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Abstract

A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human
speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical
regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at
least three neural response properties: 1) the event-locked spike-timing precision, 2) the mean firing rate, and 3) the
interspike interval (ISI). To determine how well these response aspects capture information about the repetition rate
stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF) to click trains and
calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially
higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI
codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct
local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local
processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward
processing streams that contribute differently to higher-order sound analysis.
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Introduction

An ultimate goal in auditory neuroscience is to understand the

neural coding of species-specific communication and human

speech sounds, but the complexity of such sounds renders this

challenge difficult. A common approach is to reduce intractable

experimental questions to tractable ones by studying key coding

features using parametric techniques. Periodic amplitude modu-

lations are ubiquitous temporal features of species-specific

communication and human speech sounds [1,2]. The modulation

envelope of vocalization and speech (e.g., phonemes) is dominated

by low repetition rates (,40 Hz) [2–5] and most cortical neurons

limit their timing-locked responses to that modulation range [6].

Speech and vocalization decoding depends strongly on the

integrity of the low rate repetition modulation envelope [7–10].

Lesion studies in monkeys and humans have suggested that

auditory cortex (AC) is necessary to process communication or

speech sounds [11,12]. It has been proposed that precise spike

timing may code slow repetition sounds, while firing rate (FR) may

code faster repetition sounds in AC [6,13–17] but see Ref. [18]. A

recent study in marmoset monkeys proposed that FR may code a

particular range of slow to medium repetition rates (,10 to 45 Hz)

in the anterior field of AC [19]. A growing number of studies

suggest that interspike interval (ISI) profiles are a viable neural

code for temporal processing [20–23]. However, ISI analysis of

AC response patterns is not yet well advanced. A particular issue is

that spike-timing precision and FR are not completely indepen-

dent measures. Both bear on the potential efficacy of an interval

code. We investigated stimulus-related neural information of spike-

timing precision, FR, and ISIs for coding slow repetition rates and

their topographic organization by high-resolution multi-unit

mapping of a primary auditory field in the ketamine-anesthetized

cat. This approach should be able to clarify the roles of timing and

place codes in conveying information about low stimulus repetition

rates.

Temporal information by spike timing and FR often appears to

be spatially distributed in AC [3,4,24]. Organized spatial

distributions (‘maps’) of these properties may provide an

opportunity to explore how temporal information is represented

by a population of cortical neurons [25]. In the cat, two tonotopic

fields comprise the primary core areas at a hierarchically

equivalent level, primary AC (AI) and anterior auditory field
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(AAF) [26,27]. They receive largely independent, concurrent

inputs from the different thalamic divisions [28,29] resulting in

different distributions of spectral receptive field parameters

[30,31]. Behavioral experiments with reversible cryoloop lesions

suggest that cat AAF contributes to temporal-pattern discrimina-

tion [32] but is not involved in other functional tasks, such as

sound localization [33]. This supports the notion that AAF is part

of a stimulus identification or ‘what’ pathway [34].

Time-locking in AAF has been shown in several species to cover

a wider frequency range than in other cortical fields [6,35,36],

although the range is still dominated by modulation rates

,,40 Hz. This provides a comparatively wide repetition rate

range to compare properties of phase locking, FR, and interval

encoding of temporal information. Click trains are used to explore

the encoding of repetitive stimuli in AAF. In contrast to

sinusoidally amplitude-modulated signals [6,25,37], changes in

click train repetition rates are not confounded by changes in

stimulus rise times [38]. Here, we investigate different neural

encoding schemes of slow repetition rate sounds and their spatially

arranged expressions of stimulus-related mutual information.

Results

To understand neural coding of slow repetitive sounds in AC,

we obtained repetition rate transfer functions (RRTFs) to quantify

responses to click trains. A population code is assumed and no

distinction is made between local multi-unit and single-unit

responses. We employed a high-resolution cortical mapping

technique with extracellular recordings [30,39] and reconstructed

spatial organization via Voronoi-Dirichlet tessellation maps.

RRTFs were examined for 276 multi-unit recordings in cat

AAF of three hemispheres (two left and one right). AAF is located

anterior to AI and usually flanked by suprasylvian and anterior

ectosylvian sulci [26,28]. There was no clear evidence of a

temporal coding difference between left and right hemispheres and

they were treated equally in the population analyses.

Measures of Vector Strength, Firing Rate, and Interspike
Intervals

For RRTFs, two different measures have been used to describe

temporal tuning. Spike-timing precision is expressed as vector

strength (VS) measuring how well spikes are synchronized to the click

stimulus relative to the duration of the repetition period (see

Materials and Methods). VS values range from zero (spikes evenly

distributed throughout the stimulus period) to one (spikes are

perfectly aligned to a particular phase of the stimulus period). The

other measure is average FR magnitude. Stimuli with low- and high-

repetition rates may be coded differently by VS and FR [14–17].

Multi-unit examples of post-stimulus time histograms (PSTHs) for

clicks at different repetition rates (1–38 Hz for many recording sites

but up to 250 Hz presented 15 times; see Materials and Methods)

reveal different response behaviors for VS and FR measures

(Figs. 1A, S1A, S1B). Phase locking to the stimuli is expressed at

varying degrees, with maximal values predominantly seen at low

repetition rates. The corresponding RRTFs for the two measures,

VS (magenta lines) and FR (cyan lines), show band-pass behavior

(Fig. 1B). For a majority of recording sites, VS peaked at low

repetition rates and declined with increasing (mid to high) repetition

rates (spikes losing synchronization to the stimulus). Similar behavior

was seen for FR (Fig. 1B). However, for other sites, FR often peaked

at higher repetition rates than VS (Fig. S1C, S1D). On the average,

FR peaked at 29.2622.2 Hz (hereafter, expressed as mean 6

standard deviation in the text), which was significantly higher than

VS (12.868.1 Hz) (paired t-test; p,0.0001). This study was focused

on encoding of low repetition rates (1, 6, 10, 14, 22, and 30 Hz), a

range associated with the occurrence frequency of vocalization

phrases, phonemes, or syllables (gray background in Figs. 1B, S1C,

S1D) and with a high probability of encountering high temporal

response fidelity.

Unlike VS and FR, ISI behavior has not been extensively

studied in AC. Recent work, however, demonstrated that ISIs can

present a sensible neural code for temporal processing [22,40].

The ISI distribution for a cortical recording site in response to a

range of low repetition rates is illustrated in Figure 1C. Some

recording sites (,4%) only showed ISIs at short intervals of 1 to

3 ms, compatible with bursting, but not at the intervals

corresponding to the period of the presented repetition rate (Fig.

S2). A more common occurrence is recording sites that express ISI

peaks corresponding to integer multiples of stimulus intervals

(stimulus phase-locked spikes) (Fig. 1C). Unlike VS and FR, ISI is

not directly characterized by a single value. The coefficient of

variation (CV), an estimate of ISI variability computed by dividing

the ISI standard deviation by the mean, is the main descriptor of

the ISI distribution. Figure 1D illustrates population histograms of

CV of ISIs for six difference repetition rates for all recording sites

in one hemisphere. The CV distributions of ISIs were quite similar

across repetition rates. However, medium repetition rates differed

slightly from 1 and 30 Hz (p,0.05; Fisher’s protected least

significant difference for a multiple t-statistics indicating higher ISI

fidelity for that range). The CV of ISIs spanned from ,1 to .3,

which was higher than values derived from visual cortex (,,1)

[41,42], although differences in the auditory and visual stimulus

paradigms make a direct comparison of the values difficult.

