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Abstract

Empirical tools for studying genetic drift in microbial populations

by

QinQin Yu

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Oskar Hallatschek, Chair

Deciphering the processes that govern microbial evolution allows us to make predictions of
systems ranging from pathogen evolution to climate-driven ecosystem shifts. One funda-
mental evolutionary process is genetic drift, which is the stochastic change in population
composition due to the randomness of birth and death processes. Genetic drift can lead
to the loss of genetic diversity and weaken the e�cacy of natural selection; thus, inferring
its strength and understanding how it arises is important for understanding evolutionary
dynamics. Despite decades of research on genetic drift, we still have limited empirical tools
to infer the strength of genetic drift from data. Additionally, the strength of genetic drift
is often considered to be a static property of a population on short timescales rather than
an evolvable trait. In this thesis, we develop new methods for empirically measuring the
strength of genetic drift and test hypotheses about the mechanisms that set the strength of
genetic drift.

In Chapter 2, we test the hypothesis that mutations can change the strength of genetic drift,
the first requirement needed for a trait to be evolvable. We focus on microbial colonies,
which are a model system for range expansions. To test this hypothesis, we develop a
new experimental method to measure the strength of genetic drift in high throughput using
fluorescence microscopy. We find that mutations significantly a↵ect the strength of genetic
drift by causing changes in the self-organized spatial structure of the colony. These changes
to genetic drift substantially a↵ect the probability that new beneficial mutations escape
stochastic extinction, providing evidence that genetic drift may be an evolvable property of
a population.

In Chapter 3, we investigate the strength of genetic drift in SARS-CoV-2 evolution at the host
population level. We develop a statistical inference framework for inferring the strength of
genetic drift simultaneously with measurement noise from lineage frequency time series data.
Applying this method to genomic data from England, we find that the strength of genetic
drift is consistently, throughout time, higher than expected given the number of people
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infected with COVID-19 at the community level, even after correcting for measurement noise
and epidemiological dynamics. We also find evidence for spatial structure in SARS-CoV-2
transmission at the regional level. The levels of genetic drift that we observe are higher than
the estimated levels of superspreading found by modeling studies that incorporate data of
contact statistics in England. We discuss how even in the absence of superspreading, high
levels of genetic drift can be generated via jackpot events in a deme model.

The new experimental and computational methods developed in this thesis allow us to infer
the strength of genetic drift, and thus gain a better understanding of evolutionary dynamics,
in a larger range of laboratory and natural settings. We find that random single muta-
tions can change the strength of genetic drift and a↵ect downstream evolution, suggesting
that genetic drift can be an evolvable trait of a population. Finally, we find that multiple
mechanisms can alter the strength of genetic drift at the population level.



i

To my family.



ii

Contents

Contents ii

1 Introduction 1

1.1 Genetic drift and its consequences for evolutionary dynamics . . . . . . . . . 2
1.2 Observables and methods for measuring genetic drift . . . . . . . . . . . . . 5
1.3 Microbial range expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Limitations in our current understanding of genetic drift . . . . . . . . . . . 9
1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Mutability of demographic noise in microbial range expansions 16

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Supplementary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Supplemental information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Lineage frequency time series reveal elevated levels of genetic drift in

SARS-CoV-2 transmission in England 74

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6 Supplementary information . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Conclusion 122

4.1 Avenues for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



iii

4.2 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



iv

Acknowledgments

I am deeply grateful to my advisor, Oskar Hallatschek, for teaching me theoretical tools,
asking important questions, shaping my scientific interests and approaches, and for support-
ing me in various scientific and non-scientific endeavors. To Marie Cécilia-Duvernoy, Matti
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Chapter 1

Introduction

Microbial evolution is ubiquitous in life, and occurs in settings ranging from infectious dis-
ease to food production and environmental health. Deciphering the processes that govern
microbial evolution allows us to understand how microbial evolution occurs in these di↵erent
systems, test hypotheses for why it occurs the way it does, and ultimately perhaps even to
shape microbial evolution to benefit environmental and human health.

In order to understand microbial evolution, we have to understand the di↵erent processes
that shape it: mutation, recombination, natural selection, genetic drift, and migration [45].
These di↵erent processes create and remove genetic variation, changing the abundance of dif-
ferent genotypes (the genetic makeup of individuals) in the population over time. Mutation
and recombination create genetic variation: mutation is the stochastic change in genotype
from parent to o↵spring due to replication error, and recombination is the creation of a new
genotype by combining two existing genotypes. On the other hand, natural selection and
genetic drift reduce genetic variation: natural selection is the preferential replication of par-
ticular genotypes that are most suited to the environment, and genetic drift is the stochastic
change in population composition due to random birth and death processes. Migration is
the movement of genetic material between spatial locations. The strength of these di↵erent
evolutionary forces can vary over orders of magnitude, leading to interesting and complex
dynamics at the population level [19].

A large body of theoretical work in the field of population genetics has explored each
of these evolutionary processes, and the interactions between them [18] - although there
still remain many interesting and open theoretical questions, as the complexity of some
dynamics makes them challenging to study. Many empirical studies have also tested some
theoretical predictions, but limitations in empirical methods have made it challenging to test
other predictions. In particular, detecting stochasticity is challenging due to the presence of
both biological and technical (non-biological) noise. As a result, there are still many open
questions about how the stochastic force of genetic drift acts, and what controls its strength.

In this thesis, we tackle some of these challenges by developing new empirical methods
for measuring the strength of genetic drift in a variety of systems, ranging from laboratory
experiments to natural populations. This Introduction chapter presents an overview of ge-
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netic drift, its consequences for evolution, and current methods and challenges for inferring
the strength of genetic drift from data. Additionally, we present a brief background on
spatially-structured populations, and in particular range expansions, which are a focus for
the work presented in Chapter 2. Finally, we give a brief overview of the work presented in
this thesis.

1.1 Genetic drift and its consequences for

evolutionary dynamics

Genetic drift is the stochastic change in population composition due to random birth and
death processes. The simplest mathematical model of genetic drift is the Wright-Fisher
model [48, 14]. TheWright-Fisher model describes a population with discrete non-overlapping
generations, a constant population size, and o↵spring determined by sampling with replace-
ment from the previous generation. While this model makes strong simplifying assumptions,
these assumptions are helpful for gaining intuition, and as we see below can also some-
times be used to describe realistic populations using e↵ective parameters. Suppose there are
two genotypes, wild type and mutant, in a population with N individuals. The number of
mutants, nt+1, of the mutant in generation t+ 1 is given by binomial sampling

nt+1 = Binom(N, ft) (1.1)

where ft =
nt
N

is the frequency of the mutant in generation t (Figure 1.1a).
When the population size is large enough such that time and frequency can be treated

as continuous variables, t and f , the change in the frequency of the mutant over time can
be written as

df

dt
=

r
f(1� f)

N
⌘(t) (1.2)

where f ⌘ f(t) is a time-dependent frequency, and ⌘(t) is a random variable that is Gaussian-
distributed with a mean of 0, variance of 1, and is uncorrelated in time. Equivalently, the
dynamics can be described by the Fokker-Planck equation which describes the probability
distribution, p(f, t), of frequencies across many instantiations of the population [27, 10]

dp(f, t)

dt
=

@
2

@f 2

"
f(1� f)p(f, t)

2N

#
. (1.3)

In reality, a population will not follow the assumptions of Wright-Fisher dynamics, but it
is still convenient (and useful) to compare populations to one another using the Wright-Fisher
model. However, because some or all of the assumptions above are broken, the population
size is replaced by an e↵ective population size, Ne,

df

dt
=

s
f(1� f)

Ne

⌘(t). (1.4)
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Figure 1.1: (a) The Wright-Fisher model of genetic drift. O↵spring are sampled from the
previous generation following binomial sampling. (b) The strength of genetic drift dominates
over that of selection at low frequencies (f . 1

Nes
), causing some weak beneficial mutants to

go extinct due to chance (red line), and at high frequencies (f & 1 �
1

Ne|s|), causing some
weak deleterious mutants to fix due to chance. Only when a beneficial mutation stochastically
fluctuates to above fthresh does the strength of selection dominate (black line).

The e↵ective population size is the population size that would reproduce the observed data
in an idealized Wright-Fisher model [7].

When the deviation from Wright-Fisher dynamics is due to additional variation in birth
and death processes beyond random sampling of o↵spring with replacement from the previous
generation, the e↵ective population size is given by the true population size divided by the
variance in the number of o↵spring produced by each parent, �2,

Ne =
N

�2
. (1.5)

This model is valid as long as the variance in o↵spring number is finite. Otherwise, a gener-
alized Wright-Fisher model can be used where there is an intermediate step of sampling the
distribution of o↵spring numbers, and then random sampling of this intermediate population
to the desired population size in the next generation [36]. Thus, we see that in reality, there
are some populations that cannot be described by Wright-Fisher dynamics even with an
e↵ective population size, but an e↵ective population size is still conventionally (incorrectly)
measured for ease of comparison with other studies [7, 8].

The strength of genetic drift can have a substantial impact on the evolutionary fate of
a population. One consequence of genetic drift for evolution is the loss of genetic diversity
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over time due to the stochastic extinction of genotypes from the population. The frequencies
0 and 1 are absorbing states; when the frequency of a genotype stochastically fluctuates to
0, it is lost from the population (until it is stochastically created again by mutation or
recombination). Populations with a lower e↵ective population size experience faster loss of
diversity due to the increased stochasticity from having smaller numbers.

Genetic drift also leads to a weakened e�cacy of natural selection. When a beneficial
mutation is rare, the strength of genetic drift can dominate over the strength of selection, and
the mutation may be lost due to stochastic fluctuations. Only when a mutation fluctuates
to a high enough frequency by chance does the strength of selection overpower the strength
of genetic drift. Selection can be incorporated into the above equation as a logistic growth
term

df

dt
= sf(1� f) +

s
f(1� f)

Ne

⌘(t) (1.6)

where s is the fitness di↵erence of the mutant compared to the wild type (i.e. s = 0.1 indi-
cates that the mutant reproduces 10% faster than the wild type). The frequency threshold
fthresh above which selection dominates over drift can be heuristically shown from the above
equation by equating the the amount of time that it takes for selection or genetic drift to
cause a mutant arising at (approximately) frequency 0 to reach frequency fthresh under the
simplifying assumption that f ⌧ 1:

�fselection = fthresh = sfthresh�t (1.7)

�fdrift = fthresh =

r
fthresh

Ne

�t (1.8)

fthresh =
1

Nes
. (1.9)

The probability for a beneficial mutant below fthresh to stochastically fluctuate to fthresh, or
establish, is thus given by

pest = Nesf0 (1.10)

where f0 is the initial frequency of the mutant. Thus, weak beneficial mutations can be lost
stochastically due to chance (Figure 1.1b). Additionally, weak deleterious mutations (s < 0)
have a non-zero chance of fixing if they start above a frequency of f0 = 1 � 1

Ne|s| and they
stochastically fluctuate to fixation due to genetic drift. The fixation probability for these
deleterious mutants is

pfix = Ne|s|(1� f0). (1.11)

A variety of factors influence the strength of genetic drift including population size, bot-
tleneck size, the o↵spring number distribution, and population structure (for instance see
review [7]). Lower population sizes lead to lower e↵ective population sizes, larger frequency
fluctuations, and a higher strength of genetic drift. A population may also have a bottleneck
in the population size, which is a decrease in population size, for instance when a pathogen
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is transmitted between hosts, which leads to a decreased e↵ective population size. As men-
tioned above, variability in the number of o↵spring produced also leads to a low e↵ective
population size and increased genetic drift. Population structure may arise due to spatial
segregation, or segregation into other demographic groups such as by age, and a↵ect the
e↵ective population size.

Outside of the reproduction and death of individuals in a population, genetic drift can also
arise in pathogen transmission. In pathogen transmission, births are caused by transmission
of the pathogen to a di↵erent host and deaths are caused by recovery or death of an infected
host. Thus, the theoretical framework described above can also be used to study between-
host evolutionary dynamics of pathogens.

1.2 Observables and methods for measuring genetic

drift

Due to the importance of genetic drift for evolutionary dynamics, a variety of methods have
been developed to infer the strength of genetic drift from data, and we will summarize the
broad classes of these methods here. The particular method that is chosen depends on the
data that is available and the goals of the study.

One observable that can be used to infer the strength of genetic drift is the rate of diversity
loss. A population with a higher level of genetic drift has a faster loss of diversity, given
that the initial diversity and the rate of other evolutionary processes is the same between
the two populations. For instance, methods have been developed to infer bottleneck sizes of
between-host pathogen transmission using diversity loss as a metric [40], and these methods
have been applied to study influenza [33] and SARS-CoV-2 [31, 32], and other pathogens.

More generally, genetic drift sets the rate at which the variance of the change in frequency
increases over time. The variance in the frequency change, �f , across a single generation is
given by

var(�f) =
f(1� f)

Ne

. (1.12)

Thus by measuring the variance of the distribution of frequency changes, the strength of
genetic drift can be inferred. This approach was used in one of the first experimental mea-
surements of genetic drift, which was performed on populations of fruit flies with di↵erent
eye colors [6]. By tracking the frequency of flies with each eye color over multiple generations
for a large number of replicate populations, the e↵ective population size of the fly population
could be quantified (Figure 1.2a). Variations of methods that track frequency changes over
time to infer e↵ective population size have been developed since then to account for addi-
tional complexities such as empirical sampling and the joint inference of fitness and e↵ective
population size [4, 12, 13, 5, 44].

Another class of methods that is used to infer the strength of genetic drift uses the
phylogenetic tree. First, genomic sequences from the population are used to construct a
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Figure 1.2: (a) The distribution of the number number of bw75 genes in a fly population,
for 60 populations, as a function of the generation number. The variance of the distribution
increases over time due to genetic drift. Adapted and reproduced with permission from
Ref. [6]. (b) The variance of the change in frequency of bw75 genes over time across the
same 60 populations as in (a). Open circles show the observed variance including previously
fixed populations (frequency of 0 or 1). Closed circles show the observed variance excluding
previously fixed populations. The black line shows the theoretical expectation, var(�f) =
f0(1� f0)[1� (1� 1

2Ne
)n], where n is the number of generations [49]. This form results from

integrating Equation 1.12 across multiple generations, and replacing Ne by 2Ne because flies
are a diploid population. 2Ne for the black line is taken to be 23. Adapted and reproduced
with permission from Ref. [6]. (c-d) The phylogenetic tree for a simulated population with
N = 1000 and N = 20, 000 showing that a population with a lower population size exhibits
faster coalescence times between any two extant lineages, going backwards in time. Adapted
and reproduced from Ref. [2] which is licensed under a Create Commons Attribution 2.0
Generic License (https://creativecommons.org/licenses/by/2.0/).

https://creativecommons.org/licenses/by/2.0/
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tree based on genetic similarity (a phylogenetic tree). Then a model of the rate at which
branches in the tree merge going backwards in time (the coalescence rate), can be fit to the
observed tree to infer the e↵ective population size. The most common model that is used
for the coalescence rate is the Kingman coalescent, which describes populations that can be
described by Wright-Fisher dynamics [28]. The rate � at which lineages coalesce backwards
in time in the Kingman coalescent is given by

�(i) =
i(i� 1)

2Ne⌧
(1.13)

where i is the number of lineages present at a given time, Ne is the e↵ective population
size, and ⌧ is the generation time. In this model, populations with higher levels of genetic
drift (lower e↵ective population size) tend to have a higher coalescence rate (Figure 1.2b).
Additionally the rate of coalescence decreases going backwards in time due to the decrease
in the number of lineages (lower i). A variety of methods have been developed to fit the
coalescence rate from observed trees with di↵erent priors on how Ne changes over time [37,
25, 46]. Methods have also been developed using models that di↵er from the Kingman
coalescent [41]. These phylogenetics methods have been used extensively to study microbial
evolution as well as the evolution of macroscopic organisms like humans.

Branching process models can also be fit to the observed number of individuals over
time to infer the variance in o↵spring number and growth rate [9]. These models assume
a particular distribution for the o↵spring number distribution (often a negative binomial
distribution) and estimate the most likely combination of parameters of the o↵spring number
distribution along with growth rate. External information about the growth rate can be used
to then determine the parameters of the o↵spring number distribution.

Finally, the o↵spring number distribution and population size can be directly measured
and used to calculate the e↵ective population size. For instance, in epidemics, contact
tracing can be used to measure the distribution of secondary cases from an infected in-
dividual [29, 42, 1, 3], and surveys can be used to determine the disease prevalence [15]
(approximately equivalent to the population size N in the models described above). In the
absence of direct disease contact tracing data, information about the general rate of contacts
between di↵erent groups can be used in combination with modeling to infer the distribution
of o↵spring numbers [38]. In laboratory evolution experiments, the distribution of o↵spring
numbers can be measured directly using microscopy [30] or by using sequencing to measure
the distribution of genotype abundances [47].

1.3 Microbial range expansions

Range expansions occur when populations expand into an area of space that they previously
did not inhabit. Microbial range expansions commonly occur in biofilms, which are popu-
lations of microbes (bacteria or yeast) that concentrate at interfaces. Biofilms are highly
prevalent in nature, such as in human-associated microbial infections, natural hot springs,
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and in biofouling. In biofilms, cells commonly create an extracellular matrix, which is a
sticky substance composed of polysaccharides, proteins, and nucleic acids that helps cells
stick to each other [21].

Evolutionary dynamics in microbial range expansions have been studied extensively, pri-
marily using microbial colonies as a model system. When a microbial colony grows large
enough in size, nutrient limitation causes faster growth at the leading edge of the colony
compared to the center, leading to interesting evolutionary dynamics that di↵er from those
in a well-mixed environment [26]. For instance, range expansions can promote adaptation by
increasing the number of generations to reach a final population size as a result of nutrient
limitation, thus increasing the amount of time over which selection will act. Additionally,
genetic drift will lead to the stochastic extinction of genotypes from the leading edge of
the colony, which causes the formation of sectors, or regions that are composed of a single
genotype (Figure 1.3a) [24, 23]. If a mutation happens to occur at the expanding frontier
of the colony and is lucky to escape extinction due to genetic drift, it will become a sector,
which is a process called “gene surfing”. These sectors are “jackpots”, or clones (descen-
dants of a particular ancestor) that happened to reach a large size [17]. Interestingly, gene
surfing leads to o↵spring numbers with a heavy-tail where the Wright-Fisher model cannot
be applied [22].

Additionally, whereas in well-mixed culture, in the absence of other evolutionary forces,
genetic drift will lead to the eventual take-over of a single genotype in the population, in
range expansions, the maintenance of diversity is possible in a circular range expansion
because the rate at which the population size grows balances the rate at which genetic drift
causes the extinction of genotypes [23]. An additional consequence of genetic drift in range
expansions that is not found in well-mixed culture is the ability to promote cooperation. The
formation of sectors leads to the spatial proximity of individuals from the same genotype.
As a result, cooperation is beneficial and cheaters can be excluded [35].

A variety of observables can be used to infer the strength of genetic drift in range ex-
pansions. Because the Wright-Fisher model assumptions can be broken in range expansions,
determining an e↵ective population size is not very meaningful. Instead, the rate of change
of the number of sectors N over time in a colony with standing variation can be fit to the
theory expectation [23]. By assuming that the radius of the colony grows linearly after a
transient exponential growth period and before complete nutrient depletion, the colony ra-
dius r can be used as a proxy for time. The mean number of sectors as a function of colony
radius is given by

N(r|r0) =

s
⇡

2DX(
1
r0
�

1
r
)

(1.14)

where r0 is the initial radius of the colony and DX is the di↵usion constant of the sector
boundary that divides two genotypes (Figure 1.3b). From this equation, we see that the
di↵usion constant of the sector boundary can also be measured to determine the strength
of genetic drift, where a higher di↵usion constant corresponds to a faster rate of diversity
loss and thus a higher strength of genetic drift. It has also been shown that the di↵usion
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constant of single cell trajectories very closely mirrors that of sector boundaries [20], and
thus can also be used as an observable for measuring the strength of genetic drift. In reality,
the movement of single cells or sector boundaries often exhibits superdi↵usion rather than
normal di↵usion, and Equation 1.14 can be modified accordingly, as is done in Ref. [23].

2 mm

a b

Figure 1.3: (a) E. coli DH5↵ colony grown from an equal mixture of neutral strains expressing
yellow fluorescent protein and cyan fluorescent protein on a plasmid, grown at 37�C. Adapted
and reproduced with permission from Ref. [20]. (b) The mean number of sectors in an
expanding microbial colony as a function of the radius of the colony, given by Equation 1.14,
where r0 = 2 mm. DX is the di↵usion constant of the sector boundaries separating the two
genotypes.

1.4 Limitations in our current understanding of

genetic drift

Despite decades of theoretical and experimental research on genetic drift, there are still many
limitations in our understanding of how this evolutionary process works. The strength of
genetic drift is often considered to be a static property of a population on short timescales
rather than an evolvable trait. However, we have some evidence that mutations can change
the strength of genetic drift, for instance for particular mutations of E. coli in microbial
colonies [20]. Other evolutionary processes such as natural selection and mutation can be
evolvable traits of a population (i.e. mutations that change fitness or mutations in the DNA
repair pathways that change the mutation rate [39, 43]). Thus, it is natural to hypothesize
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that genetic drift can also be an evolvable trait of a population. This hypothesis has not yet
been explored.

Additionally, we have limited empirical measurements of how microscopic properties
at the individual level lead to genetic drift at the population level. While this question
has been explored to some degree in microbial range expansions both experimentally and
computationally [34, 35, 11, 24, 26], experiments have been limited by throughput and
theoretical models do not necessarily completely capture the growth dynamics. By studying
the connection between individual-level traits and population-level genetic drift, we can
begin to gain a better understanding of what causes changes to genetic drift in microbial
populations.

These limitations of our understanding are due in part to methodological challenges.
One of the main challenges to inferring the strength of genetic drift is that current methods
do not scale well to high-throughput applications. Current methods require experimentally
tagging di↵erent strains with fluorescent or genetic markers; this can be time-consuming and
can realistically only be done for a handful of strains [20]. Another main challenge is how to
incorporate measurement or technical noise, which is noise that is due to the measurement
process rather than biological processes [16]. As both measurement noise and genetic drift
are stochastic, they may create signals in the data that are confounding. Without correcting
for measurement noise, the inferred strength of genetic drift may be biased.

