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ABSTRACT OF THE DISSERTATION

Estimating Post-Fire Flood Hazards: Model Formulation, Parameterization, and
Applications

By

Ariane Jong-Levinger

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Irvine, 2023

Professor Brett F. Sanders, Chair

Human development situated at the foot of mountains faces sediment-laden flood hazards

characterized by high-velocity, erosive flows carrying mud and debris. In the western United

States, sediment-laden flood hazards are increasing due to more frequent and severe wildfires,

more intense precipitation, and the expansion of development towards mountain wildlands.

Considerable work has focused on developing models of post-fire peak flows and sediment

yields at the outlet of mountain canyons, but the risk to communities downstream of pro-

tective flood infrastructure common throughout the southwestern U.S. is largely unknown.

We present an original modeling framework that captures the interactions between wildfires,

storms, and flood infrastructure to estimate sediment-laden flood hazards. Stochastic mod-

eling with a continuous simulation approach is used to quantify uncertainty and explicitly

consider antecedent conditions. This work shows that compound post-fire flood hazards

may be up to 6 times larger than suggested by the marginal hazard posed by extreme pre-

cipitation, and that future increases in wildfire severity and intensity could increase flood

hazards by up to a factor of 11. Furthermore, modeling of compound post-fire flood hazards

across the Santa Ana Mountains in Riverside County, California reveals hot spots of risk

below catchments that last burned over 45 years ago. As urban expansion into mountainous

regions continues to increase around the world, an improved understanding of the hazards

x



facing communities “protected” by infrastructure is important to better characterize the spa-

tial distribution of risks across populations, increase risk awareness, and inform sustainable

adaptation and resilient land development practices.
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Chapter 1

Introduction

Around the world, a concentration of human development can be found at the foot of moun-

tains, where communities contend with several types of natural hazards including wildfires,

landslides, debris flows, mudflows, and flooding. In the western U.S., the combination of

three trends–increasing wildfire frequency and severity (168; 28; 103), increasing precipita-

tion volatility (144; 41; 147), and the expansion of development into mountain wildlands

(15; 112)–is leading to the increased occurrence of deadly floods and mudslides (19). With

steep channel and floodplain slopes and even steeper mountain hillslopes, rainfall generates

fast-moving flows that readily entrain available sediment and build the capacity to transport

large debris such as boulders and trees. These destructive flows can also carve new channels

in unexpected ways, and as high velocity, sediment-laden flows encounter flatter topogra-

phy, heavier solids settle out which reduces the capacity of flood channels (98; 127; 62). A

recent example is given by the Pakistan floods of August 2022, which involved flows of rock

and debris within near-mountain environments and extreme fluvial flooding across flatter

togography (89).

The expression ultrahazardous flooding was introduced to describe the elevated danger of
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near-mountain alluvial fans (98), a specific type of geography found in near-mountain envi-

ronments, but this term is equally relevant to a wide range of near-mountain geographies with

steep slopes and fast-moving, sediment-laden flood hazards prone to unpredictable flow paths

(127; 66). The expression sediment-laden floods has also been used in the context of near-

mountain environments where flood hazards involve the entrainment of sediment and debris

(39). Recently burned mountain canyons are especially prone to produce sediment-laden

floods during post-fire storms, as runoff and erosion on burnt terrain have been observed to

be 1-4 orders of magnitude greater than that on unburnt terrain in the European Mediter-

ranean and more than 100 times greater on large-plot to hillslope scales in the southwestern

United States (134; 174). These hydrogeomorphic changes result from the removal of veg-

etation cover by wildfire, which exposes soil to erosion via raindrop impact, and, in some

cases, from the creation of a hydrophobic layer caused by heat-induced soil water repellency

and/or the clogging of soil pores with ash (96; 57).

The geographical distribution of near-mountain, sediment-laden flood hazards is poorly un-

derstood compared to fluvial and coastal risks. The combined pluvial, fluvial, and coastal

flood risks facing the U.S. have only recently been systematically estimated at regional (130)

and national scales (6), supporting improved understanding of the exposed populations and

inequities (145). Yet the unique and severe threat posed by ultrahazardous, sediment-laden

floods has not been considered in these studies. Moreover, there is a growing recognition

that a primary driver of increasing flood risks is the expansion of human development into

high-hazard areas (3), which further motivates improved characterization of sediment-laden

floods. Mountainside communities may or may not have formal flood infrastructure to defend

against sediment-laden floods. In low- and middle-income countries, the periphery of urban

areas often intersects mountainous topography and is characterized by informal development

(2; 46). On the other hand, in more affluent countries such as the U.S., elevated topography

often attracts formal development for highly affluent communities (37). Communities with

the resources to build protective flood infrastructure tend to heavily rely on it, over time

2



becoming less aware of their long-term flood risk due to the capacity of the infrastructure to

prevent lower magnitude, more frequent floods. This so-called “levee effect” creates a false

sense of safety that leaves communities relatively unaware of and underprepared for flood

hazards and especially ultrahazardardous flooding, with its rapid onset and unique ability

to clog infrastructure (169; 95).

Near-mountain, sediment-laden flood hazards are produced from the interaction of both

natural and anthropogenic hazard drivers. Climate, hydrologic condition, and topography

are the key natural drivers, while flood infrastructure design, maintenance, and location are

important human factors that control the development, severity, and spatial distribution

of the hazard. While considerable research has focused on predictive models of post-fire

streamflow and erosion to improve the understanding of risks and the processes that gen-

erate them, only recently has attention been given to the role of infrastructure in shaping

downstream hazards to development. Debris basins are designed to collect sediment, mud,

and debris shed from mountain catchments and allow water and fine sediment to pass down-

stream into flood channels (127; 65; 64; 166; 110; 173); thus downstream communities are

impacted by sediment-laden flooding when: (1) mud and debris overtop the debris basin

and/or (2) downstream channels clog with sediment, lose capacity, and trigger overtopping

of clear-water flows. For example, a storm that occurs early in the wet season may result

in the filling of a debris basin, enabling flooding later in the storm season from even small

storms. Consideration of event sequences is thus crucial to understanding ultrahazardous

sediment-laden flooding as a compound hazard, or a natural hazard produced by the interac-

tion of multiple hazard drivers (126). Moreover, the importance of event sequences motivates

hazard estimation by continuous simulation, i.e., where physical processes are simulated over

time (e.g., hourly, daily) with a hydrologic model, events are resolved by explicitly consid-

ering antecedent conditions, and the statistics of extremes (e.g., number of exceedances per

century) are deduced from long records of model outputs (9; 104; 175).
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The objective of this dissertation is to: (1) present a new stochastic continuous simula-

tion model suited to the estimation of near-mountain, sediment-laden flood hazards where

communities are served by debris basins and/or flood channels, (2) present a robust field

application and validation of the model including a parameter estimation framework con-

sidering commonly available data (e.g., gage data and data products from remote sensing

and other models) as well as model sensitivities and error propagation properties, and (3)

examine the spatial distribution of near-mountain, sediment-laden flood hazards across wa-

tersheds with differing hydrological, flood infrastructure, and socio-economic characteristics.

With expanding urbanization around the world into mountainous geographies, improved un-

derstanding of the hazards facing communities “protected” by infrastructure is important

to improve understanding of the distribution of risks across populations, to increase risk

awareness, and to inform needs for infrastructure adaptation and resilient land development

practices.

1.1 Sediment-Laden Flood Hazard Modeling

A number of models have been developed to estimate plot- to catchment-scale runoff and ero-

sion rates, the natural hazard drivers which contribute to sediment-laden floods. Catchment-

scale post-fire runoff models typically estimate peak discharge at the catchment outlet; model

types include empirical (e.g., 125; 52; 150), semi-empirical/semi-distributed such as HEC-

HMS (148; 167), and physically based models (33; 156). Studies comparing empirical, semi-

distributed, and process-based models of post-fire peak discharge have not provided clear

evidence for a single approach that consistently performs well across multiple study sites

(73; 23).

Post-fire erosion models often estimate sediment yields (sediment volume per contributing

area), which are largely calculated using empirical methods derived from regression analysis
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(e.g., 176; 132; 119; 102; 39; 105; 164), though a smaller number of process-based models

exist (33; 42; 74). Comparison studies of empirical and process-based post-fire erosion models

have found that watershed-scale model estimates span three orders of magnitude and that

current models tend to consistently identify areas of low and high potential, but need better

calibration for improved accuracy (69; 120). Further, these studies present cases in which

estimates from empirical models were better than those from processed-based models when

compared to data from the region to which they were calibrated; this supports the conclusion

that currently, no single modeling framework estimates post-fire erosion well across multiple

regions.

Urban areas at risk of exposure to post-fire flood and debris hazards have been estimated

in a number of ways for emergency preparedness measures such as risk communication to

exposed populations, the placement of protective walls and barriers, and evacuation plans.

Two-dimensional (2D) models for mud and debris flow hazards emerged in the 1980s with a

water volume balance equation and momentum equations that account for the complex rheo-

logical behavior of non-Newtonian, hyperconcentrated flows including cohesive yield stresses,

Mohr-Coulomb shear stress, viscous shear stress, turbulent shear stress, and dispersive shear

stress (100). Application of 2D models requires a digital elevation model (DEM), Manning

coefficient distribution, estimates of parameters for viscous and yield stresses, and a con-

figuration of hazard drivers such as rainfall rates and/or streamflow rates from a mountain

catchment. Furthermore, 2D models output spatio-temporal distributions of flood hazards

(e.g., depth, velocity) needed for exposure assessment. The entrainment of sediment into

flood flows increases volumetric flow rate, a process known as bulking (93; 92; 62), and acts

to further magnify hazards. In practice, 2D hazard models have been applied under the

assumption of a bulked flow rate defined by a bulking factor k, which represents the ratio of

the volumetric flow rate of the fluid-debris mixture to the flow rate of the fluid alone, and can

be linked to fire severity (48). Roughly speaking, a bulking factor of 1.00-1.25 corresponds

to normal streamflow, a bulking factor of 1.25-1.67 corresponds to hyperconcentrated flow,
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and a bulking factor of 1.67-2.86 corresponds to mud or debris flows (48). These values

follow definitions of debris flows as sediment-water mixtures with a sediment concentration

of 50% or greater, and hyperconcentrated flows as mixtures with sediment concentrations

of 20-40% (107; 48). 2D hazard models may assume a rigid bed (100; 83) or erodible bed

(4; 124; 80; 90). In the case of erodible bed models, an entrainment formulation is adopted

to account for mass transfer from the sediment bed into the fluidized layer, and thus the

bulking process is resolved. While this eliminates the need for a bulking parameter, addi-

tional parameters are typically required to resolve sediment entrainment and/or transport

processes (e.g., 26; 90, and others). Whether fixed or erodible bed modeling of debris flow

hazards is preferable for a particular application will depend on the availability of data to

parameterize models and tolerances for uncertainties and computational costs, as erodible

bed models tend to have significantly higher computational costs than rigid bed models (88).

