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Abstract

We present a mixed-effects location scale model (MELSM) for examining the daily

dynamics of affect in dyads. The MELSM includes person and time-varying variables to

predict the location, or individual means, and the scale, or within-person variances. It also

incorporates a sub-model to account for between-person variances. The dyadic specification

can accommodate individual and partner effects in both the location and the scale

components, and allows random effects for all location and scale parameters. All

covariances among the random effects, within and across the location and the scale are also

estimated. These covariances offer new insights into the interplay of individual mean

structures, intra-individual variability, and the influence of partner effects on such factors.

To illustrate the model, we use data from 274 couples who provided daily ratings on their

positive and negative emotions toward their relationship – up to 90 consecutive days. The

model is fit using Hamiltonian Monte Carlo methods, and includes subsets of predictors in

order to demonstrate the flexibility of this approach. We conclude with a discussion on the

usefulness and the limitations of the MELSM for dyadic research.

Keywords: Mixed-Effects Location Scale Model, Dyadic Interaction, Intra-Individual

Variability, Longitudinal Data Analysis
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A Mixed-Effects Location Scale Model for Dyadic Interactions

Modeling interactions between two individuals requires methods that are able to

capture the dynamics of such interactions, as they unfold over time, and separate these

interactions from dynamics that take place within each individual. A number of models

have been developed to examine these dynamics (e.g. Kenny, 1996; Raudenbush, Brennan,

& Barnett, 1995). We argue that, although some of these methods have very desirable

features, an important shortcoming is the fact that all the unexplained variance goes into

the residual component. In this paper, we propose a mixed-effects location scale model

(MELSM). This model allows partitioning this unexplained variance, which consists of

within-person variance over time, and explain it as a function of covariates. The MELSM is

particularly well suited to examine the changes (or fluctuations) in a given process for each

individual in a dyad, together with the interrelations between both individuals.

Intra-individual variability designs

A key methodological question in investigations of social interactions concerns the

study design for yielding information about within- and between-person dynamics. One

such design, suited to identify dynamics with a high temporal resolution, is based on

intra-individual variability (IIV). In this design, individuals are measured across multiple

variables and multiple occasions with short intervals, such as weekly, daily or hourly

measurements, allowing researchers to study processes, as they unfold over time (e.g.,

Ferrer & Rast, 2017). Depending on particular features, these studies go by names such as

Ecological Momentary Assessments (EMA Shiffman, Stone, & Hufford, 2008) or experience

sampling and daily diary studies (Bolger, Davis, & Rafaeli, 2003). These intensive

measurements may be combined across multiple waves spanning years to obtain intensive

measurement bursts allowing for the investigation of within- and between-person dynamics

that span across different time scales (Nesselroade, 1991b; Sliwinski, 2008). Generally, short

time intervals among measurement occasions in intra-individual variability designs are well
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suited to capture behavioral fluctuations or variation within persons and/or partners.

The focus on these designs is largely on day-to-day variability, which is typically

referred to as within-person or intra-individual variability. The main assumption of IIV is

that such variability does not merely reflect measurement error, but that it conveys

systematic information that is potentially important and that would go otherwise

unaccounted for (Cattell, Cattell, & Rhymer, 1947; Eizenman, Nesselroade, Featherman, &

Rowe, 1997; Fiske & Rice, 1955; Horn, 1972; Hultsch, Hertzog, Small, McDonald-Miszczak,

& Dixon, 1992; Nesselroade & Salthouse, 2004; Woodrow, 1932). IIV is commonly used to

describe the amount of reversible, short-term behavioral fluctuations that are observed over

time (Ram & Gerstorf, 2009). Fluctuations can also occur across situations and are often

interpreted as carrying information about short-term adaptive processes, regulative

mechanisms and the system’s vulnerability (Baltes, Reese, & Nesselroade, 1977;

Nesselroade, 1991a; Röcke & Brose, 2013).

Most importantly, it is assumed that IIV reflects another quality of behavioral

outcomes such as consistency or precision in responses, compared to individual levels, that

are thought to provide information on average effects. Hence, with the availability of

intensive data, the focus of the interaction among individuals can be widened to include

dynamics of within-person variability in the sense that not only average effects may be

influenced by the partner but also variability in one’s behavior may be related to, and

interact with, a partner’s traits.

Models for dyadic interactions

There have been important advances in the development of methodology suited to

model dynamics in social interactions, including dyads. Some of these models include, for

example, the Actor-Partner Interdependence Model (Kenny, 1996) or the “Two-Intercept”

multilevel model (Raudenbush et al., 1995), which incorporates individual and partner

effects over time. While there are many ways to model data from intensive repeated
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designs, multilevel, or mixed-effects, modeling techniques are probably the most common

choice, perhaps due to the fact that they take into account clustering in the data (repeated

measures nested within individuals, nested within dyads) and partition the variance

accordingly. Specifically, in research on dyads, multilevel models have been successfully

used to distinguish among actor, partner, and interaction effects (Campbell & Kashy, 2002;

Kenny, Kashy, & Cook, 2006), investigate the quality of marital roles in married couples

(Raudenbush et al., 1995), characterize the interrelations of affect between romantic

partners (Butner, Diamond, & Hicks, 2007), model daily intimacy and disclosure in

married couples (Bolger & Laurenceau, 2013; Laurenceau, Troy, & Carver, 2005), and

capture emotional contagion between couple members undergoing a stressful event

(Thompson & Bolger, 1999).

Besides multilevel models, a number of other methods have been developed and

implemented as well. One of such models is, for example, the dynamic factor analysis

(DFA; Browne & Nesselroade, 2005; Molenaar, 1985), which combines factor analysis with

time series and allows the identification of the factorial structure of the data as well as its

time-related signature (Ferrer & Nesselroade, 2003; Ferrer & Zhang, 2009). Another

method that has been applied to intensive measurement data are differential equation

models (DEM) which are useful for modeling continuous data. In dyadic interactions,

DEM have been used to develop theoretical models (Felmlee, 2006; Felmlee & Greenberg,

1999) but they have also proven useful for modeling empirical data on the emotional

interaction between spouses and subsequent break-up (Gottman, 2002), daily intimacy and

disclosure in married couples (Boker & Laurenceau, 2006), and the dynamics of emotional

experiences between individuals in close relationships (Chow, Ferrer, & Nesselroade, 2007;

Ferrer, Gonzales, & Steele, 2013; Ferrer & Steele, 2014; Ferrer, Steele, & Hsieh, 2012;

Steele, Ferrer, & Nesselroade, 2014).

Another class of models that are well suited to capture the dynamics of change in the

variance components are generalized autoregressive conditional heteroskedasticity
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(GARCH) models (Bollerslev, 1986). These models are popular in the econometric

literature and are used to predict the mean and variance (volatility) in a time-series,

conditional on past information. The typical GARCH model assumes that the current

variance is the sum of an average variance, the lagged (e.g t− 1, with t = 1, ...T ) variance,

and the lagged error variance. The multivariate extension (MGARCH Engle, 2002)

includes a time-varying covariance matrix Ht that includes the covariances among the

GARCH parameters for each time series. The covariance is allowed to change across time

which makes the estimation of the Ht matrix challenging (Laurent, Rombouts, & Violante,

2012; Tse & Tsui, 2002). While MGARCH models have proven to be useful in economics

settings with only few simultaneous time-series, their application in psychological research

with multiple individual time-series remains limited. Research in psychology typically

involve multiple individuals and, thus, each individual time series would have to enter the

MGARCH covariance matrix. The dimension of H would expand to N ×N × T , making it

extremely difficult to estimate in the context of most psychological applications, even for

small N (de Almeida, Hotta, & Ruiz, 2018).

