
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Introspective Intrusion Detection

Permalink
https://escholarship.org/uc/item/5dt7v1ck

Author
Hawkins, Byron

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dt7v1ck
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Introspective Intrusion Detection

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Byron Hawkins

Dissertation Committee:
Associate Professor Brian Demsky, Chair

Professor Michael Franz
Associate Professor Athina Markopoulou

2017

Portions of Chapters 1, 2, 5 c© 2017 IEEE
Portions of Chapters 1, 2, 3 c© 2016 ACM

Portions of Chapters 1, 4 c© 2015 IEEE
All other materials c© 2017 Byron Hawkins

DEDICATION

To the

International Justice Mission
for their enduring effort

to protect powerless individuals
from the malicious intrusions

of the real world.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

CURRICULUM VITAE xii

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.1 Timeline of Important RCE Defenses . 8

1.1.1 Bug Fixing . 9
1.1.2 Traditional Intrusion Detection . 10
1.1.3 Control Flow Integrity . 12
1.1.4 Diversification . 14

1.2 Theoretical Advantages and Challenges of IID . 16
1.3 Goals of Introspective Intrusion Detection . 24
1.4 Usage Model . 29

1.4.1 Forensics . 30
1.4.2 Advanced Persistent Threats . 32
1.4.3 Field Debugging . 35
1.4.4 Profiling . 37

1.5 Prototype IID Implementations . 38
1.5.1 BlackBox for x86 COTS Binaries . 40
1.5.2 ZenIDS for PHP Applications . 42

1.6 Contributions . 44
1.7 Organization . 45

2 Paradise: a Hypothetically Pure IID 46
2.1 Platform Snares . 47
2.2 Generic Threat Model . 51
2.3 Deployment . 52

2.3.1 Generating the Trusted Profile . 53

iii

2.3.2 Monitoring . 56
2.4 Maintaining the Trusted Profile . 59

2.4.1 Blacklisting . 59

3 BlackBox 61
3.1 Intel CET . 65
3.2 Threat Model . 67
3.3 Monitoring . 67

3.3.1 Trusted Profile . 68
3.3.2 Trusting Returns . 69
3.3.3 Trusting Self-Instrumentation . 70
3.3.4 Modular Trust . 71
3.3.5 Detecting Evasion . 72

3.4 Dynamically-Generated Code . 74
3.4.1 Permission Model . 75
3.4.2 Standalone Dynamic Routines . 78

3.5 Watchdog Mode . 82
3.5.1 Stack Spy . 82
3.5.2 Sniffer Dog . 85

3.6 Evaluation . 90
3.6.1 Filtering Log Noise . 91
3.6.2 Logging and Blacklisting Exploits . 99
3.6.3 Resource Efficiency . 101
3.6.4 Security Analysis . 105
3.6.5 Verifiability . 115

4 DynamoRIO JIT Optimization 118
4.1 Background and Related Work . 122

4.1.1 DynamoRIO . 122
4.1.2 QEMU . 125
4.1.3 Pin . 126
4.1.4 Valgrind . 126
4.1.5 Specialized Applications of Binary Translation 127

4.2 Annotation-Based Optimization . 127
4.2.1 New Annotations Identifying Code Changes 128
4.2.2 VM Area Isolation . 129
4.2.3 Selective Fragment Removal . 129

4.3 Annotation Implementation . 132
4.3.1 Binary Annotation Scheme . 132
4.3.2 Annotation Discussion . 134
4.3.3 Annotations in 64-bit Microsoft Visual Studio 136

4.4 Inference-Based Optimization . 139
4.4.1 Parallel Mapping on Other Platforms . 142

4.5 Evaluation . 143

iv

5 ZenIDS 148
5.1 Threat Model . 150
5.2 Monitoring . 151

5.2.1 Trusted Profile . 151
5.2.2 Detection . 155
5.2.3 Dynamic vs. Static Analysis . 159

5.3 Supporting Website Evolution . 161
5.3.1 Code Expansion Events . 163
5.3.2 Taint Tracking . 164

5.4 Performance Optimization . 165
5.4.1 Synchronizing Evolution . 167

5.5 Experimental Evaluation . 167
5.5.1 Monitoring a Vulnerable Application . 168
5.5.2 Monitoring Live Applications . 168
5.5.3 Evolution . 173
5.5.4 Resource Efficiency . 175
5.5.5 Verifiability . 177

6 Related Work 178
6.1 Control Flow Integrity . 180

6.1.1 Equivalence Class CFI for x86 . 181
6.1.2 Equivalence Class CFI for Other Platforms 193
6.1.3 Pointer Protection CFI . 196
6.1.4 RCE Exploits vs. x86 Compiled Binaries 197
6.1.5 Application Compatibility . 201
6.1.6 Performance . 202
6.1.7 Summarizing IID in the field of CFI . 205

6.2 CFI in the Future Ubiquity of CET . 207
6.3 Traditional Intrusion Detection . 207
6.4 PHP Security . 211

6.4.1 RCE Exploits vs. the PHP Platform . 212
6.5 Software Improvement Techniques . 214

6.5.1 Debugging . 214
6.5.2 Automated Repair . 215

6.6 Usability . 216
6.6.1 Program Comprehension . 217
6.6.2 Symbolic Execution . 218
6.6.3 Machine Learning . 218

7 Conclusions and Future Work 220
7.1 Adoption . 221

Bibliography 224

v

Appendices 239

A Index of Implementation Concerns 239
List of Advantages . 239
List of Challenges . 240
List of Platform Snares . 241

B Implementing IID for a New Platform 244

vi

LIST OF FIGURES

Page

2.1 Component connectivity overview of application monitoring in Paradise. 46
2.2 The Trusted Profile as defined in Paradise. 53

3.1 Component connectivity overview of application monitoring in BLACKBOX. 64
3.2 BLACKBOX Trusted Profile (simplified). Since dynamically generated modules are

anonymous, BLACKBOX assigns arbitrary names and identifies them by instruction
content. 68

3.3 Construction of the (a) gencode write and (b)gencode chmod edges when a code
write or page chmod occurs. 76

3.4 System calls occurring under stack suspicion are logged even if the syscall site is
trusted . 83

3.5 Normalized BLACKBOX execution times for Spec CPU 2006, taking the geometric
mean of 3 runs (lower is better). 98

3.6 Summary of forward indirect branch sites in the Trusted Profile for popular Windows
desktop programs. 107

3.7 Summary of forward indirect branches in the Trusted Profile for SPEC CPU 2006. . 109
3.8 Summary of forward indirect branch sites in the Trusted Profile for SPEC CPU

2006, excluding libraries. 110
3.9 Summary of cross-module branch sites in the Trusted Profile for popular Windows

desktop programs. 111
3.10 Summary of cross-module callback sites in the Trusted Profile for popular Windows

desktop programs. 114
3.11 Summary of cross-module branch sites in the Trusted Profile of the SPEC CPU

2006 benchmarks (excluding libraries). 116
3.12 Summary of cross-module callback sites in the Trusted Profile of the SPEC CPU

2006 benchmarks (excluding libraries). 117

4.1 Overview of Dynamic Binary Translation. Blocks of application code are dynami-
cally translated into a code cache where they are linked back together. 123

4.2 Distribution of translated code fragments into the overlap hashtable. 130
4.3 The singly-linked list of incoming branches requires an O(n) traversal to remove

a fragment, resulting in significant overhead for high fan-in basic blocks that are
common in JIT code. 131

4.4 Parallel mapping in INFERENCEDR. Physical page A is mapped both to virtual
page A and A′, such that a write to A′ is equivalent to a write to A. 140

vii

4.5 Optimization performance for Octane on V8. 144
4.6 Optimization performance for Octane on Ion. 144

5.1 Component connectivity overview of application monitoring in ZENIDS. 150
5.2 Execution of a PHP code snippet under ZENIDS profiling. 153
5.3 ZENIDS Trusted Profile (simplified). 154
5.4 Components of a typical PHP deployment along with ZENIDS hooks H1-H5 and

fundamental RCE attack vectors A1-A5. 156
5.5 Object forgery attack against vBulletin. 160

viii

LIST OF TABLES

Page

3.1 Number of distinct modules employing code generators in popular Windows pro-
grams. Dynamically generated code is a growing trend. 63

3.2 Log entries per day while writing the BLACKBOX publication under BLACKBOX . 84
3.3 Average number of log entries during an hour of normal program activity for

progressive implementations of BLACKBOX. 97
3.4 Average number of log entries with and without a Trusted Profile for an hour of

normal program activity (lower is better). 97
3.5 Total log entries during 6 hours of fuzz testing WordPress on IIS (lower is better). . 99

4.1 Native execution overhead of binary annotations in the extreme case of annotating
every array index expression in the SPEC CPU 2006 benchmark 470.lbm. 135

4.2 Performance improvement through several stages of DynamoRIO JIT optimization,
as demonstrated in the Octane and Kraken JavaScript benchmark suites for both
Chrome V8 and Mozilla Ion. Overhead is relative to native, and speedup is relative
to ORIGINALDR. 145

4.3 INFERENCEDR does not increase overhead for normal applications that do not
dynamically generate code. 147

5.1 ZENIDS reports an intrusion during attempts to exploit vulnerable plugins and
themes in a WordPress site. 169

5.2 Intrusion attempts reported by ZENIDS while monitoring our lab web server for
360 days. False negatives represent safely handled attacks such as invalid logins, or
attacks on applications that we do not host. 170

5.3 The duration of the training period has minimal impact on the accuracy of ZENIDS
detection. 172

5.4 Runtime overhead of ZENIDS vs. an optimized vanilla LAMP stack, measured as
the geometric mean of 10 runs. 176

6.1 Compatibility issues and other inconvenience factors in leading control flow de-
fenses for x86 user-space programs. 203

ix

List of Algorithms

Page
H1 Compile PHP code into op_seq . 156
H2 Enter target_seq from op_seq[i] . 156
H3 Execute ith opcode of op_seq . 162
H4 Store application state . 163
H5 Load application state . 163

x

ACKNOWLEDGMENTS

I would like to thank:

• My parents for their continual support in all my life’s endeavors, and especially for attending
my presentation of ZenIDS at ICSE 2017 in Buenos Aires;

• My advisor Brian Demsky for envisioning a dynamic profiling approach to software security
and giving me the opportunity to participate in its development as it gradually evolved into
IID, and for making a dedicated personal effort on each of my conference submissions;

• My doctoral committee for focusing the direction and position of this dissertation;

• Michael Taylor for teaching me how to set up the expectations in a research presentation;

• Michael Franz for his advice about my academic career and future research possibilities;

• Fabrice Rastello and Erven Rohou for giving me the opportunity to pursue a career in research;

• Derek Bruening for mentoring my work on DynamoRIO and teaching me how to code in C;

• James Radigan for giving me the opportunity to implement a security technique for a major
commercial product, and Ten Tzen, Shishir Sharma and Neeraj Singh for mentoring my work;

• Yong hun Eom for his friendship and for many lengthy discussions about everything;

• Per Larsen, Andrei Homescu, Fabian Gruber, Erick Lavoie, Peizhao Ou, Bin Xu and Rahmadi
Trimananda for their insightful comments about my paper and poster drafts;

• Ian Krouse, the UCI music department, et l’école de musique à Grenoble who provided a
venue for balancing this intense technical effort with the art of emotional expression;

• My Lord Jesus Christ for creating a universe filled with mysterious dichotomies, where truth
dwells under the shadows of the license to choose, and to designate meaning.

This work would not have been possible without generous support from the National Science
Foundation under award 1228992 and grants CCF-0846195, CCF-1217854, CNS-1228995, and
CCF-1319786; and from the Center for Future Architectures Research (C-FAR), one of six centers
of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

I would like to thank the ACM SIGPLAN and IEEE for granting permission to include content in
this dissertation that has been previously published in conference proceedings.

xi

CURRICULUM VITAE

Byron Hawkins

EDUCATION

Doctor of Philosophy in Computer Engineering 2017
University of California, Irvine Irvine, California

Master of Science in Computer Engineering 2014
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science 1996
Pacific Lutheran University Tacoma, Washington

Bachelor of Musical Arts 1996
Pacific Lutheran University Tacoma, Washington

PUBLICATIONS

ZenIDS: introspective intrusion detection for PHP applications ICSE 2017
Byron Hawkins and Brian Demsky
International Conference on Software Engineering

BlackBox: lightweight security monitoring for COTS binaries CGO 2016
Byron Hawkins, Brian Demsky, and Michael B. Taylor
International Symposium on Code Generation and Optimization

Optimizing Binary Translation of Dynamically Generated Code CGO 2015
Byron Hawkins, Brian Demsky, Derek Bruening, and Qin Zhao
International Symposium on Code Generation and Optimization

xii

COMMERCIAL PROJECTS

Security enhancement for Microsoft Visual Studio https://www.visualstudio.com

Internship at Microsoft Corp. · Redmond, WA, USA · Fall 2016
Implemented and tested a new security feature for the backend code generator of the Visual Studio
C++ compiler (details restricted by NDA).

Dr. Fuzz http://drmemory.org/docs/page_fuzzer.html

Internship at Google, Inc. · Cambridge, MA, USA · Summer 2015
Fuzz testing tool for x86 and ARM binaries based on DynamoRIO and Dr. Memory.

OPEN-SOURCE SOFTWARE

ZenIDS https://github.com/uci-plrg/zen-ids

PHP extension for introspective intrusion detection (includes augmented PHP 7 interpreter and
data processing tools).

BlackBox https://github.com/uci-plrg/blackbox

Introspective intrusion detection framework for x86 binaries based on DynamoRIO (includes
augmented runtime and data processing tools).

xiii

https://www.visualstudio.com
http://drmemory.org/docs/page_fuzzer.html
https://github.com/uci-plrg/zen-ids
https://github.com/uci-plrg/blackbox

ABSTRACT OF THE DISSERTATION

Introspective Intrusion Detection

By

Byron Hawkins

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2017

Associate Professor Brian Demsky, Chair

Remote code execution (RCE) exploits are considered among the more destructive intrusions in

today’s software security landscape because they allow the adversary to execute arbitrary code

with the permissions of the victim process. Today’s leading software defense systems are able

to eliminate significant portions of this attack surface, but many of these approaches such as

control flow integrity (CFI) and intrusion detection systems (IDS) address a limited scope of attack

vectors, while others like diversification have not received wide user adoption. Consequently,

user applications remain vulnerable to RCE attacks. One limitation that is common among these

approaches is an over-commitment to preventing the adversary’s takeover strategy. Since the domain

of potential attack vectors may be infinite, the adversary may always be able to devise a new takeover

strategy that cannot be detected or prevented by any of the existing takeover-oriented defenses.

After an attack, current monitoring systems often do not provide sufficient information about how

the adversary took control or what vulnerability was compromised. Forensic tools can derive this

information from an instance of the attack, but it may take multiple days or even weeks to isolate an

instance for analysis.

Motivated by the need for a program monitor that is equally effective against unforeseen takeover

strategies as well as an exploit payload, Introspective Intrusion Detection (IID) combines the

advantages of traditional intrusion detection and CFI by distinguishing anomalies in execution

xiv

without making absolute judgments about malicious intent. This approach begins with a profiling

phase that distills observed execution paths into a compact data representation called a trusted

profile that constitutes a “ground truth” of safe application behavior. When deployed for online

monitoring, IID reports any deviation from the Trusted Profile as a potential intrusion. Software

developers can benefit from IID as a complement to deployed defenses by gaining visibility into

unforeseen malicious behaviors or evasive variations of known attacks. Debugging of field failures

and error reports can also benefit from the deep introspective logging provided by IID. Where

deployed software has ample performance headroom and sufficient technical support, IID can also

be deployed as a comprehensive realtime monitor to detect advanced persistent threats (APT) and

other evasive intrusions.

Experimental evaluation of IID prototypes for x86 binary executables and PHP applications show

that this technique (a) identifies unforeseen takeover strategies along with exploit payloads, (b) ac-

curately distinguishes benign anomalies from those associated with real attacks, (c) incurs low

overhead with minimal false positives during normal execution of server applications such as Mi-

crosoft IIS and web applications such as WordPress, and (d) incurs moderate overhead for desktop

applications such as Microsoft Office, Google Chrome and Adobe PDF Reader with a false positive

rate suitable for expert analysis.

xv

Chapter 1

Introduction

As software increasingly relies on dynamic components such as plugins, task pools and script

interpreters, it becomes increasingly important to defend the inherent vulnerability of a program’s

dynamic control flow. Remote Code Execution (RCE) attacks typically manipulate the runtime

decisions of a program to take control and launch arbitrary code with the permissions of the victim

process. The increasing prevalence of dynamic program behaviors not only raises the probability

that a structural flaw will expose decision points to malicious influence, it also gives the adversary

more ways to acquire full control from any given manipulable state. While it is often possible to

eliminate a program’s vulnerabilities by patching the code, there are cases where the vulnerability

is inherent to the design of the program. For example, the WordPress API for remote procedure

calls (known as “XML RPC”) is capable of issuing thousands of login attempts and circumvents

the delay between invalid logins. Security experts agree this is a flaw in the design of WordPress

because it allows brute-force password attacks—yet the WordPress development team refuses to

patch the API, arguing that the attacks are an unfortunate abuse of a valid and necessary application

feature. This suggests it may be possible for an implementation to be perfect—having the exact

semantics intended by its design—and still exhibit vulnerabilities.

1

In this sense, dynamic software constructs can be a two-edged sword, both benefiting a project

and at the same time potentially introducing vulnerabilities. Many organizations claim that the

flexibility of dynamic programming languages such as of PHP can reduce time to market [2, 6, 157],

yet those same features are common targets of attack (Section 5.2). User-defined types such as C++

classes can improve reliability and flexibility throughout the lifespan of a program [139, 158, 130],

yet these often rely on runtime control flow constructs such as the vulnerable C++ dynamic dispatch

tables [149]. Plugin architectures encourage community development, for example there were over

54,000 WordPress plugins as of August, 2016 [40], and Chrome extensions are not far behind [160],

yet malicious plugins have attacked users of both platforms, and many benevolent plugins contain

vulnerabilities that are frequently compromised (Section 5.5.1). Dynamic browser components such

as Flash and JavaScript interpreters have enabled an entire application platform to operate online,

yet they have also enabled entire new classes of exploits such as cross-site scripting (XSS) and

drive-by-downloads.

What makes the security effort especially difficult is that the malicious control flow of an exploit

often takes a similar form to the benevolent control flow of these dynamic features. For example,

during startup of Microsoft Office 2013, a licensing module generates a small code fragment

and links it dynamically using a mov; ret sequence, but this program behavior is structurally

identical to many popular code injection exploits. Similarly, the Fibers API in Microsoft Windows

implements a soft context switch by overwriting the CPU register state and executing a stack pivot,

much like the escalation stage of a typical buffer overflow attack. Where it is difficult for even a

security expert to make a precise and universal distinction between the program’s intended control

flow and adversarial manipulation, it will be even more challenging to apply a generic security

policy that automatically protects programs from those attacks at runtime.

2

Intrusion Detection

An early security approach focuses on patterns in untrusted inputs and internal program events

to distinguish potential intrusions. By defining a whitelist of normal activity and/or a blacklist of

prohibited activity, unwanted program behaviors can be detected and thoroughly logged to improve

forensic efforts, enabling temporary protections until software can be patched. But as applications

have grown increasingly dynamic, it has been difficult to manually maintain an effective whitelist

or blacklist. Research into automatically generating whitelist patterns or even n-grams and finite

state automata have met with limited success. The inherent abstraction of these approaches provides

slack for the adversary to craft behavioral disguises that artificially conform to statistical norms or

functional models. Anomaly detection has only continued to find success outside of the software

domain, for example in fraud detection and medical diagnosis. Much of the work in intrusion

detection has been narrowed to specific programs for this reason, since generalized models of

intrusion have not been effective in practice.

CFI

Focusing more specifically on program structure and the behavior of an exploit, techniques arose

to obstruct the execution paths of attacks. For example, operating systems now commonly assign

non-executable permissions for the memory pages holding the call stack to prevent an adversary

from injecting code into a buffer overflow and executing it directly. In response, new exploits were

developed that link together enough fragments of existing executable code to fabricate an artificial

call to VirtualProtect (or similar) and grant executable permission to an injected payload.

Based on an insight that this kind of code reuse attack leverages dynamic program constructs

such as function pointers, researchers began investigating the potential for enforcing control flow

integrity to deter adversarial abuse of existing program content. But this approach has been limited

by the difficulty of determining a valid set of targets for any particular program branch. To improve

3

runtime performance and ease offline analysis, most implementations group branches into categories

and allow a branch to reach any destination that is valid for its category. While this increases the

effort required to generate a successful exploit, many of today’s CFI defenses can be defeated by

sophisticated attacks. An additional limitation of CFI is that, once the adversary gains control, it

cannot do anything further to hinder the adversary, and is also unable to provide any information

about how the attack occurred or what subsequent actions were taken.

Section 1.1 presents a timeline of the major categories of intrusion detectors and CFI defenses,

focusing on their strengths and limitations.

Introspective Intrusion Detection

In an effort to close the visibility gap in today’s security platforms while defusing the surprises

in tomorrow’s exploits, Introspective Intrusion Detection defines trust locally in terms of internal

control flow on a per-program basis and reports any untrusted edge as an anomaly. Deployment

of an IID begins with a local profiling phase that captures an under-approximation of normal

program behavior in the form of an uncompressed control flow graph (CFG), without path or context

sensitivity and excluding frequency of edge traversal. When the IID runtime monitor is enabled,

any deviation from this Trusted Profile is reported as a potential intrusion. This approach offers

three unique advantages:

1. Local Policies are inferred from observed executions and can be manually adjusted, improv-

ing visibility into vulnerabilities that are difficult to define in generic terms, or are simply not

universal to all deployments of the application, while avoiding laborious configuration.

2. Fine-Grained Trust minimizes the adversary’s opportunities for mimicry and evasion.

3. Pessimistic Evaluation based on an under-approximation of trusted behavior makes no

assumptions about the form of malicious control flow or how the adversary might invoke it.

4

There are also disadvantages inherent to dynamic profiling and runtime introspection that are not

common either to intrusion detectors or to CFI defenses in general. Runtime overheads can be

challenging on some platforms, and sufficient profiling coverage can be difficult to obtain without

risking adversarial influence. Implementing an effective IID requires a clear understanding of its

inherent advantages, along with careful engineering to prevent its challenges from outweighing

these benefits.

Local Policies

While generic security policies can be simpler to enforce, for many important vulnerabilities it

is easier to detect adversarial influence on a per-deployment basis. For example, consider two

WordPress sites, where users of the first site never use the authentication command in XML RPC,

but users of the second site use that feature regularly. An IID monitoring the first site will not trust

the XML RPC authentication code, even if the site administrator has never heard of XML RPC

and does not know that non-interactive logins are possible (this is probably true of most casual

bloggers). Any HTTP request attempting a login over XML RPC to the first site will be logged

as an anomaly, but if the same login request is sent to the second site, that IID will quietly trust it.

Similar issues arise for plugins and themes, any of which may be welcome on one site yet forbidden

by the administration of another site.

Fine-Grained Trust

When a defense technique relies on statistical abstractions or the approximations of simplified

models, it is frequently discovered vulnerable to mimicry and evasion tactics. Because software

components of any size often have fully reversible effects, there can be an infinite degree of slack

between the individual behaviors of program components and any composite behavior. A statistical

abstraction or an approximative model focuses on program behaviors occurring at some fixed

5

level of granularity, usually for the purpose of improving runtime performance, or simplifying

development and administrative effort. An adversary can take advantage of the slack between the

security tool’s chosen level of granularity and the composite behavior of the program, making the

malicious behavior conform to the definition of secure behavior at the tool’s level while performing

an attack at the composite level.

Introspective Intrusion Detection is not immune to this tactic, since it is theoretically possible to

implement any composite program behavior within the confines of any sufficiently large and diverse

control flow graph. But in practice it has not been possible for an exploit to gain arbitrary code

execution without either (a) executing an arbitrarily composed payload within the victim process, or

(b) forking a new malicious process, both of which are easily detected by a well-configured IID. It

has also not been possible to manipulate the arguments to a system call without adding edges to the

control flow graph—except where the program suffers from unsanitized inputs, which is outside

the scope of RCE exploits and is better addressed by other tools focusing on data-only attacks.

Chapter 6 provides a comprehensive review of recently published attack strategies and discusses the

potential for an RCE attack to fly under the radar of a well-configured IID. So, while conformity

to the Trusted Profile does not provide any theoretical or scientific guarantee of security, it can

be shown capable of detecting even the most sophisticated of known techniques for evading CFI

defenses.

Pessimistic Evaluation

By limiting trust to the set of control flow paths observed in real executions of the application,

IID maximizes visibility into the unexpected. Recent attacks have defeated promising CFI imple-

mentations by taking advantage of the definition of unsafe control flow. Similarly, attacks have

compromised the simplified models of normal behavior in anomaly and intrusion detectors. These

strategies for masking an attack are not available against IID because (a) it does not define malicious

behavior at all, but simply reports everything untrusted as a potential intrusion, and (b) it does not

6

compress the CFG or simplify it into a model. Even where the rate of control flow anomalies is

too high for regular investigation, the information remains available should an attack be discovered

later. Experiments reported in Chapter 3 show that ordinary usage of today’s large and complex

desktop applications under IID produces a manageable set of anomaly reports, even with a Trusted

Profile generated from just one user (Table 3.3).

Section 1.2 discusses the advantages and challenges of Introspective Intrusion Detection in more

detail, and Section 1.3 derives the security and usability goals of IID.

Usage Model

Introspective Intrusion Detection can be an effective tool for software developers, security analysts

and in many cases the end users themselves. Software engineers can use IID to discover unexpected

behaviors in their own programs, whether it is triggered by accident or by malicious intent. The

majority of profiling can be done in a secure environment with existing infrastructure, such as

automated and manual tests and sample executions for profile-guided compiler optimizations.

Security analysts may explore malicious activity occurring in the wild, for example by deploying

IID in a honey pot. End-user environments having ample performance headroom and sufficient

technical support—whether IT staff or an astute blogger—can deploy IID for their own direct benefit.

The IID blacklist can be used to mitigate observed program vulnerabilities (or those reported by the

community or security analysts) until the vendor can release a patch. All of these use cases ideally

leverage the Trusted Profile distributed by the vendor, and users can make adjustments to focus the

IID logs according to their needs.

Section 1.4 continues this discussion of usage scenarios in more detail, along with profiling

and associated security concerns such as advanced persistent threats. Section 1.5 previews two

prototype implementations of IID: BlackBox for x86 binaries and ZenIDS for PHP web applications.

Section 1.6 presents the contributions of this dissertation, and Section 1.7 outlines its organization.

7

1.1 Timeline of Important RCE Defenses

This section outlines the history of security techniques that focus on protecting a program from RCE

exploits. An early response to adversarial manipulation that continues today is to simply find and

fix program errors and exploitable vulnerabilities (Section 1.1.1). Despite the obvious effectiveness

of this approach, at some point it became evident that developers would never be able to produce

invincibly correct programs, so researchers began pursuing intrusion detection based on simplified

statistical or structural models (Section 1.1.2). Throughout this dissertation, this approach will be

referred to as traditional intrusion detection (TID), although this is not a standard name (or acronym).

As the Internet matured, web applications came to rely increasingly on dynamically generated HTTP

interfaces, while desktop applications—which were already highly dynamic—began to integrate

Internet-facing components such as template and image browsers and integrated cloud storage

systems. These additional dimensions of variability quickly overwhelmed TID, leading researchers

to pursue a new approach called control flow integrity (CFI) based on the insight that attacks often

change the low-level flow of execution within a program (Section 1.1.3). Diversification randomizes

various components of a program to interfere with an attacker’s expectations (Section 1.1.4).

Introspective Intrusion Detection attempts to combine the strengths of CFI and TID by focusing on

low-level control flow (like CFI but unlike TID) while relying on an under-approximation of normal

behavior (like TID but unlike CFI). This approach can broaden the detection capabilities over

existing CFI approaches while maintaining compatibility with today’s highly dynamic applications.

Chapter 6 presents this body of related work in more detail, focusing on important defense techniques

in detailed comparison and contrast with IID.

8

1.1.1 Bug Fixing

For the purpose of improving security, the techniques for finding and fixing bugs can be divided into

two categories. The first examines a program for known kinds of errors and may suggest or even

generate repairs. The second looks for potential exploits and may generate a POC. Orthogonal work

detects program errors at runtime and takes corrective or protective action. Security is improved by

eliminating the adversary’s opportunities to invoke unexpected behavior.

Offline Error Detection focuses on unexpected program behaviors that arise from errors in the

construction of the program, for example the notorious buffer overflow in which the program naïvely

assumes that any index into a physically sequential data structure is probably valid for its current

size. Myriad tools have been developed to detect and correct these bugs, both at compile time and

dynamically at runtime, some requiring no developer intervention. When successful, these tools

eliminate certain kinds of unexpected program behaviors, though it has proven difficult to eliminate

all such bugs from complex programs, despite major commercial investment.

Exploit Discovery pursues subtle program bugs that may not conform to common patterns found

by standard debugging techniques. Since these bugs are difficult to find, specialized tools focus

specifically on detecting opportunities to manipulate program state. This approach is especially

popular for dynamic programming languages where structural defenses like CFI are difficult

to apply. Web applications also favor this approach because it can potentially detect second-

order vulnerabilities that traverse persisted program state, which are transparent to traditional bug

discovery techniques.

Online Error Detection continuously monitors program execution for typical symptoms of errors.

For example, a stack canary occupies a slot following any buffer and can be checked at any time

for corruption, which often indicates that a buffer write has overflowed its bounds. This approach

9

tends to be limited by performance constraints, requiring relatively simple implementations that an

adversary can work around. Stack canaries have been defeated by exploits that read the expected

value prior to overflowing the buffer, then patch the corresponding slot in the malicious buffer to

avoid detection.

Introspective Intrusion Detection often reveals program bugs that lead to control flow anomalies,

although it may also detect anomalies not directly caused by an error in the construction of the

program (for example, hardware malfunction).

1.1.2 Traditional Intrusion Detection

In one of the earliest techniques to be widely deployed in online systems, a monitor focuses on

program input, continuously searching for patterns that are consistently associated with malicious

intrusions. These approaches range in sophistication from manually maintained whitelists and black-

lists to machine learning approaches that can automatically adapt to conditions after deployment.

But this approach has faced many limitations. As programs become increasingly dynamic, it has

become unrealistic to manually maintain intrusion detection filters. Mimicry tactics have increased

the workload by randomizing the factors that are known to be easily detected. Yet recent attacks

have also targeted machine learning directly, introducing specialized forms of mimicry that take

advantage of weaknesses in the algorithm’s feature distribution [8]. In general, intrusion detection

based on program inputs has recently become a losing battle.

An orthogonal approach known as anomaly detection speculates that program activity not conform-

ing to known norms may be malicious. This approach is often applied to program inputs, internal

execution patterns, and statistical artifacts of observable program behaviors. While this approach

can be effective for programs having simple internal structure or interfaces that rarely change, these

techniques also do not scale well with program complexity. As interfaces and internal structure

10

become increasingly dynamic, anomaly detection has largely been abandoned in favor of more

precise techniques such as CFI.

Malicious Input Detectors focus on applications with relatively simple input interfaces, usually

receiving data in a homogeneous format that uses a well-defined alphabet. Malicious inputs are

defined on a per-application basis and can often be combined into categories for fast detection using

finite state automata (FSA). As computing throughput increases, these are often implemented in

specialized hardware or FPGA.

Introspective Anomaly Detectors apply FSA to internal program behavior, for example generat-

ing models of normal sequences of system calls for a particular program. A similar approach derives

n-grams from known-safe executions. But these tools tend to be brittle, raising false positives on

slight variations such as synonymous system calls that do not signify a semantic deviation. Dynamic

events such as interrupts can also be difficult to handle. Conversely, adversaries have been able

to implement malicious behavior that conforms to these simple models, making them ineffective

against targeted attacks.

Statistical Anomaly Detectors typically rely on a set of expected proportional relationships and

raise suspicion about outlying events. For example if a program typically outputs between 1KB

and 10KB per invocation, a statistical anomaly might be detected for an invocation that generates

10MB. This approach is similarly susceptible to mimicry, for example an adversary can divide the

10MB payload into a thousand chunks and distribute them across a thousand statistically normal

invocations. False positives are also common because programs frequently have special cases that

do not conform well to norms.

11

Introspective Intrusion Detection defines a similar under-approximation of normal program

behavior, but expands the scope to the entire program CFG, which adapts better to program

complexity than the smaller FSA and n-gram models, and reduces opportunities for mimicry.

1.1.3 Control Flow Integrity

Programs use branches with dynamically specified targets to facilitate flexible semantics, but for

any given branch, the program rarely intends for it to reach any possible target. Since attacks can

manipulate the branch argument to reach targets that were never intended, CFI protects a program

by imposing constraints on branch targets that limit adversarial opportunity. The effectiveness of a

CFI approach is largely a function of its accuracy in identifying branch targets that the program

intends to use. Other factors include the vulnerability of the CFI mechanism itself, which can be the

victim of targeted attacks that disable the CFI constraints, and the inconvenience costs of the CFI

tool.

Branch Target Accuracy is largely determined by the mechanism used to derive the set of valid

targets. The conventional approach for forward edges (i.e., those that push a stack frame or are

stack neutral) is to perform a static analysis on the source code to discover, for each branch, a set

of target constraints implied or specified by associated program elements. This approach typically

approximates structural targets such as virtual method calls, and may derive no constraints for

function pointers such as callbacks. For convenience when source code is not available on a

compiled platform, some CFI techniques analyze branches directly in the compiled binary. These

approaches have much less information and typically make much broader (weaker) approximations.

Based on the insight that the adversary cannot manipulate a branch argument until after the program

has placed it into a register or memory slot, dynamic CFI systems protect the program’s branch

targets at runtime without attempting to determine which targets are safe. One approach encrypts

the target wherever it becomes vulnerable and decrypts it immediately prior to the branch, while

12

another approach puts all branch targets into a separate stack. Dynamic approaches are the most

accurate, at the cost of higher overhead, while static analysis tends to apply weaker constraints

but very efficiently. Most CFI systems protect backward edges with a shadow stack or some other

dynamic mechanism at near-perfect accuracy, though some have attempted to use the x86 last

branch record (LBR), and others do not address backward edges at all.

CFI Self-Defense To apply branch constraints at runtime, most CFI systems maintain internal

state, either throughout the execution or during certain program events. An attack targeting the CFI

defense may be able to control its internal state, for example if it finds register values spilled on the

stack. Where CFI uses encryption, it can be vulnerable to poisoning attacks that collect correctly

encrypted branch targets for later abuse. Safe stacks and shadow stacks can be found using side

channel leaks and manipulated or disabled. Constraints built into program constructs such as virtual

dispatch tables can be manipulated with counterfeit objects. Any attempt to use the LBR is easily

defeated with crafted gadgets. Attacks have been proposed and often proven against most of the

important CFI systems developed in research and many industrial implementations as well.

Inconvenience Cost The primary concern of most CFI implementations is to limit runtime and

memory overhead. Compiler-based techniques may increase code size, but this is rarely a significant

cost. Safe stacks and shadow stacks may consume some of the preciously few slots available in

thread local storage (TLS), or may occupy the TLS register itself. Encryption-based CFI typically

requires a dedicated register, which is substantially unrealistic on some platforms like 32-bit x86

where general registers are already severely lacking. Some CFI tools improve branch target accuracy

by dynamically profiling the program, which is rarely a simple and straight-forward task. A common

cost that is often neglected by all kinds of CFI systems is compatibility with programs and operating

systems, ranging from unnecessary false positives for uncommon program structures to—all too

commonly—a total inability to function on the Windows platform.

13

Introspective Intrusion Detection may be the first CFI approach to under-approximate the set

of intended targets at each branch. As such it is not able to enforce CFI at runtime, since it has an

inherent tendency towards false positives that would prevent programs from executing correctly.

It is possible for the Trusted Profile to contain unintended branch targets, mainly in the case of

adversarial influence during profiling. Although the Trusted Profile is loaded into a read-only mmap,

it may be possible for an adversary to pollute it online, either by writing to the mmap region or

by modifying values the IID copied from it. Various other IID data structures may also be leaked

and/or manipulated by the adversary, though an open question is whether the adversary can gain

this control without diverging from the Trusted Profile in the process. Timing side channels may be

able to reveal some of the Trusted Profile contents, though the same open question applies. Attacks

on the IID runtime are less feasible on managed platforms where arbitrary read/write access is

much more difficult to acquire. The inconvenience costs of IID are typically higher than for other

CFI approaches, including higher runtime and memory overhead, and the administrative effort of

profiling.

1.1.4 Diversification

To gain full control of a program through unexpected behavior, the adversary often leverages detailed

knowledge of the program’s internal construction, intricately linking program fragments to compose

any possible context switch into the malicious payload. The key insight of diversification is that

small, randomized changes to the program can interfere with these intricate exploits, causing the

vast majority of attempts to fail. Compiler-based diversification tools randomize the generated code

such that that one program instance is rarely vulnerable to an exploit that works perfectly on another

instance. But diversification is most effective against attacks that leverage differences between

a compiled executable and the original source semantics. It has been more difficult to diversify

interpreted language platforms because it is challenging to diversify source code. Diversification

also does not attempt to protect vulnerabilities caused by a programmer’s over-approximations.

14

Introspective Intrusion Detection is based on the binary translator DynamoRIO and as such is

capable of diversifying the target program as it executes. If this were done selectively, low overhead

could be achieved. It is also possible to apply runtime diversification to the Trusted Profile as a

counter to adversarial influence.

15

1.2 Theoretical Advantages and Challenges of IID

This section discusses the essential design and implementation factors that can make an IID more or

less successful. To make a clear connection with the experimental evaluation of the IID prototypes,

Section 1.3 derives a set of specific goals for IID on the basis of these enumerated advantages and

challenges. To assist software engineers in designing an IID for a new platform, labels Atag and

Ctag are assigned to the factors that can potentially be maximized or minimized (respectively) to

improve the quality of an IID. Labels are referenced throughout the text for continuity. There are

other important aspects of IID, but these are less sensitive to design decisions and do not require

careful consideration at each step of the design process; these factors include:

• Minimal Branch Target Classes: Since indirect edges in the Trusted Profile are discovered

dynamically, the set of trusted targets for each branch is even smaller than a perfect static

analysis (modulo context sensitivity, which is possible as an IID extension).

• Integrated Platform Support: Many programs host additional runtime environments such

as a JavaScript interpreter, which an IID can represent as an abstraction (Section 2.1).

• Multiple Platform Support: An IID can be created for any runtime, including native execu-

tion environments and script interpreters.

• Dynamically Generated Code Support: The runtime component of IID is able to monitor

both statically compiled code and dynamically generated code in much the same way.

• Road Ready: An IID can successfully monitor today’s popular applications on commodity

hardware, including Google Chrome, Microsoft Office, and WordPress. Unlike most important

CFI implementations developed in research, the IID prototypes are not showroom trophies.

The BlackBox implementation was verified by independent third-party reviewers, and the

reader is invited to take it for a test drive on their favorite Windows programs today.

16

Before looking at each advantage and challenge of IID in detail, it is important to clearly establish

what it means to “detect” an exploit. Certainly a pure control flow log would, in some sense, detect

every possible attack, since it is not possible to attack a program that is not running. But this is not

a very useful sense of detection, because no security analyst could comprehend such a massive log

(Table 3.3). On the other hand, it is not necessary for the IID log to be 100% free of false positives,

especially where anomalies are ranked by estimated suspicion (Section 3.5.2). For the purposes

of evaluation in this dissertation (Sections 3.6 and 5.5), the notion that an IID “detects” an exploit

indicates that (a) it logs at least one control flow edge that is foreign to the monitored program and

essential to the attack, and (b) the log clearly indicates something suspicious happened, even if

other benign anomalies are simultaneously occurring and there are not yet any externally observable

symptoms of an attack.

Advantage Awpm: whole process monitor

An IID monitors every control flow edge and process fork throughout the entire

process, including unforeseen takeover strategies and the malicious payload.

The central advantage of IID that should be maximized by any successful implementation is that

it monitors the whole process. This includes the temporal matter of continuously monitoring all

program threads (or whatever instruction flows may exist on the platform), it also includes the

simplicity of the monitoring algorithm. By observing program control flow in the simplest possible

terms, an IID sees as much of the program behavior as possible, minimizing interference from

pre-determined notions of “normal” or “safe” execution.

Many RCE defense techniques—including most CFI approaches—focus specifically on a set of

anticipated adversarial takeover strategies, and can do nothing to deter the exploit payload once it

gets started. An IID continuously monitors execution of the entire process, including unforeseen

takeover strategies and malicious payloads. This does not guarantee that every possible attack will

appear in the IID logs, but in practice it imposes significant limitations on the adversary. While strict

17

reuse exploits such as Control Flow Bending (CFB) [21] and Control Jujutsu [54] are occasionally

able to invoke one or two existing system calls in a large program without introducing foreign

control flow edges, they are not able to arbitrarily invoke any system call used by the program with

arbitrary arguments. Outside of strict reuse exploits, an IID will log at least one anomaly during the

attack, since by definition it introduces at least one control flow edge that the application never uses.

Furthermore, should advances in exploits enable them to arbitrarily control system calls within

the confines of strict code reuse, it is possible to extend IID with context sensitivity. For example,

the algorithm for identifying small fragments of dynamically generated code (DGC) in BlackBox

is purely context sensitive, up to the bounds of the DGC fragment. While the overhead of this

feature is particularly high (since the applicable DGC fragments are small and rarely require

validation), a more limited context history could be implemented using bitwise operations on a

reserved register [50] with minimal runtime cost.

Challenge Cperf: maintaining sufficient performance

Program introspection often increases runtime overhead and development cost for

hardware-based execution platforms.

This leads directly to the most significant challenge for IID: it is necessary to have full introspection

into the control flow of every program thread at all times. For platforms where application control

flow is directed by software components, such as script interpreters, this is relatively straight-forward.

But for hardware-based platforms such as native executables, gaining introspection into the running

process is complicated and usually performance intensive.

Advantage Alog: precise log content

Runtime introspection enables IID to log precise control flow events that represent

suspicious program behavior.

18

The cost of introspection, however, also brings with it some benefit. When an important anomaly

does occur in the execution of a deployed program, an IID can begin generating a detailed trace

of program behavior. The trace can be as simple as control flow branches taken on the anomalous

thread, or as complex as a complete system call trace including a deep copy of the arguments. An

IID is able to log this essential information when any unexpected control flow occurs, even if that

control flow cannot be correlated to a recognized attack or a known vulnerability.

The forensic analysis process can be very difficult and time consuming when the attacked system

does not provide detailed information about the adversary’s actions. Perhaps more importantly, to

prevent recurrence of the same attack, security practitioners and developers need to understand the

vulnerability and how the exploit took advantage of it. But without a control flow log, this may

require a complex process similar to reverse engineering, based on whatever small fragments of

related information are available [189]. Even if artifacts such as packed malware are available,

the analysis often relies on dedicated tools and expertise. Similarly, administrators may need to

determine which systems were affected, for example to know whether confidential information may

have been exposed. But without a system call trace, it may be impossible to determine what data

was accessed by the adversary.

Of all the defense techniques listed in Section 1.1, none of them is capable of logging information

about an execution that was not detected as an attack, and most of them are not designed to perform

any logging at all. Conversely, the size and complexity of today’s software makes it unrealistic to

continuously log application control flow or system call activity. By limiting log output until an

anomaly is observed, IID is able to report highly detailed information about suspicious program

behavior without exceeding feasible log capacity or overwhelming security analysts.

Challenge Cprof: sufficient and valid profiling coverage

Generating and maintaining a sufficiently complete and valid Trusted Profile is

necessary for accurate logging but may require effort and expertise.

19

To accurately distinguish between ordinary program execution and a potentially malicious anomaly,

an IID deployment relies on the validity and completeness of its Trusted Profile. If it is too sparse,

the IID will flood the log with anomalies and it will be impossible for any human to isolate malicious

behaviors. Conversely, if the Trusted Profile becomes polluted through haphazard static analysis or

adversarial influence, the IID may trust some exploits and elide logging for them entirely.

For major commercial software, vendors may be able to provide a sufficient and valid Trusted

Profile that is suitable for all usage scenarios. It may be more convenient to simply profile users

in their usual—vulnerable—runtime environment, but this does not necessarily produce an ideal

representation of the monitored program’s normal behavior. For example, a web application

monitored while receiving live traffic will likely encounter malicious HTTP requests (on average,

over 25% of traffic to our research lab’s WordPress homepage is malicious). If the application has

been properly configured and maintained, it should handle those requests safely, but the question

is whether to include those intrusion-handling control flow paths in the Trusted Profile. Some

users may not be interested in reports of trivial hacks such as invalid logins, while others may

prefer all malicious requests to be logged. Conversely, profiling only unit tests or other automated

functionality may lead to increased false positives.

There are several techniques that can improve the validity and completeness of the Trusted Profile,

such as program comprehension (Section 6.6.1) and symbolic execution (Section 6.6.2). But this

research focuses instead on optimizing the design of the IID components related to profiling. For

example, the granularity of the execution traces is chosen for each IID implementation separately,

on a per-platform basis, and as shown in Sections 3.3.1 and 5.2.1, it can have a tremendous impact

on false positives and false negatives.

Advantage Aloc: local policy control

Users may benefit from having direct control over a deployment-specific Trusted

Profile of their application.

20

While it can be challenging to produce an effective Trusted Profile, there are advantages to having

local control over its contents. Consider two deployments of the same application, each with a

distinct user group and distinct usage patterns. In the first deployment, a certain feature may be

rarely used and pose a high risk to the organization. This group’s administrator may prefer to omit

the feature from the Trusted Profile so that every access to the feature is thoroughly logged. At the

same time, the second group may make regular use of the feature, and it may not pose any risk to

them. That group will likely benefit from having the feature in its Trusted Profile. Customizations

like this can be difficult to implement for a tool that enforces generic and systematic policies, yet are

easily managed with a Trusted Profile that contains an intuitive representation of execution traces.

Organizations concerned about advanced persistent threats may wish to diversify the Trusted Profile

at edges having suspicious statistical characteristics, and Aloc makes this relatively simple.

Challenge Cadm: administrative overhead

Deploying an application with IID requires additional administrative effort and some

basic security knowledge.

Even when a sufficiently valid and complete Trusted Profile has been established for a particular

application, there is additional effort required to deploy the IID. Both of our prototype implementa-

tions require installation of special runtimes. In addition, the Trusted Profile must be deployed in a

way that is protected from adversarial tampering. System administrators or end users will need to

monitor the logs to determine whether intrusions have occurred. In contrast, many of the existing

security techniques discussed in Section 1.1 require no additional effort at the deployment site, for

example the bug fixing approaches or the compiler enhancements.

Advantage Aacc: user-accessible policy

The IID runtime makes it possible for users of all levels of sophistication to manage

accurate, low-level security policies.

21

Although these aspects of IID may seem like a burden, software users at all levels of sophistica-

tion are becoming more aware of security issues and more directly involved in the protection of

their applications and data. For example, WordPress is the world’s most widely deployed web

application, and Google Analytics shows that the search term “WordPress Security” has doubled in

popularity every 4 years since the application was released in 2004. In contrast, similar searches like

“WordPress Themes” and “WordPress Plugins” peaked around 2010 and have steadily declined to

less than half their original volume [68, 69, 67]. One of the common themes among the results of a

“WordPress Security” search are that every site is potentially vulnerable—even ordinary blogs—and

that no security technique is invincible. These trends suggest that the number of users who are

motivated to deploy an IID is only likely to increase.

One feature that may especially draw attention is the IID blacklist, which can terminate execution

when known-malicious control flow is observed. This makes it possible to reliably prevent recurrence

of a newly observed RCE exploit before the vendor of the vulnerable component releases a security

patch. It only takes one security expert to identify a new exploit and publish the corresponding

blacklist entries. At the IID user’s site, a daemon can be configured to receive blacklist entries from

trusted experts and automatically install them.

It is also possible for relatively inexperienced users to maintain their own trust policies on the basis

of log entries. As discussed in Alog, an IID anomaly report specifies the untrusted control flow

edge, which is the only identifier needed for either a Trusted Profile entry or a blacklist entry. For

convenience, an IID tool can assist the user in designating either a log entry or a manually specified

edge as trusted or untrusted.

