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ABSTRACT OF THE DISSERTATION

Methods for Estimating Causal Effects for Multivariate Continuous Exposure

by

Justin Randall Williams

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2020

Professor Catherine M. Crespi, Chair

The generalized propensity score (GPS) is an extension of the propensity score for use with

quantitative or continuous exposures (e.g., dose of medication or years of education). Current

GPS methods allow estimation of the dose-response relationship between a single continuous

exposure and an outcome. However, in many real-world settings, there are multiple expo-

sures occurring simultaneously that could be causally related to the outcome. We propose a

multivariate GPS method (mvGPS) that allows estimation of a dose-response surface that

relates the joint distribution of multiple continuous exposure variables to an outcome. The

method involves generating weights under a multivariate normality assumption on the ex-

posure variables. Focusing on scenarios with two exposure variables, we show via simulation

that the mvGPS method can achieve balance across sets of confounders that may differ for

different exposure variables and reduces bias of the treatment-effect estimates under a vari-

ety of data generating scenarios. We apply the mvGPS method to an analysis of the joint

effect of two types of intervention strategies to reduce childhood obesity rates. The methods

can be implemented using the mvGPS R package available on CRAN.
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CHAPTER 1

Introduction

The gold standard for estimating the causal relationship between an exposure and outcome

is to directly manipulate the exposure levels that subjects receive through random assign-

ment. Randomization can lead to unbiased estimates of the treatment effects by balancing

comparison groups on both known and unknown confounders. However, it is often unre-

alistic or unethical to randomize treatment assignment. Interest often lies in estimating

causal effects from observational studies where exposure levels are not assigned by the inves-

tigator. This creates challenges because the exposed population may systematically differ

from the unexposed population on factors related to the outcome being measured, inducing

confounding.

Regression adjustment is often used to correct for potential confounding. An alternative

method that has become increasingly popular in fields such as economics, social science,

policy evaluation, and many others is the propensity score method [Guo and Fraser, 2014].

The propensity score method to estimate causal effects in a non-randomized experiment was

first introduced by Rosenbaum and Rubin [1983]. For a binary exposure, the propensity score

is the probability that a subject receives exposure given their values of potential confounders.

Using the data on exposure status and values of potential confounders, the propensity score

can be estimated for both exposed and unexposed subjects. The estimated propensity score

is then used to remove bias in estimation of the causal effect by comparing participants with

similar propensities to receive exposure but different observed exposure values.

The first propensity score methods were developed for the setting in which there are
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only two treatment levels, i.e., exposed versus control. Methods were subsequently extended

to categorical, or multiple, treatments, which introduced the term “generalized propensity

score” (GPS) [Imbens, 2000]. In the context of a categorical treatment variable, the GPS

corresponds to the conditional probability of receiving a particular treatment given a set of

confounders. Following the extension to categorical treatments, the GPS was adapted to

the setting of continuous exposures via the use of conditional densities [Hirano and Imbens,

2004; Imai and Van Dyk, 2004].

Originally, the GPS for continuous exposures was estimated using Gaussian densities,

with adjustment for confounding accomplished through either covariate regression [Hirano

and Imbens, 2004] or stratification [Imai and Van Dyk, 2004]. In this setting, the GPS cor-

responds to the value of the probability density function (pdf) given the covariates. Several

recent methods have aimed at increasing flexibility for estimating the GPS by using gradient

boosting [Zhu et al., 2015], kernel smoothing [Flores et al., 2012; Kennedy et al., 2017], or

ensemble algorithms [Kreif et al., 2015]. Other methods focus on simultaneously incorpo-

rating covariate balancing properties while estimating the GPS with a penalized likelihood

or empirical likelihood approach [Fong et al., 2018] or constrained optimization on the en-

tropy of weights constructed from the GPS [Tübbicke, 2020; Vegetabile et al., 2020]. All of

these methods have maintained the assumption that the exposure is univariate, i.e., a single

continuous treatment variable. Methods to accommodate multiple simultaneous treatment

exposures have been only briefly mentioned in the literature [Imai and Van Dyk, 2004].

There are many situations in which evaluating the combined effect of multiple simul-

taneous exposures is critical to answering scientific questions. In medicine, combination

therapies, which involve the patient taking several medications simultaneously, have been

shown to be effective for treating many health conditions, such as Crohn’s disease [Colombel

et al., 2010], cancer [Jain, 2001], hypertension [Gradman et al., 2010], and HIV [Perelson

et al., 1997]. Typical methods for estimation of the dose response surface for combination

treatments requires careful design with repeated randomized experiments in order to esti-
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mate the optimal combination of treatment doses [Khuri and Mukhopadhyay, 2010]. When

such experimentation is not feasible, researchers may wish to use available data from ob-

servational or non-randomized studies to estimate the joint effects. For example, there is

currently interest in studying potential combination therapies for COVID-19 using available

data from non-randomized studies. However, determining a potentially beneficial dose of

several medications may be complicated due to confounding by patient demographic charac-

teristics, comorbities or other factors as well as due to potential interaction effects [Gautret

et al., 2020a,b; Sanders et al., 2020; Stebbing et al., 2020].

We develop methods to estimate the causal effects of multiple continuous exposures oc-

curring simultaneously, using data from a study in which treatment levels were not randomly

assigned. We develop a general framework for estimating the causal effects of a multivariate

exposure of arbitrary dimension, but focus on bivariate exposures in our simulations and

motivating example. The primary objective is precision in estimation of the dose-response

surface of the average outcome given a particular combination of exposure values. We propose

methods for estimating weights using a multivariate generalized propensity score, which we

call mvGPS, and use weighted regression to estimate the dose-response surface. Our methods

rely on the assumption that the exposure variables have a multivariate normal distribution.

In Chapter 2 we introduce our motivating example, which involves assessing the joint

effects of two types of intervention strategies for reducing childhood obesity rates in Los

Angeles County. Chapter 3 summarizes the current framework and methods for causal

inference with observational data using propensity scores when treatment is binary or cate-

gorical. Chapter 4 presents initial GPS methods along with an expanded discussion of recent

extensions and adaptions. Chapter 5 develops the method of causal inference with multi-

ple simultaneous continuous exposures using the multivariate generalized propensity score.

Chapter 6 presents a simulation study designed to highlight strengths and limitations of the

methodology. Chapter 7 applies the proposed methods to our motivating example involv-

ing the reduction in childhood obesity rates from macro and micro intervention strategies.

3



Finally Chapter 8 concludes with a discussion.
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CHAPTER 2

Motivating Example

Obesity rates among low-income preschool-aged children in Los Angeles County were con-

sistently higher than the national average for similar aged children in 2003-2009, with about

20% of such children classified as obese (BMI ≥ 30 kg/m2) [PHFE WIC, 2010]. In response,

several organizations, including Los Angeles County Department of Public Health, First 5

LA, Nemours, and the Special Supplemental Nutrition Program for Women, Infants and

Children (WIC), implemented programs and policies aimed at reducing childhood obesity

in the county. The interventions used a wide variety of different approaches and reflected a

large investment of resources.

The Early Childhood Obesity Systems Science (ECOSyS) study, funded by National

Institute of Health R01 HD072296, sought to evaluate the impact of these programs on

childhood obesity prevalence. To this end, ECOSyS collected information on the nature,

timing, location and reach of programs implemented in the county in 2003-2016. The re-

search team also developed a method of calculating a “community intervention dose index”

that aggregates exposure to childhood obesity interventions over multiple different programs

[Wang et al., 2018]. The community intervention dose index is calculated using a multi-step

procedure. Each program is coded to location and year of implementation, extent of reach

into the target population, and which of nine different intervention strategies it used. The

nine strategies are listed in Table 1, presented as part of a group of tables and figures begin-

ning on page 57. The strategies are categorized as “micro” strategies, which target specific

individuals, or “macro” strategies, which target a population at large. By aggregating over
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the strategies implemented in a particular location during a particular year, strategy-specific

as well as total micro and macro intervention dose indices can be calculated. Rather than

estimating the joint effect of the nine individual intervention strategies, interest centered

around understanding the joint effect of different levels of macro and micro interventions. It

is sometimes hypothesized that micro and macro interventions can have synergistic effects;

for example, nutrition education targeting individuals might be more effective when com-

bined with programs increasing the availability of healthy foods in retail stores [Wang et al.,

2018]. Collapsing to two exposure types also reduced the dimension of the exposures while

protecting against low frequency strategies creating sparse high dimensional regions.

We focus on intervention exposures stemming from WIC programs. WIC serves low-

income families and has seven agencies within Los Angeles County with approximately 90

clinics. In 2018, WIC served approximately half of all children under age 5 in Los Angeles

County. While WIC offers many regular services, primarily food assistance and nutrition ed-

ucation that are uniform from clinic to clinic, WIC agencies can also receive additional fund-

ing to implement intervention programs. These programs are implemented non-randomly at

clinics due to differences in community needs and other considerations. Our motivating ex-

ample focuses on WIC intervention programs implemented in 2010-2016, given that a major

change in the WIC food package occurred in 2009 that may have altered family behaviors

and neighborhood food environments [Hillier et al., 2012; US Department of Agriculture,

Food and Nutrition Service, 2014].

A total of 32 WIC intervention programs implemented in Los Angeles County from 2010-

2016 were cataloged by the ECOSyS research team. Information about each program was

obtained, including how it was implemented, the estimated reach in terms of client partici-

pation, which clinics participated, and how long the program was active. These exposures

were mapped to census tracts where WIC participating children live by identifying the im-

plementing WIC clinics and then defining a catchment area around the clinic intended to

capture the exposed population. Catchment areas were defined for each clinic using records
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of client attendance, and varied by strategy type (macro versus micro). Children living in

census tracts that fell within a catchment area were potentially exposed. Exposure values

at census tracts were then aggregated across programs by strategy and by year to obtain a

single continuous dose for each of the nine intervention strategies. Strategy-specific doses

were then summed into macro and micro intervention doses, which were log transformed due

to skewness. For additional details about the process of constructing the continuous doses,

see Appendix A.

Figure 1 on page 63 shows the resultant joint distribution of macro and micro intervention

dose for the WIC intervention programs averaged over our defined intervention period, 2010-

2016. Each point in the figure represents a census tract. WIC-participating children residing

in a particular census tract were presumed to receive the calculated doses.

The outcome of interest was change in census tract-level childhood obesity prevalence.

Childhood obesity prevalence was measured using administrative records from children ages

2-5 years who participated in WIC in Los Angeles County during 2007-2016, compiled by

the WIC Data Mining Project, see https://lawicdata.org for more details. From these

records, obesity prevalence by census tract and year was constructed for census tracts with at

least 30 WIC-enrolled children. Census tracts used in the analysis were restricted to 8 regions

within Los Angeles County that were targeted as part of the ECOSyS data collection effort.

This resulted in a total of n = 1079 census tracts which serve as the units of analysis shown

in Figure 2 on page 64. The outcome of interest, Y , was the difference in average obesity

prevalence between post, 2012-2016, and pre, 2007-2009, intervention, i.e., Y = p̄post − p̄pre.

The post intervention period was taken to start in 2012 rather than 2010 to account for

potential lag in treatment effects.

We aimed to estimate the dose-response surface of Y, change in childhood obesity preva-

lence, associated with combinations of macro and micro intervention exposure doses, after

removing bias due to non-random assignment of programs. Understanding the simultaneous

effect of macro and micro intervention strategy exposures is important to help policy makers

7
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make decisions about the allocation of scarce resources to various intervention strategies

[Rosenkranz and Dzewaltowski, 2008].
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CHAPTER 3

Background

3.1 Potential Outcomes Framework

In Chapter 1, the definition of treatment was left explicitly broad, but it is important to

distinguish between conditions that are treatments, which allow for causal effect estimation,

and those which are attributes. The distinction is formalized by Holland [1986], where

attributes are defined as properties or characteristics that do not have the potential for

exposure for each unit in the population, while treatments have this potential for exposure.

For variables like gender or race, it is not clear how units would be potentially exposed

to different values. For example when testing the effect of gender on the probability of being

promoted, would the gender of an applicant be changed from male to female on a resume,

would two genetically identical clients who differ only in terms of gender be presented at

an interview, or would this aim to test some other type of gender related difference? In

Greiner and Rubin [2011], the authors propose an argument for re-framing causal questions

of immutable traits to the perception of the trait rather than the actual trait itself. In this

way investigators may construct well defined causal quantities and effects to answer questions

such as whether a victim’s race affects the jury’s decision to impose the death penalty or

life imprisonment when no member of a victim’s family takes the witness stand. Clearly

this type of causal inquiry for attributes like gender or race are not straightforward to define

or test. On the other hand, treatments are typically thought of in the setting of classic

scientific experiments that systematically manipulate treatment assignment and observe its
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effect while maintaining all other variables constant to test a hypothesis of interest. For

instance, investigators can randomize which mice receive a new drug to test for efficacy in

an animal model. By using randomization to assign treatment status, each mouse has the

potential to receive the test drug and therefore any differences observed are due to the drug

itself.

Recently in Pearl and Mackenzie [2018], the authors have re-framed the argument of

defining causal questions within a structure referred to as the ladder of causation. At the

lowest rung are relationships that rely on seeing and observing that can be used to deter-

mining if two events are associated. Examples at this rung include questions like: “How

likely is the pitcher to throw a fastball in an 0-2 count?” The middle rung the questions

shift from observing to doing where some type of intervention must take place rather than

passively collecting data. For instance if we ask: “How many more walks would a batter have

if they never swung at the first pitch?” The final rung in the ladder requires imagining as

we aim to compare the observed world to a fictitious alternative world. In this case we may

ask:“If the batter had not swung at the first pitch, what is the probability they would have

walked in that at bat?” While Holland made a clear distinction based on the potential of a

unit to be exposed, Pearl and Mackenzie take this further by separating interventions and

hypothetical experiments that aim to answer “what-if” questions. Both interventions and

these hypothetical experiments must have units with the potential for exposure, but it is the

latter which rely on causal methodology to frame and model that which is not observable.