In this paper, we focus on mixed-effects models because of their desirable features for

extracting information about variability. Specifically, mixed-effects models partition the

overall variance into between- and within-person variance. The within-person component

represents the residual variance that remains unexplained at the individual level while

controlling for all predictors at the person level. In research on IIV, this “unexplained”

part is the very focus of interest, the target of exploration in further modeling steps (e.g

Hultsch, Strauss, Hunter, & MacDonald, 2008). To date, probably the most common index

of IIV is the intra-individual standard deviation (iSD; see e.g. Ram & Gerstorf, 2009),

which can be computed from the residuals of a mixed effects model or individual models,

or from observed scores. As such, the investigation of IIV is often treated as a two-stage

approach: In the first stage, IIV is extracted to compute some form of person specific

variability index, such as the iSD. In the second stage, the IIV index is then used in a
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model either as a predictor or as the outcome. While this approach has been widely

adopted to extract within-person information, it is not without controversy. IIV indices

can lead to estimates that are highly correlated with other within-person moments, such as

the intra-individual mean, especially when Gaussian normality is violated (Mestdagh et al.,

n.d.; Rast, Hofer, & Sparks, 2012; Wang, Hamaker, & Bergeman, 2012). Moreover, IIV

indices or estimates tend to be unreliable especially when the number of measurement

occasions is small (Estabrook, Grimm, & Bowles, 2012; Wang & Grimm, 2012)

The model that we present here to examine IIV in dyads is the mixed-effects location

scale model (MELSM; Hedeker, Mermelstein, & Demirtas, 2008), an extension of the

standard multilevel model. This model is particularly well suited to examine changes (or

fluctuations) in a given process for individuals in dyadic relationships. The model expands

the focus from the “classic” actor-partner interrelation on location effects (individual

means) to include dyadic interactions on the IIV, the scale effects. As outlined earlier, the

investigation of IIV and dynamics in partner relationships is strongly tied to the design,

which must entail some form of intensive repeated measurements.

A distinguishing feature of the MELSM with respect to multi-stage models, is that

the MELSM does not rely on multiple steps but rather estimates intraindividual means

(iM) and iSD’s simultaneously in one model. By estimating these two components

simultaneously, we are able to account for possible correlations that arise among iM ’s and

iSD’s, which ensures that we can make valid inferences about our parameter estimates

(Verbeke & Davidian, 2009). The MELSM jointly models location and scale random effects

by keeping them in one covariance matrix – as with any covariance matrix, its individual

values are conditional on the other values. Multi-stage approaches, on the other hand, do

not jointly model the covariances among its location and scale parameters. This makes the

covariances oblivious to the correlations among its parameters. As a result, they only

provide unbiased estimates for the rare case when location and scale are indeed completely

uncorrelated (for a simulation see e.g. Leckie, French, Charlton, Browne, & Langford,
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2014). Moreover, the MELSM includes explanatory components for the between- and

within-person variance, which circumvents the need for multiple modeling steps to capture

IIV (see also Leckie et al., 2014; Rast et al., 2012). That is, while standard mixed-effect

models relegate all the unexplained variance into the residual term, the MELSM allows

partitioning the within-person variance over time and modeling it as a function of

time-varying as well as person-level covariates. This is a particularly important feature

because such within-person variance can be examined in relation to variables external to

the system. For example, a researcher interested in, say, emotion in romantic couples, will

want to use variables related to emotion to predict the stability or volatility in emotions.

But, in addition, there might be variables external to the modeled system (e.g., work, daily

stressors, weather) that could potentially explain part of the emotional ups and downs that

are not accounted for by the main components of the model (Ferrer & Rast, 2017).

The aim of this paper is to extend the MELSM to accommodate data from two

individuals who are part of a dyadic system (e.g., romantic couple, teacher-student). The

remainder of the manuscript is organized as follows. First, we formally describe the general

MELSM for dyads (or other dyadic system). Second, we provide an example involving

empirical data from daily fluctuations in emotion from romantic couples. Third, we discuss

the findings in the context of dyadic interactions and list shortcomings and possible

extensions of the MELSM model.

A mixed-effects location scale model (MELSM) for dyads

The mixed effects location scale model (MELSM) put forward by Hedeker et al.

(2008), combines earlier work on variance heterogeneity (Aitkin, 1987) and models for

random scale effects (Cleveland, Denby, & Liu, 2002). Here, we briefly recast the model and

then we expand it to accommodate cases with dyadic interactions involving partner and

individual predictors. The starting point is the standard linear mixed effects model with
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repeated measurement on occasions j (j = 1, 2, ..., ni occasions) that may be specified as

yi = Xiβ + Zibi + εi, (1)

where yi is the ni × 1 response vector for observations in person i. Xi is the ni × k design

matrix for the fixed effects for observations in person i. β captures the fixed effects and its

dimension is k × 1. The random effects are in the ni × q matrix Zi for observations in

person i where bi is the according q × 1 vector with the random effects coefficients. These

effects characterize a person’s mean response or location. εi is a vector of errors specific to

person i. The general assumption in standard mixed effects models is that random effects

are bi ∼ N(0,Φ). Where Φ is a q × q covariance matrix for the random effects with the

variances σ2
b and the covariances σbb′ (for q 6= q′). The errors εi are also assumed to be

normally distributed with a mean of 0 and covariance of σ2
εΨi where Ψi is a ni × ni matrix

which can take different structures. In these models the between-person variance is

captured by σ2
b and the within-person variance is represented in σ2

ε .

Within-Person Variance. In this standard form, the error variance σ2
ε is a fixed

entity. In order to allow it to differ at the individual level, we add the subscript i to the

within-person variance term (cf. L. Hoffman, 2007; Myles, Price, Hunter, Day, & Duffy,

2003) but we also allow it to differ among j-time points to obtain σ2
εij
. Changes in the

within-person variance σ2
εij

are explained by time-varying covariates in the ni ×m matrix

Wi for the fixed effects and Vi, with dimension ni × p (and m ≥ p) for the random effects

(Rast et al., 2012). Hence, with the inclusion of time-varying covariates the within-person

variance not only varies across persons but also across time given the model:

ϕi = exp(Wiη + Viti). (2)

ϕi then is the ni × 1 vector that contains all error variances σ2
εij

for individuals i and for

each measurement occasion j. η is comparable to the regression weights β in Equation 1.

That is, for an intercept and slope term, η0 defines the average within-person variance and

η1 weights the influence of the predictor on the variance. The individual departures from
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the fixed effects that are captured in the random effects ti are normally distributed with

ti ∼ N(0,Θ), where Θ is a covariance matrix of dimension p× p that contains the random

effects of the scale. Note that Wi and Vi may, or may not, be the same as Xi and Zi. In

fact, the model that we will discuss here contains different predictors for the location and

the scale. Given that Equation (2) is for variances, we need to ascertain that the estimates

are positive real values. This can be obtained, for example, via the exponential function

(e.g. Hedeker et al., 2008; Rast et al., 2012). Note that by doing so, we assume that σ2
εij

is

log-normally distributed.

