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Abstract 

The practice of treating neurons as detectors is ubiquitous in 
the neuro-science community and in AI as well, in the context 
of neural networks.  But there are a growing number of 
cognitive scientists who think that the representational 
paradigm is ill-suited to this level of explanation.  In this 
paper, I rehearse William Ramsey‘s powerful critique of 
neural-detector attribution, focusing on his argument that 
Dretske-style information theoretic accounts of representation 
fail to justify the practice.  I then take this conclusion a step 
further by arguing that not only does this particular 
justification fail, none at all are possible.  The conclusion that 
we need to let go of the representational paradigm is not a 
negative one though, I shall claim, because it liberates us 
from the kind of misguided thinking that leads to theoretical 
dead-ends.  Once we see this, we are free to investigate new, 
more fruitful, paradigms.   

Keywords: representation; neurons; detectors; information 
theory; Dretske; interaction theory. 

Introduction 

The practice of treating neurons as detectors is ubiquitous in 

the neuro-science community and in AI as well, in the 

context of neural networks.  But there are a growing number 

of cognitive scientists who think that the representational 

paradigm is ill-suited to this level of explanation.  With this 

paper, I will add my voice to these ranks.  In section one, I 

will rehearse William Ramsey‘s powerful critique of neural-

detector attribution, focusing on his argument that Dretske-

style information theoretic accounts of representation fail to 

justify the practice.  In section two, I take this conclusion a 

step further by arguing that not only does this particular 

justification fail, none at all are possible.  The conclusion 

that we need to let go of the representational paradigm is not 

a negative one though, I shall claim, because it liberates us 

from the kind of misguided thinking that leads to theoretical 

dead-ends.  Once we see this, we are free to investigate new, 

more fruitful, paradigms.  In the final section, I briefly 

discuss one of the more promising ones.   

Section I: Ramsey’s Critique 

By explicitly addressing the question of what justifies 

neural-level detector attributions, Ramsey brings to the fore 

a discussion sorely lacking in the cognitive science 

community.  I present here just two examples of this 

practice in order to focus this discussion
1
:  

1. ―… the key claim of localist coding schemes is 

that a given unit (neuron) codes for one familiar thing 

(and does not directly contribute to the representation 

of anything else), and that it is possible to interpret the 

output of a single unit in a neural network.‖ (Bowers, 

2009, p. 223)   

2. ―These investigators report the discovery of 

number-encoding neurons in the lateral prefrontal 

cortex of the macaque brain. ... this work opens up the 

exciting possibility of studying the cerebral bases of 

elementary arithmetic at the single-cell level.‖ 

(Dehaene, 2002, p. 1652)  

Unfortunately, because the practice is so ubiquitous and 

unchallenged in the field of neuroscience, there aren‘t many 

actual justifications to assess.  As Ramsey points out,  

... researchers often skip the question of whether 

neural receptors function as representations and 

instead ask about how the representational encoding is 

done.  That is, researchers often begin with the 

assumption that neurons function as representations, 

and then explore, for example, whether the encoding is 

in single cell ‗grandmother‘ representations or instead 

distributed across a population of neurons. (2003, p. 

127) 

I won‘t rehearse here Ramsey‘s speculations for why there 

has been so little written about this central topic, although 

his diagnosis is spot on; instead, I will skip to his decision to 

focus the critique on Fred Dretske‘s information theoretic 

account of representation, since, he concludes, this is the 

most robust, well-defended account that comes the closest to 

offering an explicit justification for the practice: 

... his theory seems clearly motivated by examples 

of the very notion of representation we are trying to 

explicate, and many have appealed to Dretske as a 

way of defending receptor-style representations. What 

is more, because Dretske‘s account of content is so 

closely intertwined with an account of what it is for 

something to function as a representation, we see that 

he is, indeed, worried about providing a solution to 

what I have been calling the functional specification 

challenge. Thus, if anybody has given a carefully 

worked-out philosophical explication and defence of 

the receptor notion ... it is Dretske. (ibid., p. 131) 

                                                           
1 I do not intend to single these out as particularly egregious cases 

or so on in any way – there are literally hundreds of others I could 

have chosen, but a choice had to be made. 