In this thesis, we address these limitations by developing improved experimental and
computational methods to infer genetic drift from data. These methods allow us to determine
how the strength of genetic drift is a↵ected by mutations, and if so, what consequence it has
for evolution. Additionally, our improved computational methods allow inference of genetic
drift in pathogen transmission using large pathogen genomics datasets while accounting for
noise in the measurement process. Finally, we empirically measure phenotypic traits at both
the individual and population levels, and then we model their e↵ects on genetic drift at the
population level.

1.5 Outline of thesis

In Chapter 2, we test the hypothesis that mutations can change the strength of genetic drift,
the first requirement needed for a trait to be evolvable. We focus on microbial colonies,
which are a model system for range expansions. To test this hypothesis, we develop a
new experimental method to measure the strength of genetic drift in high throughput using
fluorescence microscopy. We find that mutations significantly a↵ect the strength of genetic
drift by causing changes in the self-organized spatial structure of the colony. These changes
to genetic drift substantially a↵ect the probability that new beneficial mutations escape
stochastic extinction, providing evidence that genetic drift may be an evolvable property of
a population.

In Chapter 3, we investigate the strength of genetic drift in SARS-CoV-2 evolution at the
host population level. We develop a statistical inference framework for inferring the strength
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of genetic drift simultaneously with measurement noise from lineage frequency time series
data. Applying this method to genomic data from England, we find that the strength of ge-
netic drift is consistently, throughout time, higher than expected given the number of people
infected with COVID-19 at the community level, even after correcting for measurement noise
and epidemiological dynamics. We also find evidence for spatial structure in SARS-CoV-2
transmission at the regional level. The levels of genetic drift that we observe are higher than
the estimated levels of superspreading found by modeling studies that incorporate data of
contact statistics in England. We discuss how even in the absence of superspreading, high
levels of genetic drift can be generated via jackpot events in a deme model.
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Chapter 2

Mutability of demographic noise in

microbial range expansions

Genetic drift is often considered a static property of a population on short timescales rather
than an evolvable trait. However, we have evidence that particular single mutations can
substantially change the strength of genetic drift in microbial range expansion [26]. Here
we test the hypothesis of whether random single gene deletion mutations (a common type
of single step mutation in bacteria) can substantially impact the strength of genetic drift
in microbial range expansions. Furthermore, we ask what phenotypic traits determine the
strength of genetic drift, and whether the changes to genetic drift due to single mutations
substantially a↵ect downstream evolution.

I am grateful to Matti Gralka for performing preliminary experiments of the strength of
genetic drift in selected strains from the Keio collection, Marie-Cécilia Duvernoy for advising
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QinQin Yu, Matti Gralka, Marie-Cécilia Duvernoy, Megan Sousa, Arbel Harpak,
Oskar Hallatschek. Mutability of demographic noise in microbial range expan-
sions. The ISME Journal 15, 2643–2654 (2021). https://doi.org/10.1038/s41396-
021-00951-9

which is licensed under a Creative Commons Attribution 4.0 International License (https:
//creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


CHAPTER 2. MUTABILITY OF DEMOGRAPHIC NOISE 17

2.1 Abstract

Demographic noise, the change in the composition of a population due to random birth
and death events, is an important driving force in evolution because it reduces the e�cacy
of natural selection. Demographic noise is typically thought to be set by the population
size and the environment, but recent experiments with microbial range expansions have
revealed substantial strain-level di↵erences in demographic noise under the same growth
conditions. Many genetic and phenotypic di↵erences exist between strains; to what extent
do single mutations change the strength of demographic noise? To investigate this question,
we developed a high-throughput method for measuring demographic noise in colonies without
the need for genetic manipulation. By applying this method to 191 randomly-selected single
gene deletion strains from the E. coli Keio collection, we find that a typical single gene
deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find
that the strength of demographic noise is an emergent trait at the population level that
can be predicted by colony-level traits but not cell-level traits. The observed di↵erences in
demographic noise from single gene deletions can increase the establishment probability of
beneficial mutations by almost an order of magnitude (compared to in the wild type). Our
results show that single mutations can substantially alter adaptation through their e↵ects
on demographic noise and suggest that demographic noise can be an evolvable phenotype of
a population.

2.2 Introduction

Demographic noise, also referred to as “genetic drift”, “neutral drift”, or “drift”, is the change
in the composition of a population due to random births and deaths. Theoretical population
genetics predicts that demographic noise competes with natural selection by lowering the
establishment probability of beneficial mutations [35] and causing the accumulation of dele-
terious mutations [36, 51], leading to consequences such as the existence of a drift barrier [34]
(a minimum absolute value fitness above which selection can act) and Muller’s ratchet [47].
Additionally, demographic noise reduces neutral genetic diversity [30], can limit mutation
rates [43], and can also promote cooperation in spatially-structured environments [49]. Ex-
perimental studies have validated many of these predictions [11, 3, 10], and demographic
noise has been shown to play an important role in the evolutionary dynamics of a variety of
systems including organelles [44], intestinal crypt stem cells [42], biofilms [59], the transmis-
sion of viruses [18, 45, 55] and human mitochondrial DNA [65], well-mixed culture [29], and
potentially some types of cancer tumors [63].

Intuitively, the randomness of individual birth and death events should matter only
relative to the population’s size (which can be influenced by the environment), which is
conventionally thought to set the strength of demographic noise [13, 21, 25, 19, 31, 26,
46, 8, 7, 4]. However, recent work in microbial colonies has shown that di↵erent strains
from the same species can exhibit di↵erent strengths of demographic noise under the same
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growth conditions [26, 28], and that the observed di↵erences in demographic noise can have
a substantial impact on the establishment probability of beneficial mutations [26, 14, 20].
However, it is unknown how much single mutations can a↵ect the strength of demographic
noise and whether those changes would be su�cient to alter the e�cacy of natural selection.
In this work, we focus on loss of function mutations using single gene deletion mutant strains,
as loss of function mutations are a common type of single step mutation in microbes.

Measuring the strength of demographic noise for a large number of strains requires a
method for high-throughput tracking of cellular lineages in growing colonies. Previous
methods for measuring demographic noise in microbial colonies required genetic transfor-
mations [28] or time-intensive microscopy and image analysis [26], which are impractical for
testing a large number of strains. Here, we develop a label-free method to sparsely track cell
lineages (i.e. at low density) in growing colonies and use it to measure the distribution of
demographic noise e↵ects in E. coli single gene deletion strains. We show that most gene
deletions decrease the strength of demographic noise, which in turn can dramatically increase
the establishment probability of beneficial mutations. Our high-throughput approach also
allows us to show that population-level emergent properties such as colony shape and size,
but not single-cell properties such as cell shape, can predict the strength of demographic
noise.

2.3 Methods

Strains and growth conditions

Single gene deletion strains were taken from the Keio collection [5] (Supplementary table 1),
which consists of all non-essential single gene deletions in E. coli K-12 strain BW25113. mreB
andmrdA point mutant strains were from Ref [57] (Supplementary table 2). Plasmids pQY10
and pQY11 were created by Gibson assembly of Venus YFP A206K (for pQY10) or Venus
CFP A206K (for pQY11) [28], and specR from pKDsgRNA-ack (gift from Kristala Prather,
Addgene plasmid # 62654, http://n2t.net/addgene:62654 ; RRID:Addgene 62654) [54]. Plas-
mids pQY12 and pQY13 were created similarly but additionally with cmR from pACYC184.

All E. coli experiments were performed in LB (Merck 110285, Kenilworth, New Jer-
sey) with the appropriate antibiotics and experiments with S. cerevisae were performed in
YPD [2]. All agar plates were prepared in OmniTrays (Nunc 242811, Roskilde, Denmark,
12.8cm×8.6cm) or 12cm×12cm square petri dishes (Greiner 688102, Kremsmuenster, Aus-
tria) filled with 70 mL media solidified with 2% Bacto Agar (BD 214010, Franklin Lakes,
New Jersey). After solidifying, the plates were dried upside-down in the dark for 2 days and
stored wrapped at 4�C in the dark for 7-20 days before using.
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Tracking lineages with fluorescent tracer beads

In order to track lineages, we spread fluorescent tracer beads with a similar size to the cells
on the surface of an agar plate, allowed them to dry, then inoculated and grew a colony on
top of the agar plate and imaged the tracer beads to track lineages. In this way, we are able
to track lineages without genetic labels at low density (i.e. sparsely) in the colony so that
we can distinguish individual lineages without needing high-resolution microscopy. We find
that the bead trajectories track cell lineages over the course of one hour both at the colony
front and behind the front (Figures 2.1c, 2.S1c-d, and 2.S2). We chose to spread fluorescent
tracer beads on the surface of the agar so that they could continue to be incorporated into
the colony as it grew, which would allow us to track lineages even as existing beads and
lineages get lost from the front. Even though many cells will be piled up on top of other cells
rather than in contact with the agar, we don’t expect this to a↵ect the ability of the beads
to measure demographic noise, since lineages at the front are the most likely to contribute
o↵spring to future generations [26].

Fluorescent tracer beads

For experiments with E. coli, 1 µm red fluorescent polystyrene beads from Magsphere (PSF-
001UM, Pasadena, CA, USA) were diluted to 3 µg/mL in molecular grade water and 920
µL was spread on the surface of the prepared OmniTray agar plates with sterile glass beads.
Excess bead solution was poured out, and the plates were dried under the flow of a class II
biosafety cabinet (Nuaire, NU-425-300ES, Plymouth, MN, USA) for 45 minutes. The bead
density was chosen to achieve ⇠250 beads in a 56x field of view. For experiments with S.
cerervisiae, 2µm dragon green fluorescent polystyrene beads from Bang’s labs (FSDG005,
Fishers, IN, USA) were used at a similar surface density.

Measurement of the distribution of demographic noise

We randomly selected 352 single gene deletion strains from the Keio collection. For each
experiment, cells were thawed from glycerol stock (see Supplementary methods), mixed, and
5 µL was transferred into a 96-well flat bottom plate with 100µL LB and the appropriate
antibiotics. Plates were covered with Breathe-Easy sealing membrane (Diversified Biotech
BEM-1, Doylestown, PA, USA) and grown for 12 hours at 37�C without shaking. A floating
pin replicator (V&P Scientific, FP12, 2.36 mm pin diameter, San Diego, CA, USA) was used
to inoculate a 2-3mm droplet from each well of the liquid culture onto a prepared OmniTray
covered with fluorescent tracer beads. Droplets were dried and the plates were incubated
upside down at 37�C for 12 hours before timelapse imaging.

To account for systematic di↵erences between plates, we also put 8 wild type BW25113
wells in each 96-well plate in di↵erent positions on each plate. The mean squared displace-
ment (MSD, see below) of each gene deletion colony was normalized to the weighted average
MSD of the wild type BW25113 colonies on that plate, hMSDiWT , and this “relative MSD”
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is reported. We performed three biological replicates for each strain (grown from the same
glycerol stock, Figure 2.S3), and their measurements were averaged together weighted by
the inverse of the square of their individual error in relative MSD. The reported error for
the strain is the standard error of the mean. During the experiment, several experimental
challenges impede our ability to measure demographic noise, including the appearance of
beneficial sectors (identified as diverging bead trajectories that correspond to bulges at the
colony front) either due to de novo beneficial mutations or standing variation from glycerol
stock (see Supplementary information “Beneficial sectors in monoculture colonies”, Fig-
ures 2.S4 and 2.S5), slow growth rate leading to bead tracks that were too short for analysis,
no cells transferred during inoculation with our pinning tool, inaccurate particle tracking
due to beads being too close together, or out of focus images. In order to keep only the
highest quality data points, we focused on the 191 strains that had at least 2 replicates free
of such issues.

Timelapse imaging of fluorescent beads

Plates were transferred to an ibidi stagetop incubator (Catalog number 10918, Gräfelfing,
Germany) set to 37�C for imaging. Evaporation was minimized by putting wet Kim wipes
in the chamber and sealing the chamber with tape. The fluorescent tracer beads at the front
of the colony were imaged with a Zeiss Axio Zoom.V16 (Oberkochen, Germany) at 56x mag-
nification. A custom macro program written using the Open Application Development for
Zen software was used to find the initial focal position for each colony and adjust for deter-
ministic focus drift over time due to slight evaporation. Timelapse imaging was performed
at an interval of 10 minutes for 12 hours, during which time the colony grew about halfway
across the field of view. Two z slices were taken for each colony and postprocessed to find the
most in-focus image to adjust for additional focus drift. Subpixel-resolution particle tracking
of the bead trajectory was achieved using a combination of particle image velocimetry and
single particle tracking [12] and is described in detail in the Supplementary methods.

Measurement of bead trajectory mean squared displacement

The measurement of mean squared displacement (MSD) is adapted from [28] and is illus-
trated in Figure 2.1a and 2.S1a. Points in a trajectory that fall within a window of length
L are fit to a line of best fit. The MSD is given by

MSD(L) =

*DZ l+L

l

(�w(L0))2dL0
E

windows

+

trajectories

(2.1)

where �w(L0) is the displacement of the bead trajectory from the line of best fit at each
point, hiwindows is an average over all possible definitions of a window with length L along
the trajectory (window definitions are overlapping), and hitrajectories is a weighted average
over all trajectories in a field of view, where the weight is the inverse squared standard
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error of the mean for each trajectory’s MSD(L) (Figure 2.S1a). We use 200 linearly spaced
window sizes from L = 6 to 1152 µm. Window sizes that fit in fewer than 5 trajectories are
dropped due to the noisiness in calculating the averaged MSD(L). The combined MSD(L)
for all trajectories reflects that of bead trajectories at the colony front, which will have the
largest contribution to the strength of demographic noise [26] (Figure 2.S6). Because we
expect the trajectories to follow an anomalous random walk [28], the combined MSD(L)
for all trajectories across the field of view is fit using weighted least squares to a power
law, where the weight is the inverse square of the propagated standard error of the mean.
Colonies with data in fewer than 5 window sizes are dropped due to the noisiness in fitting to
a power law. The fit is extrapolated to L = 50 µm to give a single summary statistic for each
colony, and this quantity is reported as MSD(L = 50 µm) (see Supplementary information
“Determining the mean squared displacement window size”, Figures 2.S7 and 2.S8), and the
error is calculated as half the di↵erence in MSD(L = 50µm) from using the upper and lower
bounded coe�cients to the fit. For Figure 2.2, only MSD values where the error is less than
half of the value are kept.

Measurement of phenotypic traits

For the phenotypic trait measurements, in addition to the 191 single gene deletions, we
also measured 41 additional strains of E. coli which included 4 strain backgrounds, 1 mreB
knockout in the MC1000 background, 2 adhesin mutants, and 34 single gene knockouts from
the Keio collection that we predicted may have large changes to demographic noise because of
an altered biofilm forming ability in liquid culture [50] or altered cell shape from the wild type
(using the classification on the Keio website, https://shigen.nig.ac.jp/ecoli/strain/
resource/keioCollection/list). We normalized all phenotypic trait values to the average
value measured from the wild type colonies on the same plate. The reported values for each
strain are averages across 2-3 replicate colonies on di↵erent plates and the errors are the
standard error of the mean. See the Supplementary methods for more details of the specific
phenotypic trait measurements.

Measurement of neutral fraction of diversity preserved

Neutral fluorescent pairs were created by transforming background strains with plasmids
pQY10 (YFP, specR) or pQY11 (CFP, specR). Cells were streaked from glycerol stock and
a single colony of each strain was inoculated into a 96 well plate with 600 µL LB and 120
µg/mL spectinomycin for plasmid retention. Plates were covered with Breathe-Easy sealing
membrane and grown for 12 hours at 37�C without shaking. 50 µL of culture from each
strain in a neutral pair were mixed and a floating pin replicator was used to inoculate a
2-3mm droplet from the liquid culture onto a prepared OmniTray covered with fluorescent
tracer beads. Droplets were dried and the plates were incubated at 37�C.

Colonies were imaged after 24 hours with fluorescence microscopy using a Zeiss Axio
Zoom.V16 and the number of sectors of each color was manually counted. The fraction of

https://shigen.nig.ac.jp/ecoli/strain/resource/keioCollection/list
https://shigen.nig.ac.jp/ecoli/strain/resource/keioCollection/list
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Figure 2.1: Label-free method of measuring demographic noise in microbial colonies (a)
Schematic of bead-based sparse lineage tracing method for measuring demographic noise.
(b) Schematic of existing method for measuring fraction of diversity preserved [26]. (c)
(Top) The trajectory of a single bead (black) and the lineages of the cells neighboring it in
the final-timepoint (colors) traced backwards in time in the Keio collection wild type strain.
(Bottom) The deviation of the distance between the cell lineages and the bead from the final
distance, backwards in time. Colors are the same as in the time series images. The gray
shaded region shows a single cell width away or towards the bead. All cells that neighbor
the bead in the final timepoint, except for one (orange), are neighbors of the bead in the first
timepoint and stay within a single cell width of the final distance to the bead. (d) Example
neutral mixtures of YFP and CFP tagged strains grown for 1 day and bead trajectories
for strains highlighted in (e). (e) Comparison of MSD at window size L = 50 µm to the
fraction of diversity preserved for 3 E. coli strain backgrounds and 6 single gene deletions
on the Keio collection wild type background (BW25113). Error bars in MSD represent the
standard error of the weighted mean (N = 7-8, see Methods) and error bars in the fraction of
diversity preserved represent the standard error of the weighted mean (N = 8) where weights
come from uncertainties in counting the number of sectors.

diversity preserved was calculated as in Ref [26] by dividing the number of neutral sectors by
one-half times the estimated initial number of cells at the inoculum front (see Figure 2.1b).
The factor of one-half accounts for the probability that two neighboring cells at the inoculum
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front share the same color label. The initial number of cells is estimated by measuring the
inoculum size of each colony (manually measured by fitting a circle to a brightfield backlight
image at the time of inoculation) divided by the e↵ective cell size for E. coli (

p
length · width,

taken to be 1.7 µm, Ref [26]).

Colony fitness

The colony fitness coe�cient between two strains was measured using a colony collision
assay as described in Refs [26, 37] by growing colonies next to one another and measuring
the curvature of the intersecting arc upon collision. Cells were streaked from glycerol stock
and a single colony for each strain was inoculated into LB with 120 µg/mL spectinomycin for
plasmid retention and incubated at 37�C for 15 hours. The culture was back diluted 1:500
in 1mL fresh LB with 120 µg/mL spectinomycin and grown at 37�C for 4 hours. 1 µL of the
culture was then inoculated onto the prepared 12cm⇥12cm square petri dishes containing
LB with di↵erent concentrations of chloramphenicol (0µg/mL, 1µg/mL, 2µg/mL, 3 µg/mL)
in pairs that were 5 mm apart, with 32 pairs per plate, then the colonies were incubated
at 37�C. After half of a day, bright field backlight images are taken and were used to fit
circles to each colony to determine the distance between the two colonies. After 6 days,
the colonies were imaged with fluorescence microscopy using a Zeiss Axio Zoom.V16. The
radius of curvature of the intersecting arc between the two colonies was determined with
image segmentation and was used to calculate the fitness coe�cient between the two strains
(Figure 2.S9a).

Measurement of non-neutral establishment probability

We transformed 9 gene deletion strains from the Keio collection (�gpmI, �recB, �pgm,
�tolQ, �ychJ , �lpcA, �dsbA, �rfaF , �tatB) and 3 strain backgrounds (BW25113,
MG1655, DH5↵) with pQY11 (CFP, specR) or pQY12 (YFP, specR, cmR). Cells were
streaked from glycerol stock and a single colony of each strain was inoculated into media
with 120 µg/mL spectinomycin for plasmid retention, then incubated at 37�C for 16 hours.
The culture was back-diluted 1:1000 in 1mL fresh media with 120 µg/mL spectinomycin
and grown at 37�C for 4 hours. YFP chloramphenicol-resistant and CFP chloramphenicol-
sensitive cells from the same strain background were mixed respectively at approximately
1:500, 1:200, and 1:50 and distributed in a 96-well plate. A floating pin replicator was
used to inoculate a 2-3mm droplet from the liquid culture onto prepared OmniTrays with
varying concentrations of chloramphenicol (0µg/mL, 1µg/mL, 2µg/mL, 3 µg/mL). Droplets
were dried and the plates were incubated at 37�C for 3 days, then imaged by fluorescence
microscopy using a Zeiss Axio Zoom.V16.

The establishment probability of the resistant strain can be measured by counting the
number of established resistant sectors normalized by the initial number of resistant cells
at the inoculum front [26], which gives the probability that any given resistant cell in the
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inoculum escaped genetic drift and grew to a large enough size to create a sector. Briefly,

pest =
Nsectors

N0
(2.2)

where Nsectors is the number of resistant sectors after 3 days (counted by eye) and N0 is
the estimated initial number of cells of the resistant type at the inoculum front. Because
the establishment probability can only be accurately measured when the initial number of
resistant cells is low enough that the resistant sectors do not interact with one another,
we only keep colonies where neighboring resistant sectors are distinguishable at the colony
front. In cases where we could see that a sector had coalesced from multiple sectors, we
counted the number of sectors pre-coalescence. We also did not find a clear downward
bias in the establishment probability as a function of initial mutant fraction (Figure 2.S10),
suggesting that the probability of sector coalescence is low in the regime of these experimental
parameters. The initial number N0 of cells of the resistant type is estimated by multiplying
the initial number of cells at the inoculum front (see “Measurement of neutral fraction of
diversity preserved”) by the fraction of resistant cells in the inoculum (measured by plating
and counting CFUs).

2.4 Results

Label-free method for measuring demographic noise in microbial

colonies

To measure demographic noise in an expanding microbial colony without genetic labels, we
developed a method that consists of two steps (Figure 2.1a, Methods, and Supplementary
section “Additional information on bead-based sparse lineage tracing method in colonies”).
First, we record the trajectories of cell-sized fluorescent beads embedded in the colony (Sup-
plementary movie), which we show track lineages of their neighboring cells, allowing us to
track lineages sparsely (i.e. at low-density) (Figures 2.1c, 2.S1c-d, 2.S2, and Supplemen-
tary methods). Second, we analyze the fluctuations of the measured lineages (via the bead
trajectories) using their length-dependent mean squared displacement (MSD), which serves
as an established statistic to quantify the strength of demographic noise by quantifying the
randomness in the movement of cells due to growth-induced mechanical forces (Methods
and Ref [28]). Intuitively, beads with higher MSDs reflect a colony environment where the
mechanical forces being exerted on the beads and cells are more random. Thus, under these
conditions the cells that make it to the expansion front where they can more easily reproduce
is a more stochastic process and demographic noise is higher.