Between-Person Variance. The MELSM also introduces a sub-model for the

between-person variance. It is important to note here that we now have random effects bi

from the location of the model (the means structure) and random effects ti from the scale

of the model (the within-person variance structure). All these random effects are assumed

to come from a Gaussian Normal distribution with mean zero. Hence, we can stack both bi

and ti vectors, resulting in ui ∼ N(0,Σi). This also means that Σi contains the variances

and covariances of both, the location and scale. In order to define a variance model for Σi,

we can decompose Σi = τiΩτ ′i , where τi is a diagonal matrix for person i in which the

diagonal elements are the random-effect standard deviations and Ω is the correlation

matrix that contains the correlations among all random effects. That is, Ω is of dimension

(q + p)× (q + p) and contains the correlations among the random effects of the location,

the correlations among the random effects of the scale, and the correlations among the

random effects of the location and the scale. Given this definition, Ω remains constant

across conditions. We can now define a model for the random effects, which, in SD metric,

can be defined as

τi = exp(giι) (3)

where, for example, ι0 is an intercept and ι1 is a slope parameter. gi is the design matrix

that contains between-person predictors. This means that the random-effects variance is

not constant but may change due to person- or group-specific characteristics (e.g. Leckie et



MIXED LOCATION SCALE MODEL 11

al., 2014).

Hence, having specified all elements, we can define the full MELSM as

yi ∼ N(µi,ϕi)

µi = Xiβ + Zibi

ϕi = exp(Wiη + Viti)

with the random effects for both the location and the scale coming from the same

multivariate distribution bi
ti

 ∼ N(0,Σi)

Σi = τiΩτ ′i

τi = exp(giι).

Dyadic Effects. In order to account for the interrelationship of the dyad members,

we introduce dummy variables to address each of the two partners of the couple (cf. Ferrer

& Rast, 2017; Raudenbush et al., 1995). In particular, we introduce a dyad specific level k

at both the location and scale part. The mean structure from Equation (1) can be

expanded to

ŷki =
m∑
k=1

dk (Xkiβk + Zkibki) (4)

where k = 1, . . . ,m represents the number of units in the level (two in our case). Hence, in

this specification for dyads we define m = 2 dummy variables, one for each partner, where

dk = 1 if a given measure is yk and dk = 0 otherwise. Considering a given value in ŷkij∗ ,

then dk = 1 if k = k∗ and dk = 0 if k 6= k∗. The elements in dk are mutually exclusive and

ensure that the model is estimated either for one or the other partner in the dyad. The

same approach can be used for the scale part so Equation (2) can be rewritten as

ϕki =
m∑
k=1

dk [exp(Wkiη + Vkitki)] . (5)
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In order to model within-dyad dependencies, the design matrices X and W typically

contain variables that are thought to influence the other partner’s outcome. For example,

the same day positive affect of partner A might influence partner’s B positive affect for

that same day – and vice versa.

Again, the within-person variances are estimated for both partners and are mutually

exclusive. This approach does not preclude one from obtaining covariances among random

effects of both partners, as they are still drawn from a common multivariate distribution.

This enables one to model the correlations among the individuals in the dyads, within and

across the location and the scale part of the model. This constitutes a unique feature of the

MELSM for dyads.

Estimation

Mixed-effects location scale models can be estimated via maximum-likelihood

methods in standard software (Ferrer & Rast, 2017; Hedeker, Mermelstein, Berbaum, &

Campbell, 2009; Leckie et al., 2014), using specific software such as MIXREGLS (Hedeker

& Nordgren, 2013), or Bayesian estimation procedures (Kapur, Li, Blood, & Hedeker, 2015;

Rast et al., 2012). To minimize estimation issues when relying on maximum-likelihood

techniques we take advantage of a Bayesian framework that performs better with covariance

matrices (such as Σ) that are prone to high collinearity and multidimensionality (cf. Rast

et al., 2012; Rast & MacDonald, 2014). No-U-turn sampling (NUTS), an extension of the

Hamiltonian Monte Carlo (HMC) Sampler, is particularly well suited to handle these

situations (M. D. Hoffman & Gelman, 2014). This method is implemented in Stan (Stan

Development Team, 2016b) and it has the added advantage, compared to Gibbs-sampling,

that the priors do not need to be conjugate to the likelihood of parameters.
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Illustrative Example

Subjects and procedure

The data for this empirical example come from 274 heterosexual couples that were

recruited as part of a study of dyadic interactions (Ferrer et al., 2012; Ferrer & Widaman,

2008). Participants included couples involved in a romantic relationship who completed a

daily questionnaire about their affect for up to 90 consecutive days. They ranged in age

from 17 to 74 years (M = 25.08, SD = 10.39) and reported having been in the relationship

from 1 month to 54 years (M = 3.26 years, SD = 6.06).

Materials and Design

To obtain daily measures of affect, we used the Relationship-Specific Affect scale

(RSA; Ferrer et al., 2012), a set of 18 Likert-scale items (ranging from 1 to 5) that tapped

into positive and negative emotions specific to one’s relationship. In this example, positive

affect (PA) serves as the dependent variable and negative affect (NA) as a predictor for

within-person variance. In addition, we use a measure of relationship satisfaction based on

six items from the Perceived Relationship Quality Component Inventory (Fletcher,

Simpson, & Thomas, 2000). These items were rated on a 7-point Likert scale ranging from

1 (not at all) to 7 (extremely) and were completed by the participants at the beginning of

the study.

Statistical Analyses

We tested a sequence of increasingly more complex models, starting from an empty

linear mixed effects model to the final mixed effects location scale model with all

predictors1. Here, we describe the final model that was used to obtain the parameter

1 The annotated Stan-code for the final two models is in the appendix and the code for all models can be

obtained from https://github.com/ph-rast/MELSM

https://github.com/ph-rast/MELSM
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estimates reported in the results section. In order to make the structure of the model more

visible, we rewrite Equations (4) and (5) following multilevel notation.

Location Model. The location sub-model of positive affect RSA (PA) for each

person i at day j is given at level 1 as:

ŷkij =
m∑
k=1

dk
(
βk0i + βk1iPALag1ij + βk2iPAPartnerij

)
. (6)

The predictors in level 1 of the location are each person’s own PA rating of the previous

day (PALag1) as well as the partner’s PA rating (PAPartner) at the same day. Both level 1

predictors PALag1 and PAPartner are person-mean centered.

The person effects are defined at level 2 separately for both partners. For females

k = 0 = F



βF0i = γF00 + γF01Rel.satFi + γF02PA∗Partner,F i + uF0i

βF1i = γF10 + γF11Rel.satFi + γF12PA∗Partner,F i + uF1i

βF2i = γF20 + γF21Rel.satFi + γF22PA∗Partner,F i + uF2i

and for males

k = 1 = M



βM0i = γM00 + γM01Rel.satMi + γF02PA∗Partner,Mi + uM0i

βM1i = γM10 + γM11Rel.satMi + γF12PA∗Partner,Mi + uM1i

βM2i = γM20 + γM21Rel.satMi + γF22PA∗Partner,Mi + uM2i

At level 2, we introduce the moderator Rel.satki (individual relationship satisfaction),

which was measured at the beginning of the study. This variable was centered at its

grand-mean (M = 6.2). PA∗Partner,ki is the person-mean that was obtained when centering

the corresponding level 1 variable PAPartner,ij and it captures between-person differences in

individual levels of partner affect. The person-mean for the lagged effect is practically

identical to the random intercept and is thus not included as a level 2 variable (Hamaker &

Grasman, 2014). The F and M subscripts denote the model for females (F ) and males

(M).
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Scale Model. Equivalently, the scale part of the model follows Equation (5) with

level 1:

σ2
εkij =

m∑
k=1

dk [exp (η0ki + η1kiNAPartner,ij)] . (7)

The predictor for the scale is the person-mean centered negative affect of the partner

(NAPartner) for the same day. Negative affect has been shown to influence affect, both

positive and negative (e.g. Röcke, Li, & Smith, 2009) and here we test its effect on the

scale parameter. It is worthwhile reconsidering what predictions from Equation (5) signify

in terms of observed values. For days where the partner reports higher NA, σ2
εkij will result

in larger (or smaller, depending on the valence) values resulting in more (or less) variance

around the location parameter for that same day. In other words, NAPartner influences the

daily changes in uncertainty or unreliability that surround the location estimate.