While advances in data mining and deep learning can more accurately answer questions in

rung one and two, only causal models are able to encode knowledge about the structural

relationship and maintain this ability when transferred to novel environments. The authors

talk of the age of causal revolution beginning as we aim to move towards answering the

questions of why events happen, but we must first begin by returning to Holland’s initial

distinction and clearly defining what it means to have the potential for exposure.

The idea of potential exposure is crucial in the Neyman-Rubin causal model. Neyman

10



[1923] is credited as the first author to introduce the potential outcome notation, albeit in

the context of a completely randomized experiment for agricultural studies in his Ph.D. the-

sis. For a population of units, k = 1, . . . ,m, and treatments, i = 1, . . . , ν, Neyman used the

double index notation to denote the potential crop yield for the kth plot exposed to the ith

treatment as Uik. By using this formulation, Neyman laid the groundwork for a novel proba-

bilistic model that would be generalizable beyond the simple case of complete randomization.

Recently, the double index notation for potential outcomes has been usurped by defining the

potential outcome using parentheses, i.e., Yk(i) would represent the ith potential outcome

for unit k. Bridging the gap to the nonrandomized experiment, Rubin [1974] showed that

while randomized experiments were superior for estimating causal effects, it was possible to

use nonrandomized data to estimate causal effects. Holland [1986] discusses the philosophi-

cal implications for this combined framework which lead to the term Neyman-Rubin causal

model, or sometimes simply the Rubin causal model.

We first introduce the Neyman-Rubin causal model in the case of a binary treatment. For

a binary treatment, each unit has two potential outcomes, but only one potential outcome

is observable. If unit i receives treatment then the outcome Yi(1) is observed, and Yi(0)

is unobserved. Likewise, if unit i instead received no treatment then the outcome Yi(0) is

observed and Yi(1) is unobserved. We can define the observed outcome Yi using an indicator

variable Di where Di = 1 if unit i received treatment and 0 otherwise,

Yi = DiYi(1) + (1−Di)Yi(0). (3.1.1)

In any setting we only observe the values Yi and Di. This inability to simultaneously observe

both potential outcomes, Yi(0) and Yi(1), for unit i is what Holland deemed “the fundamental

problem of causal inference”.

To address this problem, we can first think of a randomized experiment. In a ran-

domized experiment, treatment assignment is independent of the potential outcomes, i.e.,

{(Yi(0), Yi(1))⊥⊥Di}. Hence, the expected potential outcomes are the same regardless of
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treatment assignment,

E[Yi(0) | Di = 0] = E[Yi(0) | Di = 1] E[Yi(1) | Di = 1] = E[Yi(1) | Di = 0]. (3.1.2)

This independence of potential outcomes and treatment assignment lays the framework

for estimating causal effects. One causal outcome of interest is the population average

treatment effect (PATE), defined as

PATE = E[Yi(1)]− E[Yi(0)],

=
(
π E[Yi(1) | Di = 1] + (1− π)E[Yi(1) | Di = 0]

)
−
(
(1− π)E[Yi(0) | Di = 0] + π E[Yi(0) | Di = 1]

)
,

= π
(
E[Yi(1) | Di = 1]− E[Yi(0) | Di = 1]

)
+ (1− π)

(
E[Yi(1) | Di = 0]− E[Yi(0) | Di = 0]

)
,

(3.1.3)

where π is the proportion of the population assigned to the treatment group, i.e. Pr(D =

1). This quantity answers the question of what the difference in the outcome would be if

the entire population received exposure versus no one receiving exposure. An alternative

commonly used causal outcome is the population average treatment effect on the treated

(PATT), defined as

PATT = E[Yi(1) | Di = 1]− E[Yi(0) | Di = 1], (3.1.4)

which requires only the first part of Equation 3.1.2 to hold as discussed in Guo and Fraser

[2014]. The PATT summarizes the effect of taking away treatment from those who received

it. The final potential quantity of interest is the population average treatment effect on the

controls (PATC), defined as

PATC = E[Yi(1) | Di = 0]− E[Yi(0) | Di = 0]. (3.1.5)

The PATC described the effect of adding treatment for subjects who did not receive it. From

Equation 3.1.3 we can see that the PATE is simply a weighted sum of the PATT and PATC.
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Note that these quantities will sometimes be referred to as SATE, SATT, or SATC where

“S” represent sample as they are interpreted conditional on the sample data. We shall focus

on estimands for PATE, but similar results can be shown for PATT or PATC.

As a first choice in estimating PATE, define the average treatment effect, τ , as the

difference between the average outcome of those who received treatment and those who did

not,

τ = E[Yi(1) | Di = 1]− E[Yi(0) | Di = 0]. (3.1.6)

Independence of the exposure and outcome is a sufficient condition for τ to provide a con-

sistent estimate of the PATE using Equation 3.1.2:

PATE = E[Yi(1)]− E[Yi(0)](
π E[Yi(1) | Di = 1] + (1− π)E[Yi(1) | Di = 0]

)
−
(
(1− π)E[Yi(0) | Di = 0] + π E[Yi(0) | Di = 1]

)
,

=
(
π E[Yi(1) | Di = 1] + (1− π)E[Yi(1) | Di = 1]

)
−
(
(1− π)E[Yi(0) | Di = 0] + π E[Yi(0) | Di = 0]

)
,

= E[Yi(1) | Di = 1]− E[Yi(0) | Di = 0]

= τ.

The sample average treatment effect (SATE),

τ̂ =
1

n1

n1∑
i=1

Diyi +
1

n0

n0∑
i=1

(1−Di)yi, (3.1.7)

is therefore a consistent and unbiased estimator of the PATE when independence holds. How-

ever, in nonrandomized experiments, Equation 3.1.2 is invalid. In the absence of randomiza-

tion, treatment assignment may be associated with confounders for the outcome leading to

inferential issues when interpreting the treatment effect. Is the observed difference between

the treatment group due to the treatment alone or is this effect clouded by a confounding

variable associated with treatment status and the outcome? To remedy this situation, we

can use propensity score methods.
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3.2 Propensity Score Methodology

In order to estimate the treatment effect in situations where treatment assignment is non-

randomized, an investigator needs to address potential confounders that are associated with

the treatment assignment and the outcome of interest. One solution is the propensity score

methodology developed by Rosenbaum and Rubin [1983], which outlined how to estimate

causal effects in the setting of a binary treatment assignment. The key concept underlying

this method is to remove the bias of confounding variables using a single scalar value, the

propensity score. The propensity score is used to remove this bias in a variety of ways, which

include covariate adjustment, inverse probability weighting, subclassification, and matching.

Each of these methods aims to compare groups within the population that have similar

probability of receiving the treatment, but differ on their observed treatment assignment.

3.2.1 Binary Treatment Setting

The initial methodology of Rosenbaum and Rubin [1983] focused on binary treatments. Sim-

ilar to the randomized setting described above, each unit, i, in the population has potential

outcomes Yi(0) and Yi(1) corresponding to each treatment level Di ∈ {0, 1} = D. We

further assume in the nonrandomized setting that we have a vector of covariates, Xi, that

are associated with the potential outcomes and the treatment, making them confounders.

This confounding means that the direct estimate of τ using the SATE from Equation 3.1.7 is

biased since the groups are not directly comparable due to imbalance in the confounders. To

account for differences in confounders between treatment groups, Rosenbaum and Rubin’s

method presented three key pillars for bias removal using the propensity score: 1) stable

unit treatment value assumption (SUTVA), 2) balancing score, and 3) strong ignorability.

The first pillar is an assumption implicit in the original propensity score method of

Rosenbaum and Rubin. It assumes that the potential outcome of unit i under treatment d

does not depend on the treatment given to unit i′, where i 6= i′, and that there exists only
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one version of each exposure. SUTVA posits that there must be a unique response, Yi(d),

for unit i to treatment d [Rubin, 1980, 1986]. In other words, we assume that the potential

outcome of the ith unit depends only on the treatment assignment that it received, and is thus

independent of the other treatment assignments. While this assumption may seem intuitive,

we can think of examples where it is violated. An epidemiological example is the spread

of contagious diseases, where the probability that you become infected may depend on the

infection and immunity status of people in your immediate proximity. SUTVA is untestable

due to the “fundamental problem of causal inference” since each sample is restricted to the

observed ensemble of treatments and we cannot observe different potential outcomes under

different treatment assignments.

The second key pillar of Rosenbaum and Rubin is the balancing score. The balancing

score, b(X), is a function of the observed covariates, X, such that the conditional distribution

of X given b(X) is independent of treatment assignment, D,

X⊥⊥D | b(X). (3.2.1)

Stated another way, within each level of the balancing score the treated and untreated groups

have identical covariate distributions. A trivial example of a balancing score is b(X) = X,

since f
(

(D,X) | X
)

= f(D). In the case where X includes only two categorical variables

with R and C categories respectively, we would be conditioning on each cell in the R × C

table and looking for the difference between individuals in that cell who were in the treated

and untreated group. Even in this trivial example, with moderately sized values of R and

C, say 6 each, we might expect certain cells in the 6×6 covariate space to be sparse and not

contain both a treated and untreated individual. As the number of covariates becomes large,

finding identical covariate patterns between treatment groups becomes difficult and makes

conditioning on X impractical. The goal then is to find the coarsest balancing score that

maps the high-dimensional covariates to a low-dimensional balancing score. The propensity

score is such a balancing score. Rosenbaum and Rubin defined the propensity score as the

conditional probability of receiving treatment given a set of potential confounding variables,
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denoted by

e(X) = Pr(D = 1 | X), (3.2.2)

which was proved to be a balancing score in Cochran and Rubin [1973] for multivariate

normal covariates X. Traditional statistic methods for estimating probabilities for a binary

outcome such as logit or probit regression were originally suggested to estimate the propensity

score.

The third pillar outlined by Rosenbaum and Rubin is the strong ignorability assumption.

Treatment assignment is strongly ignorable given a vector of covariates X if(
Y (1), Y (0)

)
⊥⊥D | X, and 0 < Pr(D = 1 | X) < 1. (3.2.3)

for all X. The second condition of Equation 3.2.3 is sometimes presented as a separate

assumption called the positivity assumption, meaning that all units have the potential to

receive treatment given the covariates X. We can think of this assumption as saying that

the observed covariates, X, contain all the information about the potential confounding

between the treatment and outcome so that by conditioning on these covariates we are in

a situation analogous to a randomized experiment. In particular, this condition allows us

to compare outcomes between individuals with identical observed covariates but different

observed treatment assignment in an unbiased fashion.

However as mentioned earlier, as the number of covariates becomes large, it becomes

difficult to find similar covariate patterns between treatment groups. The key insight was to

recognize that instead of conditioning on the observed covariates, it was possible to condition

on the propensity score. Using the three key pillars outlined above, Rosenbaum and Rubin

demonstrated that if Equation 3.2.3 is true for the observed covariates X, then treatment is

also strongly ignorable given the propensity score, i.e.,(
Y (1), Y (0)

)
⊥⊥D | X =⇒

(
Y (1), Y (0)

)
⊥⊥D | e(X). (3.2.4)
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Given strong ignorability of the propensity score, we have that

E[Yi(1) | Di = 1, e(Xi)]− E[Yi(0) | Di = 0, e(Xi)] = E[Yi(1) | e(Xi)]− E[Yi(0) | e(Xi)].

(3.2.5)

Taking the expectation with respect to the distribution of e(X), we have

E
[
E[Yi(1) | e(Xi)]− E[Yi(0) | e(Xi)]

]
= E[Yi(1)]− E[Yi(0)], (3.2.6)

which is our PATE. By averaging outcomes from individuals who have similar propensity

scores but different observed treatment value, and then averaging over the propensity scores,

an unbiased estimate of the population average treatment effect is obtained. In practice the

distribution of e(X) is unknown and must be estimated.

Rosenbaum and Rubin proposed three methods for bias removal using the propensity

score: 1) matching, 2) subclassification, and 3) covariate adjustment. Matching occurs in a

two-step process. Treated units are first matched to untreated units using the value of the

propensity score. Then, the expected difference between each matched pair is computed and

averaged across all pairs to return an estimate equal to the population average treatment

effect. There are many types of matching methods. Dehejia and Wahba [2002] compare the

use of caliper, 1:1, or 1:K matching strategies. An alternative to matching is subclassifica-

tion which instead of matching propensity scores exactly between treated and control units,

breaks up the observed range of propensity scores into strata with at least one observations

from each treatment group within a stratum. Within each stratum, the expected difference

again equals the average treatment effect, and using the weighted average of these differ-

ences, where weights are defined based on the number of observations within each stratum,

we obtain an unbiased estimate of the PATE. Subclassification was shown to produce unbi-

ased estimates in Rosenbaum and Rubin [1984]. Finally, covariate adjustment incorporates

the propensity score as a covariate in the outcome analysis with the assumption that the

conditional expectation of the potential outcome given the propensity score is linear. For

17



example, we can define the conditional expectation as

E[Y | D = d, e(X)] = β0 + β1D + β2e(X),

for d = 0, 1, with the estimate β̂1 used as an estimate for the PATE. While this result holds

in theory, Hade and Lu [2014] showed that the covariate adjustment method is substantially

biased when the true relationship between outcome and propensity score is nonlinear and

that this bias is potentially present even if linearity holds when using estimated values for

the propensity score. Hade and Lu suggest propensity score matching and subclassification

as a robust alternative to covariate adjustment.

