, Ht−1, ut). We performed the rest of the procedure including fore-

casting in the test set and policy evaluation in the control set as we did with

Case 1. Contrary to Case 1, however, we did not evaluate this method with strat-

egy IV, IPM. This is because in an IPM program, managers try to monitor and

understand as much of the complex system as possible, and it is unlikely that a

manager would introduce a natural enemy as a form of control without collecting

data for the natural enemy first.

To evaluate the EDP policies, we compared them against two benchmarks.

The first benchmark was the optimal dynamic programming policy when the true

model was used to estimate the transition probabilities. This represented the

best case scenario where we have perfect knowledge of the system. The second

benchmark was a reactive control in which control was applied when the current

state of the pest was above the specified threshold. The amount of control was

proportional to θ. The comparison with these benchmarks was done by calculating

average "excess cost" of EDP and the reactive method of control (See Results).
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4.3.7 Empirical case studies

While the simulation analysis helped us evaluate the success of EDP in cases

where we can manipulate the ground truth dynamics, in most real-world cases,

there are numerous other factors that influence the dynamics which we did not in-

clude explicitly in simulations. Since these other factors can influence the control

algorithms, we further tested our method on empirical datasets. The goal of this

empirical analysis was two-fold. First, to evaluate whether the EDM algorithm

could accurately predict the dynamics of real-world insect pest data and the im-

pact of interventions on those pests. Second, to begin exploring whether historical

control efforts in real systems are nearly optimal. Of course, it is important to

note that we cannot truly validate a control policy on historical data.

Following our simulation experiments, we tested our control method on one

agricultural pest and one insect that acts as a disease vector. The agricultural

pest was Lygus hesperus from commercial cotton fields in central California. Lygus

hesperus threatens cotton yields by damaging squares of the cotton plant early

in the growing season (IPM, 2013). The data included samples from 1997 to

2008 from 567 cotton fields. Together, there were samples from 1500 field-year

combinations. Approximately every week during the growing season (∼June to

August), pest control advisors (PCAs) or growers took samples by swinging nets

across the top of the cotton plant. The mean number of Lygus caught in the net

per 50 swings is called a “sweep” sample and was used as the density estimate

to monitor the population of Lygus. PCAs and growers also tracked the active

ingredients, targets, and timing of various management interventions in every

field.

In our analysis, we treated each field-year as an individual time series. Since

EDM requires fairly long time series to make accurate forecasts, we filtered out all
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time series that had fewer than 15 Lygus samples. This resulted in 142 time series

to analyze. To supplement the population density data with control data, we

included insecticide sprays as a binary variable. That is, at times when Lygus was

listed as a target in an insecticide application, the control variable was assigned

a value of 1 and assigned 0 otherwise. We randomly selected 80% of the field-

year time series for training the GP EDM model. The other 20% were held out

for testing forecast accuracy and evaluating control policies. After square root

transforming the data, we fit a EDM model with E = 2 and an additional input

for the control variable to the training data, and evaluated the R2 for one-step-

ahead forecasts in the testing data.

Once we tested the forecast performance on out-of-sample data, we evaluated

the dynamic programming policy. To do so, we defined a cost function based on

the guidelines provided by the University of California Agriculture and Natural

Resources Statewide Integrated Pest Management program (UC IPM) for Lygus

management (IPM, 2013). UC IPM suggests sliding thresholds because Lygus

densities increase steadily during the growing season, and cotton becomes more

resilient against Lygus later in the season. Thus, we defined different cost functions

for distinct periods of the growing season. All cost functions were given by Eq.

4.2, where we set xthresh = 1 for the early squaring period of the season (∼early

June), xthresh = 2 starting in mid-June, and xthresh = 8 during mid-squaring

(∼early July). We also set p = 10 and varied θ from 0.4 to 0.999. We followed the

dynamic programming steps as outlined above. However, in step 2, we used a grid

only two points, 0 and 1, to indicate “no spray” and “spray,” respectively. This

resulted in an optimal policy for each state and each period of the growing season.

We evaluated the policy on each field-year time series separately. Specifically, for

each field-year, we initialized the input with the real data input at the beginning
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of the season. Using the output from the dynamic programming optimal policy,

we determined the best control action given the current state. With the current

state and optimal control rule, we used the optimized GP to get the next state.

This was used as the new input for the next step, and we repeated that procedure

for the whole time series, using the appropriate policy for different parts of the

season. This process was done for all time series in the testing data. To evaluate

the output, we tracked the total number of sprays and the total number of Lygus

predicted to emerge above the sliding threshold by following the EDP policy, and

added the results over all of the series in the test data. We got a separate answer

for each value of θ, and used this to construct a Pareto front. To begin evaluating

the historical control efforts, followed a similar procedure. For each field-year, we

initialized the input as we did before. Then we plugged in the historical control

action into the GP to get the next state and iterated this procedure for all time

series in the testing data. With that, we were able to compare the total number

of sprays and emerging Lygus with the dynamic programming output.

The second case study involved the mosquito species Culex pipiens in Califor-

nia. Culex pipiens is a vector of West Nile virus (WNV), which is an endemic in

California and can cause long term physical and mental disabilities or death (Hol-

comb et al., 2021). Because of its potential harmful impacts on humans, aerial

applications of pesticides are used to target adult populations of mosquitoes, to

slow or prevent the transmission of WNV (Carney et al., 2008).

In our example, we used mosquito trap count data from California’s Sacra-

mento county provided by CalSurv, a mosquito data management system. In ad-

dition to the count data, we used data on historical pesticide application records

from the Sacramento-Yolo Mosquito and Vector Control District (SYMVCD) from

2006 - 2017. In this analysis, split the data into six spatial regions (Figure C.5)
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where local dynamics were likely to occur. In each location, we took monthly

aggregates of the average number of mosquitoes caught per trap per night in

the data, which resulted in six time series of mosquito abundance. We supple-

mented this with control data in the form of a binary variable (i.e. 1 when a

pesticide was sprayed in that location, zero otherwise). We used a hierarchical

GP regression (Munch et al., 2017) to approximate the future growth rate of

the mosquito as a function of the previous abundance and the seasonality term,

i.e.log
(

xt+1
xt

)
= f(xt, sin

(
2π
12n+ c

)
, ut), where n is the month of the year. We

evaluated the R2 for sequential one-step-ahead forecasts for the full time series

from 2006-2017, where we initialized the input at each site with the true data and

then computed one-step-ahead forecasts, using each prediction as input for the

subsequent prediction. Similar to the Lygus, we constructed a Pareto front for

the EDP policy and compared it to the historical policy by iterating the historical

actions through the GP model.

4.4 Results

We compared EDP to the benchmarks by evaluating the "excess cost" of the

control policies. We considered two cases for EDP, (1) full-state EDP (trained

on data for all state variables) and (2) partial-state EDP (trained on lags of the

pest data). Excess cost was calculated by subtracting the total cost accumulated

by following the optimal policy (i.e. the best case benchmark, which uses the

true mechanistic model to generate policies) from the total cost accumulated by

following the method of interest. For the biological, chemical, and behavioral

control strategies, the total cost was the sum over a time series of step-wise costs,

which includes two competing sources of cost: the cost of pest pressure (O1)

and the cost of control (O2). We used a weighted sum scalarization method to
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transform the multi-objective optimization problem into a set of single-objective

optimization problems. Specifically, we varied the "importance" of each objective

by sweeping through different values of a parameter 0 ≤ θ ≤ 1, which places

weight on each objective. The scalar objective was to minimize the total cost

given by θO1 + (1 − θ)O2. In the real world, we often must make multiple de-

cisions simultaneously (e.g. how to apply multiple types of control), so we also

explored a more complicated IPM scenario. The IPM scenario had three com-

peting objectives (i.e. minimize the cost of pest pressure (O1), cost of biological

control (O2), and cost of chemical control (O3)), so we took a similar scalarization

approach and minimized θ1O1 + θ2O2 + θ3O3. See Material and Methods for the

functional forms (Material and Methods Eqs. 4.2 & 4.3) and more details.

We explored trade-offs between the competing objectives by sweeping through

values of θ, and evaluating the individual costs (Oi) at each θ. This results in a

curve in the objective space called a Pareto front, which shows the set of solutions

in which it is impossible to decrease one cost without sacrificing the another

(Williams and Kendall, 2017).

4.4.1 Policy generation based on data alone outperforms

the status quo

Under all the scenarios tested, EDP outperformed the reactive approach and

had relatively low excess costs compared to the best case scenario benchmark,

even with moderate levels of noise (Table C.1) in the data (Fig. 4.2 & 4.3). On

average, for the time series lengths we tested, EDP produced a policy closer to

the optimal policy when data for the full state was available rather than only pest

data. In general, EDP produced nearly optimal results at extreme values of θ (i.e.

θ close to 0 or 1), and its excess costs increased at intermediate θ values (Fig.
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4.2 a,c,e). Pareto fronts for each method (Fig. 4.2b,d,f), showed that the policies

strike a balance between the competing objectives at intermediate θ values as

demonstrated by the black outlined points in Fig. 4.2 b,d,f.

The results were generally similar for the more complex IPM scenario (Fig.

4.3), and EDP outperformed the status quo policy. At the extremes (i.e. when one

θi = 0), EDP performs nearly optimally, and excess cost increases at intermediate

values. The reactive approach performs optimally at one extreme (i.e. when no

weight is placed on the cost of pest pressure). An example of the optimal control

rules and resulting dynamics of the each method (Fig. 4.4) shows that EDP and

the optimal policy effectively keep the pest population within acceptable bounds,

while the reactive approach does not (Fig. 4.4 a,c,e). All three methods, however,

use a combination of biological control and chemical control (Fig. 4.4 b,d,f).

Overall, the level of noise in the dynamics influenced the performance of EDP,

but the reactive approach was relatively consistent for the full range of noise levels

we tested (Fig. 4.5). Across all scenarios, both cases of EDP reduced excess costs

compared to the status quo reactive approach by a substantial amount (Table

C.3). Even in the worst cases, EDP reduced excess costs relative to the reactive

policy by at least 33% in the partial-state case, and it reduced costs by at least

48% in the full-state case. Both cases appeared to work best under low noise and

behavioral control.