Level 2 is defined for the female as

k = 0 = F


ηF0i = ξF00 + ξF01Rel.satFi + ξF02NA∗Partner,F i + uF3i

ηF1i = ξF10 + ξF11Rel.satFi + ξF12NA∗Partner,F i + uF4i

and for the male

k = 1 = M


ηM0i = ξM00 + ξM01Rel.satMi + ξM02NA∗Partner,Mi + uM3i

ηM1i = ξM10 + ξM11Rel.satMi + ξM12NA∗Partner,Mi + uM4i

At level 2 we have again Rel.satki, the grand mean centered relationship satisfaction that

moderates the level 1 effects in the within-person variance, and NA∗Partner,ki, the

person-mean of NAPartner,ij.

Random Effects Variance Model. All level 1 parameters (location intercept,

PALag1 slope, PAPartner slope, scale intercept and NAPartner slope) for both female and male,

have associated random effects that allow individual departures from the individual (male

or female) mean. As described earlier, this is true for both the location and scale

components, and all random effects are assumed ui ∼ N(0,Σi). Σi contains the variances

of the random effects of the location and the scale as well as all covariances. Hence, the
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off-diagonal elements of Σi contain information on how individual differences are related

both within individuals and within dyads. That is, we obtain relations within and between

females and males but also across the location and the scale components. As noted earlier,

this is a unique feature of the MELSM as it not only models dependencies among partners

via level 2 predictors but it also identifies the relatedness within dyads as correlated

random effects throughout the location and the scale.

As described in Equation (3) we also include a between-person model to govern the

random effects standard deviations across different conditions. We re-expressed Σi as

τiΩτ ′i , where Ω is a (q + p)× (q + p) correlation matrix and τi are the SD’s. The final

model contains three location random effects for each partner (Female: σ2
1, σ2

2, σ2
3; Male:

σ2
4, σ2

5, σ2
6) resulting in q = 6 random effect variances and two scale random effects for each

partner (Female: σ2
7, σ2

8; Male: σ2
9, σ2

10), resulting in p = 4 variances for the scale. Hence,

the dimension of the final covariance matrix Σi is 10× 10 with the diagonal

diag(Σi) = [σ2
1, . . . σ

2
6, σ

2
7i
, . . . σ2

10i
]′. Note that only the scale elements have a subscript i,

indicating that they are allowed to vary between participants.

In order to capture changes in the scale random effects only, we introduce a submodel

for the four elements [σ7i
, . . . σ10i

]′, where g1 = log(years in the relationship) influences the

random effect SD of the scale as

σ7i
= exp(ιF30 + g1iιF31)

σ8i
= exp(ιF40 + g1iιF41)

σ9i
= exp(ιM30 + g1iιF31)

σ10i
= exp(ιM40 + g1iιM41).

(8)

The first two lines in Equation (8) refer to the random effects SD’s of the females and the

last two lines refer to the SD’s of males. The ιkp0’s (e.g. ιF30) are the intercepts that define

the average random effect SD of the scale for partners who were, on average, one year in

their relationship (note that years in relationship was on the log scale where log(1) = 0).

The ιkp1’s (e.g. ιF31) capture the change in the average random effects variance given the
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relationship length, resulting in possibly different random effect variances for the scale

component of the model. That is, individual differences in the scale random effects are not

constant but are allowed to vary across individuals as a function of differences in

relationship length.

A Note on Centering. Once we include time-varying predictors we need to decide

on how they should enter the model. There are mainly three options on how we can include

these variables: uncentered, grand-mean centered, and person-mean centered (Wang &

Maxwell, 2015). Uncentered predictors that are included at level 1 can be conceptualized

as carrying two kinds of information. An average, between-person part for each individual,

and a within-person fluctuation around that average. In the logic of multilevel models, we

can separate these two sources of variation and place them in the corresponding levels:

level 1 for the within-person fluctuation and level 2 for the between person effect. As such,

uncentered variables confound within- and between-person effects and potentially bias the

results (Curran, Lee, Howard, Lane, & MacCallum, 2012; Raudenbush & Bryk, 2002). This

issue can not be resolved by grand-mean centering level 1 variables, as the within-person

effect remains confounded with the between-person differences, and hence, only

within-person centering can resolve this issue. A viable approach is to extract the

person-mean from time-varying predictors and introduce it as a level 2 predictor while the

centered within-person time-varying effects enter the model as a level 1 predictor (for a

discussion on different versions of centering and detrending see Curran & Bauer, 2011).

In the case of autoregressive effects, the decision on whether or not to center is less

clear. For example, Hamaker and Grasman (2014) noted that person-mean centering

autoregressive effects can downward bias the within-person slope of the lagged parameter

while no centering does not lead to bias in the level 1 parameter. However, once level 2

predictors are added, the person-mean centered autoregressive parameters fares better than

the non-centered. For the current application, we chose to person-mean center all

time-varying level 1 predictors, including the autoregressive predictors.
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Software, Estimation and Prior Specification. All models were fitted in Stan

with the NUTS algorithm using the RStan package (Stan Development Team, 2016a), with

four chains and a warm-up period of half the total chain length. To ensure good quality of

the parameter estimates we chose to keep the number of iterations at a level where the

models converged with potential scale reduction factors R̂ smaller than 1.1 (cf. Gelman,

2006). As measures of relative model fit, we report the deviance and the Pareto smoothed

importance sampling-Leave-one-out cross-validation (PSIS-LOO Vehtari, Gelman, &

Gabry, 2017) with the corresponding standard errors. PSIS-LOO is a fully Bayesian

approach to assess predictive accuracy of the converged model and it is asymptotically

equivalent to the widely applicable information criterion (WAIC; Watanabe, 2010) which

is, in turn, asymptotically equivalent to the Akaike information criterion (Akaike, 1973).

Further, we report 95% credible intervals (C.I.) to indicate the statistical relevance of the

parameters. If a given point estimate (e.g., zero) is included in the C.I., the estimate may

not be considered to be different from zero or a null-effect – and vice-versa, if the point

estimate is not within the reach of the C.I. we conclude that the parameter is relevant.

Models were compared on the their respective differences in the values of PSIS-LOO and

standard errors are reported as units of reference. We report a sequence of comparisons

starting with a standard mixed effects model and ending with the final MELSM (cf. Table

1). PSIS-LOO or WAIC can be used to select among (nested or non-nested) models with

respect to their predictive performance as long as few models are compared. As the

number of compared models increases, the estimated predictive performance becomes

increasingly biased (Gelman et al., 2013; Piironen & Vehtari, 2017). Approaches for

variable selection are described elsewhere in the literature (e.g. O’Hara & Sillanpää, 2009).

Given the complexity of the models, we first started with a mixed effects model with

all location predictors (Rel.sat and PA∗Partner), then added random intercepts for females

and males in the scale (uF3i and uM3i) to obtain MELSM 1. MELSM 2 was obtained by

adding the remaining predictors in the scale (Rel.sat and NA∗Partner). Finally, we added the
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submodel for the random effects variance of the scale (see Equation 8) to obtain MELSM 3.