To determine the ability of our method to measure di↵erences in demographic noise,
we compared it to an existing method which uses neutral fluorescent labels to measure
the fraction of diversity preserved (the fraction of surviving fluorescent sectors) after a range
expansion [28, 27] (Figure 2.1b and Methods). Figure 2.1d shows that the fraction of diversity
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preserved is negatively correlated with MSD for a subset of 9 strains (⇢ = -0.87, p = 0.002),
and can be well fit to an inverse square root relationship (�2

r
= 37.5). This inverse square

root relationship is consistent with the theory expectation for the fluorescent sector boundary
MSD [27], suggesting that the bead MSD captures the fluorescent sector boundary MSD,
and is thus a convenient and reliable measure of demographic noise. We chose to report the
MSD at the window length L = 50µm because the inverse square root fit to the fraction
of diversity preserved had the lowest chi-squared at this length scale (Figure 2.S7). To
control for growth rate di↵erences between the strains, we also masked the colonies with the
smallest colony’s outline and remeasured the fraction of diversity of preserved; this did not
significantly change the ordering of the genotypes (Figure 2.S1b).

The distribution of demographic noise for single gene deletions

We next wanted to use our bead-based sparse lineage tracing method to measure the distri-
bution of demographic noise due to single gene deletion mutations. We randomly selected
191 single gene deletion strains from the Keio collection [5], a well-characterized library of
E. coli strains that contains all non-lethal single gene deletions (see Methods). In order to
test such a large number of colonies, we grew the colonies in 96-array format on multiple
agar plates. We observed variation in bead MSD between plates (see Supplementary in-
formation “Sources of variation”), and therefore report the bead MSD of the gene deletion
strains relative to that of the wild type, which is present in 8 replicate colonies per plate (see
Methods).

Figure 2.2 shows the distribution of relative MSD from the 191 randomly selected single
gene deletion strains. The knockout (KO) distribution significantly di↵ers from the wild type
(WT) distribution (Kolmogorov-Smirnov p = 2.7⇥10�4) with a lower mean (KO: 0.904, WT:
1.011) and higher variance (KO: 0.044, WT: 0.004). 39% of knockout MSDs were lower than
the lowest wild type MSD observed, with the maximal decrease in knockout MSD of 81%
from the wild type median MSD. Interestingly, the typical knockout mutation decreases
demographic noise from that of the wild type by 8% (95% CI = [1%, 17%], Supplementary
Methods) (Median KO = 0.94, Median WT = 1.02).

To determine whether any biological processes or pathways could explain the di↵erences
in demographic noise observed, we performed a gene enrichment analysis by looking for GO
and KEGG terms whose average MSD value across gene knockouts was significantly di↵erent
from (1) that of randomly selected knockouts (i.e. what causes 81% vs 8% decrease in genetic
drift?) and (2) that of the wild type (i.e. what causes a di↵erent strength of genetic drift in
KOs vs WT?) (Supplementary Methods). For the first analysis, there were no significant GO
terms identified and only a single significant KEGG term (ATP-binding cassette reporters)
(see Supplementary information “Gene enrichment analysis”). For the second analysis, 6 out
of 8 KEGG terms represented in the randomly selected subset of knockouts from the Keio
collection had significantly lower average MSDs from the wild type (Figure 2.S11). Many of
the significant KEGG terms relate to metabolism (carbon metabolism, metabolic pathways,
microbial metabolism in diverse environments, biosynthesis of secondary metabolites). As
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Figure 2.2: Distribution of MSD across randomly-sampled Keio collection single gene deletion
strains. Each count in the distributions is an average of 2-3 replicate colonies grown on
di↵erent agar plates, and the MSD is normalized to the average wild type MSD on each
plate (Methods). The blue dotted line shows a Gaussian fit to the wild type distribution.
Vertical lines show the median value of each distribution. Panels show examples of bead
trajectories from wild type and single gene deletions strains from the Keio collection. Black
lines in panels show the colony front at t = 12 hours and t = 23 hours.

metabolism relates to growth rate, this suggests that growth rate plays a role in determining
the strength of demographic noise, which is consistent with our finding described in the
next section that colony area (a proxy for biomass) positively correlates with demographic
noise. Many significant GO terms were identified in the second analysis, possibly because
the knockout and wild type distributions are significantly di↵erent from one another, making
them hard to interpret.
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Phenotypic trait predictors of the strength of demographic noise

We noticed that some colonies with particularly low bead MSD also seemed to be small
with smooth colony shapes. As a result, we systematically checked which phenotypic traits
best correlate with the observed di↵erences in strengths of demographic noise in the single
gene deletions. Specifically, we measured a range of traits in the same colonies for which we
measured bead MSD (see Methods), including the depth of the growing layer of cells at the
front, the roughness of the colony front, the area of colony, and we also used existing datasets
for single cell shape. While previous studies have studied the relationship of these traits with
demographic noise experimentally by comparing species or strains in low-throughput [26, 14,
58], the same strain in di↵erent nutrient concentrations [46], or using simulations [49, 14],
our system allows us to experimentally test correlations of demographic noise with di↵erent
traits in a large number of related strains, thus overcoming a major experimental limitation.

We found that (1) the roughness of the colony front is positively correlated with the bead
MSD (Figure 2.3a, Pearson r = 0.66, p = 2⇥10�23), (2) the size of the growing layer of cells at
the front of the colony is negatively correlated with the bead MSD (Figure 2.3b, Pearson r =
-0.54, p = 4⇥10�15), and (3) the colony area after 1 day of growth, which we checked can be
used as a proxy for biomass (see Supplementary methods and Figure 2.S12a-b), is positively
correlated with the MSD (Figure 2.3c, Pearson’s r = 0.63, p = 5⇥10�21). These colony-level
results agree with theoretical predictions [49, 14] and previous experimental results [46, 14].
Using datasets of single cell shapes from the Keio collection from Refs [61, 17], we did not find
a significant correlation of demographic noise with cell shape (Figure 2.S13a-b), in contrast
to the colony-level traits.

We estimated the joint relationship of the measured traits with bead MSD using Lasso
regression [60], which finds the minimal set of traits that predict the MSD and the coe�cients
associated with those traits in a linear model. The traits that were included in the Lasso
regression were the 4 colony traits (front roughness, growth layer depth, colony area, and
colony thickness) that we measured and the 5 single-cell shape traits (aspect ratio, minor axis
length, surface area, volume, and major axis length) from the dataset in Ref [17]. We find
that all 4 colony level traits and single cell aspect ratio are the only 5 traits included in the
best fit model to the MSD (Figure 2.3e), with the coe�cient for the single cell aspect ratio
being almost an order of magnitude lower than that of the lowest colony trait coe�cient.
Using the best fit model, we are able to explain the variance in the MSD with an R2 of 62%
(Figure 2.3f).

These correlations of demographic noise with various population-level traits could be
partly driven by correlations between the population-level traits themselves. Indeed, we find
that colonies with larger areas tend to have smaller growth layer depths (Figure 2.S14b) and
higher front roughness (Figures 2.S14a). Prior theoretical studies have suggested that colony
traits are interdependent [49, 14]: faster growing strains have a sharper nutrient gradient at
the front, leading to a smaller growth layer, which in turn creates more front roughness, which
is consistent with our findings. Both the correlation of colony area with front roughness and
that of colony area with bead MSD across strains could potentially be explained without
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demographic noise di↵erences if the front roughness and bead MSD increased over time
within a single colony as it grew larger. In order to exclude this possibility, we checked that
the front roughness saturates over time by the time of measurement (Figure 2.S12f) and
that the bead MSD does not increase as the colony grows larger but rather slightly decreases
(Figure 2.S12e). In order to test which traits can be a causal determinant of MSD, we
corrected for linked correlations between traits using partial correlations (Figure 2.S15), and
find a slightly lower but significantly nonzero correlation of bead MSD with front roughness
(r = 0.53, p = 2⇥ 10�13) and a more substantial decrease in correlation of bead MSD with
colony area (r = 0.29, p = 2⇥10�4) and growth layer depth (p = -0.17, p = 2.5⇥10�2). This
supports the idea that front roughness is the main causal determinant of MSD, as was also
shown in Ref [14].

Because previous work has found that colonies grown from cells with round shapes tend
to have lower demographic noise [26, 58], we were puzzled by our result showing lack of
correlation between cell shape and bead MSD. Thus, we specifically tested a round cell
shape mutant, MC1000 �mreB, which we indeed measured to have low MSD compared
to the wild type MC1000 (Figure 2.S13e). However, by using the best fit Lasso regression
model (Figure 2.3e), which primarily includes colony-level traits, the low MSD could be
predicted (Figure 2.S13e), suggesting that colony-level traits are su�cient to explain the
di↵erence in MSD. Because it is possible that di↵erences in colony-level traits mask the
e↵ect of single-cell traits on bead MSD, we also corrected for variation in all other traits
using partial correlations; however, the corrected bead MSD still shows little correlation
between cell shape and bead MSD (Figure 2.S13f). We note that we cannot rule out the
possibility that the lack of correlation between bead MSD and cell shape for the Keio mutants
described above using the datasets from Refs [17, 57] is influenced by di↵erences in cell shape
exhibited by cells of the same genotype in di↵erent growth conditions (see Figure 2.S13c-d
and Supplementary section “Comparison of cell shape between growth in liquid culture and
as a colony”). We also measured a library of mreB and mrdA point mutants that were
enriched for cell shape di↵erences (45). In this enriched library, there is a slightly higher
correlation between cell shape and the strength of demographic noise (Pearson r =0.32 and r
= 0.46 formreB andmrdA point mutants respectively, see Figure 2.S13g-h), possibly because
the cell shapes span a larger range, or because our growth condition was more similar to
that of the single cell measurements in this dataset.

In summary, Lasso regression suggests that a combination of colony-level traits best pre-
dicts bead MSD, which we have shown is anticorrelated with demographic noise. However,
after correcting for correlations between phenotypic traits, we found evidence supporting
that the main causal determinant of MSD is the colony front roughness. Additionally, the
agreement of the colony-level phenotypic trait relationships with those found in previous
work [49, 26, 46, 14] suggests that the same mechanisms for how phenotypes a↵ect demo-
graphic noise seem to hold in range-expanding populations regardless of whether looking
across single mutations, di↵erent strains, or di↵erent species.
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Single gene deletions can substantially alter adaptation through

changes to demographic noise

Finally, we sought to determine whether the variation in demographic noise induced by single
deletions also induces a substantial corresponding change in evolutionary outcomes, such as
the establishment probability of beneficial mutations, as predicted by population genetics
theory. We constructed fluorescently-labeled chloramphenicol resistant and sensitive strains
on selected strain backgrounds and measured the establishment probability of the resistant
type when competed with the sensitive type on the same strain background (Figure 2.4a
and Methods). The fitness coe�cient between the resistant and sensitive types was tuned
by the chloramphenicol concentration and measured for each strain background at each
chloramphenicol concentration using a colony collision assay (Methods and Figure 2.S9a).

We found that the establishment probability of the resistant type is negatively correlated
with the bead MSD of the strain background across beneficial fitness coe�cients from s =
0.05 to s = 0.15 (Figure 2.4b). The Keio collection WT had the largest MSD and low-
est establishment probability of the Keio collection strains that were tested. The maximal
increase in the establishment probability of a beneficial mutant on a gene deletion back-
ground was about 6-fold over the WT, which corresponded to about a 4-fold decrease in
the background strain MSD compared to the WT. Interestingly, we observed that changing
the initial fraction of the resistant type sometimes changed the establishment probability
(Figure 2.S16), possibly due to interactions between beneficial sectors; however, we did not
detect any systematic e↵ect across strain backgrounds (Figure 2.S10). We controlled for dif-
ferences in initial fraction by separating the data by initial fraction, and found that the e↵ect
of the initial fraction of the resistant type on the establishment probability does not explain
the observed negative correlation between demographic noise and establishment probability
(see Figure 2.S17b). In sum, we find that the range of strengths of demographic noise ac-
cessible by single gene deletion strains substantially a↵ects the establishment probability of
a beneficial mutant on that background.

2.5 Discussion

We have shown that single gene deletions can substantially alter the strength of demographic
noise in microbial colonies (Figure 2.2) and that these di↵erences can have an impact on
adaptation (Figure 2.4). We accomplished this by developing a bead-based sparse lineage
tracing method for measuring demographic noise in colonies (Figure 2.1). While the beads
could potentially perturb the cell lineages, possibly impacting the correlation of bead MSD
with the fraction of diversity preserved, both quantities allowed us to observe su�cient
di↵erences between strains. We checked whether there were particular types of genes that
altered demographic noise and found that genes associated with KEGG terms relating to
metabolism were enriched for lower strength of genetic drift (Figure 2.S11). We additionally
used this method to measure a non-random set of strains from the Keio collection as well
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as mreB and mrdA point mutants and found an even larger range of demographic noise
e↵ects (Supplementary section “Additional measurements of distribution of drift e↵ects”
and Figure 2.S18).

Our results suggest that demographic noise itself may be an evolvable trait of a pop-
ulation. We hypothesize that strain backgrounds with di↵erent strengths of demographic
noise may also exhibit di↵erent rates of adaptation when accumulating multiple mutations.
It would be interesting to test this hypothesis in future work empirically through exper-
imental evolution of colonies [9, 62] and theoretically through simulations with joint dis-
tributions of demographic noise e↵ects and fitness e↵ects. Quantitatively, the evolution of
demographic noise may be similar to the evolution of mutation rate, because both muta-
tions and demographic noise primarily influence the establishment rate of new mutations;
however, this should be examined more carefully in future work in di↵erent regimes such as
successive mutations and clonal interference [24]. Additionally, interesting dynamics could
arise in spatially-structured communities with cooperation, such as those that share a com-
mon good [49]. Increasing demographic noise in these systems may make cheating less likely
by leading to more spatial segregation of cheater and producer types. Another interest-
ing corollary to our results is that a decrease in the strength of demographic noise enables
more e�cient transfer of genetic material through conjugation in bacterial colonies [16] and
exchange of metabolites between co-expanding strains [23, 48].

Our results show that demographic noise is correlated with colony-level traits (Figure 2.3),
suggesting that the strength of demographic noise in these colonies is set by collective behav-
ior. As a result, we hypothesize that the plasticity of demographic noise holds more generally
in self-organized systems [33], including colonies, biofilms, spatially-structured microbiomes,
and solid cancer tumors, which would be interesting avenues for future study. Additionally,
other phenotypic traits have been predicted to influence colony patterning and demographic
noise and it would be interesting to test their influence on demographic noise in future work,
including that of cell-cell and cell-substrate adhesion [22, 32, 52], cell orientations [14], cell
elasticity [14], and variation in single cell growth rates [41, 56] and lag times [64, 40].

The positive correlation between colony area and demographic noise (Figure 2.3c, r =
0.63) suggests a tradeo↵ between demographic noise and fitness (Figure 2.S19): a beneficial
mutation may increase demographic noise and actually impair its own establishment and
once established, also the establishment of future beneficial mutations. However, when a
demographic-noise-modifying mutant first arises at a low frequency in a colony, the colony-
level traits will be set by both that of the mutant and the background strain, so the strength
of demographic noise that governs its trajectory will likely be a complex time-dependent
combination of traits from the two genotypes in monoculture. Thus, while this work gener-
ates interesting hypotheses as to the tradeo↵s between demographic noise and fitness, future
work is needed to more closely examine the consequences of demographic noise and fitness
correlations in di↵erent environments.

The bead-based sparse lineage tracing method in colonies can be extended to study de-
mographic noise in other genotypes in high-throughput, such as double-mutants and poten-
tially other species. In the supplementary text, we use this method to measure demographic
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noise in S. cerevisiae colonies (Figure 2.S1e), and we find a lower bead MSD in S. cere-
visiae compared with that of E. coli, in agreement with results from previous work [26, 28].
Measurements of demographic noise in additional genotypes can be used to understand the
dependence of the distribution of strength of demographic noise on the genetic background
across large mutational di↵erences (di↵erent species) or small mutational di↵erences (double-
mutants).

Like selection, mutation, migration, and recombination, demographic noise has been
shown to be an important evolutionary force in many systems. Understanding the environ-
mental and genetic influences on demographic noise will allow us to better identify and model
the relevant forces that drive evolution in di↵erent systems. Whereas demographic noise is
typically thought of as being static or dependent on the environment, we have shown that
like for other evolutionary forces, demographic noise can be considered an evolvable trait
of a population. Future work exploring the evolvability of demographic noise will help us
better understand its consequences on evolutionary outcomes in di↵erent systems.

Data availability

Data and code are available at github.com/qinqin-yu/colony-demographic-noise.
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Figure 2.3: Phenotypic predictors of the strength of demographic noise. Correlation of the
bead trajectory MSD for 191 single gene deletions and 41 selected strains with (a) front
roughness (defined in Supplementary methods), (b) colony growth layer depth (defined in
Supplementary methods and Figure 2.S12c-d), and (c) colony area. Error bars represent the
standard error of the mean across 2-3 replicate colonies. (d) Example colonies for colored
points in (a)-(c) (e) Linear model coe�cients for phenotypic traits that best predict MSD,
estimated through Lasso regression. (f) Predicted MSD using the linear model with the
coe�cients shown in (e).
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Figure 2.4: Single gene deletions can substantially alter adaptation through changes to
demographic noise (a) Schematic for measurement of establishment probability. After 3 days,
the number of beneficial sectors is counted and the establishment probability is calculated by
dividing by the initial number of chloramphenicol resistant cells at the expansion front [26].
CmR: chloramphenicol resistance gene. (b) Interpolated establishment probability at three
di↵erent fitness coe�cients as a function of bead trajectory MSD. Error bars in establishment
probability represent linear fitting error (see Supplementary methods) and error bars in bead
MSD represent the standard error of the weighted mean (N = 7-8, see Methods) (c) Example
colonies for two di↵erent strain backgrounds each at two fitness coe�cients between the
resistant and sensitive types.
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2.6 Supplementary methods

Strains

Strain Description Genotype Derived from Antibiotics Ref
BW25113 Keio collec-

tion back-
ground

E. coli K-12 [5]

BW25113 sin-
gle gene dele-
tions

Keio collec-
tion

see Sup-
plementary
Table 1

BW25113 [5]

MG1655 E. coli K-12
DH5↵
MC1000 [38]
MC1000
�mreB

MC1000 [38]

�4pol Deletion
mutant of
polysaccha-
rides Yjb,
cellulose,
PGA and
colonic acid

MG1655
�yjbEH ::
cm �bcsA ::
KmFRT
pgaA ::
uidA � zeo

cps5 ::Tn10

[12]

�4adh Deletion
mutant of
flagella,
AG43, type 1
fimbriae, and
curli

MG1655 gfp

�fliER ::
cm

�fimAH ::
zeo

�flu ::FRT
�csgA :: spec

[15]

RDM 893 mreB point
mutant back-
ground

MG1655
�mreB

pRMmre-
BCD

[57]

TKL 117 mrdA point
mutant back-
ground

MG1655
�mrdA

pRMind-
pbp2

[57]

mreB point
mutants

see Sup-
plementary
Table 2

RDM 893 15 µg/mL
chloram-
phenicol

[57]
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mrdA point
mutants

see Sup-
plementary
Table 2

TKL 117 35 µg/mL
kanamycin
and 50 µM
IPTG

[57]

Plasmids

Plasmid Description Genotype Derived from Antibiotics Ref
pQY10 Venus YFP

(A 206K),
SpecR

120 µg/mL
spectino-
mycin

this
study

pQY11 (e)CFP (A
206K) , SpecR

120 µg/mL
spectino-
mycin

this
study

pQY12 Venus YFP
(A 206K),
SpecR, CmR

120 µg/mL
spectino-
mycin,
variable
chlorampeni-
col

this
study

pQY13 (e)CFP (A
206K) ,
SpecR, CmR

120 µg/mL
spectino-
mycin,
variable
chlorampeni-
col

this
study

Creation of glycerol stocks for measurement of distribution of

demographic noise

We created master stocks by rearraying strains from the original frozen Keio collection glyc-
erol stocks into 96-well plates with LB, growing overnight, and freezing the rearrayed cultures
in a 25% glycerol stock. Master stocks of the mreB and mrdA point mutant libraries [57]
were acquired from the lab of KC Huang. We created separate glycerol stocks that could be
defrosted for each experiment by scraping frozen glycerol stock from the master stocks into
a 96 deep well plate filled with 1 mL LB with the appropriate antibiotics, growing overnight
until saturation, aliquoting 100 µL into multiple 96-well plates, and freezing as separate
glycerol stocks.
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Single particle tracking

Single particle tracking was performed using a custom-written code in MATLAB based on
that used in Ref [12]. Briefly, particle image velocimetry (PIV) was first used to subtract
large-scale movements between frames. Then, particles with a radius smaller than 3 pixels
were detected and linked between consecutive frames with single particle tracking to sub-
pixel accuracy. Displacements between consecutive timepoints were then joined to create
trajectories spanning multiple timepoints. The trajectories of particles in regions without
cells were used to calibrate xy fluctuations in stage position over time. After correcting for
stage fluctuations, trajectories that were shorter than 30 µm in total length were rejected
as stationary beads and consecutive timepoint steps that were shorter than 1 pixel were
rejected as noise.

Measurement of colony front roughness

The front roughness was measured using the method described in Ref [26]. A backlight
image of the colony was taken at 24 hours, and a custom-written MATLAB code was used
to extract the colony boundary using image segmentation. The boundary was fit with a
circle and the mean squared displacement in the radial direction was calculated for windows
of di↵erent arc lengths (L = 200 linearly spaced arc lengths from 6 to 1152 µm) along the
best fit circle using a running average over overlapping definitions of the starting position of
the window. The MSD was fit to a power law as a function of L and the value of the fit at
L = 1000µm was reported.