Neural ISI Code for Low Repetition Rates
The three response measures carried different amounts of

information about the temporal stimulus properties. To quantify

the information content, i.e., estimating the ability to discriminate

between different repetition rates based on their cortical response,

we considered the unit-basis mutual information (MI), as read out

by an ideal observer (see Materials and Methods).

The MI for ISI was calculated for two conditions: ISI (1 ms) was

based on all intervals $1 ms, whereas ISI (10 ms) was based only

on intervals $10 ms, more closely matching the interval range

contained in the presented repetition range. The different

repetition rates can be distinguished only for ISI values $10 ms

(cf. Fig. 1C). Shorter ISIs (,3ms) occurred most often, but they did

not allow distinguishing between different information values of

the presented repetition rate range. For the example site in

Figure 1C, when we included only ISI values $10 ms, we

obtained an information value of ,2 bits (out of a maximum of

,2.58 bits ( = log2(6)) for comparing six stimuli). This value is

consistent with the visual inspection of Figure 1C, where four of six

repetition rates (10 Hz, 14 Hz, 22 Hz, and 30 Hz) can be reliably

distinguished. At an ISI resolution of 1 ms, the information for the

example is somewhat reduced (,1.5 bits/stimulus)

MI contained in ISI (hereafter, ISI information) was signifi-

cantly higher than that contained in either VS or FR (hereafter,

VS and FR information, respectively) (p,0.001; paired t tests

adjusted by the sequential Bonferroni correction for multiple

comparisons; Fig. 2A). Across all hemispheres, ISI (1ms)

information averaged to 0.6360.40 bits/stimulus compared to

0.1460.12 for VS information and 0.1860.18 for FR information.

ISI (10ms) information was almost twice as high (1.1860.54),

reflecting the reduction of short-interval noise. ISI (10ms)

information was highly correlated with ISI (1ms) information

(r2 = 0.66; p,0.001).

Temporal Encoding in AAF
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To assess whether combining the different encoding schemes

can capture an increased amount of repetition information over

each individual scheme, we tested combinations of encoding pairs

for all recording sites that resulted in a significant amount of

information for the joint schemes (Fig. 2B). Analysis of a

combination including all three schemes failed due to an

insufficient number of appropriate sites.

Joint information estimates equal to the sum of information by

the individual schemes would indicate non-redundancy of the

contributing information. Combining VS and FR information

(Fig. 2B, white bars) was almost equal to the sum of information by

both individual schemes (Fig. 2B, black/gray bars), suggesting that

each carried non-redundant information. Furthermore, combining

FR and ISI (1ms or 10ms) codes resulted in an increase of

information beyond the linear sum for the individual schemes.

This behavior is indicative of non-redundant contributions of each

scheme for encoding repetition information with a cooperative,

synergistic component for the FR and ISI combination. By

contrast, VS combined with ISI information resulted in lower

information than the sum, indicating that both schemes conveyed

redundant information (Fig. 2B).

ISI information correlated with the magnitude of all three

response measures, VS, FR, and CV of ISIs (Fig. 3). The rest of

the analysis will focus on the ISI information at 1 ms resolution

since it does not assume a priori knowledge of the stimulus

periodicity range. The maximum value evoked by any of the

tested repetition rates was used to represent overall spike-timing

precision (VS max) and FR magnitude (FR max) for each

recording site. ISI precision is represented by the minimum

coefficient of variation (CV min) of ISI. The strongest

correlation existed between FR max and ISI information: the

lower FR, the higher was the ISI information (Fig. 3B). CV min

was negatively correlated with ISI information: the less ISI

variability, the higher was the ISI information (Fig. 3C). VS

max was weakly positively correlated with ISI information

(Fig. 3A). All three measures contributed to ISI information

indicating that temporal coding is not dominated by a single

response aspect. VS information was weakly but significantly

correlated with VS max: sites with high VS max values carry

more VS information (Fig. 3D). By contrast, FR magnitude is

not significantly correlated with FR information (data not

shown).

Figure 1. Repetition rate transfer functions for VS and FR. (A) Poststimulus time histograms for 20 repetition rates for an AAF site. Response
strength was normalized to the maximum response at 1 Hz. Maximum height of the FR ordinate: 15 spikes. Information values for 111L-S98: VS info:
0.62 bits/stimulus; FR info: 0.23 bits/stimulus; ISI (1 ms) info: 0.51 bits/stimulus; ISI (10 ms) info: 1.95 bits/stimulus. (B) Corresponding RRTFs for VS
(magenta line) and FR (blue line). Data points are fit by a polynomial cubic spline. Filled circles are significant VS values (Rayleigh test, p,0.001). Gray
background illustrates the repetition rate range at the focus in this study. (C) ISI histogram for 6 repetition rates. Multiple ISI peaks correspond to
integer multiples of stimulus periods. Information values for 111L-S93: VS info: 0.09 bits/stimulus; FR info: 0.11 bits/stimulus; ISI (1 ms) info: 1.20 bits/
stimulus; ISI (10 ms): 2.28 bits/stimulus. (D) Population distribution of the coefficient of variation (CV) of ISIs for hemisphere 111L (n = 130). CV of ISI
that estimates the variability of ISIs was computed by dividing the standard deviation of ISIs by the mean. Histograms of CV distributions, smoothed
by a polynomial cubic spline, are illustrated for six different repetition-rates.
doi:10.1371/journal.pone.0011531.g001

Temporal Encoding in AAF
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Figure 2. Mutual information (MI) contained in VS, FR, and ISI. (A) Mean (6 standard error of the mean) of MI values for VS, FR, ISI (1 ms) and
ISI (10 ms) for all three hemispheres. The global mean is indicated as a dashed line across the three hemispheres. MI for ISI (10 ms) was based on
intervals equal or larger than 10 ms, whereas MI for ISI (1 ms) contained all intervals equal or larger than 1 ms. Paired t tests adjusted by the
sequential Bonferroni correction for multiple comparisons (p,0.001) were performed for the three global mean measures. A theoretical MI value for
distinguishing six different repetition rate stimuli is 2.58 bits/stimulus ( = log2(6)). (B) Information captured for different combinations of a joint
repetition rate code. Black/gray bars: additive combination of the two codes (Code(x) + Code(y)). The number of sites that resulted in valid joint
information value was lower than the total number of sites for the individual information analysis. The summed information is based on recording
sites that had a valid joint information. White bars: joint information values for two codes (Code(x) 6Code(y)). Unpaired t tests for the comparison
between additive and joint codes (p,0.001).
doi:10.1371/journal.pone.0011531.g002

Temporal Encoding in AAF
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Although the higher ISI information relative to VS and FR

information suggested that discrimination between low repetition

rates may be ISI dominated in cat AAF, the other forms of

stimulus encoding still may be useful, especially if the three codes

are either independently distributed or provide non-redundant

information as demonstrated above for the joint information.