1.2 Design and Maintenance of Flood Infrastructure

Mitigation of post-fire flood hazards has mainly been approached with two types of infras-

tructure: debris basins, which capture eroded coarse sediment and debris at the outlet of

mountain catchments, and flood channels, which are designed to convey mixtures of runoff

and fine sediment past developed areas to downstream water bodies (132; 63). Johnson and

McCuen (64) define a debris basin as “a structure designed to contain all or part of a single

debris flow or multiple debris flows for the purpose of protecting homes, roads, and property

downstream of a debris-generating area.” Debris basins have been used in the western U.S.,

Japan, Europe, and Canada to mitigate hazards posed by sediment-laden flows, including

debris flows (65; 64; 166; 110; 101; 173). In general, important debris basin design parame-

ters for sizing debris basins include the frequency of the design flow event and the magnitude

of the flow (64). In southern California, design practices vary regionally depending on local
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regulatory bodies, but generally call for the sizing of debris basins using a combination of

probabilistic precipitation intensity data and empirical models of sediment yield that depend

on watershed attributes such as slope, area, soil properties, and burn severity (48). Similarly,

the sizing of flood channels is based on precipitation data and semi-empirical models of peak

flood discharge (48).

Infrastructure is designed for a specific standard of performance defined by an annual return

period, T , or an annual exceedance probability p = 1/T , and following guidelines established

by county-level governments (48). For example, a channel designed to contain the 20-year

return period flow event has an annual exceedance probability of 5%, or smaller if a safety

factor is used. The exceedance probability of a flood channel, pc, will not necessarily be

the same as the exceedance probability of the precipitation used to size it, pp, due to com-

pounding factors that affect the likelihood of an overtopping event (i.e., when the flow rate

through the channel exceeds its flow capacity). In particular, channels are designed using

specific assumptions (models) about runoff and sediment loads produced by rainfall, and

assuming regular maintenance to prevent loss of flow capacity. However, the frequency and

intensity of precipitation and wildfires are affected by climate change (168; 28; 81; 144; 41),

and sequences of storm events may lead to rapid sedimentation of debris basins and chan-

nels causing loss of channel capacity (48). The lack of regular maintenance of infrastructure

(e.g., removal of sediment and debris) is also a growing problem based on resource constraints

(155).

This dissertation presents a new, original model to estimate present and future compound,

post-fire, near-mountain, sediment-laden flood hazards facing communities served by flood

infrastructure of different types, including natural and built floodways. Specifically, we

are interested in estimating the exceedance probability (and associated return period) of

a flood channel (natural or engineered) downstream of a mountain catchment and debris

basin vulnerable to clogging with sediment. Characterizing an exceedance probability is
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important for designing infrastructure to meet targeted levels of protection, quantifying

the effect of maintenance on risks, and increasing risk awareness among communities and

governments(95; 27; 54). Hence, this dissertation presents the Post-Fire Flood Hazard Model

(PF2HazMo) to estimate the compound exceedance probability of debris basins and flood

channels defending communities from harm. PF2HazMo is designed to simulate both present

and future distributions of hazard estimates over multidecadal timescales to inform long-

term flood risk management efforts under alternative climate or management scenarios.

PF2HazMo is developed with a lumped model formulation and designed continuous simula-

tion. Several key variables are treated as random variables, and thus a stochastic simulation

approach is used and outputs (e.g., number of exceedances) are provided as probability distri-

butions. Following application of PF2HazMo to estimate the probability of overtopping (and

magnitude of bulked flows corresponding to specific exceedance probabilities), detailed 2D

modeling can proceed to illuminate hazard levels on a street-by-street and parcel-by-parcel

basis within impacted communities (85; 129). PF2HazMo is thus envisioned a framework

for filling a major gap in our current understanding of flood risks and the chain of modeling

needed to link climate-induced changes in wildfires and rainfall to changes in flood risks

facing growing urban populations.
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Chapter 2

PF2HazMo: Model Formulation

PF2HazMo is a stochastic continuous simulation model that is forced by a daily precipitation

time series (e.g., from a Monte Carlo Markov Chain rainfall simulator) with the occurrence

of fire and fire severity treated as random variables. A mass balance equation is solved for

sediment to track the filling of the debris basin. Furthermore, the model tracks the capacity

of flood channels over time based on the amount of channel deposition from debris basin

overtopping, and predicts the occurrence of channel overtopping events (i.e., hazard to com-

munities) by comparing flood peaks against channel capacity. Figure 2.1 illustrates a common

progression of states that are captured during continuous simulation with PF2HazMo: The

initial state is a healthy, vegetated watershed with infrastructure at full capacity (Fig. 2.1A).

The second state (Fig. 2.1B) captures changes to watershed properties from wildfire, which

contribute to heightened flows of runoff and sediment, and the accumulation of sediment in

the debris basin. The third state (Fig. 2.1C) captures overtopping of the debris basin (with

sediment) and/or the flood channel (with flood flows) from subsequent rainfall events. And

the fourth state (Fig. 2.1D) captures the system following storm events or between storm

events, when infrastructure capacity is restored with cleaning, and vegetation recovers over

time. Finally, by using a stochastic modeling approach, thousands of different sequences
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are simulated over a long period of time (e.g., 100 years), and a probabilistic estimation of

flood hazard levels is provided including the number of debris basin overtopping events per

century and the number of channel overtopping events per century.
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Figure 2.1: Progression of system states captured by Post-Fire Flood Hazard Model
(PF2HazMo). (A) Pre-fire, clean infrastructure state, (B) Post-fire wet-weather state, (C)
Post-fire wet-weather state with infrastruture overtopping, (D) Post-storm recovery state.

.

We apply Monte Carlo (MC) methods to simulate the compound hazard (75). MC meth-

ods provide a robust approach for characterizing the uncertainty inherent in estimates of

compound hazards linked to the variability in the random variables that drive them–in this

case, wildfire and precipitation. They can also be used to generalize complex models of

physical systems into a set of basic events and interactions that is simpler, more computa-

tionally efficient, and more scalable than a model produced by analytic methods (75). Unlike

deterministic approaches to modeling hydrologic processes, stochastic approaches like MC

methods allow modelers to use a single record of precipitation or floods to forecast a range

of statistically possible futures for a given watershed, enabling a much richer understanding

of future hydrologic conditions and evaluation of flood infrastructure (162). Stochastic mod-

eling approaches are preferable to deterministic ones when evaluating the implementation
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of different management alternatives because the former can determine whether a difference

in outcomes between alternatives is significant in a statistical sense, while the latter can

only provide a single estimate indicating whether the outcomes differ. Moreover, stochastic

modeling is valuable for estimating the probability that a particular management or de-

sign alternative achieves a specific goal, which is particularly useful information for flood

management personnel (10).

2.1 Model Overview

We consider a mountain watershed with a set of properties, p, that control the volumetric

flow rate of clear streamflow, Q, and sediment, J , in response to precipitation, P . Elements

of p may include various factors such as watershed morphology, soil properties, vegetative

cover, or burn severity, and precipitation can be interpreted in various ways (e.g., hourly,

daily). For the moment, we leave this in a general form so the derivation herein is most

easily transferred between systems and poised to leverage the best available information on

a site-by-site basis. Hence, we write streamflow and sediment flux at the watershed scale as

follows,

Qw = fQ(p, P ) (2.1)

Jw = fJ(p, P ) (2.2)

where the subscript w denotes watershed and the functions fQ() and fJ() characterize peak

streamflow and peak sediment fluxes, respectively. For this study, we use the Rational

Method to compute Qw as follows,
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Qw =
cPA

Tp

(2.3)

where c is a dimensionless runoff coefficient representing the ratio of rainfall to surface

runoff, P is the daily rainfall accumulation, A is the watershed area, and Tp is a time scale

representing the time to peak of a triangular hydrograph. We note that model dependency

on geomorphological parameters will depend on the choice rainfall-runoff models (e.g., 42;

23; 73).

The total sediment volume associated with a storm event can be written in a general way as

follows,

–Vw =

∫ ts

0

Jw dt (2.4)

where ts represents the storm duration.

d–Vb

dt
= Jw − Jc − Je (2.5)

where Jc represents the volumetric flux of sediment flowing out of the debris basin and into

the flood channel, and Je represents the flux of sediment removed from the debris basin by

excavation. The sediment flux from the debris basin into the flood channel is assumed to be

zero when debris basin storage is below capacity and equal to the inflow rate otherwise,

Jc =


0 if –Vb < –V des

b

Jw otherwise

(2.6)
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where –V des
b represents the design capacity of the debris basin. The excavation flux is driven

by human activity and generally occurs episodically between precipitation events. For ex-

ample, excavation may occur over several days to weeks during dry weather periods once

the infrastructure has filled to a cleaning threshold (e.g., 85% full), subject to various con-

straints such as the availability of funding, wetland protection policies, and the Endangered

Species Act (116). Je can thus be considered a function that is prescribed to vary over

time depending on local maintenance practices. Additional details on the implementation of

maintenance protocols within the model are provided in Section 2.5.

If the debris basin attenuates the flood peak, then the peak flow rate entering the channel

can be expressed as a fraction of the peak flow from the watershed,

Qc = αbQw (2.7)

although in many cases the debris basin will not be designed to attenuate the flood peak

and thus αb = 1.

The bulked flow of water and sediment, a simple sum of Eq. 2.1 and 2.2, has been previously

introduced for sizing infrastructure and quantifying hazards in areas impacted by mud and

debris flows and appears as follows,

B = Q+ J = kQ (2.8)
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where k represents a bulking factor expressed as follows,

k =
Q+ J

Q
=

1

1− cv
100

(2.9)

where cv represents the percentage concentration of sediment by volume in the bulked flow.

Streamflow in small watersheds and alluvial fans is typically characterized by a bulking

factor of 1.25 or less (1.0 corresponds to clear water), but after burn events, watersheds may

produce hyperconcentrated flows with a bulking factor of up to 1.67 or mud and debris flows

with a bulking factor of 2.0 or greater (48). The magnitude of the bulking factor, k, is varied

over time to represent the effects of the occurrence and severity of wildfires on watershed

hydrology, as described in detail in Section 2.2.