4.4.2 Policy generation based on empirical data outper-

forms historical policies

In our empirical case studies for Lygus and Culex pipiens, it was not possible to

develop best case scenario benchmarks because we do not have perfect models for

the empirical dynamics. However, we had more realistic status quo benchmarks
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Figure 4.2: Simulation results averaged over 100 simulations of biological control
(a,b), chemical control (c,d), and behavioral control (e,f) with a moderate level
of noise in the data (Table C.1). Left panels show the median (dots) and lower
and upper quartiles (error bars) for the excess cost of each method compared
to the optimal policy (a,c,e). Pareto fronts show the trade-off between the cost
of pest pressure and the cost of control (b,d,f). Each point in the Pareto fronts
corresponds to a value of θ, ordered such that θ = 0.001 in the lower right θ = 0.999
in the upper left. Points outlined in black correspond to θ = 0.5.

than the simulation analyses. In both empirical studies, we used the historical

control actions from the data as the status quo benchmarks, and compared them
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Figure 4.3: Simulation results averaged over 100 simulations of IPM control
using EDP (a) and a reactive control (b) with a moderate level of noise in the
data. The color in each circle is the average excess cost for a specific (θ1, θ2, θ3)
triplet. Light circles indicate low excess cost and darker circles indicates high
excess cost. The circle outlined in black corresponds to (θ1, θ2, θ3) = (0.6, 0.2, 0.2),
and an example of the output dynamics for this triplet is shown in Figure 4.4.

to the EDP policy. In both cases, the EDP policy outperformed the historical

policy.

In the case of Lygus, the out-of-sample forecast accuracy was R2 = 0.54, and

the historical policy fell above the EDP Pareto front (Fig. 4.6a), indicating that

it may have been possible to achieve nearly 45% less pest pressure with the same

number of pesticide sprays that were used historically. Alternatively, it may have

been possible to achieve the same amount of pest pressure with ∼ 60% fewer

sprays. Similarly, the out of sample forecast accuracy was R2 = 0.58 for Culex

pipiens, and the historical control actions also fell above the EDP Pareto front

(Fig. 4.6b). This suggests that it we could have achieved ∼ 8% reduction in

mosquito pressure with the same number of pesticide applications or the same

pest pressure with ∼ 60% reduction in pesticides. While we cannot truly evaluate

the EDP policies on the historical data, these results serve as an initial step to

demonstrating that improvement might be possible. Importantly, we can achieve
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Figure 4.4: Results of a single simulation of IPM control based on the true
model (a,b), EDP (c,d), and the reactive method (e,f). Comparisons between
uncontrolled dynamics of the pest (dotted black lines) and controlled dynamics of
the pest (solid black lines) (a,c,e). The amount of chemical (blue) and biological
(orange) applied (b,d,f) to achieve the controlled dynamics.

a predictive model with the current data that is accurate enough to generate

improved policies over existing ones.
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Figure 4.5: Mean (dots) and average standard deviation (error bars) of excess
cost over 100 simulations of all θ for biological control (a), chemical control (b),
behavioral control (c), and IPM (d).

4.5 Discussion

Our analysis suggests that this data-driven approach can mitigate the impacts

of pests more effectively than the standard methods used in practice. We found

that with the availability of either complete or incomplete data, EDP can pro-

duce nearly optimal management policies and outperform status quo reactive and

historical approaches to pest management. Even in the worst cases, the method

achieved a reduction in excess cost that could amount to millions of dollars saved
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Figure 4.6: Pareto fronts of EDP and the historical policy for Lygus (a) and C.
pipiens (b). Each point in the Pareto front corresponds to a value of θ, ordered
such that θ is low in the lower right θ is high in the upper left.

(Bradshaw et al., 2016). We also demonstrated that EDP is fairly flexible. It

can cope with a variety of control types including an IPM strategy and with data

complications such as incomplete observations and high noise.

Although this method shows significant promise for improving pest control,

there are a few important limitations to address. First, dynamic programming

policies are sensitive to model predictions. This is evident in our results, which

showed that increasing noise in the dynamics decreases forecast accuracy (Ta-

ble C.2), thereby reducing the performance of EDP (Fig. 4.5). Though EDP

still typically outperform a reactive policy, it is important to evaluate and care-

fully consider forecast accuracy before generating management advice with this

method.

Second, the historical control strategy and the quality of its data can impact

the performance of the EDP method. For example, if a system has been histori-

cally managed such that control has only been applied in a limited region of the

state space, the GP might struggle to accurately estimate how a pest population

will behave in other regions of the state space. In addition, if the data is im-
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precise and does not include accurate information about how much control was

used historically, the method could produce suboptimal policies. Managers who

are interested in using this method should be aware of which historical control

strategies offer the highest probability of success (Supporting Information C.3,

Table C.4) and should carefully track their intervention actions.

Finally, in cases with higher dimensions (e.g. number of species or number of

EDM lags is greater than 3), EDP – as implemented here – are not computationally

feasible. In these cases, similarly flexible, but more scalable methods such as

approximate dynamic programming (Powell, 2011; Sutton, 1988), reinforcement

learning (Sutton, 2018), or model predictive control (Morari and H. Lee, 1999)

could be used. Future studies should evaluate the trade-offs of these methods in

a pest management context.

There are also other important next steps. First, insect development depends

on environmental conditions, especially temperature. Future iterations of this

work should explicitly account for temperature or growing degree days (Naves

and De Sousa, 2009) in the models by using multivariate embedding (Deyle and

Sugihara, 2011) or multiview embedding (Ye and Sugihara, 2016), as this could

improve policies. Similarly, in many agricultural systems, the crop is only partic-

ularly vulnerable to pests during a window of time in the season. In our empirical

examples, we dealt with seasonality by generating separate policies for distinct

stages of the growing season (Lygus) or by incorporating a seasonal term into the

EDM model (Culex pipiens). Future work should consider more explicit and scal-

able ways to incorporate crop phenology and other forms of seasonal variability.

Future work should also evaluate other multi-objective cost functions. Our

formulation of the cost function included only pest pressure and the cost of control.

However, minimizing pesticide runoff risk (van der Werf, 1996), the risk of the
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insecticide resistance (Namias et al., 2021), and harmful impacts on non-targeted

organisms, such as pollinators and birds, are important objectives for real-world

pest management. In cases where we have data for both pests and non-target

species, we can extend the multi-objective framework to identify policies that

simultaneously suppress pests and protect non-target species. This approach has

been used in fisheries contexts (Brias and Munch, 2021) to balance harvesting and

conservation goals in multi-species settings.

Although the applications to Lygus and Culex seem promising, it is not possible

for us to validate control policies post hoc. The ultimate test of this method should

involve collaboration among empiricists, growers, or vector control agencies, and

should set up controlled experiments to evaluate the efficacy of this method in

a real application. Moreover, the framework we presented is quite general and

has potential applications beyond insect pest management such as forecasting

and mitigating the impacts of harmful algal blooms, invasive plant species, and

wildfires.

Overall, our results reveal valuable insights about monitoring and managing

insect pests. Under the time series lengths we studied, we found that having

complete observations for the system (i.e. data for the pest and its natural enemy)

had a strong advantage over partial observations (i.e. data only for the pest)

(Fig. 4.5). In addition, having complete and precise data for historical control

actions is important (Table C.4). Although ecological sampling is often time

consuming and expensive, our study provides a clear incentive to invest in more

comprehensive monitoring programs. Recent developments of automated insect

sampling methods (Pegoraro et al., 2020; Rydhmer et al., 2022) and user-friendly

tools to help managers track and store data (Chambers et al., 2015; Lagos-Ortiz

et al., 2018) make this quite feasible and would likely yield profitable results in
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the long term.

Although there is more work to be done and real-world validation is still

needed, the method we have proposed takes an important step toward being prac-

tically useful for management; EDP does not make idealized assumptions about

noise-free dynamics or perfect models and they allow us to work directly with

limited noisy data to produce useful management advice.
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Chapter 5

Conclusion

This work was motivated by the need to make practical contributions to sus-

tainable management of ecological systems. In this dissertation, we addressed this

by developing generalizable methods for prediction and control in the context of

ecological management for a range of terrestrial and aquatic systems. Since the

traditional route of using single-species models has led to repeated failures, and

since building more detailed mathematical models is challenging with our limited

understanding of true ecosystem complexity, we took a more flexible data-driven

approach. Empirical dynamic modeling is a powerful data-driven tool that has

proven potential for making practical contributions to management. However

the standard EDM framework has several limitations that greatly hinder its per-

formance in ecological applications. Specifically, EDM cannot produce accurate

predictions when time series are short or when data are sporadically sampled. In

this dissertation, we explored extensions of EDM to address those limitations in an

effort to improve predictions under likely ecological conditions. We additionally

made EDM useful for making management decisions, by exploring a connection

100



CHAPTER 5. CONCLUSION

of EDM and an optimal control method, stochastic dynamic programming, in a

pest management setting.

5.1 Summary of work

In Chapter 2, we addressed how to cope with short time series when spatial

replicates are available. Prior to this project, there were several compelling but

diverging methods to address this that had been proposed in the literature. In

ecology, studies proposed concatenating time series from multiple locations to ef-

fectively lengthen the time series (Hsieh et al., 2008). In physics, spatial neighbors

were typically directly used in embedding vectors as predictors for the dynamics

at a focal site (e.g. Bialonski et al. (2015)). There was little cross-pollination

between these realms of thinking, so we explored a comparison of the methods to

determine what features of the data influence each approach. We also developed

an approach to incorporate physical information about the dispersal of species as a

Bayesian prior for the EDM framework. We tested the methods on simulated data

generated with three population dynamics models with varying levels of complex-

ity, time series length, spatial symmetry and heterogeneity. We also applied the

methods to empirical fisheries data from the Northeast Fisheries Science Center.

Overall, we found that aggregating information across multiple sites – either

through concatenation or the inclusion of spatial inputs – can substantially im-

prove the utility of empirical approaches to ecological forecasting. Generally,

concatenation of time series yielded the strongest improvements under common

ecological conditions. However, asymmetric coupling and high spatial hetero-

geneity were shown to influence the utility of the methods, so there was not a

single approach that universally outperformed the other. Although this analy-

sis provided insights for how to adapt and improve the EDM framework under
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some common ecological conditions, there were still many datasets that were not

amenable to EDM.