Principal component analysis jointly applied to the three

information estimates, the underlying response measures (VS

max, FR max and CV min), as well as four additional receptive

field parameters (characteristic frequency (CF), Q40, threshold

and minimum latency, see Materials and Methods) revealed three

orthogonal components of temporal processing (Table 1). As

expected from the high ISI information values, the strongest

factor, representing 28.6% of the variance across all three

hemispheres, captured ISI information as well as the covariants of

FR max and CV min. The second factor (17.0% of variance) was

aligned with VS information and VS magnitude. The fifth factor

(9.0% of variance) was dominated by repetition rate information

carried by FR. This analysis indicates that the three schemes of

repetition rate information carrier fall along orthogonal axes.

However, it does not imply that they are completely independent

from each other, as already shown by the joint information

analysis. They indicate, however, that some of these aspects

capture largely uncorrelated, non-redundant aspects about the

repetition rates. The temporal factors were not correlated with

the two factors comprising the spectral parameters, CF and Q40

(F3; 12.9%) and threshold and response latency (F4; 10.0%)

(Table 1; see Ref. [30]). The temporal encoding schemes

captured by the three orthogonal temporal factors provide

alternative, though not completely independent, means of

extraction, representation, and transmission of low repetition

rate information.

Spatial Distribution of Low Repetition Rate Codes
Spatial differentiation in cortical functional organization can

provide insights into principles of local and global information

processing. As a primary auditory field, AAF expresses a

tonotopic gradient (Figs. 4A, S3A, S3B). Repetitive click train

stimuli revealed distinct and non-homogenous spatial distribu-

tion patterns for the different temporal response measures

embedded in the tonotopic map. Voronoi-Dirichlet tessellation

maps (see Materials and Methods) of VS, FR, and CV of ISI for

six different repetition rates are shown for spatially smoothed

values (weighted least-squares linear regression model; Fig. 4B,

4C, 4D, for raw values, see Fig. S4A, S4B, S4C). The majority of

sites had only moderate VS values to low repetition stimuli (blue

to green polygons in Fig. 4B). Distinct neuron clusters with high

VS (yellow to red polygons) emerged in restricted tonotopic

regions (Fig. 4B). These clusters showed persistent and precise

spike timing over a fairly wide range of repetition rates (6–22 Hz

for Fig. 4B), suggesting the existence of spatially restricted

cortical networks with high temporal population fidelity

interleaved with regions of low temporal fidelity in the local

neuronal population.

Figure 3. Correlation between information and three temporal response measures. (A) Positive correlation between VS max and ISI info
(p,0.05). (B) Negative exponential correlation between ISI info and FR max (p,0.0001). (C) Negative correlation between ISI info and CV min
(p,0.0001). (D) Weak positive correlation between VS info and VS max (p,0.05).
doi:10.1371/journal.pone.0011531.g003

Temporal Encoding in AAF
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The spatial pattern of FR differed markedly from VS (Figs. 4C,

S4B). Throughout the entire CF range, high FRs (red polygons)

were seen for a range of repetition rates. However, sites with the

highest FR substantially shifted with changes in repetition rate.

This effect was less apparent for VS. To illustrate these activation

shifts more clearly, high FR loci in smoothed maps, categorized as

.0.75 of normalized peak activity, are shown in red (gray: sites

with ,0.75 of normalized FR, Fig. 4C). Even small changes in

repetition rate activated a different cluster of cortical sites, i.e.,

comparable with a place code for low repetition rates.

The CV of ISIs also showed spatial clustering (Figs. 4D, S4C)

with distinct regions of high (blue polygons) and low (red polygons)

ISI precision that shift spatially with repetition rate although less

clearly than for FR. The spatial changes of FR with increasing

repetition rate appeared to be more widespread than for either VS

or CV of ISI. Unlike FR, the two temporal precision measures

showed spatially restricted regions of either high or low values that

appeared largely invariant with repetition rate changes.

Similarity analysis (spatial cross-correlation, see Materials and

Methods) of the value distributions by cross-correlation as a

function of repetition rate difference (Fig. 5A, 5B, 5C) showed that

similarity reduction is proportional to the repetition rate difference

for all three measures. The steepest decline in FR similarity was

seen for small linear rate differences (Fig. 5B) with no significant

correlations (20.15,r,0.15) remaining for rate differences above

10–12 Hz. For VS and CV of ISI, the decline is proportional to

the logarithm of the rate difference and steepest for 0.5 to 1 octave

repetition rate differences (Fig. 5A, 5C) with a loss of correlation

(20.15,r,0.15) for rate differences above 1.5 to 2 octaves. Large

repetition rate differences (.20Hz or .3.5 octaves, respectively)

could show a weak anti-correlation between the spatial activation

patterns. The logarithmic versus linear difference in the timing-

and rate-based spatial pattern changes of click train responses

suggests distinct divergence in the shapes of the corresponding

RRTFs. This indicates differences among the encoding schemes

and what is capture about the repetitive sounds.

Assessment of spatial organization in cortical fields requires

rigorous statistical testing. We applied two approaches to

determine the presence of spatial clustering for ten temporal and

three spectral measures determined for the three hemispheres

(Table 2; for spectral and response latency measures, see Ref.

[30]). Spatial analysis for the combined additive or multiplicative

information analyses was not pursued due to the analysis-based

decrease in the number of valid recording sites.

Spatial autocorrelation, validated with a Monte-Carlo analysis

of randomized value assignments, was used to determine global

trends of spatial organization (see Materials and Methods).

Significant global organization was found for all three spectral

parameters (CF, Q40 and response threshold; Table 2). Temporal

response or information measures showed less reliable tendencies

of global organization. Two hemispheres (111L and 073L) showed

significant global organization for response latency and the

temporal factor F2 (capturing VS information) and two hemi-

spheres (111L and 073R) showed global spatial organization for

FR information and F5 (also capturing FR information). No

significant global organization was observed for ISI information,

VS max, CV min, and F1 (aligned with ISI information and CV

min). Temporal response parameters appeared to be less globally

organized than spectral parameters.

A non-significant Geary’s C (see Materials and Methods) does

not necessarily indicate absence of any spatial organization since

spatial heterogeneity within a field leads to the possibility that

global spatial auto-correlation may miss local organizations.