Challenge Cimpl: cost-effective implementation

An IID developer faces a trade-off between usability of the runtime and the mainte-

nance cost of its code.

22

Our experience in developing the IID prototypes, along with our experimental results, indicate that

industrial versions of these runtimes could probably be produced and maintained by a relatively

small group of developers. But this can still represent a significant cost, especially considering how

much security expertise is required, and the increasing market demand for any kind of expertise in

software development.

The maintenance effort may be higher for some platforms than others. A potential worst case is an

IID for a browser’s JavaScript engine, since the browser as a whole would likely be updated several

times per week. Developers would be required to test the IID after each update, and minor revisions

could be frequent.

In contrast, the traditional intrusion detectors based on pattern matching have little contact with

the host platform and could likely be maintained independently. For example, optimization of a

pattern matching detector could go so far as to leverage specialized hardware, such as an FPGA,

without raising concerns about compatibility with the monitored applications or the host platform.

Conversely, the optimizations in our IID prototypes are tightly dependent on the internal structure

of the host runtime, the operating system, and even the ISA of the processor.

23

1.3 Goals of Introspective Intrusion Detection

The purpose of this research is to show that an implementation of Introspective Intrusion Detection:

• Improves exploit detection over the state of the art in important ways.

• Complements orthogonal defense system by providing a thorough control flow log of any

intrusion that other defenses fail to prevent.

• Provides usable control flow logs for real-world applications.

• Meets application performance expectations under normal usage conditions.

• Requires a reasonable development effort with a reasonable degree of skill and expertise.

The theoretical advantages of IID presented in Section 1.2 indicate that the approach can potentially

accomplish its purpose, but that implementations will require careful resolution of the challenges

inherent to the IID design. The remainder of this dissertation focuses on this simple question: can

Introspective Intrusion Detection deliver what it theoretically promises? To guide this investigation,

this section presents a set of concrete goals that should be met for an implementation of IID to

be a success. Each goal is formulated as some combination of maximizing the theoretical IID

advantages A∗ and minimizing the anticipated IID challenges C∗. The purpose of these references

is to (a) focus the rationale for these goals, and (b) provide a more complete basis for judging the

effectiveness of the IID prototypes.

Goals presented with no corresponding challenges would in theory be effortlessly accomplished

on an ideal platform—i.e., one with unlimited hardware resources where applications are perfectly

structured for IID monitoring purposes. Chapter 2 focuses specifically on this scenario as a way

of isolating the core components of IID from real-world complications. Section 2.1 separately

describes the kind of obstacles that are commonly raised by today’s popular application platforms.

24

For the purposes of the implementation guide (Appendix B), these goals are listed in Table A.1 in

the manner of a UML requirements diagram, along with the lists of related advantages, challenges

and snares. This can be a helpful reference when designing an IID for a particular platform. By

understanding the purpose behind the goals, the essential issues for each core component of the new

implementation can largely be determined and addressed in advance.

Detection

Advantage Awpm can be taken to its extreme by deploying an IID with an empty Trusted Profile,

in which case it naturally detects every possible exploit. But in this configuration it can generate

billions of anomaly reports per hour (Table 3.3). Challenge Cprof can also be taken to its extreme

by profiling every possible user input, or employing symbolic execution to profile every possible

control flow path under type compliant data values. This is also not ideal for detecting exploits

because, unless the program is perfectly constructed, some of those paths may be exploitable and

should not be trusted. The following three goals provide criteria for striking a balance between

Awpm and Cprof such that the IID logs focus on the most useful cross-section of program behavior.

Goal Gkx: detect known exploits

An IID should detect known RCE exploit against real-world applications without

relying on predefined knowledge of its takeover strategy.

One simple way to evaluate the balance between Awpm and Cprof that is achievable by an IID

implementation (or a particular deployment) is to test it with known exploits. If these are not

detected, it definitely can’t be reliable for new exploits.

Goal Grx: detect exploits developed in research

An IID should detect sophisticated RCE exploits developed in research.

25

While it may be difficult to obtain working instances of the advanced attack vectors explored in secu-

rity research, it is always possible to hypothetically trace an exploit against an IID implementation

with a specific Trusted Profile. Examples are presented in Sections 3.4.2 and 3.5.1.

Goal Gwx: detect exploits in the wild

An IID should detect RCE exploits occurring in the wild.

After an IID has met goals Gkx and Grx, the real test for tuning Awpm vs. Cprof is to monitor a

program facing untrusted inputs. The inputs should be recorded for manual analysis of potential

false negatives.

Usability

While the majority of technical discussion will focus on security challenges, implementation details

and prototype evaluation, it is also essential for any security tool to be reasonably usable. Even if

the IID is used exclusively by professionals, people in general have more important things to do

than struggle with confusing or cumbersome software.

Goal Gdnd: do not disturb

Given a reasonable effort to generate a valid Trusted Profile, spurious anomalies

should rarely or never be reported.

The logging capabilities Alog are similarly dependent on a balance with Cprof . This goal focuses

on the log itself, to make its usability more of a goal and less of an accuracy metric. For example,

where thorough profiling is not available, a post-processing phase can significantly reduce or at

least simplify noise in the anomaly reports. It may be possible to group anomalies into equivalence

classes without loss of significant detail, either by retaining singleton members of each class, or by

presenting one representative member per class in a user interface that hides remaining anomalies

26

in each class under an expander widget. Techniques such as data mining and machine learning have

also been applied on IDS in general to detect and remove false positives [137, 115, 119].

Goal Gmod: modify the Trusted Profile or blacklist

The user should be able to modify the IID security policy, for example by pasting a

log entry into either the Trusted Profile or the blacklist.

The IID design presents an opportunity to combine Aloc, having a Trusted Profile and blacklist

defined locally to each installation, withAacc that makes policies accessible to the user. To maximize

this opportunity, the IID tools should provide a fluid interface between log entries and the Trusted

Profile and blacklist, allowing users to build up policies on the basis of past events. This goal adds

another dimension to Alog, focusing on the fields within a particular entry and also the format, which

can significantly affect the tooling effort. These advantages are all limited by Cprof , since manual

access to local policies can only be valuable for reasonably concise logs.

Goal Gdbg: provide effective debugging assistance

The IID runtime can help software developers and security analysts perform forensic

analysis of exploits and debug related program errors.

This goal expands the focus of G∗x beyond detection to matters of information gathering and

reporting. Where the forensic effort following an exploit may only require information local to the

anomaly, a debugging effort is likely to expand the scope of Alog to include more information from

more sources, such as stack traces of other threads, contents of memory, register states, filesystem

contents, and so on. Though often it is not possible to generically determine a selection of log

content that is optimal for all usage scenarios, Aacc provides opportunities for the IID designer to

make log output tunable for the intended use cases. More developer-friendly opportunities should

also be considered, such as integrating an interactive debugging agent into an IID (if it is deployed

primarily for debugging purposes, not in a security sensitive scenario). Evaluating this goal may

27

involve some element of user study, either with members of the IID development team or perhaps

beta customers.

Goal Gblk: effective blacklist design and implementation

All aspects of an IID should be carefully considered in the design of blacklist features

and the implementation of blacklist operations.

Evaluating the blacklist design can be more complex than just testing that it functions correctly. It

includes technicalities such as applying the blacklist action promptly at the moment the prohibited

control flow is observed, along with usability concerns such as overlap between the Trusted Profile

and blacklist. Aloc can become a burden where large numbers of IID instances share the same

policy. Forensics procedures may in some cases conflict with Aacc, perhaps requiring a timestamped

version history to make previous blacklist state available at any future time. The breadth of IID

usage requirements and functional expectations should be considered with respect to Gblk.

Cost Effectiveness

Goal Glite: runtime overhead should be lite

IID runtime overhead should not drastically change the user experience of the

monitored program or introduce esoteric hardware requirements.

Runtime efficiency is essential for any security tool. But this goal also focuses on finding a realistic

balance between Cperf and the development costs Cimpl, which may already be significant before

performance concerns are addressed. Usable performance should not rely on rocket science.

Goal Gdep: user deployable

It should be possible for non-expert users to securely deploy the IID without having

direct assistance from an expert.

28

As discussed in Cadm, there is already more administrative involvement in IID than many security

applications, especially in comparison to automated CFI tools. This user effort can largely be

mitigated with effective installers that are well maintained and consider platform and environment

details in advance.

Goal Gdev: reasonable development cost

A successful IID should maintain a cost/benefit ratio that is practical, even for initial

deployments of the technology.

For an IID design and implementation to be successful, all the goals of IID need to be balanced with

the corresponding cost of development and maintenance. As shown in Cimpl, it is challenging to

build an IID in the first place, so its durability will depend on minimizing extremes of complication

that may impede future development or even become impossible to maintain.

1.4 Usage Model

The usage model for IID mainly targets software engineers, including product developers who

focus on security related debugging, application administrators seeking a reliable complement to

installed defense systems, and security analysts whose professional function is to understand current

threats and recommend protective measures. But throughout computing technology there is a trend

towards end-user assimilation of increasingly technical devices and programs. For example, landline

telephones are affordable, effortless to use, and offer highly reliable service—yet the majority of

today’s personal phone calls in the United States are made on complicated cellular devices that

are expensive to own and operate, technically challenging to manage, and have a very high rate

of service interference or even complete failure [142]. Anticipating the potential for end users to

29

consider IID as a kind of Anti-Virus 2.0, the IID goals Gmod, Gblk and Gdep focus on this secondary

usage scenario of IID.

1.4.1 Forensics

The U.S. National Institute of Standard and Technology (NIST) publishes a Computer Security

Incident Handling Guide [29] that explains:

For many organizations, the most challenging part of the incident response process is

accurately detecting and assessing possible incidents—determining whether an incident

has occurred and, if so, the type, extent, and magnitude of the problem.

As first steps in responding to an intrusion, the guide recommends determining:

D1 “which networks, systems, or applications are affected”

D2 “who or what originated the incident”

D3 “how the incident is occurring (e.g., what tools or attack methods are being used, what

vulnerabilities are being exploited)”

This concisely describes the kind of security procedures that Introspective Intrusion Detection

is primarily designed to assist. Goal Gwx addresses D1 by detecting unexpected and unforeseen

exploits, including failed exploits in many cases. It can also provide assurance that a certain anomaly

has not occurred on a particular system—if the malicious control flow paths are known, and the

Trusted Profile for a particular program does not (erroneously) contain all of those paths, then the

absence of anomaly reports provides strong evidence that the malicious behavior did not occur in

that program. Goal Glog can be indispensable in determining D2 by generating a thorough trace of

30

system calls and other essential program behavior after an intrusion is detected. The anomaly report

itself can provide essential information in determining D3, revealing the low-level actions taken by

software under malicious influence.

The form factor of an IID may not always seem ideal for deployment at end-user sites, especially

considering its profiling requirement and potential for false positives when program behaviors differ

for benign reasons such as environmental changes. However, the NIST also publishes a guide for

Intrusion Detection and Prevention Systems (IDPS) [147] that recommends host-based monitoring

for improved accuracy and specifically anticipates the challenges of local profiling:

• “Profile Networks and Systems. Profiling is measuring the characteristics of expected

activity so that changes to it can be more easily identified.”

• “Understand Normal Behaviors. Incident response team members should study networks,

systems, and applications to understand what their normal behavior is so that abnormal

behavior can be recognized more easily.”

An IID effectively automates this process within the domain of program execution. It is not feasible

for users to manually introspect program control flow, but an IID can build an effective profile of

a program and report digressions as they occur. The guide cautions administrators that “the total

number of indicators may be thousands or millions a day”, and recommends to make a plan for

maintaining accurate profiles to avoid floods of false indicators. Yet experiments with IID under

relatively sparse profiling data indicate a much lower rate of spurious anomaly reports, ranging

from a few dozen per hour for large desktop applications (Table 3.3) to just 3 unique false positives

while monitoring a WordPress website for an entire year (Section 5.5.2).

31

1.4.2 Advanced Persistent Threats

A summit of major technology executives in 2011, including RSA1 and TechAmerica, reports in

one of its key findings that:

The number-one advanced persistent threat (APT) attack vector is now not technology,

but social engineering. Furthermore, security is no longer about trying to keep all

intruders outside of the network perimeter, but rather acknowledging that security today

involves living in a state of constant compromise.

Eddie Schwartz, CSO of RSA, recommended:

A more realistic [approach] would be accepting the fact that you live in a world of

compromise, and understanding that you have to work in that world, and work in a

mode of triage, instead of constantly trying to push back hordes at the gate.

A major concern at the summit was “targeted malware that is, in some cases, just hours old”, making

it nearly impossible for automated defenses to keep pace [151]. Two defenses focusing on APT

show how a systematic approach involving personnel throughout an organization can gain a resource

advantage over the adversary and eventually overcome the threat. While an IID is a potential target

of APT attacks, especially where the adversary may attempt to pollute IID profiling, it is also

possible for an IID to play a key role in important defense strategies.

Kill Chains

A model of attack strategy that applies to many domains including military operations is called a

kill chain [81] because it is composed of attack stages that follow a dependency sequence, such
1https://www.rsa.com

32

https://www.rsa.com

that failure at any link in the chain will most likely interrupt the entire attack. This strategy for

defending against APT is based on two important insights:

• The adversary is only willing to make a limited investment in the attack, and has limited

resources in comparison to the lengthy duration of the attack, which may span multiple years.

• For the intrusion to be cost effective, the adversary relies on reusing or repurposing a signifi-

cant majority of the necessary tactics, because creating and perfecting new tactics quickly

becomes prohibitively expensive.

The procedure for this defense is to model the attack as a sequence of seven phases, and for each

phase determine how the adversary accomplishes the sub-goal and how that attack vector can be

defeated. An IID can potentially detect adversarial actions in each of the final four phases:

• Exploitation: is the primary focus of IID, where the adversary has delivered a malicious

input such as a PDF or Word document that causes unexpected behavior in the corresponding

application leading to remote control of the process. Since detection focuses on low-level

program behavior, it can be successful even if personnel inside the organization have been

deceived or enticed through social engineering to participate in the attack.

• Installation: to the filesystem can be detected by the IID that was monitoring exploited

program, since according to Awpm an IID continues to monitor after anomalies have been ob-

served. Installation within a long-running process can also be detected if an IID is monitoring

that process.

• Command and Control: from within a known process can be detected by an IID. Even if the

controller forks subprocesses for communication purposes, the default behavior of an IID is

to monitor the execution of all forked processes, including unknown programs.

• Actions on Objectives: effectively comprises the APT payload, which is detectable by the key

IID advantage Awpm.

33

The particular advantage of this seven-stage process is to focus attention on the components of

the attack that have come to be taken for granted. While it can be important to detect zero-day

components in the kill chain, these are not necessarily essential. The author points out that it can be

more effective to identify reused attack components, because defeating any of those will force the

adversary into additional ingenuity, which raises the cost of the attack.

Three aspects of IID can be especially valuable in a defense that is organized around kill chains.

• An IID can detect zero-day components, raising awareness of the attack early and potentially

indicating how to defeat it.

• Where social engineering gives the adversary a point of entry into the system, an IID can detect

resulting changes in program behavior—even if those changes are not directly correlated to

compromised resources or program errors.

• When defenders become aware of one attack stage and need information about others, they

can install additional IID instances and more carefully analyze anomaly reports to detect

adversarial activity where it may not have been immediately obvious.

Where APT relies on secrecy to maintain its presence, the accuracy and continuous observation of

an IID can reveal stealthy attacker operations.

Dynamic Defense

One of the most difficult complications of APT is the participation of insiders, who occupy a

seemingly invincible position when they have authorized accessed to crucial system resources. This

dynamic defense strategy models the attack as a two-layer differential game, where one layer focuses

on attacker vs. defender, and the second focuses insider vs. defender. In a highly mathematical

analysis of corresponding cost models, it is revealed that a significant factor for insider participation

34

is the risk of being caught, which increases significantly with defender vigilance. Contrary to

intuition, the model shows that the defender can reach an equilibrium against the attacker while

expending comparable resources, such that the cooperation of insiders leads to no net advantage for

the attacker [79].

This is a fundamental insight for the role of IID in a world where APT threats are steadily increasing

and have become pervasive in high-value organizations. An IID excels at detecting unexpected

behavior in programs—even if the behavior is normal for the program in a technical sense. The

more effort the defenders invest in accurate profiling and log analysis, the more effective an IID can

be in revealing the subtle moves of stealthy insiders. Even if the IID becomes a target of insider

manipulation, it preserves evidence of tampering. For example, if an insider deliberately pollutes

the Trusted Profile with control flow edges corresponding to the execution of malicious agents, that

Trusted Profile can testify to the control flow of the agent, and access to the Trusted Profile may

also reveal the perpetrators. While this does not by any means make IID a “silver bullet” against

APT, it does offer the defenders several important advantages against what has become one of the

more challenging attack vectors.

1.4.3 Field Debugging

Deployment of an IID at trusted customer sites can simplify bug reporting, improve the efficiency

of fault isolation, and facilitate early detection of problem scenarios. One of the central challenges

addressed by research in debugging is the difficulty of correlating program errors with observable

problems in program behavior. Users report their experience with a software product having no

concept of the internal cause, leaving developers to search through large amounts of logically

associated code for the relevant fault. Numerous techniques have been proposed to automate this

process, but these tend to have high overheads, provide too much loosely associated information or

rely on complex and potentially imprecise program analysis [89]. Another approach takes initiative

35

in the debugging process by interactively leading the developer through the deduction process under

the guidance of control flow and dataflow analysis [95]. The key insight is that for a developer

to begin solving a problem, it is first necessary to find where the problem occurred in terms of

program source code. An IID has an inherent advantage in this pervasive scenario because it

specifically detects causes and not symptoms. When control flow diverges from the Trusted Profile,

that indicates a potential cause of a problem, without any further information about what kind

of problem might be caused. Coupling an IID anomaly report with an observable program error

can go a long way toward preparing a developer to resolve the issue. Even if no observable error

occurs (or is noticed), the cause-centric report of an IID puts a developer in the ideal position to

investigate potential negative effects. Intuitively, it is easier for developers to reason forward in time

than backward with respect to program execution, making the cause-centric focus of an IID report

advantageous for debugging, especially where reports are coming from remote locations and are not

easily replicated at the development venue.

Debugging production failures presents a similar set of challenges to field bug reports, especially

where information from the failure site is limited, focuses on irrelevant information, or contains too

much information [191]. Researchers have explored various techniques for improving information

about remote failures, including:

• Control flow sampling to provide a snapshot of low-level program behavior leading up to the

failure [127].

• Symbolic execution to replay the failing run [193].

• Search across the input domain for fault-inducing inputs [93].

• Symbolic backward execution to recover fault-inducing inputs [47].

• A control flow query engine that responds in the context of conditions known about a

failure [126].

36

When successful, these techniques can greatly simplify the effort of diagnosing and repairing fail-

ures. But research tools are rarely used in practice, largely because they are looking for high-level

information about the cause of the failure, and tools tend to provide low-level hypotheses [166].

CREDAL combines crash dumps with source code to automatically detect memory corruption

leading to the crash [188]. The cause-centric logging of IID provides a similar focus on the prob-

lematic program behavior, but without speculative program analysis or dependence on potentially

unavailable core dumps. Where a post-failure analysis is generally limited to identifying just one

cause (at best), an IID can report multiple unexpected behaviors in a single execution, and may also

have reported relevant anomalies in past executions that did not lead to a failure, or that led to a

similar failure.

1.4.4 Profiling

There are also separate usage scenarios for profiling to account for differing aspects of Cprof :

• Vendor profiling relies on development infrastructure and resources to generate a valid

Trusted Profile for each released module. Since updates may be frequent, the profiling

procedure should be mostly automated as part of the production cycle. This is the ideal

scenario for profiling but may not always be available.

• Legacy profiling is necessary for applications that are no longer supported by the vendor. In

this scenario the monitored application is never updated, making it possible to develop a valid

Trusted Profile through a more organic process. Manual effort may be required, but its value

can be amortized over the lifespan of the legacy product.

• End-user profiling occurs for programs lacking IID support from the vendor, or legacy

applications that do not have third-party support. The lack of investment implies that these

will often be relatively small, simple applications that are much less challenging to profile.

37

Where any of these scenarios encounters challenges in sufficiently completing the Trusted Profile,

it may be possible to leverage any of a variety of techniques from other research areas, including

program comprehension and symbolic execution. Section 6.6 focuses on these related works in

more detail.

Secure Profiling

As outlined in Cprof , the effectiveness of an IID in detecting malicious activity may improve with

expansion of the Trusted Profile by reducing noise to better highlight important log entries, but only

insofar as the added control flow edges are safe. If the adversary should gain influence over the

contents of the Trusted Profile, it may be possible for future attacks to be hidden. This threat is most

prominent in the end-user profiling scenario, where it may be difficult to isolate trusted inputs, or

even to know for certain which inputs are trusted. But this problem can also arise in a controlled

engineering environment, for example if an advanced persistent threat has established a presence in

the profiling environment. These problems pervade computing in today’s high-value technology,

and may equally affect compiler-based CFI approaches or any other software defense. While it may

not be possible to guarantee the security of profiling, several techniques can be applied to detect

and eliminate adversarial influence, including validation by static analysis and delta profiling across

physically isolated environments. Section 2.3 continues the discussion of this threat and potential

preventative techniques in the context of all three profiling scenarios.

1.5 Prototype IID Implementations

To evaluate the feasibility of implementing an IID that meets the goals of Section 1.3, we developed

two IID prototypes that are capable of monitoring some of today’s most popular desktop and web

applications. This research focuses on the native x86 and PHP platforms because these are widely

38

used and feature many of the dynamic features that expose applications to attack. Although the goals

for successful IID are platform independent, complications arise from today’s sophisticated runtime

environments that require special, platform-specific features to be implemented. For example,

x86 applications frequently incorporate JIT engines that generate megabytes of code at runtime,

which stretches the limits of the Trusted Profile design and ultimately requires special features to

address Gdnd. These platform-related differences are outlined here, followed by an overview of the

experimental procedures and results.

39

1.5.1 BlackBox for x86 COTS Binaries

Since native execution on the x86 platform can only be monitored by hardware counters that are

sparse and/or coarse-grained and have limited scope of introspection, BlackBox is implemented as a

client of the binary translation framework DynamoRIO [14]. An additional benefit is that BlackBox

is compatible with commercial off-the-shelf (COTS) binaries, avoiding dependence on program

source code. But it requires adding a security API to the DynamoRIO core, because BlackBox

needs information about low-level control flow that is not typically necessary in binary translation

use cases. The implementation of IID in BlackBox is mostly platform agnostic, with three main

exceptions:

• The architecture of today’s best-performing binary translators is optimized for statically

compiled code but performs very poorly for dynamically generated code (DGC), such as a

browser’s JIT engine produces when executing hot JavaScript paths in web applications. A

special DGC optimization is required for BlackBox to meet the expectations of Gperf .

• The prevalence of DGC in x86 applications also raises complications for the Trusted Profile,

because random factors within popular JIT compilers cause arbitrary differences in the

monitored execution traces, resulting in a storm of spurious anomaly reports and failure to

meet Gdnd. BlackBox resolves this by making a special case in the Trusted Profile for DGC.

• Since the semantics of x86 machine code ignore function boundaries, exploits are able to link

together small fragments of code to compose malicious behaviors. This makes it necessary to

report intra-procedural anomalies, but benign instances of these anomalies are frequent in

today’s complex programs, compromising Gdnd. BlackBox accounts for the noise of benign

anomalies by inferring a degree of suspicion based on program execution history.

The BlackBox prototype currently supports 32-bit Windows 7 applications, a platform we chose for

its wealth of compatible malware, though implementations for other Windows or Linux environ-

40

ments would be similar. In controlled experiments, BlackBox logged fewer than 100 anomalies

per hour—all ranked at low suspicion—during normal usage of a broad range of popular Windows

applications including Microsoft Office and Google Chrome. Although sophisticated exploits are

rarely available for these applications, because vendors pay large bounties to prevent distribution,

BlackBox detected 100% of known exploits against smaller applications like Notepad++. The

runtime overhead of BlackBox on the SPEC CPU 2006 benchmarks is 14.7%, and independent

third-party reviewers confirm that BlackBox causes only minor degradation in user experience for

popular and performance-intensive Windows applications.

41

1.5.2 ZenIDS for PHP Applications

Since the PHP interpreter directly loads application source files for execution, control flow intro-

spection can be instrumented in the core interpreter. ZenIDS is implemented as a dynamically

linked PHP extension that requires 4 additions to the interpreter’s extension API, along with 2 hooks

each in the standard OPCache and MySQL extensions. A platform agnostic implementation of

IID is functional for PHP applications as sophisticated as WordPress, though there are again three

exceptions that require special features for ZenIDS to approach the IID goals:

• To monitor the intricate semantics of PHP script that arise from dynamic programming

constructs, such as importing a script through a string variable, ZenIDS reduces PHP control

flow to a significantly simpler abstraction.

• Although the HTTP convention of dividing user input into discrete requests tends to simplify

monitoring and Gdnd, other complications arise from a dynamic characteristic of the PHP

development ecosystem. PHP applications blur the line between development and adminis-

tration by providing large sets of optional features that can easily be activated through the

user interface. Feature changes that would require a newly compiled executable on the x86

platform can occur in PHP with the simple click of a radio button. To avoid regenerating

the Trusted Profile every time this occurs, ZenIDS implements an evolution feature that

recognizes site changes made by trusted users and dynamically expands the Trusted Profile

accordingly. Even if the vendor provides a Trusted Profile for each PHP module, there are

thousands of WordPress plugins and the average site has more than 20 installed [55], making

the evolution feature necessary to cover this vast domain of potential cross-module edges.

• A naïve implementation of ZenIDS has 10× overhead vs. an optimized LAMP stack. The

prototype implementation is able to address Gperf with conventional optimizations.

42

The ZenIDS prototype extends the 64-bit x86 Linux build of PHP 7.0 alpha 3, which was the latest

available at the time of development. In a 360-day experiment monitoring WordPress and two

other PHP applications, the Trusted Profile was trained exclusively by dynamic profiling in as

few as 298 HTTP requests and logged just 7 spurious anomalies while correctly identifying over

35,000 malicious requests. ZenIDS also detected 100% of known attacks during monitoring of a

WordPress instance that was configured with vulnerabilities from the last 10 exploits published

on exploit-db.com. After optimizing the ZenIDS extension and interpreter instrumentation,

runtime overhead for a random slice of traffic from the 360-day experiment is under 5% for all three

applications.

43

1.6 Contributions

This dissertation makes the following research contributions:

• A software monitoring system called Introspective Intrusion Detection that combines the

precision of CFI with the broad scope of anomaly detection, making it sensitive to unforeseen

RCE takeover methods as well as the payload while logging a low rate of spurious anomalies.

– A logging system that greatly simplifies forensic analysis of security incidents and

debugging of security vulnerabilities by selectively recording detailed control flow

events and related context whenever suspicious behavior is detected.

– A system of modular trust that automatically incorporates all libraries used by a program,

limits branch targets across modules to observed usage, and can be extended with whole-

program context sensitivity at every indirect branch, including DGC and OS callbacks.

• Prototype implementations of IID that detect known attacks along with exploits occurring in

the wild while maintaining user expectations for the runtime performance of today’s most

popular applications, including Google Chrome, Microsoft Office and WordPress.

– BlackBox2, an implementation of IID for 32-bit x86 COTS binaries on Windows 7.

– ZenIDS3, an implementation of IID for PHP 7 on 64-bit Linux.

• A profiling technique for capturing an abstraction of application control flow into a Trusted

Profile that can accurately distinguish normal (safe) control flow events from anomalies

having a high probability of malicious intent.

• An evolution technique for expanding the Trusted Profile when application structure is

modified at runtime by authenticated users having trusted accounts.

2Available at https://github.com/uci-plrg/blackbox.
3Available at https://github.com/uci-plrg/zen-ids.

44

https://github.com/uci-plrg/blackbox
https://github.com/uci-plrg/zen-ids

• A permission model for detecting anomalies in dynamic code generators that is resilient to

transient differences in the structure of the dynamically generated code.

• An optimization technique for binary translation of dynamically generated code4 that reduces

overhead to under 3× on industrial JavaScript benchmarks.

1.7 Organization

The remainder of this dissertation focuses on the implementation of an IID, including technical

presentation of our two prototypes, and our experimental evaluation of the prototypes on the

basis of the IID goals outlined in Section 1.3. To give an overview of its internal structure,

Chapter 2 presents the generic features of an IID based on a hypothetical platform where control flow

introspection is trivial to obtain and there are no challenges raised by performance characteristics

or prevalent software architecture. Chapter 3 presents the implementation details of BlackBox,

focusing on platform-specific features that are necessary to address the IID goals, and concluding

with an experimental evaluation. BlackBox requires an optimization of DynamoRIO for DGC

to meet goal Glite, which is presented separately in Chapter 4 because it is orthogonal to the

concerns of IID and security in general (for example having use cases at Google and ARM focusing

on software engineering). Chapter 5 parallels Chapter 3 in presenting the technical details and

experimental evaluation of ZenIDS. To complete the motivation of IID and establish its position in

the security research landscape, Chapter 6 expands on Section 1.1 with a more detailed discussion

of representative works, focusing on CFI and traditional intrusion detection, along with a taxonomy

of RCE exploits and the issues related to detecting them with an IID. Chapter 7 concludes with a

discussion of potential next steps towards industry adoption of Introspective Intrusion Detection.

4Available in the DynamoRIO GitHub repository under branch experimental-optimize-jit.

45

https://github.com/DynamoRIO/dynamorio/tree/experimental-optimize-jit

Chapter 2

Paradise: a Hypothetically Pure IID

Figure 2.1 presents an overview of Paradise: Platform Agnostic RCE Attack Detector for an Ideal

Security Environment. This IID is designed for a hypothetical platform where all the advantages of

IID are in effect, but none of the challenges are present (as enumerated in Section 1.2). The purpose

is to isolate the basic usage model and internal structure of an IID from the torturously twisted

features that are often necessary for a real implementation to be effective in practice.

End User Machine

Raw
Log

Cloud IID Service

e.g., terminate program

HTTP

manually prohibit
a program action

manually add a trusted
program action

Monitored Program

Statically Compiled Code

direct branches
indirect branches

Blacklist

Log Filter

Trusted
Profile

Figure 2.1: Component connectivity overview of application monitoring in Paradise.

Section 2.1 enumerates the platform snares that have been hypothetically banished from the land of

Paradise. The adversary, however, does have permission to roam here, and the platform-agnostic

46

threat model is presented in Section 2.2. Then, from this last glimpse of reality, we descend into the

idealized incarnations of the IID deployment and maintenance phases in Sections 2.3 and 2.4.

Cloud IID Service

Throughout this dissertation we assume the availability of a cloud-based service provider that

receives connections from end-user IID instances to securely store Trusted Profiles and log streams.

The service can be extended to provide analysis for various purposes such as suspicion ranking of

log entries, or inference of suspicious trends among groups of users. When vendors deploy IID at

customer sites to facilitate forensic analysis and debugging, they can also provide the IID Service

for those instances. Most of the service components have been implemented as individual shell

programs for use in the prototype experiments, and the corresponding github projects are linked

from the README files of the IID prototype repositories. Secure storage and streaming were

omitted from the IID prototype experiments because they represent security challenges that are

already well understood.

2.1 Platform Snares

The central question addressed in this section is: why do we need a separate design and imple-

mentation of IID for each platform? In any project there may always be a few platform-specific

code and integration differences, for example the C code for the PHP MySQL extension requires

OS-specific #ifdef clauses, even though at runtime it integrates with PHP in terms of identical

API calls and data structures on any platform (and the IID prototype for PHP is little more than a

PHP extension). But there are major design differences between the IID prototype for x86 binaries

and the one for PHP. These differences account for the platform snares presented in this section,

which range from subtle matters of programming convention to major infrastructural components

47

like script interpreters and process virtualization runtimes. If it were not for the snares, a single IID

design would be sufficient for all platforms, and there would only be a few low-level differences

between the implementations.

This raises a second pivotal question: for the purposes of IID, what exactly constitutes a platform?

Today’s software is commonly built as a composition of two or more layers of abstraction, mainly

to improve development efficiency, such that the semantics executing at one layer are invisible

to an observer of another layer’s control flow. For example, consider a trivial Turing machine

that is implemented in less than 100 lines of code, yet is capable of running infinitely complex

programs. The execution traces for two such programs may be very different when the traces are

recorded in terms of Turing instructions—but if the traces are recorded in terms of the Turing

machine implementation, they will often be identical (depending on context and flow-sensitivity).

In this sense, the Turing script is opaque from the perspective of the native implementation of the

interpreter. Accordingly, for the purposes of IID, the Turing machine is a separate platform from its

native host platform. An IID implementation can only monitor programs for the one platform it is

designed for, so if there are multiple platforms in a process—such as the common case of a browser

rendering JavaScript—then two separate IID instances are required to monitor the entire process.

This factor leads somewhat circularly to the first platform snare. If an interpreter lowers part

of the interpreted script by dynamically generating code for the host platform—usually native

machine code, as in a JIT compiler—the lower-level IID will observe control flow from two separate

platforms. This problem does not apply to DGC in general, but arises in the interface between two

independent platforms. For example, the entry points from interpreted code to JIT generated code

are difficult for the lower-level IID to profile: since the behavior of the interpreted code is opaque,

48

all the entry points will be aliased to a single source node in the Trusted Profile of the interpreter.

This weakness is exploitable and requires special handling in the IID, as described in Section 3.4.

Snare Sopq: semantics become opaque across layers of abstraction

Today’s software is built as a composition of two or more layers of abstraction such

that the semantics executing at one layer are opaque to an observer of another layer’s

control flow.

An IID records and monitors control flow in the form of a model, usually a control flow graph,

that represents the actions of the program as it executes. The set of possible actions is specified by

the runtime platform, and may include many details that are not important for security purposes.

For example in the ISA of a typical CPU, most instructions simply fall through to the physically

subsequent instruction, so it is not useful for a control flow monitor to include every machine

instruction in its execution traces. Similarly, interpreted languages often define a complex set of

control flow edges such as callbacks from the interpreter to user functions, invocation of code

defined outside of any function, and implicit invocation of one or more functions when various

pre-defined conditions are met. For security purposes, it can be much more efficient to model all of

these edges with a single edge type, without loss of accuracy. But these details are not permitted in

the land of Paradise because they are not fundamental to the construction of an IID.

Snare Scf: verbose or intricate control flow

Verbose or intricate control flow can encumber a literal execution trace with details

that are not relevant for security purposes, and may cause false positives.

Some platforms allow execution to enter a procedure at any location in the procedure body, without

ever using the entry point. While this can be leveraged for advanced optimization techniques, it also

exposes a wealth of opportunities for attackers to manipulate control flow. Such platforms typically

do not constrain the return instruction to the call stack, allowing an exploit to control execution

49

by fabricating return addresses. Even worse, some platforms optimize for code size by omitting

instruction boundaries, which inadvertently allows execution to begin in the middle of a multi-byte

machine instruction (thereby changing the semantics of the instruction).

Snare Ssem: lack of conventional semantic boundaries

The runtime environment may not enforce call/return semantics or the boundaries of

functions or instructions.

The concept of the Trusted Profile is only applicable to programs that load the same code on every

execution. But many platforms allow a program to dynamically load modules, or to generate new

code as it runs. Program modules may also change, for example during software updates. An IID

may need to modify the Trusted Profile accordingly, or represent fluctuating code regions with an

opaque abstraction.

Snare Scc: code changes

Code changes may occur at any time.

Since code changes are often complicated and prone to failure, some programs take a modular

approach that can be equally difficult for the Trusted Profile approach. These programs incorporate

vast frameworks of generic functionality and provide the user with a configuration interface that

can quickly enable or disable major application features. For the Trusted Profile approach, it is as

if the newly enabled features were loaded at runtime, since trust has never been established for

the code implementing those features. Third-party plugins have a similar effect, along with code

customization on scripting platforms.

Snare Slate: late feature binding

New features may be integrated after deployment, whether by activation from frame-

works, installation of plugins or code customizations.

50

Many of the IID advantages and challenges pivot around user interaction, for example Gdbg requires

precise logs that are also understandable for the purposes of forensic analysis and program debugging.

But an IID implementation can only monitor the application in terms of its executable code, which

may have undergone complex transformations during the development process that obfuscate the

high-level semantics. For example, it can be very difficult for even the most sophisticated analysis

to determine which application behavior(s) are performed by a given segment of compiled x86

instructions. This obfuscation can interfere with the effectiveness of IID in software development

and security analysis use cases.

Snare Sobf: obfuscated code

Complex transformations such as compilation may obfuscate the source-level seman-

tics of application control flow.

It is not easy to foresee all the possible complications that might arise in other runtime platforms,

especially those that are not common today. For that matter, at the beginning of this project we did

not anticipate several of the issues that did arise in our IID prototypes, despite having substantial

experience with those platforms. So this discussion of snares should be considered a representative

sample of potential issues that can arise in real deployment environments.

2.2 Generic Threat Model

Although the land of Paradise is free of platform snares, it is by no means free of security snares—

the adversary has non-privileged access to the monitored program and is able to craft input that

causes unexpected program behavior. Access to the filesystem is limited to privileged users and

the application, so the adversary can only create or modify files by using (or abusing) application

functionality. If the adversary gains control of an application on the monitored machine, it is

assumed the exploit may escalate to root access and take control of the machine. Security breaches

51

in the IID Service are either impossible or effectively mitigated by administrators, such that the

service is always available to securely store log streams and provides correct Trusted Profiles. To

obfuscate side channels related to the IID Service, the Paradise runtime randomly sends empty

anomaly reports when necessary to maintain consistency in the rate of communication. The source

code for Paradise and the monitored application are publicly available, and the adversary can

determine which version is running. The time and duration of profiling is only known to privileged

users of the application and the IID Service.

The adversary may mount an advanced persistent threat against the organization that administers

the IID. Malicious components within the infrastructure may influence the execution of any pro-

grams, but orthogonal security measures prevent such components from directly modifying files or

communicating with entities outside the organization. Invasive components may include resident

malware and malicious circuits in commodity hardware. However, no APT is omnipresent—for any

physical location where the adversary has influence, there is some other location, perhaps at a third

party site, where the adversary does not have influence.

2.3 Deployment

Several steps are involved in preparing and using an application with an IID. The runtime can

be deployed to the end user machines using a standard installer that is configured to connect the

IID to the vendor’s IID Service. Since the primary use cases for IID are software development

and security analysis, it is assumed that the vendor or analyst is responsible for generating and

maintaining the Trusted Profile. This may still involve profiling end users, for example in the case

of monitoring legacy software for which there are no automated tests or profile guided optimization

(PGO) samples. In this case the IID Service host will coordinate profiling and compilation into the

Trusted Profile.

52

2.3.1 Generating the Trusted Profile

In profiling mode, an IID observes program executions and generates traces representing the

security-relevant aspects of the control flow. In the absence of platform snares, the Trusted Profile

can be defined as a trivial call graph, where a node represents a function or a system call number, and

an edge represents a function call or a system call (Figure 2.2). It is sufficient to only monitor the

call graph because the adversary relies on system calls to carry out malicious actions—manipulating

control flow within a function can never directly harm the system. An offline tool merges these

execution traces into a composite call graph, which becomes the Trusted Profile.

Figure 2.2: The Trusted Profile as defined in Paradise.

The two prototype implementations of IID demonstrate effective results for Gwx and Gdnd without

including context or path information in the Trusted Profile—it is simply a bag of nodes and edges.

This is because, to the best of our knowledge, real-world adversaries are so far not able to construct

an entire exploit payload using exclusively the set of edges normally executed by the application. If

it becomes necessary, the Trusted Profile can be extended with some degree of context and flow

information, though at significant performance cost (as discussed in the introduction of the IID

advantage Awpm).

The profiling phase is easy in Paradise where application vendors always have automated tests that

cover every intended control flow path. In the case that users have installed third party plugins or

other extensions, it may be necessary to profile the control flow edges between the application and its

optional components. This can be done at the vendor’s site, because in Paradise the automated tests

53

invoke all possible callbacks from dynamically integrated components. To protect the Trusted Profile

from tampering (in the case of a successful exploit), the IID Service makes profiles exclusively

available for download through an authenticated connection. Although the adversary may be able to

obtain and analyze the Trusted Profile, a separate attack on the cloud service would be required to

tamper with stored profiles.

Advanced Persistent Threats

A high-level perspective on the potential role of IID in APT defense is presented in Section 1.4.2.

This section focuses on low-level vulnerabilities of an IID that may become a target during an APT

attack, and the technical facilities that can protect the IID.

The vendor’s profiling site is not necessarily secure from all adversarial influence. A premeditated

attack may deploy low-impact agents to the vendor’s site through malware or perhaps social

engineering. For example, a recent study of more than 200,000 Android applications, 97.9%

contained at least one insecure code snippet that had been evidently copied from Stack Overflow or

a similar discussion platform [56], suggesting that a crafty adversary may be able to pollute any

part of a vendor’s codebase through seemingly innocuous channels. It may also be possible for

untrusted commodity hardware to contain malicious circuits under the attacker’s control. This kind

of threat can affect the vendor’s toolchain at all levels, for example by manipulating intermediate

files during compilation to disable CFI constraints. But the IID profiling process is likely to be one

of the easier targets, since any alteration of control flow in the profiled application will simply be

recorded and trusted.

Potential counter-measures will be presented here hypothetically, and concrete experiments are

reserved for future work. Since the adversary is not omnipresent, one approach to detecting an

advanced persistent threat focuses on the differences in execution between physically isolated

environments. This can be as simple as manually examining the control flow delta between profiling

54

sessions at different sites. If sufficient care is taken to transfer the application to both sites without

carrying along potentially infected elements from the development environment, a deterministic

profiling procedure should reveal any unexpected discrepancies. Since these may be benign, for

example caused by configuration or network differences, the audit process may be labor intensive.

However, in a high-value organization, this kind of precautionary measure would be considered

routine. Differencing techniques have been successfully applied to anomaly detection, where

pollution of trained models can be automatically detected in the delta between independent sites,

though the automation technique may not be compatible with the large footprint of the Trusted

Profile [35].

In anomaly detection for financial applications, a similar technique correlates results from random-

ized sub-models to accurately isolate outliers in datasets [102]. For regions of the Trusted Profile

that remain under suspicion after cross-site differencing, subset diversification of the Trusted Profile

may help experts evaluate these program behaviors. After marking these edges as suspicious, the

IID runtime can periodically omit suspicious edges from the Trusted Profile to sample usage of

the corresponding control flow that occurs in the deployment environment. After sufficient time

for collection and analysis, experts can determine whether to trust the questionable edges, or to

blacklist them while investigating potential causes.

A simpler approach would evaluate the Trusted Profile according to a conventional static analysis.

The effect would be similar to πCFI [125], which dynamically enables groups of control flow edges

when the entry point is encountered, but falls back on a statically derived CFG to limit adversarial

activation. Though since a static analysis can be more permissive than the strictly dynamic Trusted

Profile, this approach would not detect adversarial influence that conforms to the static CFG.

The risk of Trusted Profile pollution for end-user profiling scenarios is more difficult to mitigate,

though similar techniques may be effective. Trusted communities of users are also explored

in [35] and may lend a useful dimension to the proposed differencing analysis. But in general,

low-investment application deployments tend to be highly insecure and replete with orthogonal

55

opportunities for compromise, limiting the value of a dedicated effort to tightly secure IID profiling

for this scenario. In our experience with profiling a live PHP website, the Trusted Profile was

highly polluted with typical malicious requests (which comprise 25% of traffic on our research lab

homepage), yet the IID remained substantially effective (Section 5.5).

2.3.2 Monitoring

The system administrator installs the IID runtime onto the machine where the protected applications

will be executed, and configures it to access the Trusted Profile. For distributed applications, a

separate IID would be installed on each node. The installation procedure binds the protected

programs to the IID, such that they are always launched in the IID runtime. By default the Trusted

Profile is stored by the IID Service, and local copies may be maintained under regular MD5

verification.

Monitoring focuses on instruction execution and also module loads, which in Paradise only occur

at program startup. Paradise compares each loaded module to a signed copy of the corresponding

binary that was loaded during profiling. If there is any difference, a module mismatch anomaly is

reported. Then as the program executes in the IID runtime, control flow is continuously compared

against the Trusted Profile. If the execution takes any control flow edge that does not appear in the

Trusted Profile, the IID logs an anomaly indicating the untrusted edge. Similarly, if the execution

takes a control flow edge that matches a blacklist entry (Section 2.4.1), the IID takes the blacklist

action (for example, terminating execution).

56

In its default configuration, the IID generates one simple log entry for each anomaly, indicating the

untrusted control flow edge, a timestamp, and the process where it occurred. Additional information

can be included to assist in forensic analysis and debugging, such as:

• a stack trace

• the thread hierarchy

• the process hierarchy

• a system call trace

• a complete control flow trace

• a complete trace of the entire process tree

The log content for an anomaly can be configured with a predicate, for example to log more

information for anomalies occurring in a particular module.

Logging Service

Although various configurations are possible, by default Paradise sends logs entries in realtime to

the IID Service over a write-only HTTP socket. This prevents the adversary from tampering with

the logs after a successful exploit. It also simplifies visualization tools, which can be centralized in

the IID Service and provided through a web interface or a thin client on the IID host machine. The

service is capable of throttling a connection if an attacker gains control and attempts a DOS attack.

To prevent the adversary from leaking information through side channels related to the IID Service,

the runtime sends empty log entries at random intervals, which increase in frequency as the rate of

real log entries declines, and vice versa. The entries are encrypted to prevent the adversary from

discovering which entries are empty.

57

While the focus of IID is on forensic analysis and vulnerability debugging, it can also be an effective

tool for preventative analysis that can discover potential problems early. For example, the IID

Service can correlate similar anomalies reported across machines and recommend investigation

when suspicious behaviors appear to be spreading, or start occurring globally without precedent.

For example:

• Suppose a new game becomes popular, and it installs a customized version of a shared library

in an unconventional way. If monitored applications accidentally load the customized version

of the library, anomalies will be reported even if the application appears to work correctly.

This kind of problem can be extremely difficult to diagnose on the basis of symptoms in the

adversely affected applications, but is trivial to understand from module mismatch reports.

• A study of malware development tools found in the wild [86, 85, 159] shows substantial

dependence on trial and error, especially during the deployment phase. Initial versions of the

exploits worked locally but failed on target machines, leading to a cycle of minor revision

and redeployment. Conversations on “underground” malware forums indicate that reliability

statistics are a major selling point for malware. While the reputation protocol in these

communities is somewhat opaque, it appears that new malware is deployed on various test

targets to “prove its worth” for marketing. The IID Service can detect these early deployments

and immunize all customers with corresponding blacklist entries before a major malware

attack is attempted.

Log Usability

In Paradise the development tools are so well structured and reliable that many software engineers

are unfamiliar with the mechanics of low-level control flow, or how the source code is lowered

to that form. Since the IID logs can only report anomalies in terms of executable elements such

as basic blocks, it can be difficult for a developer in Paradise to understand a reported attack and

58

diagnose the compromised program vulnerability. Conversely, security analysts are mainly familiar

with executable forms and are not easily able to communicate about security incidents in terms of

program architecture or user-facing components. Fortunately, the program analysis tools in Paradise

are as effective as the development tools, making it possible to extract the correlation between

compiled instructions and source code, or between compiled functions and application features. In

the real world these challenges have also been addressed in research [144, 178], and are further

discussed in Section 6.6.1.

2.4 Maintaining the Trusted Profile

Although the Trusted Profile here in Paradise contains every intended execution path in the monitored

program, not all IID deployments necessarily benefit from total coverage. The boundary between

malicious input and ordinary user error can be subtle, making it potentially valuable to log anomalies

for program paths such as error handling that were intended by the program authors to be used. For

example, suppose a program uses a third-party authentication mechanism such as Google Sign-In,

and the developers are not confident that they understand all the corner cases. To harvest use cases

from deployed instances of the program, the developers can remove those regions from the Trusted

Profile. Conversely, developers may discover an error in their code through IID anomaly reports,

and find that the frequency of occurrence becomes a nuisance for routine log analysis. If it may take

some time to deploy a patch to the monitored sites, the developers can in the meantime whitelist the

unintended control flow by manually adding it to the Trusted Profile.