Flood hazards downstream of mountain watersheds occur when the bulked flow rate into the

flood channel, Bc, exceeds the channel capacity (more information on how channel design

capacities are typically determined can be found in Section 2.4). While flood channels are

designed to accommodate a peak discharge associated with a storm or flood of a certain return

period, over time they may fill with sediment and may also grow vegetation that reduces

channel capacity. Consequently, channel capacity is assumed to decrease with sedimentation

as follows,

Deff
c =


Ddes

c (1− –Vc

–V des
c

) if –Vc

–V des
c

< 1

0 otherwise

(2.10)

where Ddes
c is the design capacity of the channel, –Vc is the volume of sediment in the channel

and –V des
c is the design volume of the channel. Now that both the bulked flow rate in the

channel and the channel capacity are established, the flood hazard, H, is given by the
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exceedance of channel flow over capacity as follows,

H =


Bc −Deff

c ifBc > Deff
c

0 otherwise

(2.11)

The above formulation captures the interdependence between wildfires, precipitation, infras-

tructure sedimentation and and hazards, and is poised to inform research into the ways in

which flood hazards are impacted by changes in fires, rainfall, infrastructure design, and

infrastructure maintenance. Several modes of interdependence are captured by the model

as follows: First, wildfires alter watershed properties, p, that increase the bulk discharge

(Eq. 2.8) through increases in the clear water flux (Eq. 2.1) and sediment fluxes (Eq. 2.2).

Secondly, bulked flows that cannot be contained by debris basins reduce the capacity of

flood channels (Eq. 2.10) and lower the threshold for channel bank overtopping (Eq. 2.11).

And third, the capacity of debris basins and channels is impacted by excavation and clean-

ing schedules, which in turn are impacted by available funding and various environmental

constraints (Section 2.5).

2.2 Wildfire occurrence and severity models

The bulking factor, k, is used to quantify the effect of wildfire on streamflow and sediment

flux as a function of the time elapsed since the fire occurred. Multidecadal records of sed-

iment production and streamflow from the San Gabriel Mountains of southern California

show that the effect of wildfire on erosion and runoff is greatest immediately following the

fire, which strips hillslopes of vegetation and may alter surficial soil properties, and decays

exponentially during the first five years following fire as vegetation and surficial soils recover

(79). Studies of sediment yields in the Transverse Ranges of southern California have used
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a similar exponential decay function termed a “lingering effect” to model the decreasing

influence of wildfire on sediment production over time as watershed vegetation recovers; in

these studies, the decay constant has been varied to represent a recovery time (i.e., time to

return to pre-fire conditions) of two to ten years (39; 38). Hence, the occurrence of a wildfire

is represented by an increase in the bulking factor from a pre-fire, baseline level, k0, to a

post-fire level, k1. Following the start of the fire, the bulking factor decays exponentially

according an adjustable parameter termed the “recovery timescale” of the watershed, Tr, as

follows,

k(t) = k0 + (k1 − k0) e
−t/Tr (2.12)

where t is the number of days elapsed since the start of the wildfire. Once the bulking

factor falls within 1% of k0, the watershed is no longer considered to be actively burned, and

k(t) = k0 until the next fire occurs. Thus, the recovery time of the watershed following a

given fire will depend on the value of the post-fire bulking factor, k1, which is taken to be a

proxy for the severity of the fire. The greater the k1, the longer it will take for the bulking

factor to return to its baseline level, k0. For each wildfire, k1 is simulated stochastically

following Equation 2.14 below.

Fire occurrence is modeled using a MC method that makes use of the probability that a fire

will occur on a given day during the fire season, pf . This daily exceedance probability is

modeled as a Bernoulli random variable as follows,

pf = 1−
(
1− 1

Tf

)1/n

(2.13)
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where Tf is the annual fire interval and n is the number of days in the fire season. The

parameter Tf is adjustable and can be changed to simulate the effect of different historical

or projected fire frequencies on post-fire flood hazards. On each day of the fire season, the

output from a uniform number generator, u ∼ U(0, 1), is compared to pf . If u < pf , an active

burn is initiated and the bulking factor for that day is set to k1. Thereafter, the magnitude

of the bulking factor will decay exponentially according to Equation 2.12 until it is within

1% of the pre-fire bulking factor, at which point it will be reset to k0. Otherwise, if u ≥ pf ,

then k(t) = k0.

In this study, fire occurrence is limited to the months of July to August (n = 62) according

to the peak fire season in California (81), but can be adjusted based on the fire season of any

region or to simulate different climate change scenarios. We consider fire intervals of 50, 20,

15, 10, 5 and 2 years based on a map of fire intervals for major vegetation types in California

from 1908-2012, which shows that the range of fire intervals for mountain watersheds in

southern California spans from 7 to 52 years (151). We include the 2-year and 5-year fire

interval scenarios to represent possible futures in which wildfire frequency has increased

relative to historical levels. Note that the selection of the 2- and 5-year fire intervals is

not based on specific predictions of future wildfire frequency in the region, but rather is

intended to illustrate the sensitivity of post-fire flood hazards to hypothetical increases in

fire frequency. In an effort to avoid an overly complex model of the effect of wildfire on

watershed hydrology, only one active burn can be simulated at a time, which is a reasonable

assumption at the watershed scale since a wildfire consumes fuel, and another wildfire is

unlikely to occur in the same area while the watershed is recovering (96).

Given the considerable natural variability in fire intensity and thus burn severity of wildfires

that may occur within a watershed over time, the post-fire bulking factor, k1, is modeled as

a uniformly distributed random variable with a specified range as follows,
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k1 = kmin
1 + (kmax

1 − kmin
1 ) v (2.14)

where kmin
1 and kmax

1 are the lower and upper limits of the range, respectively, and v ∼

U(0, 1). We use a uniform random distribution since no prior information is known about the

distribution of post-fire bulking factors, and thus assign probabilities equally to all possible

bulking factors within the specified range. The limits of the post-fire bulking factor range

can be selected based on the range of observed sediment fluxes from a given watershed or to

represent the effect of different burn severities on post-fire sediment fluxes. We assume that

the post-fire bulking factor increases with increasing burn severity, an assumption supported

by studies that found increasing sediment fluxes with increasing burn severity class (16; 39;

160).

By representing wildfire occurrence and severity as stochastic processes, many scenarios of

varying fire frequencies and severities can be simulated and the potential effects of wildfire

characteristics on post-fire flood hazards are more thoroughly explored. For this study, k1

was uniformly sampled from a range representing the severity of a fire as follows:

1. Low burn severity: 1.10 < k1 < 1.25

2. Moderate burn severity: 1.25 < k1 < 1.67

3. High burn severity: 1.67 < k1 < 2.86

We chose these ranges for each burn severity class because they roughly demarcate transitions

in flow types between normal streamflow, hyperconcentrated flow, and mud flows and debris

flows (48).
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2.3 Precipitation model

Following Wilks (172), precipitation was simulated as a stochastic process using a first-order

Markov chain to describe precipitation occurrence and MC sampling from an appropriate

probability distribution to describe precipitation amounts for days with rain (e.g., 121; 141).

The Monte Carlo Markov Chain (MCMC) rainfall simulator was developed using a long-term

daily precipitation record (1932-2020) from the Big Tujunga Dam station in Los Angeles,

California (ID: USC00040798) retrieved from the Climate Data Online database maintained

by the U.S. National Oceanic and Atmospheric Administration (NOAA). This meteorological

station was chosen for its length of record and its location at high elevation in the San Gabriel

Mountains, since watersheds prone to post-fire flood hazards tend to be mountainous.

To preserve the distribution of wet versus dry years present in the long-term precipitation

dataset, we divided the data into subsets for wet years (N=27 years) and dry years (N=44

years), where “wet years” were defined as those with total annual precipitation greater

than or equal to the mean. Years missing 10% or more daily values were excluded from

the analysis. We used the wet-year and dry-year designations to calculate the conditional

probability of transitioning from a dry year to a wet year, pDW, and from a wet year to a wet

year, pWW. This was done by counting the number of transitions for each possible type of

transition: dry-to-wet (DW), dry-to-dry (DD), wet-to-dry (WD), wet-to-wet (WW). Then

the annual transition probabilities were calculated as follows,

pDD =
FDD

ND

(2.15)

pDW = 1− pDD (2.16)

pWW =
FWW

NW

(2.17)
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where F represents the number of times a transition occurred and N represents the number

of wet or dry years on record (143; 133; 1).

Modeling daily precipitation occurrence as a first-order Markov process assumes that the

probability of observing precipitation on a given day depends only on whether precipitation

occurred the previous day, regardless of whether precipitation occurred on earlier days in

the time series. We define a “wet day” as a day on which at least the minimum reportable

precipitation amount occurred, 0.254 mm. The parameters p01 and p11 represent the con-

ditional probability of transitioning from a dry day to a wet day and transitioning from a

wet day to a wet day, respectively. These daily transition probabilities were estimated from

the wet-year and dry-year subsets separately by grouping the data by ordinal day (1 to 365,

where 365 represents December 31 of a non-leap year) and performing the same calculations

in Equations 2.15-2.17 on a daily time scale. Again, years missing 10% or more daily values

were excluded from the analysis. Average daily transition probabilities were calculated us-

ing a 14-day moving average of the empirical probabilities to smooth extreme values (Figure

A.1).

The MCMC rainfall simulator generates m × 365 days of a daily precipitation time series,

where m is the number of years in the time series, as follows: for the first year of the time

series, a random number is generated to determine the wet or dry status of the first year,

with a 50% chance for either outcome. The appropriate wet-year or dry-year daily transition

probabilities are then used to simulate one year of a daily precipitation time series. This is

done by generating a random number to determine the wet/dry status of the first day in the

time series, which in turn determines the “threshold transition probability,” pt, that will be

used to predict the wet/dry status of the next day. The threshold transition probability for

day t is given by,
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pt =


p01 if Xt−1 = 0

p11 if Xt−1 = 1

(2.18)

For each day of the year, pt is compared to the output from a uniform random number

generator, ut ∼ U(0, 1). Rainfall occurrence on day t is then calculated as follows,

Xt =


1 if ut ≤ pt

0 otherwise

(2.19)

The precipitation amount for each wet day is determined by randomly sampling from a

Weibull distribution fit to the observed non-zero precipitation amounts from wet years and

dry years separately. The Weibull distribution was selected after comparing the fit of four

probability distributions commonly used for non-zero rainfall amounts in the literature (e.g.,

135; 161; 178). Goodness of fit was assessed with a comparison of quantile-quantile (Q-Q)

plots between the fitted probability distributions (Figure A.2) and Q-Q plots of the wet-year

and dry-year subsets versus the fitted Weibull distribution (Figure A.3).