Therefore, we applied a local analysis that tested the value

similarity of each polygon with its direct spatial neighbors. The

local similarity measure was validated by Monte-Carlo analysis

(see Materials and Methods). The spatial distribution of nine

temporal parameters for one hemisphere (111L) is shown in

Figure 6. Only three maps showed global organization expressed

by significant Geary’s C (Table 2): FR information, and temporal

factors F2 and F5. In contrast, local spatial organization was found

for all 9 maps (Table 2), i.e., a statistically significant proportion of

polygons had sufficient numbers of neighboring sites with similar

values (Fig. 6, polygons with significant parameter clustering or

neighborhood similarity, p,0.05, are marked by white and black

dots). Each significant polygon could be considered as the center of

a local, functionally similar cluster of neurons. The average spatial

extent of such clusters, given the sampling density in these maps,

was approximately 200–400 mm. Out of 27 maps constructed for

temporal click rate parameters (3 hemispheres, 9 parameters), 20

maps exhibited significant local functional clustering. F1, the

factor associated with ISI information, showed local clustering for

all three hemispheres (Figs. 6C, 7), although global organization

did not reach significance for any of them (Table 2). Both, local

and global organization was evident for F2 in two hemispheres

(111L and 073L) and for F5 in one hemisphere (111L). The

average proportion of polygons with statistically significant

neighborhood similarity for repetition rate response was generally

,20% (Table 2). By contrast, spectral parameters showed a much

higher proportion of polygons with functionally similar neighbors

(Table 2). For CF, ,90% of polygons had similar neighbors, and

an average of ,33% polygons showed highly similar neighbors for

Q40 and response threshold.

A close relationship existed between the measures of local and

global organization. Additionally, a hierarchy of the extent of

spatial organization emerged across all tested parameters. The

average global and spatial indicators of spectral and temporal

spatial organization were highly correlated (r2 = 0.92;

y = 1.72x21.65; Fig. 8). The highest degree of spatial organization

in AAF was for CF, followed, in descending order, by spectral

Table 1. Principal component analysis.

Parameter Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Explained Variance (%) 28.6 17.0 12.9 10.0 9.0

VS max 0.040 0.907 20.080 20.011 0.000

FR max 0.794 20.089 20.154 20.196 0.326

CV min 0.838 0.191 0.009 20.046 20.327

VS info 0.204 0.721 20.111 20.125 0.348

FR info 20.016 0.203 20.069 0.016 0.893

ISI info 20.902 20.157 0.092 0.099 20.023

CF 0.079 20.067 0.859 20.012 20.115

Q40 20.291 20.102 0.759 20.051 0.027

Threshold 20.127 20.023 20.077 0.801 0.271

Latency 20.101 20.081 0.010 0.774 20.255

Three click train response parameters (VS max, maximum vector strength; FR
max, maximum firing rate; CV min, minimum coefficient of variations for ISIs),
three mutual information values (VS info; FR info, ISI info), and four basic
receptive field parameters (CF, characteristic frequency; Q40, sharpness of
tuning; Threshold, response threshold; Latency, minimum latency) were
analyzed. Analysis was applied jointly to all sites of the three hemispheres. Total
variance accounted for: 77.5%. Bold numbers: dominant factor loadings for
each parameter. Five significant factors were identified (Bartlett’s chi-square
test; p,0.05).
doi:10.1371/journal.pone.0011531.t001

Temporal Encoding in AAF
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integration (Q40), and response sensitivity (threshold). Response

latency and F2 (VS information) showed the most spatial

organization among temporal parameters -both locally and

globally- although clearly less than for the spectral parameters.

F1 (ISI information) and F5 (FR information) revealed the least

spatial organization with F1 showing only local clustering and F5

only global spatial trends. The main conclusion from the spatial

analysis is that every investigated parameter can show some form

of spatial organization, albeit the degree of spatial order can vary

from highly organized pattern, with only shallow gradients

extending over several millimeters of cortical space (e.g., CF), to

lower order with scattered functional clusters of a few hundred mm

diameter (e.g., temporal F1 and F5, see Figs. 6, 7).

Discussion

Natural signals, in particular those used for communication, are

characterized by low repetition rate or low frequency modulation.

In this study, we demonstrated that the cortical neurons use

multiple strategies to robustly process low repetition rates [7–10].

Low modulation rates dominate temporally encoded auditory

cortical activity [6]. Neural coding of low repetition rates develops

during AC maturation [43,44] and in adulthood can be improved

by behavioral training [45–47], experience, and hormonal

manipulation [48]. Therefore, it is important to understand how

low repetition rate sounds are encoded. Past studies focused on

either VS or FR as largely alternative means for cortical encoding

of slow repetitive sounds [6,13–19]. Here we considered the

contribution of ISIs to the encoding of low repetition rate sounds

in AC.

Repetition Rate Transfer Function Filters
The best click repetition rates for FR (,29 Hz) in this study is in

the same range as in a previous study using amplitude modulated

signals in the barbiturate-anesthetized cat AAF (27 Hz, see Ref.

[49]). For VS values, the current study (,13 Hz) shows lower

values than in the previous study (31 Hz, see Ref. [49]). These

values in the current study are substantially higher than in a

previous study using clicks in ketamine-anesthetized cat AAF [50].

The cause for the differences seen between the two studies may

underlie difference in the sampling methods because similar

anesthetic regimens were used.

Distributions of RRTF filter types can provide insight into

temporal coding strategies. Several studies have described RRTF

or modulation transfer function filter types [6,14,18,19,51] with

Figure 4. Spatial distribution of population response to different repetition rates. (A) Tonotopic gradient smoothed by a weighted least-
squares linear regression model is reconstructed on the cortical surface by Voronoi-Dirichlet tessellation. An approximate location of AAF is indicated
by the suprasylvian sulcus (sss) and the anterior ectosylvian sulcus (aes; thick black lines). Hemisphere 111L; D: dorsal, A: anterior, scale bars: 1 mm. (B)
Spatial representation of VS as a function of different repetition rate. Repetition rates are shown on the top. White polygons indicate sites not tested
for the corresponding repetition rates, which also apply to (C, D). Raw VS values of the Voronoi-Dirichlet tessellation maps were smoothed by a
weighted least-squares linear regression model. (C) Spatial distribution of FR as a function of repetition rate. FR magnitude was normalized to the
peak rate for the corresponding repetition rate. Normalized FR magnitudes were smoothed by a weighted least-squares linear regression model. High
activity sites with FR.0.75 in the smoothed maps were categorized and shown in the bottom panel as red polygons. Sites with FR,0.75 are
illustrated by gray polygons. (D) Spatial distribution of CV of ISI as a function of repetition rate. Spatially smoothed maps are shown. D: dorsal, A:
anterior, scale bars: 1 mm. The scales also apply to (B, C).
doi:10.1371/journal.pone.0011531.g004
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the majority of recording sites in cat AAF (70–90%) revealing

band-pass filtering property for VS and FR (see Ref. [6]). Despite

differences in model systems (cat, old and new world monkeys),

auditory cortical fields (AI, the anterior field, and others),

recording conditions (anesthetized and awake), cortical layers

(granular and supragranular layers), stimuli (click trains and

amplitude modulated sounds), and classification criteria, the filter

type distributions in the majority of those studies are in general

agreement with the current study (70–80% were of band-pass

type, data not shown).

Different RRTF filter shapes combined with different best

repetition rate estimates may be suitable to code a wide range of

repetition rates by utilizing temporal and/or rate coding strategies

at the single neuron level [14,16,18,19]. However, spike-timing

precision and FR are not the only spike-train parameters that can

reflect the nature of the stimulus. For visual and somatosensory

cortical neurons, it has been shown that they are well equipped to

decode stimulus-related information on the basis of relative spike

timing and ISI duration [20,52]. Our information analysis of

auditory cortical neurons also demonstrates an advantage of

interval timing over VS and FR in encoding and decoding of low

stimulus repetition rates.