2.4.1 Blacklisting

Security vulnerabilities are more easily discovered than fixed, causing an inevitable delay in the

release of patches to prevent known exploits. Software development and security organizations may

59

have clients who can benefit from an intermediate resolution. The IID blacklist can facilitate this

service by taking any configurable action when prohibited control flow is observed. The predicate

can be as simple as an control flow edge specification, just as it appears in the IID log, or it can take

into account any of the dynamic factors that are visible in the IID runtime.

In the case of end-user administration of an IID, blacklist entries can either be taken directly from the

IID log, or from trusted members of a security community. This kind of safety measure is common

in the PHP ecosystem today, where trusted experts post nominal patches for known vulnerabilities,

and website administrators of all levels of expertise download and integrate them into their site’s

PHP source code. Distribution of blacklist entries can be done in much the same way, perhaps with

greater reliability considering that the transferred artifact is much simpler than a raw code fragment.

60

Chapter 3

BlackBox

The difference between Paradise and a real IID for x86 commercial off-the-shelf (COTS) binaries

lies simply in the four IID challenges (Section 1.2) along with the following four snares (Section 2.1)

introduced by the x86 platform:

Ssem Several aspects of the source program’s semantics are omitted from the x86 ISA:

– The ret instructions obtain the return address from a stack slot, making it possible to

break the symmetry of any call/return pair by returning to an arbitrary address.

– Procedure boundaries are only encoded in debug symbols, and since these are never

referenced by x86 branch instructions, it is possible to enter a procedure at any byte.

– Instruction boundaries are not encoded anywhere in the binary executable image, but

the ISA is dense enough that in many cases, entering an instruction in the middle will

result in execution of a valid but different instruction.

These factors concede a wealth of opportunities for the adversary to fabricate control flow

paths that were never intended by the program’s developers. While some of these issues are

addressed by the Intel “Control-Flow Enforcement Technology” (CET) feature, Section 3.1

61

shows that even for processors having CET available and enabled, the effects of Ssem do not

necessarily change. Given the ongoing possibility of these unexpected behaviors, an IID

should be able to continuously monitor return targets along with all intra-procedural control

flow. The addition of these low-level details makes an IID more likely to exhibit small

variations between observationally equivalent executions, increasing the rate of spurious

anomalies.

Scf Most x86 instructions do not have any direct effect on control flow—simply falling through

to the physically subsequent instruction—making them irrelevant to control flow security.

Another complication occurs in callback mechanisms:

– In Windows, many system call implementations make a callback to a user-space

function, which can confuse the shadow stack, leading to artificial context sensitivity

for nested chains of alternating system call and callback.

– Callbacks are also a popular idiom within Windows applications, but the physical con-

trol flow specifies the callback target as an address, which does not respect modularity.

For example, if the Trusted Profile was generated separately for two modules having a

callback edge between them, an explicit address for the callee will often be incorrect,

even if it is logically the same callback.

Conversely, the Windows API establishes a convention of wrapper functions for system

calls, making it more difficult to detect whether untrusted control flow may affect system

calls.

Scc Prevalent operating systems for x86 allow code changes to occur at runtime:

– Modules can be loaded and unloaded via system call.

– Code within a loaded module can be overwritten and executed.

– Code can be written to dynamically allocated memory and executed.

62

Sopq The software development ecosystem for x86 platforms relies heavily on layers of abstrac-

tion, both in software construction and in runtime systems, making it more difficult for an

IID to generate log entries that the user can easily understand and manage. For example:

– Popular compilers transform source code into assembly language, and transform again

into machine code, making it difficult to correlate elements of the resulting binary

image with the components and behaviors of the original source program.

– It is common for x86 programs to embed script interpreters whose semantics are

opaque to an IID that monitors native execution.

– Many of these interpreters incorporate JIT compilers (Table 3.1), which may require

an IID to substitute corresponding portions of the execution trace with an abstraction.

For example, Adobe PDF Reader executes native x86 code generated by several compilers:

– The Visual Studio C/C++ compiler.

– The .Net Native compiler for C# and/or Visual Basic.

– The Microsoft Managed Runtime JIT that generates utility routines to transform data

structures between the managed and unmanaged formats.

– The Adobe Flash JIT (npswf32.dll).

– The Internet Explorer JIT (jscript9.dll).

Dynamic Routine Generators JIT Compilers
Word 8 1
PowerPoint 9 1
Excel 4 1
Outlook 4 1
Chrome 6 2
Adobe PDF 13 2

Table 3.1: Number of distinct modules employing code generators in popular Windows programs.
Dynamically generated code is a growing trend.

63

Figure 3.1 depicts an overview of the components that BLACKBOX adds to Paradise so that it can

survive the IID challenges and the snares of the x86 platform. After Section 3.2 makes an adjustment

to the threat model, Section 3.3 presents the BLACKBOX runtime and its format for the Trusted

Profile, which accounts for Scf and a special case of Scc where code in statically compiled modules

is overwritten at runtime. The section concludes with the Shadow Stack, which accounts for the

Ssem case of vulnerable ret instructions. In Section 3.4, three new runtime events for Dynamically

Generated Code negotiate layers of abstraction created by script interpreters and JIT compilers,

and three corresponding edge types are added to the Trusted Profile. The vulnerabilities exposed

by Ssem require BLACKBOX to monitor programs at a granularity too high for Gdnd, yielding a

significant rate of benign anomaly reports. Section 3.5 presents the Stack Spy and Sniffer Dog

which can combine to distinguish important log entries from safe irregularities in low-level control

flow. To demonstrate the potential of BLACKBOX to perform as a real-world IID, Sections 3.5

and 3.6 present case studies and experiments that evaluate the BLACKBOX prototype in terms of

Gdnd, Gkx, Grx, Gblk and Gdbg. Section 3.6.3 discusses the development and maintenance cost of

BLACKBOX and its supporting IID Service components.

BlackBox Runtime (DynamoRIO)

Raw
Log

Sniffer
Dog

Prioritized Log

Cloud IID Service

Trusted
Profile

e.g., terminate program

H
T
T
P

manually prohibit a program action

manually add a trusted program actionMonitored Program

Statically Compiled Code

direct branches
indirect branches

Dynamically Generated Code

allocate memory Mdgc

change Mdgc permissions
write to Mdgc

execute Mdgc

Blacklist

Log Filter

Trusted
Profile

Stack
Spy

Shadow
Stack

Figure 3.1: Component connectivity overview of application monitoring in BLACKBOX. Bold
font indicates components that were not necessary in Paradise (Chapter 2), but are necessary on
Windows for x86 processors to account for the four IID challenges (Section 1.2) and four snares
arising from the x86 ISA and the Windows software ecosystem (Section 2.1).

64

3.1 Intel CET

In 2016, Intel released preview documentation for a new featured called “Control-Flow Enforcement

Technology”, which extends the x86 ISA with instructions and a shadow stack to enforce both

forward and backward CFI [82]. The feature has not been implemented in any released Intel CPU

up to today (August 15, 2017), as evidenced by the fact that all Kaby Lake processor models clearly

indicate support for SGX and likewise indicate no support for CET [84]. Subsequent processor

models Coffee Lake and Cannonlake have not been released yet [83]. Furthermore, even though

the new CET instructions are already decoded to NOP on all Intel processors since Haswell (for

backward compatibility, see Section 1.2 of the CET Preview), Microsoft has yet to implement

support for CET in the Visual Studio compiler or any of its major product lines, including Windows

and Office [111] (other supporting facts restricted by NDA).

65

Since version 2.0 of the CET Preview was just released in June of 2017, it is difficult to assess the

impact of the feature on Ssem. But if the current preview holds, it will not necessarily allow for any

simplifications in the design of BLACKBOX, even when the majority of x86 users have access to

both software and hardware that enable CET protection:

• The forward branch integrity technique defines a single class of indirect branch targets, such

that any target is valid for every indirect branch source in the application. While this precludes

instruction splitting and eliminates a large percentage of other potential gadgets, it does not

constitute enforcement of function boundaries. For example, an indirect call can still target a

case label in the middle of another function without raising a CET hardware exception.

• The CET shadow stack is incompatible with current implementations of Microsoft Office

and Adobe PDF Reader, which implement soft context switching in hand-coded assembly,

whereas CET requires every soft context switch to use the Interrupt Stack Table (IST).

These assembly fragments were implemented in Office more than two decades ago (Derek

Bruening, personal communication). Similar constructs in ipsecproc.dll make a soft

context switch into a task that is implemented in dynamically generated code, making it

fundamentally incompatible with the IST and therefore incompatible with CET—yet this

operation executes during startup of every application in the Microsoft Office 2013 suite.

Although the presence of a hardware shadow stack may alleviate performance-intensive checks

in BLACKBOX for some applications, it would not make a significant improvement in overall

performance, since the majority of overhead comes from indirect branches translated from the

Windows IAT. With these points in mind, the remainder of this chapter does not make further

reference to the pending CET release. Section 6.2 presents the potential future scenario where

CET is ubiquitous on the x86 platform and all major applications have been updated to support

it, discussing the changes that could make to the security landscape, and the consequences for the

necessity and effectiveness of Introspective Intrusion Detection.

66

3.2 Threat Model

The threat model for BLACKBOX extends the threat model from Paradise (Section 2.2).

• The adversary is potentially able to modify the target of any branch to reach any location in

memory (in some cases limited in range by the semantics of individual instructions).

• The adversary may be able to gain arbitrary read/write access to memory within the confines

of the Trusted Profile through a Control Flow Bending attack, but is not able to locate the

BLACKBOX data structures in memory without causing untrusted control flow to occur in

exception handlers.

• A targeted attack against BLACKBOX may be able to disable it, but if the attack occurs while

BLACKBOX is monitoring and the Trusted Profile is sufficient, the attack on BLACKBOX will

be recorded to the IID Service before BLACKBOX is disabled.

If advances in attacks like CFB make this threat model obsolete, BLACKBOX can potentially protect

itself by adding context sensitivity (see Awpm), though the technical details of those potential

improvements are reserved for future work. Alternatively, a recent technique in distributed dataflow

analysis is able to detect known vulnerabilities at just 1% overhead on commodity hardware, and

may be effective against non-control data attacks such as CFB [71]. The assumption throughout the

remainder of this dissertation is that non-control data attacks are defeated by means that are not

presented here.

3.3 Monitoring

Since program introspection is not natively supported on x86 processors, the BLACKBOX runtime

is implemented as a DynamoRIO client that requires a security API added to the core framework.

67

Under the BLACKBOX runtime, the operating system loads the program modules into memory in

the normal way, but the code is no longer executed directly from those mapped images. Instead,

BLACKBOX copies program instructions into a code cache as the execution encounters them, and

execution occurs over the copy. Since BLACKBOX has exclusive control over the contents of the

code cache, the observation of a control-flow branch when it is initially linked within the code cache

remains valid for the duration of the execution in the majority of cases. This makes it possible for

BLACKBOX to observe every branch while achieving near-native performance (see Figure 3.5).

3.3.1 Trusted Profile

The simple call graph used in Paradise for the Trusted Profile is not sufficient for monitoring the

loose semantics of the x86 ISA. Figure 3.2 depicts the node and edge types represented in the

Trusted Profile used by BLACKBOX. The node and edge types for dynamically generated code,

labeled DGC* and gencode_*, will be presented later in Section 3.4.

Figure 3.2: BLACKBOX Trusted Profile (simplified). Since dynamically generated modules are
anonymous, BLACKBOX assigns arbitrary names and identifies them by instruction content.

Since execution can enter a procedure at any location using control flow instructions such as jmp,

call and ret, any control flow branch is a potential security risk. This makes it necessary

for BLACKBOX to include all control flow branches in the Trusted Profile. But the majority of

instructions in the x86 ISA do not have any effect control flow, simply falling through to the next

68

instruction, which makes it impractical to model every instruction as a Trusted Profile node. Instead,

the Trusted Profile focuses at the granularity of the basic block, defined as a sequence of instructions

having one entry at the top and one or two exits at the bottom.

Various programming idioms in the x86 ecosystem use the ret instructions in an unconventional

way by writing an address into the return slot on the stack before a ret is executed. While in many

cases this corresponds to a soft-context switch, which BLACKBOX can account for dynamically

(see Section 3.3.2), it is also used in ways that are less conducive to systematic recognition. Instead

of trying to understand the intention behind these unusual ret instructions, BLACKBOX simply

adds a Trusted Profile edge of type incorrect return when necessary.

3.3.2 Trusting Returns

The natural way for an IID to distinguish incorrect returns is to assign categorical trust to normal

returns. The intuition is based on the symmetry of call/return semantics: if the call was trusted (or

has already been logged), the return to the call site must also be trusted (or need not be logged).

BLACKBOX instruments each call site with a push to a shadow stack, and links all returns to an

in-cache assembly routine that pops from the shadow stack and verifies the destination.

Multiple Shadow Stacks

On the Windows platform, a system call may perform a callback to the program. Since these

callbacks typically occur at the end of the system call implementation, it is common for the callback

to occur on a chain of tail calls, such that the return from the callback goes directly to the original

system call site. A naïve shadow stack will mistake this for an incorrect return, so BLACKBOX

implements nested shadow stacks to account for the callback. Since BLACKBOX already intercepts

all interaction between the monitored program and the operating system, there is no additional

69

runtime cost to detect a callback and push a sentinel value that represents the opaque stack frames

occurring within the system call implementation. Then, whenever the callback returns to the

system call, BLACKBOX simply unwinds the shadow stack to the frame below the sentinel. This

allows BLACKBOX to trust tail calls in callbacks without allowing the adversary to masquerade a

return-oriented programming (ROP) attack by linking arbitrary return targets under the guise of

chained callbacks.

Another popular programming idiom makes unconventional use of the ret instructions to make a

context switch between virtual threads (known as a soft context switch). For example in Windows,

the Fibers API stores several soft contexts in dynamically allocated memory and switches between

them by copying the stored state into the physical CPU registers. Since each context has its own

separately allocated stack, this switching process changes the stack pointer and corresponding

return address. A naïve shadow stack will detect an incorrect return at every soft context switch.

BLACKBOX avoids this by allocating a separate shadow stack for each soft context, and detecting

a switch when stack motion exceeds the physical stack limit designated in the executable header.

Shadow stacks are correlated to soft context stacks in a hashtable keyed by the stack base address.

3.3.3 Trusting Self-Instrumentation

In the Windows development ecosystem, it has become popular for programs to occasionally

override functionality provided by major vendors such as Microsoft, perhaps because the centrality

of these organizations precludes the development and/or distribution of alternative libraries. Since

the functionality is provided in statically compiled binaries and linked by a name-based lookup at

runtime, there is no systematic way to substitute these library functions. Instead, programs simply

change the page permissions on the loaded image of the library and write a 5-byte jmp over the

entry point of the unwanted function. This instrumentation, known as a hook, typically takes place

during program startup, and often occurs after the original (un-hooked) version has already been

70

executed from the BLACKBOX code cache. The Trusted Profile that worked so nicely in Paradise is

confounded by this runtime transformation, and would cause an anomaly to be reported on every

execution of the hook. To account for multiple versions of the same basic block, BLACKBOX adds

a hash code of the basic block’s instruction bytes to the Trusted Profile, along with a chronological

version number.

3.3.4 Modular Trust

Today’s software is typically composed of an executable and a collection of libraries that it loads at

runtime. One of the key advantages to this approach is that an application can be compatible with

several different versions of the same library. In Paradise, modules were always loaded at program

startup, allowing for a single monolithic Trusted Profile that does not include an abstraction for

modules. But since Scc on x86 introduces dynamic module loading and unloading, it is necessary

for the Trusted Profile to be segmented by module, and to link these Trusted Profile segments as

the corresponding modules are loaded. BLACKBOX defines a cross-module edge type to represent

function calls across modules (jmp edges across modules are never trusted).

One module may be compatible with several versions of a linked module, and it is even common for

large Windows programs to load multiple versions of a module simultaneously. To allow sufficient

flexibility in the Trusted Profile, the cross-module edge identifies its destination using the base

name of the module and the export name of the callee, which effectively mirrors the Windows

dynamic linking mechanism. If multiple versions of a module have been loaded simultaneously,

this approach will alias the cross-module edges to the two versions. While this is slightly more

flexible than necessary, it is unlikely that an adversary could use it for any significant advantage,

given that a separate Trusted Profile guards each version of the module.

71

Callback Functions

Windows applications can use the callback programming pattern, which produces cross-module

calls to private functions having no exported name. For these cross-module calls, the Trusted Profile

uses the generic label <foo!callback> to represent any callback from a module foo. This

effectively aliases all the targets of a callback site, adding even more superfluous flexibility to the

Trusted Profile than the name-based cross-module edges. But since the aliasing is limited to callees

that are trusted at the callback site, the opportunity for adversarial manipulation is extremely limited.

3.3.5 Detecting Evasion

One of the potential weaknesses for a virtualization-based security monitor like BLACKBOX is

that a malicious process may be designed to detect the presence of security tools. A taxonomy of

anti-virtualization and anti-debugging outlines the system artifacts that evasive malware commonly

check when determining whether a machine is dedicated to security monitoring [26]. These factors

cannot be determined from outside the machine without some cooperative agent running on the

machine itself. Such an agent could take three forms:

A1 A program that is (a) designed to communicate information over an external access channel

such as a network, and (b) has a bug allowing an attacker to obtain protected information

from the machine.

A2 A standalone malicious executable.

A3 The payload of an intrusion that can take over a thread in any running program.

In all three cases, either Awpm makes the attack vector detectable up to the limits of Cprof in the

current BLACKBOX deployment, or the attack is outside the BLACKBOX threat model.

72

For case A1, if the program is not monitored by BLACKBOX then the attack is out of scope.

Otherwise the adversary either leverages a control flow bug in the program to leak information,

or abuses a faulty information flow channel. Information flow vulnerabilities are out of scope for

BLACKBOX and better addressed by defenses focusing on that domain. Under Gwx, a control flow

attack occurring in a program monitored by BLACKBOX should be detected and reported before

information is leaked, even if the attack vector is unknown and unforeseen.

Case A2 is the responsibility of the system user. If processes on the system are able and willing

to indiscriminately launch externally introduced executables, then the system has administrative

vulnerabilities that are outside the scope of BLACKBOX. Similarly, if the system user, for example,

receives an executable in an email attachment and runs it, that is a social engineering vulnerability

that BLACKBOX cannot address.

Case A3 is similar to case A1: if BLACKBOX is monitoring the program, it should detect the

intrusion under Gwx. Otherwise the attack is out of scope because BLACKBOX can only focus on

one monitored process.

Unforeseen attack vectors may always exist, but within the corpus of known malware capabilities a

successful detect-and-evade tactic must fall into one of these three cases. For example, advanced

malware techniques for detecting honeypots involve scanning and even testing outgoing network

connections, which requires a local agent [198]. Another example is evaluation of system age

and usage patterns, which requires access to the filesystem, drivers, BIOS, installed programs,

etc. [112]. Intuitively, for malware to investigate the environment from within a process monitored

by BLACKBOX, then BLACKBOX should always see the malware before the malware can see

BLACKBOX.

The attack vectors that are out of scope can be brought into the domain of BLACKBOX by simply

running the Windows desktop in BLACKBOX. In this configuration, every launched process is

automatically monitored under BLACKBOX before control enters program code.

73

3.4 Dynamically-Generated Code

The Trusted Profile and monitoring techniques for statically compiled code can be similarly applied

to the monitoring of dynamically generated code, provided that the instruction content of the DGC

is consistent between executions of the program. BLACKBOX distinguishes this kind of DGC by a

property cross-execution consistency, which requires that for any two observationally equivalent

executions of a program, the DGC component always has the same sequence of instructions. In the

Windows development ecosystem, this property typically holds for simpler dynamic code generators,

but to our knowledge never holds for the JIT compilers used by script interpreters. Random factors

such as hot path tracing (which is affected by CPU thread scheduling) can cause the generated code

to vary wildly, even between executions of a semantically trivial, single-threaded benchmark. The

complications for BLACKBOX are compounded by Sopq vis-à-vis the interpreted script. Since it is

not possible to create a reliable Trusted Profile for either the script or the JIT-generated code, the

core IID monitoring technique cannot be used to determine whether the JIT is under the influence

of the adversary. Even if there were another IID operating at the script level, the adversary could

potentially leverage a bug in the application’s interpreter to spray the JIT code with byte patterns

that facilitate an attack within the JIT code. In this case, neither IID will be able to detect an attack

that executes entirely within the JIT code region.

To avoid this vulnerability, BLACKBOX adds a set of edge types to the Trusted Profile that abstractly

represent the behaviors of a code generator. When execution of a JIT application conforms to

these Trusted Profile edges, BLACKBOX trusts that it is not under the influence of the adversary.

Section 3.4.1 presents this dynamic code permission model in detail, and shows how BLACKBOX

applies it both to code generators that have cross-execution consistency and those that do not.

Section 3.4.2 follows with additional adjustments for dynamic code generators that do have cross-

execution consistency. Although we were not able to find working versions of exploits against JIT

engines, a case study in Section 3.4.2 shows how this permission model can detect one of the most

challenging exploits developed in recent research.

74

3.4.1 Permission Model

Dynamic code generators in today’s Windows programs have three common characteristics that

form the basis of our permission model:

1. The memory in which the dynamic code resides is usually allocated by the module that

generates the code.

2. Permissions for DGC memory pages are usually managed by a fixed set of call sites within

the code generator.

3. There are typically fewer than 20 store instructions in the code generator that write to DGC

memory allocations after they are granted executable permission.

While there may exist code generators that do not exhibit these characteristics, it is sufficient for the

purposes of BLACKBOX that this set generally holds for the most popular JIT engines, including

Mozilla Ion, Chrome V8, Internet Explorer’s Chakra, and the Microsoft Managed Runtime.

The BLACKBOX dynamic code permission model adds three new edge labels to the CFG:

• gencode write between nodes X and Y indicates that an instruction in node X (or in a callee

of call site X) wrote dynamic code Y, which was later executed.

• gencode chmod between nodes X and Y indicates that an instruction in node X (or in a

callee of call site X) changed the executable permission on a memory region containing

dynamic code Y, which was later executed.

• gencode call indicates an entry point into dynamic code from statically compiled code, or

(similarly) an exit from dynamic code into statically compiled code.

75

call

call

call

mov

gencode

w
rite

gencodewrite

gencode

write

ge
nc

od
e

w
rit

e

DGC
BB

DGC
BB

DGC
BB

DGC
BB

code write

(a)

DGC
BB

DGC
BB

call

call

call

int3

gencode

chm
od

gencode
chmod

gencode

chmod

ge
nc
od
e

ch
m
od

(b)

page
chmod

Figure 3.3: Construction of the (a) gencode write and (b) gencode chmod edges (dashed arrows)
when a code write or page chmod occurs (solid arrows). The call sites represent the call chain of
the code generator and its dependent libraries (upward dotted arrows).

Figure 3.3 illustrates the construction of the gencode write and gencode chmod edges. These edge

types are complementary, such that for any DGC basic block, BLACKBOX observes at least one

gencode write or gencode chmod, but not necessarily both. This guarantees visibility of DGC

whether it is written directly to an executable region, or written to a buffer that is later made

executable.

Since it is difficult for BLACKBOX to determine which call on the stack made the semantic decision

to write DGC or chmod a DGC region, BLACKBOX simply creates an edge from every call site on

the stack. There is one special case for a gencode chmod by a module that keeps its DGC private

(i.e., no other module calls its DGC): BLACKBOX assumes the semantic decision came from that

module, and only creates gencode chmod edges up to that module’s call site.

BLACKBOX observes the three gencode actions during profiling and writes the edges to the

Trusted Profile. This becomes the permission model for the program’s dynamic code generators.

As BLACKBOX monitors the program at the client site, gencode actions that conform to these

permissions are considered safe, and logging is elided—but if the program takes any other gencode

actions, those anomalies are logged to the IID Service. Section 3.4.2 gives a concrete example of

both logging and blacklisting the pivotal attack vectors of a state-of-the-art JIT injection attack.

76

Observing Dynamic Code Writes

Observing the gencode write is challenging because the performance overhead of instrumenting

all store instructions would be far too high. BLACKBOX takes an over-approximating approach

by leveraging the operating system’s memory permissions to observe all writes to memory pages

that have ever been set executable. BLACKBOX maintains a shadow page table with a set of

potential code pages, and adds any page to that set when it is first set executable. Whenever

the monitored program sets a potential code page to writable, BLACKBOX artificially makes it

readonly, such that any write to the page causes a fault that BLACKBOX intercepts and handles:

• Add a potential code write entry to the shadow page table for the specific range of bytes

written.

• Change the memory permission to writable and allow the program to execute the write.

• Reset the memory permission to readonly so that future rewrites of the region will also be

detected.

If the program’s writes did contain code, BLACKBOX relies on the fact that it does not appear in the

code cache yet: every time new code is cached from a dynamically allocated page, BLACKBOX

consults the shadow page table, and if any pending code write entries are found associated with

those fresh basic blocks, then BLACKBOX creates the corresponding gencode write edges—one

from each call site that was on the stack at the time of the write. While it is possible for the program

to write code and never execute it, BLACKBOX can elide the corresponding gencode write edges

because code that is never executed can do no harm.

To mitigate the page fault overhead for store instructions that frequently write code (typical of JIT

engines), BLACKBOX can instrument the instruction with a hook to create the gencode write edges.

This approach greatly improves performance on aggressive JavaScript benchmarks [74].

77

Dynamic Singleton Node

Since BLACKBOX is often unable to correlate low-level control flow in dynamic code between

executions of the program, each contiguous subgraph of dynamic code is represented as a dynamic

singleton node. BLACKBOX establishes a trusted vocabulary for each dynamic singleton: for every

program action taken within the dynamic code region, a self-edge of that type is added to the

dynamic singleton. This allows BLACKBOX to take advantage of useful properties of popular JIT

engines such as Microsoft Chakra and Chrome V8, which throughout our corpus of experiments

never generate a gencode chmod self-edge. Anytime an executing thread takes a branch from one

dynamic singleton to another, the two are merged by combining all their edges.

3.4.2 Standalone Dynamic Routines

BLACKBOX can be configured to log standalone dynamic routines in more detail than the coarse

API logging of the dynamic singleton. We leverage two observations:

• For contiguous subgraphs of dynamic code having fewer than 500 basic blocks, the number

of distinct permutations of these routines across program executions is relatively low, making

the total size of all observed permutations small enough to fit in the Trusted Profile.

• Small contiguous subgraphs of dynamic code usually have an owner, which is a statically

compiled module that takes exclusive responsibility for (a) writing its dynamic code, and (b)

setting executable permission on the memory where its subgraph resides.

When standalone dynamic routine monitoring is enabled, BLACKBOX writes the CFG for every

standalone to the Trusted Profile of its owning module. This approach adds a small overhead

because BLACKBOX must check the Trusted Profile every time it copies new dynamic code into its

code cache. But for all the programs we have observed, including frequent standalone generators

78

like Microsoft Office, the program never modifies its standalones, making the overhead relatively

insignificant.

Matching Standalone Dynamic Routines

Since dynamic code can be placed at any arbitrary memory location, and there is no module boundary

to define a reliable relative address, BLACKBOX identifies each basic block in a standalone dynamic

routine by (a) the hashcode of its instruction bytes and (b) its edge relationship with neighboring

CFG nodes. When a new dynamic code entry point is observed, BLACKBOX creates a candidate

list of standalones populated from the trusted profile. As new basic blocks are copied into the code

cache, each candidate is checked for a corresponding node with the same hashcode and having the

same edge relationship. Candidates having no match are removed from the list, and if the candidate

list becomes empty, BLACKBOX marks the standalone as suspicious and logs its current (and any

future) basic blocks to the IID Service.

If at any point the standalone dynamic routine takes an edge into existing dynamic code, BLACKBOX

traverses the set of newly connected nodes until:

• The total size exceeds the (configurable) upper bound of 500 basic blocks; the two are

combined into a single JIT region (creating a new one if necessary).

• All candidate routines are rejected; the new routines is logged to the IID Service as suspicious.

• The end of the connected region is reached; the new routine remains a potential match for its

candidate routines.

This approach is advantageous for identifying code injection attacks, because the total size is often

smaller than 500 basic blocks, such that the entire injection will be logged to the IID Service. Even

if it exceeds this size, the standalone dynamic routine matching algorithm will progressively write

79

its first 500 basic blocks to the IID Service as they are executed. The only ways for the adversary to

hide such an injection are challenging in practice:

• Exactly match the instruction hash and edge relationships of an existing standalone dynamic

routine (for every basic block), which exponentially reduces the attack options, or

• Enter the injection from existing JIT code, which effectively requires another code injection

in the JIT region.

Grx Case Study: Blocking Code Injections

Recent advances in browser security make it much more difficult for an attacker to gain control of

compiled JavaScript. For example, the Chakra JIT engine in Internet Explorer places all JavaScript

data in non-executable pages, and prevents the abuse of JavaScript constants by obfuscating

them. While these techniques make it increasingly difficult to exploit the browser via JavaScript,

[5] demonstrates a code injection that leverages ROP to compromise a recent version of Internet

Explorer:

1. Coerce the victim’s browser into loading crafted JavaScript.

2. Wait for the browser to compile the ROP payload.

3. Pivot the stack pointer via xchg to the phony ROP stack.

4. Execute the ROP chain, which invokes VirtualProtect on a page of memory containing

injected shellcode.

5. Adjust the ROP chain to ret into the shellcode.

While we were not able to obtain a working instance of this exploit, it is still possible to show how

BLACKBOX can detect and block it. To train the Trusted Profile of the Chakra JIT engine, the

80

author of this paper used Microsoft Outlook for email during a 4-week period. The profile contains

no edges from the Chakra dynamic singleton to system calls, and no self-edges of type incorrect

return or gencode chmod. Suppose he now receives an email containing the crafted JavaScript.

BLACKBOX will log several untrusted program actions:

• Steps 1 and 2 are transparent to BLACKBOX because they constitute normal execution of the

JIT.

• At steps 3 and 4, BLACKBOX will log an incorrect return for each link in the ROP chain,

because the dynamic singleton has no self-edge of type incorrect return.

• At the end of step 4, BLACKBOX will additionally log the system call to Virtual Protect

because the dynamic singleton has no edges to any system calls.

• In step 5, a branch is taken into a new dynamic code region, causing it to be incorporated

into the dynamic singleton. Since that new region was set executable by the dynamic

singleton itself, BLACKBOX will log a gencode chmod self-edge to the IID Service.

The authors of this exploit claim that no existing security technique is able to detect it, much less

stop it from taking full control of the browser. But the exploit can easily be blocked by BLACKBOX.

Each of the program actions that are logged during this exploit are unique to malicious behavior—

the Trusted Profile decisively indicates that Outlook would never take these actions outside the

influence of crafted input—so blacklisting these actions will not cause any interruption in normal

usage of Outlook. While BLACKBOX does require an expert to identify the pivotal attack actions, it

is a relatively simple analysis.

81

3.5 Watchdog Mode

Since BLACKBOX monitors a program at a much higher granularity than Paradise, it requires more

complete profiling coverage or will be susceptible to a high rate of spurious anomalies. This is

not so much of a problem for Gdbg, where the goal is to find information associated with a specific

incident, but greatly reduces the effectiveness of preventative monitoring. To improve detection of

preliminary symptoms—such as a malware author’s pre-release testing or even the voluntary use of

a new plugin that has security vulnerabilities—BLACKBOX provides two techniques that highlight

suspicious behavior in the presence of benign anomalies:

• Stack spy separately logs any system call that occurs in a suspicious stack context.

• Sniffer dog uses PowerLaw modeling to identify log entries having a suspicious smell, which

can be defined as an outlier along the spectrum of any security sensitive control flow property.

These techniques can significantly narrow the focus of routine security audits, as demonstrated by

the experiments reported in this section.

3.5.1 Stack Spy

The BLACKBOX stack spy leverages the insight that the greatest risk to the security of a monitored

program occurs along the control flow paths to system calls. A typical ROP attack takes control

of the instruction pointer and drives execution through shellcode that is completely foreign to the

victim program, with a goal of executing system calls to access the file system and/or network.

More sophisticated attacks employ crafted input to cause a slight detour along the program’s normal

route to a system call, enabling the attacker to modify the effect of that system call for malicious

advantage. In most such cases, BLACKBOX will observe at least one untrusted branch along the

82

control flow path to the system call. To isolate this scenario, the stack spy separately logs suspicious

system calls that occur while any frame on the call stack has been influenced by an untrusted branch.

call

int3
tr

u
st

e
d

 t
a
rg

et

(a) (b)

call

call

int3

un
tr

u
st

e
d
 t

a
rg

et
!

(c)

tr
us

te
d

ta
rg

et

call

call

call

int3

(e)(d)

call

call

int3

(return)

call

int3

(return)

Figure 3.4: System calls occurring under stack suspicion (gray) are logged even if the syscall
site is trusted. Stack spy raises suspicion in the stack frame where an untrusted program action
first occurs (b), and clears suspicion when that stack frame returns (e). The syscalls in (c) and (d)
cannot be elided because stack suspicion is inherited by callees, but the syscalls in (a) and (e) may
be elided because suspicion has not yet been raised (a), or has been cleared (e).

Stack spy implements this feature using a simple boolean flag for each program thread, as illustrated

by the function boxes in Figure 3.4. The flag is initially false (white), and when an untrusted branch

occurs (step b), stack suspicion is raised at the current stack level (i.e., esp in x86 platforms).

Any system call made under stack suspicion (gray) is logged to the IID Service along with the

untrusted branch—even if the system call itself is in the Trusted Profile (b, c and d). When the

thread eventually returns from the stack frame in which the untrusted branch occurred (e), stack

suspicion is cleared, and future system calls on that thread can again be trusted.

Gdnd Case Study: Authoring Tools

The author of this paper used the SciTE text editor and MikTek pdflatex under watchdog mode

while writing this research paper and developing the gencode write and gencode chmod features

of BLACKBOX. The Trusted Profile for each program was trained during the first half of the

experiment, and remote logs were accumulated during the second half, as shown in Table 3.2. More

than 100 untrusted indirect branches are logged per day, which represents a significant workload

83

Logged Program Action SciTE pdflatex

Indirect Branch 132 9
Suspicious Syscall 0x25 1 0
Suspicious Syscall 0x47 1 0
Suspicious Syscall 0x52 3 0

Table 3.2: Log entries per day while writing the BLACKBOX publication under BLACK-
BOX. Stack Spy highlights any questionable filesystem syscalls (0x25 NtMapViewOfSection,
0x47 NtCreateSection, 0x52 ZwCreateFile).

for preventative analysis. But the rate of suspicious system calls is fewer than 5 per day, making it

possible to efficiently verify that the file system activity from these two programs is not under the

influence of malware.

Grx Case Study: Detecting COOP Attacks

Counterfeit Object-Oriented Programming (COOP) [149, 34] is designed to thwart control-flow

integrity (CFI) schemes: by injecting the target program with bogus objects having crafted virtual

dispatch tables, this exploit deviously conforms to category-based CFI policies that only constrain

the protected program to make method calls at method call sites. The BLACKBOX Trusted Profile,

however, does not contain phony branch targets, so the hijacked calls in a COOP attack will be

logged to the IID Service as they occur.

While it would be ideal to blacklist all indirect branch targets not appearing in the Trusted Profile,

this is not generally possible—our experiments show that in large Windows programs, normal new

branch targets do occasionally occur for known indirect branches. But for a given COOP attack, the

BLACKBOX stack spy can isolate branches leading to the system calls that comprise the payload,

making it relatively easy for the log analyst to blacklist the pivotal attack points.

84

3.5.2 Sniffer Dog

In addition to spying out the most suspicious system calls, watchdog mode provides an offline

sniffer dog that sorts the most suspicious smelling program actions to the top of the log. Sniffer dog

employs a principle of "typical irregularities" to estimate the probability that an untrusted program

action is a safe variant of trusted behavior. Examples of especially suspicious smelling behavior are

(a) the addition of a second target to an indirect branch site having only one trusted target, and (b)

the addition of a cross-module branch between two modules having no trusted edges between them.

The iterative process of Trusted Profile training reveals how frequently new edges are normally

discovered in each region of the CFG. For example, during profiling of Google Chrome, new indirect

branches (and branch targets) are routinely discovered within chrome_child.dll—even during

the final iterations—since it is a very large module providing a diverse set of features. In contrast,

profiling of IISExpress on both static HTML and WordPress (PHP) rarely encounters new edges in

the main module iisexpress.exe, since its role is limited to server startup and simple routing

of requests.

To concisely capture these observations, BLACKBOX records a history of new edge discovery be-

tween each possible pairing of modules (reflexive included), and summarizes each with a PowerLaw

model [3]. Sniffer dog consults these models while sorting the log to determine which entries most

contradict the typical behavior of the program; log entries conforming to the PowerLaw models are

given lower priority, while those exceeding the model’s prediction for new events are given higher

priority. Even if the adversary is aware of this modeling approach, it still creates significant limita-

tions, mainly because the module connectivity of the large Windows programs in our experiments is

extremely sparse—most pairs of modules have no edges between them. This appears to hold true

for many large desktop programs, which are constructed in component hierarchies where modules

at each level interact only with modules at the same and adjacent levels. For any arbitrarily selected

gadget that may be useful to the adversary, there is a high probability that it will create an edge that

doesn’t fit the PowerLaw model, such that Sniffer Dog will assign it high suspicion.

85

Gmod Gdbg Case Study: ROP exploit in Adrenalin

Listing 3.1 shows a sorted log for the Adrenalin Media Player in typical usage. The five suspicious

edges are all typical of Adrenalin, so Sniffer Dog assigns them a low rank of 396. BLACKBOX does

not attempt to conclude whether malicious influence occurred in an execution, but even if an exploit

did occur on the day this log was generated, the low suspicion rankings along with the complete

absence of suspicious system calls would strongly suggest this execution was not involved.

Listing 3.1: BLACKBOX log for typical usage of Adrenalin. A few suspicious anomalies occur, but

at a very low suspicion ranking (396).

396 Suspicious indirect play.exe(0xca1f0 → 0x22f90)

396 Suspicious indirect play.exe(0xca1f0 → 0x22f30)

396 Suspicious indirect play.exe(0xc2358 → 0x20870)

396 Suspicious indirect play.exe(0xc2358 → 0x218c0)

396 Suspicious indirect play.exe(0xc2307 → 0xa1b50)

127 Structural indirect adrenalinx.dll(0x96400 → 0xe6770)

069 Structural indirect play.exe(0x22fa5) → Lib(0x4ad91c)

069 Structural indirect play.exe(0x22f45) → Lib(0x4ad91c)

Listing 3.2 shows the anomalies that occur while the Adrenalin Player processes a video in a

format that was not encountered during profiling. Two of these anomalies are raised by Stack Spy

to the high rank of 900 because the filesystem was accessed on a call stack having a suspicious

branch. The system call NtSetInformationFile is capable of many potentially dangerous

operations such as truncating files, renaming files, creating hard links in the filesystem, and a variety

of other potentially dangerous operations. Although there were no anomalies related to creating

file handles during this execution, it would still be possible for an adversary to damage the system

by manipulating the arguments to just one of these system calls. Fortunately, BLACKBOX can log

all arguments to any suspicious system call, which in this case would resolve any question about

malicious influence. For example, if the calls simply modify the FilePositionInformation,

the user can be sure that no harm was done. However, if the suspicious calls were renaming

86

files, then it would be essential to know the source and destination paths, which are provided by

BLACKBOX when deep argument logging is enabled.

Even if there is no malicious influence in this execution, the user still may find it valuable to know

that these anomalies occurred. For example, a quick web search might reveal that Adrenalin does not

handle this video format correctly. In this case the user could simply avoid those files in Adrenalin,

or go so far as to blacklist the incorrect control flow. It is not quite as simple as blacklisting the

edge to the system call, since that edge is used on many other control flow paths and is essential

for accessing the file system or the network. But the branch anomalies reported in the suspicious

system call are likely to be unique to the suspicious behavior, so the user can simply copy those log

entries into the blacklist (with the help of a BLACKBOX utility).

Listing 3.2: BLACKBOX log of Adrenalin handling a format variation not encountered during

Trusted Profile training. Sniffer Dog assigns a high degree of suspicion (900) to the untrusted

indirect branches associated with this untrusted file format.

900 Suspicious syscall #36 NtSetInformationFile

adrenalinx.dll(0xf160a → 0x97ac0) raised suspicion

900 Suspicious syscall #36 NtSetInformationFile

adrenalinx.dll(0xf160a → 0x97ac0) raised suspicion

300 Structural indirect mp3dmod.dll(0xe342) → Lib(0x4be75b)

300 Structural indirect Lib(0x2f3994) → addicted.ax(0x39280)

300 Structural indirect mp3dmod.dll(0x5800 → 0x59ed)

300 Structural indirect mp3dmod.dll(0xe37a) → Lib(0x4be75b)

295 Structural indirect Lib(0x9a7beb) → qasf.dll(0x2a7e9)

295 Structural indirect qasf.dll(0x2c86e) → Lib(0x13f853)

295 Structural indirect qasf.dll(0x28a2f) → Lib(0x13f853)

... (many similar entries)

Listing 3.3 shows the anomalies that occur in Adrenalin during an ROP exploit, which launches

calc.exe. All of the highest-ranking anomalies are specifically highlighted by the Watchdog

Mode features. Sniffer Dog identified the top 8 as extremely improbable for Adrenalin, and Stack

87

Spy identified the following suspicious system calls. References to “DGC” indicate the payload,

which is deployed by the exploit as a code injection via buffer overflow. When BLACKBOX

is configured to generate a complete trace after a high-suspicion anomaly, the entire sequence

of control flow edges is logged in chronological order, starting with the incorrect return from

adrenalinx.dll. Combined with a trace of system call arguments, the full BLACKBOX trace

would clearly show how the exploit took control of the program, and what malicious actions were

taken in the payload.

Listing 3.3: BLACKBOX log of Adrenalin during an exploit. Sniffer Dog assigns the highest

suspicion level (999) to the pivotal control flow edges of the exploit.

999 Suspicious entry into DGC

adrenalinx.dll(0x16f313) → Lib(0x3bfffb) raised suspicion

999 Incorrect return adrenalinx.dll(0x16f313) → Lib(0x3bfffb)

999 Untrusted module calc.exe-1db1446a00060001

999 Suspicious indirect shlwapi.dll(0x1c508) → Lib(0x192aa7)

999 Suspicious indirect ntdll.dll(0x3c04d) → Lib(0xe2e831)

999 Untrusted module gdiplus.dll-1db146c800060001

999 Suspicious indirect kernel32.dll(0x13365) → Lib(0xdb3fc3)

998 DGC standalone owned by adrenalinx.dll-300010001 (4 nodes)

900 Suspicious syscall #25 ZwSetInformationProcess

ntdll.dll(0x22373 → 0x224b0) raised suspicion

900 Suspicious syscall #82 ZwCreateFile

ntdll.dll(0x2239c → 0x22468) raised suspicion

900 Suspicious syscall #79 ZwResumeThread

kernelbase.dll(0x14148) → Lib(0x6ee3a) raised suspicion

900 Suspicious syscall #26 ZwCreateKey

user32.dll(0x16d88) → Lib(0xd5f105) raised suspicion

900 Suspicious syscall #77 ZwProtectVirtualMemory

apphelp.dll(0x13066) → Lib(0xd5f105) raised suspicion

900 Suspicious syscall #165 ZwCreateThreadEx

kernelbase.dll(0x13f6d) → Lib(0xa57647) raised suspicion

... (flood of similar entries)

88

The chronological trace also makes it relatively easy to blacklist the exploit to prevent recurrence—it

is simply a matter of copying the most suspicious edges into the blacklist. This corresponds to

prohibiting the following program behaviors:

• Executing a ret from adrenalinx.dll(0x16f313) in the vulnerable function to

Lib(0x3bfffb) (whether by overwriting the return address or any other means).

• Executing any of the edges listed as Suspicious indirect or Suspicious entry

into DGC (whether invoked by JOP gadgets or any other means).

• Loading the module calc.exe.

• Any DGC owned by module adrenalinx.dll-300010001.

It is certainly possible for an application to use these exact behaviors in a normal way, and in

that case the blacklist entries would interfere with normal program behavior. But the fact that

BLACKBOX assigned the highest suspicion indicates that (a) the program was not known to use

these behaviors normally, and that (b) the probability is extremely low that it would ever do so.

Manual analysis confirms that Adrenalin will never take these actions normally.

A security expert could improve protection against this exploit by generalizing the first three

blacklist entries to prevent similar exploits as well:

1. Making any incorrect return from adrenalinx.dll(0x16f313).

2. Executing an untrusted edge from any source node of the Suspicious indirect entries.

3. Loading a main executable image as a module.

The first generalization would effectively protect the buffer overflow vulnerability itself, such that no

attack against that particular buffer would be able to initiate an ROP chain. Source nodes referred to

89

by the second generalization are jump-oriented programming (JOP) gadgets, so the corresponding

blacklist entries would take those gadgets away from the adversary. The third generalization is

nearly universal—a user might be tempted to apply it to all programs, not realizing that there are a

few cases where a program normally does this. For example, consider a utility program that can

also be used as a plugin for some larger application. A universal policy would block that plugin

from being loaded, but the context-specific policy (shown here) will not, so that is probably the

better choice.

3.6 Evaluation

This section begins by presenting quantitative experiments with BLACKBOX to evaluate its effec-

tiveness towards four of the IID goals. Section 3.6.1 pursues Gdnd using a variety of controlled and

real-world experiments focusing on typical Windows applications along with the IIS webserver and

PHP. In Section 3.6.2, BLACKBOX identifies and then blacklists three known exploits against small

Windows applications to fulfill Gkx and Gblk while confirming Glog. Section 3.6.3 pursues Gperf

with an IIS workload along with the standard SPEC CPU 2006 benchmarks, and concludes with

qualitative discussions of the development cost and deployment effort of BLACKBOX. Section 3.6.4

concludes the evaluation with a case study in support of Gdbg, showing how BlackBox’s visibility

into cross-module branches can be an essential complement to many important defense techniques.

Case studies were presented Sections 3.4 and 3.5 to demonstrate the effectiveness of BLACKBOX

towards Grx because it was not possible to obtain a working version of the necessary exploits, and

Gmod and Gdbg can be evaluated on the basis of the Adrenalin logs and blacklist in Section 3.5. A

statistical analysis of BLACKBOX security in Section 3.6.4 focuses on its utility for Gdbg. We did

not attempt to evaluate BLACKBOX on Gwx because, while it is feasible for an automated script

such as a browser robot to encounter a browser exploit in the wild, the probability is too low for the

practical limitations of research experiments.

90

We conduct the quantitative experiments in Windows 7 SP 1 running in VirtualBox 4.2.10 on

an Ubuntu 13.04 host using an Intel Xeon E3-1245 v3 CPU. The Windows Update service and

application updates are disabled to maintain consistency throughout the experiments.

3.6.1 Filtering Log Noise

Given the perfectly complete Trusted Profile that we had in Paradise, BLACKBOX would generate no

spurious anomalies because all the observed control flow events would be trusted. Our experiments

show that, in the presence of Scf and Ssem, it is not easy for BLACKBOX to obtain such complete

coverage when profiling large applications like Microsoft Office. But for reasonable training periods

with just one user, coverage can be sufficient to achieve a low rate of spurious anomalies that are

rarely assigned high suspicion.

Configuration for Interactive Applications

In the typical usage scenario for IID, the vendor of an application will generate the Trusted Profile

using internal facilities associated with development of the product. BLACKBOX can also be to

monitor legacy applications where the development infrastructure is not available, but this requires

establishing a profiling procedure specific to the application. Since it was not within the scope

of this research project to evaluate the vendor profiling scenario, these experiments focus on both

profiling and monitoring.

For legacy applications having significant interactive components, the ideal evaluation of Gdnd

would be a large user study involving people from various backgrounds whose daily work relies on

a popular and complex Windows application. After recording execution traces over a long period

of time, an offline analysis would determine the cost/benefit of various profiling durations. This

would also facilitate evaluation of collaborative profiling strategies in which Trusted Profile content

91

is shared among groups of similar users having a substantial basis for mutual trust (for example,

employees of the same company).