The wet/dry status of the next year in the time series is determined in a similar manner to

that shown in Equations 2.18 and 2.19, except the annual transition probabilities, pDW and

pWW, are used.
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2.4 Infrastructure design standards

In southern California, due to the frequency of post-fire flood events, many flood control

agencies estimate bulking factors or sediment yields for watersheds that produce high levels of

sediment, burn frequently, or are located upstream of critical infrastructure, such as hospitals

or transportation infrastructure (48). Bulking factors are applied as a safety factor to the

peak discharge used to design flood control channels, while sediment yields are estimated to

determine the design capacity of debris basins. The specific equations and procedures used

to determine design bulking factors and sediment yields vary widely from county to county,

but in general they involve a design storm of a certain return level, which is translated

into a design peak discharge using a rainfall-runoff relationship. Two counties in particular,

Los Angeles and Ventura County, provided detailed descriptions of the design standards

for debris basins and flood channels in design manuals (77; 76; 158; 159). Specifically, Los

Angeles County requires all debris basins to be designed for a 50-year design storm (termed

the “Capital Flood”), and the sediment yield for a “design debris event” is determined using

curves calculated for each “debris producing area” in the county based on watershed area

and an assumption of four years since the watershed was last burned. Bulking factor curves

are used to calculate bulking factors used to design flood channels in sediment producing

watersheds where a debris basin does not exist (77). Ventura County, on the other hand,

requires debris basins for watersheds with areas <5 mi2 to be designed to hold 125% of the

sediment volume expected from a 100-year design storm, provided sufficient land is available.

The design sediment yield is determined using a regression equation that takes into account

the watershed area and morphology, as well as a dimensionless “fire factor” that represents

the percentage of non-recovery of a watershed following a burn; normal (i.e., non-emergency)

design conditions assume 4.5 years since the watershed was last burned. It should be noted

that the Ventura County Debris Basin Manual states, “A number of the debris basins do

not have sufficient storage for the 100-yr debris yield and therefore could possibly fill with
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sediment during extreme storm events” (158). Bulking factors are applied to the design

of flood channels downstream of watersheds known to produce high levels of sediment or

experience frequent fires as well as those designed to protect critical infrastructure shortly

after a fire (159).

The two key design criteria implemented in the model to represent regional differences in

infrastructure design standards are the precipitation of the design storm, P des, and the de-

cision whether to use a clear-water or a bulked peak discharge as the design discharge. In

the model presented here, P des is determined by performing an extreme value analysis on

a 100-year precipitation time series generated by the MCMC rainfall simulator. A Gener-

alized Extreme Value distribution was fit to the 100-year time series of annual maximum

precipitation to determine the magnitudes of the 50-year and the 100-year design storms

(Figure A.4). Next, the peak discharge associated with the return level of the design storm

is calculated using the Rational Method as follows,

Qpeak
w =

cP desA

Tp

(2.20)

where Qpeak
w is the peak clear-water discharge from the watershed, c is a dimensionless runoff

coefficient, A is the watershed area, and Tp is a time scale representing the time to peak

of a triangular hydrograph. Note, however, that any rainfall-runoff model may be used to

calculate Qpeak
w .

The design discharge may be calculated as either a clear-water or a bulked volumetric flow

rate. If the bulked design discharge is used, a design bulking factor, kdes, will be applied to the

clear-water discharge, Qpeak
w , to determine the design capacity of the flood control channel.

Otherwise, the channel design capacity is set equal to Qpeak
w . Similarly, the capacity of the
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debris basin also depends on the design storm return period and whether bulking is applied

to the flow from the watershed. Based on a clear-water design standard or a bulked design

standard, the capacity of the debris basin is calculated as follows,

–V des
b =


0.15× cP desA clear-water standard

(kdes − 1)cP desA bulked standard

(2.21)

assuming that the concentration of sediment in normal streamflow within an alluvial fan is

typically at most 15% by volume (48). Note that the use of the 15% sediment concentration

is not a safety factor, but rather an approximation of the typical sediment flux expected from

an unburned watershed used to determine the design capacity of the debris basin assuming

a clear-water design standard.

In the present study, we compare four sets of infrastructure design standards generalized

from the design approaches described above:

1. 50C: 50-year design storm (pp = 0.02), clear-water design discharge

2. 50B: 50-year design storm (pp = 0.02), bulked design discharge

3. 100C: 100-year design storm (pp = 0.01), clear-water design discharge

4. 100B: 100-year design storm (pp = 0.01), bulked design discharge

It is important to note that by including a clear-water design discharge we do not imply

that such a design standard is operationally applied to watersheds that are known to burn

frequently of produce high levels of sediment. Rather, it is included to provide a conceptual

contrast to the effects on the flood hazard of bulking the design discharge. Including a

24



clear-water design standard also allows the exploration of what might happen if a watershed

not previously identified as fire-prone was burned and its infrastructure was not designed to

convey significantly bulked flows.

Finally, we note that the flood infrastructure design standards described herein are represen-

tative of debris basin design globally, in that the capacity of the infrastructure is determined

based on the magnitude of an event with a particular (design) return period (65; 64; 101).

We acknowledge, however, that differences in designs can be expected based on differences

in equations for frequency analysis and the estimation of (post-fire) flow rates.

2.5 Infrastructure maintenance models

One example of a typical maintenance schedule for debris basins in Riverside County is

annual inspection during the summer months to determine maintenance needs; if the cleaning

threshold is met or exceeded, the debris basin will be returned to 100% capacity. In a year

during which a major fire has occurred, the capacity of debris basins is restored or sometimes

enhanced beyond 100% (i.e., with excavation beyond the initial grading of the basin) as soon

as possible following fire containment. While excavation of debris basins can occur during

the wet season, it is avoided by flood control agencies when possible because wet sediment

is difficult to excavate, costly to move, and may not be accepted at the ultimate location of

disposal. The excavation rate varies depending on how urgently the need for cleaning is, i.e.,

how close the debris basin is to overfilling, with faster cleaning rates and higher maintenance

costs the closer the capacity is to 0% (116).

These maintenance protocols have been generalized and implemented as four maintenance

approaches:

1. S: Summer Cleaning
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2. SA: Summer + After-fire Cleaning

3. SAW7: Summer + After-fire + Wet Season Cleaning with 7-day waiting period

4. SAW1: Summer + After-fire + Wet Season Cleaning with 1-day waiting period

When the Summer Cleaning model is active, the levels of sediment in the debris basin and

the flood channel are each checked each day during the summer months (June 1 to September

29) of each year; if the level of sediment in a given facility is greater than or equal to the

cleaning threshold, the facility will be “excavated” and returned to full capacity.

When the After-fire Cleaning model is active, the level of sediment in the debris basin is

checked on September 30 of each year, the nominal last day of the summer; if the level of

sediment in the debris basin is greater than or equal to the cleaning threshold, the debris

basin will be “excavated” and returned to full capacity.

Finally, when the Wet Season Cleaning model is active, the level of sediment in the debris

basin is each checked each day during the wet season (October 1 to April 30) of each year; if

the level of sediment in the debris basin is greater than or equal to the cleaning threshold and

if a certain number of days have passed without rain, the debris basin will be “excavated” at

a certain cleaning rate (volume of sediment per day). The “waiting period” between storms

and cleaning rate are used to represent the effort to incrementally excavate sediment during

dry periods between storms in the wet season; both parameters can be estimated from debris

basin cleaning records.

2.6 Model Summary and Limitations

The framework developed herein for hazard simulation can be considered a lumped system

dynamics model for estimating exceedance probabilities in channel reaches downstream of
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debris basins and upstream of confluences from other streams. Key physical elements of

the framework include the watershed, debris basin, and flood channel as shown in Fig. 2.1,

and the key state variables include the bulking factor, debris basin storage of sediment,

channel storage of sediment, daily precipitation accumulation, daily sediment fluxes, and

flood peaks accounting for water and sediment fractions. Each of these state variables

represents approximations of processes that could be subject to more refined modeling. In

particular, the generation of runoff and entrainment of solids from hillslopes and channels

involves many different physical processes active at a range of spatial and temporal scales

(62; 96; 134). It should be noted that while unit-area runoff and sediment fluxes are generally

expected to decrease with increasing contributing area in semiarid regions (e.g., 91; 97;

164), the model as currently configured estimates that these variables are insensitive to

changes in watershed area (Figure S5). This is a consequence of calculating clear-water

runoff from the watershed (Qw) using the Rational Method (Equation 2.3) and sediment flux

from the watershed (Jw) as a linear function of Qw and the bulking factor, k. Additionally,

the clogging of channels may result from complex interactions between channel geometry,

channel vegetation, hydraulic structures, and the flow regime such as whether and to what

extent the flow entrains large woody vegetation, mud, and rocks (122; 108; 85). Finally,

the probability of wildfire occurrence and the severity of a given wildfire depend on several

factors including the availability and composition of fuel, climatic controls such as humidity,

and the topography of the landscape (82; 32). In this light, stochastic modeling approaches

are advantageous because uncertainty can be captured with random variables that span a

range of possible values, as we have demonstrated for the bulking factor.
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Chapter 3

PF2HazMo Parameterization,

Calibration, and Validation

This chapter presents a systematic approach for applying PF2HazMo to estimate sediment-

laden hazards including parameter estimation, model calibration, and validation. The section

begins with a description of data sources and methods that support PF2HazMo applications

on a catchment-by-catchment basis, continues with results that illuminate model sensitiv-

ities and strategies for calibration and validation, and closes with discussion about model

strengths and limitations.

3.1 Methods

The methodological sections that follow are organized into six subsections that cover: (1) a

description of the study catchments and the data used to force, calibrate, and validate the

model; (2) model sensitivity and error propagation analysis; (3) estimation of uncalibrated

model parameters; (4) model calibration; and (5) model validation.
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3.1.1 Study Sites and Data

A set of three small mountain watersheds (<11 km2) in Riverside County, California are

utilized in this study to present methods of parameter estimation, calibration, and validation

for PF2HazMo (Fig. 5.2). These catchments were burned by the 2018 Holy Fire and have

similar percentages of area burned, average slope, and aspect (Table 3.4). The Coldwater

watershed represents a gauged watershed with a U.S. Geological Survey (USGS) streamgage

at its outlet; however, there is no flood infrastructure located downstream. McVicker and

Leach watersheds are both ungauged, and each have a debris basin and flood channel located

downstream. McVicker is upstream of a concrete-lined channel, while Leach is upstream of

an unlined, or soft-bottom, flood channel, allowing us to compare how the model performs

for different channel types. Further, all three basins are located upstream of urban areas

(dark grey areas in 5.2, defined by population density >1,000 people per sq. mi.), and hence

estimation of post-fire flood and debris flow risks is important for public safety.