Therefore, in Chapter 3, we developed another extension of EDM which allows

us to cope with missing or irregularly sampled data. Typical applications of EDM

assume that samples are evenly spaced over time, which presents problems in

ecology when data are sampled irregularly. We considered a variable step-size

extension of EDM, which incorporates the temporal spacing between samples

into EDM delay-coordinate vectors. We evaluated the forecast accuracy of the

variable step-size method, and compared it with two other methods: (1) exclusion

of delay-coordinate vectors with missing data and (2) linear interpolation along

with ordinary EDM. We tested these methods using simulated data from three

chaotic ecological models with various amounts and patterns of missing data, and

also evaluated them using two empirical datasets: laboratory rotifer dynamics

and aphid dynamics from the Rothamsted Insect Survey. Our analysis showed

that while exclusion and linear interpolation produce accurate forecasts in some

scenarios, the variable step-size method gives accurate forecasts in the widest

range of scenarios. This analysis effectively expanded the number of datasets to

which EDM can be applied.

Several additional analyses in this study revealed other interesting insights.

Specifically, an adaptation of the variable step-size EDM method can be used to

estimate Lyapunov exponents from irregularly sampled time series. We tested

this on time series data generated by the logistic map as a proof of concept,

which revealed promising results. This could help ecologists test for chaos in

more ecological time series, which may have important management implications

(Rogers et al., 2022). Perhaps more interestingly, we also discussed in Chapter

3 how it is possible to approximate continuous dynamics from discrete-time data
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using a method inspired by the variable step-size version of EDM (Appendix

B.7). This could be useful for connecting theoretical models expressed in ordinary

differential equations to field observations.

While it is possible that improving our ability to forecast complex ecological

dynamics alone would make strong contributions to management, the key to suc-

cess is determining how to optimally use the information from forecasts to make

decisions. There is currently a gap in turning our understanding of ecosystems

and predictions of dynamics into robust management decisions in many ecological

systems. One significant example of this is in the field of pest management, where

decisions are often made based on intuition, and limited observations are only

used to loosely guide actions, e.g. managers spray pesticides when they observe

a large number of pests. There is rarely a formal approach used to maximize

long-term yield and minimize costs.

Thus, in Chapter 4, we explored the framework of empirical dynamic program-

ming – EDM paired with stochastic dynamic programming – to make informed

decisions in the context of insect pest management. Using a simulated host-

parasitoid model with multiple control strategies, including biological, chemical,

behavioral control, we showed that this framework effectively prevents outbreaks

even with highly noisy data. It reduced costs compared to a reactive method by at

least 33% in the simulated data, and it outperformed historical control strategies

in empirical data from two very different systems. In the agricultural system with

Lygus, the results from empirical dynamic programming framework suggested that

it could have been possible to achieve a decrease in pest pressure with fewer pesti-

cide applications in the past. Similar results were found for the mosquito system.

This chapter demonstrated that by connecting our flexible data-driven forecasts

with formal optimization strategies, we can take reasonable steps toward improve
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decision making in ecology.

5.2 Areas for future work

Our analysis in Chapter 2 revealed interesting insights about using this frame-

work for inference about system characteristics. For instance, it may be possible

to detect heterogeneity in the dynamics maps across sites by evaluating whether or

not predictability improves by concatenating multiple sites. This can be useful for

evaluating conditions in areas where we understand little about the environment,

and can also help us evaluate how conditions change over time.

In Chapter 3, we highlighted one particularly interesting area for future work.

We established that the ideas from variable step-size EDM can be extended to

approximate continuous dynamics (i.e. dx
dt

) from discretely sampled time series

(x1, x2, ...xT ). While this is an interesting result on its own, this also offers excit-

ing possibilities in multi-species settings. Forecasting is powerful for making ro-

bust decisions in ecology, but understanding the strength and direction of species

interactions can also be very useful for decision makers. There have been numer-

ous methods proposed for estimating causal species interactions from data (e.g.

Deyle et al. (2016); Sugihara et al. (2012)), but many of them measure net effects

of one species on another and cannot determine if the interactions are direct or

indirect. Our approach for estimating continuous dynamics from discrete data

could overcome this issue. Specifically, consider a three-species system

dx

dt
= f(x, y, z)

dy

dt
= g(x, y)

dz

dt
= h(x, z).
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In this example, variables y and z are coupled indirectly through x. It may

be possible to identify these indirect interactions by approximating dy
dt

using the

approach highlighted in Section B.7, and evaluating it at multiple values of z. For

indirect interactions, dy
dt

approximations should stay consistent for all z. Future

studies should explore this approach and identify conditions in the data that could

cause it to fail.

Finally, although we have demonstrated some level of generalizability by ap-

plying our methods to data from a range of terrestrial and marine ecosystems,

there is still more work to be done to evaluate the extent of generalizability. We

only tested the complete framework of prediction and control with empirical dy-

namic programming in one ecological scenario of insect pest management. Future

studies should explore our ability to optimize decisions in other high-impact eco-

logical systems. For instance, harmful algal blooms are detrimental to marine life

and cost approximately $82 million per year (Hoagland and Scatasta, 2006). It

could be interesting to study whether a similar empirical dynamic programming

approach could mitigate the impacts of algal blooms. Other objectives for future

studies could include predicting and preventing wildfires or maximizing long-term

biodiversity in marine and forest ecosystems.
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Appendix A

to Leveraging Spatial Information

with Empirical Dynamic

Modeling

A.1 Demonstrating lack of identifiability

We demonstrated the lack of identifiability in sEDM by simulating dynamics

according to the following two-species competition model

xi
t+1 = (1 − µ)

(
xi

te
r1(1−xi

t−ayi
t)
)

+ µ

2
(
xi−1

t er1(1−xi−1
t −ayi−1

t ) + xi+1
t er1(1−xi+1

t −ayi+1
t )

)
(A.1)

yi
t+1 = (1 − µ)

(
yi

te
r2(1−bxi

t−yi
t)
)

+ µ

2
(
xi−1

t er2(1−bxi−1
t −yi−1

t ) + xi+1
t er2(1−bxi+1

t −yi+1
t )

)
(A.2)
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where xi
t represents the abundance of the first species at time t and location i yi

t

is the abundance of the second species at time t and location i. Parameter values

were r1 = 3.2, r2 = 3.7, µ = 0.3, a = 0.1, and b = 0.9. A time series of 20 points

was simulated on a one-dimensional lattice with 7 patches. Using only species

x, we fit sEDM with a naive prior and physically-informed prior and compared

the length scale parameters after the GP was fit. The physically-informed prior

showed more agreement across separate simulations.

A.2 Length scale prior specification

A.2.1 First-Order Approximation

We begin with an intuitive description of our rational followed by a formal

derivation of priors that can be used in a wide range of sEDM applications.

In modeling xi
t = f(x), x ∈ Rn with a GP, the length scale parameters govern

how much the function f can change as their corresponding entry of x changes.

If f is approximately linear, i.e. xi
t ≈

n∑
k=1

akxk = a⊤x, it is clear that ∆f
∆xj

≈

aj for any xj ∈ x and corresponding aj ∈ a. Consequently, we expect length

scale parameters in sEDM to be related to a from a linear approximation of

spatiotemporal population dynamics.

Formally, consider an application in which population dynamics evolve at dis-

crete points in time in a continuous spatial domain. The population x at time

t + 1 and spatial location u can be modeled with the first-order spatiotemporal

model,

xt(u) =
∫ ∞

−∞
M(u− y)xt−1(y)dy (A.3)

where M is the dispersal kernel describing the probability of moving from location

y to location u under an assumption of isotropy. Importantly, the form of the
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length scale prior we derive is specific to the dispersal kernel used to describe the

network topology of the system. There is a vast literature dedicated to estimating

dispersal kernels for various taxa moving in their respective environments (Kot

and Schaffer, 1986; Nathan et al., 2012; Neubert et al., 1995). One of the most

common dispersal kernels is the Gaussian kernel, M(δ) = 1√
2πv
e− δ2

2v , so we will use

this for the remainder of the derivation.

Taking the Fourier transform of (A.3) in space gives

∫ ∞

−∞
eiωuxt(u)du =

∫ ∞

−∞
eiωu

(∫ ∞

−∞
M(u− y)xt−1(y)dy

)
du

x̃t(ω) =
∫ ∞

−∞

∫ ∞

−∞
eiωuM(u− y)xt−1(y)dydu

If δ = u− y, then

x̃t(ω) =
∫ ∞

−∞

∫ ∞

−∞
eiω(δ+y)M(δ)xt−1(y)dydδ

=
∫ ∞

−∞
eiωδM(δ)dδ

∫ ∞

−∞
eiωyxt−1(y)dy

= M̃(ω)x̃t−1(ω)

=
(
M̃(ω)

)τ
x̃t−τ (ω) (A.4)

Under the assumption of Gaussian dispersal,

(
M̃(ω)

)τ
=
(
e− ω2v

2

)τ

= e− ω2vτ
2 ,

which implies

F−1
[(
M̃(ω)

)τ ]
= 1√

2πvτ
e− δ2

2vτ .

108



APPENDIX A. APPENDIX: EDM IN SPATIAL SYSTEMS

Taking the inverse Fourier transform of (A.4), we get

xt(u) =
∫ ∞

−∞

1√
2πvτ

e− δ2
2vτ xt−τ (u− δ)dδ,

where we have used the convolution theorem for an inverse Fourier transform.

In real applications, samples are taken at a finite set of points, so there is a

finite set of distances R that contribute to the focal site. In this case,

xt(u) ≈
∑
δ∈R

aδ,τ xt−τ (u− δ) (A.5)

where aδ,τ = 1√
2πvτ

e− δ2
2vτ . Thus, we have an approximate linear map taking xt(u)

to any of its spatiotemporal lags.