Another popular method for adjusting using the propensity score involve weighting [Hi-

rano and Imbens, 2001; Hirano et al., 2003; Robins et al., 2000; Rosenbaum, 1987]. These

methods are referred to as inverse probability weighting (IPW), inverse probability of treat-

ment weighting (IPTW), or weighted regression. The idea behind the weighted approach

is to re-weight the treated and control observations using the propensity score so that the

weighted values are representative of the population. The approach is similar to the method

of Horvitz and Thompson [1952] for survey sampling weights. First we note that conditional

on X = x we have that

E
[
Yi ×Di

e(Xi)
| Xi = xi

]
= E[Yi(1) | Xi = xi].

Taking the iterated expected value with respect to X, we have that the weighted expression

is equal to E[Yi(1)]. This means that an unbiased estimator for the PATE with binary

exposures is given by

E
[
Yi ×Di

e(Xi)
− Yi × (1−Di)

1− e(Xi)

]
= E[Yi(1)]− E[Yi(0)].

The same result can be obtained using weighted least squares estimation with a regression

function

Yi = β0 + β1Di + εi,
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where weights are of the form

w(D,X) =
D

e(X)
+

1−D
1− e(X)

.

As the true propensity scores is generally unknown, the values e(X) are replaced with esti-

mated values ê(X). Again this method gives us the estimate of PATE via β̂1.

All of these various methods allow the researcher to incorporate the propensity score as

a means for obtaining unbiased estimates of the true average treatment effect. When the

treatment of interest is no longer binary, complications arise. We discuss such treatments

next.

3.2.2 Discrete-Valued Treatment Setting

While the propensity score method was originally proposed to handle only binary exposures,

it was quickly extended to handle discrete-valued treatments taking more than two values

[Imbens, 2000; Lechner, 2001]. There are two types of discrete-valued treatments, nominal

and ordinal. Nominal, also referred to as categorical, treatments have no intrinsic ordering.

An example would be a three-arm study testing surgery, drug treatment, or neither. Unlike

nominal treatments, ordinal treatments have an implicit ordering, such as the dose of a drug.

In both cases, we can represent the treatments using integer values from a set of discrete

values between 0 and K, i.e. D = {0, 1, . . . , K}.

To handle multi-valued treatments, Imbens first introduced the term generalized propen-

sity score as a generalization of the bivariate propensity score. To avoid confusion between

the generalized propensity score for discrete-valued treatments and the generalized propen-

sity score for continuous treatments discussed in later chapters, we will refer to the discrete-

valued version as the discrete propensity score and reserve the term generalized propensity

score to refer only to the case with continuous exposure. Imbens defined the discrete propen-

sity score as the conditional probability of receiving a particular level of treatment given the
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pre-treatment variables, which we can express as

r(d,x) = Pr(D = d | X = x) = E[1d | X = x], (3.2.7)

where 1d is an indicator of receiving treatment level d,

1d =


1 if Di = d

0 otherwise.

In order to use the discrete propensity score, Imbens altered the strong ignorability

assumption in Equation 3.2.3 to a weaker version that relies on independence of the marginal

potential outcomes rather than the joint distribution of potential outcomes. Assignment to

treatment D is weakly ignorable, given pre-treatment variables X, if

Y (d)⊥⊥1d | X ∀ d ∈ D. (3.2.8)

Rather than requiring the treatment to be independent of the entire set of potential outcomes,

weak ignorability requires only pairwise independence of treatment with each potential out-

come. Imbens notes that weak ignorability restricts independence to the ‘local’ treatment

level of interest, and in this way it is similar to the definition of ‘missing at random’ [Little

and Rubin, 2014; Rubin, 1976].

It is important to pause and think about the potential outcomes, Y (d), in the discrete-

valued setting. In Section 3.2.1, there were only two potential outcomes representing the

treated and non-treated groups, Yi(1) and Yi(0). Inference focused on the estimation of the

PATE, τ , by using the propensity score to account for the differences in confounders. With

discrete-valued treatments, the number of potential outcomes is now dependent on the set

D and the number of possible pairwise comparisons is equal to
(
K+1
2

)
. Depending on the

application, causal estimands of interest could be comparing the average difference between

two treatment levels, E[Yi(k)−Yi(k′)] for k 6= k′ ∈ D, or between other contrasts of treatment

combinations,

E[cTYi(d)],
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where
∑K

k=1 ck = 0 and Yi(d) =

(
Yi(1), Yi(2), . . . , Yi(K)

)T
. The investigator must think

about the scientific question being studied, and construct the appropriate causal estimand

to answer the research hypothesis.

Assuming that weak ignorability holds, then by the same argument as the binary treat-

ment setting, we have that treatment assignment is weakly ignorable given the discrete

propensity score: 1d⊥⊥Y (d) | r(d,X), for all d ∈ D. With this result, we can use the dis-

crete propensity score in place of X to estimate the conditional expectation of the potential

outcome. Similar to the covariate balancing approach proposed by Rosenbaum and Rubin

[1983], we can define the conditional expectation of the outcome as a function of the treat-

ment and the discrete propensity score, β(d, r). The average potential outcome for treatment

level d, E[Y (d)], can then be found by averaging over the discrete propensity score. This

means that if treatment assignment is weakly ignorable given X, then for all d ∈ D,

(i) β(d, r) = E[Y (d) | r(d,X) = r] = E[Y | D = d, r(D,X) = r],

(ii) E[Y (d)] = E[β(d, r(d,X))].

Note that in (ii), the expectation is taken by averaging the discrete propensity score at

treatment level d rather than at the observed treatment level D.

Implementing the propensity score methodology for discrete-valued treatment via the

discrete propensity score consists of three steps. In the first step, the discrete propensity score

r(d,x) is estimated. With a binary treatment, this is typically done using logistic regression.

With discrete-valued treatments, there are different approaches depending on the type of

treatment. For nominal treatments, a discrete choice model such as a multinomial or nested

logit model could be used. These two types of models differ with respect to how changing

one choice affects the alternative choices. In a multinomial model we assume independence of

irrelevant alternatives (IIA), meaning that adding or deleting alternative outcomes does not

affect the odds among the remaining outcomes [McFadden, 1973]. In a nested logit model,
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this independence assumption is relaxed by creating groups of nested alternatives [McFadden,

1978]. By using a nested structure, choices in the same nest are treated as independent, but

choices between nests are correlated. If the outcome is an ordinal treatment, an ordinal

logistic regression could be used via a cumulative link model that assumes proportional odds

between the respective levels. The second step is to estimate the conditional expectation

β(d, r). A variety of different methods may be used to model this conditional expectation

depending on the outcome and the level of smoothness with respect to d. Finally, in the last

step the average response at treatment level d is estimated as the average of the estimated

conditional expectation, β̂(d, r(d,X)), averaged over the distribution of the pre-treatment

variables. Again, it is important to mention that the conditional expectation β(d, r) is

evaluated at the treatment level of interest r(d,Xi), not at the observed level of treatment

r(Di,Xi).

This framework allows the researcher to estimate causal effects for different levels of

the treatment. The estimation requires careful consideration of the sub-populations de-

fined by the conditioning sets r(d,X). This work was critical for extending the propensity

score methodology beyond the case of binary treatments, and ultimately to the generalized

propensity score with continuous treatment.
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CHAPTER 4

Univariate Generalized Propensity Score

With the foundation from both the binary and nominal/ordinal exposures, the next logical

step is to address continuous treatments. Following Hirano and Imbens [2004] we define

the generalized propensity score (GPS) as the conditional probability of receiving exposure

given a set of potential confounders, which is a generalization of the binary and categorical

propensity scores. The major difference between these earlier methods for non-continuous

exposures is the form of the conditional distribution of exposure, which must be adapted

to handle exposures along a continuous interval rather than at discrete values within the

domain. Likewise, the inferential target with continuous exposures differs from binary and

categorical exposures, for which the aim is typically to compare pairwise values of the ex-

posure; for continuous exposures, interest is in estimating the shape of the dose-response

function along the entire domain of exposure.

In the literature, methodological work for the GPS has focused on several key components,

including the choice of conditional distribution for estimation of the probability of receiving

a given exposure level, evaluating the balancing property of the estimated GPS, and the

manner in which the resultant GPS is used to remove bias in estimation of the dose-response

function. Several recent methods for the GPS have focused on relaxing the parametric as-

sumptions initially proposed for the GPS method such as using the SuperLearner ensemble

algorithm [Kreif et al., 2015], kernel density estimation [Flores et al., 2012], and boosting

algorithm [Zhu et al., 2015]. Alternatively, other proposed methods have focused on ensuring

that the balancing property of the GPS is enforced either via penalization during GPS esti-
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mation [Fong et al., 2018] or constrained optimization on the entropy of weights constructed

from the GPS [Tübbicke, 2020; Vegetabile et al., 2020]. Finally, many different mechanisms

for bias removal have also been proposed such as covariate adjustment [Hirano and Im-

bens, 2004], subclassification [Imai and Van Dyk, 2004], and inverse probability weighting

[Robins et al., 2000]. It is therefore imperative as an analyst to evaluate the selection of each

component when performing a causal analysis of continuous exposures using the GPS.

The GPS methods that are currently available have been used in a variety of applied

settings. For instance, investigators have used GPS methods in the economics literature

to estimate the expected difference in employment outcomes between those who spend dif-

ferent lengths of time in a job training program [Flores et al., 2012; Kluve et al., 2012] or

to understand the effect of winning the lottery on subsequent labor earnings [Hirano and

Imbens, 2004]. Other investigators have focused on using the GPS to quantify health re-

lated outcomes such as the relationship between the duration of breastfeeding and childhood

obesity [Jiang and Foster, 2013], the effect of mothers’ overall weight concern on daughters’

dieting behavior [Zhu et al., 2015], or on the relationship between smoking intensity and

medical expenditures [Imai and Van Dyk, 2004]. Another popular area of research that uti-

lizes GPS methods includes educational policy and evaluation such as studying the effects

of the number of credits taken on the transfer rate of students from community college to

four-year institutions [Doyle, 2011]. The ability to utilize continuous exposure values rather

than forcing investigators to discretize exposure makes the GPS a popular and powerful tool

for causal inference.

While there have been many improvements to the GPS beyond the initial framework pro-

posed by Hirano and Imbens [2004] and Imai and Van Dyk [2004], there are still several areas

that remain unanswered, most notably the lack of methods to handle multiple simultaneous

continuous exposures. All of these examples and methods mentioned have been focused on

a single univariate continuous exposure. Multiple simultaneous exposures are noted only

briefly in the development by Imai and Van Dyk [2004].
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In this Chapter I will introduce the foundation for causal inference with continuous

exposures and the relevant notation for a single continuous exposure in Section 4.1, highlight

the initial parametric specifications of the GPS in Section 4.2, discuss recent extensions in

Section 4.3, and conclude with a note on key limitations that motivate the new method

proposed in Section 4.4.

4.1 Framework for Causal Inference with Continuous Exposures

Suppose we have a random sample of units, indexed by i = 1, . . . , N . Each unit i has a

set of potential outcomes, Yi(d), for exposure level d ∈ D. In the binary case D = {0, 1}

and for categorical exposures D = {0, . . . , K}. For the continuous case, D is assumed to

be a continuous interval, D = [d0, d1]. We define Yi(d) as the unit-level dose-response

which is equal to the potential outcome for the ith subject for exposure level d. For each

unit i, we observe a p dimensional vector of covariates Xi, the level of treatment received

Di ∈ [d0, d1], and the observed outcome Yi. It is important to note that we can equate the

observed outcome with the corresponding unit-level dose response when SUTVA holds, as

discussed in Section 3.2.1 for binary exposures, i.e., Yi = Yi(d). Interest lies in the average

dose-response function, µ(d) = E[Yi(d)]. It is assumed that {Yi(d)}d∈D, Di, and Xi are

defined on a common probability space, that Di is continuously distributed with respect to

Lebesgue measure on D, and that Yi = Yi(Di) is a well defined random variable. Compared

to binary and categorical treatments, one of the key differences with a continuous treatment

domain is that the treatment effect is no longer an unknown scalar parameter or discrete set

of parameters, but rather an unknown function, µ(d).
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4.2 Parametric Specification

Methods to estimate the dose-response function for continuous treatments were first devel-

oped by Hirano and Imbens [2004] and Imai and Van Dyk [2004]. Both methods focused on

applying parametric methods to estimate the GPS. Specifying the conditional distribution

for the GPS using a parametric family of distributions was the first logical step as it allowed

for the subsequent results to utilize the established parametric theory often with closed form

estimation and low computational burden. While both methods shared similar assumptions

about the form of the conditional densities, they advocated for different mechanisms of bias

removal with respect to the GPS. In Hirano and Imbens [2004] a covariate adjustment strat-

egy was used where the dose-response function was modeled as a flexible function of the

treatment and GPS in a linear model, while in Imai and Van Dyk [2004] a subclassification

method was proposed. The notation used in this section will follow that of Hirano and

Imbens [2004].

Similar to the discrete-valued setting described in Section 3.2.2, adapting the propensity

score methodology to a continuous setting focused on generalizations of the three key pillars

of Rosenbaum and Rubin [1983]. The first pillar is strong ignorability, see Equation 3.2.3.