2217



On Dretske‘s account, what makes some internal 

state X a primitive representation or detector of some 

class of things or actions Y is that it meets the 

following three conditions:  

1. The presence/absence of X covaries with the 

presence/absence of members of Y;  

2. The co-variance is under-written by a nomic 

causal relation, that is, the presence/absence of 

members of Y cause or are a necessary part of the 

cause of the presence/absence of X; and,  

3. The functional role of X, within the system 

within which it arises, is to carry information about the 

presence/absence of members of Y. (Dretske, 1988) 

Condition 3 ultimately does the work of justifying our 

treatment of X as a representation, since lots of states meet 

both conditions 1 and 2 alone, but do not function to carry 

information about and, consequently, represent anything.  

For example, the presence of large electrical fields is 

causally necessary for the presence of lightning, but 

lightning does not represent electrical fields.  Now the trick, 

of course, to developing a fully naturalistic account of 

representation, is to explain how condition 3 can come 

about without appealing to the existence of some intentional 

system in which X functions to carry information.  Dretske 

follows teleological-functionalists such as Millikan in 

arguing that such functional roles are established as a result 

of natural selection or, in some contexts, in the course of the 

development of learning mechanisms.  Here is an excerpt 

from Dretske on how he sees such functional information-

carrying roles being established: 

Suppose an animal – call it Buster – is so wired that it 

can see nearby Os....  Because Os are dangerous to 

animals like Buster, it quickly learns to avoid them.  

Learning to avoid Os is a process in which an internal 

sign of O, an internal signal carrying the information 

that an O is present, is made into a cause (a triggering 

cause) of whatever movements constitute avoidance. 

... As a result of the learning of the sort just described, 

Buster‘s internal circuitry has been reconfigured so as 

to give an information-bearing element a control 

function.‖ (1994, p. 69) 

According to Dretske, it is in virtue of the information 

carried by the causal co-relation between the presence of Os 

and the internal O signal that the internal O signal gets its 

role.  Here is another of Dretske‘s examples, one that 

Ramsey highlights, of the same sort of process, but one that 

develops as a result of evolutionary pressures: 

… the magnetesomes in anaerobic bacteria indicate 

the direction of magnetic North, which also happens to 

correlate with deeper, anaerobic water. Through a 

process of natural selection, these magnetesomes come 

to be wired to the bacteria‘s navigational system 

because of their nomic link to anaerobic water. They 

are thus given the functional role of indicating the 

direction of anaerobic water and, according to Dretske, 

thereby become anaerobic water representations. 

(Ramsey, 2003, p. 132) 

Again, the idea is that it is in virtue of the information 

carried by the causal co-relation between magnetesomes and 

anaerobic water that, through natural selection, 

magnetesomes developed the functional role they did, 

within the context of anaerobic bacteria.  This, according to 

Dretske, is what justifies our treatment of them as anaerobic 

water detectors. 

But, Ramsey argues, this is much too quick.  How do we 

know that it is in virtue of the information the causal 

relations carry that they were selected for?  In order to get to 

that conclusion, Ramsey argues, we need a much more 

ontologically-loaded notion of information than is 

warranted, one in which information itself can play a causal 

role: ―… many writers—including Dretske—appear to reify 

information with expressions like ‗information flow‘ and 

‗information carrying‘ ….‖(2003, p. 135)  But we have no 

independent justification for treating information in this 

way. From an ontologically Spartan vantage point, 

information is just what can be learned about the causal 

history of some object or system: ―Talk about information 

carrying can be understood as simply a way of saying that 

nomic relations between states of affairs allows us to use 

these states of affairs to discover things.‖ (Ramsey, 2003, p. 