Mutual Information Differences for Different Repetition
Rate Codes

All three response measures (spike-time precision (VS), average

FR, and ISI) provide information about the presented repetition

rates. The amount of ISI information significantly exceeds that of

either VS or FR alone. The highest ISI information values

encountered here (Fig. 3) approach the theoretical value of

,2.58 bits/stimulus (for consideration of discrimination between

6 repetition rates). However, the average ISI information remains

clearly below the maximal value partially due to the use of multi-

unit responses with overlapping responses from several neurons

and noise contributions (see also Ref. [53]) as indicated by an

information analysis restricted to intervals $10 ms. It is clear,

however, that, for the average site, a substantial amount of

information about the stimulus is being conveyed by other means.

Figure 5. Map similarity for repetition rate differences. (A)
Spatial cross-correlation values of raw VS values generated by repetition
rates between 1 and 30Hz (see Fig. S4A) and plotted as a function of the
logarithmic repetition rate difference for all three hemispheres. The
solid line is a logarithmic fit. The gray area indicates non-significant
correlation values (n = 16/45). (B) Cross-correlation values of raw FR
generated by repetition rates between 1 and 30Hz (see Fig. S4B) and
plotted as a function of the linear repetition rate difference. Non-
significant correlations: n = 19/45. (C) Cross-correlation values of CV of
ISI generated by repetition rates between 1 and 30Hz (see Fig. S4C) and
plotted as a function of the logarithmic repetition rate difference. Non-
significant correlations: n = 12/45.
doi:10.1371/journal.pone.0011531.g005

Table 2. Spatial clustering statistics of cortical maps.

Hemisphere 111L 073L 073R 111L 073L 073R

Statistics Global Local

Measure Geary’s C Polygon Similarity

Polygon numbers 130 76 70

CF 1.44 1.47 1.47 0.86 0.92 0.90

Q40 1.26 1.17 1.13 0.29 0.34 0.30

Threshold 1.20 1.06 1.10 0.55 0.29 0.17

Latency 1.07 1.15 1.03 0.11 0.08 0.11

VS info 1.00 1.03 1.10 0.11 0.22 0.21

FR info 1.05 0.98 1.07 0.12 0.01 0.06

ISI info 1.03 0.98 1.01 0.26 0.13 0.14

VS max 0.99 1.03 1.02 0.15 0.17 0.10

FR max 0.99 0.99 1.04 0.28 0.12 0.09

CV min 0.99 1.03 1.01 0.15 0.12 0.09

F1 0.99 0.97 1.03 0.29 0.09 0.11

F2 1.04 1.05 1.03 0.16 0.30 0.09

F5 1.06 0.97 1.07 0.13 0.01 0.04

Spatial autocorrelation analysis measured by Geary’s C provides a global
assessment of spatial organization versus random distribution. A stringent
analysis of local similarity and parameter clustering was performed by
determining average value differences of each polygon from its direct
neighbors. Polygon similarity expresses the proportion of sites with significantly
similar neighbors (range 0–1). Both global and local measures were validated by
Monte-Carlo analysis. Bold: p,0.05; italic: not significant.
doi:10.1371/journal.pone.0011531.t002
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While VS and FR provide fairly little information on their own,

both parameters contribute to the CV of ISI and, consequently, to

the ISI information content. VS max is positively correlated with

ISI information. A high absolute spike-timing precision is

advantageous for precisely encoding stimulus-based relative

interval durations. FR magnitude is negatively and exponentially

correlated to the ISI information. This is not unexpected since

higher FRs will result in a higher probability of shorter ISIs that

are independent of the stimulus-driven interval statistics, especially

in cases of multi-unit recordings as employed here. Such an inverse

relationship between FR magnitude and the amount of MI is also

found in single neurons of the cat mid-brain [54] and in visual

neural transformation from retina to thalamus in the macaque

monkey [55]. In the former study, neurons with small FR

magnitude also showed high information content per spike and

high feature selectivity. Such feature selectivity by small number of

spikes (sparse coding) is found for odor coding in the insect

mushroom body [56] and mammalian olfactory cortex [57], for

song syllable sequence in the song bird premotor area [58], and for

constructing an acoustic image by multiple delays in the

echolocating bat AI [59]. Therefore, a close relationship between

FR magnitude and ISI information may be a basis of neural

coding of communication calls at the primary cortical level. There

are several potential benefits to maintaining a temporal code of

repetition information at the level of AAF. Temporal information

may be more easily transmitted to the following stations that can

read out the information via converging projections and precise

coincident inputs. Energy consumption may be lower for a low-

rate interval code than for an average rate code. Stimulus-locked

temporal codes may provide useful information about a task or

stimulus that may not be necessary for single discrimination or

detection tasks and could be accounted for by rate measures alone

as demonstrated in the detection of vibratory stimuli [52].

The finding that the information related to the three temporal

codes project onto orthogonal factors points to some non-

redundancy in the different periodicity representation schemes.

This is also expressed in the dissimilar spatial distribution pattern

and their distinctions in repetition rate dependence. Availability of

different encoding schemes may have advantages for signal

processing under different conditions and adverse circumstances

such as low signal-to-noise ratios, reverberation, variations in

sound intensity, or the presence of multiple sound sources that

may affect the three codes in different ways. The possibility that

different codes, employed concurrently, can provide complemen-

tary information has already been demonstrated for natural

sounds [53]. A study of the neural ensemble code for stimulus

Figure 6. Spatial distributions of temporal response measures and mutual information. (A) Spatial distributions of CV min of ISI, VS max,
and FR max for hemisphere 111L. Minimum or maximum value of the measures for any of the repetition rates is shown. White dots indicate polygons
with statistically similar values as their direct neighbors (compared to random re-distribution of all neighbors, see Materials and Methods). Gray
polygons indicate sites not available due to the four tested repetition rates, which also apply to (B, C). (B) Spatial distributions of mutual information
values of ISI, VS, and FR based on repetition rate discrimination. (C) Spatial distribution of three temporal factors emerging from a principal
component analysis of CV min, FR max, VS max, as well as the three corresponding information measures. Both white and black dots indicate
polygons with statistically similar values as their direct neighbors.
doi:10.1371/journal.pone.0011531.g006
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periodicity in the range of the fundamental frequency of

vocalizations also demonstrated that a joint code of rate and

timing parameters provide more information than either code

alone [60]. The observation that the combined FR and ISI

information reflects an increased amount of repetition information

confirms the representation of non-redundant information by rate

and temporal codes also for low repetition rates in AAF.

It should be noted that the three coding aspects discussed here

for repetition rate discrimination do not provide a complete

picture of low modulation frequency analysis. Recent studies have

pointed out additional means to detect and discriminate the

waveform shape of slow modulations, relying on more complete

analyses of the evoked spike patterns, and their relationship to

rhythmic activity [18,53,61,62].

Spatial Organization of Repetition Rate Coding
Stimulus information is distributed across a wide range of cortical

neuron types, laminae, and areas. Knowledge of the spatial layout of

information processing is important because it can provide crucial

insights into the local functional tasks and algorithms [25,63].