The likelihood for the MELSM’s was specified as

yi ∼ N(µi,ϕi)

µi = Xiβ + Zibi

ϕi = exp(Wiη + Viti).

MELSM 1 and 2 were given the same weakly informative priorsbi
ti

 ∼ N(0,Σi)

Σi = τiΩτ ′i

τi ∼ HC+(0, 2)

Ω ∼ LKJcorr(ν = 1)

β ∼ N(0, 100)

η ∼ N(0, 100).

Regardless of their sample mean and variance, the priors for the location and scale

parameters in the MELSM were set to cover a parameter space that was considerably

larger than the admissible parameter space in the observed data. For example, given the

range of the PA scale, we know that the intercept can only lie between 1 and 5. Our prior

was defined to have mean of zero and a SD of 100, as such, this approach regularizes the

parameters only mildly and the data easily overwhelm the prior.

For the covariance matrix Σ, we followed standard recommendations (Barnard,

McCulloch, & Meng, 2000) and modeled it in terms of its corresponding correlation matrix

Ω (Σ = τΩτ ′). Hence, instead of specifying a (scaled) inverse-Wishart as prior for the

random effects (cf. Rast et al. 2012), we use the Lewandowski-Kurowicka-Joe (LKJ;

Lewandowski, Kurowicka, & Joe, 2009) correlation prior with shape ν ≥ 1,
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Ω ∼ LKJcorr(ν). ν governs the correlation among the parameters, and with ν = 1, the

LKJ correlation distribution reduces to identity which can be considered uninformative.

This approach adds the benefit of reducing issues that arise from the Wishart distribution

that biases posteriors either toward the variance or the covariances Gelman (2006). Note

that there are several alternative approaches to parameterize the covariance matrix. For

example, Kapur et al. (2015) successfully used the spherical parameterization (as discussed

in Barnard et al., 2000) to assign weak priors to the elements of the correlation matrix in a

simulation study on a multivariate MELSM. The SD’s of the random effects were assumed

to come from a heavy tailed half-Cauchy (HC+) distribution with location 0 and scale 2.

For the final MELSM 3, we re-specified the priors for the random effects.bi
ti

 ∼ N(0, [exp(giι)] Ω [exp(giι)]′)

ι1,...6 ∼ N(−1.5, 3)

ι7,...10 ∼ N(−1.5, 3)

Ω ∼ LKJcorr(ν = 1.5)

β ∼ N(µMELSM2, 0.5)

η ∼ N(µMELSM2, 0.5)

Notably, the HC+ prior was replaced by a log-normal distribution for the parameters in

the random effects SD’s submodel (τi = exp(giι)). The priors for ι were defined separately

for the location (ι1, . . . ι7) and the scale elements (ι8, . . . ι10). Although they are set to be

the same here, one could define different priors for the location and the scale elements.

Overall, the priors for the final model were more informative to increase regularization and

reduce computation time. For example, the prior for ι which defines the random effects SD

was set to -1.5 with a SD of 3 on the log-scale. The mode of this prior is at

exp(−1.5) = 0.2 SD’s and it puts 95% of the probability mass between

exp(−1.5± 2 ∗ 3) = [0.0006, 90.02] SD’s – which is still largely unspecific. The location and
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scale parameters were not expected to change substantially from MELSM 2 to MELSM 3.

Hence, the priors were informed by the previous model; the prior means were close to the

posterior means of MELSM 2 and the SD’s of 0.5 were more narrow. This approach mainly

reduced the computation time to 15 hours in 3000 iterations while hardly influencing the

posterior estimates, compared to an earlier model with less informed priors that took

almost the double amount of time with 5000 iterations to converge.

Results

We investigated a sequence of models, starting with a standard linear mixed-effects

model, as described in Equation (1), and ending with the final MELSM described in

Equations (4), (5) and (8). This sequence allowed us to verify the plausibility of results and

model fit. All PSIS-LOO and deviance values as well as their increment in model fit are

reported in Table 1. A positive difference denotes an increment in model fit while a

negative difference indicates a decrement in fit. Note that PSIS-LOO from MELSM 3

indicates a somewhat poorer fit compared to MELSM 2 but we decided to report this

model to illustrate the use of the between-subject variance submodel defined in Equation 3.

The final model was fit using four chains and 3,000 iterations, with 1,500 warm-up

iterations. The values in the priors were all chosen to be mildly informative and the range

of the parameter space was inferred from previous models in the sequence. ν, the LKJ

prior for the correlation matrix of random effects Ω, was set to ν = 1.5 to reflect our

assumption that we would see correlations among the random effects. The final model

converged after 15 hours on a Linux operated system with an IntelCore i7 at 3.4GHz, with

4 cores (8 threads) and 16 GiB RAM.

Fixed Location. The results for the full location and scale parameters, for both

females and males, are reported in Table 2. All fixed location parameters are interpretable

as in any standard mixed-effects model. The overall pattern and effect sizes of the

parameter estimates for both female and male were very similar. All main effects were
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Table 1

Sequence of Estimated Models and Fit Statistics

Model Deviance PSIS-LOO (s.e.) Difference in PSIS-LOO (s.e)

Mixed Model 36205.3 -18102.7 (169.3) –

MELSM 1 33544.8 -16772.4 (165.5) 1330.3 (116.3)

MELSM 2 30416.9 -15208.5 (157.8) 1563.9 (81.8)0

MELSM 3 30436.3 -15218.1 (158.0) -9.7 (3.2)00

Note. The difference in the PSIS-LOO is always with respect to the previous model reported

in the row above. The first reference model (Mixed Model) is a standard linear mixed effects

model with all predictors in the location part and different error variances for females and males.

MELSM 1 extends the mixed model with random intercepts in the scale part for females and

males. MELSM 2 introduces the partners same-day NA rating in the scale. MELSM 3 is the final

model with the additional between-person submodel.

relevant (more than 99.2% of the posterior probability mass was above a parameter value

of zero) and contributed to changes in their reported PA. While the males reported, on

average, higher PA (compared via the posterior density of the difference between males and

females; Kruschke, 2013), all other effects were very similar in size across both genders.

Given that all predictors were grand-mean and person-mean centered, the intercept

represents the average PA rating across the study. The level 2 predictors, overall

relationship satisfaction (Rel.sat.) and the average partner PA rating (PA∗Partner) were

positively linked to the average PA of the respondent. That is, the average respondent’s

PA was higher for those who reported higher than average satisfaction with their

relationship and for those who’s partners also reported higher than average PA. The

time-varying level 1 predictors, the lagged PA rating (PALag1) and the daily changes in the

partners PA (PAPartner.pc) were also positively related to the daily PA reports. Hence, the
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mood from the previous day carried forward to the next day, and the daily partner’s

changes in PA affected the respondents’ same day PA in the same direction. The

interaction term between the average partner’s PA and the daily changes in the partner’s

PA (PAPartner.pc× PA∗Partner) was positive, indicating that the effect of the daily partner’s

changes in PA was amplified (reduced) for partners who reported on average higher (lower)

PA. Figure 1 shows individual predictions for PA as a function of changes in partner’s PA

ratings (while keeping the PALag1 effect constant at the person average, panel a) and lagged

PA response (while keeping the PAPartner effect constant at the person average, panel b).

Both panels show an obvious positive effect on PA.
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Figure 1 . Predicted slopes of positive affect versus PA Lag 1 (PA partner) holding the PA

partner (PA Lag 1) effects constant at the person-level. Each line represents the predicted

line for an individual.