In the case of a continuous treatment, strong ignorability places too much of a burden on

the potential outcomes. If strong ignorability were maintained, it would require joint in-

dependence of all potential outcomes {Y (d)}d∈[d0,d1]. Instead, a weaker version is adopted

analogous to the weak ignorability with discrete-valued treatments where conditional inde-

pendence is required at each value of the treatment rather than joint independence. We can

write this form of weak ignorability as

Y (d)⊥⊥D | X ∀ d ∈ D. (4.2.1)

As noted by Imai and Van Dyk [2004], similar to the binary case, this result is difficult

to implement directly in practice using the observed pre-treatment covariates because as

the dimension of X increases and/or there are several continuous pre-treatment covariates,
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matching and subclassification become impossible. To remedy this issue, Hirano and Imbens

define the function r(d,x), here-to referred to as the propensity function, as the conditional

density of the treatment given the covariates:

r(d,x) = fD|X(d | x), (4.2.2)

where f(· | x) parameterizes the distribution. The value of the propensity function for the

observed treatment is called the generalized propensity score (GPS),

R = r(D,X) = fD|X(D | X). (4.2.3)

The GPS is aptly named, as we can think of the propensity score with binary treatments from

Section 3.2.1 and the discrete propensity score from Section 3.2.2 as special cases of the GPS.

In Equation 3.2.2 the conditional distribution f(· | x) is the binomial distribution, which uses

the logit(·) link to model the probability of receiving treatment as a linear equation of the

pre-treatment covariates. Likewise in Equation 3.2.7, the parametric density for the discrete

propensity score depends on the type of discrete-valued treatment, nominal or ordinal.

To use the GPS for causal inference, we need weak ignorability of the treatment as-

signment conditional on the propensity function, r(d,X), rather than the distribution of

pre-treatment covariates, X. To do this we assume that Equation 4.2.1 is true, and we want

to show that for every value of d,

fD(d | r(d,X), Y (d)) = fD(d | r(d,X)). (4.2.4)

Hirano and Imbens [2004] prove this result using iterated expectation, and the fact that

the propensity function is measurable with respect to the sigma-algebra generated by X,

implying that fD(d | X, r(d,X)) = fD(d | X)).

While both Hirano and Imbens and Imai and Van Dyk had similar definitions of the GPS,

one important difference between the methods is that Imai and Van Dyk further suppose that

the propensity function can be uniquely parameterized. Assuming unique parameterization
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means that the propensity function depends on X only through the parameter θ(X) ∈ Θ, so

the propensity function can be rewritten as r(d, θ) = fD|θ(d | θ). Imai and Van Dyk use this

result in order to match or subclassify on θ or any one-to-one function of θ. For a Gaussian

propensity function, a natural choice would be θ(X) = XTβ.

As mentioned in Rosenbaum and Rubin [1983], the second key properties of the propen-

sity score is the balancing property, such that the distribution of the pre-treatment covariates

is independent of treatment given the propensity score. This must also hold with the propen-

sity function for continuous exposures although it becomes more difficult to assess directly.

Conditioning on the value of r(d,X), the probability that a unit received exposure level

D = d is independent of their pre-treatment covariates. We can write this as

1D=d⊥⊥X | r(d,X). (4.2.5)

This is a testable result, and is an important step for investigators to check when using

GPS methods. Hirano and Imbens [2004] propose testing this balancing property using t-

statistics with a blocking strategy based on evaluating the propensity function at the median

value of treatment tertiles. Imai and Van Dyk [2004] suggest constructing a linear model

that predicts the effect of the observed treatment D on each covariate while controlling

for the estimated propensity function. Balance can then be assessed using t-statistics for

the coefficient of D in the model, although the authors note that this linear model may

not detect all deviations from independence. Other methods for checking balance have been

proposed such as using covariate-exposure correlation values as proposed by Zhu et al. [2015]

with a guideline of absolute correlations less than 0.1 for sufficient balance. In a recent

comparison of different methods for assessing covariate balance for continuous exposures,

Austin [2019] suggest using covariate-exposure correlations. Note that these correlation

statistics typically aim to balance on first order moments alone, but methods for balancing

on higher order moments have been proposed by Fong et al. [2018]; Vegetabile et al. [2020].

In the methodology proposed in Chapter 5 we use the first order correlation coefficients as

our balance assessment metric.

28



The final key pillar of the propensity score from Rosenbaum and Rubin [1983] to check in

our development for continuous exposures is SUTVA. To maintain identifiability we assume

that SUTVA holds, meaning that the potential outcomes Yi(d) for the ith unit are uniquely

different without multiple versions of the exposure or interference between units.

In addition to adapted versions of the three key pillars for use of propensity scores

proposed by Rosenbaum and Rubin [1983], there are additional properties that need to be

assessed with care for continuous exposures. Specifically, investigators need to check whether

positivity holds for all units. We define positivity as

0 < fD|X(D = d | X = x) < 1 ∀ d ∈ D. (4.2.6)

This expression states that all units have the potential to receive a particular level of exposure

given any value of the confounders. Typically positivity is enforced by restricting the domain,

D, to only the observed exposure interval. However, for continuous exposures this can present

a unique challenge especially when there are few exposure values or low density regions in the

exposure domain. A common solution is to trim the exposure interval to ensure positivity and

prevent outliers from having outsized influence on the shape of the dose-response function

[Crump et al., 2009].

Having generated the propensity score and tested the necessary properties, the final choice

is the method of bias removal for estimating the dose-response function. As mentioned earlier

in this section, Hirano and Imbens [2004] approach bias removal via covariate adjustment

similar to the method advocated by Imbens [2000]. To remove the bias associated with

confounders modeled via the GPS, we define the conditional mean of the potential outcome

for treatment value d as a function of the GPS and observed treatment, β(d, r). The average

dose-response corresponding to the treatment value, µ(d), is then obtained by averaging the

propensity function over the observed covariates. The method of covariate adjustment relies

on the result of weak ignorability when Equation 4.2.1 holds,

(i) β(d, r) = E[Y (d) | r(d,X) = r] = E[Y | D = d,R = r] and
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(ii) µ(d) = E[β(d, r(d,X))].

Similar to the discrete-valued case, it is important to note that the expectation in (ii) is

not with respect to the GPS, r(D,X), but rather the propensity function evaluated at the

treatment level of interest, r(d,X). To implement this method, we estimate the conditional

expectation of the outcome, which we term the dose-response, as a function of observed

treatment, D, and GPS, R, and then average this conditional expectation over the propensity

function at exposure level d. As noted by Hade and Lu [2014], there is potential for bias with

misspecification of β(d, r) when using covariate adjustment, so modeling this as a flexible

function of D and R is crucial. Hirano and Imbens use second order polynomials for each

of D and R along with a first order interaction term between the exposure level and the

GPS. It is important to clarify that the coefficient estimates for D in the dose-response

model should not be interpreted as the treatment effect of D, because β(d, r) does not have

a causal interpretation.

Alternatively, Imai and Van Dyk [2004] implement subclassification on the value of

r(d, θ) = r(d,XTβ) with a weighted average of the potential outcomes within subclass used

to calculate the dose-response function. This is done through a series of steps. In the first

step, the parameters of the propensity function are estimated. The estimated value θ̂ is

computed based on the parametric form specified for the propensity function. Using θ̂, J

subclasses are created of roughly equal size. Within each subclass, a parametric model is

chosen for the dose-response, f(Y (d) | D = d). Finally, the overall distribution of the dose-

response function is computed as the weighted average of the within-subclass distributions

for each treatment level d. The authors note that while the theory holds for the marginal

distribution given only the treatment assignment, many times additional adjustment within

each subclass can be implemented to further reduce the bias. An alternative to estimating

each subclass separately is to use penalized regression splines to flexibly model the function

across the different subclasses.
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4.3 Generalized Propensity Score Extensions

As originally proposed by Hirano and Imbens [2004] and Imai and Van Dyk [2004], the

propensity score methodology for continuous treatments focused on specifying the paramet-

ric form for the conditional density of the treatment given the covariates of interest, i.e.,

the GPS. Having used this parametric form to define the GPS, the investigator was free

to use their preferred method for removing bias such as covariate adjustment [Hirano and

Imbens, 2004] or subclassification [Imai and Van Dyk, 2004]. In the case of covariate ad-

justment, an additional parametric form for the conditional mean of the outcome given the

treatment and GPS is assumed for the dose-response function. Recalling the work of Hade

and Lu [2014], misspecification of the propensity score or covariate equation can lead to

significantly biased estimates of the treatment effect in the case of a binary treatment. With

this in mind, researchers sought out methods to model the GPS and/or dose-response non-

parametrically or to introduce additional model flexibility in either the GPS estimation or

dose-response model in an effort to reduce the potential bias associated with misspecification

of the parametric distribution. Recent methodological developments for the GPS by Flores

et al. [2012]; Kennedy et al. [2017], Zhu et al. [2015], and Kreif et al. [2015] have shown

the flexibility of modeling the conditional density and/or the dose-response function using

kernel estimation, boosting algorithms, and ensemble algorithms, respectively. In addition,

alternative methods have been proposed which aim to ensure covariate balance balance of

weights described by Robins et al. [2000] for eliminating bias such as the covariate balancing

generalized propensity score [Fong et al., 2018] and entropy balancing approaches [Tübbicke,

2020; Vegetabile et al., 2020]. We will briefly discuss some of the major contributions of

these works in extending the methodology for continuous exposures.

Both Flores et al. [2012] and Kennedy et al. [2017] advocated non-parametric kernel

density approaches for inference with continuous exposures. Flores et al. [2012] use a para-

metric method to estimate the GPS via a generalized linear model such as the log normal
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while, but specifies the dose-response as a local polynomial regression using non-parametric

kernel estimators. Two different kernel estimators for the the dose-response were proposed

including a partial mean model using the product normal kernel of the exposure and GPS

and an inverse weight model using a normal kernel with the exposure alone. The bandwidth

is selected global using the procedure described in Fan and Gijbels [1996]. When using this

method, it is important to test the sensitivity of results to the choice of kernel function K(·)

and bandwidth h. Conversely, Kennedy et al. [2017] propose a completely non-parametric

approach to estimating the dose-response curve based on finding a doubly robust mapping

from the observed data and two nuisance parameter functions, the conditional density of

exposure, i.e., the GPS, and the outcome regression model, where the conditional expecta-

tion of the response given treatment is equal to the dose-response curve of interest. In this

case the double robustness property ensures that the resultant estimate of the dose-response

is unbiased if either one of the nuisance parameters is properly specified. Similar to Flores

et al. [2012] though the hyperparameters of the kernel smoothing function must be estimated

and the results are potentially sensitive to misspecification.

An alternative to kernel density estimation, both Kreif et al. [2015] and Zhu et al. [2015]

model the conditional density for the GPS non-parametrically by leveraging machine learning

algorithms. In a typical parametric linear GPS model we would model D as

D = XTβ + ε, ε ∼ N(0, σ2).

We can generalize this expression by replacing XTβ with a generic mean function m(X). In

Zhu et al. [2015] the mean function, m(X), is estimated using a nonparametric boosting al-

gorithm that automatically extracts important covariates, nonlinear terms, and interactions

among covariates. The boosting algorithm fits an additive model where each component is

a regression tree. In Zhu et al. [2015] the estimated GPS via boosting is then used to create

inverse probability weights. The weights are then used as part of a regression spline function

for the outcome model, selected using weighted AIC or weighted BIC criterion. Rather than

using a single machine learning approach such as boosting, Kreif et al. [2015] employs a
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machine learning method called the ‘SuperLearner’, which solves an optimization problem

for a specified loss function given a list of potential regression estimators. This algorithm is

also called a stacked prediction method, where the solution is a convex combination of the

list of prediction algorithms. Unlike the methods of Flores et al. [2012] and Zhu et al. [2015],

the SuperLearner can be used to estimate both the conditional density for the GPS and the

mean outcome given the GPS. In Kreif et al. [2015], a wide variety of linear, quadratic, spline,

GAM, and Bayesian GLM specifications are included as potential estimators for the outcome

regression while the GPS estimates include both normal and gamma error distributions with

various degrees of interactions and polynomials of the pre-treatment covariates.

Each of these extensions presented so far have focused on adaptions to increase the flex-

ibility of modeling the generalized propensity score and/or dose-response function. Several

recent methods have instead focused on achieving covariate balance as part of the esti-

mation procedure. In Fong et al. [2018] the authors propose including explicit covariate

balancing conditions when estimating the GPS. The authors propose both a parametric

and non-parametric method. In the parametric method, parameters are estimated using

method of moments with score conditions on the ratio of marginal exposure density to con-

ditional exposure density and the weighted cross moment between exposure and covariates.

In the non-parametric method, an empirical likelihood method is used that estimates the

stabilized inverse generalized propensity score weights without directly estimating the GPS

but instead using constrained optimization on the weights. The non-parametric method pro-

posed by Fong et al. [2018] shares many similarities with the entropy balancing approaches of

Tübbicke [2020] and Vegetabile et al. [2020]. Both entropy balancing methods aim to directly

solve for the weights using constrained optimization similar to the approach of Hainmueller

[2012] for binary exposure. The term entropy in these methods refers to the entropy metric,

h(wi) = wi ln(wi), introduced in Shannon [1948] and is included in each proposed method as

part of the loss function. The authors use Lagrange-multipliers to then solve the constructed

loss functions with additional constraints that the weights sum to the total number of ob-
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servations and that the balance the correlation between the exposure and covariates. The

two proposed methods differ primarily in that Vegetabile et al. [2020] includes additional

higher order moment constraints of the marginal exposure and between the exposures and

covariates.