Measurement of growth layer depth

The growth layer depth was measured using bead displacements between pairs of consecutive
timepoints (Figure 2.S12c). We assumed that the velocity v along the direction of growth
has the form

vy(y) = vy,maxe
�(y�y0)/� (2.S1)

where vy,max is the maximum velocity, y is the position along the direction of growth, y0 is
the front position, and � is the growth layer depth. The ratio v at two positions within the
colony then conveniently takes on the form

v =
vy(y2)

vy(y1)
= e

�(y2�y1)/�. (2.S2)

The average direction of motion of all the trajectories in a field of view was determined,
and all subsequent measurements were projected along this axis. For each pair of consecutive
timepoints, and for each pair of beads, the ratio of their displacements, vy(y2)

vy(y1)
, and the

distance between them parallel to the average direction of motion, �y = y2 � y1, were
calculated. Because noise from inaccurate tracking can dominate the ratio of the velocity



CHAPTER 2. MUTABILITY OF DEMOGRAPHIC NOISE 37

when one or both of the bead velocities is small, we restricted our analysis to �50µm <

�y < 50µm. To minimize the e↵ect of changes in curvature of the front of the colony, we
restricted pairs of beads to have �x < 50µm. We binned the data (bin size = 10µm, or if
range of �y < 100µm then we used a bin size of std(�y)/2) and fit to an exponential decay
function using weighted least squares to extract the growth layer depth � (Figure 2.S12d).
The error in � represents the error in the fitting parameter.

Measurement of colony thickness

The thickness of the colony was determined using a backlight brightfield image of the whole
colony at 23h, where the exposure time was fixed for all colonies. We calibrated the intensity
of the transmitted light to the colony thickness using a colony that was grown with fluorescent
tracer beads (Methods in main text). We noticed that beads primarily rise to the top of
the colony, so we used the height of the fluorescent beads as the ground truth colony height.
To measure the average thickness of the whole colony, we calculated the average brightfield
intensity within each colony and converted it into a thickness using the calibration curve.
We note that this method does not distinguish between changes to intensity due to changes
in colony thickness and changes in biomass density, but we make the assumption that any
changes to density are small in comparison to changes in thickness.

Single cell shape comparison in liquid and colony conditions

Cell preparation for growth in liquid culture was closely matched to the protocols of the
National BioResource Project described in Refs [61] and [17]. Cultures were grown overnight
with rotation at 30C, back-diluted 1:100 in fresh LB medium the next day and then incubated
at 37C for 2 hours. Before imaging, cells were diluted in PBS to achieve the desired imaging
density and vortexed to break up clumps. For imaging, a droplet of the diluted culture was
placed on an agar pad (LB + 2% agar), and covered with a cover slip to prevent evaporation.

Cell preparation for growth in colonies was closely matched to the protocol for growing
colonies to measure demographic noise in this work. Cultures were grown overnight with
rotation at 37C. The next day, a 2µL droplet of the saturated culture was placed on a plate
with LB and 2% agar. The colony was grown at 37C for 1.5 days. Cells were picked from the
edge of the colony and resuspended in LB, and vortexed to break up clumps. For imaging, a
droplet of the resuspended culture was placed on an agar pad (LB + 2% agar), and covered
with a cover slip to prevent evaporation.

Cells were imaged with phase contrast microscopy using a Nikon Eclipse Ti-E inverted
microscope with a 40x, 0.65 NA phase contrast air objective (Nikon, Düsseldorf, Germany).
Image segmentation was done with the software Morphometrics [61] and features that were
incorrectly segmented were manually rejected. The circularity C is defined as

C =
l
2

4⇡A
(2.S3)
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where l is the cell contour length, and A is the cell area. The circularity of a circle is 1 and
values larger than 1 correspond to more elongated cells.

Single cell imaging with beads

In order to track the movement of the cells and beads at the single-cell resolution (Figure 2.1c
and Figure 2.S1c), we grew a colony following the procedure in the main experiments for
demographic noise for 18-24 hours at 37C, then covered the colony with a BSA-coated
coverslip. The sample was incubated at 32C with a H201-T Okolab incubator (Ottaviano,
Italy) and a home-built incubation chamber for imaging. We imaged the cells and beads with
an Olympus IX81 Inverted microscope with a 40x 1.3 NA oil objective (Olympus, Hamburg,
Germany) in brightfield. Images were taken every 2-4 minutes for approximately 1 hour.
To correct for focus drift due to evaporation, we used µManager to move the z position of
the stage at a constant rate and we also took a z stack of eleven 1µm slices which were
postprocessed to find the most in focus image. The beads could be identified from their
di↵erent scattering properties compared to the cells.

Gene enrichment analysis

GO and KEGG terms associated with at least 3 genes in the 191 randomly chosen strains were
tested for the hypothesis that the weighted median MSD value of the knockouts associated
with a given term was more extreme than that of a randomly chosen subset of the same
number of genes from all knockouts or the wild type distribution. For each term, random
subsets of MSD values were drawn 105 times when comparing to knockouts and 106 times
when comparing to the wild type. The fraction of times that the weighted median of the
random subset was more extreme than that of the true values was recorded and the p-value
was calculated as twice this fraction (due to only looking at the distribution on one side of
the median). A Benjamini-Hochberg FDR correction [6] was applied to account for multiple
testing, and terms that were significant at a 5% level were kept.

Lasso regression

We used the Lasso regression implementation in the Python library scikit-learn [53] to de-
termine the minimal set of traits that predict the MSD and the coe�cients associated with
those traits in a linear model. The data from each input phenotype is standardized to remove
the mean and scale to unit variance. The cost for the regularization term is determined using
10-fold cross validation to be ↵ = 5⇥ 10�4.

Partial correlation

The partial correlation was determined by first calculating the linear least squares regression
coe�cients between the trait of interest and all other traits, and between the bead MSD and
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all other traits except the trait of interest. Where errors for the trait of interest existed, they
were used to weight the least squares fitting with a weight of 1/err2. The residuals were
calculated for the trait of interest and the bead MSD. The partial correlation was calculated
as the correlation between the residuals.

Comparing establishment probability to bead MSD (Figure 2.4b)

For each genotype, at a particular chloramphenicol concentration, the replicate fitness (N=8)
and establishment probability measurements (N=24) were randomly paired. A linear fit
was performed using numpy.polyfit on the establishment probability as a function of fitness
across all chloramphenicol concentrations and all initial mutant fractions for the fitness
coe�cient range from s = -0.1 to s = 0.5 since the colony collision assay is only valid for
small fitness coe�cients [37] (see Figure 2.S16). The establishment probability was calculated
using the fit parameters at the fitness coe�cients s = 0.05, 0.1, and 0.15. The error in the
establishment probability was taken as half of the di↵erence between the maximum and
minimum values possible using combinations of fitted slope and intercept parameters that
are one standard deviation away. We note that while the establishment probability and
fitness are not expected to depend linearly on one another according to theory [39], the
linear relationship is a convenient approximation for our data where we don’t have su�cient
signal to distinguish between more complex models.

Statistical methods

For calculating the confidence interval on the percent di↵erence in medians between the
knockout and wild type demographic noise distribution, a modified block jackknife method
was used. 105 subsets of 32 KO MSD values (the same number as in the WT distribu-
tion) were drawn (without replacement in each subset) and their medians were calculated.
The confidence interval was taken from the 2.5% to the 97.5% of the empirically measured
subsampled median distribution.
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2.7 Supplemental information

Additional information on bead-based sparse lineage tracing

method in colonies

Demographic noise in colonies has previously been quantified by measuring the number or
shape of sectors in whole colonies [28] or tracking single cell lineage dynamics in a growing
microcolony [26]. However, these methods require fluorescently labeled strains or time-
intensive imaging and analysis which makes them impractical for screening large numbers of
strains.

Our label-free method to measure demographic noise in microbial colonies allows us
to screen a large number of strains and to minimize the probability of accumulating new
mutations by avoiding genetic transformation. This is important as we aim to test the e↵ect
of single loss of function mutations on demographic noise, and additional mutations could
potentially change the strength of demographic noise that is measured. The method also
allows potential future study of microbes that are not genetically tractable where genetic
transformations with fluorescent markers would not be possible.

As described in the main text and shown in Figure 2.1a, we use spherical fluorescent
polystyrene tracer beads to sparsely track cell lineages in colonies and we use the wandering
statistics of the bead trajectories to infer the strength of demographic noise. Because the
beads are at a lower spatial density than cells, we are able to image with an air objective with
a lower NA and a lower magnification than if we imaged single cells, and we can also capture
a larger field of view. We can also track the beads with images that are taken less frequently
because beads move fewer pixels at a lower magnification, and this allows us to image
many colonies in parallel. We note that we tried beads with di↵erent coatings (unmodified
functional group, aminated functional group, Concanavalin A-coated) and the beads with
unmodified functional groups yielded the longest bead trajectories. We interpreted this result
as the unmodified beads were the best at following the cell trajectories rather than getting
lost behind the front. Thus, we chose to use unmodified beads for our experiments.

As a first approach to validate the method, we compared the measurement of MSD from
sector boundaries, single cell trajectories, and bead trajectories for E. coli DH5↵ and S.

cerevisiae W303 (Figure 2.S1e), which are two species whose strengths of demographic have
previously been compared [26, 28]. In all three methods, E. coli has a higher MSD than S.

cerevisiae as previously measured [26, 28]. The three methods span di↵erent length scales,
with the single cell lineages spanning the shortest length scale, the bead tracks spanning
an intermediate length scale, and the sector boundaries spanning the longest length scale.
There is a continuous transition from the MSD of E. coli single cells to beads; however,
there is a discontinuity between the transition from bead trajectories to sector boundaries.
Additionally, there are discontinuities in the transition between the three methods for S.

cerevisiae. The discontinuity between the bead trajectories and the sector boundaries may
result from movement of the sector boundaries behind the colony front due to continued
growth and realignment of cells. Another source of the discontinuities may come from the
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finite spatial resolution for the sector and bead images.
As a second approach to validate the method, we imaged the beads and single cells for

the wild type strain BW25113 in the same field of view to determine if the bead trajectories
were following the cell lineages. Visually, we see that the bead trajectories follow at least 1
cell lineage (traced backwards in time) at the colony front and behind the front (Figure 2.1c
and Figure 2.S1c). We unfortunately were not able to image for a longer than 1 hour because
the images went out of focus. Additionally, we note that adding a coverslip on top of the
colony, which was necessary for using a high NA oil immersion objective to get single cell
resolution, may change the mechanical behavior of the cells.

As a third approach to validate that the method can measure demographic noise, we
compared the bead trajectory MSD to the fraction of diversity preserved in a neutral fluo-
rescent mixture after 1 day of growth (Figure 2.1d). As discussed in the main text, we find
fitting an inverse square root relationship to the fraction of diversity preserved as a function
of the MSD roughly matches the shape of the relationship. We emphasize that our goal is
not get the most accurate measurement of demographic noise, but to screen a large number
of strains to determine whether there is a significantly di↵erent distribution of demographic
noise e↵ects from single gene knockouts compared to the wild type. Thus, small deviations
from the fit can still allow us to measure the distribution of demographic noise as long as
the deviations are less than the width of the measured distribution.

As beads can fall behind the front, the bead trajectories combine the dynamics at the front
and behind the front. Since prior work has shown that successful lineages only come from
the first layer of cells at the colony front [26], we tested how closely the full bead trajectories
matched the bead trajectory only while it was at the front. We separately measured the
MSD of trajectories at the front (within 6µm of the front) and behind the front. Figure 2.S6
shows for wild type BW25113 that trajectories at the front exhibit a similar MSD to the full
trajectories, whereas trajectories behind the front exhibit a lower MSD. Thus, the MSD of
the full trajectories captures the MSD of trajectories at the front.

Determining the mean squared displacement window size

In order to be able to compare a single number for the MSD for di↵erent genotypes, we
reported a summary statistic of the MSD at a window size of L = 50 µm which is interpolated
or extrapolated from the power law fit to the MSD across all window sizes. This window
size was chosen because it gave the best fit of fraction of diversity preserved (y) to MSD
(x) to the relationship y = a

p
x [27] amongst the window sizes 25 µm, 50 µm, 100 µm,

and 1000 µm (see Figure 2.S7). The fit at 25 µm, 50 µm, and 100 µm gave similar reduced
chi-squared values, while the fit at 1000 µm had a much higher reduced chi-squared. The
poor fit at high window sizes is likely due to the fact that few bead trajectories become
that long, and the extrapolation becomes noisy. Note that while the reduced chi-squared
values are generally high, we were not able to account for the errors in MSD in the reduced
chi-squared calculation; taking those errors into account should reduce the discrepancies in
the summary statistic describing the deviation between the fit and the data.
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We also show the distribution demographic noise for the wild type and knockout strains
using the MSD reported at di↵erent window sizes in Figure 2.S8. At all window sizes except
the largest window size of L = 1000µm (where the MSD also did not agree as well with
the fraction of diversity preserved) we see that the wild type and knockout distributions are
significantly di↵erent from one another to at least a level of 5% (Kolmogorov-Smirnov test).

Sources of variation

We tested for variation across positions on a plate and across di↵erent plates. While all media
for the experiments described in the main text (except single cell tracking experiments) were
made on the same day, variation between plates can result from: the exact ratios of LB
powder, agar, and water, the temperature of the liquid as it is poured into a plate, the tilt
of the plate while drying, the age of the plate at the time that it is used, and other hidden
experimental parameters. Figure 2.S3a shows that the Pearson correlation coe�cient for
the same strain grown in the same position on di↵erent plates was 0.4-0.82 for randomly
sampled knockout strains (DE1-4), 0.65-0.83 for non-randomly sampled knockout strains
(DE5), and 0.61-0.9 for mreB and mrdA single point mutation strains. From these plots,
we see unusually low correlation of plate DE3c with its replicates, and we decided to remove
it from further analysis. Inspecting the colonies grown on plate DE3c showed that the
colonies tended to be larger and less thick than those of the other replicate plates. Thus,
we hypothesize that its discrepancy from its replicates may be due to higher plate moisture.
Figure 2.S3b shows that the Pearson correlation coe�cient for strains grown in di↵erent
positions on the same plate was 0.55-0.67. Thus, we observe comparable levels of variation
due to di↵erences in a strain’s position on the plate and di↵erences between plates.

We also tested for variation that may result due to the noisiness of averaging a finite
number of bead trajectories for each colony. For the selected knockout strains, we randomly
split the bead trajectories in each colony’s field of view in half, and calculated the MSD
separately for each set of trajectories. Figure 2.S3c shows that the Pearson correlation
coe�cient between the two random sets of half of the trajectories is 0.78. Thus, we see
that while finite track numbers can lead to variation between replicates, it does not play
the largest role in determining variation between replicates, as di↵erences between plates
generally leads to more variation.

As described in the main text, in order to correct for variations across plates when
measuring the distribution of demographic noise e↵ects, we grew 8 wild type colonies on each
plate with the randomly selected knockout strains, varying their positions on each plate. We
normalized the measurements for each colony to the average wild type value on that plate
for all measurements (bead MSD and phenotypic traits) to get a relative measurement. This
e↵ectively removes any systematic di↵erences between plates but does not remove additional
non-systematic variation from di↵erences between plates, variation between positions, or
variation from the number of tracks in each field of view.
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Beneficial sectors in monoculture colonies

We filtered out colonies with a noticeable beneficial sector in the field of view of the time-
lapse from the analysis as these beneficial mutants may change the measured strength of
demographic noise if grown to a large enough size. We find no bias in the mean squared
displacement measurement for colonies that had beneficial sectors compared to those that
did not (Figure 2.S4). We identify beneficial sectors first by looking for bead trajectories
that are strongly diverging in space, indicating faster growth than surrounding cells. Next,
we verify this in the brightfield timelapse by looking for bulges at the colony front that ex-
pand over time. The majority of the 161 genotypes that are filtered out of the 352 randomly
selected knockouts are due to two or more replicates having beneficial sectors.

To better understand if the number of colonies with beneficial sectors is surprising, we
can estimate the expected number of de novo beneficial mutations from growth in the colony:

mb,est = µbpestN

 
T

⌧gen

!
(2.S4)

where µb is the beneficial mutation rate per genome per generation, pest is the establishment
probability, N is the number of cells (for the colony, it’s the number of cells in the front
layer that are actively dividing), T is the total time, and ⌧gen is the generation time. Using
µb = 10�5, pest > 10�3 (Ref [26]), N = 109, T/⌧gen = 10, then the expected number of
established de novo beneficial mutations from growth in a single colony is at least mb,est >

100, which means that we should not be surprised to see de novo beneficial mutations that
have established in the colonies. We also note that the number of colonies identified with
beneficial sectors from the imaging data is an underestimate of the true number of beneficial
mutations in the entire colony because we are not able to identify weak beneficial mutations
or mutations that arise later on and stay a small size and we also only image about 1/10 of
the colony front.

An additional contribution to the number of beneficial sectors could be standing variation
in the glycerol stock. This was tested by streaking single colonies from the glycerol stock,
and picking colonies to inoculate the culture as a condition without standing variation.
Figure 2.S5 shows that cultures started from single colonies exhibited beneficial sectors as
well as those started from glycerol stock. Thus the beneficial sectors that we see are likely a
combination of both de novo mutations and standing variation from glycerol stock.

Gene enrichment analysis

We asked whether there are gene categories that are associated with extreme changes to
demographic noise. To do this, we compared the weighted median MSD of gene knockouts
associated with a particular GO or KEGG term with randomly chosen MSDs from the
knockout distribution.

From this analysis, we did not find any significant GO terms, and we only found one
significant KEGG term that was enriched for higher MSD than the weighted median of the
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entire knockout distribution: ATP-binding cassette transporters. It is possible that expand-
ing the dataset by measuring more genotypes or decreasing the amount of technical noise
by performing more experimental replicates may result in more hits in the gene enrichment
analysis. However, another possibility for the few gene enrichment hits is that the influ-
ence of phenotypic traits on demographic noise dominates over any di↵erences between gene
categories.

Additional measurements of distribution of drift e↵ects

In the main text we presented results for the distribution of demographic noise for a randomly
selected set of 191 single gene knockout strains, in order to get a representative of the distri-
bution for all single gene knockouts. To test for extreme di↵erences in demographic noise,
we also enriched for strains that we hypothesized to significantly change demographic noise.
This included (1) selected single gene knockout strains that had altered biofilm forming abil-
ity in liquid culture [50] or di↵erent cell shapes [1], and di↵erent E. coli strain backgrounds,
and (2) mreB and (3) mrdA single point mutant libraries that were enriched for cell shape
di↵erences [57].

Figure 2.S18 shows the distributions of demographic noise of the selected single gene
knockouts, the mreB point mutants, and the mrdA point mutants, compared with the
wild type BW25113 and the randomly selected knockouts. Note that the mreB and mrdA

strains are on the MG1655 strain background, but here we will compare them to the wild
type BW25113 measurements because we only made 2 measurements of MG1655 which is
not enough to compare distributions and we found that MG1655 has a similar strength of
demographic noise to BW25113 (Figure 2.1e).

The tail at the lower end of the distributions for all three additionally tested sets of
strains does not overlap with the gaussian fit to the wild type distribution nor do they
completely overlap the grayed out region from the finite number of wild type measurements.
The selected single gene knockout distribution and the mreB point mutants distribution are
significantly di↵erent from that of the wild type using a two-sample Kolmogorov-Smirnov
test (p = 1.9 ⇥ 10�10 for selected knockouts, 6 ⇥ 10�5 for mreB point mutants), while the
mrdA point mutant library is less significantly di↵erent from the wild type distribution
(p = 6.8⇥ 10�2), most likely due to the fewer number of measurements.

The distributions of the strength of demographic noise for the selected single gene knock-
outs and the mreB point mutants are wider than that of the randomly selected knockouts.
Some strains even have MSD close to zero. Thus, we see that the maximally allowed changes
to demographic noise are much more extreme than we have sampled with our randomly se-
lected strains. Sampling more strains will also lead to a more extreme knockout distribution.
Similarly to what’s observed for the randomly selected knockouts, many more mutants have
a lower strength of demographic noise than a higher strength of demographic noise compared
to the wild type.
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Comparison of cell shape between growth in liquid culture and as

a colony

We used existing datasets for the cell shape of single gene knockout strains in the Keio
collection [61, 17]. However, cells in these previous studies were grown in liquid culture, and
it is unclear whether the cell shape could be di↵erent in colonies (the condition in this study).
To determine whether these datasets would be applied to our experiments, we measured cell
shape from growth in liquid culture and colonies for a subset of 12 strains (see Supplementary
methods).

Figure 2.S13c shows a Pearson correlation coe�cient between the mean circularity of
single cells between the colony and liquid culture growth conditions to be 0.46. However,
this is primarily driven by the large circularity of the genotype �gpmI. Removing it from
the measurement of the correlation coe�cient gives a low correlation of -0.1 for the remaining
genotypes. Thus, in interpreting the lack of correlation between cell shape and bead MSD in
the single gene knockouts, we cannot rule out that it is because the cell shape is di↵erent in
the colonies than the liquid culture condition of the previous datasets. We also note that the
two previous datasets [61, 17] in liquid culture do not have any correlation with one another,
further suggesting cell shape is sensitive to the precise growth conditions (Figure 2.S13d).
We note that the dataset from Ref. [61] did not reproduce the extreme cell shapes in the
current images on the Keio collection database, which may be because the images have been
changed online since their analysis.

Non-neutral experiments

Figure 2.S9a shows the fitness di↵erence of the resistant and susceptible pairs in di↵er-
ent strain backgrounds as measured by a colony collision assay (see Methods). Interestingly,
di↵erent strain backgrounds exhibit di↵erent fitness coe�cients despite having the same plas-
mids. This may be due to di↵erences in plasmid copy number or epistatic e↵ects between the
plasmid and the rest of the genome. Studying the interaction between the strain background
and fitness due to an antibiotic resistance gene on a plasmid would be an interesting avenue
for future work.