135)  Indeed, as Ramsey points out, these states of affairs 

need not even be directly causally related to one another in 

order for there to exist an information relation between 

them.  If A is larger than B, and B is larger than C, then A 

‗carries‘ information about C, since knowing something 

about A, say that it has length X, allows one to deduce 

something about C, say that it has length < X.  In other 

words, ―being an information carrier is nothing more than 

being a thing that stands in some sort of relation to 

something else, such that the former can be exploited to gain 

knowledge about the latter.‖ (2003, p. 135)  In this unreified 

sense, information abounds. 

But although information abounds, it doesn‘t follow that 

all or indeed any of this information is in fact used.  Two 

things might be causally related, let‘s say the presence of A 

causes some process to occur in B, but the fact that B‘s 

activity carries information about the presence of A may 

play no role at all in this causal transaction, not even in an 

account of the evolutionary history of the development of 

this causal relationship.  For example, if I squirt a drop of 

water onto a small sample of salt, the salt will begin to 

dissolve.  The salt‘s activity, the dissolving, is an indication 

that a liquid is present, that is, I could discover from its 

present state that a liquid is present and I could also 

discover, with the right equipment, exactly when in the 

history of this sample the liquid was introduced; but, of 

course, the dissolving will continue on whether or not I 

actually attempt to deduce this information. 

Likewise, Ramsey points out, in the examples Dretske 

uses to support his case, in none of them is it clear that it is 

in virtue of the information that the underlying physical 

causal relations carry that it is selected for:  

For instance, the iron deposits that serve as 

magnetesomes in anaerobic bacteria are wired to the 

2218



bacteria‘s propulsion devices because of the way they 

reliably respond to anaerobic conditions. We need 

some further reason, however, for thinking they are 

recruited into service because of the information that 

results from this relation. There is really no sense in 

which the bacteria‘s flagellum (their propellers) 

exploit the informational content carried by the 

magnetesomes: no sense in which they use the 

magnetosomes to discover something about anaerobic 

conditions. It is one thing to serve as a causal mediator 

between A (anaerobic conditions) and B (directional 

propulsion), it is an entirely different thing to serve as 

an informer about A for B. (2003, p. 137) 

Ultimately, Dretske‘s account fails, then, because of the 

untenable, but critical for his view, distinction between the 

physical and informational features of causal relations; to 

get the teleological story off the ground, the informational 

relations need to play a causal role in the account.  At the 

least, this assumption is as non-naturalistic as the very 

notion of intentionality it was invoked to demystify.  At the 

worst, it is an ontological load too heavy to bear.  Without 

it, however, the support for condition 3 is removed and, 

unless condition 3 is met, we aren‘t justified in treating 

causal relations as representation relations.  We‘re back at 

square one. 

Section II: No Justifications are Forthcoming. 

In this section, I want to argue for the following stronger 

claim: not only do Dretske-style accounts fail to justify the 

practice of neural-detector attribution, but no such 

justification is in the cards at all. 

Now I‘m certainly not making a novel claim when I say 

that, conceptually-speaking, representation and neuron are 

concepts appropriate to different levels of explanation: 

within the cognitive science community, David Marr‘s tri-

level hypothesis
2
 has been widely accepted and used to 

justify division of labour
3
.  In the context of this sort of level 

distinction, we could say that using the concept of a 

representation, which is a concept proper to either the 

computational or the algorithmic level of explanation, in 

order to pick out kinds at the implementation level – this is 

what we are doing after all when we treat neurons as 

                                                           
2 Marr (1982) describes a framework for the theoretical task of 

explaining visual processing, which we can extend to cognition in 

general, in which the following three levels of explanation are 

distinguished:  at the highest level of abstraction, the 

computational level, we describe the general function of the system 

under investigation; at a middle level, the algorithmic level, we 

describe the processes or mechanisms that make this activity 

possible; and, at the lowest level, the level of implementation, we 

describe how the ‗hardware‘  performs these actions. 
3 Griffiths et al., (2010) for example, are quite explicit that their 

theories apply to the function level of explanation only: ― ... 