4.4 Limitations of Current GPS Methodology

These extensions of the GPS provide added flexibility when faced with data that violate

parametric assumptions. Each method has different strengths and weaknesses. For instance

the boosting approach by Zhu et al. performs non-linear covariate selection. On the other

hand, the boosting method is sensitive to initial model parameters such as the number

of trees and nodes which may lead to overfitted models that are not generalizable and is

computationally intensive. The SuperLearner approach of Kreif et al. is able to incorporate

a wide variety of potential estimators as part of the ensemble prediction, and often the

constraint on α produces results that are predominantly a mixture of only a few of the

potential estimators. This is also a restriction though, as the method does not test estimators

that are not listed, so it is possible that the true best estimator is left out when optimizing

the loss function. Similarly, the kernel estimation methods of Flores et al. and Kennedy

et al. are useful in that they smoothly estimate the dose-response function by using local

polynomial regression, but they too are dependent on hyperparameters such as the choice of

kernel and the bandwidth. Covariate balancing methods discussed by Fong et al., Tübbicke,

and Vegetabile et al. make substantial improvements to ensure that the balancing property

of the GPS is met. However, they may also lead to potential bias by sacrificing some precision

to achieve balance.

Most importantly, all of these methods handle only the case of a single continuous expo-

sure. There are unique challenges to extending any of these proposed methods to multiple

exposures, including: appropriately defining the exposure domain, assessing balance across
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multiple dimensions, handling varying degrees of overlapping confounding, and properly es-

timating a high dimensional dose-response function. In the following chapter we propose a

new method to address these challenges and formalize the framework for causal inference

with multiple continuous exposures with emphasis on bivariate exposures.
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CHAPTER 5

Generalized Propensity Score for Multivariate

Continuous Exposures

5.1 Notation

Our approach to developing the multivariate generalized propensity score follows the Neyman-

Rubin causal model and uses the potential outcome notation introduced by Neyman [Ney-

man, 1923] and made popular by Rubin [Rubin, 1974]. Let Yi denote the outcome of interest

for unit i from a population of size n and Di be a vector of length m providing the values for

m continuous exposures for unit i. The confounders relevant to each exposure are allowed to

be different. Let Ci = {Ci1, . . . ,Cim} be a set of size m where each element in the set, Cij,

j = 1, . . . ,m, is a pj dimensional vector of baseline confounders associated with the jth expo-

sure and the outcome. We denote the value of the kth confounder of the jth exposure for the

ith individual as Cijk, with i = 1, . . . , n, j = 1, . . . ,m, and k = 1, . . . , pj. If all exposures have

identical confounders, then Ci1 = · · · = Cim = Ci and p1 = · · · = pm = p. The observed

data for the ith unit is represented as (Yi, Di1, . . . , Dim, Ci11, . . . , Ci1p1 , . . . , Cim1, . . . , Cimpm).

Further, we define the potential outcome Yi(d) as the outcome that the ith subject would

have if assigned the exposure vector d = (d1, . . . , dm). We will use capital D to repre-

sent the multivariate random variable representing dose combinations, and lowercase d as

a particular value in the multidimensional space. Estimation focuses on the average dose-

response function defined as µ(d) = E[Y (d)], which is assumed to be well defined for any

d ∈ D ⊆ Rm. Note that with a bivariate exposure, i.e., m = 2, µ(d) is a dose-response
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surface in 3-dimensional space.

5.2 Identification Assumptions

We make the following identifying assumptions: weak ignorability, positivity, and stable-unit

treatment value. Weak ignorability, also known as selection on observables or unconfound-

edness, states that exposure is conditionally independent of the potential outcomes given

the appropriate set of confounders. We write this in the multivariate case as

Yi(d)⊥⊥Di | Ci1, . . . ,Cim ∀ d ∈ D.

When this assumption holds, we can replace the high-dimensional conditioning set with

a scalar value by means of the conditional density function of exposure [Rosenbaum and

Rubin, 1983]. In our case the conditional density is defined as the multivariate generalized

propensity score (mvGPS), which we denote fD|C1,...,Cm . Weak ignorability is often the

most difficult assumption to rationalize as it requires perfect knowledge and collection of all

possible confounders of the exposures and outcome in the set C. We assume that the set C

is well defined and that there is no unmeasured confounding.

The second assumption, positivity, claims that all units have the potential to receive a

particular level of exposure given any value of the confounders. In notation, we have

0 < fD|C1,...,Cm(D = d | C1, . . . ,Cm) < 1 ∀ d ∈ D.

This assumption requires that we carefully define D such that all units have the potential to

receive any particular value in the domain. In the case of a univariate continuous exposure,

positivity is often enforced by restricting estimation to either the observed range or a trimmed

version [Crump et al., 2009]. For example, using the observed range we would define D =

[d0, d1] where d0 and d1 correspond to the minimum and maximum observed exposure. In

the case of a multivariate exposure, a natural inclination might be to extend this approach
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to multiple dimensions by setting D = G where G is defined as

G =
m∏
j=1

[d0j, d1j] ⊂ Rm,

where d0j and d1j are the minimum and maximum observed exposure, respectively, along

dimension j. However, when exposure variables are correlated, i.e., Cov(Dj, Dj′) 6= 0 for

j 6= j′, the region G may include areas with few or no observations. Instead, we propose

defining the estimable region for multivariate exposures as D = H ⊂ G, whereH is defined as

the convex hull of the multivariate exposure [Chazelle, 1993]. Using a convex hull ensures that

inference is restricted to regions where data are observed and avoids extrapolating to sparse

data regions in the multidimensional space. For the case of m = 2, Figure 3 on page 65 shows

the difference between regions G andH when Cov(D1, D2) = 0.5. Additionally, similar to the

univariate case, we can define trimmed versions of G or H. By specifying a value q ∈ [0.5, 1],

we construct Gq using trimmed minimum and maximum values as

Gq =
m∏
j=1

[dq0j, d
q
1j] ⊂ G,

where dq0j = Q(dj, 1−q), dq1j = Q(dj, q), andQ(·, q) is the sample quantile function. To create

the trimmed convex hull, Hq, we recalculate the convex hull using the subset of observations

that falls within the trimmed minimum and maximum across all exposure dimensions.

The final assumption is the stable-unit treatment value assumption (SUTVA), which

states that the potential outcome of each unit does not depend on the exposure that other

units receive and that there exists only one version of each exposure [Rubin, 1980]. This

assumption rules out potential interference between units or other errors in defining the

potential outcomes caused by multiple versions of the exposure. Therefore the potential

outcomes are well-defined for each unit and the observed outcome given exposure D = d

corresponds to the potential outcome, i.e., Yi(d) = Yi. We discuss the tenability of this

assumption to our data application in the Discussion.
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5.3 Multivariate Generalized Propensity Score

Using the identifying assumptions above, there are a variety of different methods to esti-

mate the dose-response function including covariate adjustment [Hirano and Imbens, 2004]

or stratification [Imai and Van Dyk, 2004]. We focus on weighted estimation, originally

proposed for binary treatments with marginal structural models [Robins et al., 2000] and

motivated by weights used in survey sampling [Horvitz and Thompson, 1952]. We aim to

construct a set of weights, w, that when applied to the observed data return a consistent

estimate for the average dose-response function, i.e.,

E[wY | D] = E[Y (d)]. (5.3.1)

In the case of univariate continuous exposure, weights are constructed by either estimating

the generalized propensity score [Fong et al., 2018; Hirano and Imbens, 2004; Imai and

Van Dyk, 2004; Kennedy et al., 2017; Zhu et al., 2015] or by direct optimization using

an entropy loss function [Tübbicke, 2020; Vegetabile et al., 2020]. We choose to extend

the generalized propensity score by using an appropriately defined multivariate conditional

distribution, which we refer to as the multivariate generalized propensity score (mvGPS).

The weights are thus constructed as the ratio of the multivariate marginal density to the

conditional density

w =
f(D)

f(D|C1, . . . ,Cm)
, (5.3.2)

where the numerator is the marginal density of the multivariate exposure and the denom-

inator is the mvGPS. These weights are referred to in the literature as stabilized inverse

probability of treatment weights (IPTW) [Robins et al., 2000]. To motivate the intuition

behind constructing weights in this manner, we can note that w = 1 when the probabil-

ity of exposure is independent of the confounding set C, i.e., f(D | C1, . . . ,Cm) = f(D),

which would hold in the case of a randomized experiment. For tractability, we propose using
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multivariate normal models for both densities, i.e.,

D ∼ Nm(µ,Σ) D | C1, . . . ,Cm ∼ Nm

(
βT1 C1

...

βTmCm

 ,Ω
)
,

where each βTj is a row vector of length pj corresponding to the effect of the set of confounders

Cj on Dj. By factorizing both the numerator and denominator in Equation 5.3.2, we can

compute w using full conditionals, i.e.,

w =
f(Dm | Dm−1, . . . , D1) · · · f(D1)

f(Dm | C1, . . . ,Cm, Dm−1, . . . , D1) · · · f(D1 | C1, . . . ,Cm)
,

w =
f(Dm | Dm−1, . . . , D1) · · · f(D1)

f(Dm | Cm, Dm−1, . . . , D1) · · · f(D1 | C1)
,

(5.3.3)

where each conditional expression is univariate normal. The second line is a result of the

fact that the jth exposure is independent of the confounders of other exposures given Cj,

i.e.,

Dj ⊥⊥C−j | Cj ∀ j = 1, . . . ,m,

where C−j represents the set of confounders excluding Cj, i.e., C−j = {C1, . . . ,Cm} r Cj.

Evaluating only the conditional densities reduces computational burden by eliminating the

need to directly estimate the covariance matrices, Σ and Ω.

Let θ be the collection of mean and variance parameters from all of the univariate normal

densities in Equation 5.3.3. Estimation of the parameters to obtain θ̂ proceeds by maximizing

the corresponding conditional density via least squares. The weight for the ith subject, wi,

is obtained by evaluating the densities using θ̂ with the values of the observed exposures,

Di1, . . . , Dim, and confounders, Ci1, . . . ,Cim.

When the weights are properly specified, the covariance between each exposure Dj and
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confounder Cjk for j = 1, . . . ,m and k = 1, . . . , pj is zero:

E[w(Dj − µDj
)(Cjk − µCjk

)] =

∫
D

∫
C1
· · ·
∫
Cm
w(dj − µDj

)(cjk − µCjk
)f(d, c1, . . . , cm)∂d∂c1, . . . , ∂cm

=

∫
D

∫
C

f(d)

f(d|c1, . . . , cm)
(dj − µDj

)(cjk − µCjk
)f(d, c1, . . . , cm)∂d∂c1, . . . , ∂cm

=

∫
D

∫
C

f(d)f(c1, . . . , cm)

f(d|c1, . . . , cm)f(c1, . . . , cm)
(dj − µDj

)(cjk − µCjk
)f(d, c1, . . . , cm)∂d∂c1, . . . , ∂cm

=

∫
D

∫
C
(dj − µDj

)(cjk − µCjk
)f(d)f(c1, . . . , cm)∂d∂c1, . . . , ∂cm

=

∫
D

(dj − µDj
)f(d)∂d

∫
C
(cjk − µCjk

)f(c1, . . . , cm)∂c1, . . . , ∂cm

= 0.

(5.3.4)

This balancing property of the weights serves as an important diagnostic when using the

mvGPS as part of a causal analysis [Austin, 2019]. Weights that do not reduce the exposure-

confounder correlation suggest that the distributional assumptions are invalid, the propensity

equations are misspecified, or that there are insufficient data as the balance is achieved

asymptotically.

Further, it follows that these weights are already normalized, i.e, E[w] = 1, and they

maintain the marginal moments of D and Cj, meaning E[wDj] = E[Dj] and E[wCj] =

E[Cj] for j = 1, . . . ,m, where the expectations are taken with respect to the joint density

f(D,C1, . . . ,Cm).

It remains to show that the weights as constructed satisfy Equation 5.3.1. To do this

we follow the logic proposed by Robins on using IPTW to correct for confounding [Robins,

2000]. We first note that the joint density of the potential outcome can be factorized as

f(Y (d),D,C1, . . . ,Cm) = f(D | Y (d),C1, . . . ,Cm)f(C1, . . . ,Cm | Y (d))f(Y (d))

= f(D | C1, . . . ,Cm)f(C1, . . . ,Cm | Y (d))f(Y (d)),

where the second line follows from the assumption of weak ignorability. We can then let f(D)

be a density for our multivariate exposure and construct a new joint density f ∗ where we
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replace f(D | C1, . . . ,Cm) with f(D) as would be the case if the exposures were independent

of the confounders. This new density is written as

f ∗(Y (d),D,C1, . . . ,Cm) = f(D)f(C1, . . . ,Cm | Y (d))f(Y (d)),

where the marginal mean of the potential outcomes is equivalent under either joint density

f or f ∗, i.e., E∗[Y (d)] = E[Y (d)]. Using this new density we can write our dose response as

E∗[Y (d)] = E∗[Y (d) | D = d] = E∗[Y (D) | D = d] = E∗[Y | D = d],

using the SUTVA assumption. The resulting expression, E∗[Y | D = d], is equivalent to the

mean expression in a linear regression of the observed exposures on outcome. Finally, we

have

E∗[Y | D = d] =

∫
Y

∫
D

∫
C
yf ∗(y,d, c1, . . . , cm)∂y∂d∂c1, . . . , ∂cm

=

∫
Y

∫
D

∫
C
y
f ∗(y,d, c1, . . . , cm)

f(y,d, c1, . . . , cm)
f(y,d, c1, . . . , cm)∂y∂d∂c1, . . . , ∂cm

=

∫
Y

∫
D

∫
C
y

f(d)

f(d | c1, . . . , cm)
f(y,d, c1, . . . , cm)∂y∂d∂c1, . . . , ∂cm

=

∫
Y

∫
D

∫
C
wyf(y,d, c1, . . . , cm)∂y∂d∂c1, . . . , ∂cm

= E[wY | D = d],

(5.3.5)

which gives us the result from Equation 5.3.1 that our weighted regression does indeed

provide a consistent estimate of the dose-response function.
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CHAPTER 6

Simulation

6.1 Design

We conducted a simulation study to demonstrate the performance of the mvGPS method

under different scenarios of confounding and compare it to three commonly used univariate

methods. The univariate methods were entropy balancing [Tübbicke, 2020], the covariate

balanced generalized propensity score (CBGPS) [Fong et al., 2018], and the generalized lin-

ear propensity score (PS). The entropy balancing method uses non-parametric constrained

optimization with an entropy loss function to solve for weights without specifying a propen-

sity score model. CBGPS attempts to achieve propensity specification and covariate balance

simultaneously by introducing a penalty term into the likelihood. The PS method uses

univariate normal densities for the marginal distribution of exposure and the generalized

propensity score without balance constraints. Although these univariate methods can han-

dle only single exposure variables, we expected that they might perform adequately when the

multiple exposure variables are highly correlated and have the same confounders. However,

when exposure variables have separate sets of confounders and/or are only weakly correlated,

we expected that the mvGPS method would outperform the univariate methods.