Environmental Setting

The study watersheds are located in the Santa Ana Mountains of southern California within

the Santa Ana River watershed, which drains into the Pacific Ocean. The Santa Ana Moun-

tains are part of the Peninsular Ranges, a group of mountain ranges oriented from north to

west that are characterized by Jurassic and Cretaceous plutonic, mainly granitic rock that

are more resistant to erosion than the neighboring Transverse Ranges to the north (60). In

particular, the underlying lithology of the study sites is Mesozoic to Precambrian metamor-

phic rocks intruded by granitic rocks as well as Mesozoic volcanic rocks (14). The climate

is classified as hot-summer Mediterranean to hot semi-arid according to the Köppen climate

classification (7). Average annual precipitation in the region is about 451 mm, with most

of it falling as rain from October to April (109). The vegetation is Chaparral-dominated;
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indicative vegetation types include Diegan coastal sage scrub, mesic chaparral, and sparse

coniferous vegetation (170; 113).

The mean fire return interval, or the average time between fires under the presumed historical

fire regime, for these watersheds is approximately 40 years (78). The 2018 Holy Fire was the

first major wildfire to affect these watersheds (i.e., to burn >10% of the watershed area) since

1987 for the Coldwater watershed and since 1954-56 for the Leach and McVicker watersheds,

according to historical fire perimeter data (13).

On 6 August 2018, the Holy Fire ignited near Trabuco Canyon in the Santa Ana Mountains

and burned 9,300 hectares by the time it was contained on 17 October 2018 (13). Mud and

debris flows subsequently occurred during the 2018-19 wet season (117).

Rainfall and Runoff Data

Rainfall data from three tipping bucket rain gauges operated by Riverside County Flood

Control and Water Conservation District (hereafter referred to as “Riverside County”) were

acquired to force PF2HazMo simulations of the 2018-19 wet season. Precipitation data was

available for the Coldwater rain gauge (340, Figure 5.2) from 19 November 2018 to 1 April

2019, while data availability for the McVicker (343) and Leach (344) rain gauges was from 1

November 2018 to 1 March 2021. The rain gauges recorded precipitation depth at irregular

time intervals in increments of 0.04 inches per tip; the raw data was aggregated by day to

force model simulations at a daily timestep. Rain gauge data was also used to estimate the

time to peak model parameter, tp, as described in Section 3.1.2.

Instantaneous streamflow data at an interval of 15-minutes from 4 December 2018 to 31

March 2019 were retrieved for USGS streamgauge 11071760 and used to calibrate the Runoff

Response parameter. Peak flows were identified based on a visual analysis of the maximum

daily discharge time series and an understanding of when the major storm events of the
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wet season occurred from discussions with Riverside County; the total daily precipitation,

maximum daily flow rate time series, and observed peak flow rates for Coldwater watershed

are shown in Figure B.1. These observed post-fire peak flows were compared to the simulated

daily peak flows that occurred on the same dates as the observed flows to calculate model

error metrics and calibrate the model.

Overtopping Data

Time-lapse cameras installed by Riverside County at the Leach and McVicker debris basins

provided observations of debris basin overtopping that were used to validate the model.

Time-lapse footage taken on days with major storm events (29 November 2018, 6 December

2018, 17 January 2019, 2 February 2019, and 14 February 2019) were analyzed. Three (3)

overtopping events were observed at Leach debris basin on 6 December 2018, 17 January

2019, and 14 February 2019, while one (1) overtopping event was observed at McVicker

debris basin on 14 February 2019. Additionally, drone survey footage of the flood channel

downstream of the Leach watershed showed evidence of channel overtopping on 14 February

2019. To the authors’ knowledge, no video, photographic, or anecdotal evidence exists for the

overtopping of the flood channel downstream of the McVicker watershed during the 2018-19

wet season.

3.1.2 Model Sensitivity and Error Propagation

Characterizing the sensitivity of PF2HazMo to the parameters listed in Table 3.1 and their

mutual influence on model errors is important, and can be helpful, for guiding model param-

eter estimation and calibration strategies. Here, “sensitivity analysis” implies varying the

value of each model parameter by a small amount, one at a time, and quantifying the result-

ing effect on the model output to determine which parameters have the greatest influence
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Table 3.1: PF2HazMo parameters.

Parameter Name Symbol Definition

Watershed Area A Drainage area of mountain canyon.

Runoff Response ct
Ratio of the runoff coefficient to the time to
peak.

Time to Peak tp
Duration from beginning of storm to peak
runoff.

Fire Interval tf Recurrence interval of wildfires in years.

Post-fire Bulking Factor k1
Ratio of the combined water and sediment
volumetric flux to the water volumetric flux.

Recovery Timescale tr Time scale for watershed recovery after fire.

Debris Basin Design Ca-
pacity

–V des
b Storage capacity of sediment/debris basin.

Flood Channel Design
Capacity

Ddes
c

Flow capacity of flood channel downstream
of debris basin.

Infrastructure Cleaning
Threshold

–Vthresh Fraction filled that triggers cleaning.

Wet Season Cleaning
Waiting Period

w
Number of days with no rain needed before
debris basin cleaning can commence.

Wet Season Debris Basin
Cleaning Rate

r
Daily excavation rate for debris basin during
wet season.
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on model results. In contrast, “error propagation analysis” implies simultaneous varying all

parameter values across their respective ranges and assessing their collective effect on errors

in model outputs.

Sensitivity Analysis

Table 3.1 presents the model parameters included in the sensitivity analysis. Fire interval

was not included in the sensitivity or error propagation analyses because the purpose of

the tests is to determine the sensitivity of model parameters that could be calibrated to a

specific site, but the fire interval is a parameter based on either the historical fire regime

or is set to a value representative of future fire regimes and is not a focus of calibration

efforts. Additionally, since the model of wildfire occurrence is stochastic, implementing a

given fire interval entails differences in the relative timing of wildfires and precipitation

between simulation trials, which makes it difficult to distinguish the effect of varying the

parameter’s value from the effect of varying the sequencing of wildfires and precipitation.

For each parameter except for the wet season debris basin cleaning rate (r) and the peak

flow timescale (tp), the mean parameter estimate was used as a baseline value. Observations

were used to define the ranges for the r and tp parameters, and since the distributions were

skewed, we used the median instead of the mean as the baseline. For each parameter, the

baseline value was increased or decreased by 10%. Model outputs used to measure sensitivity

included the number of channel exceedances, number of debris basin exceedances, sum of

sediment flows into the debris basin, sum of sediment flows into the channel, sum of overbank

flows, and maximum overbank flows over the course of a one-year simulation period. These

six output variables were chosen to capture both hazard variables and sediment volumes

that bear on management costs.

For sensitivity analysis, a one-year daily time series of precipitation was stochastically gen-
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erated using the Monte Carlo Markov Chain (MCMC) rainfall simulator described in Jong-

Levinger et al. (66); the same precipitation time series was used in all simulation trials for

consistency. The simulation starts on June 1st and continues through May 31st of the follow-

ing year (365 days), proceeding at a daily time step. Since fires typically occur during July

through August in California (81), for all simulation trials the fire was set to occur on July

1st, one month after the start of the simulation, to ensure that variability in model outputs

was due to changes in parameter values rather than the timing of the fire and precipitation.

Model sensitivities were quantified using the Sensitivity Coefficient, ϕi, defined by the ratio

of the relative change in model output to the relative change in parameter values as follows:

ϕi,j =
∆yi/y

∆xj/x
(3.1)

where yi represents model output variable (i = 1, 2, . . . m, m=6), xj represents model

parameters (j = 1, 2, . . . n, n=10) and x and y represent mean/median values (50). Model

parameters were subsequently ranked by sensitivity coefficient for each output variable, and

a count of the number of times a parameter was ranked among the top three most sensitive

parameters was taken as on overall measure of parameter importance.

Error Propagation Analysis

Error propagation analysis accounts for the combined influence of all parameters on model

outputs when varied across their statistical distributions, unlike sensitivity analysis which

isolates the effect of small changes to individual parameters (36). A total of 500 one-year

model simulations were completed with all parameters randomly sampled from a uniform

distribution between the reported minimum and maximum value, except for the wet season
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debris basin cleaning rate (r) and the peak flow timescale (tp). Observations were available

for these parameters, so we sampled the data uniformly at random, with replacement (n=66

and n=80, respectively).

Once model output data were generated across the 500 parameter combinations, correlation

and partial correlation coefficients were first computed between each model output variable

and each parameter. Second, model parameters were ranked by highest squared correlation

coefficient. And third, the number of times a parameter ranked in the top three for each

model output variable was counted to obtain an overall ranking of each parameter relative

to its error propagation.

Model Parameter Range Estimation

The ranges of values for each model parameter are presented in Table 3.2 based on the

following considerations: The range of values for the runoff response parameter, ct, was

estimated by first taking the runoff coefficient for undeveloped land between 0.1 and 0.9 (87,

Table 2). Next, storm duration was computed for each site using 2018-21 rain gauge records

for Leach (344) and McVicker (343) (Figure 5.2), and the time to peak parameter tp was

estimated as storm duration divided by 2 (136).

Both ct and tp were considered in the sensitivity and error analysis. The ct parameter is used

to calculate peak discharge from the watershed outlet, but tp is used separately to calculate

the volume of sediment from the watershed outlet (–Vs = Qwtp(k − 1)); thus it is important

to understand the sensitivity of both parameters. Storm duration (taken as twice the time

to peak) was estimated from the rain gauge records by defining storms as continuous rainfall

with at least 0.2 inches of depth and 0.1 in/hour of intensity, identifying new storms after

6 hours with <0.05 inches of rainfall. Storm durations >24 hours were excluded since the

model timestep is daily.
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Table 3.2: Model parameter ranges used in the sensitivity and error analyses.

Parameter Name Symbol Units Minimum Mean/MedianMaximum

Runoff Response ct 1/seconds 2.33× 10−6 7.52× 10−4 1.50× 10−3

Time to Peak tp hours 0.167 4.90 11.9

Post-fire Bulking Factor k1 unitless 1.25 2.06 2.86

Recovery Timescale tr days 140 637 1,134

Debris Basin Design Ca-
pacity

–V des
b m3 1.09× 104 1.50× 105 2.89× 105

Flood Channel Design
Capacity

Ddes
c m3/s 1.94 484 965

Infrastructure Cleaning
Threshold

–Vthresh % filled 75 85 95

Wet Season Cleaning
Waiting Period

w days 1 7 14

Wet Season Debris Basin
Cleaning Rate

r m3/day 336 1624 4826

The minimum value for the post-fire bulking factor represents the lower bound of hypercon-

centrated flow, while the maximum value represents the upper range of debris flow (48).

PF2HazMo accounts for watershed recovery from fire with an exponential decay model for

the bulking factor, k, as follows,

k(t) = k0 + (k1 − k0)e
−t/tr (3.2)

Previous studies have reported that the recovery time is between two and ten years (39; 38;

79), and thus tr was estimated by assuming k(t) = 1.01k0 when t equals the the observed

recovery time, and rearranging Eq. 3.2 to solve for tr.