probabilistic models of cognition pursue a top-down or ‗function-

first‘ strategy, beginning with abstract principles that allow agents 

to solve problems posed by the world – the functions that minds 

perform – and then attempting to reduce these principles to 

psychological and neural processes.‖ (Griffiths et. al, 2010, p. 357) 

detectors – is just to confuse levels of explanation.  In order 

to perform this kind of reduction, we need a theory that 

allows us to bridge between the levels.  This theory will 

explain how the more abstract, higher-level concept of 

representation is instantiated at the neural level.   

Of course, finding strong co-relations between neural 

activity and states of affairs in the world in conjunction with 

a solid information theoretic account of representation is 

supposed to play exactly this bridging role.  Indeed, it‘s 

because of a sensitivity to this abstractness of the concept of 

representation that researchers are typically careful to call 

neurons detectors, primitive representations, rather than full-

blown ones.  But, as we saw in the previous section, 

Ramsey‘s arguments undermine the justificatory support 

that information theoretic accounts give to treating neurons 

as detectors.  Consequently, there is reason to be suspicious 

of the current scaffolding holding together the neural-

representational hierarchy.   My aim here is not to critique 

this Marr-inspired levels approach to cognitive inquiry, 

(although I do think it biases us towards a particular view of 

what could count as a cognitive process); rather, I want to 

accept this way of dividing the theoretical labour and argue 

that a further explanatory distinction we ought to make 

serves to limit the kinds of concepts we can use to theorise 

at the various levels.  As a consequence, we will see that 

concepts such as detector can never be applied at the 

implementation level, no matter how much bridging we do.  

To begin the deconstruction, we need to introduce a new 

kind of distinction, one that tracks the degree of context a 

given concept includes.  Being a distinction of degree, we 

shouldn‘t expect too many instances at either end of the 

continuum; most concepts will fall somewhere along the 

middle, perhaps closer to one side or the other, of what I‘ll 

be calling the individual/collective continuum to indicate 

concepts that pick out kinds in virtue of their context-free 

features, on the one hand, and concepts that pick out kinds 

in virtue of their context-dependent features on the other.  

What it is to be an instance of a strongly individual concept 

will depend mostly upon the local, non-relational, properties 

its instances have.  The concept hydrogen, for example, is 

highly individual, in this sense, because to be an instance of 

it is to meet a set of conditions that can be specified in a 

generally context-free way, e.g. being an atom with one 

proton in its nucleus.  What it is to be an instance of a 

strongly collective concept, on the other hand, will depend 

mostly upon the system-level, relational, properties its 

instances have.  For example, the concept worker ant lies 

closer to the collective side of the continuum since, while 

there are certainly some individual features that worker ants 

exhibit, e.g. being female, having a certain body size, and so 

on, it is not possible for an ant to be a worker ant unless 

there is an ant colony within which it can function in that 

way; a lone ant, outside of its colony context, is no longer a 

worker ant, since part of what it is to be a worker ant is to 

play a certain role within a larger system.  Thus, certain 

concepts can be applied to individuals without appeal to the 

broader system within which those individuals are found, 
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while others cannot be so applied — they necessarily 

involve some relational attributes. 

Now, the concept of being a detector is clearly a 

collective concept.  To see this, consider the following 

example.  We might want to call a magnetised metal rod a 

metal detector in virtue of the causal relations that exist 

between it and instances of metal – metallic objects within a 

certain distance will, quite literally, be drawn towards the 

rod.  But, as we saw in the previous section, such a rod is no 

more a metal detector than the magnetesomes in anaerobic 

bacteria are anaerobic water detectors.  A magnetised metal 

rod can only have the functional role to detect metals within 

a context within which it is used in this capacity.  This is 

because to be a detector is to play a particular role in a 

system, namely, to carry information about the 

presence/absence of members of a certain class.  To notice 

this is just to acknowledge that there are certain features of 

the concept of being a detector that cannot be explicated by 

appeal to the purely individual features of an object acting 

in this capacity, since it‘s the playing of a certain role, and 

this is a relational attribute, that is essential to being an 

instance of the concept. 