In our simulations we focus exclusively on a bivariate exposure, m = 2, similar to that

found in our motivating example. For each simulated data scenario, each univariate method

was applied twice, once to each exposure variable, with each such application yielding a set

of weights that were used to assess balance on confounders and estimate the dose-response
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function.

The first step of the simulation is to draw the vector of covariates X for each unit.

We assume that there are a total of 10 covariates collected prior to exposure and that the

covariates follow a normal distribution,

X ∼ N10(0,ΣX),

where the covariance matrix ΣX is compound symmetric with variance 1 and covariance 0.2,

to create a set of correlated covariates.

Realizations of the conditional distribution of the bivariate continuous exposure levels,

D = (D1, D2)
T given X, were then generated as bivariate normal,

D | X ∼ N2(βX,ΣD|X),

where β =

βT1
βT2

 is a 2× 10 matrix with row vectors βT1 and βT2 representing the effects of

X on D1 and D2, respectively, and ΣD|X is the 2× 2 conditional covariance matrix. For all

simulations the conditional standard deviation for each exposure was set to 2, while values

of the conditional correlation ρD|X were allowed to vary over {0, 0.1, 0.3, 0.5, 0.7, 0.9}.

Note that the marginal covariance matrix of the exposures, ΣD, is equal to ΣD =

ΣD|X + βΣXβ
T . This means that the marginal correlation of the two exposure variables,

ρD, depends on their conditional correlation ρD|X , the covariance of X and the degree of

overlap of covariates. The degree of overlap is reflected in the number of non-zero elements

that are common between βT1 and βT2 . As the degree of overlap increases, the marginal

correlation also increases. Since ΣX is compound symmetric with constant covariance of

0.2, the marginal correlation is guaranteed to be non-zero even with zero overlap and zero

conditional correlation.

Finally, the outcome Y was sampled from a univariate normal distribution conditional
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on D and X as

Y | D,X ∼ N

(
αT

X

D

 , σ2
Y

)
= N(αT

XX + αT
DD, σ2

Y ),

where αT =
[
αT

X αT
D

]
is a 1 × 12 vector of coefficients, which we separate as αT

X, a

1 × 10 vector representing the effect of covariates on the outcome, and αT
D, a 1 × 2 vector

corresponding to the treatment effects. In all simulations the conditional standard deviation

of the outcome was equal to 4, i.e., σY = 4.

Three scenarios were constructed to reflect different degrees of overlap of confounding for

the two exposures: M1: No Common Confounding, M2: Partially Common Confounding,

and M3: Common Confounding. Directed acyclic graphs (DAGs) for each scenario are shown

in Figure 4 on page 66.

Tables 2, 3, and 4 on pages 58-60 display the coefficients in the vectors βT1 , βT2 and

αT for each scenario. In M1, the two exposures D1 and D2 each have five covariates, with

none in common; for each exposure, two of the covariates are true confounders (i.e., also

associated with Y ). The outcome Y is a function of the two exposures as well as the four

true confounders, none of which are shared between D1 and D2. In M2, D1 and D2 again have

five covariates each, but they share three in common. Two of the shared covariates are true

confounders, and each exposure has a confounder that is not shared with the other exposure.

The outcome Y is again a function of the two exposures and the four true confounders, two

of which are shared and two of which are not. In M3, D1 and D2 share the same five

covariates. Four of these are true confounders, and Y is a function of the two exposures and

four common confounders. In all scenarios, the treatment effect for each of the exposures

was set to 1, i.e., αT
D = (1, 1).

The three simulation scenarios were run with a sample size of n = 200 for a total of

B = 1000 Monte Carlo repetitions using R Version 4.0 [R Core Team, 2020]. For each

repetition, weights were estimated using mvGPS and the three univariate methods with

the proper set of confounders specified for each exposure. For example, for Scenario M1,
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weights were constructed for D1 using X2 and X4 while D2 depended on X6 and X9 (see Ta-

ble 2). The three univariate methods, entropy balancing, CBGPS and PS, were implemented

using the WeightIt package in R [Greifer, 2020]. The parametric version of CBGPS was

used. The mvGPS method was implemented using the mvGPS package in R. All methods

were compared against an unweighted approach equivalent to applying a weight of 1 to all

observations.

Weighted Pearson correlations between the exposures and confounders were used to assess

balancing performance [Austin, 2019; Zhu et al., 2015]. We examined maximum absolute

correlation, which reflects the most imbalanced confounder after weighting and has been

shown to be a key metric to assess balance [Diamond and Sekhon, 2013], and the average

absolute correlation, which summarizes how well balance is achieved over all confounders.

These correlation values were taken over both sets of exposures.

Effective sample sizes, (Σiwi)
2/Σiw

2
i , were calculated to summarize the relative power of

each method [Kish, 1965]. The weights were then used to estimate the dose-response model.

The performance metrics were absolute total bias, Σj|αDj
− α̂Dj

| for j = 1, 2, and root mean

squared error,
√

1
n
Σi(y∗i − ŷi)2, where i = 1, . . . , 500 samples, y∗, were drawn from a uniform

grid on the convex hull, H, over the observed joint distribution of the two exposures. Each

of the metrics was averaged over the 1000 repetitions.

All methods reduce the effective sample size when weights are applied to the sample. Of

particular concern for practitioners are extreme weights. When sample sizes are small or

moderate, extreme weights can have an outsized influence. They may also result in limited

power to detect treatment effects and erratic estimation [Kang and Schafer, 2007]. One

remedy is to trim extreme weights [Huber et al., 2013; Lee et al., 2011]. As all simulations

were run with moderate sample sizes, i.e., n = 200, we wanted to test performance when

weight trimming was applied as might be done in practice by analysts when faced with

extreme weights. Our simulation analyses were thus repeated using trimmed weights for

each method, wq, where q ∈ {0.99, 0.95}. Weights were trimmed at both the upper and lower

46

https://github.com/williazo/mvGPS


bounds of the respective sample percentile such that values above or below the thresholds

were replaced with the threshold value.

6.2 Simulation Results

Figure 5 on page 67 plots the absolute maximum correlation between the exposures and

confounders for each method along with the original unweighted correlations for compari-

son. In general, with no common confounding or partially common confounding, the mvGPS

method substantially outperformed each univariate method. However, for common found-

ing, mvGPS performs best only when the marginal correlation is low. The performance of

univariate methods tended to cluster differently based on the degree of confounding overlap.

In models with low overlap, performance was clustered based on exposure, D1 or D2, but

as the degree of overlap increased, performance became clustered by type of estimation, En-

tropy, CBGPS, or PS. Applying trimmed weights, we see a slight improvement for q = 0.99

while q = 0.95 has little to no effect.

Figure 6 on page 68 shows the average absolute exposure-covariate correlation along

with a reference line at 0.1, a benchmark suggesting sufficient covariate balance [Zhu et al.,

2015]. For all simulation models, the mvGPS is consistently near the 0.1 threshold. For the

univariate methods, we see trends in performance similar to those observed for the maximum

correlation, but differences between methods are smaller. Entropy methods consistently had

the lowest average correlation, especially with high overlap or high marginal correlation.

Trimming the weights tended to eliminate the effect of the marginal correlation on the

mvGPS, resulting in flatter lines for q = 0.99 and q = 0.95, particularly for models with at

least some common confounding.

Figure 7 on page 69 displays trends in effective sample size for each method across the

various simulation scenarios, with a reference line at 100, which is often a minimum desirable

quantity for inference in the dose-response model [Vegetabile et al., 2020]. The mvGPS
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method tends to have lower effective sample sizes compared to the univariate methods.

Importantly, using untrimmed weights, the mvGPS method has effective sample sizes less

than 100 in the presence of partial or common confounding, indicating particularly low

power. Trimming the weights increases the effective sample size for all methods and the

difference between methods decreases as q increases.

Figure 8 on page 70 shows the results of each method with respect to total absolute bias

for the treatment effects estimated from weighted regression. Generally, the mvGPS method

has the lowest total bias, with the exception of high correlation in the model with partially

common confounding or no common confounding. Of particular note, although the effective

sample size and balancing diagnostics were lower for mvGPS in the common confounding

model, it significantly outperforms all univariate methods with respect to bias even with

high marginal correlation. We also observe that certain univariate methods have greater

bias than the unweighted estimates, such as those that estimate weights using D2 for the

common confounding model. Trimming the weights tended to reduce bias for mvGPS when

there was high correlation of the exposures, particularly under models with either partially

overlapping confounding or no common confounding, while slightly increasing the bias for

the common confounding models.

Figure 9 on page 71 shows the root mean squared error based on 500 points sampled along

a grid from the convex hull, Hq, of the exposures. The precision of predicted values for the

mvGPS is often worse than that for univariate methods. As ρ increases, the mvGPS method

has worse performance, with decreased power from low effective sample sizes. Trimming the

weights helps reduce this trend and reduces the root mean squared error across all methods.

In summary, using a multivariate method for weight estimation is critical to achieve bal-

ance as univariate methods in general do not effectively balance on the confounders for both

exposures. The multivariate method protects against any single confounder being strongly

imbalanced across either exposure at the expense of slightly lower average balance, while the

univariate methods have potentially large imbalance on the unused exposure dimension. The
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notable exception is when there is high overlap in terms of confounders. In this case univari-

ate methods can sufficiently balance confounders, particularly when the marginal correlation

of exposures is high. However, despite achieving balance in these scenarios, the univariate

methods still resulted in high total bias of the treatment effect estimates. Although mvGPS

weights were advantageous with respect to balance and bias, they tend to produce smaller

effective sample sizes, resulting in lower power and higher root mean squared error. Weight

trimming, particularly with q = 0.99, offers a potential remedy to reduce these effects while

also maintaining balance and low bias.
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CHAPTER 7

Application

The WIC program is designed to provide nutrition education, ’vouchers’ for selected healthy

food, and referrals. The rapid increase in childhood obesity rates in the early 2000s led to

interventions to increase physical activity, and improve access to healthy food especially in

communities where affordable fresh produce is not available. In this motivating example,

we estimated the causal effects of interventions that were implemented by individual WIC

clinics in attempts to meet the specific needs of the communities they served. As discussed

in Section 2, the intervention programs were classified as using macro or micro strategies

and we calculated two continuous dose measures for n = 1079 census tracts. The outcome

was the difference in average obesity prevalence from post, 2012-2016, to pre, 2007-2009,

intervention period, calculated as Y = p̄post − p̄pre at the census tract level. Negative values

of Y indicate that the prevalence of obesity decreased. We hypothesized that areas with

more macro and micro strategies would have the greatest reduction in rates of obesity.

Data on potential census tract-level confounders came from three sources: US Census

American Community Survey (ACS) 5-year estimates [United States Census Bureau, 2020],

WIC administrative data, and the National Establishment Time-Series (NETS) [Walls &

Associates, 2013]. Variables from the ACS captured community level demographic char-

acteristics such as median household income, education level, primary language spoken at

home, and ethnicity, which have been shown in previous research to be associated with

obesity rates [Nobari et al., 2013, 2018a]. WIC administrative data were used to calculate

average pre-treatment overweight and obesity prevalence for each census tract. Overweight
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and obesity prevalence were considered potential confounders because agencies may have

directed interventions towards clinics in higher prevalence regions. Finally, NETS provided

information on neighborhood food environments, specifically on the density per square mile

of unhealthy and healthy food outlets [Anderson et al., 2020; Wang et al., 2006]. Previous

analysis has shown that higher density of healthy outlets was associated with lower obe-

sity prevalence among low-income preschool-aged children in Los Angeles County [Chaparro

et al., 2014]. Both macro and micro propensity dose equations included the same set of

potential confounders from these three data sources, but each exposure was assessed sepa-

rately to determine if higher order polynomial terms for any confounders were needed. These

analyses showed that both macro and micro dose had quadratic relationships with educa-

tion level and density of food outlets, while only macro dose had evidence of a quadratic

relationship with median household income.

After defining the appropriate functional form for each exposure and confounder, weights

were then estimated using the mvGPS method and the three univariate methods discussed

in Section 6.1. To maintain the assumption of positivity, data used for estimating the

weights were restricted to the trimmed convex hull H0.95 shown in Figure 1 on page 63,

where a bivariate normal distribution is plausible. The marginal correlation of exposures was

moderate, r = 0.28, in this high-density region. As both exposures had nearly identical sets of

potential confounders, the data generating mechanism was akin to the common confounding

scenario described in the simulations. Therefore, to protect against extreme weights and

reduce the variability of the resulting dose-response estimates, weights for each method were

trimmed using q = 0.99.