To simulate such a study, we divide the goals into two separate research questions that can both be

evaluated by profiling just one user at a time. Taken together, the results of these sub-experiments

indicate the potential for BLACKBOX to obtain sufficient profiling coverage in real-world usage of

these applications.

• Controlled Usage:

– Procedure: One user is given a task such as replicating the first page of a conference

research paper in Microsoft Word. Each session includes the creation of one document,

revising it to correct errors, saving it to disk, and exiting the program. The user is

instructed to explore all the input widgets and output channels available in Word—such

as the ribbon menu, context menu and shortcut keys, along with local files, cloud storage

accounts and printers—but to avoid any program actions that are not directly related to

creating and saving the document.

– Research Question: Can sufficient coverage can be obtained for a limited set of features

by profiling just one user who exercises only those features for a short period of time?

• Real-World Usage:

– Procedure: One user continuously profiles an application under normal daily usage for

several weeks. A representative subset of application content is reserved for a designated

test period which occurs at the end of the experiment. Normal usage of the application

continues through the test period, and the user additionally accesses the reserved content.

– Research Question: Can sufficient profiling be obtained with just one user?

To establish a substantially complete profile of basic application functionality, each experiment

started by profiling the application with a screen robot. For example, thousands of files were

92

randomly downloaded and viewed in Microsoft Word and PowerPoint, and Adobe PDF Reader

(it is possible for these files to be malicious, we assume a similar set of known-safe files could be

obtained, for example from vendor test suites). In the controlled usage experiments, the profiling

period included manual viewing or creation of a set of N documents, followed by a test period of

another N documents having different content:

• Replicate the first page of 60 Usenix Security papers in Word (30 profiling, 30 test).

• Replicate a table of crime statistics for 30 of the United States published by the FBI, entering

formulas for all cells that could be locally computed (15 profiling, 15 test).

• Create 50 short PowerPoint presentations from blog posts on software security, each including

several formatted bullet lists and an image downloaded through the built-in Bing image search

component. The theme for each presentation was selected through the built-in online theme

browser (25 profiling, 25 test).

• View 200 Word documents downloaded from the U.S. Center for Disease Control, scrolling

through each document manually (100 profiling, 100 test).

• View 200 nutrition and health lectures in PowerPoint downloaded from the U.S. Food and

Drug Administration (100 profiling, 100 test).

• View 200 randomly downloaded manuals for security products in Adobe PDF Reader,

scrolling through each document manually and then uploading it through the built-in cloud

account browser (100 profiling, 100 test).

93

The real-world usage experiments included the following applications and input content:

• Google Chrome:

– Profiling: Use the browser for ordinary research activities such as (a) finding and

viewing research papers and technical articles, (b) personal activities such as Facebook,

online shopping, and viewing YouTube videos and animated graphic art (including

ebizmba.com, threejs.org, backbone.js).

– Test: vimeo.com, a videosphere [65], a dynamically textured video [9], newegg.com

and sections of the graphic arts sites that had been reserved for the test.

• Microsoft Outlook:

– Profiling: Ordinary email usage in HTML format, with all images and scripts enabled,

and over 100 filters configured to automatically sort incoming messages into folders.

The LinkedIn and Facebook plugins were installed to display related content for each

message, and the user subscribed to email lists featuring graphics-intensive advertising

from major retailers.

– Test: Continue similar usage, subscribing to additional graphics-intensive promotional

lists.

• SciTE and pdflatex:

– Profiling: Writing sections 1-5 of the first submission of the BLACKBOX publication

and implementing the gencode write and gencode chmod edges for BLACKBOX.

– Test: Completing the BLACKBOX submission, including implementation of visualiza-

tion components for the IID Service that were used to generate figures, and implementing

the gencode call edge for BLACKBOX.

94

Gdnd Result for Interactive Applications

The final column of Table 3.3 presents the number of anomalies reported during the test period of

each application, normalized to an hour of application usage by one person. None of these reports

is ranked at high suspicion, indicating that although Trusted Profile coverage is not perfect, the

application behaviors under test are effectively trusted. The first column of this table shows the

vast number of anomalies that would be reported by a direct port of Paradise to the x86 platform.

Successive columns show the reduction in log noise provided by each component of BLACKBOX

that was not necessary in Paradise:

Unique Branches: binary translation filters recurring edges.

Unique Indirects: offline analysis filters direct branches.

Forward Indirects: the shadow stack filters normal (correct) returns.

Untrusted Indirects: the Trusted Profile includes intra-procedural forward indirect branches.

A small fraction of the reported noise would also be filtered by a direct port of Paradise, but the

majority is intra-procedural control flow that the Paradise components did not need to account for.

Although it may seem that dozens of anomalies per hour could make the log unusable, the vast

majority of these anomalies are labeled by Sniffer Dog as structural indirects, indicating that the

target is selected from a table held in read-only memory (and that the application has never changed

the page permissions). A common example is a compiled switch statement. Given the goal of

IID to detect any untrusted behavior, these are important anomalies to report—but since a limited

set of statically valid targets is built into the branch structure, any context-insensitive CFI system

would consider these edges to be completely safe.

Table 3.4 presents the per-user-hour anomalies for the incorrect return and gencode edges during

the same application test periods, both with the Trusted Profile (“Before”) and without it (“After”).

95

The high number of total edge occurrences (“Before”) indicates that these behaviors are common

for many of these applications, but that the usage is consistent enough for BLACKBOX to learn the

vast majority (“After”), even during these limited experiments.

Some important observations can be drawn from the results of this experiment for each of the

proposed BLACKBOX usage scenarios:

• Security debugging can most immediately benefit from an instance of BLACKBOX at its

current level of engineering because (a) resources will be available to largely automate the

profiling process, and (b) the low rate of spurious anomalies poses little distraction for highly

skilled and informed developers who may in many cases find these special cases in execution

to be interesting for other software engineering purposes.

• Forensic analysis can also make practical use of this BLACKBOX implementation, though

spurious anomalies may potentially increase the workload of routine audits.

– Vendor profiling will inevitably improve the efficiency of this use case.

– Legacy profiling may be a complicated and time-consuming task, although the legacy

scenario has the advantage that the Trusted Profile remains relatively constant over time,

since the core application binaries are fixed.

• End-user deployment will likely require significant support infrastructure, both for obtaining

a usable Trusted Profile and for monitoring the BLACKBOX log. However, given adequate

resources, the blacklist may prove effective for mitigating a known exploit or other security

hazard until a patch can be obtained and installed.

Configuration for Server Applications

Although vulnerabilities can arise from Sopq at the interface between layers of abstraction, the same

phenomenon can also improve the resilience of the Trusted Profile to changes in usage patterns,

96

Program All
Branches

Unique Branches Unique Indirects Forward Indirects Untrusted Indirects
(+ Cache Branches) (+ Analyze Directs) (+ Shadow Stack) (+ Learn Indirects)

Chrome 485,251,278,660 42,957,575 16,537,926 6,137,106 7
Adobe PDF 34,075,711,128 15,579,901 6,325,821 2,292,342 4
Word 603,491,452,236 14,589,337 2,590,444 580,655 24
PowerPoint 251,845,377,624 27,839,593 1,848,681 1,335,817 50
Excel 198,427,776,372 14,810,205 2,389,208 561,401 28
Outlook 547,678,615,056 24,121,810 2,375,352 615,708 4
SciTE 61,325,719,872 2,463,871 372,445 124,013 33
pdflatex 23,504,352,560 1,790,288 278,726 64,290 43
Notepad++ 129,695,545,404 8,400,249 1,732,147 589,155 24
Adrenalin 48,881,533,212 3,024,797 1,159,407 791,847 603
mp3info 2,080,031,200 94,804,000 18,713,600 4,339,200 3

Table 3.3: Average number of log entries during an hour of normal program activity for progressive
implementations of BLACKBOX. The first column represents a direct port of Paradise to the x86
platform, and the last column includes all components of BLACKBOX that were not necessary in
Paradise (lower is better).

incorrect return gencode chmod gencode write
Program Before After Before After Before After

Chrome 3,957 1 3,473 1 6,532 1
Adobe PDF 1408 0 6,119 0 437 0
Word 671 0 2,767 3 24 0
PowerPoint 767 2 6,718 5 46 0
Excel 782 0 1,806 1 23 0
Outlook 2,304 1 1,149 1 48 1
SciTE 2 2 6 0 2 0
pdflatex 0 0 0 0 0 0
Notepad++ 24 2 69 0 23 0
Adrenalin 4 1 378 1 21 1
mp3info 0 0 0 0 0 0

Table 3.4: Average number of log entries with and without a Trusted Profile for an hour of normal
program activity (lower is better).

97

 1x

 1.1x

 1.2x

 1.3x

 1.4x

 1.5x

 1.6x

 1.7x

 1.8x

 1.9x

p
er

lb
en

ch

b
zi

p
2

g
cc

b
w

av
es

g
am

es
s

m
cf

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
sA

D
M

le
sl

ie
3

d

n
am

d

g
o

b
m

k

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

h
m

m
er

sj
en

g

G
em

sF
D

T
D

li
b

q
u

an
tu

m

h
2

6
4

re
f

to
n

to

lb
m

o
m

n
et

p
p

as
ta

r

w
rf

sp
h

in
x

3

x
al

an
cb

m
k

O
v

er
h

ea
d

Benchmark

Figure 3.5: Normalized BLACKBOX execution times for Spec CPU 2006, taking the geometric
mean of 3 runs (lower is better).

for example when monitoring a lower-level runtime such as a script interpreter. This experiment

began by profiling IIS Express 7.0 with PHP 5.4 while serving typical web content: a 2GB snapshot

of cbssports.com, the PHP unit test suite, and a default install of WordPress. To create changes in

the usage patterns of the PHP interpreter, we performed several WordPress upgrades: installing the

popular e-commerce plugin WooCommerce, activating the anti-spam plugin Akismet, changing

the theme, upgrading the WordPress core, and importing posts into the blog and products into the

store. Then we enabled the BLACKBOX monitor and ran a form-enabled crawler on the upgraded

WordPress site for 6 hours, sending a minimum of 20,000 unique requests to each major area of the

site: (1) store configuration and product editing, (2) blog administration and post editing, (3) theme

customization, (4) public pages, and (5) upload forms.

Gdnd Results for Server Applications

Despite having added major functionality outside the scope of the Trusted Profile, BLACKBOX only

logs 39 indirect branch anomalies (Table 3.5).

98

Program Action PHP IIS
Indirect Branch 33 6
incorrect return 0 0
gencode chmod 0 0
gencode write 0 0

Table 3.5: Total log entries during 6 hours of fuzz testing WordPress on IIS (lower is better). The
Trusted Profile was trained on a default WordPress installation, but fuzz testing was executed after
two plugins were installed, the theme was changed, and the WordPress core was updated.

3.6.2 Logging and Blacklisting Exploits

Three published exploits were executed against programs monitored by BLACKBOX to verify that

(a) each program action induced by the exploit is logged to the IID Service, and (b) control flow

stops at blacklisted program actions. It was not possible to obtain working exploits for the more

popular Windows programs, due to bounties paid by vendors to prevent distribution or replication

of those attacks, so these experiments focus on simpler programs.

99

Configuration for Known Exploits

This experiment used the same profiling procedure as the previous one for noise reduction. More

specifically:

• OSVDB-ID 104062 · Notepad++ We trained BLACKBOX to recognize Notepad++ and the

vulnerable CCompletion plugin during a one-day development project to build a 500-line

graphical chess game. After deploying the Trusted Profile, we continued development for

two hours.

• OSVDB-ID 93465 · Adrenalin Player We trained BLACKBOX to recognize the Adrenalin

multimedia player by opening and modifying dozens of playlists, and playing 100 mp3 files.

After deploying the Trusted Profile, we continued similar usage of the player for two hours.

• CVE-2006-2465 ·mp3info A script trained BLACKBOX to recognize the mp3info utility by

executing 7,000 random commands on 300 mp3 files. After deploying the Trusted Profile

and adding 50 more mp3 files to the experiment’s corpus, the script executed 500 similar

commands.

Starting with this configuration, the following goals were evaluated.

Gkx Gblk Detecting and Blocking Known Exploits

Upon deploying the Trusted Profile in each experiment, we configured the blacklist to pause with a

dismissable warning, then attempted the exploit 3 times—each time with a different blacklist entry:

the incorrect return where the exploit initiates the takeover, an untrusted indirect branch during

the takeover sequence, and a suspicious system call in the exploit payload. No spurious anomalies

occurred during normal usage of the programs, but the warning promptly appeared each time we

executed the exploit. The exploit was not able to execute any system calls before the warning

100

appeared, even for a blacklist entry on a suspicious system call (it appears just before the call).

This indicates a termination action would prevent these exploits from doing any harm to the host

machine.

Gkx Glog Detecting and Logging Known Exploits

To evaluate BLACKBOX logging, we disabled the blacklist and invoked the exploit again. As

expected, BLACKBOX logged the incorrect return followed by a sequence of untrusted indirect

branches and suspicious system calls that forked the payload (see Listing 3.3 in Section 3.5.2 for

the Adrenalin log).

3.6.3 Resource Efficiency

For hardware-based execution environments, the inconvenience cost of the IID runtime is likely to

always be a significant concern. This section presents the overhead of the BLACKBOX runtime,

including a subjective evaluation of user experience, followed by a discussion of deployment and

development costs.

Glite Runtime Performance

We measured the overhead of BLACKBOX on IIS with static content and obtained normalized

execution times of .98 relative to native performance. The speedup is due to profile-guided trace

optimizations in BLACKBOX. It is non-trivial to measure the overhead of BLACKBOX on the full

IIS/PHP stack because execution-time overhead can be overshadowed by time spent waiting and by

unimpacted calls like OS and I/O.

101

To more accurately understand the execution overhead, we employ industry standard benchmarks

that focus on compute performance. We evaluated the performance of BLACKBOX relative to

native execution on the SPEC CPU 2006 benchmark suite [75], which consists of a diverse set

of CPU bound applications across several application domains and languages: 7 C++ programs,

12 C programs, 4 C/Fortran programs, and 6 Fortran programs. Across the suite of benchmarks

we measured a geometric mean of 14.7% slowdown; Figure 3.5 presents the individual overheads.

Benchmarks having mostly direct branches incur minimal (or zero) overhead in BLACKBOX, while

programs having a greater proportion of indirect branches with multiple targets (typically C++

programs and script interpreters) incur the higher overheads. Profile-guided optimizations for

high-degree indirect branches show promising results, but we reserve the formal evaluation for

future work. While some of the larger Windows programs in our experiments do have a high rate of

indirect branches, the majority are cross-module function calls through the IAT that by construction

have only one target, making it feasible for BLACKBOX to optimize them as direct branches.

The BLACKBOX runtime has significantly higher overhead for programs such as web browsers that

continuously generate large amounts of code. This is due to limitations in binary translation that

affect the underlying DynamoRIO framework. Chapter 4 presents an optimization that improves

performance enough to maintain a reasonable user experience for these applications. A limited

version of this optimization was implemented to improve usability of DGC-intensive programs like

Chrome and some components of Microsoft Office. While no formal benchmarks were attempted,

the score for the Octane JavaScript benchmark suite [23] in BLACKBOX was between 4× and 5×

the native execution score, which is roughly a 3× speedup over default DynamoRIO.

While it is difficult to quantitatively evaluate the effect of runtime overhead on user experience,

the real-world experiments focusing on noise reduction (Section 3.6.1) provide a substantial basis

for a qualitative evaluation. In each experiment, the user noticed significantly longer application

startup times compared to native execution of the same application. There were also noticeable

delays when loading JIT-intensive components in Microsoft Office and Adobe PDF Reader, such as

102

the Bing image search panel and the Adobe cloud storage browser. But once these applications and

components reached steady state, users reported no difference in the interaction response time for

the majority of ordinary operations—including substantially graphical editing such as resizing and

rotating groups of images, vector graphics and text in the Office “Smart Art” feature.

Sampling One approach to minimizing the overhead of BLACKBOX is to activate it intermittently,

perhaps rotating across a group of individual users, such that no user is constantly experiencing its

effects. This approach has been effective in similar security tools that focus on dataflow [72, 71, 92].

For long-running applications, it is possible to implement an attach/detach mechanism that would

support sampling within a single program execution. If sufficient coverage can be obtained with

a user-friendly sampling rate, the chances are still high that in the case of a widespread attack,

some active BLACKBOX instance will record an attempt. The most significant problem with this

approach, however, is that it gives the adversary a much greater opportunity to evade or even disable

BLACKBOX without being detected. One of the fundamental concepts of IID is that the majority of

adversarial tactics require some preparation, such as taking control of a thread to establish a side

channel—if the IID is always present, the side channel cannot be used to evade the IID, because

the IID is watching while the exploit tries to establish the side channel. But a sampling approach

means turning a blind eye for a long period of time on any given machine, which may allow a very

careful adversary to detect the presence of an active BLACKBOX and “play innocent” until the coast

is clear. The feasibility of such an attack in practice remains to be seen, but there can be no question

that it is theoretically possible.

Gdep Deployment

BLACKBOX can be installed on a Windows desktop machine with a conventional application

installer, although we did not include this in our prototype. An administrative tool can be included

in the installation to assist the user in creating application launchers in the Start Menu or on

103

the Desktop. In our experiments, we launched applications in BLACKBOX using a simple shell

command:

bb /app/Google/Chrome/Application/chrome.exe

Independent third-party reviewers were able to launch applications in BLACKBOX this way without

our assistance.

End User Profiling For scenarios in which the profile will be generated by end users, it is

recommended to use the IID Service, which can securely upload traces merge them into the Trusted

Profile. The service can continuously estimate the coverage ratio as profiling progresses, on the

basis of (a) the convergence rate of newly visited control flow edges, (b) the number of potentially

unvisited paths, determined for example by symbolic execution (locally constrained to maintain

accuracy and performance), and (c) the degree of coverage obtained by other IID instances for the

same (or similar) application modules. The IID Service can potentially automate the entire process

of profiling and logging, even under the complications created by the x86 platform.

Gdev Development

Another kind of overhead is the cost of developing and maintaining BLACKBOX, which includes a

complex runtime along with several profiling and analysis tools. The BLACKBOX runtime itself

is implemented in roughly 10,000 lines of code, and the supporting framework DynamoRIO is

implemented in 250,000 lines of code, all in C89. Since DynamoRIO is a sponsored open source

project, its support for the latest x86 ISA, as well as updates to Linux and Windows, is maintained

by developers at Google. BLACKBOX integrates a security API into the DynamoRIO core, but

this mostly affects code locations that are fundamental to the runtime and rarely change. The

experiments reported here focus on some of the largest and most complex end-user applications for

104

the Windows platform, suggesting that BLACKBOX is substantially complete, and development

of an industrial version could likely proceed without major restructuring of the platform. The

BLACKBOX profiling and analysis tools are implemented in under 20,000 lines of Java code and

would only need to be updated in the case of architectural changes to BLACKBOX. Since these

tools are shared among all users of the platform, and require no application-specific investment, we

anticipate that these reasonable costs could be amortized by an increasing user base.

3.6.4 Security Analysis

A recent survey of CFI techniques proposes a quantitative security measure based on the average

number of allowed targets per protected branch, along with the degree of the branch having the most

allowed targets [19]. This is a challenging metric for any CFI technique based on static analysis

because, for the program to run correctly, CFI must always allow at least the set of branch targets

that the program needs to use. Many CFI tools resort to over-approximation where that set is

difficult to determine. For BLACKBOX, the equivalent to this quantitative security metric is the

number of targets that are trusted at each branch—the reliability of the IID log can be seen as the

inverse of the number of trusted targets. But since an IID does not interfere with the monitored

program, it has more leeway to raise concern about untrusted program behavior. Two case studies

show another side to the Trusted Profiles from the Gdnd experiments, highlighting the narrow focus

that can be achieved with IID profiling.

Gdbg Case Study: Untrusted Branches

Figure 3.6 shows that the vast majority of forward indirect branch sites in our Gdnd experiments are

untrusted (dark lower section of each bar). At the same time, the rate of spurious anomalies was

relatively low (Table 3.3), indicating that BLACKBOX profiling captured an accurate representation

of normal application behavior. Even while using Outlook, Chrome, SciTE and pdflatex for everyday

105

research and personal tasks, control flow throughout these highly complex programs held tightly to

this stringent Trusted Profile. Where most CFI techniques strive to minimize the number of trusted

targets at each indirect branch, BLACKBOX entirely distrusts the majority of indirect branches.

This establishes a high probability of an anomaly report in the case that an installed CFI defense

is compromised. It also gives developers high confidence that unusual program behavior will be

reported for further investigation.

Figure 3.7 shows an even tighter Trusted Profile for the SPEC CPU 2006 benchmarks, but this is

misleading from the standpoint of security evaluation. These applications are designed to minimize

library calls, so it is not particularly meaningful that the majority of indirect branches are not used

during the benchmarks. Figure 3.8 presents the same slice of the Trusted Profile for the main

executable exclusively. The degree of security looks remarkably lower in this view, yet nothing has

changed about BLACKBOX or the relative vulnerability of the monitored applications. While it is

important to have common benchmarks that are used consistently throughout a particular research

domain, it is also important to use the benchmarks in a meaningful way, and to carefully consider

the kind of conclusions that can be reasonably drawn from the results.

For example, if the goal of the experiment is to demonstrate how effectively BLACKBOX monitors

a single module, then focusing exclusively on the statistics of the Trusted Profile for the main

module may be valid—unless the intended domain of monitored applications is very different from

those main modules. Conversely, if the goal of the experiment is to demonstrate how BLACKBOX

monitors an entire application, then these benchmarks are probably never valid, because they are

designed to minimize library usage. In addition, the effectiveness of BLACKBOX monitoring is not

just a factor of precision, but is also comprised of its false positive rate. If the goal of the experiment

is to evaluate BLACKBOX for programs with a small, fixed set of inputs, then these benchmarks are

representative of that scenario. But if BLACKBOX is intended for usage with desktop applications,

where inputs are continuous and highly unpredictable at all layers of functionality, then these

benchmarks cannot reasonably be used to evaluate the false positive rate in BLACKBOX.

106

Adre
na

lin

mp3
inf

o

Note
pa

d

Note
pa

d+
+

SciT
E

pd
flate

x

IIS
Exp

res
s

PHP

Chro
me

Ado
be

PDF
W

ord

Pow
erP

oin
t

Exc
el

Outl
oo

k
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

2,400,000

2,600,000

2,800,000

3,000,000

3,200,000

3,400,000

To
ta

lf
or

w
ar

d
in

di
re

ct
br

an
ch

si
te

s

Untrusted branch (no trusted targets) Singleton trusted target Multiple trusted targets

15
3 / .0

3

34
/ .1

0

21
1 / <

.01

17
5 / .2

0

21
4 / .0

7

56
/ <

.01

34
/ .0

4

15
13

/ .0
4

15
00

/ .1
3

44
7 / .0

8

18
47

/ .0
9

90
7 / .1

9

97
1 / .0

6

17
68

/ .0
4

Maximum/Average number of trusted targets among forward indirect branch sites

Figure 3.6: Summary of forward indirect branch sites in the Trusted Profile. Bars are split with
untrusted branches in the large lower portion, followed by branches with a singleton trusted target,
then branches where multiple targets are trusted. The maximum number of trusted targets as well as
the average are listed across the top of the chart. The vast majority of indirect branches are entirely
untrusted by BLACKBOX, such that any execution of the branch will result in an anomaly report.

107

Comparing CFI Approaches These factors make it difficult to compare BLACKBOX with CFI

techniques in general, where the prototypes typically focus on server applications or the statically

compiled components of web browser, which are highly regular applications and do not have

the kind of characteristics that BLACKBOX excels at monitoring. Similarly, the relatively low

code coverage of the SPEC CPU 2006 benchmarks also makes it complicated to compare results

between static and dynamic CFI approaches. The static tool will usually report all indirect branches

throughout each application because it actively secures them all, regardless of when or how they

may be executed. Meanwhile the dynamic tool focuses on the small subset that is executed by the

vendor-supplied input data, because it cannot secure a branch until the moment it is executed. So

the fact of using the same benchmark does not necessarily establish a fair basis for comparison

between two research evaluations.

Gdbg Case Study: Cross-Module Branches

A particular limitation of static CFI is the cross-module branch. The difficulty arises from dynami-

cally linked libraries, which are common in popular programs. Many CFI tools derive constraints

from an offline static analysis, which makes these branches difficult to address because it cannot

be known which particular modules (or which versions of modules) might be linked at runtime.

But with seamless module support, BLACKBOX is able to incorporate these edges into the Trusted

Profile, even where a single callback site targets private (i.e., non-exported) functions in multiple

versions of the same library simultaneously (Section 3.3.4). Figure 3.9 depicts Trusted Profile

statistics for cross-module targets from the previous Gdnd experiments, where each bar focuses on

the number of cross-module branch sites in the corresponding Windows application. Bars are split

according to the arity of trusted targets identified during BLACKBOX profiling for our experiments,

with branch sites having only a singleton trusted target occupying the majority of each bar. Sniffer

Dog is especially sensitive to the addition of a second target to a branch having only one trusted

target, and will always assign the highest level of suspicion to such an anomaly.

108

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay
sj

en
g

so
pl

ex
sp

ec
ra

nd
sp

hi
nx

3
to

nt
o

w
rf

xa
la

nc
bm

k
ze

us
m

p0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

110,000

120,000

To
ta

lf
or

w
ar

d
in

di
re

ct
br

an
ch

si
te

s

Untrusted branch (no trusted targets) Singleton trusted target Multiple trusted targets

10
/ .

03
17

/ .
02

12
8

/ .
07

15
/ .

05
36

/ .
02

30
/ .

06
51

/ .
03

19
3

/ .
04

32
/ .

02
44

7
/ .

02
17

/ .
02

34
/ .

01
85

/ .
02

34
/ .

01
15

/ .
02

12
/ .

01
7

/ .
03

34
/ <

.0
1

9
/ .

03
20

1
/ .

08
14

9
/ .

21
24

/ .
07

12
/ .

01
34

/ <
.0

1
7

/ .
04

12
/ .

01
76

/ .
03

46
/ .

02
58

9
/ .

15
15

/ .
02

Maximum/Average number of trusted targets among forward indirect branch sites

Figure 3.7: Summary of forward indirect branch sites in the Trusted Profile. Bars are split with
untrusted branches in the large lower portion, followed by branches with a singleton trusted target,
then branches where multiple targets are trusted. The maximum number of trusted targets as well as
the average are listed across the top of the chart. The vast majority of indirect branches are entirely
untrusted by BLACKBOX, such that any execution of the branch will result in an anomaly report.

109

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p0

500

1,000

1,500

2,000

2,500

3,000

3,500

To
ta

lf
or

w
ar

d
in

di
re

ct
br

an
ch

si
te

s
(l

ib
ra

ri
es

ex
cl

ud
ed

)

Untrusted branch (no trusted targets) Singleton trusted target Multiple trusted targets

10
/ .

53
14

/ .
26

12
8

/ 1
.8

7
15

/ .
31

36
/ .

55
30

/ .
81

51
/ .

47
19

3
/ 1

.9
6

32
/ .

37
44

7
/ 3

.6
7

17
/ .

58
32

/ 1
.1

4
85

/ .
88

6
/ .

44
7

/ .
24

5
/ .

40
7

/ .
49

8
/ .

54
9

/ .
57

20
1

/ .
61

14
9

/ 1
.1

1
24

/ .
87

12
/ .

65
20

/ .
43

9
/ .

67
76

/ .
54

46
/ .

40
15

/ .
33

Maximum/Average number of trusted targets among forward indirect branch sites

Figure 3.8: Summary of forward indirect branch sites in the Trusted Profile, excluding libraries.
Bars are split with untrusted branches in the large lower portion, followed by branches with a
singleton trusted target, then branches where multiple targets are trusted. The maximum number
of trusted targets as well as the average are listed across the top. Even within the main module
of a benchmark having inputs designed for code coverage, the majority of indirect branches are
untrusted. Benchmark application xalancbmk has much higher indirect branch count and is
omitted for uniformity of scale; its untrusted and singleton branch ratios are similar.

110

Adre
na

lin

mp3
inf

o

Note
pa

d

Note
pa

d+
+

SciT
E

pd
flate

x

IIS
Exp

res
s

PHP

Chro
me

Ado
be

PDF
W

ord

Pow
erP

oin
t

Exc
el

Outl
oo

k
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

To
ta

lc
ro

ss
-m

od
ul

e
br

an
ch

si
te

s

Singleton trusted target
Multiple trusted targets

41
/ 1

.05

3 / 1
.04

21
1 / 1

.07

17
5 / 1

.06

21
4 / 1

.08

14
/ 1

.02

30
/ 1

.05

28
/ 1

.03

17
9 / 1

.06

19
8 / 1

.04

18
47

/ 1
.10

90
7 / 1

.09

97
1 / 1

.13

17
68

/ 1
.11

Maximum/Average number of trusted targets for each cross-module branch site

Figure 3.9: Summary of cross-module branch sites in the Trusted Profile. Bars are split by the arity
of trusted targets, with branch sites having a Singleton trusted target at the base and Multiple trusted
targets above. The maximum number of trusted targets as well as the average are listed across the
top of the chart. The vast majority of cross-module branches only have one trusted target—and no
branch site has more than 2,000 trusted targets—yet CFI based on module-unaware static analysis
would permit these branches to reach any valid indirect branch target in the entire application.

111

Important CFI techniques proposed in research publications can be grouped into three categories

according to their effectiveness in protecting cross-module edges. These categories will be outlined

here in general terms, and revisited in more detail focusing on each CFI defense in Section 6.1.

1. Accurate constraints are applied by 3 kinds of CFI techniques, each having a distinct

limitation in real-world deployment. The precision ranges from a single valid target per

invocation (perfect constraints) to roughly 50% slack vs. a perfect static analysis.

• Techniques that rely on the Last Branch Record (LBR) register have perfect accuracy for

cross-module branches, just like every other branch—but other limitations make these

approaches easily exploited (or the threat model explicitly declines to address activity

occurring in other modules).

• Purely dynamic approaches that protect vulnerable pointers at the transition from register

to memory also have perfect accuracy for these branches. But these approaches tend

to be slow in practice, and can be defeated by dynamic poisoning tactics that “borrow”

security tokens for later reuse under certain conditions.

• Monolith defenses that are limited to statically linked applications can apply their usual

constraints, which are accurate up to the sophistication of the chosen intra-module static

analysis. This includes defenses for Apple iOS and *nix kernels.

2. Categorical constraints are applied by many coarse-grained CFI approaches that enforce

roughly the same accuracy as for intra-modular branches under the same CFI.

3. No constraints can be applied by vtable protection tools that do not offer runtime support

for dynamically linked modules, although the presence of such tools may indirectly reduce

this attack surface, since the dynamically supplied callback target is often a C++ method.

In summary, existing defenses either (a) constrain these branches to a broad category of targets,

(b) neglect these branches entirely, or (c) expose unrelated weaknesses that a sophisticated attacker

112

can reliably compromise. A cross-module branch attack will need to be much more selective to

escape the attention of BLACKBOX, which in the vast majority of cases trusts exactly one target

at each branch. Even the worst case branch allows just 1,847 trusted targets, making it orders of

magnitude more responsive than coarse-grained CFI—though it is difficult to calculate the specific

number of targets that a given CFI defense would allow for this particular branch, a reliable lower

bound is the total number of locations that are ever reached by any indirect branch in our Trusted

Profile. In comparison to the 1,847 trusted targets for this worst-case branch, any CFI lacking

support for dynamic modules will allow it to reach at least 84,907 locations. The best case among

coarse-grained CFI approaches will distinguish potential targets by function signature, reducing the

set of allowed targets to a smaller category than its peers.

Figure 3.10 additionally indicates the number of cross-module callbacks that were trusted during

profiling for the Gdnd experiments. These branches represent a worst case for existing CFI ap-

proaches because the callback targets are passed as function pointers. One CFI approach claims

to provide accurate constraints on these branches, but a careful examination of its policy reveals

that the allowed target set is the same as for any CFI based on static analysis alone. Only a fully

dynamic CFI can protect these branches, and as mentioned above, these approaches have so far

been found insecure for orthogonal reasons. In contrast, the Trusted Profiles from our experiments

contain no more than 1.90 targets per callback site, with the worst case being the same branch

in wwlib.dll of Microsoft Office having 1,847 targets under our usage. In summary, although

many advances have been made in the effectiveness of CFI defenses, the quantity and severity of

remaining vulnerabilities suggests the need for an intrusion detector like BLACKBOX.

Securing SPEC CPU 2006 can be a useful academic exercise, but does not necessarily represent

the challenges faced by CFI when deployed on real-world applications. Figure 3.11 shows parallel

statistics to Figure 3.9, leaving little doubt that cross-module edges are a much more significant

vulnerability in Windows desktop applications than in these small command-line benchmarks.

113

Adre
na

lin

mp3
inf

o

Note
pa

d

Note
pa

d+
+

SciT
E

pd
flate

x

IIS
Exp

res
s

PHP

Chro
me

Ado
be

PDF
W

ord

Pow
erP

oin
t

Exc
el

Outl
oo

k
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

To
ta

lc
ro

ss
-m

od
ul

e
ca

llb
ac

k
si

te
s

Singleton trusted target
Multiple trusted targets

41
/ 1

.31

3 / 1
.50

46
/ 1

.38

36
/ 1

.42

57
/ 1

.38

14
/ 1

.21

25
/ 1

.29

28
/ 1

.90

61
/ 1

.42

56
/ 1

.09

18
47

/ 1
.39

90
/ 1

.27

91
/ 1

.56

17
68

/ 1
.40

Maximum/Average number of trusted targets for each cross-module callback site

Figure 3.10: Summary of cross-module callback sites in the Trusted Profile (with callback aliasing
disabled, which is less flexible for module upgrades—see Section 3.3.4). Bars are split by the arity
of trusted targets, with callback sites having a Singleton trusted target at the base and Multiple
trusted targets above. The maximum number of trusted targets as well as the average are listed
across the top of the chart. A large percentage of cross-module callbacks only have one trusted
target—and no callback site has more than 2,000 trusted targets—yet even module-aware CFI often
permits these callbacks to reach any valid indirect branch target in the entire application.

114

Figure 3.12 shows the same parallel vs. Figure 3.10, again revealing an even smaller attack surface

in this purely academic venue. While the reported results for CFI techniques may appear impressive,

it is important to consider the consequences of deploying them on commercial software without

having a reliable intrusion detector to fall back on when it becomes necessary.

3.6.5 Verifiability

BLACKBOX is open-source and can be used to repeat our experiments. The implementation was

submitted to the CGO Artifact Committee and passed, indicating that the published results could be

obtained by an independent third party. The versions of our applications reported in the experiments

may not be available, especially those like Google Chrome that auto-update, but since BLACKBOX

has no application-specific functionality, it should perform equally well on today’s latest version of

these applications.

115

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

nc
bm

k
ze

us
m

p

0

100

200

300

400

500

600

700

800

900

To
ta

lc
ro

ss
-m

od
ul

e
br

an
ch

si
te

s

Singleton trusted target
Multiple trusted targets

2
/ 1

.0
0

3
/ 1

.0
1

2
/ 1

.0
1

2
/ 1

.0
0

3
/ 1

.0
1

2
/ 1

.0
0

3
/ 1

.0
1

3
/ 1

.0
0

3
/ 1

.0
1

3
/ 1

.0
0

3
/ 1

.0
1

3
/ 1

.0
0

3
/ 1

.0
1

3
/ 1

.0
0

3
/ 1

.0
1

3
/ 1

.0
1

2
/ 1

.0
1

2
/ 1

.0
0

2
/ 1

.0
1

2
/ 1

.0
0

2
/ 1

.0
0

2
/ 1

.0
0

3
/ 1

.0
1

2
/ 1

.0
0

3
/ 1

.0
1

3
/ 1

.0
1

3
/ 1

.0
1

2
/ 1

.0
0

3
/ 1

.0
1

Maximum/Average number of trusted targets for each cross-module branch site

Figure 3.11: Summary of cross-module branch sites in the Trusted Profile of the SPEC CPU 2006
benchmarks (excluding libraries). The construction of these applications is not representative
of typical end-user software that is commonly exploited today. For example, challenges to CFI
techniques such as these cross-module branches occur at much lower frequency and with very few
multi-target sites.

116

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

ad
m

ca
lc

ul
ix

de
al

ii
ga

m
es

s
gc

c
ge

m
sf

dt
d

go
bm

k
gr

om
ac

s
h2

64
re

f
hm

m
er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m
m

cf
m

ilc
na

m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay
sj

en
g

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

xa
la

nc
bm

k
ze

us
m

p

0

5

10

15

20

25

30

35

40

45

To
ta

lc
ro

ss
-m

od
ul

e
ca

llb
ac

k
si

te
s

Singleton trusted target
Multiple trusted targets

2
/ 1

.2
5

2
/ 1

.2
5

2
/ 1

.3
3

2
/ 1

.0
5

2
/ 1

.2
5

2
/ 1

.3
3

2
/ 1

.2
2

2
/ 1

.0
3

2
/ 1

.0
5

2
/ 1

.0
3

2
/ 1

.2
2

2
/ 1

.3
3

2
/ 1

.2
5

2
/ 1

.3
3

2
/ 1

.0
5

2
/ 1

.0
5

2
/ 1

.0
5

2
/ 1

.5
0

2
/ 1

.0
5

2
/ 1

.2
5

2
/ 1

.0
5

2
/ 1

.0
3

2
/ 1

.0
5

1
/ 1

.0
0

2
/ 1

.2
5

2
/ 1

.2
2

2
/ 1

.0
5

2
/ 1

.0
3

2
/ 1

.2
5

Maximum/Average number of trusted targets for each cross-module callback site

Figure 3.12: Summary of cross-module callback sites in the Trusted Profile of the SPEC CPU
2006 benchmarks (excluding libraries). The construction of these applications is not representative
of typical end-user software that is commonly exploited today. For example, challenges to CFI
techniques such as these callbacks occur at much lower frequency.

117

Chapter 4

DynamoRIO JIT Optimization

The performance goals of BLACKBOX are not feasible under current implementations of dynamic

binary translation (DBT), because DGC presents a special challenge for the binary translation

infrastructure, and current implementations do not resolve it efficiently. To maintain consistency

between the original application and its translation in the code cache, a DBT tool must (1) detect

modifications to the original generated code and (2) reconstruct the corresponding portion of the

translated application. This can create tremendous additional overhead, reducing today’s DBT

platform performance by an order of magnitude for applications that frequently generate substantial

amounts of code. As a baseline for comparison, one of the best cases for DBT is the SPEC CPU 2006

benchmark suite [168], where DynamoRIO [15] on 64-bit Linux averages merely 12% (Section 4.5).

In contrast, the Octane JavaScript benchmark suite runs 9× slower in the Mozilla Ion JIT and 15×

slower in the Chrome V8 JIT on the same platform. Similarly, the average overhead of Pin [105] is

21% [18] for SPEC CPU 2006, but Octane runs 6× slower in Ion and 10× slower in V8.

This is not just a problem for BLACKBOX. One of the major selling points of DBT over other

dynamic analysis frameworks is that it can minimize runtime overhead while providing accurate and

flexible introspection and instrumentation of the target application. Many optimizations have been

118

developed, including translating the target application into an internal code cache such that each

fragment of the translated application is only generated once—the first time it is executed. DBT

tools also commonly implement advanced optimizations such as tracing and in-cache resolution

of indirect branches. But these enhancements only apply to DBT performance for applications

comprised exclusively of statically generated code—i.e., compiled binary executables and libraries.

The slowdown for DGC substantially limits the viability of DBT for dynamic analysis use cases

that involve frequent DGC, and so far this limitation has not been addressed.

There are many important use cases for DBT on applications having significant DGC. Security

tools such as BLACKBOX and several of its predecessors [94, 165, 27] as well as bug detection

tools [17] are especially important for DGC-intensive programs. In the first place, DGC is becoming

more prevalent throughout today’s popular applications. For example, all of the Microsoft Office

applications use the JScript9 JavaScript engine to render built-in web browser components. Another

common example is the Adobe PDF Reader, which renders the application frame in a Flash

component, and implements built-in cloud account browsers in both Flash and JavaScript. Microsoft

and Google host popular office suites online, where the majority of application functionality executes

in the web browser’s JavaScript engine. Since these JIT-intensive applications and components are

most commonly used to access Internet resources, every security vulnerability becomes a publicly

accessible attack surface, and every bug becomes a security vulnerability. Furthermore, the dynamic

nature of generated code makes it vulnerable to a wider range of attacks, since some effective

security measures such as W
⊕

X [110] are not compatible with the process of dynamically

generating code.

119

Program analysis applications of DBT are similarly important for DGC-intensive programs because:

1. a wide range of popular and important software systems now include large DGC components;

2. the complexity of debugging DGC engines is much higher than for statically compiled code;

3. the majority of conventional analysis tools operate on source code, which for DGC only exists

in the abstract form of internal data structures; and

4. performance is the primary goal of most dynamic code generators, making them ideal targets

for the deep profiling and memory analysis that DBT excels at.

For DBT to be an effective platform for program analysis, it must be efficient enough for regular

use, but this is not possible for DGC-intensive programs, given the current approach to translation

consistency in popular DBT platforms.

Since this is an important problem across the entire domain of DBT, and is also essential for

the viability of BLACKBOX, this chapter momentarily steps away from the subject of intrusion

detection and focuses directly on optimizations for binary translation of dynamically generated

code. Our augmented DynamoRIO significantly outperforms the state-of-the-art DBT systems on

JIT programs. For the Octane JavaScript benchmark running in the Mozilla JavaScript engine, we

achieve 2× speedup over DynamoRIO and 3.7× speedup over Pin, and for Octane in the Chrome

V8 JavaScript engine we achieve 6.3× speedup over DynamoRIO and 7.3× speedup over Pin.

Optimization Techniques

The main reason for the extreme slowdown caused by DGC is that the DBT tool cannot easily

detect when and where generated code is modified. While most RISC architectures require an

explicit instruction cache flush request by the application to correctly execute modified code [90],

this chapter focuses on the IA-32 and AMD64 platforms where the hardware keeps the instruction

120

and data caches consistent and no explicit action from the application is required. Special measures

must be taken by the DBT tool to detect code changes, as any memory write could potentially

modify code. Since performance constraints do not allow instrumentation of every write in the

entire application, the common approach is to artificially set all executable pages to read-only, and

invalidate all code translated from a page when a fault occurs. These factors greatly increase the

overhead of the DBT tool when an application frequently writes to pages containing code.

This chapter introduces two optimization approaches and demonstrates in the context of DynamoRIO

that both can significantly improve performance of DBT for the JavaScript JIT engines V8 and Ion,

achieving under 3× the native execution time on average. The simpler of these two approaches is to

augment the target application with special source code annotations that are compiled into the binary

and subsequently translated into DBT actions by the DBT interpreter. The specific annotations used

are described in Section 4.2.1.

While the annotations have a very small impact on the native performance of the target application,

the obvious disadvantage to this approach is that it requires source code and a special build of the

target application. In addition, many applications are not trivial to annotate correctly, and annotation

errors have the potential to cause the application to behave incorrectly or crash under DBT.

The second approach infers JIT code regions and instruments all writes targeting those regions

to use a parallel memory mapping that has writable permission. The instrumentation also flushes

fragments of the translated application that are invalidated by the JIT write. While this approach

is less intrusive in the user’s toolchain, it requires the use of additional address space and is more

complex to implement.

121

Organization

The remainder of this chapter is structured as follows: Section 4.1 describes the basic structure of a

binary translator in the context of DynamoRIO, and outlines the DGC strategies of four popular

DBT platforms. Section 4.2 presents our new annotations targeting JIT optimization, followed by

the annotation implementation details in Section 4.3. Section 4.4 then presents the JIT inference

approach and Section 4.5 reports performance for each optimization.

4.1 Background and Related Work

The structure of a Dynamic Binary Translator is optimized for its performance on statically compiled

code, which comprises the vast majority of target applications. This structure makes its performance

especially weak for dynamically generated code. In its most naïve form, dynamic binary translation

can be implemented as a pure interpreter, applying instrumentation each time a relevant program

point is encountered. This approach would have identical overhead for both static and dynamic

code. To optimize for the common case, DBT platforms typically translate fragments of the target

application on demand into a memory-resident cache. This section begins with an implementation

overview of DynamoRIO [15], highlighting the optimization details that benefit the common case

but work against dynamically generated code. The remainder of the section outlines the strategies

for handling DGC used by popular DBT platforms.

4.1.1 DynamoRIO

DynamoRIO initially translates each basic block of the target application on demand into the code

cache, linking the translated blocks in parallel with their original counterparts to replicate the

original control flow within the cache. As new blocks of the target application are executed, the code

122

cache is incrementally populated until eventually the application runs entirely within the cached

copy. An indirect branch in the control flow may have many targets, which are specified by an

address value in the memory space of the application. Since the data flow of the target application is

identical to a native run, the address of the branch target always refers to the original application’s

memory—untranslated code outside the code cache. To prevent the execution from returning to

the original application, the branch is redirected to a lookup routine within the cache that finds the

translated code fragment corresponding to the branch target and jumps to it. Figure 4.1 depicts the

translation and linking process.

A

B C

D

E

F

A
C
D
E

F
?

Application Code

foo() bar()

A

C

D

E

F

Indirect
Branch
Lookup

DynamoRIO Code Cache

BB
Cache

Trace
Cache

Figure 4.1: Overview of Dynamic Binary Translation. Blocks of application code are dynamically
translated into a code cache where they are linked back together.

Traces in DynamoRIO To improve performance for hot paths in the application, DynamoRIO

instruments each indirect branch target with an execution counter, and when the count reaches

a configurable threshold (by default 52), the fragment is designated as the head of a trace. As

execution continues, the trace is progressively extended using the Next Executing Tail scheme.

Indirect branches within a trace are translated into the more efficient direct branches, which do not

require a lookup routine, and direct branches are removed by fusing the basic blocks of the trace

into a single straight-line code sequence.

123

VM Areas in DynamoRIO When the target application allocates memory, whether by mmap to

load a module image or by an allocation function such as malloc or any other means, DynamoRIO

creates an internal accounting structure for that block of memory called a VM area. Executable

code in a VM area is associated with it by a list of code fragments, which can be either basic blocks

or traces. When a module image is unloaded by the target application, the corresponding VM area

with its list of fragments is flushed accordingly. Likewise, if the application removes executable

permission from a region of memory, the corresponding code fragments must be flushed—even if the

area becomes executable again, changes to the code will not be known, and any obsolete fragments

will cause the application to behave incorrectly. To detect changes to code in a VM area that is both

writable and executable, DynamoRIO artificially sets the page permission to read-only [16]. When

a page fault occurs in the VM area, all of its code fragments are flushed. While it is possible to

identify the specific fragments that were changed and flush them selectively, it would require special

handling of memory permissions to execute the write exclusively of other threads, because even a

momentary change to the writable permission is global and could allow a concurrent thread to write

undetected. This problem is one of the root factors that makes naïve handling of DGC inefficient,

so we refer to it throughout this paper as the concurrent writer problem. In general, the minimum

granularity of a dynamic code change is one page of memory, because a write cannot be executed

exclusively within a virtual page. The optimization in Section 4.4 introduces an alternative, more

sophisticated approach that eliminates the concurrent writer problem and enables finer granularity

code changes.

DGC in DynamoRIO While this structure is very efficient for module images loaded via mmap,

it requires most dynamically generated code fragments to be translated into the code cache many

times repeatedly. Consider the simple case of a JIT engine generating a compiled function, executing

the function, then generating a second function in the same VM area and executing it, and so on. The

writing of each new function requires all the existing functions to be invalidated and retranslated.

This process is especially cumbersome for traces, which must be rebuilt after each VM area flush

124

according to the hottest paths identified by the instrumented trace heads. While it is possible to

simply disable tracing for the JIT code areas, this yields very poor performance in long-running

benchmarks such as Octane. Since the JIT compiles the hottest paths in the application’s JavaScript,

the JIT code areas are necessarily the hottest paths in the application. Disabling traces improves the

efficiency of the code generation process, but in a full run of Octane costs 25% in overall execution

time because the code along the hot paths is so much less efficient in CPU execution time.