Fixed Scale. The effects for the fixed scale are reported on the log-metric. In order

to obtain the average within-person SD’s, the parameters need be exponentiated (eg.,
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exp(−.83) = 0.44). All predictors (Rel.sat., NA∗Partner, and NAPartner.pc) contributed to

changes in the average within-person SD. The time-invariant level 2 predictors had

opposite effects on the average within-person variance. The association from relationship

satisfaction was negative so, on average, higher satisfaction ratings were associated with

smaller within-person SD’s. That is, the PA ratings tended to be more stable over time for

participants with higher relationship satisfaction, whereas the PA ratings from participants

with lower relationship satisfaction, on average, tended to fluctuate more. These effects

were similar in size for both genders, except for the intercept which was considerably

smaller for the males (more than 99.7% of the posterior probability mass for the difference

between males and females was below zero). In turn, average partner NA influenced the

variance positively, indicating that the overall within-person variance was higher for those

respondents whose partners, on average, reported higher NA.

At level 1, there was only one time-varying predictor (NAPartner.pc). The partner’s

daily changes in NA ratings had a positive effect on the within-person SD’s. That is, on

days when the partner reported higher than average NA, variability increased, whereas on

days when NA was lower than average, variability decreased. This relation is depicted in

Figure 2 where partner’s NA ratings are related to larger within-person SD’s. The positive

interaction between daily fluctuations in partner’s NA and relationship satisfaction

(NAPartner.pc× Rel.sat.) suggests that increased relationship satisfaction amplifies the effect

of daily fluctuations in the partner’s NA on the within-person variance. That is, those who

were more satisfied with their relationship also reacted more strongly to changes in their

partner’s NA - and vice versa. The interaction between the partners daily changes with

their average NA rating (NAPartner.pc × NA∗Partner) was negative and thus larger average

partner NA attenuated the effect of the daily changes in the partners NA on the

respondents within-person variance.

Random Effects. From Figures 1 and 2 it is apparent that there were considerable

amounts of individual differences around the fixed effects in both the scale and the location
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Figure 2 . Predicted within-person SD’s for each individual with respect to different

Partner NA ratings. Overall, increasing Partner NA ratings result in higher within-person

variability. The individual lines indicate large heterogeneity among individuals in terms of

reactivity to NA ratings of the partner.

components. These individual differences are captured by the random effects reported in

the diagonal of Table 3. The first three diagonal elements (τLF1, τLF2, τLF3) are the

random effects for the intercept, the PALag1 and the PAPartner.pc of the location component,

for the females. The following three elements (τLM1, τLM2, τLM3) are the same parameters

for the males. Note that all three parameters showed large variation across individuals, for

both females and males.

The top left quadrant (6× 6 matrix) of Table 3 captures the correlations among the

location parameters. The brackets contain the 95% credible intervals of the corresponding

correlations in the lower triangular. The pattern of correlations among females and males

was remarkably similar, except for the correlation between the intercept and the PA

partner effects (τLF1 with τLF2) and the lagged effect (τLF1 with τLF3). For both females
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and males, the relevant correlations were negative. However, males had two additional

correlations indicating that individuals who reported higher than average PA tended to

have smaller carry-over effects from one day to the next (correlation r among τLM1 and

τLM2 = −.18) and were less susceptible to their partner’s PA the same day (r among τLM1

and τLM3 = −.14). Both, females and males, showed a negative correlation among τLk2 and

τLk3 (r = −.36) suggesting that larger lag effects are associated with smaller effects from

partner’s PA the same day (and vice versa).

The lower right quadrant (4× 4 matrix) includes the scale effects. Given that we

introduced a variance model for the four diagonal random effect variances (see Equation

(3)), these values represent the average random effects for participants who had been in

their relationship for one year. The two correlations among τSk1 and τSk2 indicated that

increasing the partner’s NA the same day correlated negatively with the variance of average

PA ratings. In other words, those participants with larger than average PA variance

estimates were less reactive to their partners’ NA ratings. And, alternatively, those with

generally low PA variability reacted more strongly to their partners’ increase in NA with an

increase in PA variability (for a similar result with stress reactivity see Rast et al. 2012).

The lower left quadrant (4× 6 matrix) captures the correlations of the random effects

across the location and the scale components. The negative correlations indicate that

higher average PA ratings were associated with smaller within-person variances, whereas

larger PALag1 effects were associated with smaller changes in the within-person variance

due to increased partner NA. The positive correlation among the random intercept of the

location and the partner NA (τLk1 with τSk2) indicates that those who reported higher

overall PA values also showed larger effects from daily fluctuations in their partners’ NA.
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Table 4

Between-Person Estimates for Scale Effects

Female Male

Parameters Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Random Scale

SD int.(ιk30) 0.33 0.30 0.37 0.33 0.30 0.37

RelDur (ιk31) 1.05 .96 1.14 1.10 1.01 1.19

NAPartner.pc(ιk40) 0.26 0.20 0.32 0.21 0.16 0.27

NAPartner.pc × RelDur(ιk41) 0.95 0.77 1.15 1.05 0.87 1.28

Note. All estimates are posterior means. The 2.5% and 97.5% represent the boundary of the lower and

upper credible intervals (CI). Bolded estimates represent means where the according CI’s on the log scale

exclude 0.

Between-Person Variance Prediction. In Equation (8) we specified a

sub-model for between-person differences in the scale component. This model predicts

differences in the random effects of the scale due to relationship duration (RelDur). Note

that this variable RelDur was transformed via the natural logarithm to account for very

long partnership lengths. Hence, the intercept represents a relationship length of one year

(since ln(1) = 0). Results from these analyses are reported in Table 4. The reported SD

ιk30 and ιk40 parameters reproduced the corresponding variances in the diagonal of Table 3.

Relationship duration only had a perceptible effect for the males in the sample. That is, on

average, males who had been in their relationship for longer were more heterogeneous (i.e.,

showed larger random effects in their intercept). In other words, all participants showed

individual differences in their PA variability and in the change in such variability as a

response to their partner’s NA. However, relative to females, only males were more

heterogeneous in their variability estimates as their relationship length increased, and vice



MIXED LOCATION SCALE MODEL 28

versa.

Discussion

In this paper we expanded the standard actor-partner and multilevel models onto a

mixed-effects location scale model (MELSM) for dyadic interactions. This model was built

to identify and account for IIV in each of the dyad member as well as their interrelations,

as their interaction unfolds over time. Modeling and explaining dyadic interactions at both

the mean and variance level requires repeated measurement data and flexible methods that

are able to capture changes within and differences between individuals over time as well as

the partner effects. The MELSM is one such model. This approach introduces predictors

for both the mean structure, in the location component, and the variance structure, in the

scale part, in a single modeling step. Moreover, partner interactions can be added at either

the location or the scale sub-model, or both, and they may include predictors that operate

at the location and/or scale part. This approach also results in the estimation of random

effects for both the location and the scale parts. This is done, for one, controlling for effects

of mean and variance dependency (resulting in heteroscedasticity) but also obtaining

correlations across these two parts and across both partners in the dyad (or more units in

higher-order systems such as triads).

The information extracted from the covariance across the location and the scale is a

unique feature of the MELSM. In our empirical illustration, we found that partners’

average and same day NA resulted in larger within-person variability. At the same time,

not all participants conformed to this relation. The negative correlation between the

intercept of the within-person SD and the within-person NA partner slope (females: r of

τSF2 with τSF1 = −.41; males: r of τSF2 with τSF1 = −.38) indicated that those who were

generally stable in their PA ratings (small PA SD) were reactive to their partners’ NA.