We tested multiple di↵erent initial mutant fractions in order to be able to resolve in-
dividual sectors for di↵erent strain backgrounds and fitnesses. Figure 2.S17b shows the
establishment probabilities for three di↵erent initial fractions of the resistant type that are
approximately pi = 0.002, 0.005, and 0.02. Figure 2.S9b shows the actually measured ini-
tial fractions for each of these genotypes using colony counting; the general trend of initial
fractions matches the expectation, but there are o↵sets between strains. While the ordering
of the establishment probabilities of the strains is similar across initial mutant fractions, the
values themselves are slightly di↵erent, with slightly higher establishment probabilities for
a lower initial mutant fractions. For better statistics, we used data from all initial mutant
fractions to generate Figure 2.4b. The largest contribution to experimental error is in the
measurement of the initial mutant fraction due to poisson sampling from counting a finite
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number of CFUs. Additional noise in the data may result from slightly di↵erent chloram-
phenicol concentrations between the agar plates used for the fitness measurements and the
plates used for establishment probability measurements.

Supplementary figures
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Figure 2.S1: Bead-based sparse lineage tracing method. (a) Example of measurement of
mean squared displacement (MSD) for a single colony (a single field of view). Gray lines show
the MSD for single bead trajectories. The red line shows the average across all trajectories
weighted by the inverse squared error of MSD for each trajectory at each window size. Error
bars represent the standard error in the weighted mean. The black line shows the weighted
least squares fit of the mean to a power law. The summary statistic MSD(L = 50 µm)
is calculated by interpolating the fit to L = 50 µm. (b) MSD(L = 50 µm) compared to
the fraction of diversity preserved when colonies are masked by the outline of the smallest
colony to account for growth rate di↵erences between colonies. Inset shows a comparison of
the number of sectors counted with and without masking. (c) The trajectory of a single bead
(black) behind the front and the lineages of cells neighboring it in the final timepoint (colors)
traced backwards in time over 1 hour in wild type strain BW25113. (d) The deviation of
the distance between the cell lineages and the bead from the final distance, backwards in
time. Colors are the same as in (c). All cells neighboring the bead in the latest timepoint are
neighboring the bead in the earliest timepoint, except for the yellow lineage (even though
the yellow lineage does stay within a single cell width of its final distance to the bead). (e)
E. coli has higher MSD than S. cerevisiae in all three methods for measuring demographic
noise. Sector boundary mean squared displacement was measured according to [28]



CHAPTER 2. MUTABILITY OF DEMOGRAPHIC NOISE 48

a b c

20h20m

20h40m

21h00m

20h00m

ba
ck

w
ar

ds
 in

 ti
m

e

Bead 3 Bead 4 Bead 5

Figure 2.S2: The trajectory of three single beads (black) and the lineages of the cells neigh-
boring it in the final-timepoint (colors) traced backwards in time in the Keio collection wild
type strain. The panels below correspond to the trajectories from the time series images
directly above and show the deviation of the distance between the cell lineages and the bead
from the final distance, backwards in time. Colors are the same as in the time series images.
The gray shaded region shows a single cell width away or towards the bead. All cells that
neighbor the bead in the final timepoint are neighbors of the bead in the first timepoint
(with the exception of the purple lineage in c) and stay within a single cell width of the final
distance to the bead.
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Figure 2.S3 (preceding page): Sources of variation (a) Comparison of MSD for strains grown
in the same position on di↵erent plates (r = 0.4-0.82 for randomly sampled knockout strains
DE1-4, r = 0.65-0.83 for non-randomly sampled knockout strains DE5, and r = 0.61-0.9 for
mreB and mrdA single point mutants). Wild type strains on each plate indicated in black.
The plate DE3c exhibited low correlation with its replicates and was removed from further
analyses. (b) Comparison of MSD for strains grown in di↵erent positions on the same plate
(r = 0.55-0.67). (c) Comparison of MSD from randomly splitting the bead trajectories from
a single colony in half and separately calculating MSD for each set of trajectories (r = 0.78).

Figure 2.S4: The distribution of mean squared displacements of colonies with and without
beneficial sectors. Using a two-sided Kolmogorov-Smirnov test, the distributions are not
found to be significantly di↵erent (p = 0.21).
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Figure 2.S5: Testing for standing variation vs de novo mutations. Probability of seeing
at least 1 beneficial sector in colonies grown from (a) the rearrayed glycerol stock or (b)
the original Keio collection glycerol stock received from the National BioResource Project.
Colonies were grown from liquid culture that was inoculated either directly by scraping o↵
some glycerol stock (blue) or by first streaking the glycerol stock onto a plate, and picking
from a single colony (orange). Otherwise, the experimental conditions were the same as that
for measuring the distribution of demographic noise. Dots show individual colonies with
none (0) or at least 1 beneficial sector (1) and squares show the average across colonies,
which represents the probability of seeing a beneficial sector in a given condition. The error
bars represent the standard deviation from binomial sampling. In all conditions, beneficial
sectors were observed in at least one colony. This supports the hypothesis that beneficial
mutations can arise de novo on the timescale of the experiment. Most likely, both beneficial
mutations and standing variation from the glycerol stock contribute to the observation of
beneficial sectors in the main experiment.
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Figure 2.S6: MSD of beads at and behind the front. (a) Trajectories of beads at the front
(red, measured as within 6µm of the front) and behind the front (blue). (b) Beads at the
front give similar MSD to that of overall bead trajectories.
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Figure 2.S7: Selection of window size for the summary MSD statistic. Comparison of the
fitted MSD value at di↵erent window sizes to the fraction of diversity preserved in a colony
grown from a neutral mixture of two fluorescent strains for 24 hours. Error bars in MSD
represent the standard error of the weighted mean (7-8 colonies) where weights come from
uncertainties in the fit of MSD as a function of L to a power law (see Methods) and error
bars in the fraction of diversity preserved represent the standard error of the weighted mean
(8 colonies) where weights come from uncertainties in counting the number of sectors . Fit
to y = ax

�1/2, where x is the MSD and y is the fraction of diversity preserved, shows that
the window size of L = 50 µm gives the lowest chi-squared value.
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Figure 2.S8: Distribution of demographic noise e↵ects for the MSD reported at di↵erent
window sizes. The blue dotted line shows a gaussian fit to the wild type distribution. The
tails of the gaussian fit do not overlap with the tails of the knockout distribution. The
gray shaded region shows [1/number of wild type measurements] and [1-(1/number of wild
type measurements)], which is the limit of the resolution of the wild type distribution being
compared to. p values show the probability that the wild type and knockout distributions
are the same using a two sample Kolmogorov-Smirnov test. The knockout distribution is
di↵erent from the wild type distribution to p < 0.05 for all window sizes except L = 1000µm.
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Figure 2.S9: (a) The fitness coe�cient (s) of a chloramphenicol resistant strain compared
to chloramphenicol sensitive strain across strain backgrounds as measured on plates using
a colony collision assay (Methods). (b) Expected and actual initial fraction of the resistant
strain. Black line shows 1:1 relationship. �tatB had a large error in the measurement of the
initial fraction of the mutant type from counting CFUs and was removed from Figure 2.4 in
the main text and Figure 2.S17.

Figure 2.S10: The establishment probability as a function of the initial resistant (mutant)
fraction on a linear scale (left) and log scale (right) for an interpolated fitness coe�cient of
s = 0.15. There is no clear downward bias in the establishment probability as a function
of the initial resistant fraction, suggesting that sector coalescences are unlikely for these
experimental parameters.
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Figure 2.S11: GO and KEGG terms with significantly di↵erent MSD from that of the WT
at 5% level. The significance of each term was tested by randomly drawing the same number
of measurements from the wild type distribution as the number of genotypes associated with
that term in our KO subset. We repeated this 106 times and calculated the fraction of times
that the weighted median of the random WT subset was more extreme than that of the true
values associated with that term. The p value was calculated as twice this fraction (because
in determining whether a value is more extreme, we first check whether the weighted median
MSD of the term is greater than or less than the weighted median MSD of the full WT
distribution). (Left) Weighted median MSD of significant terms and WT weighted median
MSD (blue line). Error bars represent the mean absolute deviation. (Right) q-values after
applying Benjamini-Hochberg FDR correction to account for multiple testing.
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Figure 2.S12 (preceding page): Additional tests of phenotypic traits (a) Colony area is a
highly correlated measure of the optical density of the colony resuspended in liquid, which
gives the total (alive and dead) biomass. (b) Colony thickness (see Methods) is not correlated
with colony area, showing that area is a good measure of growth, rather than just spreading
on the surface of the plate. (c) Schematic of measurement growth layer depth using bead
displacements from a single colony’s field of view. For a consecutive pair of timepoints, �y

gives the distance between a pair of beads along the average direction of motion, and and
vy(y1) and vy(y2) give the bead displacements projected onto the average direction of motion.
(d) Gray points show measurements for all pairs of beads across all pairs of consecutive time
points. Black points give binned measurements. Error bars represent standard error of the
mean. The binned points roughly followed an exponential decay function between �y =
-50µm and �y = 50µm, and we fit to an exponential decay function within this range, as
measurements of bead pairs that are farther away may be dominated by noise. The decay
length, d, is extracted from the fit and taken as the growth layer depth. (e) The MSD for
bead trajectories from 12-18 hours as a function of the area of the colony at 12 hours (blue
points) and the MSD for bead trajectories from 18-24 hours as a function of the area of
the colony at 24 hours (orange points). The same colony over time is connected by a gray
line. Bead trajectory MSD mostly decreases with increasing colony area over time. Thus, the
positive correlation between colony area and MSD seen across genotypes cannot be explained
by changes in the bead trajectories over time. (f) Colony front roughness (see Methods) for
E. coli DH5↵ over time. Colony front roughness increases initially but levels o↵ around 19
hours. Since we measure the colony front roughness at 24 hours, we expect to have passed
the time when the behavior of the front roughness is transient. Note that this measurement
was done on a colony grown in a 10cm diameter petri dish rather than an omniplate, and
the colony may have access to a di↵erent total amount of nutrients. However, while the
growth condition does not exactly match that in the experiment, we used this data to better
understand the approximate timescales of when front roughness saturates in time.



CHAPTER 2. MUTABILITY OF DEMOGRAPHIC NOISE 59

a

f

b

g

c d

e

h

A A

A

A

S

S

R

R

AA



CHAPTER 2. MUTABILITY OF DEMOGRAPHIC NOISE 60

Figure 2.S13 (preceding page): Tests of correlation between cell shape and demographic
noise. The strength of demographic noise is uncorrelated with cell aspect ratio in the 191
randomly sampled strains from the Keio collection and 34 selected strains from the Keio
collection with cell shape data taken from (a) Ursell et al [61] and (b) French et al [17]. (c)
The circularity (see Supplementary methods) of cells grown in liquid culture compared to
those grown in a colony. Dashed black line depicts 1:1 relationship. The Pearson correlation
coe�cient is 0.46 with all genotypes, but only -0.1 when excluding �gpmI. The error bars
represent the standard error of the mean across the 50-100 cells measured per genotype.
(d) Comparing cell shape data from Ursell et al and French et al across all single gene
knockouts in the Keio collection. (e) Relative bead trajectory MSD in cell shape mutants
and those predicted by the best fit Lasso regression model from the main text which primarily
includes colony-level traits. (f) Partial correlation of cell aspect ratio when controlling for
all other phenotypes for the random set of single gene knockouts from the Keio collection.
Correlation of demographic noise to single cell aspect ratio in mreB (g) and mrdA (h) single
point mutants is higher than that seen for the single gene knockouts, possibly because these
strains were enriched for cell shape di↵erences. Strains and data from Ref [57].
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Figure 2.S14: Correlation of colony traits with one another.
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Figure 2.S15: Correlation between the bead MSD and (a) front roughness, (b) growth layer
depth, or (c) colony area (same as in Figure 2.3). Below each plot is the partial correlation
between the bead MSD and each phenotypic trait (after controlling for correlations with all
other traits).
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Figure 2.S16: The establishment probability as a function of the fitness coe�cient of a
chloramphenicol resistant mutant for 9 selected strain backgrounds. Points that fall within
fitness coe�cients �0.1 < s < 0.5, where the colony collision assay is valid, are fit linearly
(black line).
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Figure 2.S17: Fitted establishment probability at three di↵erent fitness coe�cients from fit-
ting (a) all initial resistant fractions together and (b) each initial resistant fraction separately
as a function of bead trajectory MSD for 5 selected single gene deletion strains and 3 wild
type strains. Error bars in the establishment probability represent linear fitting error (see
Supplementary methods) and and error bars in MSD represent the standard error of the
weighted mean (N = 7-8, see Methods).
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Figure 2.S18: Additional measurements of demographic noise e↵ects in non-randomly se-
lected strains. (a) The distribution of strengths of demographic noise for the wild type
BW25113 (WT), randomly selected single gene knockouts (KO rand), specifically selected
single gene knockouts and strain backgrounds (KO selected), mreB single point mutants
(mreB), and mrdA single point mutants (mrdA). All except mrdA single gene knockouts
show a significantly di↵erent distribution of demographic noise e↵ects compared to the WT
to a significance level of p <0.05.
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Figure 2.S19: Joint distribution of demographic noise and colony fitness as measured by
colony area. (a) The distributions of colony areas for the wild type BW25113 strain and the
randomly selected single gene knockout strains. The distributions are significantly di↵erent
to p = 9 ⇥ 10�10 as measured by a two-sample Kolmogorov-Smirnov test. (b) The joint
distribution of demographic noise (as measured by bead MSD) and fitness (as measured by
colony area) e↵ects. The strength of demographic noise and fitness are correlated suggesting
a tradeo↵ between fitness and demographic noise, with the median of both slightly below
that of the wild type (black lines).
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Additional supplementary files

Additional supplementary files can be found online at https://www.nature.com/articles/
s41396-021-00951-9.

Supplementary movie 1: Movie of fluorescent beads being pushed by growing colony of
E. coli DH5↵.
Type of file: movie

Supplementary table 1: List of E. coli single gene deletion strains used from Keio collection
and plate positions of all strains tested
Type of file: table

Supplementary table 2: List of mreB and mrdA single point mutant strains used
Type of file: table

https://www.nature.com/articles/s41396-021-00951-9
https://www.nature.com/articles/s41396-021-00951-9
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Chapter 3

Lineage frequency time series reveal

elevated levels of genetic drift in

SARS-CoV-2 transmission in England

Genetic drift is also an important aspect of pathogen transmission, where a “birth” occurs
when the pathogen is transmitted between two hosts, and a “death” occurs when an infected
host recovers or dies. Here, we address a major challenge in inferring the strength of genetic
drift in pathogen transmission in the natural world, which is how to account for measurement
or observation noise [23]. We develop a new method to infer genetic drift simultaneously
with measurement noise using lineage frequency time series data. We apply the method to
study the strength of genetic drift in SARS-CoV-2 transmission in England.

I am grateful to Joao Ascensao for developing the statistical inference method, Takashi
Okada for creating lineages from phylogenetic trees and drafting the respective method sec-
tion, Olivia Boyd for sourcing the trees and metadata from COG-UK, Oskar Hallatschek for
advising, and all coauthors for giving helpful feedback on the work and writing presented in
this chapter. The remainder of this chapter will be submitted as QinQin Yu, Joao Ascensao,
Takashi Okada, Olivia Boyd, Erik Volz, Oskar Hallatschek, Lineage frequency time series
reveal elevated levels of genetic drift in SARS-CoV-2 transmission in England, 2022.

3.1 Abstract

Random genetic drift in the population-level dynamics of infectious disease results from the
randomness of inter-host transmission and the randomness of host recovery. The strength of
genetic drift has been found to be high for SARS-CoV-2 due to superspreading, and this is
expected to substantially impact the disease epidemiology and evolution. Noise that results
from the measurement process, such as biases in data collection across time, geographical
areas, etc., can potentially confound estimates of genetic drift as both processes contribute
“noise” to the data. To address this challenge, we develop a method to jointly infer genetic
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drift and measurement noise from time-series lineage frequency data. We apply this method
to SARS-CoV-2 genomic data from England from March 2020 until December 2021. We find
that even after correcting for measurement noise, the strength of genetic drift is consistently,
throughout time, higher than that expected from the observed number of COVID-19 posi-
tive individuals in England by 1 to 3 orders of magnitude. Corrections taking into account
susceptible-exposed-infected-recovered epidemiological dynamics do not explain the discrep-
ancy. The levels of genetic drift that we observe are higher than the estimated levels of
superspreading found by modeling studies that incorporate data on actual contact statistics
in England. We discuss how even in the absence of superspreading, high levels of genetic
drift can be generated via jackpot events in a deme model. Our results suggest that under-
standing heterogeneous host contact structure may be important for understanding the high
levels of genetic drift observed for SARS-CoV-2 in England.

3.2 Introduction

Random genetic drift is the change in the composition of a population over time due to the
randomness of birth and death processes. In pathogen transmission, births occur as a result
of transmission of the pathogen between hosts and deaths occur as a result of infected host
recovery or death. The strength of genetic drift in pathogen transmission is set by the dis-
ease prevalence, the disease epidemiology parameters [64], the variance in o↵spring number
(the number of secondary infections that result from an infected individual) [35], as well as
host contact patterns [3]. Many diseases have been found to exhibit high levels of genetic
drift, such as SARS, MERS, tuberculosis, and measles [35, 31, 40]. The strength of genetic
drift a↵ects how the disease spreads through the population [35, 3, 46] how new variants
emerge [44, 25, 14, 59], and the e↵ectiveness of interventions [54], making it an important
quantity to accurately estimate for understanding disease epidemiology, evolution, and con-
trol. The e↵ective population size is often used to quantify the strength of genetic drift; it
is the population size in an idealized Wright-Fisher model (with discrete non-overlapping
generations, a constant population size, and o↵spring determined by sampling with replace-
ment from the previous generation) that would reproduce the observed dynamics [11]. If
the e↵ective population size is lower than the true population size, it is an indication that
there are additional sources of stochasticity beyond the Wright-Fisher model; thus, a lower
e↵ective population size indicates a higher level of genetic drift.

Data from contact tracing and phylogenetics have revealed high levels of superspreading
and genetic drift for SARS-CoV-2 [32, 4, 24]. However, it is extremeley tedious to estimate
the strength of genetic drift as it requires an unbiased dataset, and most studies have focused
on a particular time period or geographical location (see phylogenetic studies [63, 49, 17],
and see Supplementary table 3.S1 for non-phylogenetic studies); we still lack a systematic
study of genetic drift over time and across di↵erent geographic subdivisions. It is also
challenging to accurately estimate the strength of genetic drift because non-biological factors,
such as the data collection process, also contribute noise to the dataset [23]. Observation, or
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measurement, noise can arise from a variety of factors, including variability in the testing rate
across time, geographic locations, demographic groups, and symptom status, and biases in
contact tracing. Some phylogenetic and time-series frequency methods that infer the strength
of genetic drift account for uniform sampling of sequences from the population [56, 7, 8], but
in reality, the observation process may contribute more variance than purely from uniform
sampling due to the complex decisions that lead to which infected individuals end up being
sampled. A recent study has accounted for overdispersed sampling of sequences in the
inference of fitness coe�cients of SARS-CoV-2 variants, but assumes constant overdispersion
over time [16]; in reality, the observation process may change over time. One approach is to
try to collect as unbiased of a dataset as possible, but this may not always be possible, for
instance when resources are scarce. In this study we consider the question of what signatures
measurement noise might leave, particularly in time-series frequency data, and if and how
we might be able to infer its strength to decouple it from genetic drift.

Inference of measurement noise can be incorporated straightforwardly into time-series
lineage or allele frequency methods [7, 8] (see the Supplementary information for a sum-
mary of other methods used for inferring genetic drift, and additional references). In these
methods, time series data of the abundance of di↵erent lineages or alleles (groups of sam-
ples that are genetically or phenotypically similar) are fit to models that incorporate genetic
drift and measurement noise. Intuitively, in time-series frequency data, genetic drift leads to
frequency fluctuations whose magnitudes scale with time, whereas measurement noise leads
to frequency fluctuations whose magnitudes do not scale with time (Figure 3.1a). Mathe-
matically, this problem maps well to a Hidden Markov Model with continuous hidden and
observed states (similar to a Kalman filter), where the hidden states are the true frequencies
and the observed states are the observed frequencies (Figure 3.1b), and the processes of
genetic drift and measurement noise determine the transition and emission probabilities, re-
spectively [66, 57]. Here we develop a method to jointly infer genetic drift and measurement
noise that allows measurement noise to be overdispersed compared to uniform sampling and
for the strength of overdispersion to vary over time, which is an improvement from previous
time-series methods. By fitting the model to the observed lineage frequency trajectories,
we show that the e↵ective population size and the strength of measurement noise can be
accurately determined in most situations, even when both quantities are varying over time.

We apply this method to study the strengths of genetic drift and measurement noise
for SARS-CoV-2 in England from March 2020 until December 2021. We focus on England
due to its consistently large number of sequenced SARS-CoV-2 cases since early in the pan-
demic, which allows us to most accurately estimate lineage frequency time series. We find
that even after correcting for measurement noise, the strength of genetic drift is consistently,
throughout time, higher than expected from the observed number of infected individuals
in England by 1 to 3 orders of magnitude. Corrections taking into account epidemiological
dynamics, such as a susceptible-exposed-infected-recovered model, does not explain the dis-
crepancy. The levels of genetic drift that we observe are higher than the estimated levels of
superspreading found by modeling studies that incorporate data on actual contact statistics
in England. We discuss how even in the absence of superspreading, these high levels of
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genetic drift can be generated via jackpot events in a deme model. Below, we first present
the method and validation, and then the application to SARS-CoV-2 in England.

3.3 Results

Method for jointly inferring genetic drift and measurement noise

from time-series lineage frequency data

We first summarize the statistical inference method that we developed to infer time-varying
e↵ective population sizes from neutral lineage frequency time series that are a↵ected by
overdispersed measurement noise (more variable than uniform sampling). We explain the
method more extensively in the Methods. Briefly, we use a Hidden Markov Model (HMM)
with continuous hidden and observed states (similar to a Kalman filter), where the hidden
states are the true frequencies (ft, where t is time), and the observed states are the observed
frequencies (f obs

t
) (Figure 3.1b) (see Methods). The transition probability between hidden

states is set by genetic drift, where the mean true frequency is the true frequency at the
previous time E(ft+1|ft) = ft, and when the frequencies are rare the variance in frequency
is proportional to the mean, Var(ft+1|ft) = ft

Ñe(t)
. Ñe(t) = Ne(t)⌧(t) where Ne(t) is the

e↵ective population size and ⌧(t) is the generation time, and both quantities can vary over
time; however, we are only able to infer the compound parameter Ne(t)⌧(t). The emission
probability between hidden and observed states is set by measurement noise, where the mean
observed frequency is the true frequency E(f obs

t
|ft) = ft and when the frequencies are rare

the variance in the observed frequency is proportional to the mean, Var(f obs

t
|ft) = ct

ft

Mt
.

ct � 1 describes the deviation from uniform sampling (ct = 1), and Mt is the number of
sequences at time t. Our model assumes that the number of individuals and frequency of a
lineage is high enough such that the central limit theorem applies; to meet this condition, we
created “superlineages” where we randomly and exclusively grouped lineages together such
that the sum of their abundances and frequencies was above a threshold (see Methods).

