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6IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

ar
X

iv
:2

40
4.

03
00

5v
3 

 [
as

tr
o-

ph
.C

O
] 

 1
4 

A
pr

 2
02

4

https://orcid.org/0000-0002-4637-2868
https://orcid.org/0000-0002-3369-3718
https://orcid.org/0000-0002-6588-3508
https://orcid.org/0000-0002-7522-9083
https://orcid.org/0000-0001-9070-3102
https://orcid.org/0000-0002-1081-9410
https://orcid.org/0000-0001-6098-7247
https://orcid.org/0000-0002-4118-8236
https://orcid.org/0000-0002-5762-6405
https://orcid.org/0000-0002-5954-7903
https://orcid.org/0000-0002-1769-1640
https://orcid.org/0000-0002-4928-4003
https://orcid.org/0000-0003-2371-3356
https://orcid.org/0000-0003-4992-7854
https://orcid.org/0000-0002-2890-3725
https://orcid.org/0000-0003-1481-4294
https://orcid.org/0000-0003-0265-6217
https://orcid.org/0000-0003-3142-233X
https://orcid.org/0000-0003-1197-0902
https://orcid.org/0009-0006-2583-5006
https://orcid.org/0000-0002-6024-466X
https://orcid.org/0000-0001-6356-7424
https://orcid.org/0000-0003-1838-8528
https://orcid.org/0000-0001-7178-8868
https://orcid.org/0000-0003-1887-1018
https://orcid.org/0000-0003-4962-8934
https://orcid.org/0000-0002-4279-4182
https://orcid.org/0000-0002-1125-7384
https://orcid.org/0000-0001-9497-7266
https://orcid.org/0000-0002-2733-4559
https://orcid.org/0000-0001-8684-2222
https://orcid.org/0000-0001-6590-8122
https://orcid.org/0000-0002-1544-8946
https://orcid.org/0000-0003-3188-784X
https://orcid.org/0000-0002-0644-5727
https://orcid.org/0000-0001-7145-8674
https://orcid.org/0009-0006-1331-4035
https://orcid.org/0000-0001-7144-2349
https://orcid.org/0000-0001-5589-7116
https://orcid.org/0000-0002-0394-0896
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-0408-5633
https://orcid.org/0000-0002-3569-7421
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-0129-0620
https://orcid.org/0000-0003-3841-1836
https://orcid.org/0000-0002-5992-7586
https://orcid.org/0000-0001-5381-4372
https://orcid.org/0000-0002-6684-3997


7Center for Cosmology and AstroParticle Physics, The Ohio State University, 191 West
Woodruff Avenue, Columbus, OH 43210, USA

8Department of Astronomy, The Ohio State University, 4055 McPherson Laboratory, 140
W 18th Avenue, Columbus, OH 43210, USA

9The Ohio State University, Columbus, 43210 OH, USA
10Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building,
Portsmouth, PO1 3FX, UK

11School of Mathematics and Physics, University of Queensland, 4072, Australia
12Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
13Physics Dept., Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
14University of Michigan, Ann Arbor, MI 48109, USA
15Leinweber Center for Theoretical Physics, University of Michigan, 450 Church Street, Ann
Arbor, Michigan 48109-1040, USA

16Department of Physics & Astronomy, University College London, Gower Street, London,
WC1E 6BT, UK

17Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Av-
enue, Chicago, IL 60637, USA

18Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
19Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
20Institute for Computational Cosmology, Department of Physics, Durham University, South
Road, Durham DH1 3LE, UK

21Department of Physics and Astronomy, The University of Utah, 115 South 1400 East, Salt
Lake City, UT 84112, USA

22Instituto de F́ısica, Universidad Nacional Autónoma de México, Cd. de México C.P. 04510,
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Abstract. Baryon acoustic oscillations (BAO) provide a robust standard ruler to measure
the expansion history of the Universe through galaxy clustering. Density-field reconstruction
is now a widely adopted procedure for increasing the precision and accuracy of the BAO
detection. With the goal of finding the optimal reconstruction settings to be used in the
DESI 2024 galaxy BAO analysis, we assess the sensitivity of the post-reconstruction BAO
constraints to different choices in our analysis configuration, performing tests on blinded
data from the first year of DESI observations (DR1), as well as on mocks that mimic the
expected clustering and selection properties of the DESI DR1 target samples. Overall, we
find that BAO constraints remain robust against multiple aspects in the reconstruction pro-
cess, including the choice of smoothing scale, treatment of redshift-space distortions, fiber
assignment incompleteness, and parameterizations of the BAO model. We also present a
series of tests that DESI followed in order to assess the maturity of the end-to-end galaxy
BAO pipeline before the unblinding of the large-scale structure catalogs.

mailto:enrique.paillas@uwaterloo.ca
mailto:zhejied@sjtu.edu.cn
mailto:xinyi.chen@yale.edu


Contents

1 Introduction 1

2 Observations 3

2.1 DESI DR1 samples 3

2.2 Density-field reconstruction 4

2.2.1 Reconstruction based on iterative Fast Fourier Transforms 6

2.2.2 The pyrecon reconstruction toolkit 7

2.3 Clustering measurements 8

3 Modeling 9

3.1 DESI mocks 9

3.2 Modelling the BAO signal 10

3.2.1 Fourier space 10

3.2.2 Configuration space 11

3.3 Model fitting 12

4 Results 12

4.1 A qualitative exploration of reconstruction 12

4.2 Impact of the smoothing scale 15

4.3 Impact of the fiber assignment 20

4.4 Consistency between the DESI data and mocks 23

4.5 Robustness of the blinded DESI constraints 26

4.6 Gaussianity of the BAO posterior 31

5 Summary and Conclusions 33

6 Data Availability 35

A Additional Figures 41

1 Introduction

Galaxy redshift surveys have shaped our understanding of the origin and evolution of the Cos-
mos. Measurements of baryon acoustic oscillations [BAO; 1–3] in the galaxy distribution have
allowed us to measure the expansion history of the Universe with high precision, establishing
ΛCDM as our standard cosmological paradigm [4–8]. These oscillations are a characteristic
pattern of clustering in the large-scale structure (LSS), corresponding to remnants of acoustic
waves that traveled through the photon-baryon plasma in the early Universe. These sound
waves imprinted a characteristic scale in the distribution of matter, given by the distance the
perturbations traveled before they froze in place once hydrogen recombined and the baryons
stopped being dragged by the photons (the baryon drag epoch). Over time, these cosmic
ripples provided sites where galaxies preferentially formed, and, as a consequence, this sound
horizon scale is also found in the spatial distribution of galaxies, either as a localized bump
in the two-point correlation function or as wiggles in the power spectrum [9, 10].
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Non-linear gravitational evolution broadens the BAO peak in the correlation function
or damps high-k oscillations in the power spectrum. In addition, the location of the peak can
also be shifted due to non-linear evolution and galaxy biasing [11, 12]. These effects degrade
the precision of BAO measurements but can be partially corrected. A technique known as
reconstruction has been designed to reverse the non-linear effects by shifting overdensities
back to their initial positions, so that the sound horizon scale can be recovered with greater
statistical significance [13]. In addition, reconstruction has been shown to be effective in
removing the shifts in the acoustic peak caused by non-linearities and galaxy biasing, reducing
the systematic errors in BAO measurements [e.g. 14–17].

Clustering analyses from the last decade, based on the Sloan Digital Sky Survey [SDSS;
18], the Baryon Oscillation Spectroscopic Survey [BOSS; 19], the extended Baryon Oscillation
Spectroscopic Survey [eBOSS; 20], and WiggleZ [21], have routinely adopted reconstruction
as a standard to extract cosmological information from BAO [6, 7, 22–26]. Recently, [8]
reported the first detection of BAO from the early data of the Dark Energy Spectroscopic
Instrument (DESI) survey [27, 28], showing that reconstruction effectively increases the sta-
tistical significance of BAO detection for various DESI target samples.

Running reconstruction on galaxy maps requires certain modeling and algorithmic
choices that can potentially affect the performance of the reconstruction process. Many
different reconstruction algorithms have been proposed in the literature [e.g. 22, 29, 30], and
for a given model, several hyperparameters must be calibrated to optimally recover the linear
density field. With the standard reconstruction algorithms that have been applied to galaxy
surveys, one needs to first assume a fiducial cosmology to convert galaxy redshifts to dis-
tances, as well as a fiducial value for the growth rate of cosmic structure and the linear bias
of the galaxy sample, both of which are necessary to calculate the Zel’dovich displacement
field that is at the core of the reconstruction formalism [13, 31]. One also needs to make
choices related to the numerical implementation of the reconstruction recipes, such as how
exactly the discrete galaxy positions are mapped to a smoothed overdensity field on a grid,
which can also play a role in determining the displacement field [23, 32–34].

Ultimately, the optimal reconstruction settings depend on the specific galaxy sample
that is being analyzed, with considerations for the sample number density, redshift range, and
survey geometry. The goal of this article is to present a thorough study of BAO reconstruction
as applied to the DESI 2024 results, which use the first data release of the DESI cosmological
survey (DESI DR1; [35]). For this purpose, the first half of our paper analyzes mocks that
match the DESI DR1 target samples with different reconstruction schemes and settings, with
the aim of optimizing the pipeline that DESI will use to perform the main BAO analysis,
presented in [36], and the corresponding cosmological interpretation of the results, presented
in [37].

To minimize potential confirmation biases during parameter inference, the LSS catalogs
analyzed by the DESI Collaboration are blinded to cosmology, as detailed in [38]. In this
context, blinding involves the deliberate concealment or modification of the catalogs, ensuring
that the choices and interpretations in our analysis remain unbiased. The second half of our
paper concerns a series of tests performed on the blinded DESI DR1 data and mocks that
assess the robustness of the BAO constraints against different measurement and modeling
choices in our pipeline, which informed the decision of unblinding the catalogs to perform
the final cosmological analysis from BAO.

The paper is organized as follows. In Section 2 we describe the observables used in this
work, including the clustering and the reconstruction of the blinded DESI DR1 catalogs. In
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Section 3 we present the theoretical aspect, including the description of the BAO model and
parameter inference, as well as a description of the mock galaxy catalogs that mimic the
DESI DR1 selection and clustering properties. The results are presented in Section 4, where
we present parameter recovery tests on the mock galaxy catalogs and unblinding tests using
the DESI DR1 data.

Throughout this paper, we adopt a fiducial cosmology that is characterized by ωcdm =
0.1200, ωb = 0.02237, h = 0.6736, Nur = 2.0328, and one massive neutrino with ων =
0.00064420, which matches the Planck 2018 base-ΛCDM parameters [39], as well as the
baseline cosmology from the AbacusSummit simulations [40], described in Section 3.1. A
careful study of the impact of this choice of fiducial cosmology on the BAO analysis is
presented in [41].