However, those who were, on average, inconsistent in their PA ratings (large overall PA

SD) did not react with an increase of within-person variability. This association was
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depicted in Figure 2, where some individuals showed a decrease in within-person

variability. Again, these types of findings, with a fine-grained level of detail about IIV, are

unique to the MELSM and would be hard to obtain with other standard models.

Another unique feature of the MELSM is the possibility of including between-person

factors that could moderate the person-level variables at both the location and the scale

components. In our example, we used time in the relationship as such factor. This variable

affected the magnitude of individual differences in the within-person intercept variance. In

our analyses, males who were at earlier stages in their relationship were more similar to

each other than those who had been in their relationship for a longer time. This effect,

however, was not evident for females.

Whenever variances are the focus of a model, one needs to take into account that

their magnitude is also defined by the location of the average response. That is, in

variables that are bounded (either at one or both ends), the variance will be a function of

the person’s mean (Baird, Le, & Lucas, 2006; Eid & Diener, 1999; Kalmijn & Veenhoven,

2005) and, thus, covariances among the random location and scale intercepts merely reflect

this constraint. This problem persists in the MELSM (but see Mestdagh et al., n.d., for a

solution in multi-stage approaches). In the current application this correlation was medium

(r ≈ −.30 among τLk1 and τSk1), and negative, as one would expect for PA. In general,

participants reported PA that was closer to the ceiling than the floor. While the magnitude

of the correlation was rather moderate, it could be substantial in other applications

involving NA ratings (Rast et al., 2012) or reaction time data (Rast & MacDonald, 2014).

This does not necessarily reflect a problem for the MELSM but it should be taken into

account when interpreting the random effects correlations – some of these effects are

dictated by the design and might not necessarily reflect the actual relation in a setting with

unbounded variables.

One of the key strengths of the MELSM is its flexibility, as it allows researchers to

include person- and time-varying predictors at both the location and scale components.
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However, it is important to keep in mind that the relation among the random effects of the

location and scale are modeled as covariances, and they do not imply any sense of

directionality or hierarchy. One alternative parameterization to counter this issue partially

is to include the estimated individual mean as a predictor of the variance in the scale part

of the model. Rast and Zimprich (2011) used this approach to predict within-person

variability in a reaction time task to account for the heteroskedasticity arising from slower

reaction times being related to larger variances (see also chapters 7.2.2 and 10.3 in Gałecki

& Burzykowski, 2013, for a general description of variance functions in the context of linear

mixed effect models). However, for researchers who are interested in modeling

within-person variability, dynamics, and lead-lagged relations, one limitation is that IIV

itself can not serve as a predictor. To circumvent this issue, approaches such as multi-stage

studies first extract IIV and then use it as a predictor in a subsequent regression-type

analysis (cf. MacDonald, Hultsch, & Dixon, 2008).

Another point worth mentioning is that, in the current form, the MELSM does not

differentiate between within-person variability due to actual fluctuations in the individuals’

behavior from fluctuations that arise from measurement error. Here, these two sources of

variability are confounded. Although, if we are willing to assume that the measurement

error variance is constant over time and situations, the intercept term will likely absorb a

larger portion of the error variance than the slope term. With other designs, and other

variables, however, one might include an additional term in the variance model that

captures measurement error (for an application with EMA data see Vansteelandt &

Verbeke, 2016).

The models discussed here, especially the final model, comprise a large number of

parameters. This raises questions regarding data requirements for obtaining accurate

parameter estimates. Most studies examining data requirements for estimating IIV made

use of two-stage approaches and are not directly transferable to the MELSM, as the latter

models all variances jointly from a constrained covariance matrix. Hence, the MELSM
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should benefit from regularization in the sense that the random effects (co)-variances can

only vary within a certain limit. In fact, the few simulations using a MELSM suggest that,

in simple cases with only one random location and scale intercept, the MELSM parameters

can be recovered with relatively few within-group or subject data points. For example,

Leckie et al. (2014) recovered the variance parameters in a simulation with N = 250 and 10

repeated measurements. Similarly, Leckie (2014) was able to recover all parameters in

another simulation study with 50 schools and 25 students per school. Given that our model

was much more complex, we ran a small scale simulation with 200 replications using the

parameters from the males in our final model. Due to convergence time, we limited

ourselves to two random effects, an intercept and slope, for the location and the scale

resulting in a 4× 4 covariance matrix and no between-person predictors. The simulation

was based on posteriors from the estimated population model (see Kruschke, 2015, Chapter

13) and suggested that large correlations (r ≈ .40) were recoverable with approximately 75

participants and 75 repeated measurements while medium sized correlations (r ≈ .20)

required up to 180 participants and 100 repeated measurement. The parameters that

defined the minimal requirements for N and number of repeated measurements were the

covariances among the location and the scale random effects. This fits the findings in Table

3 where the smallest detectable correlation between location and scale was r = .16 with a

credible interval of [.01, .27]. It is very likely that the design and sample size requirements

needed to obtain accurate estimates in demanding settings, such as the one presented here

with 10 random effects, will increase. However, from the small simulation, it seems that the

requirements for sample size grows faster than that for the repeated measurements. As

such, our data example with N > 500 and up to 90 repeated measurements probably

covered the requirements for our full model. These are speculations and future simulation

work needs to formally address the data and design requirements in a broader context.

Likewise, the extent to which missing data affects the quality of the estimates or

whether the location and scale parameters are similarly impacted is currently unknown. In
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our application we assumed a missing at random process (Rubin, 1976), but this

assumption is not necessarily reasonable or tenable. In cases where data are missing non at

random one could implement an imputation mechanism into the model that estimates all

missing and non-missing parameters simultaneously (Molenberghs, Fitzmaurice, Kenward,

Tsiatis, & Verbeke, 2014).

The model presented in this paper serves as an illustration of a linear MELSM for

dyads. This model can be modified easily in either the location or the scale functions to

accommodate different structures (Goldstein, Leckie, Charlton, Tilling, & Browne, n.d.).

Some possible modification include, for example, adding inherently non-linear mean or

variance structures, or altering the random-effects covariance matrix Σ to follow

pre-specified covariance structures. It is important to note, however, that each addition to

the random effects increases the computational demand dramatically. Thus, our

recommendation would be to start with a basic model and add terms at basic and

manageable steps.

The purpose of this paper was to present the MELSM as a flexible model for

longitudinal research on dyads. Our proposed MELSM is suited to model dyadic

interactions in processes that show fluctuations, and where such ups and downs can have

structure that is predictive of individual and dyadic behaviors. In principle, such a model

could be applied to any dyadic interaction where the interdependence between the dyadic

members is of key interest, given certain data conditions. Consider, for example, the

interrelations between a therapist and a client, either over time, or in the course of a

therapy session. Or, alternatively, the interaction between a mother and her infant child,

during play time or through the development of the child. In either case, there will most

likely be ups and downs in the individuals’ emotions, bonding, or adherence to therapy

that can be modeled with the MELSM to detect aspects of the interactions that would

otherwise go unnoticed (for additional examples see Estrada, Sbarra, & Ferrer, n.d.). By

focusing on the within-person variance, this approach opened up possibilities for modeling
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a component that is often disregarded as unexplained residuals. We hope that we

illustrated such possibilities and the fact that such residuals may show systematic patterns

that are important to understand psychological processes.