Using the transition and emission probability distributions (see Methods) and the HMM
structure, we determine the likelihood function (Equation 3.13 in Methods) describing the
probability of observing a particular set of lineage frequency time-series data given the un-
known parameters, namely the scaled e↵ective population size across time Ñe(t) and the
strength of measurement noise across time ct. We then maximize the likelihood over the
parameters to determine the most likely parameters that describe the data. Because we are
relying on a time-series signature in the data for the inference, we need to use a su�ciently
large number of timesteps of data, but on the other hand, the longer the time series, the
more parameters would need to be inferred (since both Ñe(t) and ct are allowed to change
over time). To balance these two factors, we assumed that the e↵ective population size stays
constant over a time period of 9 weeks (a form of “regularization”). We then shift this
window of 9 weeks across time to determine how Ñe(t) changes over time (see Methods), but
this e↵ectively averages the inferred Ñe(t) over time. ct is still allowed to vary weekly.
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Figure 3.1: A Hidden Markov Model with continuous hidden and observed states (similar
to a Kalman filter) for inferring genetic drift and measurement noise from lineage frequency
time series. (a) Illustration of how genetic drift and measurement noise a↵ect the observed
frequency time series. Muller plot of lineage frequencies from Wright-Fisher simulations with
e↵ective population size 500 and 5000, with and without measurement noise. In simulations
with measurement noise, 100 sequences were sampled per week with the measurement noise
overdispersion parameter ct = 5, parameter defined in text). All simulations were initialized
with 50 lineages at equal frequency. A lower e↵ective population size leads to larger frequency
fluctuations whose variances add over time, whereas measurement noise leads to increased
frequency fluctuations whose variances do not add over time. (b) Schematic of Hidden
Markov Model describing frequency trajectories. ft is the true frequency at time t (hidden
states) and f

obs

t
is the observed frequency at time t (observed states). The inferred parameters

are Ñe(t) ⌘ Ne(t)⌧(t), the e↵ective population size scaled by the generation time, and
ct, the overdispersion in measurement noise (ct = 1 corresponds to uniform sampling of
sequences from the population). (c-f) Validation of method using Wright-Fisher simulations
of frequency trajectories with time-varying e↵ective population size and measurement noise.
(c) Simulated number of sequences. (d) Simulated lineage frequency trajectories. (e) Inferred
scaled e↵ective population size (Ñe(t)) on simulated data compared to true values. (f)
Inferred measurement noise (ct) on simulated data compared to true values. In (e) the
shaded region shows the 95% confidence interval calculated using the posterior, and in (f)
the shaded region shows the 95% confidence interval calculated using bootstrapping (see
Methods).
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To validate our model, we ran Wright-Fisher simulations with time-varying e↵ective
population size and time-varying measurement noise (Figure 3.1c-f). Because a substantial
number of lineages would go extinct over the simulation timescale of 100 weeks, we introduced
mutations with a small rate (µ = 0.01 per week per individual) to prevent the number
of lineages from becoming too low. We then did inference on the simulated time-series
frequency trajectories (Figure 3.1d). The inferred Ñe(t) and ct closely follow the true values
(Figure 3.1e-f), and the 95% confidence intervals (see Methods for how they are calculated)
include the true value in a median (across timepoints) of 95% of simulation realizations
(Figure 3.S2). The error in ct is higher when the variance contributed to the frequency
trajectories by measurement noise is lower than that of genetic drift, which occurs when
the e↵ective population size is low or number of sequences is high (more clearly seen in
Figure 3.S4, where the e↵ective population size is held constant). However, the error on
Ñe(t) seems to be unchanged or even slightly decrease when the error on ct is increased
because the contribution to the variance due to genetic drift is higher. We also observe
that the inferred Ñe(t) is smoothed over time due to the assumption of constant Ñe(t) over
9 weeks (Figure 3.S3); this is a potential drawback when there are sharp changes in the
e↵ective population size over time. Importantly, we observed that the inferred Ñe(t) will
be underestimated if sampling is assumed to be uniform when it is actually overdispersed
(Figure 3.1e). This is because variance in the frequency trajectories due to measurement
noise is incorrectly being attributed to genetic drift. The underestimation is strongest when
the variance contributed due to measurement noise is high, either due to high measurement
noise overdispersion, a low number of sampled sequences, or a high e↵ective population size.
In this situation, joint inference of measurement noise and Ñe(t) from the data is necessary
for accurate inference of Ñe(t).

Application to COG-UK data in England

We next applied this method to study the e↵ective population size and strength of mea-
surement noise for SARS-CoV-2 in England. Because our method assumes that lineages are
neutral with respect to one another (no selection), we performed separate analyses on groups
of lineages that have been shown to exhibit fitness di↵erences or deterministic changes in fre-
quency: lineages pre-B.1.177, B.1.177, Alpha, and Delta [16, 63, 10, 13]. We did not find any
studies in the literature claiming detectable fitness di↵erences between lineages within each
of these groups; thus, we assumed that our neutral model should be valid when analyzing
lineages only within a single group.

To obtain lineage frequency time series data for SARS-CoV-2 in England, we down-
loaded genomic metadata from the COVID-19 Genomics UK Consortium (COG-UK) [60]
(Figure 3.2b) and the associated phylogenetic trees that were created at di↵erent points in
time. For sequences pre-B.1.177, we used the pangolin lineages assignments from COG-
UK [45, 50]. However, B.1.177, Alpha, and Delta were subdivided into few or only one
pangolin lineage, since a new lineage is defined by su�ciently many mutations and evidence
of geographic importation. However, these requirements are not important for our purposes
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Figure 3.2: The inferred e↵ective population size and overdispersion of measurement noise
in England compared with the number of positive individuals. (a) Schematic of lineage
construction for B.1.177, Alpha, and Delta from the COG-UK phylogenetic tree. The filled
circles represent the sequences of a focal variant sampled in England, while the unfilled
squares represent other sequences, which are of other variants or sampled in other countries.
The phylogenetic tree is cut at a certain depth d = dcut, and each branch cut by the line d =
dcut defines a lineage. Lineages pre-B.1.1.7 are defined using the pango nomenclature [45, 50].
(b) Muller plot of lineage frequency time series for lineages pre-B.1.177, of B.1.177, of Alpha,
of Delta. (c) Inferred scaled e↵ective population size (Ñe(t) ⌘ Ne(t)⌧(t)) for pre-B.1.177
sequences, B.1.177, Alpha, and Delta, compared to the estimated number of people testing
positive for SARS-CoV-2 in England at the community level, as measured by the COVID-19
Infection Survey [62], for all lineages and by variant or group of lineages. To simplify the plot,
only data where the number of positive individuals for a given variant or group of lineages
was higher than 103 in a week are shown. The inferred Ñe(t) is considerably lower than the
number of positive individuals for all times and for all variants or group of lineages. (d)
Inferred measurement noise overdispersion (ct) for pre-B.1.177 sequences, B.1.177, Alpha,
and Delta.

and instead we only need resolution of neutral lineages within a variant. Thus, we created
our own neutral lineages by grouping sequences together based on phylogenetic distance in
the tree (see Figure 3.2a and Methods), and cutting the tree at a particular point. Most
sequenced samples were included in the trees (Figure 3.S6), and any downsampling was done
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by preserving genetic diversity. Most sequences in the tree were assigned to lineages (see
Methods), and we corrected for the fraction of sequences that were not assigned to lineages
in our inference of Ñe(t) (see Methods). This yielded 486 lineages for pre-B.1.177, 4083
lineages for B.1.177, 6225 lineages for Alpha, 24867 lineages for Delta.

The inferred e↵ective population size is shown in Figure 3.2c. The inferred e↵ective
population size was lower than the number of positive individuals in the community by a
factor of 30 to 1070 at di↵erent points in time, but closely followed the shape of the number
of positive individuals with a few exceptions: the inferred e↵ective population size of lineages
pre-B.1.177 peaked slightly before the number of pre-B.1.177 positives peaked, the inferred
e↵ective population size of Alpha stayed relatively constant after January 2021 while the
number of positives decreased, and the shoulder for the inferred e↵ective population size of
Delta occurred earlier than in the number of positives.

The inferred measurement noise for each group of lineages is shown in Figure 3.2d. In
summary, the inferred measurement noise overdispersion was mostly indistinguishable from
1 (uniform sampling), but at times was above 1 (sampling that is more variable than uni-
form sampling), particularly when a variant was first emerging. There were also at times
di↵erences in the strength of measurement noise between variants when they overlapped in
time. Measurement noise for lineages pre-B.1.177 was high at the beginning of the pandemic
in March 2020, then became indistinguishable from uniform sampling from April 2020 to
January 2021, except for a sharp peak in October 2020. Measurement noise for B.1.177
was generally indistinguishable from uniform sampling. The measurement noise of Alpha
was high when it first emerged (November 2020) despite sampling noise being low for other
lineages that were circulating at that time. The measurement noise of Delta was high when
it first emerged (April to May 2021), but dropped to around 1 after July 2021 and stayed
low.

To better understand the observed levels of genetic drift, we compared the inferred Ñe(t)
to that of a null model. We chose an SEIR model, which includes a susceptible, exposed,
infectious, and recovered class. The SEIR model is a good representation of the epidemiology
of SARS-CoV-2 when the infectious class includes both asymptomatic and symptomatic
individuals, i.e. the exposed class describes pre-symptomatic individuals who ultimately
become positive no matter whether they become symptomatic or not. In our case, we
have data on the number of positives that includes both symptomatic and asymptomatic
individuals, so we have the correct input data for this model. We derived the Ñe(t) for an
SEIR model (see Methods):

Ñe

SEIR
(t) ⌘ {Ne(t)⌧(t)}

SEIR =
(E(t) + I(t))2

2Rt�II(t)
. (3.1)

where E(t) is the number of exposed individuals, I(t) is the number of infectious individuals,
Rt is the e↵ective reproduction number, and �I is the rate at which infectious individuals
stop being infectious. For the number of infectious individuals, we used the number of pos-
itive individuals estimated from the UK O�ce for National Statistics’ COVID-19 Infection
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Survey [62], which is a household surveillance study that reports positive PCR tests, regard-
less of symptom status. We used the measured e↵ective reproduction number in England

reported by the UK Health Security Agency [61]. We found that Ñe

SEIR
(t) is very similar to

the number of positives because the e↵ective reproduction number in England was very close

to 1 across time. To calculate Ñe

SEIR
(t) for each variant or group of lineages, we rescaled

the population-level I(t) and Rt based on the fraction of each variant in the population
and the relative di↵erences in reproduction numbers between variants (see Methods). We
then calculated the scaled true population size, Ñ(t) ⌘ N(t)⌧(t), for the SEIR model by
multiplying by the variance in o↵spring number, �2, for the SEIR model [30]

Ñ
SEIR(t) = Ñe

SEIR
(t){�2

}
SEIR (3.2)

{�
2
}
SEIR = 2. (3.3)

Overall, the inferred Ñe(t) is lower than Ñ
SEIR(t) by a time-dependent factor that varies

between 100 and 2350 (Figures 3.3c and 3.S9), suggesting high levels of genetic drift in
England across time. The ratio of ÑSEIR(t) to the inferred Ñe(t) was higher for Alpha than
for Delta, suggesting that the level of genetic drift for Alpha was higher than expected, when
compared to that of Delta.

We also probed the spatial structure of transmission by inferring the scaled e↵ective
population size separately for each region within England. We find that the scaled e↵ective
population size in the regions of England is substantially smaller than that in England
as a whole for Alpha and Delta (Figure 3.S1), suggesting that the transmission was not
well-mixed at that time. Additionally, the discrepancy between the inferred regional scaled
e↵ective population size and the observed number of positive individuals in a region was
comparable to that seen in England as a whole (Figure 3.S10), which is consistent with
spatially segregated dynamics with similar levels of genetic drift in each region. We further
describe these results in the Supplementary Information.

Potential mechanisms that can contribute to the high levels of

genetic drift

Two potential mechanisms that can contribute to the observed high levels of genetic drift
are: (1) variability at the individual level through superspreading (Figure 3.3a), and (2) host
population structure (Figure 3.3b). We investigate each of these mechanisms in turn and
compare it to our results. While in reality, both mechanisms (and others not explored here)
are likely at play, it is challenging to tease them apart given our limited data. Instead, we
consider the extreme situations where one or the other mechanism is driving the dynamics
to gain intuition.

Superspreading occurs due to overdispersion in the number of secondary cases, which
decreases the e↵ective population size. If superspreading were the only mechanism at play,
then the variance in o↵spring number that would explain our results would be the same as the
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ratio between the SEIR null model ÑSEIR(t) and the inferred Ñe(t) (100-2350) (Figure 3.3c).
Current estimates of the variance in o↵spring number measured by contact tracing and
modeling across a wide range of times and locations are from around 0.7 in one study
to 65 in another (Table 3.S1). We found two studies that apply to the UK, one which
used a model that incorporated the empirical viral load trajectories and contact numbers
to estimate superspreading [48] and another which used a branching process model of the
number of imported and local cases [19]. The only of those estimates whose time window
overlapped with our time windows found substantially lower levels of superspreading than
what we observe (Figure 3.3c). It is possible that contact tracing and modeling over- or
under-estimates overdispersion due to missed contacts. However, on the other hand, it may
be the case that superspreading is not the only mechanism at play.

We propose another mechanism that can lead to a decreased e↵ective population size:
host deme structure. In such a model, individuals within a deme are very well-connected
to one another (i.e. households or friend groups, also known as “communities” in network
science [42]), but there are few connections between demes (Figure 3.3c). It is possible
for deme structure to occur without superspreading. For instance, in the schematic in
Figure 3.3c, the number of contacts is either 4 or 5; if every contact led to a transmission,
this would be an extremely narrow o↵spring number distribution (i.e. no superspreading).
Because individuals are very well-connected within a deme, once the pathogen spreads to a
susceptible deme, it will spread rapidly in a deme until all individuals are infected (a jackpot
event). In this way, deme structure can lower the e↵ective population size by lowerering the
e↵ective number of stochastic transmissions. For instance, in the example in Figure 3.3c,
there are 20 individuals, but only 3 potential stochastic transmissions.

To check our intuition that deme structure can decrease the e↵ective population size
and increase genetic drift, we ran simulations of a simplified deme model (see Methods): all
demes have the same number of individuals, and there is a su�ciently large enough number
of demes that the total number of demes does not matter. Initially some number of demes
are infected, and transmission occurs such that the overall e↵ective reproduction number
in the population is around 1. From our simulations, we find that when the number of
individuals in a deme increases, the ratio between the number of infected individuals and
the inferred scaled e↵ective population size increases (Figure 3.3d); in other words, the more
individuals there are in a deme, the higher the level of genetic drift we observe compared
what is expected from the number of infected individuals. This is because while the number
of infected individuals increases when the deme size increases (Figure 3.S12a), the inferred
e↵ective population size (and thus the level of stochasticity) stays the same as a function of
deme size (it is more dependent on the number of infected demes) (Figure 3.S12b). However,
the exact ratio of the number of infected individuals to the inferred e↵ective size depends on
the parameters of the model.

In reality, both superspreading and host structure are likely at play. Additionally, they
could interact with each other. For instance, there could be superspreading within a deme.
While we currently do not have su�cient data to tease apart the contribution of these two
mechanisms, this would be an interesting and important avenue for future work. In particu-
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lar, the relative contributions of the two mechanisms to genetic drift can a↵ect evolutionary
dynamics. Whereas increased genetic drift due to superspreading decreases establishment
probability for new mutations because it is more likely for a new variant to go extinct, in-
creased genetic drift due to host structure increases the establishment probability for new
mutations because it is more likely for a well-connected individual to transmit to another
well-connected individual [3].

3.4 Discussion

Here, we systematic studied the strength of genetic drift of SARS-CoV-2 in England across
time and spatial scales. To do this, we developed and validated a method for jointly inferring
genetic drift and overdispersed measurement noise using lineage frequency time series data,
allowing these two e↵ects to be disentangled, which overcomes a major challenge in the
ability to infer the strength of genetic drift from time-series data. We find that the e↵ective
population size of SARS-CoV-2 in England was lower than that of a SEIR null model true
population size (using the observed number of positives) by a time-dependent factor of 100
to 2350, suggesting that there were consistently high levels of genetic drift over time. We
also find evidence for spatial structure in the transmission dynamics during the Alpha and
Delta waves, as the inferred Ñe(t) was substantially lower in regions compared to that of
England.

The levels of genetic drift that we observe are higher than literature values of super-
spreading, suggesting that additional mechanisms may be leading to increased stochasticity.
In particular, we explore a simplified deme model with groups of individuals that are well-
connected to one another (demes), and find that such a simple model can generate a low
e↵ective population size even in the absence of superspreading, due to jackpot events. Our
results suggest that understanding heterogeneity in host population network structure may
be important for understanding the high levels of genetic drift observed for SARS-CoV-2 in
England.

Accurately estimating the strength of genetic drift allows us to better understand disease
spread and extinction, as well as to better parameterize evolutionary models and understand
how mutations will establish in the population. The amount by which genetic drift was
elevated compared to the number of positives did not change much over time or across
variants, despite changes in lockdowns and restrictions. On the other hand, this may not be
so surprising given the findings that restrictions a↵ect the mobility network structure in a
complex way, decreasing some types of mobility while increasing others [18]. One exception
was that Alpha had significantly higher genetic drift when compared to the number of positive
Alpha cases when compared to Delta. This may be either due to di↵erences in the properties
of the virus or di↵erences in host behavior.

We observe that measurement noise of SARS-CoV-2 tends to be more variable than uni-
form sampling when a variant first emerges, but is otherwise indistinguishable from uniform
sampling. Our results suggest that joint inference of measurement noise and genetic drift
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may be most important during the time when a variant first emerges. The number of SARS-
CoV-2 sequences from England is extremely high and sampling biases are expected to be
low, because of e↵orts to reduce sampling biases by sampling somewhat uniformly from the
population through the COVID-19 Infection Survey [62] (from which a subset of positives
are sequenced). On the other hand, other countries may have higher sampling biases, so
jointly estimating measurement noise and genetic drift may be even more useful in analyzing
data from these countries. It may also be interesting to analyze time series genomics data
taken from wastewater, which we would expect to exhibit low measurement noise.

Limitations of the study

First, while we accounted for fitness di↵erences between variants (i.e. pre-B.1.177, B.1.177,
Alpha, and Delta) by analyzing them separately, we assumed that the lineages (either with
the pango nomenclature or created by cutting the tree) within each of these groups of lineages
or variants were neutral with respect to one another. This assumption is consistent with
the current literature, but there could be deterministic changes in frequency due to small
fitness di↵erences between lineages or human behavior that are too weak to be detected
with significance given the available data. Similarly, in our model we assumed that there
was no mutation and migration. Introducing mutations with a small rate in the simulations
did not have a large e↵ect on the method performance, and we will explore the e↵ect of
migration in subsequent work. More generally, future work should explore joint inference
of selection, migration, and/or mutation in the model, as appropriate for the pathogen of
interest, building on previous work in this area [20, 39, 57].

Second, there may be biases in the way that data are collected that are not captured
in our model. While our method does account for sampling biases that are uncorrelated in
time, sampling biases that remain over time cannot be distinguished from genetic drift (i.e.
if one geographical region was dominated by a particular lineage and it consistently had
higher sequencing rates compared to another geographical region), and this can potentially
bias the inferred e↵ective population size; although, this is also a problem in phylogenetic
methods. Additionally, we assume that the measurement noise overdispersion is identical for
all lineages within a variant; in reality, there may be di↵erences in sampling between lineages.
Future work should explore the whether this is the case in the actual dataset, as well as the
e↵ect of lineage-specific measurement noise overdispersion on overall method performance.

Third, the quantity of e↵ective population size is a summary statistic that is influenced
by many factors, making its interpretation challenging. The e↵ective population size de-
scribes the population size under a well-mixed Wright-Fisher model, whereas in reality, this
assumption is broken by many e↵ects, including host structure and broad o↵spring number
distributions. Thus, in our study we are careful to interpret e↵ective population size only in
the broadest terms of genetic drift, without being able to determine what mechanisms lead
to the inferred e↵ective population size (although we do explore some possibilities above).
While within-host dynamics may in principle impact the lineage frequency trajectories, this
e↵ect is likely small for our analysis because we focus on acute infections (infections in the
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community rather than in hospitals and nursing homes). This is because acute infections
of SARS-CoV-2 are thought to generate little within-host diversity that is passed on due
to the short infection duration and small bottleneck size between hosts [37, 38]; while new
mutations arising within acute hosts have been observed to be transmitted, these events are
rare [37].

Comparison of time-series frequency method with common

phylogenetics approaches

Currently, the primary approach used for inferring pathogen e↵ective population size is
phylogenetics. Phylogenetics methods arrange genomics sequences into a tree based on
genomic distance and either measure the distribution of lineage sizes (number of sequences
in di↵erent parts of the tree) [17] or fit the rate at which branches in the tree coalescence to
determine the e↵ective population size [56, 47, 64, 28].