2 Observations

2.1 DESI DR1 samples

The Dark Energy Spectroscopic Instrument (DESI; [42]) is a multi-fiber spectrograph in-
stalled on the Nicholas U. Mayall 4-meter telescope at Kitt Peak National Observatory in
Arizona, which can simultaneously take spectra of 5,000 objects using fiber-fed robotic po-
sitioners [43]. The DESI data release 1 [DR1; 35] comprises observations from May 14,
2021, following a period of successful survey validation [27], which resulted in DESI’s first
Early Data Release [44], through June 14, 2022. Depending on the observerving conditions,
DESI dynamically allocates its observing time into a ‘bright-time’ program, and a ‘dark-
time’ program. The bright-time program comprises the Bright Galaxy Survey [45], while the
dark-time program observes luminous red galaxies, emission-line galaxies, and quasars, as
well as a sample of Milky Way stars [MWS, 46]. In addition, DESI targets Lyman-α forest
quasars to trace the distribution of neutral hydrogen [47].

For this study, we use the large-scale structure (LSS) catalogs presented in [48], focusing
on the BAO measurements of the following DR1 target samples:

• The Bright Galaxy Sample (BGS): This sample consists of 300,017 good redshifts
in the redshift range 0.1 < z < 0.4 over an area of 7,473 deg2. Although the nominal
Bright Galaxy Sample is flux-limited and has a number density that has a strong
redshift dependence, the sample used for the DR1 analysis was engineered to have a
roughly constant number density of at 0.1 < z < 0.4, which was achieved by using
r band absolute magnitude cuts with a k+E correction [48]. The resulting number
density for this BGS sample is roughly constant at 3 × 10−4 h3Mpc−3 when averaged
over the DR1 footprint, having a clustering amplitude similar to that of LRGs (see
below), making them similarly biased with respect to the dark matter density field.

• The Luminous Red Galaxy Sample (LRGs): This sample includes 2,138,600 good
redshifts over 5,840 deg2 in the redshift range 0.4 < z < 1.1. These are red, passive
galaxies that are highly biased with respect to the underlying matter distribution,
making them specially suitable for BAO analyses, similar to the previous LRG samples
from SDSS [19, 20]. It has a roughly constant number density of 3.5 × 10−4 h3Mpc−3

up to z = 0.8, with a decrease in density at 0.8 < z < 1.1 (see Figure 1 from [36]).
We further split this sample into three redshift bins when calculating the two-point
clustering: 0.4 < z < 0.6 (LRG1), 0.6 < z < 0.8 (LRG2), and 0.8 < z < 1.1 (LRG3).
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• The Emissison-line Galaxy Sample (ELGs): This sample comprises 2,432,022 good
redshifts in the range 0.8 < z < 1.6 over an area of 5,914 deg2. These are [OII] emission-
line galaxies that are generally active star-forming galaxies. They are less clustered
with respect to the matter density field compared to passive galaxies such as the LRGs.
We subdivide them into two disjoint redshift bins for the clustering measurements:
0.8 < z < 1.1 (ELG1) and 1.1 < z < 1.6 (ELG2).

• The Quasar Sample (QSO): This sample consists of 856, 652 good redshifts at 0.8 <
z < 2.1, covering an area of 7,249 deg2. This is the sample that has the largest bias with
respect to the underlying dark matter distribution, since it has a clustering amplitude
that is somewhere in between the LRGs and ELGs, but at a much higher effective redshift.

To avoid confirmation bias in the cosmological analysis, the LSS catalogs of each target
sample were blinded to cosmology. In practice, the redshifts of the tracers were shifted with
a certain prescription, which changes the position of the BAO feature and the redshift-space
distortions (RSD) signal. The catalogs were only unblinded once 1) the full end-to-end
analysis pipeline was fixed and 2) the data and results run through this pipeline had passed
a series of predefined tests, ensuring that the choices and interpretations in our analysis
remain unbiased. A detailed description of the blinding scheme is presented in [38], while
unblinded measurements are presented in [36]. Beyond the above samples, the DESI 2024
results will also include BAO in the Lyman-α forest [49], and both sets will be combined
to infer cosmology [37]. Analyses using clustering information beyond just the BAO scale
will be presented in [50], and will provide additional cosmological constraints, including on
primordial non-Gaussianities [51, 52].

In addition to the tracer LSS catalogs, we also use a series of random catalogs that
follow the footprint and radial selection of the DESI samples but with no intrinsic clustering
[53], which we use to estimate the overdensity field for reconstruction and the two-point
clustering.

2.2 Density-field reconstruction

In a Lagrangian framework, we can relate the Eulerian position of a galaxy at a time t,
denoted by x(q, t), to its initial position q in Lagrangian space by

x(q, t) = q+Ψ(q, t), (2.1)

where Ψ(q, t) is the Lagrangian displacement vector in real space. The galaxy velocity flows
that are sourced by structure formation, which are captured by the displacement vector,
smear and shift the BAO signal, degrading its detection significance and biasing the distance-
redshift measurements. The goal of BAO reconstruction [11] is to reverse the non-linear
motions in the density field, increasing the accuracy and precision of the BAO method.
Reconstruction achieves this by calculating the displacement field based on an estimate of
the galaxy velocity field, which is in turn estimated from the observed galaxy density field.

The first-order term in a perturbative expansion of Ψ(q) using Lagrangian perturbation
theory, also known as the Zel’dovich approximation [31], reads

Ψ(q) =

∫
d3k

(2π)3
ik

k2
δ(k)eik·q . (2.2)
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Tracer Redshift range Linear bias b Growth rate f Smoothing scale Σsm

BGS 0.1–0.4 1.5 0.682 15h−1Mpc
LRGs 0.4–1.1 2.0 0.834 15h−1Mpc
ELGs 0.8–1.6 1.2 0.900 15h−1Mpc
QSO 0.8–2.1 2.1 0.928 30h−1Mpc

Table 1. Fiducial redshift range, tracer linear bias, growth rate of structure, and smoothing scale
assumed when reconstructing each DESI target sample. The smoothing scale was chosen after testing
different values for each tracer. The growth rate of structure is determined from our fiducial cosmology
and the effective redshift of each sample.

In addition, the displacement field can be related to the observed redshift-space galaxy field
δg via the linear continuity equation [22, 54],

∇ ·Ψ+
f

b
∇ · [(Ψ · r̂)r̂] = −δg

b
, (2.3)

where f is the linear structure growth rate, r̂ is the line-of-sight direction, and b is the linear
galaxy bias. On linear scales, we can assume Ψ is an irrotational field. Then, we can write
the displacement as the gradient of a potential, Ψ = −∇ϕ, and rewrite Eq. (2.3) as

∇2ϕ+
f

b
∇ · (∇ϕr)r̂ =

δg
b

(2.4)

The solution to Eq. (2.4) can be solved in configuration space using finite-difference
approximations [22] or multigrid relaxation techniques [29]. Alternatively, Eq. (2.3) can be
solved in Fourier space, taking advantage of the computational efficiency of Fast Fourier
Transforms (FFTs) [30, 33].

Although the methods mentioned above use different numerical techniques to solve
Eqs. (2.3) and (2.4), their base underlying algorithm can be summarized in the following
steps [29]:

1. Smooth the galaxy overdensity field using a kernel S to filter out high-k modes that
are not well described by linear theory.

2. Assuming a value for the structure growth rate f and the linear galaxy bias b, estimate
the displacement field Ψ by solving Eq. (2.3). The line-of-sight component of the
displacement is multiplied by 1 + f to account for RSD.

3. Move galaxy positions by −Ψ to obtain the displaced density field δd.

4. Move an initially unclustered catalogue of random particles by −Ψ to obtain the
‘shifted’ field δs. In this step, one can choose to include or ignore the 1 + f factor
in the displacement along the line of sight, which results in two different reconstruction
conventions. The RecSym convention applies the 1+ f factor to both galaxies and ran-
doms, preserving linear RSD in the reconstructed field. The RecIso convention does
not include the 1 + f factor when displacing randoms, and therefore results in a more
isotropically-clustered sample after reconstruction.

The reconstructed density field can then be estimated as δr ≡ δd − δs, with a power
spectrum Pr ∝ ⟨|δ2r |⟩. In configuration space, the post-reconstruction correlation function
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can be calculated using a modified version of the Landy-Szalay estimator [55], replacing the
DR and RR terms in the numerator by DS and SS, where D and S denote the displaced data
catalog and the shifted random catalogue, respectively.

It should be noted that other improved reconstruction algorithms have been proposed
in the literature [e.g., 56–58], which follow different recipes. Although these methods hold
significant promise for reconstructing the linear small-scale density field in the very low shot
noise regime, the expected improvements in the BAO distance measurements are marginal
at the galaxy number densities of DESI DR1.

For this work and the main DESI BAO analysis presented in [36], we adopt the iterative
reconstruction in Fourier space proposed in [33] as our default reconstruction algorithm. In
[59], we show that this implementation gives consistent results with the multigrid algorithm,
but with a reduced computational cost. Below, we present a brief description of the algorithm,
and refer the reader to [59] for a detailed comparison with reconstruction algorithms in the
context of BAO analyses.

2.2.1 Reconstruction based on iterative Fast Fourier Transforms

We start by decomposing (Ψ · r̂)r̂ into the gradient of a scalar potential field A and the curl
of a vector field B using Helmholtz’s Theorem:

(Ψ · r̂)r̂ = ∇A+∇×B . (2.5)

Substituting this in Eq. (2.3), we obtain

∇(ϕ+ fA) = −∇∇−2 δg
b
, (2.6)

where we have assumed that Ψ can be written as the gradient of a potential, as in Eq. (2.4).
The formula above is exact, but cannot be solved directly using FFTs. The difficulty arises
from the second term on the right-hand side of Eq. (2.5). If we ignore this term by assuming
(Ψ · r̂)r̂ is irrotational,

(Ψ · r̂)r̂ ≈ ∇A , (2.7)

then we can write

Ψ+
f

b
(Ψ · r̂)r̂ = −∇∇−2 δg

b
. (2.8)

The right-hand side of this equation can be computed using FFTs, with a solution given by

Ψ = IFFT

[
− ikδ(k)

k2b

]
− β

1 + β

{
IFFT

[
ikδ(k)

k2b

]
· r̂
}
r̂ (2.9)

where IFFT denotes the inverse Fourier Transform, and β = f/b.

In [30], it has been shown that assuming (Ψ · r̂)r̂ is irrotational overcorrects for RSD
in the reconstructed field, which is not desirable. However, they propose to start from this
approximation and then use an iterative scheme to recover the real-space displacement field,
provisional on knowing the value of the growth rate of structure f .