Now we show how to relate this result to the length scale parameters by con-

sidering the root mean square slope of a function E
((

∆f
∆xj

)2
) 1

2
, which explains

how the function changes with respect to some entry xj of x. The intuitive de-

scription above implies that this should be equal to aj, the approximate slope in

the direction of xj. Generally,

E

( ∆f
∆xj

)2
 1

2

= 1
∆xj

E
(
(f(xj + ∆xj) − f(xj))2

) 1
2

= 1
∆xj

[E(f(xj + ∆xj)f(xj + ∆xj))

− 2E(f(xj + ∆xj)f(xj))

+ E(f(xj)f(xj))]
1
2

Note that E(f(x), f(y)) = C(f(x), f(y)) = σ2R(ϕ|x − y|) where R(z) is the

autocorrelation function, σ2 is the variance of the data, and ϕ is the length scale

parameter. Here I make an assumption that the autocorrelation is Gaussian, i.e.
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R(z) = e−z2 , so R(0) = 1 and

E

( ∆f
∆xj

)2
 1

2

=
√

2σ2

∆xj

√
1 −R(ϕ∆xj).

A Taylor series expansion gives

E

( ∆f
∆xj

)2
 1

2

=
√

2σ2

∆xj

√
1 −R(0) − ϕ∆xjR′(0) − (ϕ∆xj)2

2 R′′(0).

Evaluating the expression above for Gaussian autocorrelation gives

E

( ∆f
∆xj

)2
 1

2

=
√

2σ2ϕ.

Since
√

2σ2ϕ ≈ aj, one should set

ϕ ≈ aj√
2σ2

. (A.6)

Using the results from (A.5) and (A.6) together in sEDM applications, we set the

half-normal prior distribution (2.4), and choose γ such that

E[ϕδ,τ ] ≈ aδ,τ√
2σ2

. (A.7)

This results gives a reasonable prior specification derived from a first-order ap-

proximation. See the next section for a more general prior specification without

the first-order assumption.
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A.2.2 General length scale prior specification

The preceding derivation started from a scalar model of population dynamics

evaluated near equilibrium. For more general settings, suppose we have the model

yt = Ayt−1 (Process model) (A.8)

xt = Kyt (Observation model) (A.9)

Let yt be a vector containing all species in the system in every location at time

t. That is, in a system with N species and P locations, yt ∈ Rn with n = P ·N .

Let xt be the observed values at time t. Since it is often not possible to observe

every species in the system, we assume K to be sparse. In fact, in all sEDM

applications in this paper, we assume observations of only a single species in all

locations. In other words, xt ∈ RP and K ∈ RP ×n. Notice that

xt = Kyt = KAyt−1 = ... = KAEyt−E (A.10)

In sEDM, we would like to find

xt = M1xt−1 +M2xt−2 + · · · +MExt−E (A.11)

From the setup, it follows that

xt = M1xt−1 +M2xt−2 + · · · +MExt−E

= M1Kyt−1 +M2Kyt−2 + · · · +MEKyt−E

= M1KA
E−1yt−E +M2KA

E−2yt−E + · · · +MEKyt−E (A.12)

In previous sections our first-order assumption implied M2 = M2
1 , . . . ,ME = ME

1 .
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Now we allow more flexibility for this to not be the case. We would like to know

what M1,M2, . . . ,ME are, so that we can use our result from (A.11) to set prior

distributions length scale parameters.

Setting (A.10) equal to (A.12), we get

KAE = M1KA
E−1 +M2KA

E−2 + · · · +MEK

Similarly,

KAE+1 = M1KA
E +M2KA

E−1 + · · · +MEKA

Repeating this process, we get

[
KAE

∣∣∣∣∣ . . .
∣∣∣∣∣KA2E−1

]
=
[
M1

∣∣∣∣∣ . . .
∣∣∣∣∣ME

]


KAE−1 KAE . . . KA2E−2

KAE−2 KAE−1 . . . KA2E−3

... ... . . . ...

K KA . . . KAE−1



or V = MQ where we repeated the process enough times so that Q has full rank

and its right inverse exists. Solving for M1,M2, . . . ,ME, we get

[
M1

∣∣∣∣∣ . . .
∣∣∣∣∣ME

]
=
[
KAE

∣∣∣∣∣ . . .
∣∣∣∣∣KA2E−1

]


KAE−1 KAE . . . KA2E−2

KAE−2 KAE−1 . . . KA2E−3

... ... . . . ...

K KA . . . KAE−1



−1

These results show that if we have reasonable knowledge of A and K, we can

recover a linear model relating xi
t to any of its spatiotemporal lags by (A.11).

From here, we can use the result from the previous section to set prior distributions

for the length scale parameters. It is important to note that in many practical

112



APPENDIX A. APPENDIX: EDM IN SPATIAL SYSTEMS

applications, it is not feasible to know A exactly and estimating it can be tedious.

Additionally, the movement dynamics for all species must be the same in order for

this method to yield tractable analytical solutions. Consequently, it is not likely

that this method of prior specification is practical in real applications. We have

simply presented it as a theoretical foundation for relating true system dynamics

to the length scale parameters in sEDM.

A.3 Measuring synchrony

We hypothesize that the utility of spatial methods could be related to how

synchronous the dynamics are. Intuitively, asynchronous dynamics may cause

dynamics to differ widely across sites, causing sEDM to provide little advantage.

We tested the consistency of this hypothesis by using three metrics to measure the

degree of synchrony for each of the simulated models and each of the empirical

species from the NEFSC study.

The first measure of synchrony is related to the notion of a spatial return

plot (Crutchfield and Kaneko, 1987; Vasconcelos et al., 2004) which is a plot of

a value of each site, xi
t versus its nearest neighbor xi+1

t at a fixed time. When

dynamics are highly synchronous, the spatial return plot is concentrated around

the diagonal of the plot, and as they become asynchronous, the return plot is

more scattered. The first measure of synchrony computes the average distance of

each point in the spatial return plot to the diagonal. We call this measure the

"distance to synchrony," and it is given by

d̄ = 1
N

N∑
i=1

∣∣∣∣∣ 1√
2
(
xi

t − xi+1
t

)∣∣∣∣∣ . (A.13)

Lower values of d̄ indicate higher synchrony, with d̄ = 0 meaning full synchrony.
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Note that d̄ ≈ 0.3 is considered high when data are scaled to have mean 0 and

standard deviation 1. For our applications, we scaled the data, measured this for

every point in the time series, and reported the average d̄ over the entire series.

The second measure of synchrony is called the "order parameter" (Kuramoto,

1984; Pinto and Viana, 2000; Vasconcelos et al., 2004) and is given by

zt = 1
N

N∑
j=1

exp
(
2πixj

t

)
. (A.14)

The magnitude of the order parameter is 1 when dynamics are completely

synchronous, and decreases as they become more asynchronous. We computed the

magnitude of the order parameter for each point in the time series and reported

the average | zt | over the series.

Finally, we used the distance at which dynamics become uncorrelated as a

measure of synchrony. For all pairs of locations, we measured the autocorrelation

given by,

ρ(xi, xj) = 1
T

T∑
t=1

(xi
t − xi)(xj

t − xj)
σi, σj

, (A.15)

where xi is the mean abundance in location i and σi is the standard deviation of

abundance in location i. The synchrony measure was given by the distance two

inputs must be from each other for the average autocorrelation to pass below a

threshold of 0.5. We scaled the distance by the maximum distance so that if the

autocorrelation never went below 0.5, synchrony was 1. Thus, highly synchronous

dynamics are close to 1 and asynchronous dynamics are close to 0 by this measure.

Table A.1 shows the degree of synchrony for each case in the main paper.

As expected, all of the simulated models with periodic dynamics are highly syn-

chronous, and we can generate chaotic dynamics that are fairly synchronous or

asynchronous. For the most part, empirical data was asynchronous.
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Distance to Order Autocorrelation
Synchrony Parameter

Model 1 (periodic) 0.10 0.59 1
Model 2 (periodic) 0.14 0.38 1
Model 3 (periodic) 0.09 0.70 1

Model 1 (chaotic-high synch) 0.18 0.42 1
Model 2 (chaotic-high synch) 0.21 0.28 0.33
Model 3 (chaotic-high synch) 0.11 0.62 1
Model 1 (chaotic-low synch) 0.30 0.23 0.05
Model 2 (chaotic-low synch) 0.29 0.21 0.09
Model 3 (chaotic-low synch) 0.25 0.48 0.12

Longfin squid 0.46 0.12 0.04
Silver hake 0.43 0.15 0.04
Butterfish 0.45 0.13 0.04

Table A.1: Degree of synchrony in the dynamics generated with each of the sim-
ulated models and each of the species from the empirical analysis (fine resolution
data). Three measures of synchrony were used. On average, the empirical species
had more asynchronous dynamics than the simulated models.

A.4 More information on results

Here we give numerical values for the RMSE and the fraction of variance

explained (R2) on simulated and empirical data. Table A.2 gives results corre-

sponding to Fig. 2.4 for simulated data in different dynamical regimes, Table A.3

corresponds to Fig. 2.5 for simulated data with different time series lengths, Table

A.4 corresponds to Fig. 2.7 for simulated data in different coupling schemes.