The benchmark results in Section 4.5 indicate that DBT in general performs much worse on

Chrome’s V8 JavaScript engine than on Mozilla’s Ion, even though V8 outperforms Ion in a native

run. This is caused by frequent writes to small data areas, typically bit fields, scattered throughout

the generated code. Since these writes do not affect translated code, DynamoRIO could theoretically

execute the writes without flushing the region. But this is prevented by the risk of a concurrent

write—and even if it were possible, it would still be very expensive to determine whether the

write target overlaps any translated code fragment. The search would be reasonably efficient if

DynamoRIO were to keep a sorted data structure of spans, but it does not because that large and

expensive structure would be of no value for module image VM areas, which comprise the vast

majority of translated code. Therefore, without special optimization for DGC, determining fragment

overlap would require a time-consuming search of the code fragment list for the targeted VM area.

4.1.2 QEMU

When QEMU [10] translates code fragments from a page of guest memory, two strategies can be

used to detect code changes. The first strategy is similar to DynamoRIO, marking the page read-only

and handling the fault as if it were a write event. The second strategy relies on the QEMU softmmu

layer, which provides a software TLB that effectively maps the guest page table to the host page

table. When the guest writes to a page of memory, the target is translated through the softmmu layer

to the corresponding host page, which can trap into QEMU for code change handling [108].

125

4.1.3 Pin

Pin [105] translates all code into traces. For any trace containing instructions that were dynamically

generated, the head of the trace is instrumented to check whether any of those instructions have

changed [116]. When executable permission is removed from a page containing DGC, all traces

containing code fragments translated from the page are invalidated. During periods of frequent

code generation, this approach is more efficient than instrumenting every store, because traces

will be executed much less frequently than stores. But the cost increases dramatically while the

JIT engine is dormant and the generated traces are repeatedly executed, since the instrumented

checks rarely discover code changes and are executed far more often than stores (assuming the

generated code is collectively hotter than the interpreted code, and that the generated code does not

itself generate code). Both DynamoRIO and QEMU rely on detecting code changes at the time of

the write, leading to the concurrent writer problem, but the Pin approach relies on detecting code

changes at the time the translated traces are executed. This makes it possible for Pin to selectively

flush individual traces from the code cache. The benchmark results in Section 4.5 show that this

approach outperforms region flushing for executions of the Octane benchmark.

4.1.4 Valgrind

Valgrind [120] provides two methods for synchronizing its code cache with dynamically generated

code. The first is similar to Pin, instrumenting every dynamically generated basic block with a check

for modified code. The second strategy requires compiling the target application with a source

code annotation [156] that is translated into a code cache flush event. While the latter approach is

relatively efficient, it does not significantly improve performance because the cost of both methods

is overwhelmed by the slowdown of Valgrind’s translation of basic blocks through a three-value IR.

DynamoRIO implements some of the Valgrind annotations for compatibility purposes. In addition,

Section 4.3 presents a new annotation scheme that is much more efficient than Valgrind’s. It also

126

supports all popular compilers on the Windows 32-bit and 64-bit platforms, including Microsoft

Visual Studio, the Intel C++ Compiler and GCC.

4.1.5 Specialized Applications of Binary Translation

The Transmeta Code Morphing SoftwareTM [44] leverages hardware support to synchronize with

dynamic code in several ways, including: (1) an approach like DynamoRIO’s, but with sub-page

write detection, (2) the technique now used by Pin, (3) a similar approach which only revalidates a

DGC fragment after its containing write-protected region has been written, (4) patching translated

code on the basis of recognized DGC patterns such as jump target substitution, and (5) translating

frequently modified code into translation groups, which cache a history of recent translations for

recurring DGC.

Librando [77] automatically diversifies the output of a JIT compiler at runtime for increased

security. Librando allows the JIT to run natively, and detects JIT writes using the same page

protection scheme as DynamoRIO, additionally minimizing overhead by validating each diversified

basic block using a hashcode of the instruction bytes.

A survey by Keppel [91] outlines a variety of techniques for detecting self-modifying code in

instruction-set simulation.

4.2 Annotation-Based Optimization

A simple approach to optimizing DynamoRIO for JIT code is to add source code annotations to

the target application that notify the DBT about changes in generated code. Section 4.3 describes

127

the design and implementation of our underlying annotation scheme. This section introduce

ANNOTATIONDR, an extension of ORIGINALDR that supports specific event annotations for JIT

optimization.

4.2.1 New Annotations Identifying Code Changes

In ANNOTATIONDR, we introduce three annotations to facilitate handling DGC in DBT systems:

1. ManageCodeArea(address, size): disables the default method of detecting code

changes for the specified region of memory until the area is unmanaged.

2. UnmanageCodeArea(address, size): re-enables the default method of detecting

code changes for the specified region of memory.

3. FlushFragments(address, size): flush all fragments of the translated application

corresponding to the specified region of the target application.

These annotations indicate the allocation and deallocation of JIT code regions and notify ANNO-

TATIONDR of all writes to the JIT code VM areas. We refer to JIT code regions as managed

code regions. The default write detection schemes are disabled for managed code regions in

ANNOTATIONDR, because every change to JIT code is explicitly annotated.

Given a correctly annotated application, the remaining challenge is minimizing redundant code

fragment flushes by providing a finer granularity flush operation. ANNOTATIONDR introduces two

improvements, described below.

128

4.2.2 VM Area Isolation

Recall that by default, ORIGINALDR invalidates cache code at the granularity of VM areas. A

substantial performance improvement can be made in ANNOTATIONDR’s handling of DGC by

simply reducing the size of the VM areas containing DGC to single pages. Annotations indicate

which memory allocations of the target application contain JIT code, so the corresponding VM areas

can either be split into single pages upon instantiation, or lazily as code in those regions is invalidated.

The annotation event for JIT writes allows ANNOTATIONDR to avoid the expensive page faults

required by the default strategy for detecting dynamic code changes, and more importantly alleviates

the concurrent writer problem. Together these improvements reduce the execution time to 3.7×

native execution time on the Octane JavaScript benchmark [23] for V8 [66] and 2.6× for Ion [117]

(see Section 4.5).

4.2.3 Selective Fragment Removal

Further improvement requires identifying, for each JIT write, which specific code fragments should

be invalidated and selectively removing them from the code cache. For small writes such as a jump

target change, it is alternatively possible to patch the corresponding fragments in the code cache

instead of removing them. However, this would add significant complexity to the interface used to

build tools with ANNOTATIONDR. Tool authors would need to spend effort handling the case of

instrumented code being directly patched, including jump targets changing, which can drastically

affect security or sandboxing tools. By instead simply invalidating fragments corresponding to the

modified code we keep the tool interface consistent. The tradeoff here between complexity and

performance may be worthwhile for specific tools and could be explored in future work.

The invalidation process is made more complicated by several implementation factors of ORIGI-

NALDR: (1) the constituent basic blocks of each trace are kept separately from the trace itself, (2)

traces typically do not consist of code that was contiguous in the original binary, and (3) a single

129

basic block in the target application may be translated into several overlapping basic blocks, each

having a different entry point and all having the same exit. As discussed at the end of Section 4.1.1,

this requires an efficient data structure for sorted spans. The conventional data structure would

be a red-black interval tree, but given the large quantity of DGC fragments, each traversal would

likely incur at least a dozen branch mispredictions, and probably several CPU cache misses as well.

Instead, ANNOTATIONDR stores the DGC fragment spans in a hashtable in which each bucket

represents 64 bytes of a JIT code VM area. When a DGC fragment is translated into the code cache,

its span is added to each hashtable bucket it overlaps. To lookup fragments overlapping a JIT write,

the hashtable is first consulted to obtain a list of buckets whose 64-byte span is touched by the

write. Since it is common for JIT engines to intersperse the generated code with small data fields,

ANNOTATIONDR next checks the fragments in each bucket for overlap, such that only fragments

specifically overlapping the written bytes will be flushed. A single hashtable bucket can in rare

cases contain up to 32 fragments (for example, in a field of two-byte trampolines), so to minimize

CPU cache misses while traversing a bucket’s chain, each link in the chain holds 3 fragment spans.

Figure 4.2 illustrates the distribution of code fragments into the hashtable buckets.

0x4a700

0x4a740

0x4a780

0x4a7c0

D

A

B

C

E

F

G

H

I

A
p

p
lic

a
ti

o
n
 I
n
st

ru
ct

io
n
 A

d
d

re
ss

H
a
sh

ta
b

le
 K

e
y

A B

A B C D E F

F G H I

0x129c

0x129d

0x129e

Figure 4.2: Distribution of translated code fragments into the overlap hashtable. To locate fragments
overlapping a JIT code write, ANNOTATIONDR first looks up the buckets overlapping the span of
bytes written by the JIT, then identifies the specific code fragments that were overwritten (if any).

130

A

F1 F2 F3 F89273 F89274 F89275

fragment _id

next_incoming_link

outgoing_links[0]

Figure 4.3: The singly-linked list of incoming branches requires an O(n) traversal to remove a
fragment, resulting in significant overhead for high fan-in basic blocks that are common in JIT code.

High Fan-in One challenge inadvertently raised by this optimization is that the removal of

incoming direct branches can become a significant bottleneck. In statically compiled code, direct

branches are rarely removed, so ORIGINALDR optimizes for space by using a singly-linked list to

identify all direct branches targeting a code fragment (Figure 4.3). But in a run of Octane’s Mandreel

benchmark, in which V8 generates up to 150,000 direct branches that all target the same basic block,

these branches are often removed during execution as stale code fragments are overwritten. The

corresponding fragment removal requires an O(n) traversal of a potentially long branch list, and in

the case of Mandreel this consumes the entire speedup of selective fragment removal.

This slowdown can be alleviated by observing that the majority of high fan-in branches come from

basic blocks that are no longer in use by the JIT, but have not been overwritten or deallocated (i.e.,

dangling fragments). For this reason, the slowdown does not occur in ANNOTATIONDR with VM

area isolation, because the coarser flushing of whole pages randomly eliminates the majority of

incoming branches from dangling fragments. ANNOTATIONDR simulates this effect by limiting the

number of incoming direct branches to 4096, removing the fragment containing the oldest incoming

branch when the limit would otherwise be exceeded. In some cases the removed fragments may still

be in use, requiring retranslation, but in general the removed fragments are never executed again.

This heuristic is not necessarily optimal for all JIT scenarios, so to handle an extreme case it is

possible to selectively substitute the linked list with a hashtable of incoming direct branches.

131

4.3 Annotation Implementation

This section describes how our annotations are implemented. Beyond our primary use of annotations

for identifying DGC, there are many other use cases for annotations in a DBT platform. Existing

annotations are often for avoiding false positives in tools such as memory usage checkers. For

example, Valgrind provides several dozen annotations with such functionality as printing to the

Valgrind log, or marking variables in the target application as having defined values in cases where

the Memcheck [156] tool’s analysis would otherwise report an undefined-use error.

4.3.1 Binary Annotation Scheme

Source code annotations in the target application are compiled into binary annotations which can

be translated by the DBT tool into event callbacks at runtime. A binary annotation is a short

code sequence that has the effect of a nop during native executions of the application, but can

be definitively recognized by the DBT interpreter. Annotations must support passing argument

values to the DBT tool and returning a return value to the application. These argument values are

constructed using normal compiled code.

132

There are three requirements for implementing effective annotations:

1. The annotation must create minimal overhead during native execution of the target application,

such that annotations can be included in the release build.

2. Compiler optimizations can potentially modify or even remove annotations, so they must be

defined in such a way that the DBT tool can recognize it after optimizations have transformed

it.

3. The annotations must be distinctively recognizable by the DBT tool, such that annotation

detection does not create overhead for code that does not have annotations.

401972 jmp 401985 # f i r s t jump
401974 mov 0x202688,%rax # name base
40197c bsf 0xf f f f f f f f f f f f f f98 ,%rax # name offset
401985 jmp 401996 # second jump
401987 mov $0x2,%esi # argument 2
40198c mov $0x1,%edi # argument 1
401991 callq 4024f2 # annotation function call

Listing 4.1: Annotation macro for 64-bit GCC. The first jump operand is always 0x11
bytes, allowing the DBT tool to use it as a quick detection filter. The subsequent mov and
bsf encode a pointer to the annotation name in the text section.

Our basic approach to satisfying Requirement 1 is to prefix the annotation with a jump beyond the

annotation, such that the body of the annotations is dead code—skipped over in a native execution

(Listing 4.1). Implementing the annotation using inline assembly meets all three requirements, as

(1) the jump over the annotation has near zero runtime overhead, (2) inline assembly instructions

are never transformed by compiler optimizations (even whole-program optimizations), and (3) the

exact byte sequence can be precisely controlled to minimize ambiguity with application code.

The developer invokes the annotation using a macro, which accepts ordinary arguments from the

domain of application variables, constants and functions, e.g.:

MANAGE_CODE_AREA(start, compute_area_size());

133

In this example, even if the compiler inlines the entire function body of compute_area_size()

into the argument preparation, it would all be skipped during native execution.

4.3.2 Annotation Discussion

Existing DBT tools usually use one of two annotation types:

1. a call to a function that is empty except for a short instruction sequence to prevent “identical

code folding” optimizations from transforming all the annotation functions into a single

function [155, 173], or

2. a sequence of instructions inserted at the annotation site that has the effect of a nop during

native execution but can be distinctively recognized by the DBT tool.

The empty functions are simple and flexible, allowing any number of arguments to the annotation,

though the cost of the empty function call increases with the number of arguments (Table 4.1).

Valgrind’s approach limits annotations to 5 arguments and requires more effort for the DBT tool

to detect because the distinct instruction sequence is 12 bytes long for 32-bit applications and

16 bytes long for 64-bit applications. This not only requires more bytes to be examined during

annotation detection, it also causes a complication when a basic block is truncated in the middle of

an annotation. In this case, the DBT tool must either maintain a state flag for each thread indicating

that the last decoded instruction could be part of an annotation, or to simply read beyond the end

of a basic block to see if the subsequent bytes might form an annotation. The former approach is

wasteful because the flag must be checked very frequently and it is almost always off, while the

latter approach risks a segfault if the forward bytes are not readable. Valgrind’s annotations also

rely on GCC pragmas which are not available in other compilers.

Our annotation scheme using a jump over argument setup improves on both approaches. It is more

efficient than always performing a function call. It also out-performs existing inline assembly

134

One arg Five args Five varargs
ANNOTATIONDR annotation 1.54× 1.54× 1.54×
TSan annotation 2.35× 3.34× 4.01×
Valgrind annotation 3.05× 3.05× N/A

Table 4.1: Native execution overhead of binary annotations in the extreme case of annotating every
array index expression in the SPEC CPU 2006 benchmark 470.lbm.

annotations, as (1) the annotation is completely skipped by direct jumps during a native run

(including argument setup code), (2) the annotation arguments use as many registers as the platform

calling convention allows, and (3) the presence of an annotation can more efficiently detected.

Table 4.1 shows the annotation overhead in an extreme case of adding 486 annotations in the

inner loops of the lbm array computation from the SPEC 2006 benchmark suite. Even though the

annotation is executed every time an array value is indexed, the overhead is just 50%. Detecting the

annotation in a DBT tool still requires reading beyond the end of a basic block in case it has been

truncated in the middle of an annotation. But our approach minimizes the cost of a potential segfault

by minimizing the number of conditions in which (1) the risk is taken and (2) there is actually no

annotation present. We selected the first two instructions of the annotation to be relatively rare

for normal code: (1) a direct short jump of fixed length (which varies per platform), and (2) int

2C, which is the only instruction in the Intel x86 ISA to start with byte CD. A basic block will

usually terminate at the jump, so we only need to read the next byte to determine whether further

unsafe reading is required to complete the detection, and this one-byte read is relatively inexpensive

because in most cases it lies on the same page as the jump, which guarantees it must be readable.

Note that the approach is slightly different for 64-bit Windows where inline assembly may not be

supported (Section 4.3.3).

135

4.3.3 Annotations in 64-bit Microsoft Visual Studio

The 64-bit Microsoft Visual Studio compiler presents a special case for the annotations because

it does not support inline assembly. Without inline assembly, the annotation must be defined in

ordinary C code, from which the compiler may produce a broad range of assembly sequences.

Compiler optimizations such as dead code elimination make this especially complex because the

annotation itself is dead code—in a native run the execution always jumps over the annotation body.

It is also common for the compiler to move parts of the annotation, for example sharing a single

register load between two annotations within the same function, which would make the annotation

unrecognizable to ANNOTATIONDR because the register load is one of the key identifying elements

of the annotation.

Listing 4.2 presents the C code for the ANNOTATION() macro, which takes the following argu-

ments:

• annotation: the name of the annotation function, as defined in the target application.

• native_code: a block of statements to execute instead of the annotation during native

execution of the application (may be empty).

• ...: arguments to the annotation function, corresponding to the formal parameters of the

annotation function.

136

The annotation begins and ends with conditional branches, both of which are never taken during

native executions. The three values used in the conditional branches are specially selected to prevent

compiler analyses from determining that the condition will always be false:

#define HEAD (0 x f f f f f f f f f f f f f f f 1 − (2 ∗ __LINE__))
#define TAIL (0 x f f f f f f f f f f f f f f f 0 − (2 ∗ __LINE__))
#define GET_RETURN_PTR() \

((unsigned __int64) __AddressOfReturnAddress ())
#define ANNOTATION(annotation , native_code , . . .) \
do { \

if (GET_RETURN_PTR() > HEAD) { \
extern const char ∗annotation##_label ; \
__int2c () ; \
_m_prefetchw(annotation##_label) ; \
__debugbreak () ; \
annotation (__VA_ARGS__) ; \

} else { \
native_code ; \

} \
} while (GET_RETURN_PTR() > TAIL)

Listing 4.2: Annotation macro for 64-bit Microsoft
Visual Studio.

• GET_RETURN_PTR() leverages intrinsic function

__AddressOfReturnAddress to obtain a pointer to the return address on the stack.

• HEAD generates an integer larger than any stack address on 64-bit Windows (the built-in

macro __LINE__ is substituted with the source code line number on which the annotation

macro is used).

• TAIL generates another such integer that is distinct from any HEAD in an annotation on any

subsequent line in the source file. This prevents ambiguity between the tail of one annotation

and the head of the next (even if multiple annotations appear on the same line).

The __int2c() serves as a hint to ANNOTATIONDR that the preceding branch belongs to an

annotation. The first byte of this instruction is distinct from the first byte of any other instruction

on x86-64, making it possible to examine just one byte following any direct branch and determine

137

with high accuracy whether it could be part of an annotation. Since the compiler must regard an

interrupt similar to a memory fence, the interrupt is guaranteed not to be reordered by compiler

optimizations away from the branch instruction. The prefetch of annotation##_label is the

unique identifier of the annotation, from which ANNOTATIONDR determines (1) that the instruction

sequence is definitely an annotation, and (2) the name of the annotation function (since there

may be no symbol associated with the annotation function call, for example in a stripped binary).

The __debugbreak() instruction simplifies ANNOTATIONDR’s parsing of the annotation by

preventing the compiler from interleaving argument setup for the annotation call with the prefetch

of the annotation label (since an interrupt is regarded similar to a memory fence). Note that while

this definition of the annotation macro is robust in practice on all available versions of Microsoft

Visual Studio, it is possible that future versions of the compiler may require the annotation macro

definition to be revisited. Listing 4.3 shows a sample of an annotation compiled in Microsoft Visual

Studio 2012.

; i f (GET_RETURN_PTR() > HEAD)
1400019B6: lea rax , [rsp+0C8h]
1400019BE: cmp rax ,0FFFFFFFFFFFFFDEFh
1400019C4: jbe 1400019E5
; annotation hint : byte CD follows the branch
1400019C6: int 2Ch
; annotation label (register or immediate operand)
1400019C8: mov rax ,<constant>
1400019CF: prefetchw [rax]
; int3 isolates prefetch from argument setup
1400019D2: int 3
; argument setup code
1400019D3: mov edx,1
1400019D8: mov ecx,[140030160h]
; call annotation_log()
1400019DE: call annotation_log
1400019E3: jmp 1400019F7
; native_code: calls printf ()
1400019E5: mov edx,[140030160h]
1400019EB: lea rcx ,<constant>
1400019F2: call pr in t f
; while (GET_RETURN_PTR() > TAIL)
1400019F7: lea rax , [rsp+0C8h]
1400019FF: cmp rax ,0FFFFFFFFFFFFFDEEh
140001A05: ja 1400019B6

Listing 4.3: Annotation compiled in Visual Studio
2012.

138

4.4 Inference-Based Optimization

The requirement to specially compile the target application with annotations can be avoided by

inferring the JIT code regions and instrumenting stores that frequently write to them. This section

introduces INFERENCEDR, an extension of ORIGINALDR that includes the selective fragment

removal from ANNOTATIONDR.

Parallel Memory Mapping Since there are no annotations to inform INFERENCEDR about JIT

writes, it initially uses the detection scheme from ORIGINALDR. In addition, for each page A of

memory from which dynamic code has been executed, INFERENCEDR associates a counter cA

with A and increments cA on every write fault taken against A. When cA exceeds a configurable

threshold (default 12), INFERENCEDR creates a parallel mapping A′ with writable permission.

Since both the original page of memory and the new parallel mapping access the same underlying

physical memory, a write to the parallel page is immediately visible for reading at the original page

address. Similar parallel mapping techniques appear in recent works [124, 103, 45].

For the current and every subsequent write fault taken against A from writing basic block w,

INFERENCEDR instruments each store instruction s in w with a prologue that (1) identifies each

page sp overlapping the address range sr that s is about to write, and (2) queries a hashtable for any

page P ∈ sp that has been mapped to a parallel page P ′. For every such pair 〈P, P ′〉, the prologue

continues:

1. Lookup sr in the fragment overlap hashtable (Sec. 4.2.3). If any fragments have been

translated from sr:

(a) Exit to DynamoRIO and flush the stale fragments.

2. Replace sr (in P) with s′r (in P ′) so s can write freely.

139

JI
T
 C

o
d

e
 F

ra
g

m
e
n

ts
JI
T
 E

n
g

in
e
 F

ra
g

m
e
n

ts

Code Cache

Translate Code

A

Virtual
Memory

A

A

rw-

r-x

Physical
Memory

BB

Read Code/D
ata

*
*

Write
 Code/Data

(a)

(b)

(d)

(e)

BB

BB

BB

Read Data

Write Data

Write Data

(c)

Instr
BB

BB

Instr
BB

Write Code

(f)

(g)

'

Figure 4.4: Parallel mapping in INFERENCEDR. Physical page A is mapped both to virtual page A
and A′, such that a write to A′ is equivalent to a write to A.

Figure 4.4 illustrates a parallel mapping A and A′, along with reads from A (arrows a, b and

e), faulting writes to A (arrows c and d), and instrumented stores to A via A′ (arrows f and g).

On deallocation of A, INFERENCEDR removes both cA and A′. These techniques combine to

(1) eliminate the concurrent writer problem, and (2) avoid redundant invocation of the fragment

flushing routine.

Eliminating the Concurrent Writer Problem Without annotations, detecting modifications

requires not only that writable+executable memory pages be marked read-only, but also that the

read-only status be maintained even if the executable permission is removed. Otherwise code

fragments from the entire region would have to be flushed when the pages are set executable

again, because any code changes would have gone unseen. This greatly increases the impact of

the concurrent writer problem, making it especially significant for all JIT writes to be quickly

instrumented with the redirection to the parallel page. Fortunately, large JIT engines tend to be well

organized, and we find that a small number of stores are responsible for all the JIT writes.

140

Avoiding Redundant Fragment Flushing Even without the concurrent writer problem, extrane-

ous invocations of the fragment flushing routine will generate significant overhead. The DynamoRIO

clean-call facility allows any internal function to be called from the code cache by making a soft

context switch, and this facility is used to invoke the same selective fragment flushing routine

that was invoked by the annotation in Section 4.2. While the context switch is relatively efficient

(approximately 100 CPU cycles), it becomes a significant expense when invoked for data writes

in the JIT code area, which are frequent for highly optimized JITs like V8 and Ion. Redundant

fragment flushing also occurs when the JIT overwrites code that was never executed—and hence

never translated into the code cache. In both cases, the fragment overlap hashtable will contain no

entries for the JIT write span, allowing the flushing clean-call to be skipped.

Constructing the Parallel Mapping On Linux it is not generally possible to create the parallel

mapping from the target application’s original memory allocation, because a shared memory file

descriptor is required to attach the second mapping to the physical memory of the first mapping (a

memory allocation is typically made via libc function malloc(), which does not use shared

memory). Instead, INFERENCEDR maps a new shared memory page, copies the contents of the

original page to it, and replaces the original page with a new parallel mapping of the copy. In the

unusual case that the application has already setup a parallel mapping of its own, it would be possible

for INFERENCEDR to query the OS for the location of the mapping and (if necessary) replace it

with a specialized form of our parallel mapping that additionally maintains the application’s original

mapping.

JIT vs. Trampoline Both of the DGC strategies presented in Sections 4.2 and 4.4 are specifically

optimized for large JIT engines that generate megabytes of code in a single execution. These

optimizations work equally well for smaller JIT engines such as the Microsoft managed runtime,

which generates small trampolines to bind application components to system libraries and services

at runtime. The trampolines range in size from 4 bytes to roughly 250 basic blocks, so DynamoRIO

141

will in some cases designate those trampoline regions as JIT code regions. While the frequency of

code changes in these trampolines is much lower than for a JavaScript JIT engine, the concurrent

writer problem has a significant enough impact to warrant parallel mapping the small number of

pages occupied by the trampolines.

Implicit JIT Code Region Expansion When an instrumented store targets a page that has been

marked read-only by INFERENCEDR for code change detection, the instrumentation is of no

advantage—there is no parallel mapping for the page yet, so the concurrent writer problem still

requires the entire region to be flushed. Since any instrumented store is already known to write JIT

code, it is more likely that any executable page it writes to also contains JIT code. To minimize the

overhead of region flushing, INFERENCEDR eagerly expands the JIT code region to include the

written page. INFERENCEDR additionally avoids the page fault by placing read-only markers in the

parallel mapping hashtable, allowing the instrumentation to determine that its store is about to fault,

and instead make a clean-call to emulate the write and flush the region.

4.4.1 Parallel Mapping on Other Platforms

The basic technique for parallel mapping on Linux can also be applied for DBT running under

Windows, though the procedure is slightly more complex. Allocating memory in Windows is a two

stage process that requires first reserving the virtual address space and then committing physical

storage to back the virtual address space. One complication is that portions of the reserved memory

may be committed separately. Thus when a DBT engine discovers that a given reserve contains JIT

code, the straightforward implementation of the DBT would simply copy the entire memory region

and perform the parallel remapping. We expect that INFERENCEDR would port naturally to Mac

OS X, which is based on Linux and supported by ORIGINALDR.

142

4.5 Evaluation

We evaluated the performance of each optimization stage from ORIGINALDR to INFERENCEDR

relative to native performance on the Octane and Kraken [118] JavaScript benchmarks for two

popular JIT engines, Chrome V8 and Mozilla Ion. We do not report results for SunSpider as it

has largely been made obsolete by advances in JITs. We focus on JavaScript JITs because (1)

other popular JITs such as Android’s Dalvik and the Microsoft Managed Runtime are not available

for our target platform, (2) JITs for higher-level scripting languages like Lua and PHP do not

have well-established performance benchmarks and (3) Java is not especially relevant for DBT

because the Java platform has its own ecosystem of tools that operate at the JVM level where

interesting information is more readily visible. Table 4.2 shows both the performance overhead and

improvement of each optimization for both Octane and Kraken.

All reported overheads represent the geometric mean of 3 runs, with P value of the two-tailed

Student’s t-test [70] no more than 9.076E-7. The test platform for all benchmarks is Ubuntu 13.04

on an Intel Xeon E3-1245 v3 running at 3.40GHz with 16GB memory and solid state drives.

Performance Improvement Figures 4.5 and 4.6 show the speedup of INFERENCEDR over

ORIGINALDR and Pin (the performance of ANNOTATIONDR with selective fragment removal is

nearly identical to INFERENCEDR). While our technique is applicable to DBT in general, other

platforms such as QEMU and Valgrind are omitted from these results because they incur enough

other overhead that DGC handling is not a bottleneck. Librando reports 3.5× overhead on Octane

to randomize the V8 output for improved security. We focus our comparison on Octane here, but

the relative performance of Pin is similar on Kraken.

Figures 4.5 and 4.6 additionally illustrate that INFERENCEDR performs much better on some

benchmarks in the Octane suite than others. Runtime analysis reveals that the benchmarks for which

INFERENCEDR performs best are getting the most mileage out of their compiled code, whereas

143

 1x

 2x

 4x

 8x

 16x

 32x

 64x

 128x

 256x

 512x

R
ic

h
ar

d
s

D
el

ta
B

lu
e

C
ry

p
to

R
ay

T
ra

ce

E
ar

le
y

B
o

y
er

R
eg

E
x

p

S
p

la
y

N
av

ie
rS

to
k

es

P
d

fJ
S

M
an

d
re

el

G
am

eb
o

y

C
o

d
eL

o
ad

B
o

x
2

D

zl
ib

T
y

p
es

cr
ip

t

S
p

la
y

L
at

en
cy

M
an

d
re

el
L

at
en

cy

G
eo

m
et

ri
cM

ea
nA

v
er

ag
e

it
er

at
io

n
 t

im
e

v
s

n
at

iv
e

Benchmark

Pin
OriginalDR
InferenceDR

Figure 4.5: Optimization performance for Octane on V8.

 1x

 2x

 4x

 8x

 16x

 32x

 64x

 128x

R
ic

h
ar

d
s

D
el

ta
B

lu
e

C
ry

p
to

R
ay

T
ra

ce

E
ar

le
y

B
o

y
er

R
eg

E
x

p

S
p

la
y

N
av

ie
rS

to
k

es

P
d

fJ
S

M
an

d
re

el

G
am

eb
o

y

C
o

d
eL

o
ad

B
o

x
2

D

zl
ib

T
y

p
es

cr
ip

t

S
p

la
y

L
at

en
cy

M
an

d
re

el
L

at
en

cy

G
eo

m
et

ri
cM

ea
nA

v
er

ag
e

it
er

at
io

n
 t

im
e

v
s

n
at

iv
e

Benchmark

Pin
OriginalDR
InferenceDR

Figure 4.6: Optimization performance for Octane on Ion.

more cumbersome benchmarks like CodeLoad and Typescript compile more code and execute it

fewer times. The worst case for INFERENCEDR is the two latency scores, which report special

144

Octane Suite Kraken Suite
Chrome V8 Mozilla Ion Chrome V8 Mozilla Ion

Score Overhead Speedup Score Overhead Speedup Time Overhead Speedup Time Overhead Speedup

ORIGINALDR 2271 15.80× - 7185 4.36× - 119s 9.08× - 36s 3.25× -

ANNOTATIONDR +
VM Area Isolation

9514 3.77× 4.19× 11914 2.63× 1.66× 35s 2.67× 3.4× 24s 2.14× 1.5×

ANNOTATIONDR +
Fragment Removal

14532 2.47× 6.40× 13797 2.27× 1.92× 24s 1.87× 4.96× 22s 1.95× 1.64×

INFERENCEDR 14257 2.52× 6.28× 14589 2.15× 2.03× 23s 1.78× 5.17× 23s 2.11× 1.57×
Native 35889 - - 31340 - - 13s - - 11s - -

Table 4.2: Performance improvement through several stages of DynamoRIO JIT optimization, as
demonstrated in the Octane and Kraken JavaScript benchmark suites for both Chrome V8 and
Mozilla Ion. Overhead is relative to native, and speedup is relative to ORIGINALDR.

measurements taken during the execution of Splay and Mandreel. SplayLatency isolates garbage

collection time, while MandreelLatency individually times compile-intensive operations and squares

the duration of each timed event before accumulation to penalize delays during these operations.

This creates a worst-case scenario for INFERENCEDR, since its overhead is incurred during the

operations that are penalized for latency.

Comparison of Approaches While INFERENCEDR and ANNOTATIONDR offer similar perfor-

mance, they minimize overhead in slightly different ways. Both approaches are able to isolate

the specific code fragments that are modified by a JIT write, but only INFERENCEDR is able

to avoid exiting the code cache in the common case that the JIT modifies or removes code that

was never translated. Since a single store instruction only modifies a small number of bytes, the

INFERENCEDR instrumentation can easily query the hashtable of overlapping code fragments from

within the code cache. But the annotation may specify a JIT write spanning many pages of memory,

making it significantly more complex (though not impossible) to perform the overlap check from

within the code cache. This weakness in ANNOTATIONDR is also its advantage, because it can

remove a very large span of stale code fragments during a single cache exit. For example, Chrome

V8 often generates several pages of code into a non-executable buffer and then copies it into the JIT

code area. Since INFERENCEDR instruments low-level store instructions in the memcpy function, it

must invoke the flush operation for each 16-byte write. Furthermore, shared functions like memcpy

145

are used for many purposes other than copying JIT code, so while the overlap check is very efficient,

the vast majority of overlap checks for the memcpy stores find no fragments to flush. Conversely,

since the annotation of the JIT copy function is placed at a much higher level within the JIT code,

ANNOTATIONDR is able to flush the entire set of pages in a single exit of the code cache.

While the annotations represent a contribution in themselves, ANNOTATIONDR would typically

only be preferable in a scenario where INFERENCEDR is not feasible, since they offer similar

performance. One example of such a scenario is that INFERENCEDR may not be fully compatible

with 32-bit applications that can consume large amounts of memory, because during a memory-

intensive execution there may not be sufficient address space to construct the parallel memory

mappings. There is also a special case on the 32-bit Windows platform in which the application

could initially allocate all of its memory in one very large reserve, requiring INFERENCEDR to

double-map the entire reserve (Section 4.4.1)—which may not be possible in the 4GB address

space of a 32-bit process. Should this become an issue, the user can choose to either (1) avoid

such large workloads when running under the DBT tool, or (2) annotate the application and use

ANNOTATIONDR.

Another consideration is security—the presence of the parallel mapping in virtual memory makes

it possible for an adversary to write to the JIT code region undetected by the DBT. This could

potentially create a vulnerability for a security-focused client of INFERENCEDR that needs to

receive notifications of all DGC writes. Since protecting the parallel mappings inevitably creates

additional overhead, ANNOTATIONDR may be the better alternative.

Annotation Developer Effort The amount of work required to annotate a target application

varies. Annotating Ion required a complex runtime analysis to place 17 annotations. V8 was much

easier because it is designed for portability to platforms that require an explicit i-cache flush—we

only needed to annotate the global flush function in one place, and memory handling functions in 4

places, all of which were easy to find with no runtime analysis. For builds of V8 having Valgrind

146

annotations enabled, ANNOTATIONDR can use the existing Valgrind annotation of the i-cache flush

function, making the integration that much easier.

Space Overhead Both optimization approaches maintain hashtables that consume up to 2× the

total size of all live DGC fragments, which is a moderate overhead in comparison to application

data. INFERENCEDR additionally doubles the number of virtual memory mappings required for

JIT code regions, but this does not increase physical memory usage (beyond OS accounting for the

mappings).

SPEC CPU 2006 SPEC Int SPEC fp
ORIGINALDR 12.27% 17.73% 8.60%
INFERENCEDR 12.35% 17.88% 8.60%

Table 4.3: INFERENCEDR does not increase overhead for normal applications that do not dynam-
ically generate code. ANNOTATIONDR is omitted because INFERENCEDR includes annotation
detection (for the benefit of tools).

Negligible Side Effects We show that the optimization does not negatively impact the perfor-

mance of DynamoRIO on normal applications by evaluating INFERENCEDR relative to ORIGI-

NALDR on the SPEC CPU 2006 benchmark suite (Table 4.3). The SPEC CPU 2006 benchmarks

include a broad range of applications written in C, C++, and Fortran, but does not include any

dynamically generated code.

147

Chapter 5

ZenIDS

The difference between Paradise and a real IID for the standard PHP interpreter1 lies simply in the

four IID challenges (Section 1.2) along with the following three snares (Section 2.1) introduced by

the PHP platform.

Scf In its zeal to provide the best in programming convenience, PHP has come to support a broad

variety of indirect and sometimes esoteric control flow constructs. This would make an overly

specific Trusted Profile prone to both false positives and false negatives.

– Destructors are invoked implicitly at some time after an allocated object goes out of

scope. The invocation may depend on garbage collector state, making it effectively

non-deterministic from the standpoint of user code.

– When a script attempts to read a non-existent property, PHP looks for method __get()

on the object to call as a fallback, passing the name of the inaccessible property. Similarly

for failed writes, the fallback is __set(). One effect of this feature is that many kinds

of expressions can become call sites. For example, a trivial increment foo->faux++;

can invoke both the __get() and __set() methods.
1https://github.com/php/php-src

148

https://github.com/php/php-src

– A user-defined object can override many of the PHP built-in functions. For exam-

ple, if foo->count() is invoked on an object of class Foo that implements the

Countable interface and defines a count() method, PHP will call it. Otherwise it

calls the built-in count() function, passing the object as an argument.

– When a PHP script contains code outside of any function or method, the interpreter

executes the code each time the file is loaded via include or require.

– PHP supports conventional try/catch semantics similar to Java and C++.

Scc PHP supports dynamic evaluation of a string variable as PHP code. A popular idiom in PHP

frameworks is the template engine, which dynamically generates PHP source files on disk

based on fill-in-the-blank template strings. It is also possible for the source files of a PHP

application to change at any time, since the source is interpreted on each execution, but this is

not a conventional PHP idiom.

Slate One of the PHP ideals is to minimize the development of new features and maximize

composition of existing features. To this end, the PHP development ecosystem thrives

on massive frameworks that provide every imaginable component in an intuitive API. Many

applications go one step further and expose these features to the site administrator by providing

a configuration console that can activate any number of these dormant features with just a

few clicks. Third-party plugins and manual code customization also contribute to late feature

integration. For the purposes of ZENIDS, this has a similar effect to dynamically generated

code.

Figure 5.1 depicts an overview of the components that have been added to Paradise so that ZENIDS

can survive these challenges and snares. The threat model from Paradise is extended for the PHP

application environment in Section 5.1. Then Section 5.2 presents an overview of the PHP interpreter

and the ZENIDS extension, along with its format for the Trusted Profile in Section 5.2.1, which

accounts for Scf and Scc. Next the attack surface and corresponding ZENIDS defense techniques

149

are presented in Section 5.2.2. To account for Slate, Section 5.3 presents the evolution feature

that automatically expands the Trusted Profile when a privileged user makes changes to the site.

Section 5.5.4 presents performance optimizations to minimize the overhead of monitoring and the

evolution feature. To conclude, experimental evaluation of the IID goals is presented in Section 5.5,

including an assessment of the development and maintenance cost of ZENIDS.

PHP Interpreter

e.g., terminate HTTP request

Raw
Log

Cloud IID Service

HTTP

manually prohibit
a program action

manually add a trusted
program action

Blacklist

Log Filter

Trusted
Profile

Evolution

Monitored Program

Statically Installed Script

direct branches
indirect branches
include/require

Dynamic Script

eval()
create_func()

ZenIDS Callback

set_auth_level()

Figure 5.1: Component connectivity overview of application monitoring in ZENIDS. Bold font
indicates components that were not necessary in Paradise (Chapter 2), but are necessary in PHP
to account for the four IID challenges (Section 1.2) and three snares arising from PHP semantics
and its development ecosystem (Section 2.1).

5.1 Threat Model

The Paradise threat model is extended to cover important aspects of the PHP environment. ZENIDS

is designed to defend a PHP web application against a typical remote adversary who does not

have login credentials, but may attempt to open a connection on the web server using any port

and protocol available to the general public. The adversary can determine the exact version of

the protected PHP application and the PHP interpreter, including ZENIDS, and has obtained the

complete source code. A binary attack on the PHP interpreter cannot change the execution of the

script other than to crash the process.

150

The adversary does not know when or where the ZENIDS profiling occurs, and is not able to access

the Trusted Profile without first compromising the protected application. Web server authentication

prevents untrusted uploads, except as permitted by the protected application itself. At the time

of installation, the adversary had no opportunity to modify any files of the protected application;

i.e., we assume the original installation is free of any backdoors that were specifically deployed by

the adversary as part of the attack. There may, however, be backdoors in the application that are

discoverable by the adversary at the time of its public source code release.

5.2 Monitoring

ZENIDS is implemented as a PHP extension supported by 8 callback hooks instrumented in the

interpreter. Since Ssem does not affect the PHP interpreter, it is sufficient to focus detection on a

call graph, augmented with intra-procedural control flow only for the purpose of distinguishing call

sites. Section 5.2.1 outlines the reduction of PHP control flow to the call graph used in its Trusted

Profile, along with the intra-procedural details required for automatic expansion of the Trusted

Profile (Section 5.3). Whereas the high granularity of monitoring in BlackBox made it prone to

false positives, monitoring a trivial call graph makes ZENIDS more susceptible to false negatives.

To substantiate the effectiveness of this design against real exploits, Section 5.2.2 describes the

ZENIDS architecture and presents several of today’s most important RCE attack vectors to illustrate

how it systematically detects malicious intrusions.

5.2.1 Trusted Profile

Although ZENIDS has the luxury of focusing on inter-procedural control flow, the effects of Scf

preclude modeling PHP execution with the simple call graph from Paradise. Inter-procedural control

flow in PHP includes numerous edge types, along with unusual control flow such as multiple callees

151

invoked in immediate succession from a single call site. Fortunately these edge types can be inferred

from context, for example a destructor call is always made from a specific handler within the

interpreter, where the callee is always a user-defined method named __destruct(). Since IID

monitors without context sensitivity, any Trusted Profile will automatically flatten the multiplexed

calls. Together, these observations make it possible for ZENIDS to transform the inter-procedural

execution of PHP into a trivial call graph augmented with conventional exceptions.

Since PHP applications typically serve multiple users and distinguish permissions by an authentica-

tion mechanism, ZENIDS supports degrees of trust based on the privilege level of the logged-in

user. This feature is optional and requires a small code modification in the monitored PHP appli-

cation. The administrator instruments the application with callbacks indicating logins and logout

by adding a call to a built-in function set_user_level() provided by the ZENIDS extension.

For applications with complex privilege hierarchies, the argument to this function can be a lattice

element, but in the ZENIDS prototype a simple integer suffices. ZENIDS stores the authentication

level in the PHP session to make it available across requests and across server nodes. In the Trusted

Profile, each edge is annotated with the lowest authentication level that is trusted to execute the

corresponding control flow branch.

The Trusted Profile expansion feature is also optional, and in addition to the login instrumentation,

it requires a higher granularity in the Trusted Profile. To associate previously untrusted code with

actions taken by an authenticated user, ZENIDS employs a taint tracking algorithm that examines

trust information at each intra-procedural edge. Since the PHP interpreter executes a script by first

compiling it into opcode sequences (e.g., one per function, method, or script body), ZENIDS can

associate one CFG node to each opcode in a compiled sequence. Figure 5.2 illustrates this, starting

from (a) the source code, which is compiled into (b) an opcode sequence, then recorded by ZENIDS

during execution to (c) the trusted profile.

152

46 public function compile (Twig_Compiler $compiler)
47 {
48 i f (count ($this−>getNode(’names’)) > 1) {
49 $compiler−>write (’ l i s t (’) ;

(a) PHP code sample from the Symfony template compiler Twig.

Line Result Opcode Operand 1 Operand 2

0 46 - ZEND_RECV $compiler -
1 48 - ZEND_INIT_FCALL count -
2 48 - ZEND_INIT_METHOD_CALL getNode -
3 48 - ZEND_SEND_VAL_EX "names" -
4 48 tmp #1 ZEND_DO_FCALL - -
5 48 - ZEND_SEND_VAR tmp #1 -
6 48 tmp #2 ZEND_DO_FCALL - -
7 48 tmp #3 ZEND_IS_SMALLER 1 tmp #2

8 48 - ZEND_JMPZ tmp #3 +25

9 49 - ZEND_INIT_METHOD_CALL $compiler write

(b) The sample (a) compiled by PHP into an opcode sequence.

(c) The trusted profile CFG of the opcode sequence (b). At opcode #6, the
callee count() is a built-in function that either counts built-in collections
such as arrays, or calls back to the object’s count() method if it has one.
ZENIDS models the callback as an edge connecting opcode #6 directly to
Twig_Node::count() to avoid having hundreds of edges from a nexus
count() node.

Figure 5.2: Execution of a PHP code snippet under ZENIDS profiling.

Figure 5.3 depicts the node and edge types represented in the ZENIDS Trusted Profile. Since PHP

enforces procedure boundaries, the Trusted Profile accordingly defines a Procedure type that

contains the corresponding compiled opcode sequence. It is not generally possible to group opcodes

into basic blocks in PHP, since the majority of opcodes may implicitly invoke a procedure, and

static analysis of the callees is intractable (see Section 5.2.3). An exception edge is implied by an

Inter-Procedural Edge having a to_node that is not the procedure entry point. Several artifacts of

153

Scf can weaken the Trusted Profile, leading to false positives or negatives during monitoring. To

avoid this, ZENIDS implements special cases in the Trusted Profile:

• When the interpreter initiates a callback to a user-defined function, such as a destructor,

ZENIDS represents the call site with a symbolic system node. Even though the physical call

stack might suggest that the destructor is invoked at a certain opcode, for example where the

object goes out of scope, this is not consistent across executions.

• As depicted in Figure 5.2, when user code calls a built-in function, it may in turn invoke

a callback. For commonly used built-ins like count(), this would create a nexus that

effectively aliases all callback callees of count(). ZENIDS preserves this distinction by

representing the callback as an edge directly from the invocation of the built-in to the callback

callee.

Figure 5.3: ZENIDS Trusted Profile (simplified).

Gkx Avoiding Implicit Aliasing

The transformations from PHP control flow to the ZENIDS Trusted Profile are essential for main-

taining accurate detection of attacks. For example, in an exploit of the WordPress Download

Manager plugin [177], the adversary creates a new privileged user by manipulating the PHP built-in

call_user_func() to target the WordPress core function wp_create_user(). If ZENIDS

154

allowed a built-in to become a nexus, it would not know which call site normally (safely) reaches

which callee, making this exploit potentially undetectable.

5.2.2 Detection

This section presents the ZENIDS architecture and illustrates how its low granularity of monitoring

remains sufficient for detecting RCE attacks against PHP applications. Figure 5.4 shows the main

components of the web server, as configured for our experiments, with the ZENIDS hooks labeled

H1-H5 (the other 3 hooks serve trivial initialization purposes). ZENIDS only relies on the first

two hooks to detect attacks: H1 correlates each compiled opcode sequence with its trusted profile

(if the sequence is trusted at all), and H2 validates each invocation of an opcode sequence (i.e., a

procedure call) by matching it to an edge in the trusted profile. Listings H1 and H2 present the

essential functionality of these hooks in pseudo-code.

Since the PHP interpreter does not assign a consistent identifier to dynamically evaluated script

fragments (i.e., eval() and similar), in this case the sequence of opcodes itself is used as key in

H1 and H2. While this is much more performance intensive than the simple hash comparison for

opcode sequences that are compiled from PHP files, it occurs rarely enough that observed overhead

is minimal.

A PHP deployment is not limited to the typical configuration that we use for our experiments—it

may incorporate numerous extensions, interact with external data sources and services, and be

distributed across multiple servers having various architectures and operating systems. But these

factors do not interfere with the ZENIDS detection mechanism. At its core, the PHP interpreter is

simply a recursive iterator over opcode sequences, and to our knowledge there is no configuration

that substitutes or modifies the central Opcode Execution Loop. For this reason, we expect the

fundamental approach of ZENIDS to be compatible with PHP deployments of all varieties.

155

PHP Interpreter Hook H1 Compile PHP code into op_seq
key ← CANONICAL-NAME(op_seq)
if key ∈ trusted_seqs.keys then

trusted_seq ← trusted_seqs.get(key)
if IS-IDENTICAL(op_seq, trusted_seq) then

op_seq.trusted_seq ← trusted_seq
else

REPORT(untrusted_op_sequence)
end if

end if

PHP Interpreter Hook H2 Enter target_seq from op_seq[i]
1: if op_seq[i].target_seq.trusted_seq = NIL then
2: REPORT(untrusted_app_entry_point)
3: else
4: key ← CANONICAL-NAME(op_seq[i].target_seq)
5: if key /∈ op_seq[i].trusted_targets then
6: REPORT(untrusted_call)
7: end if
8: end if

Figure 5.4: Components of a typical PHP deployment along with ZENIDS hooks H1-H5 and
fundamental RCE attack vectors A1-A5.