If we start from Eq. (2.9) and completely ignore the RSD component, we can write the
displacement as

Ψ = IFFT

[
− ikδg,rsd(k)

k2b

]
(2.10)
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or, in terms of the potential, as

ϕest,1 = IFFT

[
−δg,rsd(k)

k2b

]
. (2.11)

Here, δg,rsd is the observed redshift-space galaxy overdensity field. We can use this first
estimate of the potential to estimate the real-space overdensity from the redshift-space one,

δg,real,1
b

=
δg,rsd
b

+
f

b
∇ · (∇ϕest,1 · r̂)r̂ (2.12)

In the next iteration, we build upon this estimate of the real-space overdensity to re-calculate
the potential,

ϕest,2 = IFFT

[
−δreal,1(k)

k2b

]
. (2.13)

and the operation continues. Once the algorithm has converged, we can estimate the dis-
placement as

ΨFFT,n = ∇∇−2

(
δg,real,n

b

)
, (2.14)

where δg,real,n is the estimation of the real-space galaxy overdensity field on the n-th iteration.

The description above constitutes the IFFT algorithm in its basic form. However, to
speed up convergence, different starting points can be considered for the first iteration. In
pyrecon, during the first iteration, the second term on the right-hand side of Eq. (2.12) takes
an additional factor 1/(1 + β), motivated by Eq. (2.9).

We have previously run convergence tests to assess the number of iterations required
to obtain an optimal reconstruction of the DESI target samples. Based on results that are
presented in [59], we choose n = 3 as the default number of iterations for the IFFT algorithm
throughout the rest of this work.

It should be noted that this method differs from the one adopted in the eBOSS clustering
analysis. The eBOSS method [7, 60] iteratively updates the galaxy and random particle
positions, while the IFFT algorithm we adopt here updates the overdensity on the rectangular
meshes, matching the algorithm proposed in [30, 33]. This is the first time that this algorithm
has been implemented in a BAO data analysis.

2.2.2 The pyrecon reconstruction toolkit

We reconstruct the DESI DR1 samples using pyrecon1, a comprehensive reconstruction
toolkit developed by the DESI collaboration, which implements multiple reconstruction al-
gorithms, accommodates various conventions, and provides the flexibility to process periodic-
box simulations or survey data with non-uniform geometries. pyrecon begins by drawing two
identical rectangular grids with a given resolution (which we set to 4h−1Mpc for this work2)
that encompasses the survey volume. The galaxy and random particles are then painted on

1https://github.com/cosmodesi/pyrecon
2We have performed convergence tests to choose an optimal value for the grid resolution, given our choice

of smoothing scales and the computational restrictions due to the increase in memory allocation as the grid
resolution increases. We also add some padding to the grid borders so that the size of the grid is 20% larger
on each side than what would be strictly necessary to perfectly contain the catalogs, which avoids introducing
spurious correlations on the scales of interest when performing FFTs, which inherently assume periodicity for
the grid operations.
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each grid using triangular-shaped cloud interpolation [61]. The galaxy and random fields are
smoothed in Fourier space using a Gaussian kernel of width Σsm,

S = e−(kΣsm)2/2 , (2.15)

after which they are converted back to configuration space (we test different Σsm values for
each tracer, and determine the optimal smoothing scale in Section 4.2). The overdensity field
is then estimated by taking the ratio of the galaxy and random grids. Grid cells that contain
fewer random particles than a given threshold are assigned a density contrast of zero. We set
this threshold to 75% of the mean number of random particles per cell. This recipe is common
for all reconstruction algorithms implemented in pyrecon, after which the displacement field
depends on the specifics of each algorithm (in our case, the IFFT algorithm).

Throughout this work, we adopt some fiducial values for the linear galaxy bias and
the growth rate of structure when running reconstruction, which are listed in Table 1. The
linear galaxy bias parameters have been determined by [62, 63], and correspond to 1.5 for
BGS, 2.0 for LRGs, 1.2 for ELGs, and 2.1 for QSO. We calculate the linear growth rate of
structure from cosmoprimo3 as f = σvv

8 (zeff)/σ
dd
8 (zeff), where σvv

8 and σvv
8 are the root mean

square of velocity and density perturbations in spheres of 8h−1Mpc, respectively [64]. This is
calculated using our fiducial cosmology model, at the effective redshift of each target sample,
which is 0.296 for BGS, 0.780 for LRGs, 1.194 for ELGs, and 1.495 for QSO [48]. The impact
on reconstruction due to changes in fiducial cosmology has been studied in [65, 66], and a
general study of fiducial cosmology effects on the DESI BAO analysis is presented in detail
in [41]. In addition, [12] present theoretical calculations showing the expected (small) impact
of assuming an incorrect galaxy bias or growth rate on the BAO constraints.

2.3 Clustering measurements

We study the clustering properties of the DESI DR1 samples by means of anisotropic two-
point statistics in configuration and Fourier space. In particular, we focus on the multipole
moments of the anisotropic galaxy correlation function and the power spectrum of each
sample. We calculate the correlation function multipoles with pycorr4, which is a wrapper
around a modified version of the corrfunc pair-counting code [67]. Before its decomposition
into multipoles, the correlation function is binned in s and µ, where s is the redshift-space
scalar separation between the pair and µ is the cosine of the angle between the vector con-
necting the pair and the observer’s line of sight. We use linear bins of width 4h−1Mpc in
s from 50h−1Mpc to 150h−1Mpc. Similarly, the power spectrum multipoles are calculated
with pypower5, where the power spectrum estimator takes reference from [68]. We use k
bins of width 0.005hMpc−1 between 0.02hMpc−1 and 0.3hMpc−1. These scales were iden-
tified as optimal for BAO fitting by [12]. More details of the calculation of these clustering
statistics, including how galaxies are weighed to optimally measure the clustering signal, are
presented in [48].

To estimate the errors associated with the correlation functions, we use semi-analytical
semi-empirical covariance matrices generated with the RascalC code [69, 70], while the errors
associated with the power spectra are based on CovaPT [71, 72]. Refs. [72–74] present a
comprehensive description of the construction and validation of these covariance matrices for
DESI DR1.

3https://github.com/cosmodesi/cosmoprimo
4https://github.com/cosmodesi/pycorr
5https://github.com/cosmodesi/pypower.
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Parameter P (k) prior ξ(r) prior Interpretation

αiso U(0.8, 1.2) U(0.8, 1.2) Isotropic BAO dilation
α∗
AP U(0.8, 1.2) U(0.8, 1.2) Anisotropic (AP) BAO dilation

Σ⊥ N (Σfid
⊥ , 1.0) N (Σfid

⊥ , 1.0) Transverse BAO damping [h−1Mpc]
Σ∥ N (Σfid

∥ , 2.0) N (Σfid
∥ , 2.0) Line-of-sight BAO damping [h−1Mpc]

Σs N (2.0, 2.0) N (2.0, 2.0) Fingers-of-God damping [h−1Mpc]
b1 U(0.2, 4) U(0.2, 4) Linear galaxy bias
dβ∗ U(0.7, 1.3) U(0.7, 1.3) Linear RSD parameter
a0,n N (0, 104) N/A Spline parameters for the monopole
a∗2,n N (0, 104) N (0, 104) Spline parameters for the quadrupole

b0,n N/A U(−∞,∞) Unknown large scale systematics
b∗2,n N/A U(−∞,∞) Unknown large scale systematics

Table 2. Priors on the parameters that are varied during fits to the power spectrum (second column)
and the correlation function (third column). U and N denote uniform and Gaussian distributions,
respectively. The parameters marked with a star are fixed to their default values for isotropic BAO
fits (BGS, ELG1 and QSO), where the default values are dβ = 1, a2,n = 0, b2,n = 0. The mean values
of the priors on the damping parameters for each tracer are shown in Table 3.

3 Modeling

3.1 DESI mocks

To test the effects of reconstruction in a controlled setting, we use two collections of mock
galaxy catalogs that were calibrated to match the clustering and selection properties of the
DESI DR1 target samples, as described in [75]: full N-body mocks based on the Abacus-
Summit suite of simulations [40], and approximate mocks based on the EZmock algorithm
[76]. All mocks were constructed assuming a Planck 2018 base-ΛCDM cosmology, more
specifically using the mean of the marginalized parameter distributions from the Planck
TT,TE,EE+lowE+lensing likelihood [39]: ωcdm = 0.1200, ωb = 0.02237, h = 0.6736, and
Nur = 2.0328.

The N-body mocks start from halo catalogs from the 2h−1Gpc AbacusSummit simulation
boxes [40], at snapshots within the redshift range of each DESI sample. Dark matter haloes
are populated with galaxies using the Halo Occupation Distribution (HOD) model, with
parameters that are calibrated to match the number density and clustering of each galaxy
sample (an assessment of the impact of the HOD modelling on the DESI error budget is
presented in [62, 63]). Mocks with cutsky geometry are then constructed by replicating and
patching the 2h−1Gpc boxes from different snapshots, converting them to sky coordinates
and trimming them to match the DESI footprint and radial selection of each sample. For
LRGs, we use the z = 0.5 snapshot to construct the z < 0.6 portion of the cutsky, and
the z = 0.8 snapshot to cover the z > 0.6 portion. For ELGs, snapshots at z = 0.950 and
z = 1.325 are used to cover z < 1.1 and z > 1.1, respetively. The QSO cutsky reads data from
the z = 1.400 snapshot for all redshifts. We note that these cutsky mocks differ from the full
lightcones described in [77].

The approximate mocks consist of a series of 1000 galaxy catalogs generated with the
EZmock algorithm [76] with the same volume, number density, and HOD as the Abacus-
Summit simulations. The EZmocks are based on the Zel’dovich approximation, including
prescriptions for the missing physical ingredients, such as stochastic scale-dependent, non-
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local and non-linear biasing contributions.

Since DESI measures thousands of galaxy redshifts simultaneously using fiber-fed robotic
positioners, the galaxy clustering can be artificially decreased at small scales due to the fiber
assignment scheme, which is sometimes unable to simultaneously target galaxy pairs that
are positioned too close on the sky. To ensure that both the AbacusSummit and EZmocks

reproduce this systematic error on the clustering measurements, they are passed through a
pipeline that mimics the fiber assignment scheme of the DESI DR1 samples [48].

3.2 Modelling the BAO signal

An extensive discussion on the modeling of the pre- and post-reconstruction BAO signal is
presented in [12]. Here, we present a brief description of the main constituents of the model
in configuration and Fourier space.

3.2.1 Fourier space

Our model for the observed galaxy power spectrum is based on the work of [12] and can be
written generically as

P (k, µ) = B(k, µ)Pnw(k) + C(k, µ)Pw(k) +D(k) , (3.1)

where Pnw(k) and Pw(k) denote the smooth (no-wiggle) and BAO (wiggle) components of the
linear power spectrum, respectively, which are obtained following the peak average method
from [78]. The linear matter power spectrum template is predicted from CLASS6[79] using
our fiducial cosmology.

Following [80, 81], we adopt the following parametric form for B(k, µ):

B(k, µ) =
(
b+ fµ2(1− s(k)

)2
Ffog , (3.2)

where Ffog =
(
1 + 1

2k
2µ2Σ2

s

)−2
accounts for the ‘Fingers of God’ effect due to halo virial-

ization [82]. For pre-reconstruction and the RecSym convention, s(k) = 1, while for RecIso,
s(k) = exp

[
−(kΣsm)

2/2
]
, where Σsm is the reconstruction smoothing scale.