A.5 Temporal and spatial return plots

Fig. A.1 shows the spatial and temporal return plots for 3 dynamical regimes

of the models in Table 2.1. Data were simulated on a lattice of N = 75 with

periodic boundary conditions for time series length T = 300. One location was
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A.5. TEMPORAL AND SPATIAL RETURN PLOTS

# Method Periodic Chaotic Chaotic
(high synch) (low synch)

RMSE R2 RMSE R2 RMSE R2

Informed sEDM (l) 0.2782 0.92 0.4875 0.74 0.6605 0.53
Informed sEDM (c) 0.1893 0.96 0.2116 0.95 0.2174 0.95

1 Naive sEDM (l) 0.2802 0.92 0.5051 0.72 0.6876 0.49
Naive sEDM (c) 0.1959 0.96 0.2151 0.95 0.2198 0.95
EDM (l) 0.2102 0.95 0.3432 0.87 0.4762 0.76
EDM (c) 0.1749 0.97 0.2126 0.95 0.2240 0.95
Informed sEDM (l) 0.2986 0.91 0.4833 0.76 0.6423 0.57
Informed sEDM (c) 0.1507 0.98 0.1483 0.98 0.1830 0.97

2 Naive sEDM (l) 0.3090 0.90 0.5040 0.74 0.6750 0.53
Naive sEDM (c) 0.1507 0.98 0.1484 0.98 0.1835 0.97
EDM (l) 0.2189 0.95 0.2903 0.91 0.4272 0.81
EDM (c) 0.1527 0.98 0.1704 0.97 0.2276 0.95
Informed sEDM (l) 0.3788 0.85 0.4090 0.82 0.7494 0.43
Informed sEDM (c) 0.2022 0.96 0.1921 0.96 0.2570 0.92

3 Naive sEDM (l) 0.3926 0.83 0.4168 0.81 0.7476 0.43
Naive sEDM (c) 0.2379 0.94 0.2364 0.94 0.3549 0.85
EDM (l) 0.3280 0.88 0.3539 0.87 0.5936 0.63
EDM (c) 0.1764 0.97 0.1819 0.96 0.2190 0.94

Table A.2: One-step-ahead forecast RMSE and R2 (i.e. fraction of the variance
explained) for different dynamical regimes of simulated data. RMSE are scaled
such that the mean predictor has a RMSE of 1.0. Bold values indicate the method
with the best forecast accuracy. Methods labeled with (l) are local methods, and
methods labeled with (c) are concatenated.

chosen at random and used to generate the return plots. Generally, plots with

more structure (e.g. periodic dynamics or temporal maps) are easier to predict

with a GP than those with less structure (e.g. chaotic, low synchrony, spatial

maps).
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# Method 25 50 75
RMSE R2 RMSE R2 RMSE R2

Informed sEDM (l) 0.4875 0.74 0.3303 0.88 0.2696 0.93
Informed sEDM (c) 0.2116 0.95 0.1895 0.96 0.1835 0.97

1 Naive sEDM (l) 0.5051 0.72 0.3450 0.87 0.2846 0.92
Naive sEDM (c) 0.2151 0.95 0.1895 0.96 0.1837 0.97
EDM (l) 0.3432 0.88 0.2668 0.93 0.2270 0.94
EDM (c) 0.2126 0.95 0.1990 0.96 0.1925 0.96
Informed sEDM (l) 0.4833 0.76 0.2413 0.94 0.1919 0.96
Informed sEDM (c) 0.1483 0.98 0.1256 0.98 0.1176 0.99

2 Naive sEDM (l) 0.5040 0.74 0.2452 0.94 0.1922 0.96
Naive sEDM (c) 0.1484 0.98 0.1258 0.98 0.1176 0.99
EDM (l) 0.2903 0.91 0.2132 0.95 0.1886 0.96
EDM (c) 0.1704 0.97 0.1583 0.97 0.1518 0.98
Informed sEDM (l) 0.4090 0.82 0.3219 0.89 0.2741 0.92
Informed sEDM (c) 0.1921 0.96 0.1503 0.98 0.1386 0.98

3 Naive sEDM (l) 0.4168 0.81 0.3526 0.86 0.3050 0.91
Naive sEDM (c) 0.2364 0.94 0.1947 0.96 0.1756 0.97
EDM (l) 0.3539 0.87 0.2708 0.92 0.2313 0.95
EDM (c) 0.1819 0.96 0.1507 0.98 0.1411 0.98

Table A.3: One-step-ahead forecast RMSE and R2 (i.e. fraction of the variance
explained) for different time series lengths of simulated training data. RMSE are
scaled such that the mean predictor has a RMSE of 1.0. Bold values indicate
the method with the best forecast accuracy. Methods labeled with (l) are local
methods, and methods labeled with (c) are concatenated.

A.6 Concatenating sites versus long time series

Since the method of concatenating libraries works drastically better than local

methods on some simulations, it is reasonable to ask whether this is a result of

the larger amount of data used to fit the GP with concatenated methods. Fig.

A.2 shows the RMSE of forecasts on Model 1 as we increase the time series length

of local methods until they have the equivalent number of data points. In this

example, concatenated methods combined data from 5 randomly selected loca-

tions in the N = 50 lattice. Hence in a standard comparison of these methods,
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# Method Symmetric Asymmetric
RMSE R2 RMSE R2

Informed sEDM (local) 0.4875 0.74 0.5017 0.84
Informed sEDM (concatenated) 0.2116 0.95 0.2633 0.93

1 Naive sEDM (local) 0.5051 0.72 0.5138 0.83
Naive sEDM (concatenated) 0.2151 0.95 0.2640 0.93
EDM (local) 0.3432 0.88 0.5091 0.74
EDM (concatenated) 0.2126 0.95 0.3243 0.89
Informed sEDM (local) 0.4833 0.76 0.3868 0.85
Informed sEDM (concatenated) 0.1483 0.98 0.1853 0.96

2 Naive sEDM (local) 0.5040 0.74 0.3969 0.84
Naive sEDM (concatenated) 0.1484 0.98 0.1856 0.96
EDM (local) 0.2903 0.91 0.4398 0.80
EDM (concatenated) 0.1704 0.97 0.2712 0.93
Informed sEDM (local) 0.4090 0.82 0.4443 0.79
Informed sEDM (concatenated) 0.1921 0.96 0.2103 0.95

3 Naive sEDM (local) 0.4168 0.81 0.4495 0.79
Naive sEDM (concatenated) 0.2364 0.94 0.2588 0.93
EDM (local) 0.3539 0.87 0.5456 0.69
EDM (concatenated) 0.1819 0.96 0.2245 0.95

Table A.4: One-step-ahead forecast RMSE and R2 (i.e. fraction of the variance
explained) for different dispersal coupling schemes on simulated data. RMSE are
scaled such that the mean predictor has a RMSE of 1.0. Bold values indicate the
method with the best forecast accuracy.

concatenated methods would be using 5× more data to fit the GP. In these sim-

ulations, we fix the length of the training time series for concatenated methods

at T = 30 and increase the length of the time series for local methods until the

two methods are trained on the same amount of data. As we intuitively expect,

when we increase the time series length by 5× the predictive accuracy of local are

approximately the same as the concatenated methods.
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Longfin squid Silver hake Butterfish
RMSE R2 RMSE R2 RMSE R2

Informed sEDM (l) 0.6327 0.60 0.5412 0.71 0.7287 0.47
Informed sEDM (c) 0.5440 0.70 0.4552 0.79 0.6197 0.62
Naive sEDM (l) 0.6407 0.59 0.5740 0.67 0.7321 0.46
Naive sEDM (c) 0.5441 0.70 0.4893 0.76 0.6289 0.60
EDM (l) 0.6208 0.61 0.6177 0.62 0.8044 0.35
EDM (c) 0.5332 0.71 0.6036 0.64 0.6272 0.61

Table A.5: Spatial data separated by major region (N = 4). Sequential forecast
RMSE and R2 (i.e. fraction of the variance explained) NEFSC bottom trawl
survey data. RMSE are scaled such that the mean predictor has a RMSE of 1.0.
Bold values indicate the method with the best forecast accuracy. Methods labeled
with (l) are local methods, and methods labeled with (c) are concatenated.

Longfin squid Silver hake Butterfish
RMSE R2 RMSE R2 RMSE R2

Informed sEDM (l) 0.6832 0.53 0.8805 0.22 0.9724 0.05
Informed sEDM (c) 0.5491 0.70 0.6747 0.54 0.7763 0.40
Naive sEDM (l) 0.6868 0.53 0.8600 0.26 0.9766 0.05
Naive sEDM (c) 0.5527 0.69 0.6748 0.54 0.7763 0.40
EDM (l) 0.6477 0.58 0.7481 0.4404 0.9300 0.14
EDM (c) 0.5482 0.70 0.6225 0.61 0.7780 0.39

Table A.6: Spatial data separated by survey strata (N = 47). Sequential forecast
RMSE and R2 (i.e. fraction of the variance explained) NEFSC bottom trawl
survey data. RMSE are scaled such that the mean predictor has a RMSE of 1.0.
Bold values indicate the method with the best forecast accuracy. Methods labeled
with (l) are local methods, and methods labeled with (c) are concatenated.

A.7 Simultaneous effect of asymmetry and het-

erogeneity

Asymmetry and heterogeneity were individually shown to affect the utility

of sEDM and concatenated methods. Here we show the effect when these are

simultaneously present. Fig. A.3 shows that with both of these effects present,
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A.8. FORECAST HORIZON
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Figure A.1: Temporal and spatial return plots for all models in Table 2.1 for
periodic dynamics, chaotic dynamics with high spatial synchrony, and chaotic
dynamics with low spatial synchrony. Temporal return plots show xi

t vs. its time
lag of xi

t−1. Spatial return plots show xi
t as a function of its spatial lag xi+1

t .

local sEDM methods outperform all other methods, and concatenated methods

suffer as the degree of heterogeneity increases.

A.8 Forecast Horizon

In the main document, all simulations focused on one-step-ahead forecasts, but

it is natural to consider how these methods perform as we increase the number

of steps we predict into the future. Fig. A.4 shows the RMSE (averaged over 20

independent simulations) of all six methods on each model from the main paper

as we increase the step-ahead forecasts. As expected, forecast accuracy decreases

as we predict further into the future, but the ranking of methods does not appear

to change.
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Figure A.2: Average RMSE on testing data over 100 simulations of Model 1
from Table 2.1. Results are shown for local (dotted lines) and concatenated (solid
lines) informed sEDM (purple), naive sEDM (pink), and EDM (yellow). The x-
axis indicates ratio of number of data points in the local methods compared to

the number of data points in the concatenated methods. i.e. γ =
nlocal

nconcatenated

,
where n is the number of data points.

A.9 Timescale and Predictability

It is important to consider the effect of timescale on these methods. Particu-

larly, if the periodicity of dynamics is longer than the time series or the number of

time lags in embedding vectors, no form of EDM is likely to predict dynamics well.

Since these methods make predictions based on the history of data, the dynamics

must go through full cycles within the training period. If they do not, predic-

tions are difficult to make with EDM. As an example, we generated dynamics for

a four-species competition model given in Table A.7 on an N = 50 lattice with

periodic boundary conditions. An example of resulting dynamics for species x are

shown in Fig. A.5. Clearly, dynamics are highly irregular with a large periodicity

of over 30 time points.