The two approaches of inferring e↵ective population size through time series frequency
trajectories or phylogenetics have their respective benefits and drawbacks and can be chosen
based on the particular application. A big benefit of the time-series frequency methods
is the ability to detect and correct for time-varying measurement noise, which we have
explored in this study. However, future work should explore how measurement noise a↵ects
phylogenetic trees. Time-series frequency methods also scale better computationally with
the number of sequences, which is important for SARS-CoV-2 where there are have been
millions of sequences collected and deposited into the GISAID repository. Another benefit
of time-series frequency methods is that they only need a signal of standing variation, and
can be used even when little genetic diversity accumulates, for instance for a species with a
low mutation rate or in the recent past. Finally, time series inference methods are generally
better able to incorporate di↵erent population genetics models, for instance models that
include selection or broad o↵spring number distributions [43], although we do not utilize
this benefit in our present analysis. The main drawback of time series frequency methods,
including the method developed in this study, is that a su�ciently large number of sequences
at high time resolution is needed to get a reasonable estimate of how the frequency changes
over time. Additionally, the temporal resolution of the inferred parameters is limited; this
may be improved by imposing a prior on how the parameters are expected to change over
time.

Phylogenetics methods are particularly useful in situations with sparse data (they do not
rely on frequencies) and high enough mutation rates such that su�cient genetic diversity is
generated. However, the main drawbacks of phylogenetics methods are not being able to
take into account complex measurement noise, being challenging to scale computationally for
large numbers of sequences, being noisy when there is little genetic diversity, and assuming
particular models of lineage coalescence (the Kingman coalescent is commonly assumed)
which may not be a good assumption in some situations.

Time-series frequency methods and phylogenetics methods can also be used together.
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If phylogenetic analyses are desired but measurement noise is an issue, then the method
developed in this study can be used to detect and reject time periods with high measurement
noise, and phylogenetics methods can subsequently be used on the filtered data. It would be
valuable for future theoretical work to explore how to connect time series and phylogenetic
methods, for instance the measurement noise parameter we fit here to the sampling parameter
in phylogenetic birth-death models [56].

While we have focused on SARS-CoV-2 in this study, the method developed here can be
extended to study genetic drift in other natural populations that are influenced by measure-
ment noise and where genomic frequency data are available, for instance other pathogens,
field studies, and ancient DNA [26, 15, 51]. More generally, ongoing methods development
that integrates genomics, survey, and other data sources is crucial for being able to har-
ness the large amounts of data that have been generated to better understand and predict
evolutionary dynamics.
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Figure 3.3: Potential mechanisms that can generate a low e↵ective population size. (a)
Superspreading, where the distribution of the number of secondary cases (Z) from a single
infected individual is broadly distributed. (b) Deme structure without superspreading, due
to heterogeneity in the host network structure. (c) The ratio between the Ñ

SEIR(t) (the
scaled population size calculated from an SEIR model using the number of observed positive
individuals and the observed e↵ective reproduction number) and the inferred Ñe(t) for each
variant. Only data where the error in the SEIR model ÑSEIR(t) is less than 3 times the value
are shown, because larger error bars make it challenging to interpret the results. The infered
Ñe(t) is lower than the ÑSEIR(t) (which assumes well-mixed dynamics and no superspreading)
by a factor of 100 to 2350, indicating high levels of genetic drift. The variance in o↵spring
number from the literature [19, 48] does not entirely explain the discrepancy between the true
and e↵ective population sizes. (d) Simulations of deme structure without superspreading can
generate high levels of genetic drift via jackpot events. SEIR dynamics are simulated within
demes (with Rt = 10, i.e. deterministic transmission) and Poisson transmission is simulated
between demes (Rt ⌧ 1, i.e. stochastic transmission) such that the population Rt ⇠ 1 (see
Methods). Simulation parameters are: mean transition rate from exposed to infected �E

= (2.5 days)�1, mean transition rate from infected to recovered �I = (6.5 days)�1, total
number of demes Dtotal = 5.6 ⇥ 105. The ratio between the number of infected individuals
and the inferred scaled e↵ective population size is found to scale linearly with the deme size
and not with the number of infected demes. This scaling results because of jackpot events
where a lineage that happens to infect a susceptible deme grows rapidly until all susceptible
individuals in the deme are infected.
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3.5 Methods

Data sources and processing

We downloaded sequence data from the COVID-19 Genomics UK Consortium (COG-UK) [60].
This dataset is composed of a random sample of the positive cases from the COVID-19 In-
fection Survey, which is a surveillance study of positive individuals in the community admin-
istered by the O�ce for National Statistics (see below). For lineages that appeared before
B.1.177, we downloaded the metadata from the COG-UK Microreact dashboard [12], which
included the time and location of sample collection (UTLA), as well as the lineage designa-
tion (Pango nomenclature) [45, 50]. For B.1.177, Alpha, and Delta sequences, because the
Pango nomenclature had very few lineages, we created our own lineages from the phyloge-
netic trees (see below). We downloaded the publicly available COG-UK tree on February
22, 2021 for B.1.177; June 20, 2021 for Alpha; and January 25, 2022 for Delta. We also
downloaded the COG-UK metadata for all lineages on January 16, 2022, which included the
time and location (UTLA) of sample collection. For the data of B.1.177, Alpha, and Delta,
the data was deduplicated to remove reinfections in the same individual by the same lineage,
but reinfections in the same individual by a di↵erent lineage were allowed.

The lineage frequency time-series is calculated separately for each variant or group of
lineages (pre-B.1.177, B.1.177, Alpha, and Delta). First, the sequence metadata are aggre-
gated by epidemiological week (Epiweek) to average out measurement noise that may arise
due to variations in reporting within a week. Then, the lineage frequency is calculated by
dividing the number of sequences from that lineage in the respective tree by the total number
of sequences of that variant (or group of lineages) that were assigned to any lineage in the
respective tree.

Because our model describes birth-death processes when the central limit theorem can
be applied, we need the lineage frequencies to be su�ciently high. Thus, we randomly
combine rare lineages into “superlineages” that are above a threshold number of counts and
threshold frequency in the first and last timepoint of each trajectory. For the threshold, we
chose of 20 counts and frequency of 0.01 because the inferred e↵ective population size was
roughly constant as a function of the threshold above this threshold value. Superlineages
are non-overlapping (i.e. each sequence belongs to exactly one superlineage).

The estimated number of people testing positive for COVID-19 in England and each
region of England was downloaded from the UK O�ce for National Statistics’ COVID-
19 Infection Survey [62]. The COVID-19 Infection Survey includes households that are
semi-randomly chosen, and individuals are tested regardless of whether they are reporting
symptoms. Infections reported in hospitals, care homes, and other communal establishments
are excluded. Thus the dataset provides a representative number of positive individuals in
the community setting. The reported date of positive cases is the date that the sample was
taken. The error on the number of positive individuals from April 17, 2020 to July 5, 2020
is reported as the 95% confidence interval, and after July 5, 2020 is reported as the 95%
credible interval. The regional data reported the positivity rate over two week intervals. To
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get the number of positives, we multiplied by the number of individuals in the region. As
the data was reported over two week intervals, we obtained the number of positives for each
week using linear interpolation.

The observed e↵ective reproduction numbers for England and each region of England
were downloaded from the UK Health Security Agency [61]. Only times where the certainty
criteria are met and the inference is not based on fewer days or lower quality data are
kept. The error on the e↵ective reproduction number is reported as the 90% confidence
interval. Although not reported in the dataset, we choose the point estimate of the e↵ective
reproduction number to be the midpoint between the upper and lower bounds of the 90%
confidence interval.

Creating lineages in B.1.177, Alpha, and Delta

For B.1.177, Alpha, and Delta, we divided each of them into neutral lineages based on
phylogenetic distance. Specifically, for B.1.177 and Alpha, we cut a phylogenetic tree (in
units of number of mutations) at a certain depths, d = dcut. Each of the (internal or external)
branches that are cut by the line d = dcut defines a lineage (Figure 3.2a). The (observed)
frequency of a lineage at a given time point in England was computed by counting the
number of England sequences (leaf nodes) belonging to the lineage and by normalizing it by
the total number of sequences in all assigned lineages of the focal variant in England at that
time point. Lineage frequencies at the regional level were similarly computed by counting
the number of sequences separately for each region.

The choice of dcut is arbitrary to some extent. Because we wanted a su�ciently high
resolution of lineages from the early phase of spreading of a variant and because the evolu-
tionary distance correlates with the actual sample date (Figure 3.S5), for each focal variant,
we chose the depth dcut that roughly corresponds to the time point when it began to spread
over England.

For the Delta variant, the sequences form two distinct groups along the depth direction,
as seen from the last panel of Figure 3.S5. Therefore, to divide the Delta variant into lineages
with small frequencies, we cut the phylogenetic tree at two depths sequentially; we first cut
the tree at d(1)cut, which resulted in lineages with small frequencies plus a lineage with O(1)
frequency. Then, to divide the latter lineage further, we took the subtree associated with
this lineage and cut the subtree at d(2)cut.

For the results presented in the main text, we used (in units of substitutions per site, with
the reference d=0 being the most recent common ancestor) dcut = 2.323 · 10�2 for B.1.177,

dcut = 2.054 · 10�3 for Alpha, and d
(1)
cut = 1.687 · 10�3 and d

(2)
cut = 1.954 · 10�3 for Delta.

We confirmed that our results are robust to the choice of dcut as well as the choice of the
phylogenetic tree data we used (Figure 3.S7).



CHAPTER 3. GENETIC DRIFT OF SARS-COV-2 TRANSMISSION 91

Model for inferring e↵ective population size from lineage

frequency time series

We use a Hidden Markov Model with continuous hidden and observed states to describe
the processes of genetic drift and sampling of cases for sequencing (similar to a Kalman
filter) (Figure 3.1A). The hidden states describe the true frequencies of the lineages and the
observed states describe the observed frequencies of the lineages as measured via sequenced
cases.

The transition probability between the true frequencies ft (the hidden states) due to
genetic drift when 0 ⌧ f ⌧ 1 has been shown in [5] to be well-described by the following
expression, which we use as our transition probability,

p(ft+1|ft, Ñe(t)) =
1

2

vuut 2f 1/2
t

⇡f
3/2
t+1(Ñe(t))�1

exp

 
�

2(
p

ft+1 �
p
ft)2

(Ñe(t))�1

!
. (3.4)

Ñe(T ) ⌘ Ne(t)⌧(t) where Ne(t) is the time-dependent e↵ective population size and ⌧(t) is the
time-dependent generation time, which is defined as the mean time between two subsequent
infections per individual (i.e. the time between when an individual becomes infected and
infects another individual, or the time between two subsequent infections caused by the
same individual). This transition probability gives the correct first and second moments
describing genetic drift when f ⌧ 1, E(ft+1|ft) = ft and Var(ft+1|ft) =

ft

Ñe(t)
, and is a good

approximation when the central limit theorem can be applied, which is the case when f � 0.
By assuming that ft+1 ⇡ ft, and defining �t ⌘

p
ft, Equation 3.4 can be approximated as a

simple normal distribution

p(�t+1|�t, Ñe(t)) = N

⇣
�t,

1

4Ñe(t)

⌘
. (3.5)

We describe the emission probability from the true frequency ft to the observed frequency
f
obs

t
(the observed states), defining �

obs

t
⌘

p
x
obs

t , as

p(�obs

t
|�t, ct) = N

⇣
�t,

ct

4Mt

⌘
(3.6)

where Mt is the number of input sequences. Again, this distribution is generically a good
description when the number of counts is su�ciently large, due to the central limit theo-
rem. The first and second moments of this emission probability are E(f obs

t
|ft) = ft and

Var(f obs

t
|ft) =

ct
Mt

ft, or equivalently considering the number of sequences nobs

t
= f

obs

t
Mt and

the true number of positive individuals nt, E(nobs

t
|nt) = nt and Var(nobs

t
|nt) = ctnt. Thus, ct

describes the strength of measurement noise at time t. When ct = 1, the emission probability
approaches that describing uniform sampling of sequences from the population of positive
individuals (i.e. can be described by a Poisson distribution in the limit of a large number of
sequences), namely Var(nobs

t
|nt) = nt or equivalently Var(f obs

t
|ft) =

ft

Mt
. This is the realistic
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minimum amount of measurement noise. When ct > 1, it describes a situation where there
is bias (that is uncorrelated in time) in the way that sequences are chosen from the positive
population. The case of 0 < ct < 1 describes underdispersed measurement noise, or noise
that is less random than uniform sampling. The case of ct = 0 describes no measurement
noise (for instance, when all cases are sampled for sequencing). These last two situations is
unlikely in our data, and thus as we describe below, we constrain ct � 1 in the inference pro-
cedure. In addition to being a good description of measurement noise, defining the emission
probability in the same normal distribution form as the transmission probability allows us
to easily derive an analytical likelihood function, described below (Note: see Ref. [57] for a
method to derive an analytical likelihood function for arbitrary forms of the transition and
emission probabilities).

We derive the likelihood function (up to a constant) for the the Hidden Markov Model
using the forward algorithm, although it can alternatively be derived by marginalizing over
all hidden states. We assume an (improper) uniform prior on �0 (i.e. no information about
the initial true frequency of the lineage).

p(�0,�
obs

0 , ✓0) = p(�obs

0 |�0, c0)p(�0) (3.7)

p(�0) / 1 (3.8)

p(�t,�
obs

0:t , ✓0:t) = p(�obs

t
|�t, ct)

Z 1

�1
p(�t|�t�1, Ñe(t))p(�t�1,�
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0:t�1, ✓0:t�1)d�t�1, 0 < t  T

(3.9)

p(�obs
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where �
obs

0:t ⌘ {�
obs

0 , ...,�
obs

t
}, ✓0:t ⌘ {Ñe(0), ..., Ñe(t), c0, ..., ct}, and the subscript ↵ indicates

a particular lineage. We use a uniform prior on the parameters. The parameters ✓0:T are
inferred by maximizing the likelihood (described below).

The forward algorithm has an analytical form for the simple case of Gaussian transition
and emission probabilities. We use the identity for the product of two normal distributions
N(x, µ, v), where µ is the mean and v is the variance:

N(x, µ1, v1)N(x, µ2, v2) = N(µ1, µ2, v1 + v2)N(x, µ12, v12) (3.14)

µ12(µ1, µ2, v1, v2) =
µ1v2 + µ2v1

v1 + v2
(3.15)

v12(v1, v2) =
1

1
v1

+ 1
v2

. (3.16)
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Solving the forward algorithm recursively, we have

p(�obs

0:T , ✓0:T ) =
TY

i=1

N(�obs

i
, µi,
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4Mi

+ vi) (3.17)
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µi+1 = µ12(µi,�
obs

i
, vi,

ci

4Mi

) (3.21)
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1

4Ñe(t)
. (3.22)

(3.23)

Equation 3.17 can be substituted into Equation 3.13 to obtain the full analytical likelihood
function.

Fitting the model to data

We split the time series data into overlapping periods of 9 Epiweeks, over which the e↵ective
population size is assumed to be constant. We first use the moments of the probability
distributions combined with least squares minimization to get an initial guess for the param-
eters. Then, we perform maximum likelihood estimation using the full likelihood function.
To capture uncertainties that arise from the formation of superlineages from lineages, we
create superlineages randomly 100 times. We infer the strength of measurement noise and
the e↵ective population size for each superlineage combination (described below).

Determining the initial guess for the parameters using method of moments

approach

Combining the transition and emission probabilities, and marginalizing over the hidden states
we have
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The first two terms of i,j are the contribution to the variance from measurement noise at
times i ad j, and the third term is the contribution to the variance from genetic drift.

We calculate the maximum likelihood estimate of i,j, ̂i,j, which is simply the mean
squared displacement

̂i,j =
D
(�obs

j
� �

obs

i
)2
E
. (3.27)

The standard error is given by

�̂i,j =

vuut
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� �
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i2E
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(3.28)

where Z is the number of superlineages.
By looking across all pairs of timepoints i and j, we get a system of linear equations in

i,j that depend on the parameters ct and Ñe(t). To determine the most likely values of the
parameters, we minimize

ln
X

i,j

(̂i,j � Ac)2

�̂i,j

(3.29)

using scipy.optimize.minimize with the L-BFGS-B method and the bounds 1  ct  100 and
1  Ñe(t)  107. While underdispersed measurement noise (ct < 1) is in principle possible,
we constrain ct �1 because realistically, the lowest amount of measurement noise will be
from uniform sampling of sequences.

Maximum likelihood estimation of the parameters

For each set of superlineages, we use the inferred measurement noise values (ct) and inferred
scaled e↵ective population size from above (Ñe(t)) as initial guesses in the maximization
the likelihood function in Equation 3.13 over the parameters. For the optimization, we use
scipy.optimize.minimize scalar with the Bounded method and the bounds 1  ct  100 and
1  Ñe(t)  1011. The inferred Ñe(t) is reported as the Ñe(t) for the midpoint of the 9
Epiweek period. The reported errors on Ñe(t) are the 95% confidence intervals which are
calculated by using the likelihood ratio to get a p-value [2, 53]. We replace the likelihood
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with the profile likelihood, which has the nuisance parameters, in this case c0:T , profiled out:

p > 0.05 (3.30)
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Ñ 0

e
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where I is an indicator function that equals one when the argument is true and zero otherwise,
L

Ñe
(ĉ0:T |~�obs

0:T ) is the profile likelihood with the nuisance parameters (in this case) c0:T profiled

out, P
Ñ 0

e
(ĉ0:T |~�obs

0:T ) is the posterior where we have used a uniform prior. We also tried a
Je↵reys prior which is used for variance parameters, but it gave similar results on simulated
data because it looked relatively flat over the values of Ñe(t) of interest. As the Je↵reys
prior was more computationally expensive than the uniform prior and the two priors gave
similar results, we used the uniform prior for the analyses.

The reported values of ct are the median across all superlineage combinations and across
all time series segments where the timepoint appears. The reported errors on ct are the 95%
confidence intervals as calculated by the middle 95% of values across superlineage combina-
tions and time series segments.

Correcting for the number of sequences assigned to lineages

Because some sequences occur before the cut point in the tree that is used for creating
lineages, they are not included in any lineages. As a result, the number of sequences assigned
to lineages is lower than the number of sequences in the tree. To correct for the bias in
inferred e↵ective population size that results from leaving out sequences from parts of the
tree, we divide the inferred e↵ective population size by the fraction of sequences in the
tree that are assigned to a lineage. We note that while the number of sequences in the
tree is less than the total number of sampled sequences, the sequences in the tree were
chosen to be a representative fraction of the total sampled sequences. Thus, we do not
need to additionally correct for the downsampling of sequences that were included in the
tree. To test that randomly subsampling sequences for the analysis does not a↵ect the
results, we randomly subsampled half of the Delta sequences, and reran the analyses; the
inferred e↵ective population size was very similar to that from the full number of sequences
(Figure 3.S8).
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Simulations

For the model validation, we perform simulations of the lineage trajectories using a discrete
Wright-Fisher model. 500 lineages are seeded initially, and the initial frequency of lineages
is taken to be the same across all lineages. In each subsequent Epiweek, the true number
of counts for a lineage is drawn from a multinomial distribution where the probabilities of
di↵erent outcomes are the true frequencies of the lineages in the previous Epiweek and the
number of experiments is the e↵ective population size. The true frequency is calculated by
dividing the true number of counts by N . The observed counts are drawn from a negative
binomial distribution,

p(nobs

t
|ft) = NB(r, q) ⌘

✓
n
obs

t
+ r � 1

r � 1

◆
q
r(1� q)n

obs
t (3.36)

r =
ftMt

ct � 1
(3.37)

q =
1

ct
(3.38)

which has the same mean and variance as the emission probability in Equation 3.6. The total
number of observed sequences in each timepoint is calculated empirically after the simulation
is completed, as it may not be exactly Mt. The simulation is run for 10 weeks of “burn-in”
time before recording to allow for equilibration. Superlineages are created in the same way
as described above.

For long time series simulations, some lineages will go extinct due to genetic drift, making
it challenging to have su�cient data for the analysis. To be able to have a high enough
number of lineages for the entire time series, we introduce mutations with a small rate
µ = 0.01 per generation per individual.

Calculating the e↵ective population size for an SIR or SEIR model

The e↵ective population size times the generation time in an SIR model is given by Refs. [30,
65]

Ñe(t) ⌘ Ne(t)⌧(t) =
I(t)

2Rt�I
. (3.39)

For an SEIR model, we calculated Ñe(t) following the framework from Ref. [22]. This
was done by considering how the mean number of lineages, A, changes going backwards in
time, s, which is given by

dA

ds
= �fpc (3.40)

where f is the number of transmissions per unit time and pc is the probability that a trans-
mission results in a coalescence being observed in our sample. pc is given by the number
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of ways of choosing two lineages divided by the number of ways of choosing two infectious
individuals

pc =
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2

�
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2
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✓
A(s)

2

◆
2
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where the limit assumes that the number of infectious individuals, N(s), is large. In the
Kingman coalescent we also have
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. (3.42)

Combining Equations 3.40, 3.41, and 3.42, we have

Ñe(t) =
N(s)2

2f
. (3.43)

Thus by determining the number of transmissions per unit time, f , and the number of
infectious individuals, N(s), in an SEIR model, we can find an expression for Ñe(t).

These quantities can be derived from the equations describing the number of susceptible
(S), exposed (E), infectious (I), and recovered (R) individuals in an SEIR model

dS

dt
= ��I

S

NH

(3.44)

dE

dt
=

�IS

NH

� �EE � �EE (3.45)

dI

dt
= �EE � �II � �II (3.46)

dR

dt
= �II (3.47)

where � is the number of transmissions per infectious individual per unit time (the number
of contacts made by an infectious individual per unit time multiplied by the probability that
a contact results in a transmission), NH is the total population size (NH = S +E + I +R),
�E is the rate that an exposed individual becomes infectious, �E is the rate of death for an
exposed individual, �I is the rate than an infectious individual recovers, and �I is the rate
of death for an infectious individual.

The number of infectious individuals in a generation, N(s), is given by the instantaneous
number of infectious individuals plus the number of exposed individuals that will become
infectious in that generation [30]. Thus,

N(s) =
�E

�E + �E
E + I. (3.48)

The number of transmissions per unit time is given by

f = �I
S

NH

. (3.49)
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We rewrite f in terms of the e↵ective reproduction number (for which data are available)
which is given by the number of transmissions per unit time (f) divided by the number of
recoveries and deaths per unit time

Rt =
f

(�I + �I)I + �EE
. (3.50)

Putting everything together, we have that Ñe(t) for an SEIR model is given by

Ñe(t) =

h⇣
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�E+�I

⌘
E + I

i2

2Rt[(�I + �I)I + �EE]
. (3.51)

For SARS-CoV-2, the death rates are much lower than the rate at which exposed individuals
become infectious and the rate at which infectious individuals recover (�E, �I ⌧ �E, �I). In
this limit, Equation 3.51 simplifies to

Ñe(t) =
(E + I)2

2Rt�II
. (3.52)

We use the estimated number of positives from the COVID-19 Infection Survey for I(t).
This number is an estimate of the number of positive individuals in the community as mea-
sured by surveillance and includes both symptomatic and asymptomatic individuals. While
the estimated number of positives does not include cases from hospitals, care homes, and
other communal establishments, community cases likely contribute the most to transmission.
We used the measured e↵ective reproduction number from the UK Health Security Agency
for Rt.