C(k, µ) captures the anisotropic non-linear damping on the BAO feature,

C(k, µ) =
(
b+ fµ2

)2
exp

[
−1

2
k2
(
µ2Σ2

|| + (1− µ2)Σ2
⊥

)]
(3.3)

where Σ|| and Σ|| model the damping for modes along and perpendicular to the line of sight.

The D(k) factor captures any deviation from linear theory in the broadband shape of
the power spectrum multipoles. Motivated by [12], we parameterize it separately for each
clustering multipole using a spline basis with bases separated by ∆,

Dℓ(k > kmin) =
7∑

n=−1

anW3

(
k

∆
− n

)
, (3.4)

where W3 is a piecewise cubic spline kernel [61, 83]. We set ∆ = 0.06hMpc−1, which
is chosen such that the spline basis is able to match the broadband shape of the power
spectrum, without reproducing the BAO wiggles themselves.

6https://github.com/lesgourg/class_public
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If the fiducial cosmology used to convert redshifts to distances differs from the true
cosmology of the Universe, it can induce geometric distortions in the galaxy distribution.
Moreover, the sound horizon in the template cosmology could also differ from the true sound
horizon. To account for both effects, we parameterize the position of the BAO wiggles via
the dilation parameters α⊥ and α∥, which scale the separations in the directions across and
along the line of sight:

kfid =
k

α⊥

[
1 + µ2

(
1

F 2
− 1

)]1/2
(3.5)

µfid =
µ

F

[
1 + µ2

(
1

F 2
− 1

)]−1/2

, (3.6)

where F = α∥/α⊥. Here, the fid superscript denote quantities in the fiducial cosmology. The
dilation parameters can be interepreted in terms of cosmology as

α∥ =
Hfid(z)

H(z)

rfids
rs(zd)

(3.7)

α⊥ =
DM(z)

Dfid
M (z)

rfids (zd)

rs(zd)
, (3.8)

where DM(z) is the transverse comoving distance to redshift z, H(z) is the Hubble parameter,
and rs(zd) is the sound horizon at the baryon drag epoch zd. From here, we can define the
following quantities:

αiso ≡ (α2
⊥α∥)

1
3 , (3.9)

αAP ≡
α∥
α⊥

. (3.10)

which encode the isotropic and anisotropic BAO dilation, respectively.

3.2.2 Configuration space

Our starting point is the anisotropic power spectrum obtained from Eq. (3.1) without the
D(k) term, which are Hankel-transformed to configuration space as

ξl(s) =
iℓ

2π2

∫ ∞

0
k2jℓ(ks)Pℓ(k)dk , (3.11)

where jℓ are the spherical Bessel functions.

To parameterize the broadband part of the correlation function, we take the Hankel
transform of the n = [0, 1] spline bases from Eq. (3.4) for the quadrupole, and we additionally
include even-power polynomial terms for both monopole and quadrupole:

D̃ℓ(s > smin) =

1∑
n=0

bn

(
r

∆s

)2n

, (3.12)

where ∆s = kmin/2π.
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Parameter Recon BGS LRGs ELGs QSO

Σfid
⊥ [h−1Mpc] Pre 6.5 4.5 4.5 3.5

Σfid
∥ [h−1Mpc] Pre 10.0 9.0 8.5 9.0

Σfid
s [h−1Mpc] Pre 2.0 2.0 2.0 2.0

Σfid
⊥ [h−1Mpc] Post 3.0 3.0 3.0 3.0

Σfid
∥ [h−1Mpc] Post 8.0 6.0 6.0 6.0

Σfid
s [h−1Mpc] Post 2.0 2.0 2.0 2.0

Table 3. Mean values of the Gaussian priors (Table 2) for the non-linear BAO damping parameters
across and along the line of sight (Σ⊥ and Σ∥, respectively) and the Fingers-of-God damping (Σs),
depending on whether they are used in pre- or post-reconstruction BAO fits of each tracer.

3.3 Model fitting

We perform the BAO fitting using desilike,7 which is a python package that provides a
common framework for writing DESI likelihoods. We sample posterior distributions using the
Markov Chain Monte Carlo (MCMC) code emcee [84], adopting the priors listed in Table 2.
Use flat priors in all cases except for the damping parameters, for which we adopt Gaussian
priors centred on the fiducial values listed in Table 3. These Gaussian priors have been
informed by running fits to data vectors averaged over many realizations of the DESI mocks,
ensuring that the signal-to-noise ratio (SNR) is large enough to let the damping parameters
vary freely during the fit. In later sections, we show that the recovered BAO parameters
from fits to DESI data are largely insensitive to this choice of priors. In addition to the
spline broadband parameters described in the previous section, we also allow for a linear
RSD parameter scaling dβ ≡ f/ffid, where ffid is the fiducial growth rate of structure, and
a bias parameter b1 that regulates the clustering amplitude.

Apart from MCMC posterior sampling, we perform posterior profiling using minuit

[85], which is incorporated in desilike. In the following, we focus mainly on the BAO
scaling parameters αiso and αAP while marginalizing over all other nuisance parameters.

Given the SNR of the clustering measurements of the different DESI samples, only
certain tracers and redshift bins allow two-dimensional BAO fits where αiso and αAP are
varied simultaneously. These are the LRGs, and ELG2. For BGS, QSO, and ELG1, we fit only
the monopole and vary αiso during the fit. However, in all cases we model the full set of
clustering multipoles to account for their potential impact (via convolution with the survey
geometry window function) on the clustering monopole.

4 Results

4.1 A qualitative exploration of reconstruction

We begin by exploring the distribution of displacement vectors resulting from reconstructing
the BGS sample from the blinded DESI DR1 data, shown by the thick black line in Fig. 1.
In this case, we have used a reconstruction smoothing scale of 15 h−1Mpc, and the fiducial
values for the linear galaxy bias and the growth rate of structure listed in Section 2.2. Since
the galaxy overdensity field is estimated on a rectangular grid that encapsulates the survey

7https://github.com/cosmodesi/desilike
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Figure 1. Distribution of the displacements vectors from the LRGs reconstruction, projected along
the three Cartesian axes of the reconstruction grid. The black line shows the blinded DESI DR1 data,
and the thinner blue lines show 10 different realizations of the AbacusSummit mocks. We compare
against a Gaussian with the same mean and dispersion as the DESI data, shown by the grey-dashed
line.

volume (see Section 2.2.2), Fig. 1 shows the displacement vectors along the three axes of the
grid. They are roughly symmetric around zero in each direction and approximately follow
a Gaussian distribution. Strong non-linear motions cause deviations from Gaussianity for
large displacement values. The AbacusSummit mocks, of which we show ten independent
realizations in the same figure, are largely consistent with the DESI data. More quantita-
tively, the DESI displacements are centred at (0.39,−0.08, 0.07)h−1Mpc, with a dispersion of
(4.60, 4.29, 3.73)h−1Mpc. The mean of 25 mocks yields a mean of (0.03, 0.05, 0.01)h−1Mpc,
with a dispersion of (4.53, 4.19, 3.68)h−1Mpc. We have explicitly checked that a similar level
of agreement is found for the other tracers, but we do not include the figures here for con-
ciseness. Although for BAO analyses the displacement field is used as a means of recovering
the linear density field and sharpening the acoustic feature, the reconstructed velocity field
itself is also of great importance for other analyses that focus on the imprints of galaxy veloc-
ities on the cosmic microwave background, such as the kinematic Sunyaev-Zel’dovich effect
[86, 87].

Having estimated the displacement field, we can use it to estimate the clustering from the
reconstructed samples. Fig. 2 compares the monopole of the anisotropic correlation function
for LRG1 before and after reconstruction. The pre-reconstruction correlation function shows a
prominent BAO peak around ∼ 100h−1Mpc, which is smeared due to non-linear gravitational
motions. Reconstruction helps to sharpen the BAO peak by partially restoring the linearity of
the density field. The BAO model of Section 3.2, shown by the solid line, is an excellent fit to
the data, giving a χ2 of 33.4 for 37 degrees of freedom after reconstruction. The correlation
function is averaged over 25 mock realizations, and the covariance represents the error of
the combined volume of all these mocks (200 h−3Mpc3). In the panel on the right side, we
also display ∆χ2 for the pre- and post-reconstruction cases using solid curves. The profiles
are well centered around αiso = 1, showing that the model recovers unbiased parameter
constraints even for this large volume. The reconstructed case has a sharper distribution
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Figure 2. Left: The open and filled markers show the monopole of the galaxy two-point corre-
lation function before and after reconstruction, respectively, averaged over 25 realizations of the
AbacusSummit mocks for LRGs at 0.4 < z < 0.6. The error bars, which represent the error on the
mean, are calculated from a semi-analytic/semi-empirical covariance matrix. The solid lines corre-
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and the best-fit models. Right: ∆χ2 as a function of the BAO scaling parameter αiso. Solid and dashed
lines show results from models with and without BAO wiggles, respectively. The horizontal dashed
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due to the better localized BAO bump in the correlation function, which leads to a better
determination of the scaling parameter. We can contrast these distributions with the case
where we fit a model without BAO wiggles to assess the significance of the BAO detection.
The dashed curves show the ∆χ2 between the best-fit BAO models and the models without
BAO. From this we see that reconstruction increases the statistical significance of the BAO
detection from approximately 18σ to 27σ. Such a high detection level is only achieved, of
course, since we are fitting the combined set of mocks for which the SNR of the data vector
is exquisite.

Reconstruction not only sharpens the BAO feature, but can also help removing system-
atic shifts in the location of the peak due to non-linear evolution and galaxy biasing. This
is exemplified in Fig. 3, where we compare the pre- and post-reconstruction power spectrum
of the BGS sample from the AbacusSummit mocks. To better see the BAO wiggles, we have
subtracted the broadband component of the power spectrum from both measurements. It
can be noticed that the pre-reconstruction case not only exhibits damped wiggles, but also a
slight shift in phase towards larger k values. The BAO fit from the pre-reconstruction data,
shown in the right-hand panel, is biased high with respect to the expectation of αiso = 1 at
a more than 2-σ level. In addition to reducing the error on αiso by 50%, reconstruction also
effectively corrects the bias seen in the mean value.

4.2 Impact of the smoothing scale

One of the key hyperparameters that must be tuned to optimally reconstruct the galaxy
catalogs is the scale Σsm that is used to smooth the density field before estimating the
displacement. Values of Σsm that are too large might degrade the information content by
erasing clustering on linear scales, while values that are too small could increase the noise in
the reconstruction process and potentially lead to biases due to the inclusion of non-linear
modes that break the underlying assumptions in the modeling.