Table 5 on page 61 shows the balancing diagnostics, maximum absolute correlation and

average absolute correlation, and the effective sample sizes. The confounders were signifi-

cantly imbalanced prior to weighting with the average absolute correlation above 0.2 and the

maximum absolute correlation above 0.4. All methods were able to improve balance, but

the mvGPS method had substantially greater reduction in imbalance than the univariate
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methods. The average absolute correlation and maximum absolute correlation were reduced

to 0.04 and 0.10 respectively after applying mvGPS weights. The effective sample size for

mvGPS was reduced from the original sample of n = 1079 to 604. However, since the

population included over 1000 census tract units, the power was still reasonably high.

Finally, we applied weights from the mvGPS method to estimate the joint effect of macro

and micro exposure doses on change in obesity prevalence using weighted least squares

regression and compare these to unweighted estimates. Only exposures within the trimmed

convex hull, H0.95, were used to estimate treatment effects and predict the dose-response

surface. The dose-response model for both methods included linear terms for each exposure

and an interaction between the two exposures.

Figure 10 on page 72 shows the weighted and unweighted dose-response surfaces along

with a reference plane of no change in obesity prevalence. Both the weighted and unweighted

surfaces suggest reductions in obesity prevalence from our pre-intervention period, 2007-2009,

to the post-intervention period, 2012-2016, for all dose combinations. This is consistent

with studies showing a decrease in obesity risk among WIC-participating children in Los

Angeles County associated with the 2009 change in the WIC food packages [Chaparro et al.,

2019; Nobari et al., 2018b]. The unweighted dose-response surface is a monotonic plane;

increases in micro dose and in macro dose are each associated with greater reduction in

obesity prevalence, the associations are additive, and the greatest reduction in prevalence

corresponds to the highest levels of macro and micro doses. The mvGPS dose-response

surface is more complex and shows an interaction effect. At low levels of macro dose, increases

in micro dose are associated with a steep reduction in obesity prevalence. However, as macro

dose increases, high micro dose becomes gradually less effective. In the quadrant where both

macro and micro dose are high, higher micro doses appear to be less beneficial rather than

more beneficial. Table 6 on page 62 shows a simplified summary of the dose response surfaces

in Figure 10, where the two methods are used to estimate the change in obesity prevalence

and corresponding 95% confidence interval at the four quadrants of bivariate exposure. There
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are several possible explanations for the observed differences between the methods in the high

macro, high micro quadrant. There could be important confounders that were not accounted

for in the analysis. There could also have been measurement error in estimating exposures.

We noted that the data set included several observations with high macro and high micro

doses that were assigned high weights and had either no decrease or a slight increase in child

obesity prevalence. Further investigation of these census tracts may yield more information

and guide model refinements.
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CHAPTER 8

Discussion

In this work, we introduced methodology for generating a multivariate generalized propensity

score, mvGPS, to be used in estimating the causal effect of multiple simultaneous continuous

exposures in observational or non-randomized studies. We have developed the R package

mvGPS available at https://cran.r-project.org/package=mvGPS in the CRAN repository

to implement the methods.

Through simulations we have shown that, when estimating the causal effects of two si-

multaneous exposures, mvGPS weights are effective at reducing both the maximum and

average absolute correlation between exposures and confounders. Further, the weights can

minimize bias in estimating the dose-response function in realistic data generating settings

with moderate sample sizes. The simulations identified two key factors that affect perfor-

mance. When the exposures have highly overlapping sets of confounders or large marginal

correlation, the mvGPS method may generate extreme weights, resulting in smaller effective

sample sizes and higher average root mean squared error. Trimming the weights improves

performance in these situations. We suggest that in settings with a high degree of overlap

in the confounders or moderate to large marginal exposure correlation, weights should be

trimmed at q = 0.99.

While our method could in principle be extended to an arbitrary number of continuous

exposures, we have confined attention in our simulations and application to the setting of two

exposures. Assessing the joint effect of two interventions is a common scientific question,

and we expect that there are many practical applications of the methods. The resulting
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dose-response surface for bivariate exposures can be easily visualized and interpreted, which

is key in practice. Further work is needed to explore performance for settings with more than

two exposures. In particular, positivity and achieving adequate balance may be increasingly

difficult as dimensions of exposure increase. For higher order exposures, dimension reduction

techniques such as principal component analysis or manifold learning might be applied to

transform the problem to a lower order continuous exposure space.

We applied the mvGPS method to evaluate the joint effectiveness of macro and micro

intervention strategies used in childhood obesity programs on change in obesity prevalence

among low-income preschool aged children. Due to non-random selection of participating

clinics, there was significant imbalance on potential confounders as evidenced by large ab-

solute maximum and average correlations prior to weighting. The mvGPS method achieved

superior balance compared to univariate alternatives, drastically reducing the maximum

absolute correlation and the average absolute correlation. Estimates of the dose-response

surface using weights from the mvGPS method differed substantially from the results of the

unweighted surface. The results showed that the most effective intervention combination

was higher levels of micro strategies and lower levels of macro strategies. However, our

results should be interpreted with caution. As with other causal inference methods, all con-

founders must be adequately captured and modeled to produce unbiased estimates. Thus

our estimated treatment effects may be biased due to unknown confounders. In particular,

communities that received higher levels of macro and micro doses may have been inherently

more difficult to change due to a complex interplay of community and personal factors not

captured by our set of potential confounders. In addition, we have assumed that the poten-

tial outcomes of the change in obesity given macro and micro exposures are well-defined via

SUTVA as discussed in Section 5.2. Specifically, SUTVA stipulates that multiple versions of

the exposures do not exist. In our application, however, there are potentially different sets

of interventions that can yield the same macro and micro exposure scores. In the presence of

multiple versions of the exposures, the resulting potential outcomes may be unidentifiable.
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Further, we had to estimate exposure to the interventions at the census tract level using

various assumptions, which may have resulted in measurement error. Thus our application,

while demonstrating the methods, has important limitations.

Our approach assumes that the exposures have a multivariate normal distribution. The

multivariate normal distribution is particularly attractive for working in higher dimensions.

In our case, it allows for the full conditionals used to generate weights in Equation 5.3.3

to be tractable univariate normal densities. Further, the asymptotics of the estimates are

well behaved due to the central limit theorem. We note that it is common practice when

using the generalized propensity score for continuous treatments in the univariate case to

assume normality [Fong et al., 2018; Hirano and Imbens, 2004; Imai and Van Dyk, 2004;

Robins, 2000; Zhu et al., 2015]. However, this reliance on multivariate normality is an im-

portant limitation of the methodology, particularly in assessing its validity [Mecklin and

Mundfrom, 2004]. Possible extensions include replacing the multivariate normal distribution

with non-parametric or semi-parametric alternatives as has been done recently with univari-

ate methods [Kennedy et al., 2017; Tübbicke, 2020; Vegetabile et al., 2020]. Other possible

extensions include allowing for time-varying outcomes and exposures such has been recently

proposed for CBGPS [Huffman and van Gameren, 2018]. Additionally, SUTVA might be

relaxed to test for potential geographic interference [VanderWeele, 2008; Verbitsky-Savitz

and Raudenbush, 2012].
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TABLES & FIGURES

Table 1: Intervention Program Strategies

# Name Group n (%)

1 Government Policies Macro 1 (3%)

2 Institutional Polices Macro 4 (12%)

3 Infrastructure Investments Macro 3 (9%)

4 Business Practices Macro 4 (12%)

5 Group Education Micro 21 (66%)

6 Counseling Micro 14 (44%)

7 Health Communication Micro 17 (53%)

8 Home Visitation Micro 8 (25%)

9 Screening and Referral Micro 14 (44%)

Each intervention program was classified based on the strategies that were implemented.

Programs could use multiple strategies, e.g., Group Education and Counseling. Strategies

are categorized as either micro and macro based on whether they directly targeted individuals

or the population at large. The final column represents how many of the 32 programs used

that particular strategy.
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Table 2: Coefficients for Simulation Scenario M1: No Common Confounding

Param. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 D1 D2

D1 βT1 1 0.5 0.25 0.1 0.75 0 0 0 0 0 - -

D2 βT2 0 0 0 0 0 1 0.5 0.25 0.1 0.75 - -

Y αT 0 0.5 0 1 0 0.2 0 0 1 0 1 1

All values of the covariates enter in each equation linearly with the respective coefficients

shown in the table. In this scenario, covariates X1 − X5 are associated with exposure D1;

however, only X2 and X4 are true confounders also associated with Y . Similarly, covariates

X6 −X10 are associated with exposure D2; however, only X6 and X9 are true confounders

also associated with Y . There are no common confounders in this model. Each exposure

has a true treatment effect coefficient of 1.
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Table 3: Coefficients for Simulation Scenario M2: Partially Common Confounding

Param. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 D1 D2

D1 βT1 0 0 1 0.5 0.25 0.1 0.75 0 0 0 - -

D2 βT2 0 0 0 0 1 0.5 0.25 0.1 0.75 0 - -

Y αT 0 0 0.5 0 0 1 0.2 0 1 0 1 1

All values of the covariates enter in each equation linearly with the respective coefficients

shown in the table. In this scenario, covariates X3 − X7 are associated with exposure D1;

however, only X3, X6, and X7 are true confounders also associated with Y . Similarly,

covariates X5 −X9 are associated with exposure D2; however, only X6 X7, and X9 are true

confounders also associated with Y . Common confounders of exposure D1 and D2 are X6

and X7. Confounder of exposure D1 only is X3, and X9 is a confounder of D2 only. Each

exposure has a true treatment effect coefficient of 1.
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Table 4: Coefficients for Simulation Scenario M3: Common Confounding

Param. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 D1 D2

D1 βT1 1 0.5 0.25 0.1 0.75 0 0 0 0 0 - -

D2 βT2 0.8 0.8 0.05 0.4 0.55 0 0 0 0 0 - -

Y αT 0.5 0 1 0.2 1 0 0 0 0 0 1 1

All values of the covariates enter in each equation linearly with the respective coefficients

shown in the table. In this scenario, covariates X1−X5 are associated with exposure D1 and

D2; however, only X1, X3, X4 and X5 are true confounders also associated with Y . Common

confounders of exposure D1 and D2 are X1, X3, X4, and X5. There are no confounders of

D1 or D2 only in this model. Each exposure has a true treatment effect coefficient of 1.
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Table 5: Covariate Balance

Max Abs. Corr. Avg. Abs. Corr. ESS Method

0.12 0.04 637 mvGPS

0.18 0.08 580 CBGPS (Macro)

0.22 0.07 659 PS (Macro)

0.25 0.08 541 Entropy (Macro)

0.35 0.12 779 Entropy (Micro)

0.37 0.14 828 PS (Micro)

0.49 0.16 679 CBGPS (Micro)

0.41 0.19 1079 Unweighted

Assessing balance and effective sample size (ESS) using various weighted methods for the

motivating example. Data used for estimating weights were restricted to H0.95. The uni-

variate methods were applied separately to the two exposure metrics, macro or micro dose.

The correlations are taken over both exposure metrics. The unweighted method represents

the original values before applying weights. The weights for each method are trimmed using

q = 0.99.
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Table 6: Dose Response Quadrant Comparison

Macro Dose Micro Dose Unweighted mvGPS

Low
Low 0.22 (-0.58, 1.01) 0.12 (-0.72, 0.97)

High -1.86 (-3.82, 0.10) -3.51 (-5.40, -1.61)

High
Low -1.80 (-2.51, -1.09) -1.77 (-2.46, -1.08)

High -2.41 (-3.57, -1.25) -1.22 (-2.27, -0.17)

Point estimates and corresponding 95% confidence intervals for change in obesity prevalence

at four quadrants of the trimmed convex hull inference region for the unweighted and mul-

tivariate generalized propensity score (mvGPS) methods. “High” corresponds to the 90th

percentile and “Low” corresponds to the 10th percentile of the convex hull.
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Figure 1: Joint Distribution of Macro and Micro Intervention Doses

Observed values of log macro and micro exposure doses averaged over the study intervention

period 2010-2016. Trimmed convex hull region with q = 0.95, i.e., H0.95, is shown in red
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Figure 2: Units of Analysis: Census Tracts from 8 Regions

This map highlights the 8 regions in Los Angeles County that were targeted as part of the

ECOSyS data collection, and the census tracts in these regions with at least 30 WIC-enrolled

children over the period 2007-2016. This resulted in a total of n = 1079 census tracts that

were the unit of analysis for estimating the effect of childhood obesity intervention programs

by WIC.
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Figure 3: Defining Estimable Region with Bivariate Exposure

Sample of n = 500 units drawn from population where D1 ∼ N(0, 1), D2 ∼ N(0, 1),

Cov(D1, D2) = 0.5. Region defined by dark blue box corresponds to G while region de-

fined in dark red represents H. Trimmed regions are also shown for q = 0.95 with the light

blue box corresponds to G0.95 while the region defined in light red represents H0.95
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Figure 4: Simulation Scenarios

Directed acyclic graphs for each of the three data generating simulation scenarios. D1 and

D2 are continuous exposure measures and Y is the outcome of interest. C1 and C2 represent

confounder sets that are specific to exposures D1 and D2, while C12 represents a confounder

set common to both exposures.
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Figure 5: Assessing Covariate Balance: Maximum Absolute Exposure-Covariate Correlation

Rows correspond to the three simulation scenarios, M1, M2 and M3, and each column corre-

sponds to quantiles used for weight trimming. The y-axis is the average maximum absolute

exposure-covariate correlation for n = 200 from B = 1000 repetitions. This maximum is

taken across both exposure values, D1 and D2. The x-axis, ρ, is the marginal correlation of

the exposures. For univariate methods, weights were generated twice, once for each exposure

variable.
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Figure 6: Assessing Covariate Balance: Average Absolute Exposure-Covariate Correlation

Rows correspond to the three simulation scenarios, M1, M2 and M3, and each column corre-

sponds to quantiles used for weight trimming. The y-axis is the average absolute exposure-

covariate correlation for n = 200 from B = 1000 repetitions. This average is taken across

both exposure values, D1 and D2. The x-axis, ρ, is the marginal correlation of the exposures.