156

Canonical Names

For H1 and H2 to be reliable, CANONICAL-NAME() must be consistent across executions, since

ZENIDS uses it to find trusted profile entries. While it might be trivial in many languages, PHP

raises several complications. To begin with, the include and require keywords are compiled

as statements and executed in the opcode sequence (not pre-processed like in C/C++), making it

possible for conditional branches to govern the set of imported source files. Function declarations

similarly allow for conditional compilation at runtime. Combining these factors with namespaces, it

is possible—and very typical—for a PHP application to define the same function identifier multiple

times, often among many different files (e.g., to implement a plugin interface). ZENIDS avoids

ambiguity in the canonical name using the following schemes:

• 〈filename〉.〈function-name〉.〈line-number〉

• 〈filename〉.〈classname〉.〈method-name〉.〈line-number〉

Attacks

Figure 5.4 also labels five important attack vectors taken by today’s corpus of RCE exploits (A1-A5).

The pivotal role of the Opcode Execution Loop in the PHP interpreter makes it possible for ZENIDS

to detect all five vectors in hook H2:

157

A1 Call By Name: When a function callee is specified as a string constant or variable, PHP

resolves the callee using the set of functions defined dynamically during execution. An exploit

of the popular WordPress Download Manager plugin creates a new user with administrator

privileges by manipulating the target of just one PHP call-by-name [177]. ZENIDS reports an

anomaly at H2 on any untrusted call edge, even if the call site and the callee are in the trusted

profile.

A2 Object Injection: The format of serialized objects in PHP specifies both the type and content

of each field, making it possible for the adversary to compose arbitrary serialized instances.

Dozens of object injection attacks have been reported, such as CVE-2015-8562 against Joomla

in which the adversary executes arbitrary code by fabricating a serialized session. In this

scenario ZENIDS will detect untrusted edges in the payload at H2.

A3 Magic Methods: PHP implicitly invokes specially named “magic methods” in certain situa-

tions, for example a call to an undefined method $a->foo() is forwarded to $a->__call()

with the name of the missing callee and the arguments (as a fallback). Esser and Dahse

combine object injection with magic methods to create Property-Oriented Programming

attacks [52, 41] that can execute arbitrary code. While the approach is more complex than

A2, the ZENIDS defense at H2 remains the same.

A4 Dynamically Included Code: The PHP include and require statements can take a

string variable argument, allowing an intruder to import any file. Since ZENIDS models these

as calls, H2 will detect untrusted targets.

A5 Dynamically Interpreted Code: PHP can execute a plain text string as code, making the

input string vulnerable to attack. ZENIDS models these dynamic opcode sequences as

dynamic imports and monitors them at H2.

158

Grx Case Study: Object Injection Attacks

Although recent research has developed many sophisticated algorithms for finding and exploiting

vector A2 in PHP applications, the attacks themselves are no more difficult for ZENIDS than the

most rudimentary unsanitized input. This is not true for defense techniques that attempt to constrain

these dynamic constructs on the basis of static analysis. The vulnerability behind any A2 attack is

a dataflow from unsanitized input to a call-by-name target or eval() string. To determine safe

values at these sites, static analysis must either (a) assume that any possible string may reach the

vulnerability, or (b) model some external construct such as the PHP session or database tables. But

the IID approach does not have any such limitation. Whether a malicious object is injected directly

through an HTTP parameter, or follows a lengthy maze of database accesses, ZENIDS still detects

the anomaly in H2 at the compromised call-by-name or eval() site.

CVE-2015-7808

Figure 5.5 shows a simplified version of the vulnerable class vB_dB_Result (left), which is

serialized by PHP into an encoded string (right top). Since PHP assigns all fields during se-

rialization, the adversary can create a malicious vB_dB_Result (right bottom) that invokes

shell_exec("whoami"); in the destructor. Since the cleanup field is assigned via deserial-

ization, static analysis cannot determine the legal set of function names. But the Trusted Profile will

contain an edge to the trusted cleanup function(s), which for this application will certainly never

include shell_exec().

5.2.3 Dynamic vs. Static Analysis

If it were possible for a static analysis to determine all normal execution paths in a PHP application,

Slate would not be such a significant snare, because the most common late binding scenario is the

159

1 class vB_dB_Result {
2 var $cleanup = ’mysql_free_result ’ ;
3 var $recordset ;
4
5 function __destruct () {
6 call_user_func ($this−>cleanup ,
7 $this−>recordset) ;
8 }
9 }

10

O:12:"vB_dB_Result":2:{
s :7 :" cleanup "; s :17:" mysql_free_result " ;
s :9 :" recordset " ; N;

}

O:12:"vB_dB_Result":2:{
s :7 :" cleanup "; s :10:" shell_exec ";
s :9 :" recordset " ; s :6 :"whoami";

}

Figure 5.5: Object forgery attack against vBulletin. The vulnerable vB_dB_Result class on the
left is serialized by PHP to the encoded string on the right (top). An adversary manipulated the
serialized string into the form on the right (bottom), which resulted in a call to shell_exec()
instead of the expected mysql_free_result function (or similar) in the destructor.

activation of framework features, which could all be analyzed on disk. Having access to the source

code might seem to make PHP an ideal candidate for static analysis. But the presence of Scf makes

the call graph difficult to determine statically, even from the source code. Listing 5.1 shows a simple

case of an expression that may or may not be a call site, depending on the session state at runtime.

For static analysis to be accurate, it must perfectly model all possible session states, which is known

to be intractable.

Listing 5.1: Static analysis cannot easily determine whether the field access $a->size on line 10
will call a function, because the type of $a is dynamically specified in the session, which persists
values across HTTP requests.

1 class Foo {

2 public function __get($field_name) {

3 echo("Unknown field " . $field_name);

4 }

5 }

6 $a_type = $_SESSION["type-of-a"];

7

8 $a = new $a_type();

9

10 echo("a.size = " . $a->size . "\n");

160

5.3 Supporting Website Evolution

A popular design idiom for PHP applications is to provide a large set of dormant features that a

privileged user can easily enable and configure through an admin console. Another popular idiom

generates new PHP source files at runtime on the basis of fill-in-the-blank template. While these

idioms are advantageous for both developers and users, the corresponding changes in control flow

create a snare for IID, particularly in the legacy profiling and end-user profiling scenarios. These

idioms effectively introduce untrusted code into the application that causes a high rate of spurious

anomalies. A variation of this snare is the proliferation of plugins and other third-party additions

throughout the PHP ecosystem. This also affects the vendor profiling scenario, because it may not

be possible for a development organization to maintain Trusted Profiles for all of the components

that may be integrated with their product. A further extreme is the custom integration of components

where there is no plugin interface in the original core product, which occurs frequently among

ambitious site maintainers.

To account for the Slate binding of new features, ZENIDS responds to trusted configuration changes

by expanding the trusted profile to enable relevant new code paths. When ZENIDS detects that

a privileged user has changed application state, for example in the database, it initiates a data

expansion event to add corresponding new control flow to the trusted profile. Similarly, if the

application generates or modifies PHP source files in a way that conforms to a trusted code

generator, ZENIDS initiates a code expansion event. The duration of an expansion is limited to a

configurable number of requests (2,000 in our experiments) to minimize an adversary’s opportunity

to manipulate the expansion into trusting unsafe control flow. Hook H3 initiates expansions on

the basis of the sets tainted_values and safe_new_sources, which are maintained by system call

monitors H4 and H5.

Listing H3 shows how ZENIDS adds edges to the trusted profile when the expansion conditions

are met. The first condition initiates a data expansion (lines 4-5) at an untrusted branch decision

161

PHP Interpreter Hook H3 Execute ith opcode of op_seq
1: if mode = monitoring then
2: if IS-BRANCH(op_seq[i]) &

branch /∈ op_seq[i].trusted_targets then
3: if branch.predicate ∈ tainted_values then
4: mode← expanding
5: trust_to← CONTROL-FLOW-JOIN(branch)
6: else if IS-CALL(branch) then
7: if call.target_seq ∈ safe_new_sources then
8: mode← expanding
9: trust_to← i+ 1

10: else
11: REPORT(untrusted_call)
12: end if
13: end if
14: end if
15: else . mode = expanding
16: if IS-BRANCH(prev_op) then
17: prev_op.trusted_targets ∪ {op_seq[i]}
18: end if
19: if i = trust_to then
20: mode← monitoring
21: else if IS-ASSIGNMENT(op_seq[i]) then
22: tainted_values ∪ {op_seq[i].predicate}
23: end if
24: end if
25: PROPAGATE-TAINT(op_seq, i, i+ 1)

162

(line 2) when at least one value in the branch predicate carries taint from an administrator’s recent

data change (line 3). The second condition initiates a code expansion (lines 8-9) when an untrusted

call (lines 2 and 6) is made to a safe new source file (line 7). If neither expansion condition is met,

and the branch is any kind of call, then an untrusted_call anomaly is reported (line 11). During an

expansion, new branches are added to the trusted profile (line 17) and taint is propagated across all

assignments (line 22) and uses of tainted operands (line 25). The expansion ends (line 20) where

the initiating branch joins trusted control flow (line 19).

5.3.1 Code Expansion Events

Since PHP applications often have repetitive source code, many PHP libraries provide an API to

generate new source files at runtime on the basis of application-defined templates.

PHP Interpreter Hook H4 Store application state
if IS-TRUSTED-CODE-GENERATOR() then

safe_new_sources ∪ {new_source}
else if IS-ADMIN(user) then

state_taint ∪ {stored_state× user.admin_level}
end if

PHP Interpreter Hook H5 Load application state
if !IS-ADMIN(user) & loaded_state ∈ state_taint then

tainted_values ∪ {loaded_state}
end if

For example, GitList uses the Symfony component Twig to define the HTML page layout for each

type of repository page: file list, commit list, blame, etc. At runtime, Twig generates corresponding

PHP files on demand. Incorporating this kind of dynamic code into the trusted profile is easy for

ZENIDS if the code generator runs during the training period. But a demand-based code generator

may run at any time—for example, in our GitList experiment (Section 5.5.2), crawlers found

unvisited views several weeks after the 2-hour training period.

163

To continue trusting these known-safe code generators, each time the application persists a state

change to the database or the filesystem, IS-TRUSTED-CODE-GENERATOR() in H4 determines

whether the application has just written a safe new source file. This function examines the following

criteria:

1. Call Stack: At the API call to update the database or write to a file, does the call stack match

any of the code generator call stacks recorded during the training period?

2. User Input Taint: If during training the application never generated source code using values

influenced by user input, then ZENIDS checks whether the data for this state change carries

taint from user input. This criterion tracks both directly and indirectly tainted values (and

may be disabled to avoid continuous taint tracking overhead).

3. Generator Visibility: Hook H4 additionally preserves a snapshot of the persisted data—if

during training the application only generated source code via the PHP persistence API, then

a new source file will only be trusted if it matches the last snapshot taken at H4.

5.3.2 Taint Tracking

The expansion events rely on propagation of taint from user input and authorized state changes.

User input is tainted at HTTP input parameters and session values, while data loaded by the

application is tainted in H5 on the basis of state_taint. Function PROPAGATE-TAINT() in H3 (line

25) transfers both colors of taint across assignments, compositional operations such as arithmetic

and comparisons, arguments to function calls, and return values from functions. Hook H3 also

implicitly taints all assignments that occur during an expansion (line 22), since those assignments

have as much of a causal relationship to the taint source as the branch itself. But ZENIDS does not

implicitly taint assignments within trusted code, even if it occurs under a tainted branch, because

those assignments must have already been made at some time prior to the expansion event—before

164

taint was present on the predicate—indicating that the influence represented by the taint is not

pivotal to that already-trusted branch decision.

Taint Implementation

To avoid complication as taint flows through composite structures, for example the fields of an

object, ZENIDS implements taint as a hash table entry using the physical address of the tainted

value as the hash key. While it would be simpler to directly flag the internal operand struct, there are

no free bits for primitive type operands, and expanding the 8-byte struct would cause tremendous

complication throughout the interpreter. Directly tainting operands also simplifies integration into

the PHP interpreter, where the majority of explicit taint transfers are implemented as a simple stack

push within the interpreter’s ZVAL_COPY() macro.

5.4 Performance Optimization

The overhead of branch evaluation in H2 and taint tracking in H3 (line 25) could make a naïve

implementation of ZENIDS unusable in a high-traffic deployment. Even checking for the presence

of taint in H3 (line 3) can increase overhead by an order of magnitude. But since these expensive

operations are only necessary in certain scenarios, it is safe for ZENIDS to elide them when condi-

tions indicate that the operations will always nop. For maximum efficiency, ZENIDS implements

three flavors of Opcode Execution Loop (Figure 5.4), each taking only the actions necessary for its

designated context:

165

1. MonitorAll: Propagates taint, evaluates all branch targets.

• Reserved for profile expansion events (2,000 requests).

2. MonitorCalls: only evaluates call targets.

• This is the default for monitoring untrusted requests.

3. MonitorOff: ignores everything.

• Reserved for trusted users (negligible overhead).

Since PHP invokes the Opcode Execution Loop via function pointer, switching is simply a matter

of replacing the pointer. The two monitoring modes are further optimized as follows:

MonitorCalls The first 4 lines of H2 are elided by lazily grafting the set of safe call targets onto each

PHP opcode. ZENIDS cannot extend the 32-byte opcode struct because interpreter performance

relies on byte alignment, so instead it borrows the upper bits of a pointer field (which are unused in

64-bit Linux where the user-mode address space is much smaller than 264). Specifically, a pointer

into the trusted profile is copied into a cache-friendly array, whose index is packed into the spare bits

of the opcode. Line 5 of H2 is further optimized for call sites having only one trusted target: instead

of a trusted profile pointer, the array entry is a direct encoding of the singleton target, allowing for

bitwise evaluation. To avoid expensive string comparisons, target opcode sequences are identified

by a hashcode of the canonical name.

MonitorAll Since ZENIDS maintains taint in a hashtable, the accesses required for taint propagation

could become expensive under rapid iteration of hook H3 (Figure 5.4). In addition, some PHP

opcodes might require a costly callback from the interpreter because they affect complex data

structures or are implemented using inline assembly. Both sources of overhead are alleviated by

lazy taint propagation using a queue that is locally maintained by simple pointer arithmetic.

166

When the interpreter copies internal data structures (e.g., to expand a hashtable), taint must be

tediously transferred to the new instance. ZENIDS flags each data structure that contains taint and

elides this expensive transfer for untainted structures.

5.4.1 Synchronizing Evolution

For applications that store state in a database, the persisted state_taint (Listing H4) is updated

by database triggers, since it is non-trivial to determine from an SQL string what database values

may change (we assume instrumenting the database engine is undesirable). But the query for

state_taint can be expensive relative to the total turnaround time of a very simple HTTP request,

even when our query uses a trivial prepared statement. Instead, ZENIDS stores the request id of the

last privileged state change in a flat file and updates it from the database every 20 requests. While

this delay makes it possible to raise up to 20 false positives immediately after a state change, it is

unlikely because a significant state change often involves multiple HTTP requests. For example,

although the WordPress permalinks feature can be enabled with just one radio button selection, it

takes at least 5 asynchronous HTTP requests to process that change, and only the last one enables

the feature.

5.5 Experimental Evaluation

We conduct several controlled and real-world experiments to demonstrate the ability of ZENIDS to

meet four of the quantitative IID goals. Section 5.5.1 pursues both Gkx and Gdnd with a controlled

experiment to detect recently published exploits against WordPress components. Section 5.5.2

similarly pursues Gwx and Gdnd in the context of real PHP applications facing live Internet traffic,

and Section 5.5.3 focuses on the evaluation phases of these experiments. Section 5.5.4 pursues

Gperf with a benchmark based on live traffic, followed by qualitative discussions of Gdep and Gdev.

167

Since we were not able to obtain a working version of this exploit together with the corresponding

vulnerable application, a case study on Property Oriented Programming was presented in Sec-

tion 5.2.2. The qualitative evaluation of Gdbg, Gmod and Gblk are elided because the design and

implementation of these features is effectively identical to BlackBox (see Section 3.6).

5.5.1 Monitoring a Vulnerable Application

We demonstrate that ZENIDS detects publicly reported exploits by configuring a WordPress site with

vulnerabilities targeted by the 10 most recent WordPress exploits published on exploit-db.com

(as of June 18, 2016), excluding data-only attacks and unavailable modules. This medley, shown

in Table 5.1, shows that ZENIDS can detect a broad variety of exploit strategies. For authenticity

we configured and exercised at least 30% of each module’s high-level features. To train the trusted

profile we invited common crawlers and manually browsed the site for just a few minutes using a

range of mobile and desktop browsers. For modules having forms, we entered a variety of valid

and invalid data and uploaded valid and invalid files. Then we enabled the ZENIDS monitor and

continued using the site to evaluate our goals:

Gkx We invoked each exploit and observed that (a) ZENIDS reported the expected anomaly, and

(b) the POC succeeded, indicating the intrusion report was true.

Gdnd False positives only occurred when entering invalid form data—all other requests were

trusted by ZENIDS.

5.5.2 Monitoring Live Applications

The main goal of ZENIDS is to accurately detect exploits occurring in the wild while minimizing

false positives. This experiment shows that ZENIDS can quickly learn the normal behaviors

168

EDB-ID WordPress Module Exploit Detected

39577 AB Test Plugin X
39552 Beauty & Clean Theme X
37754 Candidate Application Form Plugin X
39752 Ghost Plugin X
39969 Gravity Forms Plugin X
38861 Gwolle Guestbook Plugin X
39621 IMDb Profile Widget X
39883 Simple Backup Plugin X
37753 Simple Image Manipulator Plugin X
39891 WP Mobile Detector Plugin X

Table 5.1: ZENIDS reports an intrusion during attempts to exploit vulnerable plugins and themes in
a WordPress site. These were the most recent 10 WordPress exploits from exploit-db.com as
of June 18, 2016, excluding data-only attacks and unavailable modules.

of popular applications by simply profiling live Internet traffic, allowing ZENIDS to accurately

distinguish exploits from normal (safe) user requests. But this approach may incorporate the

application’s handling of certain malicious behaviors into the Trusted Profile, for example invalid

logins, such that ZENIDS does not report anomalies for these normal but unsafe inputs.

This experiment focuses on a year of live traffic to three PHP applications hosted by our research

lab:

1. WordPress: Our lab website, which has 10 pages and uses the “Attitude” theme (with no

posts or comments).

2. GitList: The public repository viewer for software developed in our lab, based on the

Symfony framework.

3. DokuWiki: A computer science class website containing wiki-text markup, document pre-

views and file downloads.

The applications were hosted on a standard PHP interpreter, and traffic was recorded for a period of

360 days so that the experiment could be conducted offline and accurately repeated. This approach

169

allows selection of various profiling periods to study how that factor affects the accuracy of intrusion

detection. Profiling was augmented by crawling each site with the utility wget, which is unaware

of JavaScript and only follows URLs appearing directly in the HTTP response text.

Table 5.2 presents the results for the optimal profiling periods, which were selected in retrospect

based on the effectiveness of the corresponding Trusted Profile. ZENIDS reported 38,076 anomalies

on a diverse array of attacks using a broad range of exploit techniques,. This includes several

attempts at the notorious XML RPC brute-force password exploit (where each RPC batch is

reported as just one anomaly). The malicious nature of the requests was verified manually on the

basis of common hacks (e.g., SQL appearing in the HTTP parameters) and published or well-known

exploits. A large percentage of these attacks targeted applications that were not installed on the

webserver, yet still caused control flow anomalies. The ratio of unique false positives to requests is

well below .01% for all applications, where unique refers to distinction in control flow anomalies

(i.e., two HTTP requests having the same set of anomalies are considered one unique anomaly

report).

Intrusion Reports
Requests

Total
False Positives False Negatives

Total Training Unique Rate # Rate

WordPress 248,813 595 36,693 3 .00001% 16679 .07%
GitList 1,629,407 298 1,744 1 <.000001% 0 0
DokuWiki 24,574 3,272 253 3 .0001% 0 0

Table 5.2: Intrusion attempts reported by ZENIDS while monitoring our lab web server for 360 days.
False negatives represent safely handled attacks such as invalid logins, or attacks on applications
that we do not host.

Gwx False Negatives and Live Profiling

The vast majority of false negatives represent (a) invalid logins, (b) unauthorized access to admin

pages, and (c) attempts to access privileged functionality that did not exist on the server. In the sense

that no successful exploit occurred during the experiment, there was no possibility of an absolute

170

false negative. But we choose to report a false negative for any HTTP request that (a) exhibited

malicious intent, (b) exercised control flow that is not essential for benevolent users, and (c) did not

cause ZENIDS to report an anomaly. These could perhaps be called gray negatives because the

application safely handled the HTTP request, responding either with a 404 page or redirection to the

login page. It is likely that most of these HTTP requests were generated by malicious bots, and that

they occur very frequently on any public server, even if it does not host any web applications—this

is evident from the fact that all the gray negatives occur in WordPress, which receives all HTTP

requests for URL forms that are not recognized by the Apache webserver. None of these requests

would have succeeded in their malicious intent on any version of our applications, outside of

guessing a WordPress password.

To understand the effect that the profiling period has on the high rate of gray negatives, Table 5.3

shows similar results for a range of profiling periods. An increase of 7× for WordPress to 4,128

training requests results in just a 6% increase in gray negatives, which totals less than .01% of the

year’s WordPress traffic. The additional 966 gray negatives have the same characteristics—they

are evidently generated by bots and have no legitimate means of compromising any version of

the installed applications. It would certainly be better to have supernatural test bots that generate

a perfect Trusted Profile. But the research question behind these statistics is simply, how much

accuracy is lost by profiling live Internet traffic? In the case of this experiment, ZENIDS loses

visibility of the random malicious noise that has a low probability of success but is generated in

such high volumes that it is likely to appear in any sample of HTTP requests. While 16,679 false

negatives may seem significant, 16,679 gray negatives is effectively quite close to Paradise.

These experiments not only show that ZENIDS detects a broad range of attacks, but also that it

integrates effectively into a diverse set of applications representing an important cross-section of

today’s PHP landscape. These frameworks serve a large percentage of the world’s HTTP traffic and

support millions of websites ranging in significance from personal homepages to household names

in the Alexa top 100.

171

Intrusion Reports
Training

Total
False Positives (unique) False Negatives

Requests # Rate # Rate

W
or

dP
re

ss 595 36,693 507 (3) .002% (.00001%) 16,679 .07%
1,188 35,826 507 (3) .002% (.00001%) 17,546 .07%
2,070 35,767 507 (3) .002% (.00001%) 17,605 .07%
4,128 35,727 507 (3) .002% (.00001%) 17,645 .07%

G
itL

is
t 298 1,744 6 (1) < .000001% 0 0

862 1,744 6 (1) < .000001% 0 0
12,010 1,744 6 (1) < .000001% 0 0
72,068 1,744 6 (1) < .000001% 0 0

D
ok

uW
ik

i 1,462 364 224 (55) .009% (.002%) 0 0
3,272 253 101 (3) .004% (.0001%) 0 0
4,133 253 101 (3) .004% (.0001%) 0 0
5,559 217 65 (2) .003% (.0001%) 0 0

Table 5.3: The duration of the training period has minimal impact on the accuracy of ZENIDS
detection. False positives in DokuWiki could potentially be avoided by improvements to ZENIDS.
False negatives represent attacks that failed to have any effect on control flow.

Gdnd False Positives and Live Profiling

ZENIDS only raised 507 false positives (3 unique) against WordPress in the entire year. A broken

link triggered 502 of them (2 unique) at the “guess permalink” function—one might argue that these

are useful anomalies to report, since they do reflect an error in the site.

Improvements to ZENIDS could potentially eliminate all the false positives in DokuWiki. Half

were caused by the addition of a tarball download to the wiki, which does not trigger an expansion

event because new control flow occurs before the tainted tarball is loaded from the filesystem.

ZENIDS could enable this expansion by tainting operands at untrusted branches and, after the

request completes, checking backwards for privileged user influence. The remaining false positives

were caused by crawlers reaching new pages, which could be avoided by blocking suspicious

requests from crawlers.

We experienced just one false positive in over 1.5 million GitList requests despite training the

trusted profile in just 2 hours—a total of 298 requests—highlighting the simplicity of our dynamic

172

approach vs. a traditional static analysis. Our trusted profile for GitList covers 62 closures and

several dynamically generated PHP files, along with 33 distinct magic methods reached from 54

call sites (excluding constructors and destructors), and 327 callbacks from PHP built-in functions.

There were 25 callbacks to closures, which are especially challenging for static analysis, yet easily

identified at runtime.

5.5.3 Evolution

Each of our three applications experienced one expansion event during the experiment. The largest

event occurred in WordPress when the site administrator enabled permalinks (at request #53,310),

which has the following effects on the site:

• Visitors may request any page by name. For example, the original “ugly” URL http://

ourlab/?p=18 is now also reachable as http://ourlab/publications_page/.

• Requests for the original URL forms /p= or /page_id= are rewritten by WordPress to the

permalink URL.

• Visitors subscribing to a comment feed can use the permalink form of the feed URL (which

was requested by crawlers even though comments were disabled).

A smaller data expansion occurred in DokuWiki after a change to the layout of the start page and the

wiki menu bar. In GitList, a code expansion incorporated new view templates into the trusted profile

as they were dynamically generated. There were no false positives during any of these expansion

events, yet ZENIDS also did not add any edges to the Trusted Profile that were not specifically

related to the trusted state change.

173

http://ourlab/?p=18
http://ourlab/?p=18
http://ourlab/publications_page/
/p=
/page_id=

Gwx Safe Profile Expansion

Learning to trust the new WordPress permalinks feature was the most risky of the three expansion

events, because WordPress receives every request for a URL that the webserver does not recognize.

Since these are mostly malicious requests, a weak implementation of ZENIDS might mistakenly

trust malicious control flow as part of the expansion event. But manual analysis confirms that

all 144 newly trusted calls were strictly necessary to support the permalinks feature. In fact,

ZENIDS reported 114 intrusion attempts during the expansion, including 9 attempts at known

WordPress plugin exploits (CVE-2015-1579 and [38, 121, 39]), 2 invalid login attempts, 3 attempts

to register new users, 6 requests for disabled features, and 36 unauthorized requests for administrator

pages. Following the expansion, ZENIDS continued to report anomalies for thousands of malicious

requests, many of which used a valid WordPress permalink URL form.

The GitList expansion incorporated several new Git views into the trusted profile, each having more

than 100 SLOC. In DokuWiki the expansion added 145 new SLOC. We did not experience enough

attacks targeting GitList or DokuWiki to make an empirical case for the safety of those expansions,

but manual analysis confirms that every added call was strictly necessary for ZENIDS to trust the

newly enabled features.

The Twig template engine in GitList conforms to all three characteristics of a disciplined code

generator, indicating that ZENIDS successfully detected the three corresponding criteria in hook

H4 when the new views were generated.

Gdnd Sufficient Profile Expansion

In all three applications, no false positives occurred for requests that accessed the newly trusted

features, although the features are substantially complex. For example, in WordPress the permalinks

support many URL variations and a complex resolution mechanism. Although it was heavily

174

exercised for the 9+ months during which permalinks were enabled, ZENIDS trusted all the new

code paths on the basis of the 2,000 request expansion period. The new GitList views and DokuWiki

menu layout also activated new URL forms with additional URL resolution, and these were fully

trusted after the expansions completed.

5.5.4 Resource Efficiency

A complex tool like ZENIDS can potentially consume many different kinds of resources, including

administrative effort to deploy and configure the runtime, development of the runtime and related

tools, and execution time. The goal is simply to minimize these costs for the typical usage scenarios,

and ideally provide a positive cost/benefit for every potential user.

Glite Runtime Performance

We evaluated the performance of ZENIDS by replaying a contiguous segment of the recorded

HTTP traffic from the experiment in Section 5.5.2. To avoid bias we selected a segment having a

representative frequency of trusted user requests and expansion events (though none incorporated

new control flow). The web server is an Intel Xeon E3-1246 v3 with 32GB RAM and a solid state

drive, configured with a LAMP stack running on Ubuntu 14.04: Apache 2.4.7, MySQL 5.5.49, and

PHP 7.1.0 alpha 3.

To show that ZENIDS performs well in a real deployment scenario, we configured optimizations

that would typically be used for high-traffic PHP websites. For example, our deployment enables

the popular opcache extension, which alleviates compilation overhead by caching the compiled

opcode sequences, after performing 12 low-level optimizations. We also chose the latest stable

build of PHP which includes significant core optimizations such as global register allocation for the

script instruction pointer and frame pointer. We compiled all PHP modules with gcc optimization

175

flags -O3 -march=native to obtain peak performance for the baseline (vanilla) configuration

of the PHP interpreter.

After configuring ZENIDS with the same trusted profile that we reported in Section 5.5.2, we

replayed the HTTP requests synchronously to isolate the PHP interpreter’s execution time from

process and thread scheduling factors. Table 5.4 shows the overhead is less than 5% for all three

applications.

WordPress GitList DokuWiki

Runtime Overhead 4.1% 4.6% 4.5%

Table 5.4: Runtime overhead of ZENIDS vs. an optimized vanilla LAMP stack, measured as the
geometric mean of 10 runs.

Gdep Deployment Effort

ZENIDS can be installed in the same way as any build of PHP, though it does require the customized

version of the PHP core interpreter, which includes some additional instrumentation and hooks.

Using the default configuration of the IID Service for both profiling and logging, it is possible for

these tasks to be completely transparent to the site administrator, similar to BlackBox.

Gdev Development Effort

The cost of developing and maintaining ZENIDS is an important factor in its overall performance

as a practical security tool. Although there is significant effort involved, this burden becomes

progressively lighter as the user base grows, since the work only needs to be done once for each

version of the PHP interpreter.

The ZENIDS PHP extension consists of 20KLOC of code, and we additionally instrumented 8

hooks for a total of 317 lines of code in the PHP interpreter source. For applications that store state

in a database, ZENIDS requires a database schema to contain the state_taint that is used by hooks

176

H4 and H5 to support data expansions. The schema consists of two small tables, plus one trigger

per application table.

For PHP applications having an authentication scheme, the login function must be instrumented

with callbacks to set_user_level($level), which is provided by the ZENIDS extension

as a PHP built-in function. The $level argument is an integer indicating the new authentication

level, for example in WordPress we use the application’s role_id. Placing the callbacks was

simple in both WordPress and Doku: for each application, we inserted three callbacks in one source

file immediately following a log statement indicating successful login or logout (GitList has no

authentication).

5.5.5 Verifiability

The ZENIDS prototype is open-source and can be found at http://www.github.com/

uci-plrg/zen-ids. Since the data used in our experiments contains private user information,

we are not able to publicly release it. However, our repository provides instructions for conducting

similar experiments in ZENIDS.

177

http://www.github.com/uci-plrg/zen-ids
http://www.github.com/uci-plrg/zen-ids

Chapter 6

Related Work

In an effort to understand the current state of software security and to improve protections for

system data and resources, researchers have developed numerous attacks and defenses that push the

boundaries of the security domain. Published attacks expose vulnerabilities that were not previously

recognized, and show the potential risks faced by affected systems. Published defenses mitigate

or even defeat these attacks with advanced strategies for eliminating known vulnerabilities or the

adversary’s opportunities to compromise them. But before stepping into the history of this ongoing

combat, it is important to understand the motivation for this research process and consider its

limitations. After all, wouldn’t it be easier if we could develop quantitative measures of security

that apply to all possible attacks?

Several factors make it difficult to formalize the degree of security provided by a software defense

technique. To begin with, the attack surface of popular and important applications is constantly

changing as development tools and techniques evolve. Within the context of a stable platform,

attackers continue to discover new vulnerabilities and new approaches to exploiting them. Even

if a defense is proven perfectly secure against a certain attack vector, there is no way to quantify

the potential for a new attack vector to be discovered. Adding to the challenge, users have a low

178

tolerance for overhead from a security tool—it is perceived as contributing nothing to the value

of the software, serving only to preserve existing functionality. This has driven defense efforts

towards heuristics or other approximations to gain a slight performance edge, instead of focusing

on fundamental, axiomatic security concepts [76].

The net effect of these factors is that the security goals of the research community have become

a moving target. Without a systematic approach for evaluating the effectiveness of a defense

technique, research efforts have focused on the development of attacks. While it makes for a

somewhat unscientific research process with transitory results, this approach has been widely

accepted.

Accordingly, one of the major motivations for developing IID is that the ultimate security benefit

of any given defense is unknowable under the current state of the art. Since there is no scientific

certainty about whether a new control flow attack may be possible, an IID can complement existing

defenses by selectively recording application state and progress during the execution of suspicious

program activity. This includes control flow events and related context information such as call

stacks and even heap snapshots that can be invaluable to forensic analysis and application debugging

efforts alike. An IID can also assist in correcting and/or improving installed defense systems to

incorporate newly discovered attack vectors into the scope of protection.

Rather than advertise the merits of IID on the basis of this philosophical argument, this chapter

presents a thorough analysis of existing defense systems in both CFI (Section 6.1) and TID

(Section 6.3). The goal of this analysis is to show:

• Known attacks can defeat each important CFI and TID approach.

• An IID can detect exploits that existing defenses may allow.

• The IID design supports many important features beyond exploit detection.

These sections conclude with a cost/benefit analysis of IID in comparison with existing defenses.

179

As mentioned in Section 3.1, the anticipated release of Intel’s security extension CET could

significantly change the security landscape on the x86 platform. To account for this potential future

scenario, Section 6.2 revisits the defenses of Section 6.1 to show how their effectiveness may change

under CET, and how IID can continue to be a valuable approach.

Section 6.4 focuses on security research specific to PHP applications, which takes the form of

vulnerability detection scanners. Section 6.5 presents an orthogonal defense strategy that focuses on

eliminating bugs and other unwanted behaviors from programs, and shows how IID can complement

the ongoing effort to improve these important tools. Section 6.6 focuses on the usability of IID,

presenting work in such areas as program comprehension and symbolic execution that may be able

to reduce or eliminate the inconvenience costs of IID.

6.1 Control Flow Integrity

Introspective Intrusion Detection can provide valuable insight into unexpected program behaviors,

including many that could be missed by leading CFI defenses. Sections 6.1.1 and 6.1.2 present a

detailed, statistical comparison of BLACKBOX vs. CFI techniques based on equivalence classes of

safe branch targets, showing that the accuracy of IID is almost always higher because it defines more

equivalence classes with fewer members. Section 6.1.3 compares BLACKBOX to an orthogonal

approach to CFI that focuses on protecting control flow pointers. While this can enable perfect

accuracy in the set of allowed targets, it often exposes other vulnerabilities. Section 6.1.4 presents

sophisticated attacks against x86 applications, including targeted attacks against that can disable

various components of CFI defenses. Section 6.1.5 discusses compatibility of leading CFI tools with

popular applications and operating systems, and Section 6.1.6 compares BLACKBOX performance

to the CFI techniques presented here. The discussion of CFI concludes in Section 6.1.7, which

summarizes the advantages and disadvantages of IID in comparison and contrast with CFI.

180

Throughout this comparison with CFI defense systems, it is assumed that offline procedures are

free of adversarial influence, including IID profiling and the static analysis of the CFI defense. This

scenario was addressed earlier in the context of Paradise (Section 2.3.1).

6.1.1 Equivalence Class CFI for x86

One approach to securing control flow is to constrain dynamic branches to a set of valid targets that

is computed offline in an environment free of malicious influence. The defense does not attempt to

prevent the adversary from modifying a branch target, but instead constrains the branch at runtime.

This may be implemented by forcing the target to be selected from the valid set, or by detecting that

a target outside the valid set is being executed and terminating the program instead. The challenge

faced by these techniques is that the set of valid targets is not exactly known until runtime, at which

point the adversary is already present. Computing the target sets offline requires approximation by

grouping targets into equivalence classes, and assigning each branch to the equivalence class that

most accurately represents its valid target set. Since this factor is central to the degree of security

provided by these techniques, they can be called equivalence class CFI (EC-CFI). There are two

important factors that define the effectiveness of an EC-CFI:

• The number of targets allowed at each branch, especially considering the largest instance of

these sets, because conceding control of even one branch can lead to total defeat.

• Robustness to attacks directed at the components of the defense.

Since the second point is relevant to all software defense techniques, it will be covered more

generally in Section 6.1.4. The goal of an EC-CFI is to make the best compromise between three

competing demands:

181

EC1 If the equivalence class assigned to a branch is too small, the protected program will not work,

because it needs to use a branch target that the defense tool has prohibited.

EC2 The larger the equivalence class for a particular branch, the more options the adversary has

for manipulating that branch without triggering the defense.

EC3 Runtime overhead typically increases with the number of equivalence classes, such that

providing better security often means degrading program performance more.

IID is an EC-CFI that minimizes EC2 slightly beyond the limitations of EC1. This is possible

because an intrusion detector does not interfere with the program when a false positive occurs.

However, if an IID goes too far in this direction, it generates too many false positives and becomes

useless. So the challenge for IID is very much the same as for any other EC-CFI, but IID is

distinguished from these defenses by the fact that it stands on the opposite side of EC1. On the

x86 platform, IID also pushes the limits of EC3, as discussed in Section 6.1.6. This section will

focus on comparison of BLACKBOX with EC-CFI techniques for x86 user-space programs, and

Section 6.1.2 will more generally compare IID with EC-CFI techniques for other platforms.

The research question to address here is how to concretely compare the accuracy of IID detection

vs. the accuracy of EC-CFI defense. As discussed in the CFI survey by Burow et al. [19], it can be

challenging to compare one EC-CFI to another because the equivalence classes can be assigned

in fundamentally different ways. For example, a modular EC-CFI called MCFI [123] uses call

graph analysis to assign an equivalence class to every return instruction, whereas BLACKBOX

uses a dynamic shadow stack that only allows the one valid return target (for the case of soft

context switches, see Section 3.3.2). The switch statement in C and C++ programs creates similar

confusion in the reporting of metrics about an EC-CFI. Approaches like MCFI typically group all

the defined case labels into one equivalence class and omit the switch from reported metrics

about equivalence classes. But BLACKBOX only trusts the case labels that were observed during

profiling, and furthermore it does not distinguish between a switch statement and an intra-module

182

call. The net effect of these seemingly minor points is that it can be very difficult to make an

apples-to-apples comparison of accuracy between any two implementations of EC-CFI. One way to

make consistency a priority is divide the comparison into five categories that can, for the most part,

be addressed in a homogeneous way across EC-CFI techniques: virtual calls, indirect intra-module

calls, cross-module calls, indirect jumps, and returns. It is not clear how to summarize the results of

these five comparisons, but it turns out not to matter because BLACKBOX significantly undercuts all

the EC-CFI competition for accuracy in almost every category—though at the cost of performance

and inconvenience.

Virtual Calls

A specialized form of EC-CFI focuses exclusively on protecting the virtual dispatch tables in

x86 binaries compiled from C++ source. The traditional mechanism for implementing virtual

calls in x86 machine code is vulnerable to manipulation, for example a counterfeit object attack

masquerades an attacker-controlled buffer as a compiled C++ object filled with malicious virtual

function pointers [149]. The type system of the C++ source precludes the majority of these artificial

targets, but is not enforced by the traditional dispatch mechanism for performance reasons. The

goal of virtual dispatch CFI (VD-CFI) is to constrain these tables according to the C++ type system.

This translates directly into EC1 and EC2, because the net effect is to constrain the set of functions

that can be reached through the dispatch table.

Leading VD-CFI tools vary slightly in the details of the equivalence classes, which are evidently

sufficient to prevent COOP attacks, and the runtime overhead, which is typically under 3%. SafeDis-

patch [87] extends Clang++/LLVM to insert a set membership test at every virtual call site, ensuring

that the function selected from the vtable is coherent with the class referenced at the call site. Since

set membership is not easy to implement efficiently, the same authors upgrade the work in VTI [12]

by ordering vtables according to a pre-order traversal of the class hierarchy, which allows the

same test to be implemented as a simple range check. VTV [171] extends LLVM with a similar

183

implementation to SafeDispatch, but with support for dynamic linking of modules. It may not be

cost effective for VTV to implement the pre-order layout of VTI because its runtime component

may adjust the set of allowed vtables anytime a module is loaded or unloaded.

To avoid dependence on source code, T-VIP [59] and VTint [194] employ binary analysis and binary

rewriting to identify virtual method calls, identify the relevant class hierarchy, and instrument the

call with A dynamic approach based on the binary translator Pin [105] reports similar effectiveness

in the size and relevance of equivalence classes, but its runtime has even higher overhead than

BLACKBOX [140].

The comparison between VD-CFI and IID is relatively easy to make, even though BLACKBOX does

not distinguish a virtual dispatch call from any other call. There are two important distinctions:

• As with all forward branches, BLACKBOX defines one equivalence class per call site. In

contrast, a VD-CFI defines one equivalence class per virtual dispatch table, which may be

referenced by many call sites.

• The equivalence class defined by VD-CFI always includes the complete set of functions

corresponding to some slice of the C++ class hierarchy, whereas in BLACKBOX the Trusted

Profile only contains the specific call edges that were observed during profiling.

The net effect of these two differences is that BLACKBOX always has an equivalence class the

same size or smaller than is generated by a VD-CFI. Intuitively, the Trusted Profile may contain a

different set of targets for two call sites that access the same virtual dispatch table. More commonly,

the Trusted Profile contains no targets because the call site itself is not trusted, whereas the offline

approach of VD-CFI must trust some non-empty set of targets at every call site. An implicit

limitation of VD-CFI is that it only applies to C++ programs that make extensive use of the class

hierarchy. In contrast, BLACKBOX applies the same Trusted Profile constraints to a call generated

from any source, including hand-coded assembly and code generated by JIT engines for script

184

interpreters. VD-CFI has the advantage of convenience and performance, rarely exceeding 3%

overhead on standard benchmarks and requiring no end-user involvement.

Intra-Module Indirect Calls

Although other, more conventional forms of EC-CFI do not typically modify virtual dispatch tables,

the static analysis to constrain virtual call sites often draws on the same logic about the C++ type

system, resulting in similar equivalence classes. An EC-CFI will typically instrument the call site

with a check against the set of pre-determined valid targets. The original CFI implementation by

Abadi et al. [1] proposed a single equivalence class for every function pointer, allowing them to reach

any function whose address is taken. Investigating simplifications for performance optimization,

binCFI [196] and CCFIR [195] assign all function entry points to a single universal class, which is

much larger and therefore much less secure. Both IFCC [171] and MCFI [123] group all functions

having a signature matching the function pointer, though IFCC optionally supports a single universal

class as well. For any given function pointer, the set of targets in the Trusted Profile will always be

equal to or smaller than any of these static equivalence classes.

185

Three approaches improve upon static EC-CFI by putting a dynamic spin on both virtual calls and

function pointers, with varied success.

• πCFI maintains a statically computed CFG in the background but initially disables all control

flow paths. As execution proceeds, corresponding paths are activated by path entry points.

This prevents an attacker from using one half of a control flow construct without ever using

the other half, for example a return edge without the matching call. But since the activation

code is inlined at call sites, this approach never prevents an attacker from choosing any call

target in the statically defined equivalence class. So while some constraints in πCFI are

dynamically activated, equivalence classes for calls are effectively defined by the offline static

analysis.

• PathArmor introduces context sensitivity to EC-CFI by delaying the static analysis until

the invocation of security-sensitive functions (SSF), which are manually defined. Instead of

statically calculating sets of allowed targets, PathArmor intervenes at an SSF and walks the

LBR register to evaluate whether the recent control flow edges can feasibly occur in a CFG

corresponding to the current runtime context. For the last 16 branches of any execution trace

leading up to an SSF, this approach can result in a smaller equivalence class than the Trusted

Profile, which is context insensitive. On the other hand, BLACKBOX employs a dynamic

Stack Spy that can raise suspicion at system calls where PathArmor may be blind. For

example, an evasive attack can fill the 16-slot LBR with an innocuous call to a library function

en route to the SSF, whereas Stack Spy retains suspicion for any number of branches until the

suspicious stack frame returns. Lacking a concrete basis for distinguishing a winner, it can at

least be concluded that IID may provide valuable insight into important attack scenarios that

are challenging for PathArmor.

• OpaqueCFI combines two pervasive problems in EC-CFI into a solution. The inevitable

consequence of checking equivalence classes is runtime overhead, leading many EC-CFI

techniques to reduce the number of classes and arrange the data representation into aligned

186

blocks for efficient range checking [196, 195]. But this weakens CFI enforcement, not only

because the attacker has more options at any given branch, but also because the attacker

can easily figure out which options are available. OpaqueCFI concedes a lesser degree of

approximation, then hides the slack from adversarial discovery by waiting until program

startup to randomly shuffle the aligned blocks. Even if the adversary is able to leak the

CFI data structures at runtime, that information will likely be of little value on subsequent

executions. So the Trusted Profile may have the smaller equivalence classes, but if the

adversary gains access to it (perhaps through some unprotected program), BLACKBOX may

become more vulnerable to evasion than OpaqueCFI.

Three approaches avoid modifying the protected program by enforcing CFI constraints through a

runtime component.

• Lockdown [131] extracts the CFG at runtime, mostly during module load, though applying

some just-in-time heuristics for constructs such as dynamically registered callbacks. The

accuracy of the CFG largely depends on optional symbol tables in the binary, which identify

static (local) functions and imported functions. Without symbols, Lockdown falls back to

the same single-class constraints as binCFI and CCFIR. Runtime overhead is more than 2×

higher than BLACKBOX on the SPEC CPU 2006 benchmarks, since Lockdown is based

on the slower binary translator libdetox [132] and performs more analysis at runtime. An

additional advantage of BLACKBOX is that it never relies on symbols, instead modeling the

Trusted Profile with module identifiers and instruction offsets relative to the top of the module

image in memory.

• CFIGuard [192] relies on a conventional static CFG but enforces it in a runtime that does not

require instrumenting the protected program. To observe application control flow, CFIGuard

relies on a kernel modification to interrupt the program after a fixed window of instructions

and then reads the LBR. Intra-module indirect calls are constrained by function signature,

187

which is substantially more effective for small modules than, for example, the massive 68MB

chrome_child.dll that implements most of Google’s browser. Not only does BLACK-

BOX constrain indirect branches more tightly to the set of dynamically observed targets,

most branches are constrained to zero targets, allow much high visibility into unexpected

program behavior. The inconvenience cost of CFIGuard presents an interesting opportu-

nity for BLACKBOX because, if widely adopted, it becomes nearly free. An IID with very

low performance overhead could be constructed by simply plugging a Trusted Profile into

CFIGuard.

• Griffin [60] leverages Intel’s new Processor Trace (PT) feature to apply existing EC-CFI

policies from the kernel asynchronously. While not nearly as efficient as CFIGuard, it is

able to enforce the context sensitive policy of PathArmor for forward edges in combination

with a full shadow stack. The asynchronous processing of trace data can effectively mask

the overhead by using cores that are often idle in today’s highly parallel processors. The

inconvenience costs are similar to BLACKBOX, requiring a kernel module and incurring 9.5%

overhead on the SPEC CPU 2006 benchmarks.

Indirect Jumps

Most EC-CFI tools, whether based on analysis of source code or a compiled binary, will assign

all the case labels to a single equivalence class of the containing switch statement. Although

πCFI lazily activates the branches reachable from a case label, it allows any case label to be

activated, resulting in the same single equivalence class for each switch. BLACKBOX does not

distinguish between an indirect jump and an indirect call, and for a switch statement that was

never observed during profiling, BLACKBOX does not trust any of its case labels. According to

Burow’s survey, the only current CFI technique to support a flow-sensitive policy is KernelCFI [61]

(see Section 6.1.2).

188

Tail calls are implemented in x86 as an indirect jump, since by definition there is no need to adjust

the stack pointer. Most CFI techniques will protect this branch as if it were a call instruction,

assigning the corresponding constraints. One exceptional case is Lockdown, which only assigns

one equivalence class to all tail calls within a particular module—and if symbols are missing, that

class includes all addresses in a valid section of the module image. For CFI that statically computes

backward edges, the set of return targets following a tail call is much more difficult to determine,

leading to larger equivalence classes. For example, both πCFI and MCFI recommend disabling

tail call optimizations to avoid losing precision in the return constraints. BLACKBOX does not

distinguish an indirect call from an indirect jump, so its accuracy in comparison with other EC-CFI

remains the same for this special forward edge. The BLACKBOX shadow stack also maintains its

accuracy for tail call unwinds.