Previous works in the literature have performed careful studies of the impact of the
smoothing scale on the reconstruction performance for SDSS galaxy samples [23, 32–34],
showing that the optimal choice of smoothing scale has an important dependence on the tracer
characteristics: low-density tracers are more affected by shot noise, so larger smoothing scales
are usually preferred. The main BOSS and eBOSS clustering analysis adopted a smoothing
scale of 15h−1Mpc for their LRG and ELG samples, obtaining a consistent improvement
in the BAO constraints from reconstruction [6, 7]. Here, we revisit these choices for the
DESI DR1 sample and run BAO fits with different Σsm values. Given the various tracers and
redshift bins to be explored, we restrict ourselves to only two smoothing scales per subsample,
informed by a more extensive exploration of the parameter space presented in [59].

Figure 4 compares the constraints on the isotropic BAO scaling parameter, αiso before
and after reconstruction for LRG3 and ELG2, setting Σsm to 10h−1Mpc or 15h−1Mpc. These
constraints represent the maximum-posterior values from individual fits to the AbacusSummit
mock realizations (empty circles and diamonds), with the average fit shown by the filled
markers with error bars. Looking at the left panel, we see that for both smoothing scales,
there is good agreement between the best-fit values before and after reconstruction. This
need not necessarily be the case, since non-linear motions will tend to systematically shift
the BAO in the correlation function towards smaller distances. This can result in αiso > 1
before reconstruction, even if the fiducial cosmology matches the true one, which can then
be corrected by reconstruction (see Fig. 3 from the previous section). The right panel reveals
that for LRG3, reconstruction significantly improves the errors on αiso for all mock realizations.
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Figure 4. Effect on the constraints on the BAO scaling parameters for LRG2 (top) and ELG2 (bot-
tom), reconstructing the density field using a smoothing scale of 10h−1Mpc (diamonds) or 15h−1Mpc
(circles). Left: Best-fit values of the isotropic BAO scaling parameter αiso before and after recon-
struction. Right: 1-σ errors on αiso before and after reconstruction. The open markers are individual
fits to independent realizations of the AbacusSummit mocks. The filled markers show the mean of the
25 realizations, and the error bars show the standard deviation.

This is qualitatively consistent with the results of [8], who found that for mocks that match
the properties of the DESI EDR LRG sample, reconstruction tends to improve the errors
on the isotropic BAO scaling parameter in about 90% of the cases. However, for ELG2,
some of the mocks lie above the reference dashed line, which delineates the region where
errors degrade after reconstruction. However, the αiso errors decrease for most of the mocks,
obtaining consistent constraints from both smoothing scales.

Figure 5 shows the constraints for the anisotropic scaling parameter αAP. Both tracers
recover αAP around one and show consistent values before and after reconstruction. The
choice of smoothing scale has a negligible impact for LRG2 and a very small impact on the
average best-fit value for ELG2, resulting in a change that is smaller than the error on the
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Figure 5. Similar to Fig. 4, but for the anisotropic BAO scaling parameter αAP.

mean. For LRG2, reconstruction improves the precision on αAP for all mocks in a very similar
way for the two smoothing scales. For ELG2, there is consistency in the αAP error from both
smoothing scales, but a few mocks show increased errors after reconstruction.

In Appendix A, we show the equivalent figures for the other redshift bins and tracers,
and Table 4 shows a compilation of the constraints before and after reconstruction with
different smoothing scales. To estimate the constraints shown in Table 4, we fit the mean
of the 25 AbacusSummit realizations, using a reduced covariance matrix that matches the
combined volume of all realizations. For the QSO, due to the lower tracer number density
and shot noise, we test slightly larger smoothing scales of 20h−1Mpc and 30h−1Mpc, while
for BGS, LRG1, LRG2, and ELG2 we test Σsm = 10h−1Mpc and 15h−1Mpc. In terms of the
reduction of errors for the scaling parameters, we find a relatively good consistency between
the different choices of scale for most tracers. For αiso, the reduction in errors from the first
choice of smoothing scale (30h−1Mpc for QSO and 15h−1Mpc for the rest) is largest for BGS,
with a 44%. The smallest improvement is of 11%, for QSO. For LRG1, LRG2, and LRG3, we
get a 31%, 38%, and 31% error reduction, respectively, while for ELG1 and ELG2, we get a
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Tracer Recon Σsm αiso αAP ∆αiso/σ ∆αAP/σ
BGS Post 15 h−1Mpc 0.9943± 0.0039 — −1.46 —
LRG1 Post 15 h−1Mpc 0.9980± 0.0026 0.9912± 0.0090 −0.77 −0.98
LRG2 Post 15 h−1Mpc 0.9957± 0.0021 1.0040± 0.0074 −2.05 0.55
LRG3 Post 15 h−1Mpc 0.9957± 0.0018 0.9928± 0.0065 −2.34 −1.11
ELG1 Post 15 h−1Mpc 0.9984± 0.0041 — −0.39 —
ELG2 Post 15 h−1Mpc 0.9959± 0.0029 1.0003± 0.0099 −1.39 0.03
QSO Post 30 h−1Mpc 0.9960± 0.0034 — −1.17 —
BGS Post 10 h−1Mpc 0.9937± 0.0038 — −1.64 —
LRG1 Post 10 h−1Mpc 0.9967± 0.0026 0.9932± 0.0089 −1.31 −0.77
LRG2 Post 10 h−1Mpc 0.9960± 0.0021 1.0033± 0.0075 −1.92 0.44
LRG3 Post 10 h−1Mpc 0.9957± 0.0019 0.9895± 0.0065 −2.28 −1.61
ELG1 Post 10 h−1Mpc 1.0030± 0.0044 — 0.68 —
ELG2 Post 10 h−1Mpc 0.9955± 0.0030 0.9978± 0.0104 −1.51 −0.21
QSO Post 20 h−1Mpc 0.9930± 0.0039 — −1.82 —
BGS Pre — 1.0077± 0.0070 — 1.10 —
LRG1 Pre — 0.9979± 0.0044 0.9726± 0.0167 −0.47 −1.64
LRG2 Pre — 1.0000± 0.0034 1.0042± 0.0130 −0.01 0.33
LRG3 Pre — 0.9996± 0.0026 1.0035± 0.0091 −0.16 0.38
ELG1 Pre — 1.0012± 0.0051 — 0.23 —
ELG2 Pre — 1.0015± 0.0033 0.9968± 0.0111 0.45 −0.29
QSO Pre — 1.0053± 0.0038 — 1.39 —

Table 4. Mean values and standard deviations from the marginalized posteriors of the BAO scal-
ing parameters from a fit to the mean of 25 realizations of the AbacusSummit mocks. We display
pre-reconstruction results, as well as post-reconstruction fits obtained with two different choices of
smoothing scale Σsm. The last two columns show the offset in the mean values with respect to the
expected value of αiso and αAP, in units of the corresponding standard deviation, i.e. ∆α = (α−1)/σ.
We use a covariance representative of the DESI DR1 volume for each tracer.

20% and 12% error reduction. The second choice of smoothing scale (20h−1Mpc for QSO

and 10h−1Mpc for the rest) leads to an error reduction of 46% and 2.6% for BGS and QSO,
respectively. For LRG1, LRG2 and LRG3, we get a 41%, 38%, and 30% improvement, while for
ELG1 and ELG2, we get a 14% and 9% error improvement. For αAP, both smoothing scales
lead to consistent reduction in errors for LRGs, around 46%, 42%, and 28% for LRG1, LRG2,
and LRG3, respectively. For ELG2, we see a larger improvement from Σsm = 15h−1Mpc, which
reduces the errors by 11%, compared to the 6.3% reduction in error from Σsm = 10h−1Mpc.
Overall, all tracers benefit from reconstruction when looking at the average clustering from
all mocks, and the first choice of smoothing scale tends to lead to a better error reduction
when comparing the different tracers and scaling parameters.

Focusing on the last two columns of Table 4, we can quantify the bias in the BAO fits
with respect to the expectation of αiso = 1 and αAP = 1. More formally, the bias is defined
as (α− 1)//σ, where σ is the standard deviation of the marginalized posterior quoted in the
fourth and fifth columns. We remind the reader that these offsets have been calculated by
assuming a covariance matrix associated with the combination of 25 AbacusSummit realiza-
tions, which results in a volume much larger than the DESI DR1 sample. Overall, we do not
find evidence that the choice of smoothing scale produces statistically significant differences
in the recovered bias from the BAO fits. The largest biases are found for LRG3, for which
Σsm = 15h−1Mpc and Σsm = 10h−1Mpc produce biases of −2.34σ and −2.28. Similarly,
for LRG2, these two scales produce shifts of −2.05σ and −1.92σ, respectively. Although none
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Figure 6. BAO fits to synthetic mock galaxy catalogues generated with the EZmock algorithm. The
data vector corresponds to the post-reconstruction correlation function multipoles, averaged over 1000
independent mock realizations. The left panels show results using a covariance matrix is representative
of the DESI DR1 volume, while the right panel displays results using a reduced covariance associated
to the suite of 1000 mocks. For tracers for which we only perform isotropic BAO fits (BGS, ELG1, QSO),
we only display the αiso marginalized posterior in the top subpanels.

of the tracers show statistically significant offsets with respect to the truth, it is interesting
that almost all of them appear to be biased low in αiso, which is not the case for the pre-
reconstruction fits. Therefore, in what follows, we further explore possible systematic errors
in the modeling by looking at constraints derived from the EZmocks.

In Fig. 6 we present fits to the post-reconstruction data vectors averaged over 1000
realizations of the EZmocks, using a covariance matrix that is representative of the volume of
the DESI DR1 samples (left) or a reduced covariance associated to the suite of 1000 mocks.
The constraints for the latter case are summarized in Table 5, where we have also included
the pre-reconstruction results. Given the computational restriction of reconstructing this
large number of mocks, we do it only for a single smoothing scale for each tracer, as detailed
in the table.

As the left panel of Fig. 6 shows, for a DESI DR1 volume, we obtain parameter con-
straints that are largely unbiased and consistent across the various redshift ranges. The
relative constraining power is driven by the effective volume of each sample, with the highest
post-reconstruction precision coming from the LRG3 and the lowest from the BGS and ELG1.
The improvement in errors compared to pre-reconstruction is consistent with what was ob-
served for AbacusSummit, with improvements on αiso ranging from a 7% for ELG2, to a 41%
for LRG1. Similarly, for αAP, the improvement ranges from 13% for ELG2 to 44% for LRG2.