Several aspects of spatial organization and variability emerged.

The two temporal response measures and FR show different

kinds of spatial variations with repetition rate changes. Nearly

stimulus-independent sub-regions were observed for VS and CV

of ISI. These ‘modules’ with locally confined variations are in

contrast to spatial FR patterns that shift over a wider area in a

stimulus-dependent manner, more compatible with a rate/place

code. This difference in spatial behavior for timing and rate codes

is also expressed by a scaling difference. The largest changes in FR

map similarity are observed for small, linear repetition rate

differences in contrast to small changes on a logarithmic scale for

temporal maps. These differences in type and stimulus depen-

dence of the spatial distributions indicate a degree of indepen-

dence of time and rate codes for periodicity analysis. The factor

analysis supports the notion that the three stimulus repetition

codes considered here operate somewhat, although not complete-

ly, separately. Differences in the spatial behaviors of spike-timing

precision, rate, and interval codes as a function of repetition rate

can be interpreted as evidence for multiple, concurrent processing

streams (or streamlets) embedded within a cortical area.

Stimulus-tolerant spatial features (Figs. 4B, 4D, S4A, S4C) likely

reflect specialized and confined anatomical networks [25,63,64]

Figure 7. Spatial distributions of temporal response factors. (A) Spatial distribution of the magnitudes of three temporal factors based on a
principal component analysis of CV min, FR max, VS max as well as the three corresponding information measures (hemisphere 073L). White and
black dots indicate polygons with statistically similar values than their direct neighbors (compared to random re-distribution of all neighbors, see
Materials and Methods). Significant local clustering: *: p,0.05; **: p,0.01. D: dorsal, A: anterior, scale bars: 1 mm. For the tonotopic gradient, see
Figure S3. (B) Same as (A) for hemisphere 073R.
doi:10.1371/journal.pone.0011531.g007
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that can support a stable connectional framework for task-specific

processing. Separate neuron clusters for either precise or only

moderately synchronized spike timing can be a consequence of

convergent thalamocortical projection to AAF [28,30] and local

cortical circuits properties [13] that may be expressions of

structurally and functionally distinguishable components of larger,

more generally definable processing and projection schemes such

as the ‘what’ and ‘where’ streams. Reading out information from

stimulus-dependent maps would require broad-range connections,

while reading out information from a locally stimulus-independent

map could be done through local connections alone.

Hierarchical Spatial Order in Auditory Cortex
A novel, quantitative spatial analysis of cortical maps revealed

that local clustering of similar functional properties is a general

feature of all parameters considered here. Local clustering

exceeding the expectations from random parameter distributions

were encountered for spectral and temporal parameters in ,80%

of the maps. Failure to observe significant clustering in the

remaining 20% may be a consequence of the sampling density and

the ratio of circumference-to-area of the mapped region with

reduced statistical power in cases of high ratios (e.g., hemisphere

073R; Fig. 7).

The proportion of sites that are surrounded by sites with similar

properties can vary over a wide range from ,10%, for some

temporal parameters, to .90% for frequency preference (i.e., CF).

Maps with low clustering proportions often have only few, isolated

sites with similar surroundings. With increase in the overall

clustering proportion confluence of individual clusters to larger

modules is observed and, finally, large-scale aggregates, such as the

tonotopic organization, are seen for maps with high clustering

proportion. This range or hierarchy of spatial order in cortical

maps is confirmed by the analysis of global spatial organization

through spatial autocorrelation and can now be quantified (e.g.,

Geary’s C) and compared across different areas and modalities. It

should be noted that the current analysis methods do not require

or rely on the notion of local functional gradients that in previous

studies have been the dominant feature in assessing functional

topography (e.g., see Ref. [26,63]).

Anatomical studies of AC have revealed that all extrinsic areal

connections, whether tonotopic, non-tonotopic, multisensory, or

limbic, show a high degree of connectional topography [63,64].

Local topographies in convergent inputs create distinct conditions

for functional processing and it is, thus, not surprising to see

topographic principles expressed by essentially all considered

functional aspects in AAF. Similar spatial order is conceivably

present in areas outside the core areas although it is currently not

clear where they fall along the continuum of a spatial order

hierarchy and what the functional parameters are that may be

organized in such a way.

Methodological Considerations
Recording conditions used in this study influenced all three

measures of VS, FR, and ISIs. Our data were predominantly

based on multi-unit recordings since one of the goals was to

elucidate the spatial distribution pattern of the different response

measures. There are separate loci with either low or high VS.

Neuronal clusters with low VS may arise from single neurons

Figure 8. Local versus global spatial organization in AAF. A scatter plot of the mean proportion of polygons with high magnitude similarity to
directly neighboring polygons (local spatial organization) versus a mean spatial autocorrelation measure (Geary’s C; global spatial organization) for all
three hemispheres (see Table 2). Error bars indicate standard error of the mean. Light gray shading indicates statistically non-significant regions for
either measure. Dark gray area corresponds to value range that is not statistically significant for either local or global measures. A linear regression
line is shown (r2 = 0.92, p,0.001). CF = characteristic frequency; Q40 = frequency tuning curve bandwidth (at 40 dB above threshold)/CF;
Lat = minimum response latency at CF; F1(ISI) = strongest temporal factor comprising CV min, ISI info, and FR max; F2(VS) = second strongest
temporal factor comprising VS max and VS info F5(FR) = third strongest temporal factor comprising FR info.
doi:10.1371/journal.pone.0011531.g008
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within a recorded cluster with precise spike timing at different

phases of stimulus period (thus, resulting in only moderate spike

timing in multi-units) and/or individually less precise spike timing.

Neuronal clusters with high VS are loci of very precise and

highly synchronized spike timing that reflect a tight network

organization.

FR might also be influenced by the number of neurons in the

recorded clusters. Because FR information is not related to FR

magnitude, multi-unit recordings do not appear to strongly

influence the obtained FR information. On the other hand, the

amount of ISI information is negatively correlated with FR

magnitude. Therefore, it cannot be determined whether low ISI

information is associated with the number of neurons in a

recorded cluster and/or the number of spikes.

Finally, high ISI variability may depend on the number of

neurons within a cluster, synchronized spike timing among the

neurons, and interval variability within single neurons. Low

fidelity in any of these aspects may dominate sites carrying low ISI

information. Comparisons of single- and multi-unit recordings

made for periodic click trains revealed no systematic differences

[50]. Furthermore, temporal response properties are mostly

independent of CF, thus local disparity in frequency tuning is

not likely to strongly effect the temporal response properties [50].

However, multi-unit responses may not simply represent a cluster

of single-unit properties. Therefore, single-unit recordings will be

necessary in both acute and awake preparations to provide a fuller

understanding. The current study provides a more general

framework for such future investigations.

Comparative Aspects for Processing of Speech and
Communication Sounds

Recent studies using functional magnetic resonance imaging or

positron emission tomography in humans and macaques suggested

that the superior-temporal plane is specific to human speech or

macaque species-specific calls over non-specific calls or other

sounds [65–67]. These fields are located anterior to the primary

core fields, and may be a part of an anterior auditory ‘what’

pathway [34].