MIXED LOCATION SCALE MODEL 34

Table 2

Fixed Effects from a Mixed Effects Location Scale Model for Positive Affect

Female Male

Parameters Mean 2.5% 97.5% Mean 2.5% 97.5%

Fixed Location

Intercept (γk00) 3.45 3.39 3.51 3.55 3.50 3.61

Rel.sat. (γk01) 0.30 0.21 0.38 0.24 0.15 0.33

PA∗Partner (γk02) 0.55 0.46 0.64 0.48 0.39 0.57

PALag1 (γk10) 0.24 0.21 0.26 0.26 0.23 0.28

PALag1× Rel.sat. (γk11) -0.03 -0.07 0.01 -0.01 -0.05 0.03

PALag1 × PA∗Partner (γk12) -0.03 -0.07 0.02 -0.03 -0.08 0.01

PAPartner.pc (γk20) 0.36 0.32 0.39 0.30 0.26 0.33

PAPartner.pc× Rel.sat. (γk21) 0.04 -0.01 0.09 0.05 -0.00 0.10

PAPartner.pc × PA∗Partner (γk22) 0.06 0.00 0.12 0.06 0.00 0.11

Fixed Scale

Intercept (ξk00) -0.83 -0.87 -0.78 -0.91 -0.95 -0.87

Rel.sat. (ξk01) -0.08 -0.14 -0.02 -0.06 -0.12 -0.00

NA∗Partner (ξk02) 0.18 0.07 0.29 0.28 0.16 0.39

NAPartner.pc (ξk10) 0.20 0.15 0.26 0.19 0.15 0.24

NAPartner.pc× Rel.sat. (ξk11) 0.10 0.04 0.16 0.08 0.02 0.14

NAPartner.pc × NA∗Partner (ξk12) -0.27 -0.39 -0.15 -0.16 -0.27 -0.05

Note. All estimates are posterior means. The 2.5% and 97.5% represent the boundary

of the lower and upper credible intervals (CI). Bolded estimates represent means where

the according CI’s exclude 0. Fixed Scale estimates are the SD’s of the random effects

on the log scale. Rel.sat. is relationship satisfaction, PA(NA)∗Partner is the time-invariant

partner’s person-mean PA (NA), PA(NA)Partner.pc is the partner’s daily person-mean-centered

PA (NA), and PALag1 is the person-mean-centered previous day PA.
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Appendix

Stan code for models 2 and 3. Model 2 was the best fitting model and served to provide

priors for model 3. Parameter names are chosen to reflect the multilevel model

specifications in the manuscript. The code and example data for the full sequence can be

obtained from https://github.com/ph-rast/MELSM

model_2 <- ’

data {

int<lower=0> nobs; // num of observations

int<lower=1> J; // number of groups or subjects

int<lower=1,upper=J> group[nobs]; // vector with group ID

matrix[nobs,6] x; // design matrix w. time-varying wp predictors for location

matrix[nobs,4] w; // design matrix w. time-varying wp predictors for scale

matrix[J,3] z; // between person predictors at level 2 for location

matrix[J,3] m; // between person predictors at level 2 for scale

vector<lower=1, upper=5>[nobs] y; // column vector with outcomes

}

parameters { // Parameters to be estimated

cholesky_factor_corr[10] L_Omega;// Cholesky decomposition of Omega

matrix[6,3] gamma; // Location fixed effects

matrix[4,3] xi; // Scale fixed effects

matrix[10,J] stdnorm; // Standard normal, multiply w. cholesky factor to

// obtain multivariate normal beta

vector<lower=0>[10] tau; // Vector of random effect SDs

}

transformed parameters {

matrix[J,6] z_gamma;

https://github.com/ph-rast/MELSM
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matrix[J,4] m_xi;

matrix[J,10] mu;

matrix[J,10] beta;

// Level 2

z_gamma = z * transpose(gamma);

m_xi = m * transpose(xi);

mu = append_col(z_gamma, m_xi);

beta = mu + transpose(diag_pre_multiply(tau, L_Omega)*stdnorm);

}

model {

// Priors

tau ~ cauchy(0, 2);

to_vector(stdnorm) ~ normal(0,1);

L_Omega ~ lkj_corr_cholesky(1);

to_vector(xi) ~ normal(0, 100);

to_vector(gamma) ~ normal(0, 100);

// likelihood

y ~ normal(rows_dot_product(beta[group, 1:6 ], x),

exp(rows_dot_product(beta[group, 7:10], w)));

}

generated quantities { // This section is not necessary, but contains useful

// transformations and generates data for posterior checks.

corr_matrix[10] Omega; // Obtain Omega from Cholesky factor to print in output

Omega = L_Omega*transpose(L_Omega); // Correlation matrix for output

}’
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Model 3: Note that the priors were kept informative for the γ and ξ parameters in

order alleviate model complexity. This model takes considerably more time to converge

compared to the MELSM 2 as we also need to estimate parameters in the submodel for the

scale random effects.

model_3<-’

data {

int<lower=0> nobs; // number of observations

int<lower=1> J; // number of groups or subjects

int<lower=1,upper=J> group[nobs]; // vector with group ID

matrix[nobs,6] x; // design matrix w. time-varying wp predictors for location

matrix[nobs,4] w; // design matrix w. time-varying wp predictors for scale

matrix[J,3] z; // between person predictors at level 2 for location

matrix[J,3] m; // between person predictors at level 2 for scale

matrix[J,1] g; // between person predictors for location ranefvar (intercept only)

matrix[J,2] a; // between person predictors for scale ranefvar (intercept and slope)

vector<lower=1,upper=5>[nobs] y; // column vector with outcomes

}

parameters {

cholesky_factor_corr[10] L_Omega; // Cholesky decomposition of Omega

matrix[6,3] gamma; // Location Fixed effects

matrix[4,3] xi; // Scale fixed effects

matrix[6,1] iota_l; // iota, SD, for location random effects

matrix[4,2] iota_s; // iota, SD, for scale random effects

//(modeled with predictors in a)

matrix[10,J] stdnorm; // Standard normal, used to multiply w. cholesky

// factor to obtain multivariate normal beta

}
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transformed parameters {

matrix[J, 6] z_gamma;

matrix[J, 4] m_xi;

matrix[J,10] mu;

matrix[J, 6] g_iota_l;

matrix[J, 4] a_iota_s;

matrix[J,10] tau;

matrix[J,10] beta;

z_gamma = z * transpose(gamma);

m_xi = m * transpose(xi);

mu = append_col(z_gamma, m_xi);

g_iota_l = exp(g * transpose(iota_l));// submodel for location random effect SDs

// (intercept only)

a_iota_s = exp(a * transpose(iota_s));// submodel for scale random effect SDs

// (intercept and slope)

tau = append_col(g_iota_l, a_iota_s);

for(j in 1:J){

beta[j,] = mu[j,] + transpose(diag_pre_multiply(tau[j,], L_Omega)*stdnorm[,j]);

}

}

model {

// priors

to_vector(stdnorm) ~ normal(0,1);

L_Omega ~ lkj_corr_cholesky(1.5);

to_vector(gamma) ~ normal(0.1, 0.5);

gamma[1,1] ~ normal(3.45, 0.5); // intercepts obtain mean from MELSM 2

gamma[4,1] ~ normal(3.60, 0.5);
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to_vector(xi) ~ normal(-0.5, 0.5);

to_vector(iota_l) ~ normal(-1.5, 3);

to_vector(iota_s) ~ normal(-1.5, 3);

// likelihood

y ~ normal(rows_dot_product(beta[group, 1:6], x),

exp(rows_dot_product(beta[group, 7:10], w)));

}

generated quantities { // Obtain Omega from Cholesky factor.

corr_matrix[10] Omega;

Omega = L_Omega*transpose(L_Omega);

}’
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