Focusing on the constraints from Table 5, which are also illustrated in the right panel of
Fig. 6, we see that dividing the covariance matrix by a factor of 1000, we find two statistically
significant biases in the mean values of the αiso posteriors: a −3.23σ bias for LRG2, and a
−3.64σ bias for QSO. Interestingly, when looking at the collection of all tracers, the post-
reconstruction biases are not as coherent as seen in AbacusSummit, as they can be biased
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Tracer Recon Σsm αiso αAP ∆αiso/σ ∆αAP/σ
BGS Post 15 h−1Mpc 1.00027± 0.00063 — 0.43 —
LRG1 Post 15 h−1Mpc 0.99951± 0.00046 0.99864± 0.00161 −1.06 −0.84
LRG2 Post 15 h−1Mpc 0.99889± 0.00034 0.99923± 0.00120 −3.23 −0.64
LRG3 Post 15 h−1Mpc 0.99983± 0.00033 0.99850± 0.00113 −0.51 −1.33
ELG1 Post 15 h−1Mpc 1.00045± 0.00062 — 0.73 —
ELG2 Post 15 h−1Mpc 1.00023± 0.00053 0.99723± 0.00173 0.43 −1.60
QSO Post 30 h−1Mpc 0.99802± 0.00054 — −3.64 —
BGS Pre — 1.00081± 0.00108 — 0.75 —
LRG1 Pre — 1.00180± 0.00078 0.99807± 0.00298 2.30 −0.65
LRG2 Pre — 1.00265± 0.00057 1.00159± 0.00216 4.63 0.74
LRG3 Pre — 1.00289± 0.00046 1.00012± 0.00173 6.29 0.07
ELG1 Pre — 1.00093± 0.00086 — 1.08 —
ELG2 Pre — 1.00055± 0.00057 1.00309± 0.00199 0.97 1.55
QSO Pre — 1.00143± 0.00064 — 2.25 —

Table 5. Mean values and standard deviations from the marginalized posteriors of the BAO scaling
parameters from a fit to the mean of 1000 realizations of the EZmocks. We display pre-reconstruction
results, as well as post-reconstruction fits obtained with a smoothing scale Σsm = 15h−1Mpc. The
last two columns show the offset in the mean values with respect to the expected value of αiso and
αAP, in units of the corresponding standard deviation, i.e. ∆α = (α − 1)/σ. We use a reduced
covariance matrix representative of the combined volume of all EZmocks.

high (BGS, ELG1, ELG2) or low (LRGs and QSO). In terms of percentage, these offsets are
much milder than in AbacusSummit. For example, the −3.24σ bias in the EZmocks LRG2

corresponds to 0.11%, while in AbacusSummit, the −2.59σ bias is of 0.52%. Furthermore,
for the same tracers and redshift bins, the offsets can point in different directions, indicating
that some fraction of these biases could be attributed to noise fluctuations given the small
number of AbacusSummit realizations to perform this test. However, we cannot fully discard
the possibility that there are systematic effects in the mocks that are currently unaccounted
for. In the next section, we assess the level at which fiber assignment incompleteness affects
the BAO constraints, showing that no statistically significant detections of systematics are
found due to this effect.

Overall, given the small sensitivity of the BAO constraints to the smoothing scales
we have tested here as seen in AbacusSummit, and considering the robustness of the BAO
constraints when validated against the EZmocks, we opt for Σsm = 15h−1Mpc for BGS,
LRG, and ELG, and Σsm = 30h−1Mpc for QSO. In later sections, we show that the blinded
DESI data are also insensitive to this choice. Furthermore, these tests not only inform the
decision about the smoothing scale, but also indirectly and approximately reveal the size of
the systematic error budget in the BAO modeling that can be inferred from these mocks. A
detailed description of the different components of the systematic error budget and how this
is added to the statistical error of the unblinded galaxy BAO analysis is presented in [36].

4.3 Impact of the fiber assignment

The assignment of fibers that are used to measure the redshifts of DESI tracers plays an
important role in their clustering properties. To capture these properties in the mock catalogs,
the DESI FiberAssign code mimics the effect of assignment incompleteness by trying to
reproduce the DESI fiber assignment from real targets. Here, we distinguish between two
flavors of mocks to study the impact of this effect on the BAO constraints after reconstruction:
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Figure 7. Difference in the mean value of the marginalized posterior of the isotropic BAO scaling
parameter αiso between the complete (no fiber assignment incompleteness) and altmtl (realistic fiber
assignment incompleteness) mocks, derived from fits to inidividual realizations of the AbacusSummit

mocks. The legend shows the mean and dispersion of this difference estimated from all realizations,
as well as the standard error on the mean.

‘complete’ mocks which do not include any assignment incompleteness, and thus can be
treated as a baseline for the assessment of the incompleteness, and ‘altmtl’ mocks, which
represent our most realistic simulations of the DR1 fiber assignment scheme. They apply the
algorithm described in [88], using the FiberAssign code perfectly reproduce the assignment
of DESI fibers on real targets, without approximations. Our results from AbacusSummit in
previous section were derived from the altmtl mocks.

In Table 6, we show the constraints on αiso and αAP derived from the complete mocks.
These constraints have been obtained by averaging individual fits to the post-correlation
functions from all 25 mock realizations. We note that even in the complete case, there are
deviations from αiso = 1 for all tracers, which, although not statistically significant, point
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Figure 8. Similar to Fig. 7, but showing results for the anisotropic BAO scaling parameter, αAP.

Tracer Recon ⟨αcomplete
iso ⟩ ⟨αcomplete

AP ⟩ ⟨αcomplete
iso − αaltmtl

iso ⟩ ⟨αcomplete
AP − αaltmtl

AP ⟩
BGS Post 0.9998± 0.0038 — 0.00288± 0.00229 —
LRG1 Post 0.9996± 0.0025 0.9934± 0.0091 −0.00182± 0.00163 0.00374± 0.00455
LRG2 Post 0.9967± 0.0022 1.0091± 0.0075 0.00207± 0.00144 0.00096± 0.00392
LRG3 Post 0.9958± 0.0019 0.9854± 0.0063 0.00240± 0.00161 −0.00407± 0.00512
ELG1 Post 1.0015± 0.0035 — 0.00118± 0.00422 —
ELG2 Post 0.9988± 0.0030 1.0025± 0.0100 0.00387± 0.00270 0.00387± 0.00676
QSO Post 0.9968± 0.0033 — 0.00207± 0.00361 —

Table 6. Constraints on the BAO scaling parameters averaged over individual fits to post-
reconstruction correlation functions from 25 realizations of the complete AbacusSummit mocks, which
do not include any fiber assignment incompleteness. We also show the mean of the differences in
the α values between the complete mocks and the altmtl mocks, which mimic the fiber assignment
incompleteness of the DESI target samples.

in the same direction as the altmtl mocks that were used to derive the constraints from the
previous section. This suggests that the fiber assignment process is not the driver of the
biases seen in the AbacusSummit fits, and reinforces the idea that they could be partially
attributed to statistical fluctuations given the small number of mock realizations.

The fifth and sixth columns show the mean of the differences in αiso and αAP, respec-
tively, between the complete and altmtl mocks, as averaged over all mock realizations. The
distribution of individual fits are also shown in Figs. 7 and 8. Overall, we do not observe
any statistically significant shift in the constraints. For αiso, the largest offset is of 1.49σ for
LRG3. For αAP, it is for LRG1 at 0.82σ.

In Fig. 9, we show a fit to the mean of 25 mocks for complete and altmtl mocks, where
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Figure 9. A comparison of the constraints on the isotropic BAO scaling parameter αiso from fits to
the mean of 25 AbacusSummit mock realizations, after having passed the mocks through a code that
realistically mimics the DESI DR1 fiber assignment (altmtl) or using mocks that do not include any
fiber assignment incompleteness (complete). We have used a reduced covariance matrix associated to
the combined volume of all 25 mock realizations.

we have also included pre-reconstruction results. For all these fits, we use a reduced co-
variance matrix that is representative of the combined volume of all mock realizations. For
pre-reconstruction, we find that the inclusion of fiber assignment incompleteness makes little
effect on the constraints for most tracers. Overall, we do not find statistically significant fea-
tures that could suggest that the fiber assignment scheme affects pre- and post-reconstruction
measurements differently. In general, our findings corroborate that the effect of fiber assign-
ment incompleteness on BAO measurements is relatively mild, since we restrict the analysis
to fairly large scales. Moreover, we are isolating the BAO feature in the modeling, and po-
tential large-scale systematics are partially absorbed by the broadband nuisance parameters.
However, we need to keep in mind that the small number of mock realizations available re-
stricts the precision at which we can perform this test. Although the offsets we observed in
this and previous sections are much smaller than the statistical error from the DESI-DR1
samples, subsequent analyses with more data will demand stringent tests based on a larger
collection of mock catalogs to match the increase level of precision in the BAO constraints.

4.4 Consistency between the DESI data and mocks

Having explored the BAO constraints from the mocks, the main question we wish to answer
in this section is are the BAO constraints obtained from the blinded DESI data consistent
with the results obtained from the distribution of mocks? The tests presented here constitute
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Figure 10. Measured multipoles from the post-reconstruction correlation functions of the blinded
DESI DR1 data. Filled and open circles show the monopole and quadrupole moments, respectively,
with their corresponding best-fit models shown by the solid and dashed lines, respectively. For BGS,
ELG1 and QSO, we only fit the monopole, due to the lower SNR of the data. The lower sub-panels
show the residuals between the best-fit models and the data in each case.

some of the criteria that the DESI Collaboration used to decide whether we were ready to
fix the end-to-end analysis pipeline, unblind the LSS catalogs and go ahead with the main
BAO cosmological analysis.

In Fig. 10, we display the post-reconstruction correlation function multipoles of the
blinded DESI DR1 data, where we have adopted the fiducial smoothing scales determined in
the previous section. For the cases where we only perform 1D BAO fits (BGS, ELG1 and QSO),
only the monopole moment is shown. We find that the BAO model accurately fits the data
for all scales considered in the fit, with residuals between the model and the data that are
within 2σ. In addition to potential systematic errors due to non-linear evolution/biasing and
large-scale systematics, the observed position of the BAO feature can be affected by Alcock-
Paczynski distortions arising due to a potential mismatch between our fiducial cosmology
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Tracer Redshift Recon αiso αAP r χ2/dof

BGS 0.1–0.4 Post 0.98416± 0.01601 — — 24.5/19
LRG1 0.4–0.6 Post 0.98416± 0.00988 0.99679± 0.03201 -0.12 40.1/39
LRG2 0.6–0.8 Post 0.98416± 0.01169 0.99679± 0.04577 -0.09 40.2/39
LRG3 0.8–1.1 Post 0.98416± 0.00891 0.99679± 0.03279 -0.03 35.0/39
ELG1 0.8–1.1 Post 0.98416± 0.02450 — — 23.4/19
ELG2 1.1–1.6 Post 0.98416± 0.01376 0.99679± 0.04727 -0.31 45.7/39
QSO 0.8–2.1 Post 0.98416± 0.02509 — — 16.9/19

BGS 0.1–0.4 Pre 0.98416± 0.02650 — — 13.9/19
LRG1 0.4–0.6 Pre 0.98416± 0.01877 0.99679± 0.06980 0.44 32.6/39
LRG2 0.6–0.8 Pre 0.98416± 0.01869 0.99679± 0.07317 0.46 51.0/39
LRG3 0.8–1.1 Pre 0.98416± 0.01162 0.99679± 0.04469 0.15 42.9/39
ELG1 0.8–1.1 Pre 0.98416± 0.05708 — — 23.6/19
ELG2 1.1–1.6 Pre 0.98416± 0.01813 0.99679± 0.06523 -0.06 34.0/39
QSO 0.8–2.1 Pre 0.98416± 0.02304 — — 9.7/19

Table 7. Mean values and standard deviations of the marginalized posteriors on the BAO scaling
parameters, from fits to the blinded DESI DR1 correlation functions. We display pre- and post-
reconstruction constraints, where the reconstruction adopts the fiducial settings determined in Sec-
tion 4.2. We additionally show the cross-correlation coefficient between αiso and αAP, labeled as r,
and the χ2 per degree of freedom at the best fit.

and the true cosmology of the Universe, as well as due to the blinding scheme that can
change the position of the BAO feature and the RSD signal. The error bars come from the
semi-analytic semi-empirical RascalC covariances that were tuned to match the clustering
of the DESI DR1 samples. These constraints are summarized in Section 4.4, along with the
pre-reconstruction constraints from the same data.