The anterior field of AC is found in many different animal

models (for review, see Ref. [30]). Several studies of neural

processing of repetition rates or amplitude modulated sounds have

indicated that AAF may show higher temporal fidelity than other

cortical fields [6,35,49]. Furthermore, behavioral experiments

have suggested that AAF may be a suitable area to study the

neural processing of temporal sound aspects and, more generally,

may be part of system focused on object-based or ‘what’ properties

of the auditory environment [32]. Recently, Bendor and Wang

[19] proposed that the rostral field (R) of marmoset AC

dominantly uses a rate code for a particular repetition-rate range

(10–45 Hz). While anatomical locations (position relative to AI) of

cat AAF and marmoset R are similar, it is not known whether

these two fields share similar physiological and anatomical

properties.

Overall, the findings suggest local processing specialization

within an early cortical station of the ‘what’ pathway, suggesting

the presence of subdivisions within more global processing

streams. The observation that an interval code allows more

discrimination ability of periodicity information than codes either

based solely on temporal precision or mean FR may provide a

convenient window to assess mechanisms and local tasks

implemented in an anterior auditory pathway that emphasizes

temporal aspects of sound processing. The observation that local

spatial organization, in form of functional mini-modules, may be

ubiquitous can guide future attempts to reconcile functional and

structural organizational principles [68] within and across different

processing streams.

Materials and Methods

Surgery and Animal Preparation
Experiments were conducted on three hemispheres (two left and

one right hemispheres) of two adult female cats. All protocols were

approved by the University of California San Francisco Commit-

tee on Animal Research in accordance with federal guidelines for

care and use of animals in research. Animals were sedated by

intramuscular injections of a mixture of ketamine (22 mg/kg) and

acepromazine (0.11 mg/kg). After venous cannulation, sodium

pentobarbital (15–30 mg/kg) was administered and supplemented

as needed throughout the surgical procedure. Following trache-

otomy, a craniotomy was performed to expose the ectosylvian

gyrus. The dura mater was partially removed, and the cortical

surface was covered with viscous silicone oil. Before commencing

the electrophysiological recordings, sodium pentobarbital anes-

thesia was replaced with a continuous intravenous infusion of a

mixture of ketamine (2–10 mg/kg/h) and diazepam (0.05–

0.2 mg/kg/h) in lactated Ringers (1–3 ml/kg/h). To prevent

edema and mucus secretion, dexamethasone (1.2 mg/kg, S.C.)

and atropine sulfate (0.04 mg/kg, S.C.) were administered every

12 hours. Since recordings lasted for three to four days, an

antibiotic (cephalosporin, 11 mg/kg, I.V.) was administrated to

prevent wound infection. Body temperature was monitored and

maintained by a water heating pad at 3761uC. Electrocardiogram

and respiration rate were monitored continuously during surgery

and recording procedures.

Acoustic Stimulus and Extracellular Recordings
Experiments were conducted in a double-walled, anechoic

chamber (Industrial Acoustics, Bronx, NY). Stimuli were delivered

by a STAX-54 headphone through a sealed tube into the acoustic

meatus contralateral to the studied hemisphere. The system

frequency transfer function was flat (66 dB) up to 14 kHz and

rolled off 10 dB/octave at higher frequencies.

Two different stimuli, pure tone bursts and click trains, were

presented for measuring frequency response areas (FRAs) and

RRTFs, respectively. Pure tone stimuli of 50ms duration

(including 3-ms linear rise and fall time) were generated at

intervals of 400–750 ms by a microprocessor (TMS32010, 16 bits

resolution and 120 kHz digital-to-analog sampling rate). FRAs

were mapped by presenting 675 pseudo-randomized tone bursts at

45 different frequencies (3–5 octave range) and 15 sound levels

(70 dB range in 5 dB steps). For RRTFs, click trains (monopolar,

rectangular pulses of 200 ms duration; 500 ms train duration) were

systematically presented 15 times for repetition rates from 1 to

38 Hz (1, 6, 10, 14, 18, 22, 26, 30, 34, and 38 Hz) at sound levels

of 82–102 dB SPL (peak equivalent). The relatively high levels

were applied to enhance synchrony among the multi-unit

responses. For sites with non-monotonic rate-level functions values

at the lower end of the range were used. For some recording sites,

higher repetition rates were presented (up to 250 Hz).

Parylene- or epoxylite-coated tungsten microelectrodes (Micro

Probes, Potomac, MD or Frederic Haer & Co., Bowdoinham,

ME) with 0.5–4 MV impedance at 1 kHz were used for multi-unit

recordings. Single or double microelectrodes were advanced

perpendicular to the cortical surface with a hydraulic microdrive

(David Kopf Instruments, Tujunga, CA). A video picture of the

cortical surface was captured and digitized with a CCD digital

camera (Cohu, San Diego, CA). Each recording site was marked

on the digitized picture using Canvas software (Deneva, Miami,
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FL). The marked sites were used to reconstruct tessellation maps of

the recording area (see below). Neuronal activity was obtained in

thalamocortical recipient layers [69]. Action potentials were

amplified and band-pass filtered (0.3–10 kHz; World Precision

Instruments, Sarasota, FL, and Axon Instruments, Union City,

CA), fed to an oscilloscope, and isolated from background noise

with a time/amplitude window discriminator (BAK Electronic,

Mount Airy, MD). For FRAs and RRTFs, spikes occurring in the

first 50 ms or 550ms, respectively, after stimulus onset were

recorded at 10 or 100 ms resolution for the analyses.

Data Analysis
Data were analyzed using the MATLAB (Mathwork, Natick,

MA) platform. StatView (SAS Institute, Cary, NC) was used for

statistical analysis.

Spectral receptive field parameters such as CF, minimum

threshold, quality factors, and response latency were measured

[30]. Threshold was defined as minimum excitatory SPL, and

estimated at 5 dB resolution. CF was defined as the frequency at

which a single neuron or neuron cluster produced sound-evoked

spikes at threshold sound level. Spectral bandwidths were calculated

as CF divided by excitatory bandwidth at 40 dB (Q40) above

threshold; the higher the Q-value, the more sharply tuned are the

neurons. Latency was determined as the minimum value in the

averaged latency-level function at CF and the two adjacent test-

frequencies (CF 1/15 to 1/9 octaves). Results for spectral receptive

field parameter distributions in AAF were presented elsewhere [30].

For RRTFs, spike occurrence to the first click was discarded

except for the 1 Hz stimulus since it does not contribute to

repetition information. Spikes were counted from the second click

onset to 550 ms after the first click onset (for 1 Hz stimulus, spikes

occurring between the first click onset and 550 ms were used). VS

and FR were used to measure temporal following activity [6,50].