We calculated debris basin capacity according to Equation 21 and channel capacity according

to Equation 20 in Jong-Levinger et al. (66) assuming a bulked design standard. Bound

estimates were based on a 50-year precipitation return level estimated from extreme value
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analysis of a long-term daily precipitation record (1932-2020) from the Big Tujunga Dam

station in Los Angeles, California (ID: USC00040798) (NOAA), the average drainage area

for a watershed in southern California (39), and design bulking factors of 1.15, typical of

normal streamflow in an alluvial fan, to 2.0, the highest design bulking factor currently in

use in southern California (48). For channel capacity estimation, we used the minimum and

maximum values of tp mentioned above. A minimum runoff coefficient of 0.1 was used as

above, but the maximum was set to 0.4 since we found that the resulting number of channel

exceedances was zero for most of the simulations otherwise.

The range of cleaning threshold values was based on communication with Riverside County,

which typically restores infrastructure to full capacity during the dry season when 85% of

the capacity is filled with sediment. The minimum and maximum values were obtained by

adding or subtracting 10% of the volume filled.

The range of waiting period values is based on the assumption that maintenance crews

must wait between one and 14 days after a storm occurs before excavating sediment from

infrastructure based on correspondence with Riverside County.

The range of wet season debris basin cleaning rates is based on daily debris basin cleaning

records for Leach and McVicker debris basins from December 2018 to April 2019 provided

by Riverside County. The median was used as the measure of central tendency since the

distribution was right-skewed.

3.1.3 Parameter Estimation Methods

PF2HazMo is applied by providing estimates for model parameters, some of which are brack-

eted by previous work or direct measurements, and others which are calibrated. In this

section, sources of data for model parameter estimates are reported. Parameters selected for
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calibration and the calibration approach is described in the following section. A summary

of the estimation methods for uncalibrated model parameters is presented in Table 3.3.

Watershed Morphology

Watershed area was estimated using 10-m DEMs from the USGS using ArcGIS (152; 30).

Additional watershed characteristics including the mean slope, length of the longest flow

path, and relief were needed to estimate the post-fire bulking factor and were calculated by

the StreamStats online tool developed by the USGS (153). StreamStats allows the user to

specify the location of a watershed outlet and delineates the watershed using a 30-m DEM;

these and other watershed characteristics are provided in the Basin Characteristics report.

Time to Peak

While the runoff response parameter, ct, could be used to calculate peak flows from the

watershed using the Rational Method, the time to peak parameter, tp, needed to be estimated

separately to estimate the fluxes of water and sediment entering the debris basin. We

assumed each storm could be modeled with a triangular hydrograph with equal rising and

falling limbs. The time to peak parameter represents the amount of time between the start

of direct runoff production and the peak of the hydrograph, as observed at the watershed

outlet. The time to peak was estimated as ∆D/2 + L, where ∆D is the storm duration

and L is the watershed lag (136). For each watershed, ∆D was estimated as the median

storm duration for the 2018-19 wet season using rainfall data from the rain gauge nearest

each watershed. L was estimated using the Soil Conservation Service (SCS) watershed lag

method using the watershed characteristics from StreamStats (71).
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Table 3.3: Summary table of parameter estimation methods for uncalibrated model param-
eters.

Parameter Name Symbol Approach Data Reference

Watershed Area A GIS analysis
10-m DEM from
USGS

-

Time to Peak tp

Sum of storm duration
divided by 2 and wa-
tershed lag

Rain gauge records,
watershed morphol-
ogy

(71)

Post-fire Bulking Factor k1

HEC-HMS hydrologic
and erosion modeling
(curve number and LA
Debris Method)

Land cover, soil prop-
erties, watershed mor-
phology, burn sever-
ity, precipitation fre-
quency curve

(59)

Recovery Timescale tr

Fit exponential curve
to area-averaged veg-
etation index time se-
ries

Satellite-derived
NDVI and EVI at 16-
day, 250-m resolution
from MODIS

(45)

Debris Basin Design Ca-
pacity

–V des
b

GIS analysis of DEMs
from Riverside County

UAV photogrammet-
ric surveys of debris
basins

Flood Channel Design
Capacity

Ddes
c

2D flood inundation
modeling

0.5-m Lidar-derived
DEM from Riverside
County

(128)

Infrastructure Cleaning
Threshold

–Vthresh
Communication with
Riverside County

- (117)

Wet Season Cleaning
Waiting Period

w
Analysis of excavation
records

Excavated sediment
volumes at roughly
daily intervals

-

Wet Season Debris Basin
Cleaning Rate

r
Average daily volume
excavated

Excavated volumes of
sediment at roughly
daily intervals

-
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Post-fire Bulking Factor

We estimated the post-fire bulking factor range by developing a lumped (i.e., single-basin)

model for each watershed using HEC-HMS software (148), calibrating the curve number

parameter to pre-fire peak discharge frequency estimates, then increasing the curve number

to reflect the expected post-fire increase in runoff following Livingston et al. (2005). The

resulting time series of post-fire discharge and sediment load were integrated over each sim-

ulated storm to calculate a range of post-fire bulking factors. The following methods are

based on a set of HEC-HMS tutorials developed for the Gallinas Creek Watershed in New

Mexico following the 2022 Hermits Peak-Calf Canyon Fire (59).

We used the SCS curve number method as the loss method since there are several studies

documenting how the curve number can be adjusted to reflect the post-fire condition (e.g.,

138; 43; 21; 18). We calculated an initial estimate for the pre-fire curve number by intersect-

ing National Land Cover Database 2019 land cover data and hydrologic soil group data from

the Soil Survey Geographic Database (SSURGO) (29; 137). Using a land use and soil group

lookup table, we calculated an area-weighted average curve number for each watershed (58).

This curve number was then used to calculate the maximum potential retention, S, and

the initial abstraction, Ia, assuming Ia = 0.2S following Mockus et al. (94), as well as the

watershed lag time following Kent et al. (71). We used the SCS unit hydrograph method as

the transform method, using a peak rate factor of 550 based on the steepness of the study

watersheds. We forced the model with precipitation frequency estimates for a 2-year to 500-

year storm using the frequency storm method and the same basin-averaged precipitation

frequency estimates described in Section 3.1.4 to develop a precipitation-frequency curve.

To distribute the rainfall throughout the storm over time, we used a precipitation intensity

pattern for a 6-hour storm from the Riverside County Hydrology Manual representative of

a reasonable distribution of rainfall likely to cause critical runoff conditions during a major

storm event (114, Plate E-5.9).
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We used the initial pre-fire curve number estimate to simulate the peak discharge frequency

curve and compared it to the peak discharge frequency curve retrieved from StreamStats

(see Section 3.1.4). We then calibrated the pre-fire curve number to the discharge frequency

curve by adjusting it by a constant factor between 0 and 1 until the percent error in the

area-normalized runoff volume was less than 10% and the NSE was greater than 0.90.

Next, to obtain the post-fire curve number, we adjusted the calibrated pre-fire curve number

using the following two-step procedure developed by Livingston et al. (84): (1) we calculated

the percentage of the watershed area burned at moderate and high burn severity of the Burn

Area Reflectance Classification map for the Holy Fire to determine the Wildfire Hydrologic

Impact classification (5), and (2) we used the corresponding relationship between pre-fire

curve number and the post-fire to pre-fire curve number ratio to calculate the corresponding

post-fire curve number. The watershed lag was updated to reflect the post-fire curve number.

The final step of calculating the post-fire bulking factor range was simulating post-fire sed-

iment load. We used Los Angeles District Debris Method (LA Debris Method) Equation

1 as the erosion model for McVicker and Leach watersheds and LA Debris Method Equa-

tion 2-5 for Coldwater watershed according to the drainage area constraints of each model

(40). We chose this erosion model because it consists of multiple equations that can be

applied to watersheds with a wide range of drainage areas (0.26-518 km2) and accounts for

the effect of time since fire with a parameter termed the “Fire Factor.” The Fire Factor is

a dimensionless parameter of the LA Debris Method that represents the impact of wildfire

on debris yield with a value of 6.5 representing ten years since 100% of a given watershed

burned at a value of 3.15 representing one year since 100% of the watershed burned. Since

the goal was to obtain a range of post-fire bulking factors from which to sample randomly,

we ran one simulation using a Fire Factor of 6.5 (the “high sediment” scenario) and another

using a Fire Factor of 3.15 (the “low sediment” scenario). The LA Debris Method requires

an Adjustment-Transposition (A-T) Factor to be specified; this parameter is designed to
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account for differences in geomorphology between the San Gabriel Mountains of Los Angeles

County where the regression equations were developed and that of the watershed of interest

(40). For this study, we set the A-T factor to 1.0 due to a lack of sufficient debris yield data

for these or surrounding watersheds to estimate it. We note that the actual debris yield

of the study watersheds is likely somewhat less than predicted since the Peninsular Ranges

in which they are located are known to have a lower debris potential than that of the San

Gabriel Mountains (40; 49).

From the resulting simulated time series of post-fire flow rates and sediment loads, we cal-

culated the bulking factor for each storm in the frequency curve as the sum of the volumes

of water and sediment integrated over the duration of the storm divided by the volume of

water. The minimum and maximum bulking factors estimated from both the high and low

sediment scenarios were used to define the bounds of the post-fire bulking factor range.

Recovery Timescale

The recovery timescale parameter, tr, represents the rate of watershed recovery after the

watershed is burned by wildfire–that is, the exponential decay rate of the post-fire bulking

factor, k1, back to the pre-fire baseline bulking factor, k0. The recovery timescale is imple-

mented in the equation for the bulking factor (Eq. 3.2). To estimate the recovery timescale,

we assume the watershed vegetation recovers at a rate commensurate to the decay rate of the

post-fire bulking factor, since vegetation regrowth is the main process by which soil becomes

re-stabilized following wildfires (20; 134). The recovery rate of watershed vegetation was es-

timated following Gouveia et al. (45), who used post-fire Normalized Difference Vegetation

Index (NDVI) time series to model vegetation recovery. NDVI is one of the most common

satellite-derived vegetation indices used to study post-disturbance vegetation recovery, and

several studies have used NDVI time series to evaluate post-fire vegetation recovery in the

southwestern U.S. (e.g., 53; 157; 142). Essentially, since NDVI is an indicator of vegetation
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greenness, Gouveia et al. (45) define the “lack of greenness,” y(t) as:

y(t) = NDVI(t)− NDVI∗(t) (3.3)

where NDVI∗(t) is an annual cycle that represents the “ideally healthy state of vegetation

along the phenological year.” The lack of greenness variable drops below zero when a fire

burns the vegetation, and an exponential decay curve of the form:

y(t) = ae−bt (3.4)

where t is the time since the start of the fire and a = NDVI(t = 0)-NDVI∗(t = 0), can be

fit to the post-fire time series such that the decay rate parameter, b, may be found through

linear regression. Comparing Equations 3.2 and 3.4, it becomes apparent that the recovery

timescale may be estimated as tr = 1/b.