Returns

Researchers unanimously agree that a shadow stack provides optimal protection of return instruc-

tions, but many EC-CFI use an equivalence class for performance reasons. According to Burow’s

survey, the only EC-CFI for x86 to implement a shadow stack are Abadi’s original CFI and Lock-

down. PathArmor is able to validate return addresses up to the precision of a shadow stack using the

LBR. Other CFI approaches limit return targets to a call-preceded instruction constrained to some

degree of approximation, including call graph sensitivity and signature sensitivity. An optional

constraint filters out functions whose address is never taken within the module. Several approaches

simplify the constraints to all call-preceded instructions everywhere, including binCFI and CCFIR,

but this is consistently vulnerable to gadget synthesis attacks [43, 63]. An advanced attack called

Control Flow Bending (CFB) [21] claims it can consistently control return instructions against

any CFI without a fully dynamic shadow stack, but that is the only way it can gain arbitrary code

execution in the protected process (it does not mention whether the PathArmor implementation

qualifies). Among the EC-CFI for x86 that implement a shadow stack—and are therefore able to

189

detect (or defeat) an RCE attack via CFB—BLACKBOX has the best performance on the SPEC

CPU class of benchmarks by more than 5%. This performance comparison is somewhat imprecise

because Original CFI uses version 2000 while BLACKBOX and Lockdown use version 2006 of the

benchmarks, not to mention that Original CFI was tested a full decade earlier on significantly less

advanced hardware (Pentium 4 vs. Xeon E3 for BLACKBOX and Core i7 for Lockdown).

Cross-Module Calls

Though prevalent in today’s popular software (Section 3.6.4), cross-module control flow is perhaps

the most neglected in leading CFI research. The just-in-time static analysis of PathArmor makes it

the best equipped to assign a tight equivalence class to cross-module calls, but its reliance on the

LBR makes it vulnerable to evasion by history flushing. The author explains this does not seem to

be a problem in the context of the SPEC CPU 2006 benchmarks, but does not mention the deliberate

intention of those benchmarks to minimize library calls. Of the VD-CFI, only VTV incorporates

a runtime component to update its model of active class hierarchies as modules are loaded and

unloaded. For instance, SafeDispatch simply raises a false positive on a cross-module virtual

dispatch. Lockdown separates constraints by module and leaves the door open across modules by

defining just one equivalence class that includes all the module’s functions. CFIGuard, MCFI and

πCFI are slightly better, multiplexing all valid module exit paths with all valid module entry paths.

Since IFCC defines an equivalence class per function signature, its relatively loose constraints

remain the same across modules. The same can be said for binCFI and CCFIR, except that their

equivalence classes are much larger. Original CFI does not address modularity. Opaque CFI

guards the IAT to allow normal native calls to imported functions, and specially protects the library

pointer for dynamically bound calls to prevent tampering. This may be the most effective approach,

though does not protect against vtable tampering or other means of changing a callee away from

the call site. Where BLACKBOX already has the smaller equivalence classes for indirect branches

in general—since the Trusted Profile is built purely from observed executions—it does not relax

190

its constraints at module boundaries like so many other CFI approaches. Even for cross-module

callbacks the Trusted Profile contains just one target at the majority of callback sites, after weeks of

usage in complex applications such as Microsoft Office. While cross-module branches may be more

challenging for the adversary to attack because of ASLR and uncertainty about installed library

versions, IID is prepared to detect and report manipulation of these branches.

RockJIT

The unique form factor of this EC-CFI makes it more easily discussed separately from the preceding

approaches, though it does apply to x86 user-space applications. As its name suggests, Rock-

JIT [124] focuses on securing the dynamically generated code produced by a script interpreter’s

JIT compiler, along with the statically compiled code of the JIT compiler itself. The authors of

MCFI developed this approach to incorporate the majority of DGC into the domain of modular CFI.

Though it is presented as a generic approach independently of any particular JIT engine, it does not

offer a protective mechanism for ad hoc code generators such as are manually implemented within

the Microsoft Office module mso.dll. To secure the code generation process, RockJIT imposes

constraints on the JIT engine’s use of memory-related system calls, and double-maps the memory

holding generated code to separate writable and executable permissions for any given access address.

It also applies MCFI to the JIT engine, protecting it from malicious scripts attempting to cross

the semantic gap. Two equivalence classes are applied to forward edges in the generated code,

one for direct branches (which are manipulable during code generation), and another for indirect

branches. The JIT engine is instrumented (800 lines for Chrome V8) with a verification pass before

emitting generated code, which evaluates the equivalence classes along with other properties such as

a machine code vocabulary that is JIT engine is known to use (manually defined). The equivalence

class for indirect branches is additionally checked during traversal of each dynamically generated

indirect branch.

191

As presented in Section 3.4, BLACKBOX does not maintain the details of JIT code in the Trusted

Profile, but instead focuses on the interface between the DGC and the system, including calls to

the JIT engine and system calls. For disciplined code generators such as Chrome V8 and Mozilla

Ion, which never generate direct system calls and never call modules other than the JIT engine, this

enables reporting of any DGC exit branch that does not conform to the trusted JIT engine API (or

that targets any other module or system call). Special edges are also added to the Trusted Profile for

trusting the code generation process of a JIT engine (or any other code generator), which enables

reporting of code generation on call stacks that are not trusted for that purpose. This is in some

cases stronger than RockJIT, and some cases weaker. For example:

• A JIT spray attack using only forward edges to take control can use any sequence of calls to

the JIT engine API without detection by BLACKBOX, yet would in many cases violate the

RockJIT equivalence class during the takeover.

• A CFB attack on either the DGC or the JIT engine can gain arbitrary code execution against

RockJIT, but cannot escape detection by the BLACKBOX shadow stack.

BLACKBOX is additionally able to monitor smaller fragments of DGC, such as those produced

by the Microsoft Managed Runtime, with a context-sensitive Trusted Profile, along with its DGC

memory permissions.

The inconvenience cost of BLACKBOX is higher considering the performance difference, roughly

2.5× vs. just 14% on the Octane JavaScript benchmarks with Chrome V8. But BLACKBOX can be

used on a COTS browser while RockJIT requires instrumenting the browser and applying MCFI at

runtime.

192

6.1.2 Equivalence Class CFI for Other Platforms

Several CFI approaches have been developed for platforms where there is currently no IID imple-

mentation. Lacking a reliable way to predict the effect of various snares that may occur on these

platforms, this section proceeds to compare IID with each of these tools in more general terms.

CFI for Kernels

Some challenges faced by CFI implementations are simplified in the context of kernels, for example

modules are most often statically linked, and the use of function pointer variables often follows

reliable patterns. An CFI called KernelCFI [61] takes advantage of these properties to both simplify

and optimize its EC-CFI protection of the Linux kernel, MINIX and BitVisor. To compute the

equivalence classes for function pointers, KernelCFI applies taint tracking to function addresses,

which is tractable under the assumption that pointer arithmetic and aliasing with data pointers are

prohibited. Computing return targets is complicated by hand coded assembly which in some cases

includes nested functions and non-canonical forms of tail calls. Since linearity of execution in a

kernel is fragmented by interrupts, the runtime component of KernelCFI is much more complex

than many user-space approaches. Care must be taken to protect event handlers and internal control

tables. The implementation is manually instrumented in the kernel and also manually optimized,

for example replacing some indirect branches with direct branches adhering to singleton CFI

constraints. Given the amount of manual attention in this approach, it is difficult to compare the

size of equivalence classes or the effective security overall. Average runtime overhead ranges from

2-12%.

Secure Virtual Architecture (SVA) [37] pioneered the effort to integrate EC-CFI throughout the com-

plexities of kernel operation. SVA employs a typesafe language that adheres to the SAFECode [46]

principles for enforcing safety in unmodified C programs. Equivalence classes are enforced by

grouping all pointers for a class into a memory pool and instrumenting membership checks as

193

kernel modules are compiled in LLVM. A points-to analysis is performed at the SVA language

level to identify the minimal statically determinable equivalence classes, and other kinds of errors

are strictly forbidden by the SVA language, resulting in relatively strong security in comparison to

user-space CFI approaches. Performance evaluation of a Linux port to SVA demonstrates overheads

ranging from 2% for CPU-bound operations to over 4× for I/O bound operations or for tasks that

involve frequent calls to complex system functions like fork/exec.

KCoFI [36] extends SVA with a compiler that optimizes many of the integrity checks and increasing

the size of equivalence classes, but maintains other security properties (as demonstrated with lengthy

formal proofs). Overheads still exceed 2× for I/O bound workloads, but usability is significantly

better than SVA. HyperSafe [181] applies similarly large equivalence classes in the context of a

self-protecting hypervisor at overheads under 5%, but does not implement full coverage of kernel

events or protection of internal tables, making it vulnerable to ret2usr attacks and manipulation of

its event handling configuration.

Given the approach to calculating equivalence classes (and the lack of concrete experiments), it

seems evident that an IID would generate a Trusted Profile with equivalence classes that are much

smaller than any of these techniques. The integration could be done with a kernel mode version of

DynamoRIO called drk1, or perhaps by using the interrupt-based approach from CFIGuard with

directly instrumented handling of other factors similar to KernelCFI. Performance of BLACKBOX

is in the same range, suggesting an IID based on drk might be the more convenient approach. For

computing operations that are highly concerned about advanced persistent threats, a kernel IID

could be an essential component in the defense infrastructure.

1Available at https://github.com/DynamoRIO/drk

194

https://github.com/DynamoRIO/drk

CFI for iOS

Control-Flow Restrictor [136] brings EC-CFI to the iOS platform by extending LLVM to extract a

static CFG and insert runtime checks during compilation. The developer can influence equivalence

classes for forward edges using annotations, but there appears to be only one equivalence class for

returns. One advantage on iOS is that all modules must be statically linked, making it possible to

at least apply a return-specific equivalence class throughout all linked libraries. Average reported

overhead is just under 10%.

In another approach to EC-CFI on iOS, MoCFI [42] applies directly to compiled programs and

derives the equivalence classes from binary analysis. A single equivalence class is generated for

forward indirect calls having no statically computable target, and returns are checked against a

full dynamic shadow stack. Instrumentation is applied at load time to avoid complications with

application signing. Performance is reported piecewise without summarizing an average, but can

range as high as 5× and appears to be high in general.

An IID for iOS would operate on much smaller equivalence classes, considering the conventional

static analysis applied in both cases, and especially the absence of a shadow stack in Control-Flow

Restrictor. The compatibility of a virtual machine like DynamoRIO with iOS seems questionable,

so an approach similar to these defenses is likely to be more effective in practice. Given the

performance numbers in the context of x86, it appears that a conventional implementation of IID

could be competitive. An IID for Android may have even greater potential, given the presence of

the Android Runtime and corresponding opportunities for high performance introspection.

CFI for Other environments

MIP [122] improves security for inline reference monitors by applying EC-CFI with similar

equivalence classes and implementation structure to binCFI and CCFIR. Performance overhead is

195

under 10%, but the value of this approach in today’s threat model is unclear. A hardware-assisted

approach to EC-CFI on embedded platforms defines only one equivalence class for indirect calls,

but enforces a separate equivalence class at each return instruction based on the call graph. Other

heuristics are applied to detect attacks, but these are similar in design and weakness to several

approaches on the x86 platform that have been effectively defeated (kBouncer [129], ROPecker [28]

and Smashing the Gadgets [128]). The enforcement of CFI constraints leverages special hardware

instructions that associate equivalence classes with the execution of branch instructions on the

basis of a finite state automaton. No implementation or performance results are reported in the

publication, though Burow’s survey indicates high performance for this otherwise unreferenced

approach. In any case, the value of such large equivalence classes and heuristics remains uncertain

in today’s environment of highly technical adversaries.

6.1.3 Pointer Protection CFI

Several techniques focus on protecting control flow pointers from abuse, without attempting to

enforce any pre-determined set of constraints on the control flow taken at runtime. Similar to IID,

the conceptual simplicity of pointer protection CFI (PP-CFI) makes it resilient to new forms of

attacks. But the implementation can often be complicated because protecting pointers involves

substantial changes to the fundamental execution of the program. Where EC-CFI simply observes

the target of an indirect branch, PP-CFI changes the low-level mechanism for accessing pointers,

creating effects that carry into many different aspects of the program and possibly even the operating

system. Attempts to simplify these effects can lead to incompatibility with programs, unanticipated

security vulnerabilities, and can even expose the PP-CFI to targeted attacks.

Cryptographic CFI [107] encrypts the target of every indirect control transfer and stores the key

in a dedicated register. If the adversary manipulates a pointer in memory, the decryption will produce

a random address that will most likely cause the program to crash. This approach is compatible

196

with all indirect control transfers generated by the compiler, but if the program overwrites pointers

in an unconventional way, it will crash. Dynamically generated code is not protected unless the

code generator specially implements pointer encryption. Performance is the main challenge for this

approach, averaging 45% on SPEC CPU 2006 with commodity hardware that provides encryption

instructions (otherwise it will be orders of magnitude worse). Specialized hardware support can

dramatically improve performance and may become available in some commodity processors.

Code Pointer Integrity [97] places pointers to code in a separate protected heap. This has limited

compatibility with callbacks, requiring both caller and callee to be instrumented with CPI. It will

also crash the program during a soft context switch because the “return location” in the protected

heap will not reflect the stack pivot. While these issues are neither mentioned nor addressed by the

research authors, both could be resolved in a commercial implementation. Two protection modes

are offered, the more significant exceeding 8% overhead on SPEC CPU 2006.

Control-Data Isolation [4] extends LLVM to rewrite all indirect branches as direct branches,

requiring whole-program compilation to incorporate cross-module control transfers. This approach

does not address callbacks, soft context switches or DGC, and will generate crashing executables in

those cases. Only a subset of the SPEC benchmarks and a few small server programs are tested.

While there is little question that indirect control attacks are eliminated by the PitBull compiler, it

only supports a very small subset of real programs.

6.1.4 RCE Exploits vs. x86 Compiled Binaries

Dynamic approaches to CFI such as kBouncer [129], ROPecker [28] and others [128] offer broad

coverage of control transfers while minimizing inconvenience costs. But an attack can synthesize

gadgets that do not conform to the tool’s definition of a gadget, making the takeover transparent [64,

197

22]. Since these defenses focuses strictly on identifying gadgets used in adversarial takeover, none

of them is able to detect any part of a malicious payload.

The coarse-grained CFI approaches binCFI and CCFIR are not vulnerable to padded gadgets

because they continuously apply constraints to control transfers. But to reduce overhead, these

techniques equivocate all targets within a particular category. Both publications assert that the

potential for a reuse attack that maintains these categories is too low, but two recent attacks prove

otherwise [43, 63]. Once the exploit has gained control of an application thread, these techniques

have no means of constraining execution of the payload.

StackDefiler

Stack-spilled registers can expose the data structures of a CFI implementation, making it vulnerable

to direct manipulation via typical stack corruption [30]. Of the techniques listed below BLACKBOX

in Table 6.1, only Cryptographic CFI is immune to this attack because it stores the encryption key

in a dedicated register that is never spilled to the stack. But an auxiliary component of StackDefiler

manipulates the return address from any system call invoked via the x86 instruction sysenter,

and since this return address is managed by the operating system, the Cryptographic CFI compiler

will not be able to instrument it. This will allow the attacker to use any sysenter instruction as a

gadget under Cryptographic CFI.

BLACKBOX is immune to the stack-spilled register attack—its dynamic CFI checks are performed

by a hand-coded assembly routine that only spills application values to the stack, and immediately

replaces the register values with the spilled application values after the check. The sysenter

instruction is rewritten by all x86 builds of DynamoRIO into an int 3, making all tools based

on DynamoRIO immune to the corruption of the sysenter return address. Even without this

convenient protection, the deep introspection of DynamoRIO includes system call arguments,

allowing BLACKBOX to keep the correct sysenter return address on the shadow stack.

198

Another auxiliary component of StackDefiler leaks the address of the shadow stack using typical

side channels that are known to be effective against information hiding. A variation targets a

shadow stack residing in thread-local storage (TLS) by exposing stack-spilled registers, similar

to the main attack vector. The authors claim that this variation was not implemented because no

TLS-based shadow stack was publicly available at the time of publication, although BLACKBOX

was in development simultaneously at the same university. The attack will fail against BLACKBOX

because shadow stack access is implemented in hand-coded assembly that never spills the shadow

stack location to the application stack—the temporary registers used for shadow stack access are

stolen immediately prior to each stack operation and subsequently repopulated with the application’s

register values.

Control Flow Bending and Control Jujutsu

Until the publication of these two exploits, the research community had mistakenly believed that

if a program’s execution fully adhered to a perfectly defined static CFG, that execution would

necessarily exclude any possible RCE exploit. In a Control Flow Bending (CFB) [21] attack, the

adversary locates a CFB gadget function that is (a) capable of overwriting its own return address,

and (b) called by a variety of useful functions. Since the calls are effectively aliased in the CFG, the

CFB gadget allows any of those call sites to be selected as an alternative return target. Similarly, in

a Control Jujutsu [54] attack, the adversary first identifies an application function that dynamically

forks a process by name, then redirects a forward pointer that can legitimately target the fork gadget,

while modifying the arguments to name a malicious process. Fork gadgets may not be available in

all applications, but were found in Nginx 1.7.11 and Apache 2.4.12.

Of the defense techniques listed in Table 6.1, only CPI and BLACKBOX are able to reliably defeat

these two attacks. The case for CPI is complicated by the fact that the authors entirely neglected

support for legitimate modification of values on the safe stack. But commercial implementations of

CPI having compiler support are immune because they will only facilitate runtime modification

199

of safe stack pointers by program constructs that were intended for that purpose. Since CFB

and Jujutsu both use a crafted mechanism for modifying a protected pointer, the application will

not propagate that modification to the safe stack, and the CPI security response will be triggered

(presumably it terminates the process).

The best-case scenario for BLACKBOX is that the modified branch target does not exist in the

Trusted Profile, because the application was not normally used that way. But if the adversary does

find a trusted fork gadget or CFB gadget, BLACKBOX falls back to detecting the payload, as with

any other exploit. There are two special cases to consider:

1. An auxiliary component of CFB can implement Turing-complete computation within a

single function, for example by generating a self-modifying format string to printf() and

artificially looping via manipulation of the index into the format string. In the case that a

CFB attack leverages this capability to manipulate existing system calls in the application,

the attack is transparent to BLACKBOX. But since this is a data-only attack, it is out of scope

for BLACKBOX—it can be better addressed by defense techniques that focus on data-only

attacks. Other CFB payloads will be detected by BLACKBOX.

2. The Jujutsu fork gadget has the effect of moving the entire payload out of process, making

it transparent to BLACKBOX. But the Trusted Profile contains an edge for every process

fork, tagged with the full path of the spawned executable, allowing BLACKBOX to report a

high-suspicion anomaly when a Jujutsu exploit successfully forks a malicious process.

Missing the Point(er)

Code Pointer Integrity has proven effective enough to be implemented in major commercial products,

but requires hardware support to hide the safe stack. On x86-64 and ARM, isolation can only be

enforced by information hiding, making it vulnerable to an information leak attack. CPI leaves data

200

pointers in the original application stack, allowing this attack to leverage a data pointer for a timing

side-channel that can reveal the location of the safe stack without causing a crash. This approach is

not prohibitively time-consuming—it is able to take full control of a CPI-protected deployment of

Nginx in just 98 hours [53]. BLACKBOX is complementary to CPI and would be just as effective in

detecting this attack, whether CPI were in effect or not.

The Devil is in the Constants

The case study in Section 3.4.2 shows how BLACKBOX can detect this JIT injection attack even if

the monitored application provides no protection from adversarial JavaScript constants [5]. None of

the other defenses in Table 6.1 is applicable to dynamically generated code, making them unable

to protect the application from this attack. RockJit [124] is a coarse-grained CFI implementation

specific to the code generated by JIT engines, but suffers from the same vulnerabilities as binCFI

and CCFIR and can be similarly compromised by this code injection. JIT diversification tool

Librando [77] somewhat inadvertently defeats this exploit by revoking executable permission to all

memory pages containing generated code, and linking a runtime-diversified copy of the code in the

style of a binary translator. While Librando does not diversify or obfuscate the malicious constants

in any way, the fact of disabling execution on the original JIT-generated code pages effectively

disables the exploit gadgets.

6.1.5 Application Compatibility

Many of the defense techniques listed under BLACKBOX in Table 6.1 have been shown to be

easily defeated, and others suffer major compatibility problems with ordinary applications. Ap-

proaches [196, 195, 129, 28, 128] offer coverage of many important control flow constructs at

low overhead, but have been defeated by gadget synthesis attacks [43, 63]. It is also possible to

defeat [97] on the 32-bit x86 platform. Control Data Isolation [4] appears to eliminate the problem

201

of control flow hijacking entirely, by simply flattening all indirect branches, but this approach

is incompatible with the vast majority of today’s popular applications. For example, no native

Windows desktop application can be protected by this tool—it will either fail to compile or crash at

startup. Both CDI and binCFI will evidently crash on a cross-module callback.

Cryptographic CFI [107] requires hardware cryptographic extensions and a reserved register, which

is highly impractical for the x86 platform where general registers are already far too few. It is

also unclear how Cryptographic CFI can protect a callback pointer passed to a library that was

not compiled with its instrumentation. CPI can only protect a callback pointer if both the caller

and callee have its instrumentation. Many approaches in the table will evidently encounter a false

positive (×fp) at a cross-module callback. CFIGuard mentions no support for complex forward

control flow such as soft context switches. Others assign only the most basic constraints such as

byte alignment [114, 1]. Perhaps the best case scenario is the VD-CFI approaches, but these only

affect C++ pointers distributed from virtual dispatch tables. Performance is a significant limitation

for [1, 131, 59, 140]. This leaves diversification [101, 78] as the only practical approach, though it

has met with some resistance in practice due to complications with integration into the software

production toolchain. Even if these defense techniques were unbreakable, only diversification and

kBouncer would match BLACKBOX in coverage of control flow constructs.

6.1.6 Performance

For a security tool to be considered for deployment in many commercial products, the overhead

can be no more than 5%. Most of the CFI tools presented here are below that mark or near enough

to reach it with conventional engineering effort. Among the more effective techniques, Crypto

CFI is perhaps the exception, though it has recently received significant attention from hardware

manufacturers and would function efficiently with dedicated CPU support. RockJIT is limited

considering the intense pressure for performance in today’s web browsers, but may see substantial

202

Dependencies Defense Coverage

Defense O
ve

rh
ea

d

R
eq

ui
re

s
So

ur
ce

St
at

ic
A

na
ly

si
s

of
In

di
re

ct
s

B
ac

kw
ar

d
E

dg
es

C
al

lb
ac

ks

So
ft

C
on

te
xt

Sw
itc

h

D
G

C

C
he

rr
y-

pi
ck

B
en

ch
m

ar
ks

BLACKBOX 14.7% X X X X
binCFI [196] 8% bin Xcp ×! Xcp ×! •
CCFIR [195] 5% bin Xcp × ×fp ×
CFIGuard [192] 2.9% bin Xcp × ×fp × •
Control-Data Iso [4] 10% • src X ×! ×! ×! •
Context CFI [174] 3-8.5% X X ×fp ×a •
Crypto CFI [107] 45% • X X X × •
Prob. NOP Insertion [78] < 1% • X X X ×b

Forward Edge CFI [171] -d • src × × × × •
kBouncer [129] 1% • X X X X •
Lockdown [131] 32.5% bin X × ×fp ×!
OpaqueCFI [114] < 5% binc X × × × •
OriginalCFI [1] 21% bin X × × ×
Pointer Integrity [97] 2-9% • src X Xe ×! ×
ROPecker [28] 2.6% bin X X ×fp ×
SafeDispatch [87] 2.1%f • src × × × ×
Smash Gadgets [128] 0% X X X ×
T-VIP [59] 2-103.5% bin × × × ×
vfGuard [140] 18.3% bin × × × × •
VTI [12] 1% bin × × × ×
VTint [194] 2% • × × × ×

Table 6.1: Compatibility issues and other inconvenience factors in leading control flow defenses for
x86 user-space programs.
Xcp Equivocates all call-preceded code addresses in some or all cases.
×fp Raises a false positive on every occurrence.
×! Crashes the program on any occurrence.
a Publication makes no mention of DGC.
b Another work by the same author applies a similar technique to DGC [77].
c Optional source-based analysis improves accuracy.
d Overhead varies according to the selected security options.
e Requires both the caller and the callee to be instrumented.
f Requires whole-program profile-guided optimizations and analysis.

203

improvements in a commercial implementation. Kernel applications of CFI also lag behind their

user-space counterparts, but it will be interesting to see if facilities such as the LBR can be used to

reduce these overheads.

At 14.7% overhead, BLACKBOX appears unable to make the 5% threshold, especially considering

that its underlying framework DynamoRIO has at best 11% overhead on the popular SPEC CPU

2006 benchmark suite. But these statistics do not necessarily represent a fair evaluation of a tool’s

usability. BLACKBOX focuses on desktop applications for the x86 platform, yet the SPEC CPU

2006 suite does not include any typical components of desktop applications. As discussed in

Section 3.6.3, the user experience of BLACKBOX in this scenario is similar to native execution

except while the application loads modules or generates and executes large amounts of code. There

are also many important use cases for IID that do not require continuous activation throughout the

group of monitored users. Even where sampling is not sufficiently secure, selective monitoring

for longer periods can minimize the impact of overheads. Server applications also perform well

under BLACKBOX, for example Section 3.6.3 reports a small speedup for a benchmark of the IIS

web server. Conversely, the performance metrics reported by many CFI authors are shown to be

substantially lower than were observed during an independent evaluation in Burow’s survey. Given

the lack of support for many important control flow constructs, and weak support for common

factors such as cross-module indirect branches, it would be interesting to see how these tools

perform after completing their implementation.

There may also be substantial opportunities to improve IID performance on the x86 and similar

platforms. For example, an expansion of the LBR and better OS support for hardware-based monitor

could make an out-of-process IID relatively easy to implement, robust to adversarial detection and

manipulation, less intrusive to low-level program behavior, and highly competitive in performance.

Intel PT may represent a similar opportunity, though less appealing from a performance standpoint.

Extensive work in the area of virtual machine introspection (VMI) [58] may also hold potential

for a less intrusive and better performing IID. Considering the number of years that commodity

204

hardware has been effectively treading water in terms of major performance advances, it would not

be surprising to see revolutionary innovations in the near future that could change the performance

picture for IID on hardware. Given the cost and complication raised by security problems on existing

platforms, hardware vendors may also focus more resources towards introspection and program

awareness than in past designs. While none of these possibilities can be anticipated with certainty,

they lend credibility to the aspiration that IID is not far from becoming a minimally intrusive and

highly efficient means of monitoring vulnerable programs.

6.1.7 Summarizing IID in the field of CFI

In the context of these diverse approaches to enforcing CFI constraints on end-user programs and

kernels, the advantages and limitations of IID stand out in distinct contrast. On the matter of

effective security, while IID can only prevent an attack if it has been manually blacklisted, but it

can detect and report a far larger set of control flow attacks than existing EC-CFI defenses. The

Trusted Profile defines smaller equivalence classes in nearly all forward indirect branch scenarios,

and the shadow stack is fundamentally more accurate than any equivalence class scheme. In

addition to precise handling of cross-module indirect branches, an IID can detect anomalies in

dynamically generated code at multiple levels, including the code generation process and in many

cases context-sensitive sequences of generated instructions. Where many research implementations

suffer from incompatibility with current programs and operating systems, making prototypes

unusable in practice, IID has been significantly exercised in real-world deployments for both PHP

applications and x86 desktop and server applications. There are a few special cases where an

EC-CFI approach can prevent an exploit that IID may not detect, for example a Control Jujutsu

attack that is transparent to a context-insensitive Trusted Profile may in some cases be prevented

by PathArmor. or disabled by the pointer protection component of Opaque CFI. But in general, an

205

IID can reveal control flow manipulation that is transparent to other EC-CFI approaches. Perhaps

its main advantage is the continuous observation of program behavior without predisposition to

specific patterns, making it uniquely able among CFI approaches to detect entirely unforeseen attack

vectors and payload form factors, even before a fully successful exploit is carried out. An IID can

even be used to assist the debugging and refinement of a CFI defense, up to its resilience against

evasion tactics (Section 3.3.5), by revealing attacks and important anomalies that would otherwise

go unnoticed.

The limitations of IID are also substantially distinct from its CFI counterparts. On the x86 platform,

reliance on a binary translation runtime pushes overheads out of the marketable range, and creates

additional hassle for installation and configuration. More importantly, profiling on any platform

requires vendor support or significant investment from third-party professionals or even end users.

The profiling process may be susceptible to pollution by targeted attacks, and in the case of sampling

for improved performance, it may be possible for malware to detect the presence of an IID and

evade it. Insufficient profiling leads to a high rate of false positives, rendering ineffective the deep

introspective logging of an IID. Other forms of CFI can be deployed more securely, often with

lower overhead and in many cases with lower development cost as well. These tools not only detect

attacks but can also automatically prevent them before any damage is done.

It is ultimately a matter for the user to decide whether an IID merits the cost required to deploy

it. A close look at the CFI competition indicates many tools could be hiding significant problems

under the high level presentations that are available to the public, as suggested by the frequency of

incomplete research prototypes and over-simplified evaluation scenarios. Another point to consider

is that an IID can provide tangential benefits that may not be immediately evident. Research in

software engineering and particularly debugging suggest that the Trusted Profile itself can be a

valuable resource for understanding the real-world execution of programs that otherwise are not

easily observed outside the development venue. While this presentation of IID has focused on

security vulnerabilities, which are of high importance, an IID can reveal problems and unexpected

206

factors of many kinds that are essential for efficient debugging but have proven difficult to capture

in more conventional ways.

6.2 CFI in the Future Ubiquity of CET

As discussed in Section 3.1, Intel has proposed a new extension called CET to provide hardware

support for securing both forward and backward control flow. It appears that this technology may

not be available immediately, and that popular applications may require significant changes to

become compatible with that extension. Nevertheless, it is important in the evaluation of IID to

consider the potential role of IID in a future where CET does become ubiquitous on x86 devices.

The presence of a hardware shadow stack would seem to take the return instructions entirely out

of the attack surface. But the forward edge protection currently proposed by Intel is an EC-CFI

composed of just one equivalence class, which has proven too weak for contemporary adversaries.

This would imply a continued need for any defense that improves security of forward indirect

branches. Section 6.1 shows that IID can be a valuable complement to any current defense in this

category, and therefore should continue to be of value under the ubiquity of CET. The performance

of BLACKBOX may also improve with the elimination of the software shadow stack, though other

factors such as inefficient handling of the Windows IAT are likely to weigh down any hardware

acceleration. In summary, although the presence of CET would make major changes in the attack

surface on the x86 platform, the same fundamental security metrics would remain in effect for the

protection of forward control flow edges.

6.3 Traditional Intrusion Detection

Many recent approaches to the problem of intrusion detection are successful against specific

categories of vulnerabilities, such as cross-site scripting (XSS) or SQL injection (SQLi), but none

207

of them has proven effective against remote code execution (RCE) exploits. For example, the

WordPress plugin MuteScreamer [185] was once commonly used to protect WordPress sites, but it

only supports a manual blacklist of request patterns, making it vulnerable to mimicry and incapable

of defeating a zero-day attack. The comprehensive coverage of the trusted profile makes it possible

for BLACKBOX to surpass some limitations of these otherwise successful techniques.

Input Filtering

For applications having a relatively systematic public interface, exploits can be detected with high

accuracy by observing patterns in user input. Commonly deployed tools are Snort [161] and Apache

ModSecurity [172], which block known attacks based on a manually maintained blacklist. But for

today’s complex and highly dynamic PHP applications, this approach performs poorly because

(a) a single vulnerability can be compromised using distinct crafted inputs, (b) the frequency of

blacklist updates would increase by several orders of magnitude (for example, wordpress.org

currently offers over 46,000 plugins, most of which are continually in development), and (c) blacklist

approaches cannot defeat zero-day attacks, yet new exploits against WordPress alone are reported

almost daily.

Anomaly Detection

A variant known as anomaly detection relies instead on a whitelist of normal application behaviors,

but the whitelist can be difficult to construct. One approach [152] requires an expert to manually

define a set of policies, which also must be maintained to accommodate ongoing customization,

configuration changes, and even application state changes. Several alternative techniques formulate

the whitelist in simpler terms—for example, n-grams of packet bytes [179, 180], or properties of

HTTP request attributes such as string length, characters sets, token sets [96, 143]—and learn the

whitelist by observing a set of known-normal requests (obtained by manual analysis). Many of these

208

wordpress.org

approaches are subject to mimicry or evasion tactics because the whitelist is only indirectly related to

program semantics. Another weakness is that the training time is typically quite long—from 8% up

to 50% of the experiment’s reported request set in successful techniques. Recent investigation into

these approaches no longer mentions web applications, suggesting that the increasingly dynamic

interaction between browser and server inhibits convergence of the whitelist. Pure machine learning

approaches have mediocre results on artificial benchmarks such as the DARPA datasets [100], and

have rarely been used in practice, where they typically perform much worse [162].

Introspective Anomaly Detection

An introspective n-gram approach learns a whitelist of short system call sequences that are normal for

the application, identifying them by name without context or arguments [57]. This over-simplified

representation of the application allows the attacker far too much flexibility, making the monitor

highly susceptible to mimicry. Similar approaches based on finite state automata were evidently

difficult to apply in practice, considering that no experiments were reported [148, 182].

Transition to CFI

A survey on anomaly detection techniques reports applications in a broad spectrum of domains,

which includes software and network intrusions along with data-centric domains such as insurance

fraud and early detection of medical conditions [25]. Several of the works mentioned here are cited

in the section of the survey that focuses on intrusion detection. But although the survey includes

references to works published as late as 2008, the material about intrusion detection for software

applications ends in 2005. Further work focuses on a specific other than web applications or desktop

software, for example intrusions that attack the network infrastructure, or techniques for better

detecting such intrusions across a cluster.

209

A survey on intrusion detection published in 2014 includes many references to more recent research,

but these works also focus on a specific context other than web applications or desktop software.

Popular topics include wireless networks and medical systems [113]. A historical report by Vigna

outlines the trend in application security research toward more structured approaches like CFI,

showing how the difficulties with both mimicry and 0-day exploits dampened motivation in research

to continue developing intrusion detection systems for user-interactive applications [176]. In his

own work, Vigna published frequently on the topic of intrusion detection for user applications up

until 2005, then followed this same trend toward CFI and other more systematic defense techniques.

Higher Level Intrusion Detection

Challenges in the accuracy of intrusion detection and anomaly detection have led more recent works

to develop abstractions that focus detection on higher level program behaviors.

Behavior-based malware detection [106] models financially motivating actions taken by ma-

licious bots. An action is defined through a layered process of abstraction, for example raising

a stream of I/O system calls such as bind and connect to a stream of network events such

as async_tcp_client, and again to program interface events such as tcp_client until

reaching the top-layer (financially motivating) actions such as download_file. By focusing the

lower layers of this hierarchy narrowly on essential components of the action, the model becomes

robust to unexpected variations and even evasion tactics. Experiments show that the same top-layer

action can be identified in a variety of bots found in different malware strains. Performance overhead

exceeds 5× for any of the analyzed actions, but this can presumably improved with a more efficient

platform than QEMU.

A quantitative study in accuracy [20] focuses on malware detection based on system calls,

showing that while the majority of surveyed behavioral models are highly unreliable, a few ap-

210

proaches demonstrate extreme precision when tested against the same benchmark data sets. The

models include a range of abstraction, from plain system calls to higher level actions such as “read

a file” or “load a library”. Where the majority of models have less than 70% accuracy identifying

a suite of malware, models based on “bags of actions with arguments” detect over 95% of the

malware with fewer than 1% false positives. Here again it is the highest level of abstraction that

demonstrates the best accuracy.

LEAPS [73] automatically generates models for attack detection through supervised statistical

learning and leverages control flow graphs of system events to filter the models. The detector

observes a stream of raw system event logs containing stack traces to learn and later distinguish

logs in which an exploit occurred. In one component of the detector, a Weighted Support Vector

Machine is trained on labeled logs, while in a second component the program CFG is inferred from

stack traces in the logs. The detector combines this information by calculating graph distances

between normal logs and attack logs, then applies the distance as a weight to the learned classifiers.

Average detection rates are consistently around 90% and rarely fall below 70% for a particular strain

of malware in a given program.

The Trusted Profile can be considered a similar kind of abstraction in that its elements are compared

at runtime to a set of higher level operations as they occur in the running program. A key distinction

from these approaches is that in IID, profiling automatically generates the Trusted Profile, whereas

these approaches require some supervision or even manual modeling.

6.4 PHP Security

The challenges of static analysis on PHP (Section 5.2.3) have made it difficult to develop online

defense systems for PHP applications. Instead of engaging in this uphill battle, researchers have

turned their attention to the automated detection of vulnerabilities and attacks. These tools are used

211

in practice for security debugging of applications. Some tools go so far as to generate a patch for

discovered problems, but for the most part it is a manual process undertaken by the PHP developer.

The majority of these tools focus on attack vectors other than remote code execution.

6.4.1 RCE Exploits vs. the PHP Platform

It is difficult to construct sophisticated low-level RCE exploits because the PHP interpreter imposes

high-level structure on the execution of PHP scripts. To the best of our knowledge, the case studies

in Section 5.2.2 cover the most complex takeover strategies that have presently been developed.

Accordingly, research into potential attacks has mainly focused on program analysis that seeks new

opportunities to employ the same old takeover strategies, for example leveraging session variables

to influence program constructs that are not directly accessible via HTTP parameters. It appears that

real adversaries are similarly constrained, since new attacks continue to be reported against versions

of PHP application that have been in circulation for many years, yet it is rare for the deployed

exploit itself to contain any novel ingenuity.

The fraction of adversarial research that focuses on RCE exploits employs static analysis to identify

data flows that reach dynamic (string-based) control flow transfers. More generic tools such as

advanced PHP website crawlers could also be used for this purpose, though no RCE experiments

are reported or even hypothesized in these publications. Other exploits such as SQLi and XSS draw

the majority of research attention, perhaps due to their greater share of reported instances in the

wild.

Static Analysis

Conventional static analysis has been unable to find many important attack vectors in stateful,

session-based applications, so [197] uses an SMT solver along with advanced formulation of

212

constraints on string dataflow and program logic to find several new RCE exploits in large PHP

applications. While this approach has some success, the authors admit many vulnerabilities cannot

be found this way. For example, the implementation has limitations at dynamic constructs such as

variable array indices, which are very common in PHP—in the version of phpMyAdmin reported in

the experiment, 25% of all array accesses use a variable index.

Saner combines static and dynamic analysis to detect missing authentication checks in PHP applica-

tions, and validates each report by automatically generating a corresponding exploit. Researchers

have developed static analysis for PHP to find SQL injection attacks [186] To improve coverage of

a static analysis for both XSS and SQLi, [187] partitions it into 3 levels of granularity: intra-block,

intra-procedural and inter-procedural. Pixy [88] employs taint tracking to find vulnerable handling

of string variables.

The authors of all these techniques suggest their approaches may also work well for other kinds of

exploits, including RCE—but they also admit limitations at dynamic statements such as include

with a variable operand, which are a primary target of RCE exploits. Another limitation of these

approaches is that they disregard client-side JavaScript, making it difficult for them to find all the

application entry points.

Dynamic Analysis

A crawler for PHP applications named jÄk [133] discovers dynamic URL forms by installing

hooks in client-side JavaScript to construct and then traverse a navigation graph of the application.

Noncespaces [175] randomizes sensitive values to prevent client-side tampering. Diglossia [163]

and SQLCheck [170] employ efficient taint tracking to detect SQLi.

213

6.5 Software Improvement Techniques

Since many exploits rely on program errors to gain control of the victim process, an alternative

approach to security focuses on finding and removing errors in software. Despite major investment,

it has not been possible to remove all exploitable vulnerabilities, even where the vendor controls

all of the source code for the application and operating system. For example, CVE-2014-3188

allows remote code execution on a Google Chromebook via crafted JSON input. Nevertheless, both

researchers and commercial engineers continue to develop a broad range of techniques that can

eliminate security vulnerabilities and many other problems from software. Section 6.5.1 presents

a representative selection of security-oriented debugging tools that are applied by developers as

part of the software production toolchain. Section 6.5.2 follows with techniques for automatically

detecting and eliminating errors at runtime.

6.5.1 Debugging

Memory debuggers AddressSanitizer [154] and MemorySanitizer [169] integrate into the LLVM

compiler to instrument the application with runtime checks for correct address and buffer usage.

While this approach minimizes runtime overhead, it is specific to the LLVM compiler and is also

significantly less effective when applied to a subset of modules loaded by a program. Similar

validation can be performed via process virtualization without these limitations using Valgrind

Memcheck [156] and Dr. Memory [17].

All of these debugging approaches are limited by the coverage of the tests that are executed under

the tool, since the overhead is too high for production deployment. SafeMem [141] leverages

ECC-protection in hardware memory modules to detect memory leaks and memory corruption with

overhead low enough for deployment (under 15%) in many consumer-facing environments. Intel

has recently included bounds checking instructions in the ISA of its latest CPU architectures [33],

214

allowing more efficient memory debugging along with runtime mitigation of memory access errors.

Other approaches expand the coverage of offline tests through a combination of symbolic execution

and randomization. For example, Dr. Memory includes a fuzz testing mode [49] that repeatedly

executes any selected target function with randomly generated arguments while continuously

checking for memory errors. LibFuzzer [153] combines AddressSanitizer or MemorySanitizer with

a fuzz testing extension of LLVM to generate similarly randomized executions. Directed Automated

Randomized Testing [62] employs symbolic execution to (a) determine unvisited program paths

and (b) generate inputs that guide execution down those new paths. While these approaches greatly

expand test coverage, some of the generated inputs may be invalid for the test target, potentially

leading to a large percentage of spurious error reports.

Without the integration of these tools into the software production cycle of major applications, it is

probable that the proliferation of exposed vulnerabilities would make it impossible to perform IID

profiling in adversarial conditions. There would be too much potential for malicious control flow to

infect the Trusted Profile. But the highly secure application code produced under the scrutiny of

these tools makes unsupervised profiling a viable option. At the same time, the ongoing reports of

exploits against applications across the spectrum of runtime platforms and development toolchains

suggests that a reliable monitoring approach such as Introspective Intrusion Detection remains

valuable for efficiently maintaining security of deployed applications.

6.5.2 Automated Repair

Die Hard [11] provides probabilistic guarantees of memory safety by randomly padding each

dynamic memory allocation requested by the application. This greatly reduces the observable

problems associated with buffer overflows, dangling pointers, and other forms of heap corruption.

While this does not repair problems in the source code, it has the effect of repairing the process at

runtime, while incurring a slight overhead of 6% with up to 2× increased memory consumption.

215

Clearview [135] uses learning to patch software errors. After learning constraints on variables

using Daikon [51], Clearview identifies violations of these invariants on erroneous executions

and generates patches to restore the invariants. Prophet [104] first analyzes the version history

of an application to learn its model of correct code, then generates patches conforming to this

model. AutoFix-E [183] extracts contracts from application code to verify the semantics of its

generated patches. Angelix [109] generates patches on the basis of program semantics, which is

not prone to simply deleting the faulting code, and can scale to large programs such as WireShark

and PHP. Experiments demonstrate that Angelix can automatically repair the OpenSSL Heartbleed

vulnerability with a secure patch.

To detect missing authentication checks in PHP applications, FixMeUp [164] employs static analysis

while both WebSSARI [80] and Saner [7] combine static and dynamic analysis. FixMeUp and

WebSSARI automatically generate patches. Saner verifies each result by dynamically generating

an exploit. ScriptGard [146] instruments both the client and server to dynamically patch faulty

authentication code.

While these techniques are promising and have patched security flaws in many important applications

and deployment scenarios, experimental and industrial results concur that the problem of memory

errors will not be eliminated by automated repairs anytime in the near future.

6.6 Usability

Thus far it has been shown that IID can potentially improve security over existing approaches,

particularly in that it can be more robust to new attacks and better able to detect evasive variations of

known attacks. But the administrative effort and runtime complexity of IID still present challenges

for its practical usability. This can potentially be improved by integrating work from related research

areas into the IID platform. For example, the log comprehension factor of Cadm is fundamentally a

216

problem of program comprehension, since the IID log contains literal control flow elements that

will be difficult for most users to understand and reason about. Section 6.6.1 proposes methods for

bridging the gap between low-level control flow events and the corresponding user-level features

and events. Section 6.6.2 addresses the sparse coverage aspect of Cprof by proposing symbolic

execution techniques for expanding coverage of the Trusted Profile. Since this approach has the

potential to trust unsafe program paths, Section 6.6.3 discusses an alternative approach that can

make a sparse Trusted Profile usable by applying machine learning to improve the suspicion ranking

of anomalies.

6.6.1 Program Comprehension

While an IID does not require the source code for the monitored programs, it may be possible to

leverage a source-based technique called program comprehension to help the administrator associate

high-level program features with the low-level control flow elements that appear in the IID logs,

Trusted Profile and blacklist. Dynamic approaches to program comprehension have been favored for

improved accuracy [32], and are convenient for IID because it operates primarily on program traces.

Much of the research in this field is oriented towards software developers and assumes the availability

of a structured outline of existing features. For example, the feature location [48] associates source

code regions with a developer-supplied set of program features. Vendors interested in improving IID

support for their products can provide feature-to-source associations in a format similar to a debug

symbol file (e.g., a .pdb file). Where the set of features is unknown, inference techniques such as

feature mining [99] and aspect mining [13] can identify both the set of application features and the

source code regions that compose them. Another technique that focuses on execution phases [138]

may benefit the user by providing an orthogonal dimension of context. Analysis of individual

executions, for example during profiling or after a high-suspicion anomaly, may benefit from trace

visualization [31].

217

6.6.2 Symbolic Execution

In scenarios where it is difficult to obtain complete profiling coverage, symbolic execution is able

to discover control flow paths that are reachable under any arbitrarily chosen set of execution

constraints. For example, X-Force [134] traverses all paths in an x86 executable that are reachable

under type-compliant inputs. By adding these paths to the Trusted Profile, false positives can be

significantly reduced. But this approach may also discover some unsafe paths. In many programs,

potentially malicious control flow can be reached with inputs that do respect low-level program types,

and such control flow is likely to be encountered by any comprehensive symbolic execution [150].

This will not always be a problem—for example, users wishing to focus on a strict subset of potential

attacks can formulate a symbolic execution that never discovers the corresponding malicious control

flow, yet generates substantial coverage of the remaining control flow paths.

6.6.3 Machine Learning

In scenarios where symbolic execution might discover unwanted control flow, machine learning

techniques may be able to improve the anomaly suspicion ranking enough to make a sparse Trusted

Profile usable. In supervised machine learning, a classifier is automatically generated on the basis

of labeled inputs, which in the case of IID would simply be safe and unsafe execution traces. Safe

traces can be generated in a secure environment by running automated tests or using the application

manually. For many of the attacks presented in Sections 6.1.4 and 6.4.1, the authors provide a tool

to find corresponding vulnerabilities or even generate a POC against any target program. Running a

successful POC will generate an unsafe trace, and in many cases even a failed POC will exhibit some

unsafe behaviors. Unsafe traces occurring in the wild are equally valuable for classifier training.

Preliminary experiments with machine learning in IID showed that classifiers trained on these

sources are not accurate enough to determine whether a given execution is safe, even when all traces

are augmented with data flow and variable values. But similar experiments focusing on malware

218

variants [24] and guided fuzz testing [167] suggest that such classifiers could make a significant

contribution to the suspicion ranking of anomalies. Research in the computation of distance metrics

covers a broad range of techniques that can be explored for reducing the classifier output to a

suitable scalar value [184, 190, 98, 145]. For improved accuracy, the IID administrator can evaluate

each high-suspicion anomaly by examining the control flow elements and data values that most

strongly influenced its distance metric computation.