To assess the statistical significance of the BAO detection from the blinded DR1 data,
we run αiso fits and compare the difference in χ2 at the best fit using models with and without
BAO wiggles, where the square root of the ∆χ2 is quoted as the detection significance. We
display the results in Fig. 11 for all the different tracers. We obtain the strongest detection
level from LRG3 at 8.4σ, while the weakest detection occurs for ELG1 at 2.1σ. To verify
that these detection levels are consistent with the mocks, in Fig. 12 show the distribution of
detection significance values from fits to individual realizations of the AbacusSummitmocks.
Overall, we observe great consistency between the mocks and the data for all tracers except
ELG2, for which the blinded DR1 data gives a higher detection level than all mock realizations.

In Fig. 13, we compare the constraints from the blinded DESI LRG3 (black stars) with
the AbacusSummitsimulations (colored circles), where we distinguish between pre- and post-
reconstruction constraints by the empty and solid markers, respectively. We find excellent
agreement between the average post-reconstruction error on αiso and αAP (red bands) from
AbacusSummit, and the blinded DESI data. The average χ2 value per degree of freedom from
the mocks also closely follows that of the data, from which we get χ2 = 35 for 39 degrees of
freedom, corresponding to a p-value of 34.7%. Results for BGS are displayed in Fig. 14, which
shows that the αiso errros and the χ2 at the best fit from the blinded data are consistent
with the mocks at the 1 − σ level. The χ2 is 24.5 for 19 degrees of freedom, corresponding
to a p-value of 17.8%. We show equivalent figures for the remaining tracers, where we find
similar results in most cases. A noteworthy case are the QSO, for which the blinded DESI DR1

– 25 –



0.8 0.9 1.0 1.1 1.2

αiso

0

50

100

150

200

∆
χ

2

4σ

6σ

8σ

10σ

12σ
BGS: 4.3σ
LRG1: 6.8σ
LRG2: 6.5σ
LRG3: 8.4σ
ELG1: 2.6σ
ELG2: 7.0σ
QSO: 4.7σ

Figure 11. BAO detection level signicance from fits to the correlation functions from the blinded
DESI DR1 data. The solid and dashed lines in different colors show the ∆χ2 for models with and
without BAO wiggles, respectively. We display horizontal dotted lines at various levels of detection
significance for reference.

error on αiso is worse than all mocks after reconstruction, although they are still consistent
to within 2σ. For LRG1, LRG3, and ELG2, the constraints αAP are not displayed for a few
or the AbacusSummit mock realizations for which noise fluctuations shifted the quadrupole
BAO features to scales that are not supported by the data, resulting in fits that hit the prior
limit on αAP. In these cases, we have instead resorted to 1D BAO fits, thus only providing
constraints for αiso.

4.5 Robustness of the blinded DESI constraints

Figs. 15 and 16 show how the constraints on αiso and αAP from the blinded DESI 2024 data
respond to different variations in the analysis configuration. To speed-up calculations for
this test, we have used posterior maximization with Minuit rather than MCMC chains, but
we expect the two methods to give comparable results under the assumption of a Gaussian
likelihood. For the baseline case, we fit the post-reconstruction correlation function multi-
poles. For LRGs and ELG2, we simultaneously vary αiso and αAP and fit the monopole and
quadrupole moments. For the remaining samples, we only vary αiso and exclusively fit the
monopole. The BAO damping parameters have Gaussian priors with means and widths
as detailed in Table 2. The broadband of the correlation function is parameterized with a
piecewise cubic spline basis (Section 3.2).

The second row shows the pre-reconstruction constraints. Reconstruction improves
the precision on αiso by 47%, 37% and 23% for LRG1, LRG2, and LRG3, respectively, by
24% for ELG2, and by 40% for BGS. For ELG1, the pre-reconstruction errors appear smaller
than the chain values reported in Section 4.4. We have verified that this is due to a noise
fluctuation that causes the pre-reconstruction marginalized posterior on αiso to appear highly
non-Gaussian, making the standard deviation from the chains an unsuitable measure of the

– 26 –



2σ 3σ 4σ 5σ 6σ
BAO detection level

0

1

2

3

4

5

6
co

u
n
ts

BGSAbacusSummit

DESI DR1

4σ 5σ 6σ 7σ 8σ
BAO detection level

0

1

2

3

4

5

6

7

co
u

n
ts

LRG1AbacusSummit

DESI DR1

5σ 6σ 7σ 8σ
BAO detection level

0

1

2

3

4

5

co
u

n
ts

LRG2AbacusSummit

DESI DR1

6σ 7σ 8σ 9σ 10σ
BAO detection level

0

1

2

3

4

5

co
u

n
ts

LRG3AbacusSummit

DESI DR1

0σ 1σ 2σ 3σ 4σ 5σ
BAO detection level

0

1

2

3

4

5

co
u

n
ts

ELG1AbacusSummit

DESI DR1

4σ 5σ 6σ 7σ
BAO detection level

0

1

2

3

4

5

6

7

co
u

n
ts

ELG2AbacusSummit

DESI DR1

2σ 3σ 4σ 5σ 6σ 7σ
BAO detection level

0

1

2

3

4

5

co
u

n
ts

QSOAbacusSummit

DESI DR1

Figure 12. A comparison of the BAO detection level from the blinded DESI DR1 data (vertical
dashed line) and individual realizations of the AbacusSummit simulations (colored histograms).

error. Measuring the region at which ∆χ2 = 1, we obtain αiso = 0.987 ± 0.031, while
reconstruction improves the error by 29%. For QSO, reconstruction ends up slightly degrading
the precision on αiso, by 8.9%. The tests on the mocks from Fig. 21 in Appendix A show
that even though reconstruction tends to help improve the errors on the scaling parameters
for QSO-like samples on average, there are a few mock realizations for which the errors get
worse, which is consistent with what is found for the DESI blinded data. This is also in line
with previous analyses by eBOSS, which found that reconstruction did not improve the BAO
constraints from their QSO sample due to the high shot noise contamination [89]. For αAP,
the errors after reconstruction improve by 54%, 37%, 27%, and 28% for LRG1, LRG2, LRG3,
and ELG2, respectively.

The Fourier-space constraints from the power spectrum multipoles, which are displayed
on the third row, show a good agreement with the configuration-space results, with compa-
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Figure 13. BAO fits of the anisotropic correlation function of the AbacusSummit mocks and the
blinded DESI DR1 for LRG3. Open and filled markers show pre- and post-reconstruction fits, respec-
tively. The first and second panels show constraints on αiso and αAP, respectively, fitting the mean
of the 25 mocks (first column, where we have scaled the errors to match that of a single DESI DR1
volume), individual mock realizations (consecutive 25 columns), and the blinded DESI DR1 data (last
column). The third and fourth panels show the errors of these fits (equivalent to the size of the error
bars from the first two panels). The bottom panel shows the χ2 value for each fit, where the number
of degrees of freedom is specified in the label as a reference. The shaded red region in each panel
shows the scatter from the 25 mock fits post-reconstruction.

rable error bars and offsets that are never larger than 1σ. In the fourth row, we display the
constraints obtained by only fitting data from the northern galactic cap (NGC), in contrast
with the baseline scenario where the northern and southern galactic caps are combined at the
clustering level. In most cases, we only see a small degradation in the parameter constraints.
We note that for dark-time tracers, the DR1 NGC has a factor of ∼ 1.74 larger sky area than
the SGC, while for bright-time tracers, the ratio is ∼ 2.38 [48].

The fifth row shows the resulting parameter constraints when we adopt uniform priors
U(0, 10) for the BAO damping parameters. In general, we see that the results are almost
equivalent to the baseline case, where we adopt Gaussian priors. Tests on mock galaxy
catalogs by [12] have shown that using non-informative priors on the damping parameters
for data with a low SNR can potentially lead to weaker constraints and even potential biases.
Indeed, as we have previously discussed, some tracers and redshift bins, such as the ELG1,
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Figure 14. Similar to Fig. 24, but showing fits to BGS. Similar to the QSO and ELG1, we only perform
an isotropic BAO fit for this sample, where αiso is the only scaling parameter that is varied.

0.
92

5
0.
95

0
0.
97

5

αiso

baseline

pre-recon

power
spectrum

NGC

flat prior on
Σs,Σ‖,Σ⊥

polynomial
broadband

RecIso

smaller Σsm

BGS

0.
94

0.
96

αiso

LRG1

0.
92

5
0.
95

0

αiso

LRG2

0.
98

1.
00

αiso

LRG3

0.
95

1.
00

αiso

ELG1

0.
95

1.
00

αiso

ELG2

0.
97

5
1.
00

0

αiso

QSO

Figure 15. Response of the constraints on the isotropic BAO scaling parameter, αiso, to changes in
the data or theory vector, priors, or parametrization. All constraints come from fits to the blinded
DESI-DR1 data. The baseline configuration that is used for the main BAO analysis is shown at the
top, while the other rows single-variations around the baseline (see main text for a description of each
variation). The circles show the best-fit values and the error bars correspond to 68% confidence levels.

– 29 –



0.
90

0.
95

αAP

baseline

pre-recon

power
spectrum

NGC

flat prior on
Σs,Σ‖,Σ⊥

polynomial
broadband

RecIso

smaller Σsm

LRG1

1.
0

1.
1

αAP

LRG2

1.
0

1.
1

αAP

LRG3

1.
00

1.
05

αAP

ELG2
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do not have a sufficiently large SNR to reliably perform an anisotropic BAO fit, and we
have explicitly checked that when doing so, the priors on the damping parameters have a
strong impact on the recovered best-fit values and precision of the BAO scaling parameters.
However, these low-SNR cases are not included in the main DESI BAO analysis, and the
constraints from the remaining target samples are robust against this choice.