VS measures how well spikes are synchronized to the clicks relative

to the duration of the repetition period:

VS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
cos hð Þ2z

P
sin hð Þ2

q

n

h~2p
t

T

where n is the total number of spikes, t is time of spike occurrence,

and T is the inter-click interval [70]. Significance of synchroni-

zation was examined by a Rayleigh test (p,0.001). Bin width was

1 ms. Repetition rate tuning curves were constructed without

smoothing across different repetition rates. Best repetition rate was

defined as that a repetition rate that evoked the largest response

strength for VS or FR. RRTF tuning curves for VS and FR were

classified into three filter types. A band-pass filter was assigned

when the response peak was flanked by troughs in which the

responses drop ,75% of the peak [71]. If one of the response

troughs did not reach the criterion, then RRTFs were considered

to be either a low- or high-pass filter. Although most recordings

were made from multi-units, past studies have shown that single-

and multi-unit recordings share similar RRTFs or modulation

transfer functions [50,72,73].

ISIs between two consecutive spikes were measured in the time

window of 550 ms with a bin width of 1 ms for each trial and

accumulated across all 15 trials. Spike train irregularity in ISIs was

estimate based on the CV that was defined as the standard

deviation of ISIs divided by the mean of ISIs.

Voronoi-Dirichlet Tessellation Map
To reconstruct the spatial distribution of receptive field or

temporal parameters across the cortical surface, tessellation maps

were calculated by Voronoi-Dirichlet tessellation [74]. The

polygon surrounding each electrode penetration in the tessellation

map characterizes the area assigned to the functional parameter at

the recording site. Borders between neighboring polygons were

determined from the midpoints of a straight line between adjacent

recording points. The value of each receptive field or temporal

parameter in the cortical surface map is illustrated by color code.

Mutual Information Analysis
The MI of the repetition rate carried in the FR was computed

based on 15 presentations of the same set of repetition rates. MI

analyses were limited to six different repetition rates (1, 6, 10, 14,

22, and 30 Hz for which we obtained data sets for a majority of

recording sites). MI between repetition rate f and firing rate fr is

given by I(f ,fr)~
P
r,f

P(fr,f )log2I(f ,fr)
P(frDf )

P(fr)
. In our case, all

repetition rates f were presented the same number of times, so that

I f ,frð Þ~ 1

Nf

X
r

p(frDf )log2

P(frDf )

P(fr)
,

where Nf = 6 was the number of different repetition rates. To

account for the fact that MI is positively biased [75,76], the values

were linearly extrapolated to infinite dataset limit (i.e., number of

repetitions; not to the limit of infinite word length). Extrapolation

was done by removing different sets of one, two, three, or four

presentations at a time. The final value and its standard deviation

was obtained as a result of a linear fit in 1/Nf, each repeated 15

times for different combinations of dropped presentations.

MI between repetition rate and VS was evaluated similarly. VS

values were calculated for each stimulus presentation to form

distributions of VS values associated with each stimulus period-

icity. The MI conveyed by the VS code quantifies how well these

distributions (and thus stimulus repetition rates) can be distin-

guished from each other. Non-significant VS measures were

assigned a MI of zero bits/stimulus (Rayleigh test, p.0.001). In

the case of information carried by ISIs, the distribution of ISIs

P(isi|f ) was computed for each stimulus repetition rate f and

averaged across repeated stimulus presentations. These informa-

tion values were then also extrapolated to the infinite dataset size,

according to procedures described above.

Additive information values (Code(x) + Code(y) in Fig. 2B)

represent the sum of information values computed for each pattern

of neural responses separately, with separate extrapolation to

infinite dataset size. Joint information values (Code(x) 6Code(y) in

Fig. 2B) were computed based on joint probabilities of two

measures of neural responses, such as VS and FR (Fig. 2B, white

bars); extrapolation to infinite dataset size in this case was based on

recomputation of these joint probabilities from fractions of the

data, and then using a linear extrapolation with respect to the

inverse of the dataset size to find the value for infinite dataset size.

Spatial Organization Analysis
The existence of spatial organization for experimental variables

was established using two complementary approaches. Spatial

autocorrelation, a measure of redundancy, was used to estimate

global spatial organization by calculating Geary’s C coefficient

[77]. C values are based on value differences between pairs of

observations and can vary between 0, indicating perfect positive

spatial correlation (high spatial uniformity, maximal neighbor
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similarity), and 2, indicating negative spatial correlation (maximal

dispersion, high value contrast between neighbors). Random

spatial distribution (the null-hypothesis) results in a C value of 1. In

a Monte-Carlo analysis, the statistical significance of the

experimental C value was derived from the C-value distribution

of 10,000 randomly redistributed map versions.

Local spatial organization was assessed through the value

similarity between each polygon and its nearest neighbors.

Statistically significant similarity between a polygon and its direct

neighbors was determined by comparison with 10,000 redistribu-

tions of the neighboring polygon values. The number of significant

polygons in a given experimental map was compared to the

number of significant polygons in 1,000 randomized maps. The

number of significant polygons estimates the proportion of local

parameter clusters. Neither of the two tests takes into account

where in the map local or global similarities are situated. However,

the larger the number of local clusters, the higher is the probability

of a confluence of them, increasing global organization and, thus,

spatial autocorrelation.

Supporting Information

Figure S1 Two examples of RRTFs for VS and FR. (A, B)

Poststimulus time histograms for two different sites. Response

strength was normalized to the maximum responses at 1 Hz. (C, D)

RRTF tuning curves for the same two sites. VS and FR are

illustrated by magenta and cyan lines, respectively, and data points

are fit by a polynomial cubic spline for illustration. Filled circles are

significant VS values by a Rayleigh test (p,0.001). Site identification

and CF are shown in (C, D). Gray areas are the repetition rate range

for the focus of our study. (A, C) Moderate VS site. FR showed band-

pass property with high best repetition rate. VS information:

0.19 bits/stimulus. FR information: 0.33 bits/stimulus. ISI (1 ms)

information: 0.34 bits/stimulus. ISI (10 ms) information: 0.74 bits/

stimulus. (B, D) Low VS site. FR increased with increasing repetition

rates (high-pass property). VS information: 0.08 bits/stimulus. FR

information: 0 bits/stimulus. ISI (1 ms) information: 0.58 bits/

stimulus. ISI (10 ms) information: 1.17 bits/stimulus.

Found at: doi:10.1371/journal.pone.0011531.s001 (0.43 MB TIF)

Figure S2 An example of ISI histograms for six different

repetition rates from one site. There is no additional peak

corresponding to the period of the stimulus repetition rates. This

site is a less common example. VS information: 0.01 bits/stimulus.

FR information: 0.02 bits/stimulus. ISI (1 ms) information:

0.15 bits/stimulus. ISI (10 ms) information: 0.45 bits/stimulus.

Found at: doi:10.1371/journal.pone.0011531.s002 (0.08 MB TIF)

Figure S3 Smoothed tonotopic gradient and approximate

position of AAF. (A) Hemisphere 073L. (B) Hemisphere 073R.

Scale bars: 1 mm. See Figure 4’s legend for further explanation.

Found at: doi:10.1371/journal.pone.0011531.s003 (0.19 MB TIF)

Figure S4 Spatial distributions of population response (without

smoothing) to different repetition rates (hemisphere 111L). Spatial

representation of raw VS (A), normalized FR (B), and raw CV of

ISI (C) as a function of different repetition rates. Scale bars: 1 mm.

See Figure 4’s legend for further explanation.

Found at: doi:10.1371/journal.pone.0011531.s004 (0.86 MB TIF)
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