We applied this approach to NDVI and Enhanced Vegetation Index (EVI) time series data

from the Moderate Imaging Spectroradiometer (MODIS) on the Terra satellite; EVI data

were included in the analysis to compare the results from the two vegetation indices since

EVI is designed to minimize canopy-soil variations and have improved sensitivity where

vegetation is more dense, and since it has also been used to study post-fire vegetation recovery

(177; 72; 24). NDVI and EVI images that represent 16-day Maximum Value Composites at

a resolution of 250 meters from 2000-2023 were spatially averaged by watershed area in

Google Earth Engine. The resulting time series of spatially averaged NDVI and EVI were

normalized according to Equation 3.3 by estimating NDVI∗(t) and EVI∗(t) as the mean
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monthly maximum values over the pre-fire period. Eleven missing values in years 2001

and 2002 were replaced with the long-term monthly mean NDVI/EVI values for the pre-

fire period. Before curve fitting, we ensured the pre-fire NDVI/EVI time series were stable

through time by conducting a Mann-Kendall test on the water-year averaged annual values

and found that there was no monotonic trend with time. The fit of the exponential decay

curves to the normalized, spatially averaged vegetation index time series, 95% confidence

intervals, R2, RMSE, and bulking factor curves resulting from the estimation of tr are shown

in Figure B.2.

Debris Basin Capacity

For Leach watershed, the debris basin capacity was estimated through analysis of a DEM

produced from an unmanned aerial vehicle (UAV) photogrammetric survey of the debris

basin conducted by Riverside County using ArcGIS (30). The capacity of the debris basin

was increased in November 2018 before the first post-fire wet season began in anticipation of

increased sediment fluxes, and since Riverside County conducted the photogrammetric survey

just after this improvement was completed, it captured the debris basin in its empty, “design

capacity” state. The DEM produced from the photogrammetric data had a resolution of 15

cm (0.5 ft) and an absolute vertical accuracy of <5-7 cm (0.16-0.23 ft) at the 95% confidence

level, which includes the ground control point error (115). We manually removed non-ground

features such as vegetation from the point cloud to produce a bare earth DEM, then used

the Surface Volume tool in ArcGIS to estimate the volume of the empty debris basin. For

McVicker watershed, the debris basin design capacity was estimated by Riverside County

from a UAV photogrammetric survey they conducted in September 2018 before the wet

season began with similar vertical accuracy.
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Table 3.4: Model parameters used to estimate post-fire flood hazards for each study water-
shed.

Parameter Name Units Coldwater McVicker Leach

Watershed Area km2 10.9 5.86 3.86

Mean Watershed Slope (30-m DEM) % 60.8 46.3 45.4

Length of Longest Flow Path km 6.44 6.44 3.22

Watershed Relief m 1,342 801 603

Runoff Response unitless

Frequency 3.36× 10−5 2.82× 10−5 3.08× 10−5

MAE 1.47× 10−5 1.47× 10−5 1.47× 10−5

NSE/RMSE 1.24× 10−5 1.24× 10−5 1.24× 10−5

Mean % Error 2.38× 10−6 2.38× 10−6 2.38× 10−6

Time to Peak hours 5.58 6.02 5.73

Watershed Area Burned % 98.0 99.4 99.96

Moderate Severity % 57.6 89.0 89.0

High Severity % 17.9 5.05 2.74

Wildfire Hydrologic Impact (Liv-
ingston et al., 2005)

Moderate Moderate Moderate

Post-fire Bulking Factor unitless

Lower Bound 1.001 1.03 1.04

Upper Bound 1.01 1.38 1.52

Recovery Timescale days 1,103 726 737

Debris Basin Design Capacity m3 - 78,912 20,642

Flood Channel Design Capacity m3 - 52.5 10.0

Infrastructure Cleaning Threshold
% volume
filled

- 85 85

Wet Season Cleaning Waiting Period days - 1 1

Wet Season Debris Basin Cleaning
Rate

m3/day - 1,710 2,064
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Flood Channel Capacity

We estimated flood channel capacities for both Leach and McVicker using PRIMo, a dual-

grid flood inundation model, to determine the maximum flow rate the flood channels could

convey without producing overbank flows (128). We used a DEM produced from an airborne

Lidar survey conducted in September 2018 before the start of the wet season with a resolution

of 0.46 m (1.5 ft) and vertical accuracy of 3.02 cm (0.099 ft, RMSE) to estimate the design

capacities of the flood channels. After hydro-conditioning the DEM in ArcGIS to remove

bridges and culverts, we forced PRIMo with a constant volumetric flow rate, a no-flow

boundary condition at the edge of the domain upstream of the input point source, and a

dry boundary condition at downstream end of the model domain. The input flow rates were

increased or decreased iteratively until the channel overtopped, and the model was run until

a steady state was reached for each simulation trial. Since the flood channel downstream of

the Leach watershed is an unlined channel and that downstream of the McVicker watershed

is a concrete-lined channel, we used Manning n values of 0.030 and 0.013, respectively, based

on Chow (25). Additionally, the Leach flood channel had a brick wall along its southern

bank that was not resolved by the DEM and needed to be enforced in the simulation to

prevent unrealistic channel overtopping; the grid edge classification method developed by

Kahl et al. (67) was used to implement a 1.5-m tall no-flow boundary to simulate this wall.

Infrastructure Cleaning Standards

The infrastructure maintenance model parameters include the infrastructure cleaning thresh-

old, the wet season cleaning waiting period, and the wet season debris basin cleaning rate.

The infrastructure cleaning threshold was set to when 85% of the debris basin or flood chan-

nel is filled based on discussions with Riverside County (116); this threshold applies to the

cleaning of both the debris basin and the flood channel. The wet season cleaning waiting
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period and debris basin cleaning rate were estimated based on records of debris basin exca-

vation volumes for Leach and McVicker debris basins from Riverside County for the 2018-19

wet season at a daily timescale. Daily excavation volumes for each debris basin were av-

eraged over the wet season to obtain the cleaning rate, and waiting periods were roughly

based on the number of days following a storm without rain that passed before sediment was

excavated. Importantly, only the debris basins are cleaned during the wet season as well as

the dry season according to conventional maintenance practices; channels are cleaned during

the summer only (116).

3.1.4 Calibration Methods

We calibrated PF2HazMo to the first wet season following the Holy Fire, when streamflow

and infrastructure overtopping data were available, to assess the performance of the model-

ing framework with respect to reproducing observed post-fire peak flows and infrastructure

exceedances. Streamflow data was used to calibrate the runoff response parameter, ct, based

on its high sensitivity as will be revealed in the results.

For both the calibration and validation, a one-year simulation period was used spanning a

wildfire event and post-fire wet season where rainfall, streamflow, and overtopping were ob-

served. The simulation begins on 1 August 2018 and fire occurrence is simulated on 6 August

2018, the day the Holy Fire ignited. With each simulation, a post-fire bulking factor value is

chosen uniformly at random from the estimated post-fire bulking range (Section 3.1.3), and

thus the sediment yield properties of each simulation exponentially decay thereafter in ac-

cordance with vegetation recovery timescales estimated for each watershed. Observed daily

rainfall totals from the rain gauge nearest each watershed are used to force the simulation,

with 41 days of rainfall during the wet season depending on the rain gauge. The simula-

tion ends on 31 March 2019, about ten days after the last day with observed rainfall. The
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parameter values used to apply the model to each study watershed are shown in Table 3.4.

Rainfall-Runoff Model Calibration

PF2HazMo predicts runoff from rainfall using a type of rational method as follows:

Qw =
cPA

tp
(3.5)

where c is the runoff coefficient, Qw is the clear-water discharge at the watershed outlet, P

is the daily precipitation total, A is the area of the watershed, and tp is the time to peak of

a triangular hydrograph with equal rising and falling limbs.

Given the availability of precipitation and streamflow data, calibration targeted the ratio of

the runoff coefficient to ct = c/tp (Gage Data Approach). Additionally, a second calibration

strategy was developed targeting the availability of regional precipitation-frequency and

discharge-frequency curves (Frequency Curve Approach). We developed both approaches

because, in an ideal scenario, streamflow observations would be available for the watershed

of interest to be used to calibrate ct directly; however, many watersheds are too steep to

install gauges, or post-fire bulked flows may be so forceful that they destroy monitoring

equipment (115). Since precipitation and discharge frequency estimates are available for

the majority of the continental United States and its territories from the National Oceanic

and Atmospheric Administration (NOAA) and the USGS, respectively, PF2HazMo could

potentially be applied broadly given the availability of a suitable calibration method for

leveraging these data.

Applying the Gage Data Approach, we used observed post-fire streamflow data for the Cold-
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water watershed to calibrate ct using multiple error metrics (objective functions) commonly

used in hydrologic modeling. Observed peak flows were identified based on a visual analysis

of the maximum daily discharge time series and an understanding of when the major storm

events of the wet season occurred from discussions with Riverside County. Through man-

ual calibration of the model, we determined the optimal value for ct was within the range

(2 × 10−6, 4 × 10−5). We then conducted an automated calibration process in which we

ran the model for 100 linearly spaced candidate values within this range and calculated the

corresponding Nash-Sutcliffe efficiency (NSE) index, the root mean squared error (RMSE),

the mean absolute error (MAE), and the mean percent error (% Error) by comparing the

observed peak flows to the median of the simulated peak flow distribution on the same days

of the wet season. The equations for the error metrics are as follows:

NSE = 1− Σn
i=1|yi − xi|2

Σn
i=1|xi − x|2

(3.6)

RMSE = (
1

n
Σn

i=1|yi − xi|2)1/2 (3.7)

MAE =
Σn

i=1|yi − xi|
n

(3.8)

%Error = |yi − xi

xi

| × 100 (3.9)

(3.10)

where x represents observed peak flows, y represents simulated peak flows, n is the number of

measured-predicted data pairs, and x is the mean of observed peak flows. We chose this suite

of error metrics rather than a single objective function because they each have advantages

and disadvantages. For example, mean error metrics such as MAE and mean % error are less

affected by outliers than are squared error metrics, while relative change metrics (such as %
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error) highlight errors in low flows more than in high flows (61). For each error metric, we

can obtain an optimal parameter estimate by minimizing (in the case of RMSE, MAE and

% error) or maximizing (in the case of NSE) the metric and then compare the outputs from

the calibrated models to observations of peak flows and overtopping events. In summary, we

can assess how different error metrics (objective functions) bias hazard estimation.