A final distinction will help tie this discussion back to 

levels of explanation.  Andy Clark (1996)
4
 convincingly 

argues that, in cognitive science, we ought to be 

distinguishing between three different classes of 

explanations, where each is differentiated according to how 

much context is included in it.  For the sake of symmetry 

and because I don‘t want to get side-tracked here by 

controversies over emergence, I will ignore Clark‘s third 

category of emergent explanation and focus only on the first 

two: homuncular and interactive explanations. 

We provide an homuncular explanation when we theorise 

about an individual by ―adverting to the capacities and roles 

of its components, and the way they interrelate.‖ (ibid. p. 5)  

For example, when we describe how a machine works by 

appealing to its sub-components, we are giving a 

homuncular explanation of it.  We provide an interactive 

explanation when we include the role of the environment in 

our account of how some system functions in that 

environment.  Clark cites Ballard‘s approach to 

understanding vision as an animate process as a good 

example of interactive explanation.  In contrast to the 

traditional homuncular treatment of vision ―as the task of 

building a detailed representation of a 3D world on the basis 

of what is essentially a body of 2D data,‖ (ibid.  p. 7) 

Ballard 

depicts the goal of vision as the production of 

successful actions within an environment context, 

keeping computational costs as low as possible. ... 

Thus, according to Ballard, the idea of a component 

                                                           
4 Craver and Bechtel (2007) also do an excellent job of clarifying 

some of the level confusions that abound in the debate between 

bottom-up and top-down causation.  Much of what they say is 

mirrored in what Clark says and what I am arguing for here, but to 

make those connections explicit would take more space than I have 

room for so I leave that to another paper. 

which encodes a full-scale model of our surroundings 

is misguided.  Animate vision, Ballard argues, neither 

needs nor can afford to create and sustain such a 

model.  Instead, we constantly saccade around, 

picking up only such fragments of information as we 

need to support specific actions, and re-visiting the 

scene again and again rather than relying on some 

internally represented surrogate. (ibid., p. 8-9)  

Clark‘s context-based distinction between explanations 

complements the dichotomy between individual and 

collective concepts I have been developing: individual-level 

concepts are best explicated with homuncular explanations, 

while more collective concepts can only be fully 

characterised with interactive explanations, since only the 

latter will draw the relevant aspects of context into the 

description.   

An example will help make clear how I see the 

homuncular/interactive and the individual/collective divides 

working together in explanations.  Take the concept of an 

automobile.  As with many concepts, there are both 

individual and collective aspects to it.  From Wikipedia, for 

example, we get this definition: 

An automobile, motor car, or car is a wheeled motor 

vehicle used for transporting passengers, which also 

carries its own engine or motor. Most definitions of 

the term specify that automobiles are designed to run 

primarily on roads, to have seating for one to eight 

people, to typically have four wheels, and to be 

constructed principally for the transport of people 

rather than goods. (http://www.wikipedia.org/) 

    If we focus on defining an automobile in terms of its role 

of transporting passengers, for example, then we will also 

need to explain the contexts within which there are 

passengers waiting to be transported; there can be no 

transporting role in the absence of passengers
5
.  This kind of 

explanation counts as interactive since it includes the larger 

environment within which automobiles function and seeks 

to explain its relational features.  On the other hand, if we 

zero in on what the components of a motor vehicle are, 

asking how each functions, what its individual features are, 

and so on, we will be providing a homuncular explanation.  

Each of these explanations will deepen our understanding of 

the car concept because each will explain a different aspect 

of it; such explanations are, thus, not incompatible. 