For univariate methods, weights were generated twice, once for each exposure variable. The

red line corresponds to an average value of 0.1, which is often used as a benchmark for

sufficient balance.
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Figure 7: Effective Sample Size

Rows correspond to the three simulation scenarios, M1, M2 and M3, and each column

corresponds to quantiles used for weight trimming. The y-axis is the average effective sample

size, (Σiwi)
2/Σiw

2
i , for n = 200 from B = 1000 repetitions. The x-axis, ρ, is the marginal

correlation of the exposures. The red line corresponds to an effective sample size of 100

which is often a minimum desirable quantity for hypothesis testing and inference of the

dose-response model.
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Figure 8: Outcome Modeling Performance Metric: Average Total Absolute Bias

Rows correspond to the three simulation scenarios, M1, M2 and M3, and each column

corresponds to quantiles used for weight trimming. The y-axis is the average total absolute

bias, Σj|αDj
− α̂Dj

|, for n = 200 from B = 1000 repetitions. The x-axis, ρ, is the marginal

correlation of the exposures. For univariate methods, weights were generated twice, once for

each exposure variable.
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Figure 9: Outcome Modeling Performance Metric: Average RMSE

Rows correspond to the three simulation scenarios, M1, M2 and M3, and each column

corresponds to quantiles used for weight trimming. The y-axis is the average root mean

squared error (RMSE) for 500 points sampled on a convex hull Hq grid for n = 200 from

B = 1000 repetitions. The x-axis, ρ, is the marginal correlation of the exposures. For

univariate methods, weights were generated twice, once for each exposure variable.
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Figure 10: Estimated Dose-Response Surface of Change in Obesity Prevalence as a Function

of Macro and Micro Intervention Dose

Estimated dose-response surface of change in obesity prevalence as a function of log macro

and micro dose, obtained using mvGPS weights and unweighted. The surface is restricted

to the convex hull of observed bivariate exposure, H0.95, shown in Figure 1 and points are

sampled evenly along this grid. A reference plane of no change is included. For a 3D

interactive version of the dose-response surface that includes lower and upper bound 95%

confidence interval surfaces for the mvGPS method, visit https://williazo.github.io/

resources/.
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Appendix A

Details of Dose Construction

This appendix provides details as to how we quantified levels of exposure to different types of

obesity intervention strategies from WIC intervention programs in order to understand their

effect on changes in childhood obesity prevalence, with regard to our motivating application

described in Chapter 2. The ultimate goal of dose construction was to estimate the levels

of exposure to macro and micro intervention strategies at the census tract level. Figure A.1

provides an overview of this process. Each intervention program was associated with one or

more WIC clinics that implemented the program. Each program was parsed as to which of

nine possible intervention strategies it used. Some strategies are considered macro strategies

while others were considered micro strategies, as shown in Table 1. Then a program specific

reach score was applied to generate a continuous bivariate intervention dose index (IDI)

for macro and micro strategies associated with that program at the corresponding clinics.

These IDIs were then mapped from clinics to census tracts where WIC-participating children

lived using catchment areas. Any census tract whose boundary fell within the catchment

area of a clinic was assigned the corresponding macro and micro dose associated with that

clinic. Refinements to this calculation were made to account for distances between clinics

and census tracts with overlapping catchment areas. Once this process was completed for

each program by year, the exposure doses were then aggregated across all WIC programs

and years, returning one bivariate measure of exposure for each census tract during the

intervention period.
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A.1 Intervention Dose Index

The first step in the dose construction as shown in Figure A.1 was to generate the macro

and micro intervention dose indices for each intervention program. We used in part the

“community intervention dose index” concept described in Wang et al. [2018]. The authors

define an intervention dose index (IDI) for each of the nine intervention strategies as

IDI = SS ×RS × FS,

where SS ∈ [1, 9] is a strength score based on a Delphi survey from subject matter experts,

RS ∈ [0, 1] is a reach score reflecting the percent of the target population reached by the

program, and FS ∈ [0, 1] is a fidelity score which is the degree to which the program was

followed during implementation.

We assumed that all programs had FS = 1 because the data needed to assess program

fidelity were not available. The reach score, RS, was estimated using interviews with WIC

employees who were asked to rate the percentage of WIC clients that they believed the

program reached. Finally, we did not use strength scores so that the corresponding dose-

response estimates would be based strictly on data alone.

Our adapted version of the IDI returned a continuous dose for each strategy utilized by

a program that corresponded to the reach score associated with the program. Thus each

program had a vector of nine IDIs, one for each of the nine potential program strategies. As

mentioned in Chapter 2, there was particular interest in estimating the joint effect of macro

and micro strategies. Therefore, the strategy-specific doses were summed by strategy type

(macro versus micro) to yield a continuous bivariate dose for each program.

A.2 Catchment Area

Using this algorithm, we obtained a bivariate measure of exposure for each intervention

program. Each program was associated with one or more WIC clinics. However, the outcome
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of interest, obesity prevalence, was available at the census tract level. To assign exposures

to census tracts, we constructed catchment areas for each clinic. A clinic’s catchment area

was defined as a circle centered at the clinic’s latitude and longitude with a radius such

that a certain percent of the clients served by the clinic resided within the catchment area.

Any census tract whose boundary intersected the circle was assumed to be in the clinic’s

catchment area. For macro strategies, the radius was set to encompass 80% of the clients

served and for micro strategies, it was set to encompass 50%. This reflects a belief that

macro strategies have potential for wider geographic impact than micro strategies.

A.2.1 Refinements

Three refinements were applied when converting exposure levels to census tracts using catch-

ment areas: radius truncation, micro exposure inverse distance weighting, and overlapping

catchment area adjustment.

The first refinement was to truncate the clinic radii. Some smaller clinics served families

that were highly dispersed geographically, perhaps because the families moved but preferred

to travel to their regular clinic to receive services. The unadjusted radii for such clinics was

sometimes quite large. To prevent such clinics from having out-sized impacts, the radii for

macro and micro catchment areas were truncated at the 90th percentile.

Another refinement was applied to micro strategies only. Because micro intervention

strategies target individuals, those who live closer to a clinic offering micro interventions

may be more likely to benefit than those who live further away. To reflect this belief,

micro exposure for a particular clinic and catchment area was weighted by the relative

distance between the clinic and the centroid of the census tract. The weights were defined

as w = d0/d where d0 represents the minimum distance among all census tracts within the

micro catchment area of the clinic and d is the distance between a particular census tract

and clinic. Constructing weights in this manner ensured that census tracts close to the clinic

have w ≈ 1, that 0 < w < 1 for all other census tract units, and w → 0 as the d → ∞.
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Weights were constructed separately for each clinic that participated in a program. We then

multiplied these weights by micro exposure dose for each clinic participating in the program,

yielding an inverse distance weighted micro exposure dose.

The final refinement addressed overlapping catchment areas. Certain programs were

implemented at a large number of clinics and the catchment areas for the clinics overlapped.

In such regions, children have increased potential to receive the intervention. To reflect

this, we multiplied the macro exposure dose of the program by the number of overlapping

catchment areas. For micro exposures, we took the average weight of the census tract for all

overlapping catchment areas and then multiplied by the number of overlapping catchment

areas. Figure A.2 provides an example of how micro weighting and overlapping adjustments

are performed.

Figure A.3 shows the final catchment areas by clinic for micro and macro strategies after

applying these refinements.

A.3 Aggregation

The final step in the dose estimation process was to aggregate exposures at the census tract

level. We computed macro and micro exposures for all programs at the corresponding census

tracts by year as described above from 2010-2016. For each census tract and year, we had a

dose matrix with two columns, for macro and micro exposures, and 32 rows that corresponded

to the total number of intervention programs. If a program was not implemented in that year

or in that census tract, it would have a macro and micro exposure dose equal to zero. We

then summed exposure doses across the number of programs, i.e., the rows of the matrix, to

create a bivariate measure of total macro and micro exposure per census tract by year. We

then averaged the macro and micro exposures at a census tract across years. As mentioned in

Chapter 2, the resultant exposures were log transformed due to skewness. The final average

log transformed macro and micro exposure doses for the population of census tracts are
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shown in Figure A.4. We can see that micro doses were much more localized with a few

high density regions while macro doses were much more evenly distributed throughout the

population.

A.4 Limitations

There are several major limitations of the dose estimation process. One limitation is the

circular shape of the catchment area, which assumes that the impact and reach of the clinic

extends uniformly in all directions when in reality these shapes are likely to be irregular.

Another limitation is the lack of fidelity scores for the intervention programs; by ignoring

fidelity, we assume that all programs were implemented equally well. Finally, reliance on

the catchment area approach to map clinics to census tracts is a major limitation but was

necessary because we did not have records of client participation.
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Figure A.1: Overview of Dose Construction

The process of converting an intervention program into continuous exposures. In this ex-

ample the intervention program, “Regional Breastfeeding Liaison”, uses one macro and two

micro intervention strategies with a program reach score of 12.5%. An indicator for strategy

utilization is multiplies by the reach score to produce the corresponding intervention dose

index (IDI) for all nine strategies. These IDIs are then aggregated to total macro and micro

strategy dose.
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Figure A.2: Example of Dose Refinement

CT=census tract

Example showing the process of refining the exposure dose for an intervention program using

micro weights and adjusting for census tracts with overlapping catchment areas. We assume

there exists an intervention program (program #1) implemented at clinics #1 and #2 with

a program reach score of 0.125. Each clinic has a specific catchment area shown as the

light orange shaded circles. The centroid of census tract #2 lies in the catchment area of

both clinic #1 and #2. Therefore, the weight for this unit is the average weight for each

clinic, 0.583. The micro dose is then constructed by multiplying the number of overlapping

catchment areas with the average weight and the estimated reach score. Census tracts #1

and #3 would not require any overlapping adjustment and their micro dose would be the

product of their weight and the reach score.
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Figure A.3: Catchment Area for WIC Clinics

(a) Micro catchment areas (b) Macro catchment areas

Catchment area for each WIC clinic by strategy group overlaid on the census tracts and

regions used in the analysis from Figure 2. Clinics are colored corresponding to their respec-

tive WIC agencies, and the size of each point represents the relative number of WIC families

that are served at the clinic on average over the period of 2010-2016.
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Figure A.4: Geographic Distribution of Macro and Micro Dose

(a) Micro exposure dose (b) Macro exposure dose

Average micro and macro log exposure dose over the period of 2010-2016 for the n = 1079

census tracts that from Figure 2.
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Tübbicke, S. (2020): “Entropy balancing for continuous treatments,” arXiv preprint

arXiv:2001.06281.

United States Census Bureau (2020): “American community survey,” URL https://www.

census.gov/acs/www/data/data-tables-and-tools/, Last checked on July 30, 2020.

US Department of Agriculture, Food and Nutrition Service (2014): “Final rule: Revisions

in the WIC food packages,” URL https://www.fns.usda.gov/wic/fr-030414.

VanderWeele, T. J. (2008): “Ignorability and stability assumptions in neighborhood effects

research,” Statistics in Medicine, 27, 1934–1943.

Vegetabile, B. G., B. A. Griffin, D. L. Coffman, M. Cefalu, and D. F. McCaffrey (2020):

“Nonparametric estimation of population average dose-response curves using entropy bal-

ancing weights for continuous exposures,” arXiv preprint arXiv:2003.02938.

Verbitsky-Savitz, N. and S. W. Raudenbush (2012): “Causal inference under interference

in spatial settings: A case study evaluating community policing program in chicago,”

Epidemiologic Methods, 1, 107–130.

89

https://www.census.gov/acs/www/data/data-tables-and-tools/
https://www.census.gov/acs/www/data/data-tables-and-tools/
https://www.fns.usda.gov/wic/fr-030414


Walls & Associates (2013): “National Establishment Time-Series (NETS) database,” URL

http://youreconomy.org/profile/about.lasso, Last checked on August 22, 2020.

Wang, M. C., C. M. Crespi, L. H. Jiang, T. Nobari, H. Roper-Fingerhut, S. Rauzon, B. Rob-

les, M. Blocklin, M. Davoudi, T. Kuo, K. E. MacLeod, E. Seto, S. Whaley, and M. Prelip

(2018): “Developing an index of dose of exposure to early childhood obesity community

interventions,” Preventive Medicine, 111, 135–141.

Wang, M. C., A. A. Gonzalez, L. D. Ritchie, and M. A. Winkleby (2006): “The neighborhood

food environment: Sources of historical data on retail food stores,” International Journal

of Behavioral Nutrition and Physical Activity, 3, 15.

Zhu, Y., D. L. Coffman, and D. Ghosh (2015): “A boosting algorithm for estimating gen-

eralized propensity scores with continuous treatments,” Journal of Causal Inference, 3,

25–40.

90

http://youreconomy.org/profile/about.lasso

	Introduction
	Motivating Example
	Background
	Potential Outcomes Framework
	Propensity Score Methodology
	Binary Treatment Setting
	Discrete-Valued Treatment Setting


	Univariate Generalized Propensity Score
	Framework for Causal Inference with Continuous Exposures
	Parametric Specification
	Generalized Propensity Score Extensions
	Limitations of Current GPS Methodology

	Generalized Propensity Score for Multivariate Continuous Exposures
	Notation
	Identification Assumptions
	Multivariate Generalized Propensity Score

	Simulation
	Design
	Simulation Results

	Application
	Discussion
	Appendix Details of Dose Construction
	Intervention Dose Index
	Catchment Area
	Refinements

	Aggregation
	Limitations