219

Chapter 7

Conclusions and Future Work

Introspective Intrusion Detection has the potential to detect zero-day RCE exploits that leverage

entirely new and unforeseen attack vectors. It can also infer local security policies where a universal

policy would either be hard to formulate, or is simply undesirable. While many important CFI

defenses exist with varying degrees of automation, performance and accuracy, IID can detect control

flow anomalies at consistently higher precision. The comprehensive tracing capabilities of the

IID runtime can greatly assist triage efforts when an exploit does occur, and can also facilitate

preventative analysis of suspicious program behaviors. An IID can be an essential tool against

complex intrusions such as advanced persistent threats. Field debugging and other challenging

software engineering tasks can benefit from the detailed IID logs. Prototype IID implementations for

x86 COTS binaries and PHP applications demonstrate these advantages in controlled and real-world

experiments, though some limitations are evident.

On the x86 platform, IID performs optimally for server applications, and is also sufficient for many

interactive desktop programs. The relatively high rate of anomalies on this platform can be largely

mitigated by prioritization of anomaly reports on the basis of statistical tendencies and correlation

to risky system calls. Known exploits against relatively small programs are reliably detected after

220

nominal profiling periods, and case studies show that IID can detect the most sophisticated exploits

developed in research for this platform. But performance limitations and cumbersome profiling

requirements indicate that further improvements could make IID substantially more usable for

complex x86 programs that offer rich user interfaces and years of accumulated features.

For the relatively simple configurations of popular PHP applications, IID performs well enough for

deployment in many typical usage scenarios. Authorized changes to the set of enabled application

behaviors can be accurately inferred and trusted without administrative intervention. Exploits in the

wild are accurately detected with a false positive ratio under .01%. But experiments with IID were

limited to small application deployments that may not reveal the full range of potential challenges

for IID on this platform.

A cloud-based IID Service can simplify the administrative effort of using IID, potentially handling

the profiling and log management tasks transparently. Installation utilities could automatically

deploy an IID and integrate it with a default IID Service configuration. An additional advantage of

a central service is the opportunity to coordinate profiling across users in a circle of mutual trust,

and to faciliate collaborative evaluation of anomalies.

7.1 Adoption

Despite the prevalence of security threats and the extremely high investment in software and the

resources it can directly affect, security techniques are not often deployed on vulnerable systems.

The security tools that are heavily used by large software organizations like Google and Microsoft

typically operate behind the scenes as some part of the build cycle, such as a compiler extension or

a debugging utility. This form factor is desirable because it is transparent to the released product

and is not likely to cause failures at customer sites. Security tools are perceived as a risk, potentially

crashing a product, or creating high overhead, or requiring attention from the end user. Even tools

221

that can be obtained and deployed by individual users are perceived as more trouble than they are

worth.

This raises an important question for the future of Introspective Intrusion Detection: since it has a

significant footprint at the end-user site, requiring an entire runtime along with analysis tools, is

IID viable for user adoption? No matter how much effort a vendor or security organization makes

to promote the monitoring advantages of IID, if users are not willing to host it on their devices,

it will sit quietly in the research closet with countless other technically qualified tools. During

the experimental evaluation of the IID prototypes, we solicited several organizations whose PHP

websites receive significant daily traffic, but were not able to arrange any kind of experimental

collaboration. Our initial proposition was usually met with enthusiasm from members who were not

directly responsible for the organization’s IT infrastructure, and though the internal conversations

were never shared with us, we suppose that some combination of concerns—likely including

stability, manual effort and privacy—outweighed the nominal perceived benefit of the endeavor.

There is reason for optimism, however. The history of end-user security tools suggests that the slow

adoption rate for new approaches is not necessarily related to usability. For example, users have

suffered for decades with high overheads and pervasive false positives from anti-virus daemons,

yet continue to install them and even pay license fees to keep a meager slice of the attack surface

marginally protected. Tools similar to IID have been popular in the WordPress community at

times. The security plugin MuteScreamer [185] integrated traditional intrusion detection into any

WordPress site, though as discussed in Section 1.1, it was not possible for users or even experts to

maintain effective whitelists and blacklists under the highly dynamic I/O of the WordPress client

API. So although the perception of security tools is in general negative, history indicates this is not

necessarily the deciding factor—users will tolerate a significant amount of inconvenience when the

perceived value is well established.

Taking this into perspective, the most direct path to user adoption of IID may not begin with an

arduous climb through the mountains of feature refinement, reaching toward the peaks of seamless

222

desktop integration beyond the plateau of automated policy synchronization. A more likely route

winds through the jungles of promotional networking, blazing new trails through logistical tangles

and legal snares that lead eventually to volunteer experiments and live prototype deployments. In the

world of software, communities rarely reach out of their comfort zone looking for new approaches,

no matter how serious the problems become. This is not just a phenomenon of security, but is

common for many kinds of software improvement tools. The fundamental challenge for adoption is

to somehow make the new technology welcome within those communities where it can be of the

most advantage.

223

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In 12th ACM
Conference on Computer and Communications Security, CCS ’05, 2005.

[2] ActiveState. Activestate poll finds enterprise developers use dynamic lan-
guages to get products to market faster and cheaper; feel less pressure
about quality. https://www.activestate.com/press-releases/
activestate-poll-finds-enterprise-developers-use-dynamic-
languages-get-products-marke, accessed 2017.

[3] J. Alstott, E. Bullmore, and D. Plenz. powerlaw: A python package for analysis of heavy-
tailed distributions. PLoS ONE, 9(1):e85777, 2014.

[4] W. Arthur, B. Mehne, R. Das, and T. Austin. Getting in control of your control flow with
control-data isolation. In CGO, 2015.

[5] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis, and S. Ioannidis.
The devil is in the constants: Bypassing defenses in browser JIT engines. In NDSS, 2015.

[6] J. Bach. The most popular programming languages for
2017. https://blog.appdynamics.com/engineering/
the-most-popular-programming-languages-for-2017/, 2017.

[7] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Saner: Composing static and dynamic analysis to validate sanitization in web applications.
In Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP ’08, 2008.

[8] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of machine learning.
Machine Learning, 81(2):121–148, Nov 2010.

[9] beginfill.com. beginfill.com homepage. http://beginfill.com/WebGL_Video3D,
2014.

[10] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX Annual Technical
Conference, 2005.

[11] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety for unsafe languages. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’06, pages 158–168, New York, NY, USA, 2006. ACM.

224

https://www.activestate.com/press-releases/activestate-poll-finds-enterprise-developers-use-dynamic-
https://www.activestate.com/press-releases/activestate-poll-finds-enterprise-developers-use-dynamic-
languages-get-products-marke
https://blog.appdynamics.com/engineering/the-most-popular-programming-languages-for-2017/
https://blog.appdynamics.com/engineering/the-most-popular-programming-languages-for-2017/
http://beginfill.com/WebGL_Video3D

[12] D. Bounov, R. G. Kici, and S. Lerner. Protecting c++ dynamic dispatch through vtable
interleaving. In NDSS, 2016.

[13] S. Breu and J. Krinke. Aspect mining using event traces. In Proceedings of the 19th IEEE
International Conference on Automated Software Engineering, ASE ’04, pages 310–315,
Washington, DC, USA, 2004. IEEE Computer Society.

[14] D. Bruening. Efficient, Transparent, and Comprehensive Runtime Code Manipulation. PhD
thesis, MIT, 2004.

[15] D. Bruening. Efficient, Transparent and Comprehensive Runtime Code Manipulation. PhD
thesis, MIT, 2004.

[16] D. Bruening and S. Amarasinghe. Maintaining consistency and bounding capacity of software
code caches. In IEEE/ACM Symp. on Code Generation and Optimization, 2005.

[17] D. Bruening and Q. Zhao. Practical memory checking with Dr. Memory. In IEEE/ACM
Symp. on Code Generation and Optimization, 2011.

[18] D. Bruening, Q. Zhao, and S. Amarasinghe. Transparent dynamic instrumentation. In ACM
Conf. on Virtual Execution Environments, 2012.

[19] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer. Control-flow
integrity: Precision, security, and performance. ACM Comput. Surv., 50(1):16:1–16:33, 2017.

[20] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda. A quantita-
tive study of accuracy in system call-based malware detection. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, ISSTA 2012, pages 122–132,
New York, NY, USA, 2012. ACM.

[21] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-flow bending: On the
effectiveness of control-flow integrity. In USENIX Security, 2015.

[22] N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern defenses. In USENIX
Security, 2014.

[23] S. Cazzulani. Octane: The JavaScript benchmark suite for the modern web. http://blog.
chromium.org/2012/08/octane-javascript-benchmark-suite-for.
html, 2012.

[24] S. Cesare and Y. Xiang. Malware variant detection using similarity search over sets of control
flow graphs. In 2011IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications, pages 181–189, Nov 2011.

[25] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput. Surv.,
41(3):15:1–15:58, July 2009.

225

http://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
http://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
http://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html

[26] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an understanding
of anti-virtualization and anti-debugging behavior in modern malware. In 2008 IEEE
International Conference on Dependable Systems and Networks With FTCS and DCC (DSN),
pages 177–186, June 2008.

[27] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Efficient flow tracing with dynamic
binary rewriting. In IEEE Symp. on Computers and Communications, 2006.

[28] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A generic and practical
approach for defending against ROP attack. In NDSS, 2014.

[29] P. R. Cichonski, T. Millar, T. Grance, and K. Scarfone. Computer se-
curity incident handling guide. https://www.nist.gov/publications/
computer-security-incident-handling-guide, August 2012. [Online;
posted 6-August-2012].

[30] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen, M. Qunaibit, and
A.-R. Sadeghi. Losing control: On the effectiveness of control-flow integrity under stack
attacks. In CCS, 2015.

[31] B. Cornelissen, A. Zaidman, and A. van Deursen. A controlled experiment for program
comprehension through trace visualization. IEEE Transactions on Software Engineering,
37(3):341–355, May 2011.

[32] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A systematic
survey of program comprehension through dynamic analysis. IEEE Transactions on Software
Engineering, 35(5):684–702, Sept 2009.

[33] I. Corporation. Introduction to intel memory protection exten-
sions. https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions, 2013.

[34] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A. Sadeghi, T. Holz,
B. D. Sutter, and M. Franz. It’s a TRaP: Table randomization and protection against function-
reuse attacks. In CCS, 2015.

[35] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis. Casting out
demons: Sanitizing training data for anomaly sensors. In 2008 IEEE Symposium on Security
and Privacy (sp 2008), pages 81–95, May 2008.

[36] J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Complete control-flow integrity for
commodity operating system kernels. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 292–307, Washington, DC, USA, 2014. IEEE Computer
Society.

[37] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure virtual architecture: A safe execu-
tion environment for commodity operating systems. SIGOPS Oper. Syst. Rev., 41(6):351–366,
Oct. 2007.

226

https://www.nist.gov/publications/computer-security-incident-handling-guide
https://www.nist.gov/publications/computer-security-incident-handling-guide
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions

[38] CXSecurity. WordPress revslider arbitrary file upload, download & cross site scripting.
https://cxsecurity.com/issue/WLB-2015060136, 2015.

[39] CXSecurity. Wordpress formcraft plugin file upload vulnerability. https://
cxsecurity.com/issue/WLB-2016020136, 2016.

[40] A. Dahmani. How many wordpress plugins are there? https://www.adame.ma/
how-many-wordpress-plugins, 2016.

[41] J. Dahse, N. Krein, and T. Holz. Code reuse attacks in php: Automated pop chain generation.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, 2014.

[42] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürnberger, and A. reza
Sadeghi. MoCFI: A framework to mitigate control-flow attacks on smartphones. In Proceed-
ings of the Network and Distributed System Security Symposium, 2012.

[43] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection. In USENIX Security,
2014.

[44] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and J. Mattson.
The Transmeta Code Morphing SoftwareTM: Using speculation, recovery, and adaptive
retranslation to address real-life challenges. In IEEE/ACM Symp. on Code Generation and
Optimization, 2003.

[45] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer uses in production servers.
In IEEE/IFIP Conf. on Dependable Systems and Networks, 2006.

[46] D. Dhurjati, S. Kowshik, and V. Adve. Safecode: Enforcing alias analysis for weakly typed
languages. SIGPLAN Not., 41(6):144–157, June 2006.

[47] P. Dinges and G. Agha. Targeted test input generation using symbolic-concrete backward
execution. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 31–36, New York, NY, USA, 2014. ACM.

[48] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source code: a
taxonomy and survey. Journal of Software: Evolution and Process, 25(1):53–95, 2013.

[49] drmemory.org. Dr. Memory fuzz testing mode. http://drmemory.org/docs/page_
fuzzer.html, 2015.

[50] dynamorio.org. Register usage coordinator. http://dynamorio.org/docs/group_
_drreg.html, accessed 2017.

[51] M. D. Ernst, W. G. Griswold, Y. Kataoka, and D. Notkin. Dynamically discovering pointer-
based program invariants. Technical Report UW-CSE-99-11-02, University of Washington
Department of Computer Science and Engineering, Seattle, WA, November 16, 1999. Revised
March 17, 2000.

227

https://cxsecurity.com/issue/WLB-2015060136
https://cxsecurity.com/issue/WLB-2016020136
https://cxsecurity.com/issue/WLB-2016020136
https://www.adame.ma/how-many-wordpress-plugins
https://www.adame.ma/how-many-wordpress-plugins
http://drmemory.org/docs/page_fuzzer.html
http://drmemory.org/docs/page_fuzzer.html
http://dynamorio.org/docs/group__drreg.html
http://dynamorio.org/docs/group__drreg.html

[52] S. Esser. Utilizing code reuse or return oriented programming in PHP applications. In Black
Hat, USA, 2010.

[53] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe, S. Sidiroglou-Douskos,
M. Rinard, and H. Okhravi. Missing the point(er): On the effectiveness of code pointer
integrity. In S&P, 2015.

[54] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-
Douskos. Control jujutsu: On the weaknesses of fine-grained control flow integrity. In CCS,
2015.

[55] V. Feldman. 540 million active plugins makes wordpress
a billion dollar market. https://freemius.com/blog/
540-million-active-plugins-makes-wordpress-a-billion-dollar-
market, 2015.

[56] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl. Stack
overflow considered harmful? the impact of copy&paste on android application security. In
Symposium on Security and Privacy, Oakland’17. IEEE, 2017.

[57] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, SP ’96,
1996.

[58] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for
intrusion detection. In In Proc. Network and Distributed Systems Security Symposium, pages
191–206, 2003.

[59] R. Gawlik and T. Holz. Towards automated integrity protection of c++ virtual function tables
in binary programs. In Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC ’14, pages 396–405, New York, NY, USA, 2014. ACM.

[60] X. Ge, W. Cui, and T. Jaeger. Griffin: Guarding control flows using intel processor trace.
SIGARCH Comput. Archit. News, 45(1):585–598, Apr. 2017.

[61] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-flow integrity for kernel
software. In 2016 IEEE European Symposium on Security and Privacy (EuroS P), pages
179–194, March 2016.

[62] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing. SIGPLAN
Not., 40(6):213–223, June 2005.

[63] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Overcoming
control-flow integrity. In S&P, 2014.

[64] E. Göktas, E. Athanasopoulos, M. Polychroniakis, H. Bos, and G. Portokalidis. Size does
matter - why using gadget chain length to prevent code-reuse attacks is hard. In USENIX
Security, 2014.

228

https://freemius.com/blog/540-million-active-plugins-makes-wordpress-a-billion-dollar-
https://freemius.com/blog/540-million-active-plugins-makes-wordpress-a-billion-dollar-
market

[65] Goo Labs. Goo Labs homepage. http://labs.gooengine.com/videosphere,
2014.

[66] Google, Inc. V8 JavaScript engine. https://code.google.com/p/v8/, 2014.

[67] Google, Inc. Google trends: Wordpress plugins. https://trends.google.com/
trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=
en-US&sni=1, 2017.

[68] Google, Inc. Google trends: Wordpress security. https://trends.google.com/
trends/explore/TIMESERIES?date=all&q=wordpress%20security&
hl=en-US&sni=1, 2017.

[69] Google, Inc. Google trends: Wordpress themes. https://trends.google.com/
trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=
en-US&sni=1, 2017.

[70] W. S. Gosset. The probable error of a mean. Biometrika, 6(1), 1908.

[71] J. L. Greathouse, C. LeBlanc, T. Austin, and V. Bertacco. Highly scalable distributed dataflow
analysis. In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’11, pages 277–288, Washington, DC, USA, 2011. IEEE
Computer Society.

[72] J. L. Greathouse, I. Wagner, D. A. Ramos, G. Bhatnagar, T. Austin, V. Bertacco, and S. Pettie.
Testudo: Heavyweight security analysis via statistical sampling. In Proceedings of the
41st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pages
117–128, Washington, DC, USA, 2008. IEEE Computer Society.

[73] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu. Leaps: Detecting camouflaged
attacks with statistical learning guided by program analysis. In 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 57–68, June 2015.

[74] B. Hawkins, B. Demsky, D. Bruening, and Q. Zhao. Optimizing binary translation for
dynamically generated code. In CGO, 2015.

[75] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer Architecture
News, 2006.

[76] C. Herley and P. C. van Oorschot. Sok: Science, security and the elusive goal of security as a
scientific pursuit. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, pages 99–120, 2017.

[77] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: transparent code random-
ization for just-in-time compilers. In ACM Conf. on Computer & Communications Security,
2013.

229

http://labs.gooengine.com/videosphere
https://code.google.com/p/v8/
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20security&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20security&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20security&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=en-US&sni=1
https://trends.google.com/trends/explore/TIMESERIES?date=all&q=wordpress%20plugins&hl=en-US&sni=1

[78] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. Profile-guided automated
software diversity. In Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), CGO ’13, pages 1–11, Washington, DC, USA, 2013.
IEEE Computer Society.

[79] P. Hu, H. Li, H. Fu, D. Cansever, and P. Mohapatra. Dynamic defense strategy against
advanced persistent threat with insiders. In INFOCOM, pages 747–755. IEEE, 2015.

[80] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing web application
code by static analysis and runtime protection. In Proceedings of the 13th International
Conference on World Wide Web, WWW ’04, 2004.

[81] E. M. Hutchins, M. J. Cloppert, and R. M. Amin. Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains. Leading Issues
in Information Warfare & Security Research, April 2014. [Online; posted 3-April-2014].

[82] Intel, Corp. Control-flow enforcement technology preview. https:
//software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf, 2017.

[83] Intel Corp. Media alert: New 8th gen intel core processor family to de-
but aug. 21. https://newsroom.intel.com/news-releases/
media-alert-introducing-new-8th-gen-intel-core-processor-
family/, 2017.

[84] Intel Corp. Products formerly kaby lake. https://ark.intel.com/products/
codename/82879/Kaby-Lake, accessed 2017.

[85] interrupt3@mail.ru. Tomahawk multipass morpher engine. Transitory malware development
forum (URL removed), 2010–2012.

[86] interrupt3@mail.ru. Krypton (malware development template). Transitory malware develop-
ment forum (URL removed), [obtained in 2013].

[87] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++ virtual calls from memory
corruption attacks. In Proceedings of the 2014 Network and Distributed System Security
Symposium, NDSS ’14, 2014.

[88] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting web
application vulnerabilities (short paper). In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, SP ’06, 2006.

[89] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea. Failure sketching: A technique
for automated root cause diagnosis of in-production failures. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, pages 344–360, New York, NY,
USA, 2015. ACM.

[90] D. Keppel. A portable interface for on-the-fly instruction space modification. In ACM Conf.
on Architectural Support for Programming Languages and Operating Systems, 1991.

230

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://newsroom.intel.com/news-releases/media-alert-introducing-new-8th-gen-intel-core-processor-
https://newsroom.intel.com/news-releases/media-alert-introducing-new-8th-gen-intel-core-processor-
family/
https://ark.intel.com/products/codename/82879/Kaby-Lake
https://ark.intel.com/products/codename/82879/Kaby-Lake

[91] D. Keppel. How to detect self-modifying code during instruction-set simulation. In
IEEE/ACM Workshop on Architectural and Microarchitectural Support for Binary Transla-
tion, 2009.

[92] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz. Crowdflow: Efficient
information flow security. In Proceedings of the 16th International Conference on Information
Security - Volume 7807, ISC 2013, pages 321–337, New York, NY, USA, 2015. Springer-
Verlag New York, Inc.

[93] F. M. Kifetew. A search-based framework for failure reproduction. In Proceedings of the 4th
International Conference on Search Based Software Engineering, SSBSE’12, pages 279–284,
Berlin, Heidelberg, 2012. Springer-Verlag.

[94] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program shepherding.
In Proceedings of the 11th USENIX Security Symposium, USENIX Security ’02, 2002.

[95] A. J. Ko and B. A. Myers. Designing the whyline: A debugging interface for asking questions
about program behavior. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’04, pages 151–158, New York, NY, USA, 2004. ACM.

[96] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In Proceedings of the
10th ACM Conference on Computer and Communications Security, CCS ’03, 2003.

[97] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer
integrity. In OSDI, 2014.

[98] J. T. Kwok and I. W. Tsang. Learning with idealized kernels. In Proceedings of the Twentieth
International Conference on International Conference on Machine Learning, ICML’03,
pages 400–407. AAAI Press, 2003.

[99] C. Kästner, A. Dreiling, and K. Ostermann. Variability mining: Consistent semi-automatic
detection of product-line features. IEEE Transactions on Software Engineering, 40(1):67–82,
Jan 2014.

[100] M. L. Laboratories. DARPA intrusion detection data sets. https://www.ll.mit.edu/
ideval/data/.

[101] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated software diversity. In
S&P, 2014.

[102] A. Lazarevic and V. Kumar. Feature bagging for outlier detection. In Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
KDD ’05, pages 157–166, New York, NY, USA, 2005. ACM.

[103] J. Li, C. Wu, and W.-C. Hsu. Dynamic register promotion of stack variables. In IEEE/ACM
Symp. on Code Generation and Optimization, 2011.

[104] F. Long and M. Rinard. Automatic patch generation by learning correct code. SIGPLAN
Not., 51(1):298–312, Jan. 2016.

231

https://www.ll.mit.edu/ideval/data/
https://www.ll.mit.edu/ideval/data/

[105] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumenta-
tion. In ACM Conf. on Programming Language Design and Implementation, 2005.

[106] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell. A layered architecture
for detecting malicious behaviors. In Proceedings of the 11th International Symposium on
Recent Advances in Intrusion Detection, RAID ’08, pages 78–97, Berlin, Heidelberg, 2008.
Springer-Verlag.

[107] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. Ccfi: Cryptographically enforced
control flow integrity. In CCS, 2015.

[108] P. Maydell. Inquiry, QEMU developer’s email list. http://lists.gnu.org/
archive/html/qemu-devel/2014-08/msg05142.html, 2014.

[109] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline program patch
synthesis via symbolic analysis. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 691–701, May 2016.

[110] Microsoft. A detailed description of the data execution prevention (DEP) feature in Windows
XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows Server 2003.
support.microsoft.com/kb/875352.

[111] M. Miller. Mitigating arbitrary native code execution in microsoft
edge. https://blogs.windows.com/msedgedev/2017/02/23/
mitigating-arbitrary-native-code-execution/, 2017.

[112] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis. Spotless sandboxes:
Evading malware analysis systems using wear-and-tear artifacts. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 1009–1024, May 2017.

[113] R. Mitchell and I.-R. Chen. A survey of intrusion detection techniques for cyber-physical
systems. ACM Comput. Surv., 46(4):55:1–55:29, Mar. 2014.

[114] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz. Opaque control-flow
integrity. In NDSS, 2015.

[115] A. Mokarian, A. Faraahi, and A. G. Delavar. False positives reduction techniques in intrusion
detection systems-a review. International Journal of Computer Science and Network Security
(IJCSNS), 13(10):128, 2013.

[116] N. Mor-Sarid. Inquiry, Pinheads email list. https://groups.yahoo.com/neo/
groups/pinheads/conversations/messages/10959, 2014.

[117] Mozilla. IonMonkey. https://wiki.mozilla.org/IonMonkey, 2014.

[118] Mozilla. Kraken JavaScript benchmark (version 1.1). http://krakenbenchmark.
mozilla.org/, 2014.

232

http://lists.gnu.org/archive/html/qemu-devel/2014-08/msg05142.html
http://lists.gnu.org/archive/html/qemu-devel/2014-08/msg05142.html
support.microsoft.com/kb/875352
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://groups.yahoo.com/neo/groups/pinheads/conversations/messages/10959
https://groups.yahoo.com/neo/groups/pinheads/conversations/messages/10959
https://wiki.mozilla.org/IonMonkey
http://krakenbenchmark.mozilla.org/
http://krakenbenchmark.mozilla.org/

[119] S. Murtaza, A. Hamou-Lhadj, and M. Couture. Reducing false positive rate in anomaly
detection through generalization of system calls. http://pubs.drdc-rddc.gc.ca/
BASIS/pcandid/www/frepub/DDW?W%3DSYSNUM=536524&r=0, October 2011.
[Online; posted 1-October-2011].

[120] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In ACM Conf. on Programming Language Design and Implementation,
2007.

[121] F. Ng. A story of cyber attack and incident response. https://www.linkedin.com/
pulse/story-cyber-attack-incident-response-freeman-ng, 2015.

[122] B. Niu and G. Tan. Monitor integrity protection with space efficiency and separate compila-
tion. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security, CCS ’13, pages 199–210, New York, NY, USA, 2013. ACM.

[123] B. Niu and G. Tan. Modular control-flow integrity. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14,
pages 577–587, New York, NY, USA, 2014. ACM.

[124] B. Niu and G. Tan. Rockjit: Securing just-in-time compilation using modular control-flow
integrity. In ACM Conf. on Computer and Communications Security, 2014.

[125] B. Niu and G. Tan. Per-input control-flow integrity. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pages 914–926,
New York, NY, USA, 2015. ACM.

[126] P. Ohmann, A. Brooks, L. D'Antoni, and B. Liblit. Control-flow recovery from partial
failure reports. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 390–405, New York, NY, USA,
2017. ACM.

[127] P. Ohmann and B. Liblit. Lightweight control-flow instrumentation and postmortem analysis
in support of debugging. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 378–388, Nov 2013.

[128] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, SP ’12, 2012.

[129] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP exploit mitigation
using indirect branch tracing. In SEC, 2013.

[130] G. A. Pascoe. Elements of object-oriented programming. BYTE, 11(8):139–144, Aug. 1986.

[131] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-flow integrity through binary
hardening. In Proceedings of the 12th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment - Volume 9148, DIMVA 2015, pages 144–164,
New York, NY, USA, 2015. Springer-Verlag New York, Inc.

233

http://pubs.drdc-rddc.gc.ca/BASIS/pcandid/www/frepub/DDW?W%3DSYSNUM=536524&r=0
http://pubs.drdc-rddc.gc.ca/BASIS/pcandid/www/frepub/DDW?W%3DSYSNUM=536524&r=0
https://www.linkedin.com/pulse/story-cyber-attack-incident-response-freeman-ng
https://www.linkedin.com/pulse/story-cyber-attack-incident-response-freeman-ng

[132] M. Payer and T. R. Gross. Fine-grained user-space security through virtualization. SIGPLAN
Not., 46(7):157–168, Mar. 2011.

[133] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow. jÄk: Using Dynamic Analysis to
Crawl and Test Modern Web Applications, pages 295–316. Springer International Publishing,
Cham, 2015.

[134] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-Force: Force-executing binary
programs for security applications. In USENIX Security, 2014.

[135] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco,
F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard.
Automatically patching errors in deployed software. In SOSP, 2009.

[136] J. Pewny and T. Holz. Control-flow restrictor: Compiler-based cfi for ios. In Proceedings of
the 29th Annual Computer Security Applications Conference, ACSAC ’13, pages 309–318,
New York, NY, USA, 2013. ACM.

[137] T. Pietraszek and A. Tanner. Data mining and machine learning-towards reducing false
positives in intrusion detection. Inf. Secur. Tech. Rep., 10(3):169–183, Jan. 2005.

[138] H. Pirzadeh, A. Agarwal, and A. Hamou-Lhadj. An approach for detecting execution phases
of a system for the purpose of program comprehension. In 2010 Eighth ACIS International
Conference on Software Engineering Research, Management and Applications, pages 207–
214, May 2010.

[139] B. P. Pokkunuri. Object oriented programming. SIGPLAN Not., 24(11):96–101, Nov. 1989.

[140] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict protection for virtual function calls in cots
c++ binaries. In NDSS, 2015.

[141] F. Qin, S. Lu, and Y. Zhou. Safemem: exploiting ecc-memory for detecting memory leaks
and memory corruption during production runs. In 11th International Symposium on High-
Performance Computer Architecture, pages 291–302, Feb 2005.

[142] F. Richter. Landline phones are a dying breed. https://www.statista.com/chart/
2072/landline-phones-in-the-united-states/, 2017.

[143] W. Robertson, G. Vigna, C. Kruegel, and R. A. Kemmerer. Using generalization and
characterization techniques in the anomaly-based detection of web attacks. In In Proceedings
of the 13 th Symposium on Network and Distributed System Security (NDSS), 2006.

[144] N. Rosenblum, X. Zhu, B. Miller, and K. Hunt. Machine learning-assisted binary code
analysis. In NIPS Workshop on Machine Learning in Adversarial Environments for Computer
Security, Whistler, British Columbia, Canada, December, 2007.

[145] L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low
dimensional manifolds. J. Mach. Learn. Res., 4:119–155, Dec. 2003.

234

https://www.statista.com/chart/2072/landline-phones-in-the-united-states/
https://www.statista.com/chart/2072/landline-phones-in-the-united-states/

[146] P. Saxena, D. Molnar, and B. Livshits. SCRIPTGARD: Automatic context-sensitive sanitiza-
tion for large-scale legacy web applications. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, 2011.

[147] K. Scarfone and P. M. Mell. Guide to intrusion detection and pre-
vention systems (idps). https://www.nist.gov/publications/
guide-intrusion-detection-and-prevention-systems-idps, February
2007. [Online; posted 20-February-2007].

[148] F. B. Schneider. Enforceable security policies. volume 3, pages 30–50, Feb. 2000.

[149] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counterfeit
object-oriented programming: On the difficulty of preventing code reuse attacks in C++
applications. In S&P, 2015.

[150] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might have been afraid to ask). In
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 317–331,
Washington, DC, USA, 2010. IEEE Computer Society.

[151] M. J. Schwartz. Social engineering leads apt attack vectors. https:
//www.darkreading.com/vulnerabilities-and-threats/
social-engineering-leads-apt-attack-vectors/d/d-id/1100142,
September 2011. [Online; posted 14-September-2011].

[152] D. Scott and R. Sharp. Abstracting application-level web security. In Proceedings of the 11th
International Conference on World Wide Web, WWW ’02, 2002.

[153] K. Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In 2016 IEEE
Cybersecurity Development (SecDev), pages 157–157, Nov 2016.

[154] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer: A fast address
sanity checker. In Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 309–318, Boston, MA, 2012. USENIX.

[155] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data race detection in practice. In
ACM Workshop on Binary Instrumentation and Applications, 2009.

[156] J. Seward and N. Nethercote. Using Valgrind to detect undefined value errors with bit-
precision. In USENIX Annual Technical Conference, 2005.

[157] A. Shah. 10 evergreen programming languages to learn in 2015. https:
//blog.fusioninformatics.com/new-technology-trends/
10-evergreen-programming-languages-learn-2015/, 2015.

[158] R. C. Sharble and S. S. Cohen. The object-oriented brewery: A comparison of two object-
oriented development methods. SIGSOFT Softw. Eng. Notes, 18(2):60–73, Apr. 1993.

235

https://www.nist.gov/publications/guide-intrusion-detection-and-prevention-systems-idps
https://www.nist.gov/publications/guide-intrusion-detection-and-prevention-systems-idps
https://www.darkreading.com/vulnerabilities-and-threats/social-engineering-leads-apt-attack-vectors/d/d-id/1100142
https://www.darkreading.com/vulnerabilities-and-threats/social-engineering-leads-apt-attack-vectors/d/d-id/1100142
https://www.darkreading.com/vulnerabilities-and-threats/social-engineering-leads-apt-attack-vectors/d/d-id/1100142
https://blog.fusioninformatics.com/new-technology-trends/10-evergreen-programming-languages-learn-2015/
https://blog.fusioninformatics.com/new-technology-trends/10-evergreen-programming-languages-learn-2015/
https://blog.fusioninformatics.com/new-technology-trends/10-evergreen-programming-languages-learn-2015/

[159] sibaway7@yahoo.com. Krypton icon morphing plugin. Transitory malware development
forum (URL removed), [obtained in 2013].

[160] M. Siegler. Chrome appears to have hit 10,000 extensions, inching closer to firefox. https:
//techcrunch.com/2010/12/10/chrome-extension-numbers/, 2010.

[161] snort.org. Snort - network intrusion detection & prevention system. https://www.
snort.org/.

[162] R. Sommer and V. Paxson. Outside the closed world: On using machine learning for network
intrusion detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, 2010.

[163] S. Son, K. S. McKinley, and V. Shmatikov. Diglossia: Detecting code injection attacks with
precision and efficiency. In Proceedings of the 2013 ACM Conference on Computer and
Communications Security, 2013.

[164] S. Son, K. S. McKinley, and V. Shmatikov. FixMeUp: Repairing access-control bugs in
web applications. In Proceedings of the 2013 Network and Distributed System Security
Symposium, 2013.

[165] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena. BitBlaze: A new approach to computer security via binary
analysis. In IEEE International Conf. on Information Systems Security, 2008.

[166] E. O. Soremekun. Debugging with probabilistic event structures. In Proceedings of the 39th
International Conference on Software Engineering Companion, ICSE-C ’17, pages 437–440,
Piscataway, NJ, USA, 2017. IEEE Press.

[167] S. Sparks, S. Embleton, R. Cunningham, and C. Zou. Automated vulnerability analysis:
Leveraging control flow for evolutionary input crafting. In Twenty-Third Annual Computer
Security Applications Conference (ACSAC 2007), pages 477–486, Dec 2007.

[168] Standard Performance Evaluation Corporation. SPEC CPU2006 benchmark suite. http:
//www.spec.org/osg/cpu2006/, 2006.

[169] E. Stepanov and K. Serebryany. Memorysanitizer: Fast detector of uninitialized memory use
in c++. In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 46–55, Washington, DC, USA, 2015. IEEE
Computer Society.

[170] Z. Su and G. Wassermann. The essence of command injection attacks in web applications.
In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’06, 2006.

[171] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Úlfar Erlingsson, L. Lozano, and G. Pike.
Enforcing forward-edge control-flow integrity in GCC & LLVM. In USENIX Security, 2014.

236

https://techcrunch.com/2010/12/10/chrome-extension-numbers/
https://techcrunch.com/2010/12/10/chrome-extension-numbers/
https://www.snort.org/
https://www.snort.org/
http://www.spec.org/osg/cpu2006/
http://www.spec.org/osg/cpu2006/

[172] Trustwave SpiderLabs. ModSecurity: Open source web application firewall. https:
//www.modsecurity.org/.

[173] TSan. ThreadSanitizer wiki. https://code.google.com/p/data-race-test/
source/browse/trunk/dynamic_annotations/dynamic_annotations.
h, 2014.

[174] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and
C. Giuffrida. Practical context-sensitive CFI. In CCS, 2015.

[175] M. Van Gundy and H. Chen. Noncespaces: Using randomization to defeat cross-site scripting
attacks. volume 31, pages 612–628. Elsevier Advanced Technology Publications, June 2012.

[176] G. Vigna. Network intrusion detection: Dead or alive? In Proceedings of the 26th Annual
Computer Security Applications Conference, ACSAC ’10, pages 117–126, New York, NY,
USA, 2010. ACM.

[177] C. Viviani. WordPress Download Manager 2.7.4 - remote code execution vulnerability.
https://www.exploit-db.com/exploits/35533/, 2015.

[178] N. Walkinshaw, S. Afshan, and P. McMinn. Using compression algorithms to support the
comprehension of program traces. In Proceedings of the Eighth International Workshop on
Dynamic Analysis, WODA ’10, pages 8–13, New York, NY, USA, 2010. ACM.

[179] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-based worm detection and signature
generation. In Proceedings of the 8th International Conference on Recent Advances in
Intrusion Detection, RAID’05.

[180] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A content anomaly detector resistant to
mimicry attack. In Proceedings of the 9th International Conference on Recent Advances in
Intrusion Detection, RAID’06, 2006.

[181] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
SP ’10, pages 380–395, Washington, DC, USA, 2010. IEEE Computer Society.

[182] G. Wassermann and Z. Su. Sound and precise analysis of web applications for injection
vulnerabilities. In Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07.

[183] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller. Automated
fixing of programs with contracts. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 61–72, New York, NY, USA, 2010. ACM.

[184] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor
classification. J. Mach. Learn. Res., 10:207–244, June 2009.

[185] WordPress. Mute screamer—wordpress plugins. https://wordpress.org/
plugins/mute-screamer/.

237

https://www.modsecurity.org/
https://www.modsecurity.org/
https://code.google.com/p/data-race-test/source/browse/trunk/dynamic_annotations/dynamic_annotations.h
https://code.google.com/p/data-race-test/source/browse/trunk/dynamic_annotations/dynamic_annotations.h
https://code.google.com/p/data-race-test/source/browse/trunk/dynamic_annotations/dynamic_annotations.h
https://www.exploit-db.com/exploits/35533/
https://wordpress.org/plugins/mute-screamer/
https://wordpress.org/plugins/mute-screamer/

[186] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting languages. In
Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15, 2006.

[187] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting languages. In
Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15, USENIX-
SS’06, 2006.

[188] J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu. Credal: Towards locating a memory
corruption vulnerability with your core dump. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 529–540. ACM, 2016.

[189] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B. Mao. Postmortem program analysis with
hardware-enhanced post-crash artifacts. In 26th USENIX Security Symposium (USENIX
Security 17), pages 17–32, Vancouver, BC, 2017. USENIX Association.

[190] L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local distance metric
learning. In Proceedings of the 21st National Conference on Artificial Intelligence - Volume
1, AAAI’06, pages 543–548. AAAI Press, 2006.

[191] D. Yuan, S. Park, P. Huang, Y. Liu, M. M.-J. Lee, X. Tang, Y. Zhou, and S. Savage. Be
conservative: Enhancing failure diagnosis with proactive logging. In OSDI, volume 12, pages
293–306, 2012.

[192] P. Yuan, Q. Zeng, and X. Ding. Hardware-assisted fine-grained code-reuse attack detection.
In Proceedings of the 18th International Symposium on Research in Attacks, Intrusions, and
Defenses - Volume 9404, RAID 2015, pages 66–85, New York, NY, USA, 2015. Springer-
Verlag New York, Inc.

[193] C. Zamfir and G. Candea. Execution synthesis: A technique for automated software debug-
ging. In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10,
pages 321–334, New York, NY, USA, 2010. ACM.

[194] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. X. Song. VTint: Protecting virtual function
tables’ integrity. In NDSS, 2015.

[195] C. Zhang, T. Wei, Z. Chen, L. Duan, S. McCamant, L. Szekeres, D. Song, and W. Zou.
Practical control flow integrity & randomization for binary executables. In Proceedings of
IEEE Symposium on Security and Privacy, 2013.

[196] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In USENIX Security
Symposium, 2013.

[197] Y. Zheng and X. Zhang. Path sensitive static analysis of web applications for remote code
execution vulnerability detection. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, 2013.

[198] C. C. Zou and R. Cunningham. Honeypot-aware advanced botnet construction and mainte-
nance. In International Conference on Dependable Systems and Networks (DSN’06), pages
199–208, June 2006.

238

Appendix A

Index of Implementation Concerns

List of Advantages

Awpm

An IID monitors every control flow edge and process fork throughout
the entire process, including unforeseen takeover strategies and the
malicious payload. 17

Alog

Runtime introspection enables IID to log precise control flow events
that represent suspicious program behavior. 18

Aloc

Users may benefit from having direct control over a deployment-
specific Trusted Profile of their application. 20

Aacc

The IID runtime makes it possible for users of all levels of sophistica-
tion to manage accurate, low-level security policies. 21

239

List of Challenges

Cperf

Program introspection often increases runtime overhead and develop-
ment cost for hardware-based execution platforms. 18

Cprof

Generating and maintaining a sufficiently complete and valid Trusted
Profile is necessary for accurate logging but may require effort and
expertise. 19

Cadm

Deploying an application with IID requires additional administrative
effort and some basic security knowledge. 21

Cimpl

An IID developer faces a trade-off between usability of the runtime
and the maintenance cost of its code. 22

240

List of Platform Snares

Sopq

Today’s software is built as a composition of two or more layers of
abstraction such that the semantics executing at one layer are opaque
to an observer of another layer’s control flow. 49

Scf

Verbose or intricate control flow can encumber a literal execution trace
with details that are not relevant for security purposes, and may cause
false positives. 49

Ssem

The runtime environment may not enforce call/return semantics or the
boundaries of functions or instructions. 50

Scc Code changes may occur at any time. 50

Slate

New features may be integrated after deployment, whether by activa-
tion from frameworks, installation of plugins or code customizations. 50

Sobf

Complex transformations such as compilation may obfuscate the
source-level semantics of application control flow. 51

241

Derivation Motivation and Rationale
Gkx kx = detect known exploits

An IID should detect any known RCE exploit against real-world applica-
tions without relying on predefined knowledge of its takeover strategy.

Awpm Whole process monitoring without anticipating specific kinds of attacks.

Cprof Profiling can be tuned using known exploit POCs.

Grx rx = detect exploits developed in research

An IID should detect sophisticated RCE exploits developed in research.

Awpm Only pure reuse attacks should be transparent to IID.

Cprof Verify the design of the Trusted Profile against research exploits.

Gwx wx = detect exploits in the wild

An IID should detect exploits occurring in the wild.

Awpm IID should remain effective under real-world variations in execution.

Cprof Verify the Trusted Profile against exploits occurring in the wild.

Gdnd dnd = do not disturb

Given a reasonable effort to generate a valid Trusted Profile, spurious
anomalies should rarely or never be reported.

Alog IID logs should reliably highlight suspicious program behavior.

Cprof
The Trusted Profile should model execution on the target platform in a
way that facilitates effective profiling and monitoring.

Gmod mod = modify the Trusted Profile or blacklist

It should be easy to modify the IID security policy, for example by
pasting a log entry into either the Trusted Profile or the blacklist.

Alog Log entries can be precise enough for use as control flow specifications.

Aacc The Trusted Profile and blacklist should be accessible to the user.

Aloc The IID security policies are local to the deployment.

Cprof Minimize the effort required to maintain an effective Trusted Profile.

242

Derivation Motivation and Rationale
Gdbg dbg = provide effective debugging assistance

The IID runtime should be configurable for expanded reporting to support
the debugging usage scenario.

Awpm
An IID report can include any aspect of the execution, including
information that is only visible before or after an anomaly occurs.

Alog Introspection facilitates precise control flow logging.

Gblk blk = effective blacklist design and implementation

All aspects of an IID should be carefully considered in the design of
blacklist features and the implementation of blacklist operations.

Aacc Many use cases are made possible by access to IID policy.

Aloc The potential burden of local policies should also be considered.

Glite lite = runtime overhead should be lite

IID runtime overhead should not drastically change the user experience
of the monitored program or introduce esoteric hardware requirements.

Cperf
Hardware-based execution platforms require a separate, dedicated
runtime that is prone to overhead.

Cimpl Usable performance should not rely on rocket science.

Gdep dep = user deployable

It should be possible for non-expert users to securely deploy the IID
without having direct assistance from an expert.

Cadm An IID will be installed by typical developers and administrators.

Gdev dev = reasonable development cost

A successful IID should maintain a cost/benefit ratio that is practical,
even for initial deployments of the technology.

Cimpl
The development cost of an IID can become prohibitive, potentially
leading to compromised goals or even project failure.

Table A.1: Requirements diagram of the IID goals, for reference and cross-validation during design
and implementation. It is always important to account for the advantages and challenges of IID.

243

Appendix B

Implementing IID for a New Platform

As presented in Chapters 3 and 5, each runtime platform is likely to bring a unique set of compli-

cations to the design and implementation of a new IID. Appendix A provides an index into the

advantages and challenges of IID in general, the goals that have been derived from those challenges,

and the snares occurring on the x86 and PHP platforms. The first step toward implementing a new

IID is to identify the snares for the new platform, which will simply be those platform characteristics

that are not immediately compatible with the IID goals.

The next step is to formulate a Trusted Profile that captures the security sensitive elements of

application behavior on the platform. Given that today’s computer science cannot offer a concrete

definition of what it means for an application to be secure (Chapter 6), the set of security sensitive

elements for a platform can only be derived from the exploits known to occur against its applications.

This makes formulation of the Trusted Profile a fairly subjective process. For this reason, a Trusted

Profile design should be verified by testing, first by manually tracing the IID response to abstractions

of known exploits, and eventually by benchmarking detection of real exploit instances.

If the two IID implementations presented here are indeed representative of runtime platforms in gen-

eral, then any remaining work should essentially be a matter of conventional software engineering.

244

It will be necessary to maintain the complete set of IID goals while addressing individual factors

such as performance, application compatibility, layers of abstraction and profiling coverage. But

these goals can simply be accounted for as additional constraints in the IID specification. From this

perspective, the single fundamental challenge in implementing an IID for a particular platform is

just to decide what constitutes a safe execution of a program running in that environment.

245

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Timeline of Important RCE Defenses
	Bug Fixing
	Traditional Intrusion Detection
	Control Flow Integrity
	Diversification

	Theoretical Advantages and Challenges of IID
	Goals of Introspective Intrusion Detection
	Usage Model
	Forensics
	Advanced Persistent Threats
	Field Debugging
	Profiling

	Prototype IID Implementations
	BlackBox for x86 COTS Binaries
	ZenIDS for PHP Applications

	Contributions
	Organization

	Paradise: a Hypothetically Pure IID
	Platform Snares
	Generic Threat Model
	Deployment
	Generating the Trusted Profile
	Monitoring

	Maintaining the Trusted Profile
	Blacklisting

	BlackBox
	Intel CET
	Threat Model
	Monitoring
	Trusted Profile
	Trusting Returns
	Trusting Self-Instrumentation
	Modular Trust
	Detecting Evasion

	Dynamically-Generated Code
	Permission Model
	Standalone Dynamic Routines

	Watchdog Mode
	Stack Spy
	Sniffer Dog

	Evaluation
	Filtering Log Noise
	Logging and Blacklisting Exploits
	Resource Efficiency
	Security Analysis
	Verifiability

	DynamoRIO JIT Optimization
	Background and Related Work
	DynamoRIO
	QEMU
	Pin
	Valgrind
	Specialized Applications of Binary Translation

	Annotation-Based Optimization
	New Annotations Identifying Code Changes
	VM Area Isolation
	Selective Fragment Removal

	Annotation Implementation
	Binary Annotation Scheme
	Annotation Discussion
	Annotations in 64-bit Microsoft Visual Studio

	Inference-Based Optimization
	Parallel Mapping on Other Platforms

	Evaluation

	ZenIDS
	Threat Model
	Monitoring
	Trusted Profile
	Detection
	Dynamic vs. Static Analysis

	Supporting Website Evolution
	Code Expansion Events
	Taint Tracking

	Performance Optimization
	Synchronizing Evolution

	Experimental Evaluation
	Monitoring a Vulnerable Application
	Monitoring Live Applications
	Evolution
	Resource Efficiency
	Verifiability

	Related Work
	Control Flow Integrity
	Equivalence Class CFI for x86
	Equivalence Class CFI for Other Platforms
	Pointer Protection CFI
	RCE Exploits vs. x86 Compiled Binaries
	Application Compatibility
	Performance
	Summarizing IID in the field of CFI

	CFI in the Future Ubiquity of CET
	Traditional Intrusion Detection
	PHP Security
	RCE Exploits vs. the PHP Platform

	Software Improvement Techniques
	Debugging
	Automated Repair

	Usability
	Program Comprehension
	Symbolic Execution
	Machine Learning

	Conclusions and Future Work
	Adoption

	Bibliography
	Appendices
	Index of Implementation Concerns
	List of Advantages
	List of Challenges
	List of Platform Snares

	Implementing IID for a New Platform