But we have to be careful; it‘s easy to apply the wrong 

type of explanation to a concept, as we do when we give a 

homuncular explanation to a collective concept and vice 

versa.  To see how quickly this confusion can occur, let‘s 

look more closely at the homuncular description of  

automobile.  Being homuncular, it will focus on car 

components and on how the various mechanisms function to 

bring about system-level activity such as acceleration, 

deceleration, and so on.  But note that a concept like 

acceleration is a collective concept, since it applies only to 

                                                           
5 Of course, absence here cannot mean that there just don‘t happen 

to be passengers here at this time; rather, it means that the kind 

passenger just doesn‘t exist in this context.   
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the car as a whole and involves relational attributes such as 

the property of increase in speed relative to a frame of 

reference.  Thus, although we could pick out the engine as a 

mechanism that plays a role in the car‘s capacity for 

acceleration, we will need to be careful that we don‘t 

erroneously, or sloppily, treat the engine as the car‘s 

accelerator. The engine itself doesn‘t do any accelerating at 

all, it doesn‘t even move, even though its activity, in 

conjunction with the movement of the wheels, the amount 

of friction between the tires and the road, and so on, results 

in the car‘s acceleration.  In other words, its actions are 

necessary for acceleration, but the engine itself does not 

accelerate.  The mistake we make, if we take the engine to 

be the car‘s accelerator, is to give a homuncular explanation 

to a collective concept: no amount of component activity 

could ever give account of the relational attributes of such a 

concept.  Thus, homuncular explanations are good for 

explicating the individual (aspects of) concepts and 

interactive explanations are required for providing an 

account of the collective (aspects of) concepts.   

We now have the terminology we need to clearly identify 

the problem with treating neurons as detectors.  The concept 

of being a detector is a collective concept and, as such, 

requires explication in interactive terms.  When we appeal 

to the detecting capacity of our neurons in the course of  

explaining the representational capacities of human 

cognitive agents, however, we are giving a homuncular 

account, since neurons are components of this larger system.  

But, since the concept we are trying to explicate is a 

collective one, this can‘t possibly be right.  Supposing that 

our capacity to model objects in our environment is 

explained by the capacity of our neurons to do exactly that 

is like pointing to a car‘s engine and saying ―there, that‘s 

where the acceleration is happening.‖  As we just saw, 

although car engines play a role in acceleration, to fully 

explicate the concept we need to look beyond the car‘s 

components to the general environment within which 

acceleration becomes possible. In a precisely analogous 

way, we shouldn‘t look inwards for detectors; we need to 

think more broadly about what contextual attributes make 

the role of detection possible. 

But, someone might counter, why couldn‘t the neuronal 

level really be the locus of detection in the human cognitive 

system?  If we suppose that there is a larger system, perhaps 

a network of neurons, within which neurons function as 

detectors, we are giving an interactive explanation of the 

capacity.   

Unfortunately, this won‘t work: if we suppose that 

neurons function to carry information about whatever it is 

they detect within the context of a larger system, then we 

will need to explain how this larger system has the capacity 

for using the information the neurons carry.  Otherwise, 

we‘ll be back to square one, as we were at the end of section 

one. But to suppose that something is capable of using 

information is just another way of saying that it has 

intentional capacities, that it has the ability to extract a 

representation of an actual or possible state of affairs from 

some causal regularity.  Such an account would be viciously 

circular since the very reason we are appealing to the 

supposed detection capacities of neurons is to explain how 

the larger system, the human cognitive agent, manages to 

represent. 

Stated thus, this result might seem hopelessly depressing, 

but I think it is cause for optimism: clearly seeing the 

circularity of our current thinking ought to liberate us once 

and for all from whatever reductive attractions it holds.  In 

the next section I will sketch what I see is the way forward. 

Section III: A Paradigm Shift 

Ramsey‘s arguments uncover some very deep-seated 

assumptions about representation that we, perhaps because 

we are paradigm examples of information-using systems, all 

seem to share.  These biases lead us to read more into causal 

relations than are justified – co-relation between two states 

of affairs is not enough to warrant the assumption that 

information transfer plays a role in the underlying causal 

transaction, even when there is a story to tell about how 

having and using the relevant information would have 

bestowed selectional advantage on the system within which 

such states exist.    