To calculate the number of exposed individuals for the SEIR model, we solved for E in
Equation 3.46 (taking �E ⌧ �E)

E =
1

�E

⇣
dI

dt
+ �II

⌘
. (3.53)

dI

dt
was calculated numerically as I(t+�t)�I(t��t)

2�t
where �t = 1 week. The parameter values

used were ��1
E

= 3 days and �
�1
I

= 5.5 days [41, 27]. The error on E was calculated by taking
the minimum and maximum possible values from the combined error intervals of I(t +�t)
and I(t��t) (note that this does not correspond to a specific confidence interval size).

The error on Ñe(t) for the SEIR model was calculated similarly by taking the minimum
and maximum possible values from the combined error intervals of E, I, and Rt. Only time
points where the error interval of Ñe(t) was less than 3 times the value were kept.

Calculating the e↵ective population size for an SEIR model by

variant

To calculate the e↵ective population size for an SEIR model by variant, we needed to deter-
mine the variant-specific: number of infectious individuals I(t), number of exposed individ-
uals E(t), e↵ective reproduction number Rt, and rate than an infectious individual recovers
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�I . We assumed that �I is constant between variants because we were unable to find liter-
ature studies suggesting otherwise. We calculated the number of infectious individuals I(t)
by multiplying the total number of positives by the fraction of each variant in the reported
sequences. This should be a good representation of the fraction of the variant in the pop-
ulation as the sequences are a random sample of cases detected via surveillance, with the
exception of December 2020 when number of sequenced Alpha cases was downsampled due
to Spike gene target failure which was unknown at the time, and in January 2021 when the
number of Alpha sequences was upsampled to try to make up for unknown downsampling in
the previous month. We calculated the number of variant-specific exposed individuals E(t)
in the same way as described above using the variant-specific number of infectious individ-
uals. We assumed that the rate an exposed individual becomes infectious �E is constant
between variants.

We calculated the variant-specific e↵ective reproduction number by rescaling the mea-
sured e↵ective reproduction number for the whole population

R
v

t
= Rt

R
v

0P
w
R

w

0 f
w

(3.54)

where R
w

0 is the basic reproduction number of the variant w and f
w is the fraction of the

infectious population with variant w. The values of R0 are taken from Ref. [9], and when

rescaled to R
pre�B.1.1.7
0 are R

pre�B.1.1.7
0

R
pre�B.1.1.7
0

= 1, R
Alpha
0

R
pre�B.1.1.7
0

= 1.29, R
Delta
0

R
pre�B.1.1.7
0

= 1.97.

Deme simulations

To better understand the e↵ect of host population structure on the e↵ective population size,
we simulated a simple situation where there are “demes”, or groups, of individuals with very
high rates of transmission between individuals in that deme, but the rate of transmission
between individuals from di↵erent demes is very low. In a given simulation, all demes have
the same number of individuals (10, 50, 100, or 200). The total number of demes is chosen
to be very high (5.6⇥ 106). Initially, a certain number of demes (100, 1000, 2000, or 5000)
are each seeded by a single infectious individual infected by a randomly chosen lineage (200
di↵erent lineages). We simulated deterministic SEIR dynamics within demes with R0 = 10,
�E = (2.5 days)�1, �I = (6.5 days)�1. We simulated Poisson transmission dynamics between
demes. In order to calibrate the overall population dynamics to be roughly in equilibrium
(the number of infectious individuals is not deterministically growing or shrinking), we draw
the number of between-deme infections caused by a given deme from a Poisson distribution
with mean 1. The time of the between-deme infection event is randomly chosen, weighted by
the number of infected individuals within a deme at a given time. The number of infectious
individuals in each lineage is recorded every 1 week, and the frequency of the lineage is
calculated by dividing by the total number of infectious individuals from all lineages in that
week. The lineage frequency data from a period of 9 weeks starting in week 42 is used for the
inference of e↵ective population size. The e↵ective population size inference is performed as
above except in the absence of measurement noise, so there is no emission step.
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3.6 Supplementary information

Summary of existing methods for inferring the strength of genetic

drift

There are currently four main types of methods for estimating the strength of genetic drift
in pathogen transmission, which we summarize here for giving context to this study.

1. Contact tracing can directly measure superspreading by following the close contacts
of infected individuals to measure the distribution of the number of secondary cases
(the o↵spring number distribution) [35]. However, some secondary cases may be missed
which can lead to measurement bias. Additionally, it is challenging to trace multiple
generations of transmission, so we miss important information on host contact network
structure.

2. Another type of method fits disease prevalence over time to branching process mod-

els [19]. These models assume a particular distribution for the o↵spring number dis-
tribution (often a negative binomial distribution) and estimate the combination of
parameters of the o↵spring number distribution along with growth rate that best fit
the observed disease prevalence. External information about the growth rate can be
used to constrain the parameters of the o↵spring number distribution.

3. Phylogenetics methods arrange genomics sequences into a tree based on genomic
distance and either measure the distribution of lineage sizes (number of sequences in
di↵erent parts of the tree) [17] or fit the rate at which branches in the tree coalescence
to determine the e↵ective population size [56, 47, 64, 28]. The e↵ective population
size is the population size that would reproduce the observed population dynamics
under the idealized conditions of Wright-Fisher dynamics (discrete non- overlapping
generations, a constant population size, and o↵spring determined by sampling with
replacement from the previous generation). A lower e↵ective population size indicates
a higher level of genetic drift.

4. Time series frequency methods make use of a signature that genetic drift leaves in
time series data, which is that it causes fluctuations in the lineage abundances. Higher
amounts of genetic drift (lower e↵ective population size) lead to larger fluctuations,
and the magnitude of the fluctuations can be fit to determine the e↵ective population
size [67] (Figure 3.1a). Time series methods have also been used extensively in pop-
ulation genetics [7, 21, 20, 8, 57, 66] and to estimate within-host e↵ective population
size [36] and between-host transmission bottleneck sizes [55].

Application to COG-UK data by regions in England

The inference of e↵ective population size can also reveal information about the well-mixed
or spatially-structured nature of transmission dynamics within England. This can be done
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Figure 3.S1: Inferred e↵ective population size in regions of England. (Top panels) Inferred
Ñe(t) of pre-B.1.177 lineages, B.1.177, Alpha, and Delta for each region of England. The
inferred Ñe(t) for England as a whole is shown for reference. (Bottom panels) The ratio
between the inferred Ñe(t) of England and that of the region for each variant. A horizontal
dashed line indicates a ratio of 1 (i.e. Ñe(t) is the same in that region of England and
England as a whole). Shaded regions show 95% confidence intervals (see Methods).

by inferring e↵ective population size at smaller geographical scales within England. If the
transmission dynamics were completely well-mixed, then we would expect Ñe(t) to be the
same across regions and compared to England. On the other hand, if the transmission
dynamics were completely spatially segregated (i.e. transmission only occurs within the
defined geographical areas, but not between them) and the dynamics were the same in each
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region, we would expect that the ratio Ñe

SEIR
(t)/Ñe

inf
(t) to be the same across regions.

The geographical areas that we used were the 9 regions of England: East Midlands, East
of England, London, North East, North West, South East, South West, West Midlands,
and Yorkshire and The Humber. We looked at sequences from each region, repeating the
analysis described above, and inferred the scaled e↵ective population size (Figure 3.S1). In
all regions, we observe a lower Ñe(t) for Delta in the region than in England, by a factor of
up to 15. In some regions, the Ñe(t) for Alpha is lower in the regions than in England. For
B.1.177 and and lineages pre-B.1.177, in some regions and timepoints the inferred Ñe(t) is
lower in the region than in England, but for most timepoints the inferred values are very
noisy due to there being fewer sequences at the regional level. These results suggest that
the dynamics are not well-mixed during the Alpha and Delta waves.

The calculated SEIR model Ñe

SEIR
(t) was too noisy to be used for comparison with the

inferred Ñe(t). Instead, we compared the inferred Ñe(t) to the number of positive individuals

in each region which is similar to the SEIR Ñe

SEIR
(t) when Rt ⇡ 1 as it is in England

(Figure 3.S10). In most cases the number of positives was 1-2 orders of magnitude higher
than the inferred Ñe(t), suggesting high levels of genetic drift. The ratios of the number of
positives to the inferred Ñe(t) in the regions were similar to one another and to that seen in
England as a whole, suggesting that the dynamics are spatially-structured.

Similarly to in England as a whole, the inferred measurement noise in each region for
Alpha and Delta tended to be high when the variant first emerged (Figure 3.S11), but unlike
for England as a whole, the measurement noise in each region for pre-B.1.177 lineages was
low when the lineage first emerged. The exceptions where London and North West where the
measurement noise was indistinguishable from uniform sampling in general. This may be due
to better sequencing e↵orts in these two regions, as they have a higher population size. For
the other regions at other times, the measurement noise was in general indistinguishable from
uniform sampling of sequences except from in a few timepoints. The inability to distinguish
the strength of sampling noise in most time points from that of uniform sampling is partly
due to the large error which results from there being fewer sequences at the regional level.
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Additional supplementary figures

Table 3.S1: Overdispersion values from the literature or-
dered from highest to lowest. Any error intervals that are
reported are taken from the reference (sometimes defined
di↵erently). The estimate taken from Ref. [48] assumes
no self-isolation upon symptom onset and no testing; lift-
ing these assumptions leads to similar or lower overdis-
persion.

Date Location Method hZi Var(Z) Ref.

Beginning
of pan-
demic to
February
27 2020

Worldwide
excluding
China

Branching pro-
cess model of
number of im-
ported and local
cases

2.5 (, ) 65 (33.75, 127.5) [19]

March 1
to May 3
2020

Georgia
(USA)

Spatiotemporal
transmission
model fit to
multiple data
sources

2 (0.5, 3.5) 12.26 (0.88, 101.5) [33]

March 1 to
November
1 2020

Denmark Model fitting the
case numbers
across multiple
regions

1.1 (0.8, 1.4) 12.1 (4.36, 25.9) [29]

Beginning
of pan-
demic
until Jan-
uary 18
2020

China
(Wuhan)

Stochastic simu-
lations fit to in-
fected cases

2.2 (1.4, 3.8) 11.16 (1.68, 1035.2) [52]

August to
September
2020

UK Model using em-
pirical viral load
trajectories and
contact numbers

1.21 (0.84, 2.51) 7.07 (2.65, 44.51) [48]

May 15 to
August 1
2020

Tamil
Nadu and
Andhra
Pradesh
(India)

Contact tracing
and incidence

1.25 (1.1, 1.4) 4.31 (3.43, 5.4) [34]
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January to
February
2021

UK Model using em-
pirical viral load
trajectories and
contact numbers

0.54 (0.4, 1.03) 1.42 (0.66, 9.19) [48]

January 23
to April 28
2020

Hong
Kong

Contact tracing 0.58 (, ) 1.36 (, ) [1]

January 16
to April 3
2020

Hunan
(China)

Contact tracing 0.4 (0.35, 0.47) 0.93 (0.66, 1.43) [58]

January 14
to Febru-
ary 12
2020

Shenzhen
(China)

Contact tracing 0.4 (0.3, 0.5) 0.68 (0.38, 1.21) [6]
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Figure 3.S2: The fraction of simulations (20 total) where the inferred 95% confidence interval
for Ñe(t) or c included the true value (left) by timepoint and (right) for all timepoints. (Right)
Boxes indicate the quartiles and the line inside the box (and number above) indicates the
median. Whiskers indicate the extreme values excluding outliers. Simulation parameters are
specified in the Methods and Figure 3.1.
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Figure 3.S3: Wright-Fisher simulations where Ñe(t) changes over time according to a rect-
angular function, and the inferred Ñe(t) and ct. (a) Number of sequences sampled. (b)
Simulated lineage frequency trajectories. (c) Inferred e↵ective population size (Ñe(t)) on
simulated data compared to true values. (d) Inferred measurement noise (ct) on simulated
data compared to true values. In (c) the shaded region shows the 95% confidence interval
calculated using the posterior, and in (d) the shaded region shows the 95% confidence inter-
val calculated using bootstrapping (see Methods).
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Figure 3.S4: Wright-Fisher simulations where Ñe(t) is constant over time, and the inferred
Ñe(t) and ct. (a) Number of sequences sampled. (b) Simulated lineage frequency trajectories.
(c) Inferred e↵ective population size (Ñe(t)) on simulated data compared to true values. (d)
Inferred measurement noise (ct) on simulated data compared to true values. In (c) the
shaded region shows the 95% confidence interval calculated using the posterior, and in (d)
the shaded region shows the 95% confidence interval calculated using bootstrapping (see
Methods).
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Figure 3.S5: Sample epiweeks versus tree depths. In a phylogenetic tree, the number of
sequences (leaf nodes) of a focal variant that fall within specific epiweek and tree depth
ranges is counted and summarized as a two-dimensional histogram. The tree depth is the
substitution rate measured in units of substitutions per site, with respect to the most recent
common ancestor. From left to right, the phylogenetic tree (specified by date) and focal
variant are {2021-02-22, B-1-177}, {2021-06-01, Alpha}, {2021-06-20, Alpha}, and {2022-
01-25, Delta}. Weeks are counted from 2019-12-29. The dashed horizontal lines indicate the

values of dcut (d
(1)
cut and d

(2)
cut for the Delta variant) used for the results presented in the main

text.
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Figure 3.S6: Total number of sequences of each variant in the metadata from COG-UK
downloaded on January 16, 2022 and the number of sequences used in the analysis for each
variant or group of lineages (determined by the number of sequences included in the tree, and
the number of sequences which could be grouped into sublineages based on the procedure
described in the Methods).
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Figure 3.S7: Varying the date of the tree downloaded from COG-UK and the depth at which
the tree is cut for creating lineages (dcut, see Methods) does not substantially change the
inferred scaled e↵ective population size. The the tree date and depth used in the main text
are {2021-02-22, B.1.177, dcut = 2.323 · 10�2

}, {2021-06-20, Alpha, dcut = 2.054 · 10�3
},

{2022-01-25, Delta, d(1)cut = 1.687 · 10�3, d(2)cut = 1.954 · 10�3
}. The color of the lines for the

parameters that were used in the main text are the same as those shown in Figure 3.2.

Figure 3.S8: Randomly subsampling half of the Delta sequences used for the analysis does
not substantially change the inferred scaled e↵ective population size.
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Figure 3.S9: Inferred scaled e↵ective population size compared to the SEIR model scaled
population size calculated using the observed number of positive individuals in England (see
Methods).
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Figure 3.S10: Inferred scaled e↵ective population size by region in England, compared to
number of positives at the community level in that region reported by the COVID-19 Infec-
tion Survey [62].
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Figure 3.S11: Inferred measurement noise by region in England.
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Figure 3.S12: Simulations of deme structure (described in main text and Methods). (a) The
mean number of infected individuals per week from Weeks 42 to 50. (b) The inferred Ñe(t)
using lineage trajectories from Weeks 42 to 50.
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[45] Á. O’Toole, E. Scher, A. Underwood, B. Jackson, V. Hill, J. T. McCrone, R. Colquhoun,
C. Ruis, K. Abu-Dahab, B. Taylor, et al. Assignment of epidemiological lineages in an
emerging pandemic using the pangolin tool. Virus Evolution, 7(2):veab064, 2021.

[46] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epidemic
processes in complex networks. Reviews of Modern Physics, 87(3):925, 2015.

[47] O. G. Pybus, A. Rambaut, and P. H. Harvey. An integrated framework for the inference
of viral population history from reconstructed genealogies. Genetics, 155(3):1429–1437,
2000.

[48] B. J. Quilty, L. A. Chapman, K. L. Wong, A. Gimma, S. Pickering, S. JD, R. P. G.
Neil, C. I. Jarvis, and A. J. Kucharski. Reconstructing the secondary case distribution
of SARS-CoV-2 from heterogeneity in viral load trajectories and social contacts. Report
for SPI-M-O and SAGE, 2021.



CHAPTER 3. GENETIC DRIFT OF SARS-COV-2 TRANSMISSION 120

[49] M. Ragonnet-Cronin, O. Boyd, L. Geidelberg, D. Jorgensen, F. F. Nascimento,
I. Siveroni, R. A. Johnson, M. Baguelin, Z. M. Cucunubá, E. Jauneikaite, et al. Ge-
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Chapter 4

Conclusion

The experimental and computational methods developed in this thesis allow us to infer the
strength of genetic drift in a wider variety of settings. We developed a method to infer the
strength of genetic drift in higher throughput in laboratory experiments of microbial range
expansions. Using this method, we were able to test a fundamental question about genetic
drift - how much variation in the strength of genetic drift results from random mutations?
- as well as to study the phenotpyic and genetic determinants of genetic drift in range
expansions. We found that single mutations can substantially change the strength of genetic
drift and a↵ect downstream evolution, suggesting that genetic drift can be an evolvable trait
of a population. Additionally, we found that phenotypic traits that are emergent at the
population level (such as colony shape, colony size, etc.) can explain most of the variation
in genetic drift across genotypes.

We also developed a method to infer the strength of genetic drift while correcting for
measurement noise using lineage frequency time-series data. Our method overcomes an im-
portant limitation of existing inference methods for genetic drift, which is the assumption
of uniform sampling of data from the population. This method has allowed us to infer
the strength of genetic drift in complex real-world data such as SARS-CoV-2 transmission
dynamics in England. We find the levels of genetic drift in SARS-CoV-2 transmission in
England are substantially higher than expected from the number of people infected with
SARS-CoV-2 at the community level, even after correcting for measurement noise overdis-
persion and epidemiological dynamics. The levels of genetic drift that we detect are higher
than estimates of superspreading from the literature. We find that a deme model of host
contact structure can generate a high level of genetic drift even in the absence of superspread-
ing. Our results suggest that further studies on heterogeneous host contact structures may
be important for understanding the high levels of genetic drift observed for SARS-CoV-2
transmission in England.
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4.1 Avenues for future work

Genetic drift as a potentially evolvable trait

There are many open questions and exciting avenues for future work. We have discovered that
random mutations can substantially a↵ect the strength of genetic drift in spatially-structured
microbial colonies; while spatial-structured populations are very common in nature, it would
also be interesting to study well-mixed populations, which also exist in nature and are more
commonly used in microbial evolution experiments. For example, the E. coli Long Term
Evolution Experiment (LTEE) is a well-mixed evolution experiment that has been running
for over 70,000 generations, and has been extensively studied [4]. By studying how mutations
a↵ect genetic drift in well-mixed culture, we would be able to test whether genetic drift can
evolve over time in the LTEE. If mutations do change genetic drift in well-mixed culture,
what physiological changes lead to those changes? Some hypotheses are single cell lag time
variation, death rate variation, and cell size variation.

Additionally, what are the consequences of genetic drift being an evolvable trait for
evolutionary dynamics? Future theoretical work can explore how mutations that a↵ect ge-
netic drift (“drift modifiers”) a↵ect evolutionary dynamics in both well-mixed and spatially-
structured populations. Relatedly, under what conditions would the drift modifiers that
arise be sustained in the population? The evolutionary consequences of drift modifiers may
be similar to (but not the same as) that of mutatators, which are mutations that change
the mutation rate. Previous work has studied how mutators a↵ect the rate of adaptation in
well-mixed culture [1], which would be a helpful starting point for theoretical work on drift
modifiers.

In our experiments, we focus on populations composed of a single genotype; however, most
natural populations are composed of many genotypes that may have di↵erent phenotypic
traits. What is the e↵ect of drift modifiers in a population with many genotypes (with
potentially di↵erent drift and fitness e↵ects)? Relatedly, how do drift modifiers behave in a
population with ecological dynamics in addition to evolutionary dynamics? These questions
would be interesting to study using both theoretical and experimental approaches.

How do these processes change in microbial populations with more complex spatial struc-
ture [2]? For instance, biofilms have been shown to exhibit wrinkles, channels, delaminations,
and streamers [5]. These higher-order structures may have interesting consequences for mul-
tiple evolutionary processes. New experimental methods may need to be developed to better
understand evolution in biofilms, which are challenging to image with microscopy because
they are often thick and opaque.

Genetic drift in pathogen transmission

In our analysis of genetic drift in pathogen transmission, we focused on SARS-CoV-2 in
England because of the large number of available genomes. However, other countries such
as the United States and Denmark have also collected a large number of genomes. It would
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be interesting to apply the inference method developed in this thesis to study SARS-CoV-2
transmission in other countries and compare them to one another. Data from other countries
that don’t have as widespread of sequencing e↵orts may exhibit higher levels of measurement
noise overdispersion than we observe in England; thus, the ability to correct for measurement
noise overdispersion may be even more important for obtaining an unbiased measurement
of the strength of genetic drift. It would also be interesting to apply the method developed
here to study other pathogens with large amounts of genomic data, such as influenza.

In addition, our model of genetic drift in SARS-CoV-2 transmission only included genetic
drift and measurement noise; in reality, other evolutionary and non-evolutionary processes
are also occurring, such as natural selection, migration, mutation, recombination, and human
behavioral changes. It will be interesting and important for future models to investigate the
importance of these other processes to the observed population dynamics, and to incorporate
them into inference models accordingly.

In our study, we focus on lineage frequency time series, but phylogenetic methods are
highly developed and commonly used for studying pathogen dynamics. As both methods
have their own benefits and drawbacks, future theoretical work should consider how to inte-
grate these two types of methods when appropriate. For instance, how does the measurement
noise parameter that we estimate in the lineage frequency time series method relate to the
sampling parameter input that is used in phylogenetic birth-death models [7]? In this way,
we can begin to leverage the benefits of both types of models to better understand pathogen
dynamics, building on work that has already begun to tackle this challenge [3, 6].
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