We used the 6 EDM and sEDM methods to these data, training on Ttrain = 25
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Figure A.3: Average RMSE on testing data over 50 simulations of Model 2 from
Table 2.1 for various degrees of heterogeneity and asymmetric coupling with uni-
directional dispersal. Results are shown for local (dotted lines) and concatenated
(solid lines) informed sEDM (purple), naive sEDM (pink), and EDM (yellow). We
imposed heterogeneity by varying one parameter (growth rate) across sites with a
sinusoidal function. The measure of heterogeneity in growth rate is given by the
amplitude of the sinusoidal function used to vary the parameter. The auxiliary
x-axis at the top of each figure is the empirical measure of heterogeneity in mean
abundance (see Methods).

and Ttest = 20 with an embedding dimension of E = 5 and spatial embedding

dimension S = 5. This resulted in the following RMSEs averaged over 100 simu-

lations:

Informed sEDM (local): 0.9302

Informed sEDM (concatenated): 0.5081

Naive sEDM (local): 0.9322

Naive sEDM (concatenated): 0.6498

EDM (local): 0.8252
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(a) (b) (c)

Figure A.4: Average RMSE on testing data over 20 simulations of each model
from Table 2.1 for various steps ahead. Results are shown for local (dotted lines)
and concatenated (solid lines) informed sEDM (purple), naive sEDM (pink), and
EDM (yellow). We computed multi-step ahead dynamics by training the GPs on
multi-step map.

Name Model Parameters
Competition f(•) = xer1(1−A11x−A12y−A13z−A14w) r1 = 2.75, r2 = 2.8,

(4 species: x,y,z,w) g(•) = yer2(1−A21x−A22y−A23z−A24w) r3 = 2.9,r4 = 2.6
h(•) = zer3(1−A31x−A32y−A33z−A34w)

k(•) = wer4(1−A41x−A42y−A43z−A44w) A =
[

1 1.09 1.52 0
0 1 0.44 1.36

2.33 0 1 0.47
1.21 0.51 0.35 1

]

Table A.7: Functions and parameter values of a four-species Ricker competition
model. Nearest neighbor dispersal on a one-dimensional lattice was generated
with time series updates given by
xi

t+1 =
[
(1 − µ)f(•i

t) + µ
2

(
f(•i−1

t ) + f(•i+1
t )

)]
eξt

yi
t+1 =

[
(1 − µ)g(•i

t) + µ
2

(
g(•i−1

t ) + g(•i+1
t )

)]
eξt

zi
t+1 =

[
(1 − µ)h(•i

t) + µ
2

(
h(•i−1

t ) + h(•i+1
t )

)]
eξt

wi
t+1 =

[
(1 − µ)k(•i

t) + µ
2

(
k(•i−1

t ) + k(•i+1
t )

)]
eξt

The big dot notation indicates that the function takes x, y, z, w inputs at the
specified time and spatial coordinate. For all simulations, the noise term was
drawn independently from a normal distribution, i.e. ξt ∼ N(−s2/2, s2), with
s = 0.02.
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Figure A.5: Dynamics of the first species in a four-species Ricker competition
model given in Table A.7.

EDM (concatenated): 0.6128

Since our EDM models typically only include 5 lags in time and the periodicity is

much longer, local methods perform poorly because most lags do not contain any

dynamics. The local methods were less than 20% better than the mean predictor

on average, and the concatenated methods also suffered, never reducing error more

than 50% from the mean predictor. This highlights the importance of scale when

using these methods.
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Appendix B

to Empirical Dynamic Modeling

for Missing or Irregular Data

B.1 Models for simulated data

We simulated ecological dynamics using three models: (a) Ricker dynamics,

(b) host-parasitoid dynamics, and (c) three-species competition dynamics (Table

3.1). These models were chosen to represent common types of species interactions

that are known to exist in ecological data.

B.2 Empirical data

Laboratory data on rotifer dynamics (Figure B.1) and field data from the

Rothamsted Insect Survey (Figure B.2) were used. Predicted vs. observed dy-

namics for both empirical examples were plotted (Figures B.3 and B.4).
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B.2. EMPIRICAL DATA

Figure B.1: Rotifer dynamics. Population dynamics of the rotifer Brachionus
calyciflorus in experiments from Halbach (1984). Two separate experiments (ex-
periment 1 (a) and experiment 2 (b)) were performed at 20◦C. Samples were taken
at irregular intervals from 0.5 to 1.5 days.
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Figure B.2: Aphid survey sites and dynamics. Rothamsted insect survey
sites and dynamics used to forecast dynamics of the English grain aphid (Sitobion
avenae).
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Figure B.3: Prediction accuracy for laboratory data. Predicted vs. ob-
served values of variable step-size EDM for (a) experiment 1 and (b) experiment
2 from Halbach (1984). Black dots are predicted and observed values, and the red
line is the one-to-one line.
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B.3. ADDITIONAL ANALYSIS ON STATE-DEPENDENT MISSING
VALUES
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Figure B.4: Prediction accuracy on field data. Predicted vs. observed
values of variable step-size EDM for the five Rothamsted insect survey sites. Dif-
ferent colors represent different proportions of missing data, and the solid black
line is the one-to-one line.

B.3 Additional analysis on state-dependent miss-

ing values

All methods we tested were extremely sensitive to state-dependent missing

values (i.e. those missing below a threshold). We hypothesized that this sensitivity

was due to the models we used, all of which have strong divergence in dynamics for

small population sizes. Since the models diverge less for large population sizes, we

evaluated how the methods performed when we removed all points that fall above
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a set percentage of the simulated range of states, which we varied from 85-100%

in 3% increments. As expected, when the missing values fall in this less variable

region of the state space, all of the methods were considerably less sensitive to

missing values (Figure B.5).

Figure B.5: Effect of state-dependent missing values on forecast accu-
racy. Median (solid line) and first and third quartiles (lower and upper limits of
colored band, respectively) of R2 vs. the upper proportional threshold at which
values are missing. Results are shown for variable step-size EDM (red), the ex-
clusion method (yellow), the interpolation method (blue), and EDM of complete
data (dashed black) on three models: (a) Ricker dynamics, (b) host-parasitoid
dynamics, and (c) three-species competition dynamics (Table 3.1).

Limitations of sampling equipment or design sometimes cause values below a

detection threshold to be recorded as false zeros in ecological surveys. Similarly,

when a time series is missing values, it is relatively common for EDM users to fill

them with zeros (e.g. Kawatsu et al. (2021)). From an EDM point of view, these

biased estimates may reduce forecast accuracy because they mischaracterize the

relationship between past and future states. Although modelers do this, one may

ask whether it is better to avoid the biased values entirely by treating them as

missing values and performing VS-EDM.

Thus, we evaluated VS-EDM forecasts in which values below a threshold were

treated as missing and compared them to standard EDM forecasts in which these

values were assigned zero. We compared these two approaches for all three models
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(Table 3.1) and generated the missing values using the methods described in for

scenario IV (Chapter 3). Results indicate that for small detection thresholds

(i.e., < 0.05), VS-EDM yields more accurate forecasts, but for larger thresholds,

standard EDM of the biased data does so (Figure B.6). Importantly, in real

applications it may not be clear where this intersection occurs, and the “smallness”

of the detection threshold may be uncertain. Additionally, this result probably

depends on the curvature of the dynamics where the data are missing or biased.

In light of this, we again tested both of these methods on the same three models,

but with different parameters that generate periodic dynamics. In this case, VS-

EDM performed better than EDM on biased data, even for large proportions of

missing values for two of the models (Figure B.7a,b), but suffered greatly for the

third model (Figure B.7c). Thus, the outcome of this analysis appears to be case-

specific, and in real EDM applications in which false zeros are a concern, it may

be useful to apply both of these approaches.

Figure B.6: Comparison of missing vs. biased values on forecast accu-
racy. Median (solid line) and first and third quartiles (lower and upper limits
of colored band, respectively) of R2 vs the lower proportional threshold at which
values are missing or assigned a value of zero in the training data. Results are
shown for variable step-size EDM when the values are missing (red), EDM when
the values are zero (blue), and EDM of complete data (dashed black) for the three
models, which generate chaotic (a) Ricker dynamics, (b) host-parasitoid dynam-
ics, and (c) three-species competition dynamics (Table 3.1).
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Figure B.7: Comparison of missing vs. biased values on forecast ac-
curacy (periodic dynamics). Median (solid line) and first and third quartiles
(lower and upper limits of colored band, respectively) of R2 vs the lower propor-
tional threshold at which values are missing or assigned a value of zero in the
training data. Results are shown for variable step-size EDM when the values are
missing (red), EDM when the values are zero (blue), and EDM of complete data
(dashed black) for the three models, which generate periodic (a) Ricker dynamics,
(b) host-parasitoid dynamics, and (c) three-species competition dynamics (Table
3.1). The parameter values to generate periodic dynamics are given in Table 3.1
with r = 2.6 instead of r = 3.0 for all models.

B.4 Sensitivity to Time Series Length

The primary disadvantage of using VS-EDM in ecological applications is that

it doubles the dimension of inputs, which may be problematic for short time

series, which are common in ecology. To characterize the sensitivity to short

time series, we perform VS-EDM for time series of different lengths. For each

model (Table 3.1), we assigned a random initial value to each variable, iterated

the model for 140, 155, or 170 steps, and removed the first 100 points to avoid

transient dynamics. This left time series of length 40, 55, and 70, which we split

into 20, 35, or 50 ‘training’ data points for fitting the Gaussian process (GP)

hyperparameters and 20 ‘testing’ points. For each model, we subsampled the

training data to generate various amounts of randomly occurring missing data

using the method described for scenario I (Chapter 3).
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As expected, shorter time series yield worse predictions: with a training dataset

of 50, 35, and 20 points, forecasts are usable up to 40%, 30%, and 20-25% missing,

respectively (Figure B.8). Because it is well known that fewer inputs yield worse

predictions, it may be more interesting to compare the forecast accuracy at an

equivalent scale – the number of points that VS-EDM uses. Accordingly, we find

the same results as a function of the number of inputs; given the same number

of inputs, VS-EDM gives higher forecast accuracy when there are fewer missing

values (Figure B.9). For instance, a time series of 50 points with 50% missing

and a time series of 35 points with 30% missing both use 25 inputs, but the

latter (shorter, with fewer missing values) gives much more accurate forecasts

(Figure B.9). Furthermore, a regularly sampled time series of 20 points yields

more accurate forecasts than 25 sparsely sampled points from a time series of 50

points. This result indicates that as new τs are introduced, longer time series to

are needed produce equivalent forecasts.