Previous BAO analyses from BOSS [6] and eBOSS [7] parameterized the broadband
component of the multipole correlation function / power spectrum using polynomials of
slightly varying degrees and functional forms, with coefficients that vary freely during the
fit. In this work, we have adopted the new spline-basis parameterization for the broadband
proposed by [12], which gives constraints that are in excellent agreement with those obtained
with the (e)BOSS polynomial parameterization, shown in the fifth row of Figs. 15 and 16.

One of the main differences with respect to previous applications of reconstruction in
SDSS in the use of the RecSym convention. As discussed in Section 2.2, RecSym shifts galaxies
and randoms in the same way, using the full displacement vector that includes the (1 + f)
factor along the line of sight, which preserves large-scale RSD in the post-reconstruction
clustering. The convention used in (e)BOSS was RecIso, where the (1 + f) factor is not
applied when displacing the randoms, which has the effect of erasing RSD post-reconstruction.
This is exemplified in Fig. 17, where we see how the quadrupole moment of the LRG2 is
strongly suppressed in RecIso. The right-hand side panel shows how the distribution of
displacements along the line of sight is larger for RecSym due to the additional (1+ f) factor.
Despite this important difference, it can be seen that the BAO features in the correlation
function are largely preserved. The last row in Figs. 15 and 16 show the constraints derived
using the RecIso convention. Since the spline-basis broadband parametrization has only
been validated for RecSym, we run this test using the BOSS polynomial parameterization
instead, which was shown to give consistent results with the spline method for RecSym. The
BAO scaling parameters are largely unaffected by the reconstruction mode, with the largest
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RecIso conventions. In the left, we show the monopole and quadrupole moments of the correlation
function, and in the right, we show the distribution of displacement vectors for the random catalogue
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after reconstruction.

shift being less than 0.09σ for the QSO.

Finally, in the last rows we include the alternative choice of smoothing scale that was
tested in Section 4.2. Similar to what was found with the mocks, the resulting BAO con-
straints are only mildly affected by this choice, with changes in the recovered best-fit values
on αiso and αAP that are smaller than 0.2σ. We note, however, than this is due to the
fact that in this paper we have narrowed down our options of smoothing scales to only two
choices per tracer with values that are relatively close to each to other, based on more exten-
sive tests that are presented in [59]. More extreme values of the smoothing scale are expected
to have stronger impacts on the BAO constraints, as has been also shown in previous works
[23, 32–34]

4.6 Gaussianity of the BAO posterior

As a final sanity check, we assess whether the posterior distribution of BAO parameters from
the blinded DESI data follows a Gaussian distribution, which would guarantee that the mean
and covariance of the posterior capture all the information from the fit.

In Fig. 18, we show the posterior of the BAO scaling parameters from fits to the post-
reconstruction correlation functions of LRGs and ELG2, comparing them with a multivariate
Gaussian distribution with the same mean and covariance. The contours, which correspond
to 1-σ, 2-σ, and 3-σ levels, show an excellent consistency, indicating that the BAO poste-
rior closely follows the Gaussian approximation. For LRGs, we notice that there is almost
no correlation between αiso and αAP, which is also indicated by the small cross-correlation
coefficients seen in Section 4.4, which are -0.12, -0.09, and -0.03 for LRG1, LRG2, and LRG3,
respectively. For ELG2, we observe a higher correlation coefficient of -0.31. We have also
derived constraints for α∥ and α⊥, following Eqs. (3.9) and (3.10). We find that the con-
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straints are much more correlated on this basis, with a correlation coefficient between α∥
and α⊥ of -0.45 for all tracers. However, the posterior appears equally Gaussian under both
parameterizations.

For completeness, we also show the equivalent figures for the 1D BAO fits performed on
BGS, ELG1 and QSO in Fig. 19, which shows that the αiso posteriors are also consistent with
a Gaussian distribution in all cases.

Although we have performed some standardized tests of multivariate normality, such as
the Shapiro-Wilk test [90], we found the results to be very sensitive to the number of chain
points in the fits. In fact, in the limit of infinite chain points, any test of normality will reject
the null hypothesis, except for a problem that is truly Gaussian by construction. Although the
assumption of a Gaussian likelihood has been the standard for the cosmological interpretation
of the BAO constraints [6, 7], the ever-increasing level of precision from spectroscopic galaxy
surveys will require more quantitative assessments of the impact of this assumption at the
cosmological parameter level. We plan to explore this further in future work.

5 Summary and Conclusions

We have studied the impact of the density-field reconstruction technique on the DESI DR1
galaxy BAO analysis. Reconstruction is a method that aims at improving the signal-to-noise
ratio of the BAO signal from galaxy clustering data, improving its detection significance, and
therefore increasing the precision of cosmological constraints derived from BAO. In addition,
reconstruction helps to remove systematic shifts in the observed location of the BAO feature
that are caused by non-linear structure growth and biasing.

To assess the effectiveness of reconstruction in a controlled setting, we have used two
suites of mock galaxy catalogs that match the clustering and selection properties of the
DESI DR1 target samples: the AbacusSummit mocks, which correspond to high-fidelity HOD
catalogs generated from the suite of N-body simulations presented in [40], and a collection of
1000 approximate mocks generated with the EZmock algorithm [76]. We have also performed a
series of tests on the DESI DR1 blinded data, assessing the robustness of the BAO constraints
against different assumptions in our analysis configuration. In this context, the blinding of
the data refers to the deliberate modification of the large-scale structure catalogs that are
analyzed while the BAO pipeline is being tested and calibrated, in order to avoid confirmation
bias in the cosmological analysis. A detailed description of the blinding scheme in DESI can
be found in [38].

Our main findings can be summarized as follows.

- Except for the QSO sample, reconstruction ubiquitously helps to increase the signal-to-
noise ratio of the BAO feature for the blinded DESI data, increasing the precision of
the recovered on the isotropic BAO scaling parameter αiso from 23% to 47%, depending
on the tracer and redshift range. This increase in precision is consistent with results
obtained from the mock galaxy catalogs.

- For QSO, while the lack of improvement from the reconstruction of the blinded DESI
data is not unusual due to the high shot noise contamination of this sample, we find
that in the majority of the cases, reconstruction increases the recovered precision on
αiso from the QSO mocks. This motivates the decision to adopt reconstruction as the
default for all samples of the DESI galaxy BAO analysis, including QSO.
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- We calibrated the optimal smoothing scale at which we smooth the density field for
reconstruction, in order to null out small-scale modes that are highly non-linear. Among
the options we tested, we find that the reconstruction of the DESI DR1 samples is
not particularly sensitive to the choice of smoothing scale, and values close to those
adopted by previous SDSS BAO analyses are suitable in most cases. The QSO sample
is an exception due to the higher shot noise contribution, and larger smoothing scales
are required to optimally reconstruct the density field. We adopt Σsm = 15h−1Mpc
for BGS, LRGs, and ELGs, and Σsm = 30h−1Mpc for the QSO, as our fiducial smoothing
scales for the main galaxy BAO analysis.

- Using mocks that have been passed through a pipeline that mimics the fiber assignment
scheme of DESI DR1, we have tested the impact of the fiber assignment incomplete-
ness on the BAO constraints before and after reconstruction. Overall, we do not find
statistically significant signatures from this effect on the recovered constraints on the
BAO scaling parameters, regardless of whether the galaxy catalogs are reconstructed
or not.

- We have performed a series of unblinding tests that the DESI Collaboration used to
assess whether we were ready to fix the galaxy BAO pipeline, unblind the LSS catalogs,
and perform the official DR1 BAO analysis. These tests analyzed the consistency be-
tween the BAO statistics measured from the blinded DESI data and the AbacusSummit
mocks, as well as the robustness of the constraints from the blinded data to different
configurations in our pipeline.

- The BAO constraints from the DESI blinded data are robust against a wide variety
of measurement and model choices, including the parameterization of the broadband
component of the power spectrum, the priors on the parameters that capture the BAO
non-linear damping, and different reconstruction conventions. We also find excellent
consistency between the constraints derived from configuration space (the correlation
function) and Fourier space (the power spectrum).

- After reconstruction, the posteriors of the BAO scaling parameters closely follow a
multivariate Gaussian distribution, regardless of whether the scaling parameters are
expressed in the basis that isolates the isotropic and anisotropic scaling components
(αiso and αAP), or the perpendicular and parallel to the line of sight components (α∥
and α⊥).

In this work, we have focused on a single reconstruction algorithm that uses an iterative
Fast Fourier Transforms scheme to recover the real-space displacement field, as introduced in
[30, 33]. In [59], we present a thorough comparison of different reconstruction algorithms in
the context of BAO analyses. Our companion papers also present detailed studies of various
potential sources of uncertainty in our BAO constraints, including: the choice of fiducial
cosmology [41], the galaxy-halo connection modeling [62, 63], the calibration of the covariance
matrix [72, 74], and the theory model [12]. The unblinded galaxy BAO measurements from
DESI are presented in [36], while the Lyman-α forest BAO measurements are described in
[49]. Both of these sets are combined to infer cosmology in [37].

The tests presented in this work and in our companion papers are a further confirmation
that BAO remain as one of the most robust probes of large-scale structure cosmology to date,
even under the unprecedented statistical precision of the DESI DR1 sample. However, future
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data releases from DESI, as well as other on-going and upcoming galaxy surveys, such as
Euclid [91] and the Nancy Grace Roman Space Telescope [92], will require ever more stringent
tests and validation, which are likely to push the limits of our understanding of cosmology
and large-scale structure science.

6 Data Availability

The data will be publicly available once the paper is accepted for publication.
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Figure 20. Similar to Fig. 4, but showing results for LRG1 and LRG3.

A Additional Figures

In this section, we show additional figures for some of the tests carried out in Section 4,
including the results for those tracers that we did not add to the main body of the manuscript.
These additional results are still discussed in the main text, but we reserve the placement
of the figures to this appendix for formatting convenience. This includes the AbacusSummit

αiso constraints for different reconstruction smoothing scales for LRG1 and LRG3 (Fig. 20),
and for BGS, ELG1, and QSO (Fig. 21). Fig. 22 shows the AbacusSummit constraints on αAP

for different smoothing scales from fits to the LRG1 and LRG3 samples. Figs. 23 to 27 show
the summary of pre- and post-reconstruction constraints from the AbacusSummit mocks and
the DESI DR1 blinded data, for the LRG1, LRG2, ELGs, and QSO samples.
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Figure 21. Similar to Fig. 4, but showing results for BGS, QSO, and ELG1.
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Figure 22. Similar to Fig. 5, but showing results for LRG1 and LRG3.
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Figure 23. Similar to Fig. 13, but for LRG1.
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Figure 24. Same as Fig. 13, but for LRG2.
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Figure 25. Similar to Fig. 14, but for ELG1.
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Figure 26. Similar to Fig. 13, but for ELG2.
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Figure 27. Similar to Fig. 14, but for QSO.
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