When we analyse our theoretical approach further, we 

find that it is underwritten by a confused understanding of 

the relation between concepts and explanations, that our 

(natural) reductive impulse to prefer homuncular 

explanations draws us to look inward when we are 

explaining intentional capacities when we should be looking 

outward for interactive explanations instead. 

Interaction theorists, and dynamic systems theorists in 

general, have begun developing precisely these kinds of 

interactive explanations. (Freeman, 2000; Keijzer, 1998; 

Kirsch, 1990; Thelen, Schöner, Scheier, Smith, 2001).  

Among these, Fred Keijzer‘s is particularly noteworthy 

since he has attempted to give at least the beginning of an 

account of the kind of higher-level, off-line behaviour – 

planning, remembering, and so on – that interactionist 

accounts with their emphasis on system-environment 

interactions, have had a hard time explaining.  What‘s 

particularly exciting about his idea is that it draws its 

inspiration from the field of genetics, an area in which a 

paradigm-shift away from representation-based models is 

already yielding fruitful new insights.  On this new view, 

Genes do not instruct the cytoplasm, they rely on the 

intrinsic disposition of cytoplasmic processes to 

generate spatial and temporal structure. As Gottlieb 

puts it, genes are a part of a complex but highly 

coordinated system of regulatory dynamics that 

operate simultaneously at multiple scales, extending 

from genes to chromosomes, to the cell's nucleus, 

cytoplasm, tissues and up to the whole organism 

(Gottlieb, 1992, p.142). (Keijzer, 1998, pp. 286-87)  

If we are to progress in our understanding of cognition, 

Keijzer argues, we need to similarly replace our homuncular 

treatment of behaviour as ultimately driven by internal 

representations, implemented by neurons, by an interactive 
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theory of how the different scalar levels of activity within 

and without a cognitive agent influence and direct one 

another to produce behaviour.  On such an account, we are 

free to understand the function of neurons in entirely novel 

ways.  Keijzer describes one possibility like this: 

In behavioral explanations based on representational 

specification the activity of neurons is interpreted as 

an input-output device which receives and sends 

information. However, neurons can also easily be 

interpreted as oscillatory units (Alexander & Globus, 

1996). Given this interpretation, the total nervous 

system forms a larger oscillatory network, the 

behavior of which depends on the characteristics of its 

components and their connections. As the nervous 

system is an organ that extends itself over the scale of 

the total body of an organism, and because the 

connections between neurons allow very swift 

interactions across this network, it forms a means for 

dynamical patterns to organize themselves very fast 

(starting at tens of milliseconds) at the bodily scale. In 

turn, the neural dynamics is tied to a musculo-skeletal 

system capable of initiating environmental changes at 

the bodily scale. The bodily dynamics in turn 

influences dynamical relations within the 

environment. (1998, p. 279) 

Whether or not this is ultimately the right way of thinking 

about neurons is beside the point of this paper; I present it 

here simply as an example of the theoretical possibilities 

open to us. 

I‘ll leave the final word to Walter Freeman, a 

neuroscientist who claims that he was able to make headway 

in interpreting his own data only once he let go of his basic 

assumption that neurons function as detectors: 

 For more than 10 years we tried to say that each 

spatial pattern was like a snapshot, that each burst 

served to represent the odorant with which we 

correlated it, and that the pattern was like a search 

image that served to symbolize the presence or 

absence of the odorant that the system was looking 

for. But such interpretations were misleading. They 

encouraged us to view neural activity as a function of 

the features and causal impact of stimuli on the 

organism and to look for a reflection of the 

environment within by correlating features of the 

stimuli with neural activity. This was a mistake. After 

years of sifting through our data, we identified the 

problem: it was the concept of representation. 

(Freeman & Skarda, 1990, p.376) 
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