Figure B.8: Comparison of time series length. Median (solid line) and first
and third quartiles (lower and upper limits of colored band, respectively) of R2

vs. the proportion of random missing training data of variable step-time EDM
with a training time series length of 20 points (blue), 35 points (red), and 50
points (yellow). The dashed black line shows the mean R2 when the data have
no missing values. Results are shown for three models: (a) Ricker dynamics, (b)
host-parasitoid dynamics, and (c) three-species competition dynamics (Table 3.1).
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Figure B.9: Effect of number of inputs on forecast accuracy for different
time series lengths. Median (solid line) and first and third quartiles (lower and
upper limits of colored band, respectively) of R2 vs. the proportion of random
missing training data of variable step-size EDM with a training time series length
of 20 points (blue), 35 points (red), and 50 points (yellow). The dashed black line
shows the mean R2 when the data have no missing values. Results are shown for
three models: (a) Ricker dynamics, (b) host-parasitoid dynamics, and (c) three-
species competition dynamics (Table 3.1).

B.5 Augmented VS-EDM with artificial missing

values

As mentioned in the main text, sometimes only a few inputs exist for a given

inter-sample step size, τ , which may reduce the forecast accuracy of VS-EDM.

However, complete portions of the time series could be used to create more inputs

corresponding to any given τ . We performed a preliminary test this idea for the

three models (Table 3.1) with the following procedure. For each time series, we

first created an identical replicate of the 50-point training data (which contains

missing values) and randomly selected and removed an additional 10 points (i.e.

an additional 20%). We stitched this new time series to the end of the original

training data, which effectively doubled the length of the time series, created more

replicates of existing τ ’s, and potentially introduced a few new values of τ . We re-

peated this procedure 5 times until we had a training dataset that was 6 times the
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length of the original time series and had more missing values. From this long time

series, we constructed the VS-EDM delay-coordinate vectors, avoiding time lags

that crossed over multiple replicates of the time series. Since the delay-coordinate

vectors were constructed from identical time series replicates, we removed any

duplicate embedding vectors to avoid redundancy and numerical issues in the GP

matrix inversion step. Once the GP hyperparameters were estimated from this

augmented training data, we forecasted the 20 out-of-sample testing points.

Figure B.10: Comparison of standard variable step-size EDM (VS-
EDM) and an augmented version. Median (solid line) and first and third
quartiles (lower and upper limits of colored band, respectively) of R2 vs. the
proportion of random missing training data of standard VS-EDM (red) and aug-
mented VS-EDM (blue). The dashed black line shows the mean R2 when the data
have no missing values. Results are shown for three models: (a) Ricker dynamics,
(b) host-parasitoid dynamics, and (c) three-species competition dynamics (Table
3.1).

The augmented version of VS-EDM greatly improved forecasts for all three

models, particularly for large proportions of missing data, indicating that it may

be a valuable adaptation of VS-EDM (Figure B.10). However, several statistical

concerns cannot be ignored. Specifically, when time series are duplicated to create

additional data, the outputs become non-independent. We propose that this may

be a reasonable step forward, but more theoretical work is needed to justify its

general use.
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B.6 Estimating Lyapunov exponents from irreg-

ularly sampled time series

In the main text (Chapter 3), we consider the possibility of extending the

concept of VS-EDM to estimate Lyapunov exponents (LE) from irregularly spaced

time series. To make our argument transparent in a single-variable system, we

first recall how the LE is calculated when the time step is fixed. The LE is defined

as the exponential growth rate of an infinitesimal perturbation in the long-time

limit (Strogatz, 1994; Wolf et al., 1985). That is, in 1-d, if xt = Ft[x0], then the

LE is given by

λ = lim
t→∞,∆x0→0

1
t

ln
∣∣∣∣∣∆xt

∆x0

∣∣∣∣∣
= lim

t→∞,∆x0→0

1
t

ln
∣∣∣∣∣Ft[x0 + ∆x0] − Ft[x0]

∆x0

∣∣∣∣∣
= lim

t→∞

1
t

ln
∣∣∣∣∣F ′

t [x0]
∣∣∣∣∣. (B.1)

For discrete time systems, F ′
t [x0] is evaluated using the chain rule, taking advan-

tage of the fact that the t-step ahead map is the tth iterate of the 1-step map,

xt+1 = F1[xt], so that F ′
t [x0] = ∏t−1

i=0 F
′
1[xi] and so that λ = limt→∞

1
t

∑t−1
i=0 ln|F ′

1[xi]|.

See Wolf et al. (1985) for more details.

For the irregularly sampled map, we proceed analogously, noting that xt =

Ft[x0] implies xt = Ft−τ [Fτ [x0]] so that the derivative F ′
t [x0] = F ′

t−τ [Fτ [x0]]F ′
τ [x0] =

F ′
t−τ [xτ ]F ′

τ [x0]. Hence, the LE may be calculated from the sequence of unequal

time-step maps as λ = limt→∞
1
t

∑t−1
i=0 ln|F ′

τi
[x(ti)]| where τi is the duration of the

ith interval, ti = ∑i−1
j=0 τj is the time at the start of the ith interval, and t is the

total time.

To demonstrate the utility of this approach, we simulated time series of length
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200 from a logistic map (xt+1 = rxt(1−xt)) for a range of growth rates (r) between

3.5 and 4. From the complete time series corresponding to each r, we estimated

the LE with λ = limt→∞
1
t

∑t−1
i=0 ln|F ′

1[xi]|. Note that we approximated F with a

GP and computed its derivatives from the approximation. See Rasmussen and

Williams (2006) for a description of how to get derivatives from the GP. Once

we estimated the LE from the complete data, we randomly selected and removed

20% of the points from the time series, leaving us with unevenly sampled time

series. We used the variable step-size LE approach on these unevenly sampled

time series with λ = limt→∞
1
t

∑t−1
i=0 ln|F ′

τi
[x(ti)]|. We also evaluated interpolation

and exclusion on the sparsely sampled data and quantified the accuracy of all

methods by calculating their R2s compared to the “right” answer, which uses the

exact derivatives from the logistic map (i.e. F ′(x) = r − 2rx) instead of the GP

approximations. Since estimates of the derivatives from a GP are highly state-

dependent and can influence the accuracy of LE estimates, we also performed the

same procedure when samples below 0.1 were missing.

For a complete time series, we obtain highly accurate estimates of the LEs

(R2=0.97) for r from 3.5-4.0 (Figures B.11 and B.12). With 20% of the points

missing at random from the time series, the variable step-size LE approach does

well (R2 = 0.85), interpolation does poorly (R2 = −4.55), and exclusion does well

(R2 = 0.84). With points below 0.1 missing, the variable step-size LE approach

still does well (R2 = 0.86), interpolation gives R2 = −0.92, and exclusion gives

R2 = 0.80. Overall, interpolation performs poorly for these data because they

vary greatly. Exclusion does well because the data are plentiful and the dynamics

are 1-d, so the order of derivative multiplication does not matter. In both cases,

using the variable step-size method has an advantage, particularly when missing

values are state-dependent. We expect that this advantage will be greater in
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higher-dimensional systems.
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Figure B.11: Lyapunov exponent estimates from time series (missing at
random): Estimated Lyapunov exponents from 200-point time series generated
with the logistic map. From left to right, results are shown when using the com-
plete time series and, for the time series with 20% missing, the variable step-size
LE method, interpolation method, and exclusion method.
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Figure B.12: Lyapunov exponent estimates from time series (missing
below a threshold): Estimated Lyapunov exponents from 200-point time series
generated with the logistic map. From left to right, results are shown when using
the complete time series and, when points below 0.1 are missing, the variable
step-size LE method, interpolation method, and exclusion method.

Importantly, the theory and example presented here applies only if there is

one independent state variable. Most ecological systems are not one-dimensional,

however, so the method needs to be extended to accommodate time series that

come from systems with multiple interacting species.
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In more than one dimension, stability is still defined by the long run growth of

a perturbation to x(t) = Ft[x(0)]. This is determined with the Jacobian matrix,

Jt whose elements are (Jt)ij = ∂Fit

∂xj(0) . If ψt is the dominant eigenvalue of Jt, the

LE is given by λ = limt→∞
1
t

ln|ψt|. By analogy with the 1-d case, we calculate Jt

via the chain rule as the product of Jacobians for each of the τi-step ahead maps.

In the case where we are using delay coordinates, these τi-step ahead Jacobians

have a particularly simple form,

J [x(ti)] =



∂F
∂x(ti−1)

∂F
∂x(ti−2) . . . ∂F

∂x(ti−E)

1 0 . . . 0

0 1 . . . 0

0 0 . . . 1


.

Thus, to estimate the dominant LE from the time series, we would use the GP

to estimate the variable time-step map, x(ti) = F [x(ti−1), τi−1, . . . , x(ti−E), τi−E]

with τj = tj+1 − tj. Then for each x(ti), assemble J[x(ti)] from the estimated

partial derivatives, calculate the product over the observations to obtain Jt, and

estimate the LE from the log absolute value of the dominant eigenvalue. We leave

the test of this method for a future analysis.

B.7 Estimating continuous time dynamics from

discrete data

As detailed in the main text (Chapter 3), the concept of incorporating variable

step-sizes can be extended into delay-coordinate vectors beyond forecasting and

used to estimate continuous time dynamics. This is easiest to see for 1-d dynamics,

for which VS-EDM was used to estimate the map xt+τ = f(xt, τ). Recalling that
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f(xt, τ) = xt +
∫ t+τ

t g(xs)ds (Eq. 3.3), in which continuous-time dynamics are

given by ẋ = g(x), ∂f
∂τ

evaluated at xt and τ = 0 is an estimate of g(xt).
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Figure B.13: Estimates of continuous-time derivatives from discrete-
time data. True values (orange) and mean estimates over 1000 replicates (blue)
of dx

dt
for values of x from 0-2. The blue band is the standard deviation over the

1000 replicates.

To demonstrate this idea on a simple 1-d system, we simulated dynamics

from a continuous-time logistic model (i.e. ẋ = 2.7x(1 − x/2)) starting from

random initial x0 ranging from 0 to 1. We integrated the model for a random

time span τ ranging from 0 to 3 and repeated this procedure 100 times to get

100 [x0, τ, xτ ] triplets. Taking advantage of the fact that we know the solution

at τ = 0 is x0, we then augmented the set of 100 triplets with 50 additional

triplets given by [xg, 0, xg], were the xg values were evenly spaced between 0 and

2. Given this set of 150 triplets, we estimated xτ = f(x0, τ) with a GP using a

mean function of m(x0, τ) = x0 and a squared exponential covariance function of
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C({x, τ}, {x′, τ ′}) = σ2e−ϕx(x−x′)2−ϕτ (τ−τ ′)2 . Then we evaluated df
dτ

at each point

on xg, and τ = 0. See Rasmussen and Williams (2006) for a description of how

to estimate derivatives from the GP. We repeated this procedure 1000 times, and

the results are shown in Figure B.13. The estimated continuous time derivatives

are close to the true continuous derivatives with an R2 = 0.89.
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Appendix C

to Empirical Dynamic

Programming for Insect Pest

Management

C.1 Simulation Models

We generated simulated data with the models in Table C.1.

C.2 Additional results

As expected, increasing noise in the dynamics decreases the forecast accuracy

of both GP regression with the full state and EDM with lags of the pest. Table

C.2. shows the R2 forecast accuracy in both cases over all the data from the

simulation analysis. In general, EDM yields lower forecast accuracy than GP

regression because it is missing data. The accuracy of the GP in the high noise
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Type of Model Parameters
control
Biological Ht+1 = Hte

r(1−Ht/K)−α(Pt+cut) r = 3.4, K = 50,
Pt+1 = βHt(1 − e−α(Pt+cut)) + γ β = 1.2, γ = 2

α = 1, c = 0.7

Chemical Ht+1 = (1 − cut)Hte
r(1−(1−cut)Ht/K)−αPt r = 3.4, K = 50,

Pt+1 = β(1 − cut)Ht(1 − e−αPt) + γ β = 1.2, γ = 2,
α = 1, c = 0.6

Behavioral Ht+1 = Hte
(1−cut)r(1−Ht/K)−αPt r = 3.4, K = 50,

Pt+1 = βHt(1 − e−αPt) + γ β = 1.2, γ = 2,
α = 1, c = 0.7

IPM Ht+1 = (1 − cut)Hte
r(1−(1−cut)Ht/K)−α(Pt+dvt) r = 3.4, K = 50,

Pt+1 = β(1 − cut)Ht(1 − e−α(Pt+dvt)) + γ β = 1.2, γ = 2,
α = 1, c = 0.6,
d = 0.7

Table C.1: Host-parasitoid models used to generate simulated data. Noise was
included by multiplying the equations by eξ, where ξ was drawn independently
from a normal distribution N (0, s2). We used s = 0.05 to generate low noise in
the data, s = 0.1 for moderate noise, and s = 0.15 for high noise.
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regime is approximately 20% lower than it is in the low noise regime, while EDM

accuracy is 30% worse in the high noise conditions compared to low noise.

Type of control Method Low noise Moderate noise High noise
Biological control GP 0.98 0.90 0.82

EDM 0.93 0.79 0.66

Chemical control GP 0.98 0.91 0.81
EDM 0.90 0.75 0.64

Behavioral control GP 0.98 0.91 0.81
EDM 0.94 0.80 0.68

IPM GP 0.97 0.89 0.80
EDM - - -

Table C.2: Average R2 prediction accuracy in the test set over the 100 replicate
simulations of 11 values of θ.

Figs. C.1 & C.2 show the excess cost and pareto fronts for the low noise

scenario and the high noise scenario of biological, chemical, and behavioral control

strategies. Unsurprisingly, EDP produced nearly optimal policies in the low noise

regime. While performance decreased in high noise environments, EDP in both

cases outperformed the reactive policy (Table C.3). Similar results hold for the

IPM control strategy (Figs. C.3 & C.4).
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Figure C.1: Results over 100 simulations of biological control (a,b), chemical
control (c,d), and behavioral control (e,f) with a low level of noise in the data.
Left panels show the median (dots) and lower and upper quartiles (error bars) for
the excess cost of each method compared to the optimal policy (a,c,e). Pareto
fronts show the trade-off between the cost of pest pressure and the cost of control
(b,d,f). Each point in the Pareto fronts corresponds to a value of θ, ordered such
that θ = 0.001 in the lower right θ = 0.999 in the upper left.
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Figure C.2: Results over 100 simulations of biological control (a,b), chemical
control (c,d), and behavioral control (e,f) with a high level of noise in the data.
Left panels show the median (dots) and lower and upper quartiles (error bars) for
the excess cost of each method compared to the optimal policy (a,c,e). Pareto
fronts show the trade-off between the cost of pest pressure and the cost of control
(b,d,f). Each point in the Pareto fronts corresponds to a value of θ, ordered such
that θ = 0.001 in the lower right θ = 0.999 in the upper left.
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Figure C.3: Results over 100 simulations of IPM control using EDP (a) and a
reactive control (b) with low levels of noise in the data. The color in each circle is
the average excess cost for a specific (θ1, θ2, θ3) triplet. Light circles indicate low
excess cost and darker circles indicates high excess cost.

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

✓
1
=

0✓ 2
=

0

✓3 = 0

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

✓
1
=

0✓ 2
=

0

✓3 = 0

(a) (b)

Figure C.4: Results over 100 simulations of IPM control using EDP (a) and a
reactive control (b) with high levels of noise in the data. The color in each circle
is the average excess cost for a specific (θ1, θ2, θ3) triplet. Light circles indicate
low excess cost and darker circles indicates high excess cost.
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C.3 Effect of control history

It is possible that the amount and quality of the historical control data will

influence the performance of the EDP method because control history can affect

our ability to approximate dynamics. To determine the impact of control history,

we explored six scenarios of control data. For each scenario, we generated time

series of 600 points from the host parasitoid model with biological control and

moderate noise (Table C.1). We removed the first 300 points to avoid transient

dynamics, and then we split the subsequent 300 points into 100 points for training,

100 points for testing, and 100 points for evaluating the control strategies. The

six scenarios are described below.

Random control history

The first scenario included a random control variable. We set the control

variable to 0 for the first 50 points in the training data and set it randomly

between 0 and 1 for the second 50 points of the training data. This scenario is

not likely to be encountered in real applications, but it provides the best type of

data for EDP, so it serves as a nice benchmark.

Reactive control history

For the reactive control history, the maximum amount of control (u = 1)

was applied in the training data if the pest was above the economic threshold

(xthresh = 2). This scenario is likely to be encountered in real applications.
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Calendar-based control history

In this scenario, we applied the maximum amount of control for three succes-

sive points periodically in the training data. The collections of sprays were spaced

by twelve points every time. Since calendar-based programs are fairly common in

pest management, similar data could be encountered in real systems.

Sparse control history

Sometimes control is only applied occasionally. For instance, if an insect has

not presented a large threat in certain areas in the past, there may have been

minimal effort to control it in the past. We simulated this scenario by randomly

selecting 8 points in the training data to apply control. The rest of the control

history in the training data was set to 0.

Imprecise data for control history

If our goal is to make precise decisions about when and how much control

to apply, we must collect data enough data. We simulated a scenario in which

a manager has only kept track of when control was applied but not how much

control was applied. That is, any time control was applied, the data for the control

variable was set to the maximum control.

Incomplete data for control history

In some cases, managers are responsible for multiple fields/areas and they do

not have time to keep careful track of historical interventions. We simulated a

scenario in which we used random control to generate the historical dynamics,

but only recorded half of the historical control in the data. The control variable
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was set to 0 at the unrecorded times.

Results

Table C.4 shows the results of this analysis with the median and lower and

upper quartiles of excess cost for all methods, and Fig. C.6 shows excess costs

by θ. The scenarios in which the historical control strategy was independent of

the state and frequently applied (i.e. random and calendar-based) gave the best

results (Fig C.6 a, c). In contrast, with state-dependent historical policies (i.e.

reactive, Fig C.6 b) or infrequent control applications (i.e. sparse, Fig C.6 d),

excess cost increased. Imprecise and incomplete data for the historical control

also hindered performance (Fig C.6 e,f). Although the control history had subtle

impacts, the primary results remained consistent with those in the main text, and

EDP outperforms the reactive policy on average.

Type of control Method Low noise Moderate noise High noise
Biological control EDP (full state) 96% 87% 75%

EDP (partial state) 92% 77% 57%

Chemical control EDP (full state) 84% 69% 48%
EDP (partial state) 52% 40% 33%

Behavioral control EDP (full state) 96% 87% 73%
EDP (partial state) 92% 75% 55%

IPM EDP (full state) 99% 95% 88%
EDP (partial state) - - -

Table C.3: Average reduction in excess cost compared to the reactive policy over
the 100 replicate simulations of 11 values of θ.
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Scenario EDP (full state) EDP (partial state) Reactive
Random 4.3 ( 0.1, 5.9) 7.5 (0.4, 10.5) 29.4 (7.6, 45.9)

Reactive 4.7 ( 0.5, 7.2) 8.3 (1.1, 12.9) 30.1 (8.6, 47.1)

Calendar 4.2 (0.2, 6.0) 7.5 (0.37, 10.5) 29.2 (7.2, 46.0)

Sparse 4.9 (0.5, 11.5) 11.3 (2.0, 29.0) 28.8 (6.1, 46.0)

Imprecise data 6.2 (0.4, 9.8) 8.6 (0.5, 13.1) 29.1 (8.2, 45.6)

Incomplete data 4.3 (0.2, 7.1) 7.6 (0.5, 12.5) 29.3 (7.2, 45.9)

Table C.4: Excess cost by scenario of historical control. The first number is the
median excess cost and the parentheses are the first and third quartiles over 100
simulations of 11 values of θ.
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Figure C.5: Locations of mosquito traps. Colors represent the local regions.
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Figure C.6: Excess cost results over a 100 simulations with random (a), reac-
tive (b), calendar-based (c), sparse (d), imprecise (e), and incomplete (f) control
history data. Dots are median excess cost, error bars show the lower and upper
quartiles.
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