Applying the Frequency Curve Approach, which targets the estimation of ct in an ungauged

watershed, we obtained precipitation frequency estimate grids from NOAA Atlas 14, which

represent spatially interpolated point precipitation frequency estimates from a national net-

work of precipitation-reporting stations at a resolution of 30 arc-seconds (106). We retrieved

annual maximum series for a 6-hour storm for California for return periods of 2, 5, 10, 25, 50,

100, 200, and 500 years. We chose a 6-hour duration to capture the relatively short-duration,

high-intensity storms that commonly trigger hyperconcentrated and debris flows in the re-

gion (139). We then calculated the watershed area-averaged precipitation depth for each

return period for the three study watersheds using ArcGIS and used these spatial averages

as our precipitation frequency estimates. Discharge frequency estimates for the same return

periods were obtained by applying the StreamStats online tool to each watershed individ-

ually (153). These discharge estimates are calculated using regional regression equations

developed by fitting a log-Pearson Type III distribution to annual peak flow data through

water year 2006 from a network of USGS streamgages in California with 10 or more years of

data (44). The three study watersheds are located in the South Coast Region (Region 5) of

the USGS regional regression analysis, which includes non-desert southern California. Once

the precipitation and discharge frequency estimates for each return period were obtained,

we estimated ct through linear regression of P ×A and Qw, where ct is the slope of the line

with intercept forced to zero. In the following results sections, we refer to this parameter

estimation method as the “Frequency” method.
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3.1.5 Validation Methods

PF2HazMo was validated with applications to the Leach and McVicker catchments in River-

side County. Here, detailed monitoring was carried out by Riverside County Flood Control

and Water Conservation District from November 2018 to April 2019, a period that imme-

diately followed the Holy Fire. Overtopping events are documented from timelapse videog-

raphy, and sediment volumes removed from the debris basin and channels are documented

by drone surveys and sediment disposal contracts which include volumes of material trans-

ported away from the site. Infrastructure overtopping data are described in Section 3.1.1.

Finally, as a check to ensure the model conserved sediment mass/volume, we compared the

sediment influx, outflux, and storage change of the debris basins and found that the residual

was comparable to numerical precision 10−11 (Figure B.4).

3.2 Results

3.2.1 Model Sensitivity and Error Analyses

Sensitivity Analysis

Figure 3.2 compares the sensitivity coefficients between model parameters for each model

output variable. For some output variables, one model parameter is clearly more sensitive

than the others, such as the cleaning waiting period, w, for the number of basin exceedances,

or the post-fire bulking factor, k1, for the number of channel exceedances. However, there

are a number of parameters for which the sensitivity coefficient is greater than or equal to

one for multiple model outputs, such as the runoff response, ct.

To better understand which model parameters were consistently sensitive across output
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Table 3.5: Ranking of model parameters based on greatest sensitivity coefficient across
output variables.

Parameter
# Times Ranked
in Top 3

Watershed Area 5

Runoff Response 4

Post-fire Bulking Factor 3

Time to Peak 2

Flood Channel Design Capacity 1

Debris Basin Design Capacity 1

Wet Season Cleaning Waiting Pe-
riod

1

parameters, we ranked the parameters by sensitivity coefficient separately for each output

variable and then counted the number of times each parameter ranked in the top three.

The result of this overall sensitivity ranking is shown in Table 3.5. Watershed area was

ranked in the top three most sensitive model parameters for five of the six output variables,

while runoff response, post-fire bulking factor, and time to peak were also highly ranked

for multiple output variables. Hence, the most sensitive model parameters are those which

contribute to the peak (bulked) flow which drive the hazards.

Error Propagation Analysis

Correlation coefficients linking changes in model outputs to changes in model inputs were also

used to rank the importance of input parameters. An overall ranking by squared correlation

coefficient and squared partial correlation across all output variables is presented in Table

3.6. These results are similar to the sensitivity analysis, in that watershed area, runoff

response and time to peak parameters all ranked highly. The post-fire bulking factor, flood

channel design capacity, and we season cleaning waiting period also appear as important

parameters relative to error propagation (relative to at least one model output variable).
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Table 3.6: Ranking of model parameters based on greatest squared correlation and partial
correlation coefficient across output variables.

Parameter
# Times Ranked
in Top 3 by r2

# Times Ranked
in Top 3 by r2p

Watershed Area 6 6

Runoff Response 5 5

Time to Peak 4 4

Post-fire Bulking Factor 1 1

Flood Channel Design Capacity 1 1

Wet Season Cleaning Waiting Pe-
riod

1 1

Based on the results from the sensitivity and error analyses, model calibration targeted the

runoff response parameter ct, the post-fire bulking factor was treated as a random variable

(bounded by post-fire erosion estimates from HEC-HMS modeling, and all other parameters

were estimated using the methods presented in Section 3.1.3.

3.2.2 Calibration to Observed Post-fire Peak Flows

Figure 3.3 compares observed peak bulked flows to the distribution of simulated peak bulked

flow in the Coldwater catchment when ct is calibrated in five different ways: the first four

options rely on in-situ gage data and one of four different objective functions (Gage Data

Approach), and the final option designed for ungaged basins relies on regional hazard data

(Frequency Curve Approach). First, results show that calibrating PF2HazMo to regional

hazard data leads to significantly higher peak bulked flows than suggested by local gage

measurements, irrespective of the objective function used. The median of the peak flow

distribution based on regional hazard data (“Frequency” in Figure 3.3) is almost four times

greater than that of the observed peak flows for the 2018-19 wet season. The other simu-

lated peak flow distributions were produced by calibrating the ct parameter to the observed
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peak flows, each using a different error metric as the objective function for the parameter

optimization. Using NSE and RMSE as the objective function resulted in the same peak

flow distribution, since both are squared error metrics; hereafter we refer to the simulation

results produced by using NSE or RMSE as the objective function as “RMSE” for simplicity.

The medians of the peak flow distributions using MAE, NSE, and RMSE (as an objective

function) all fall within the notch of the boxplot of the observed peak flows; since the width of

the notch roughly represents a 95% confidence interval and the notches of the simulated and

observed distributions overlap, this suggests that the medians are not significantly different.

However, it is important to interpret the notch of the observed distribution with caution due

to the small sample size of observed flows (n=4). The median of the peak flow distribution

based on RMSE calibration is closest to that of the observed distribution in terms of percent

error relative to the median of the observed distribution. Finally, the peak flow distribution

when calibrated by % Error has the lowest median of all the simulated distributions, which

is expected since % Error is a relative change metric and this type of error metric tends to

emphasize errors in low flows. The MAE, NSE, RMSE, and % Error values corresponding

to calibration with each of the five calibration methods are reported in Table B.1.

3.2.3 Validation with Observed Overtopping Events

Validation of the model is approached with applications to the Leach and McVicker catch-

ments that adopt site-specific parameters for measurable properties (e.g., watershed area,

debris basin capacity, flood channel capacity, infrastructure cleaning attributes), the cali-

brated value of ct taken from the nearby Coldwater Creek catchment (Gage Data Approach)

or calculated using regional hazard data (Frequency Curve Approach), and parameter ranges

for other variables as described previously. Hence, PF2HazMo is validated with an appli-

cation that relies only upon updates to readily observable physical properties. Moreover,

validation is pursued with the four different calibrated values of ct described in the pre-
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vious section, and a comparison between the simulated distribution of exceedances and

the observed number of exceedances is shown in Figure 3.4 for both channels and debris

basins. Figure 3.4A shows that for Leach watershed, calibration using RMSE as the objec-

tive function produces the best fit between the median simulated and observed number of

channel exceedances, though the simulated number of basin exceedances was overpredicted

(median=17, observed=3). For McVicker watershed, all calibration methods correctly and

precisely predicted zero channel exceedances, while the number of basin exceedances was

overpredicted by roughly an order of magnitude for all but the % Error calibration method,

which predicted zero basin exceedances (observed=1, Figure 3.4B). Across watersheds and

infrastructure types, the Frequency calibration method resulted in a higher number of ex-

ceedances than observed (by a factor of ∼8-28), while calibrating the model to observed

post-fire flows produced similar results for the MAE, NSE, and RMSE objective functions,

with the % Error objective function tending to underpredict either the number of channel

or basin exceedances.

To understand how well the model captures the interacting dynamics of storms, bulking

factors, and infrastructure capacity on days when infrastructure overtopping events were

actually observed, Figure 3.5 presents the percentage of simulation runs that predicted over-

topping for each day of the wet season, with observed overtopping days shaded in blue. The

percentage of simulations predicting overtopping can be thought of as the level of agreement

between stochastic simulation trials; a high percentage of simulations predicting overtop-

ping on a specific day, even when the post-fire bulking factor was sampled randomly for

each simulation, can be thought of as solution “convergence” in a probabilistic sense. For

the Leach flood channel, the observed exceedance on 14 February 2019 was predicted by

>89% of simulation runs for the Frequency, MAE, and RMSE calibration methods (Figure

3.5A). Notably, the % Error calibration method did not result in any simulations predict-

ing channel overtopping throughout the entire wet season. For the Leach debris basin, all

three observed exceedances were predicted by >50% of simulation runs for the Frequency
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calibration method (Figure 3.5B). However, for the MAE and RMSE calibration methods

a majority of simulation trials did not predict the basin exceedance on 6 December 2018.

The reason for this is that the percentage of simulation runs that predicted the Leach debris

basin had filled to capacity by 6 December 2018 was only 20% for MAE and 5% for RMSE

(data not shown). The debris basin cannot overtop until it has filled to capacity, so if the

estimated peak flows or bulking factor are lower than what was observed for early-season

storms, the debris basin will not fill as quickly as it did in reality. Another example that

emphasizes the importance of the timing of infrastructure filling versus the timing of precip-

itation is the three days following the Leach debris basin overtopping event on 14 February

2019: 100% of simulations predict overtopping for the Frequency, MAE, and RMSE cali-

bration methods on those days. The reason is that the basin was predicted to have filled

completely by that date and rain continued to fall the following three days, thus preventing

wet season cleaning (waiting period = 1 day) and resulting in additional basin overtopping

events. It is possible that additional basin overtopping events were observed in the days

following the 14 February 2019 event, but no timelapse video for this period was provided

to us by Riverside County, presumably because the largest and most interesting impacts on

the infrastructure had subsided by that point. The % Error calibration method resulted in

<25% of simulations predicting overtopping for Leach debris basin for any of the dates on

which overtopping was observed.

For the McVicker debris basin, the Frequency, MAE, and RMSE calibration methods each

resulted in >50% of simulations predicting overtopping on 14 February 2019, when basin

overtopping was observed (Figure 3.5C). The % Error calibration method did not result

in any simulations predicting basin overtopping throughout the entire wet season. Overall,

the Frequency calibration method most consistently produced a high level of agreement

between simulation trials that infrastructure overtopping would occur on days when it was

observed. This result is likely due to the higher estimated ct value produced by the Frequency

method, which results in greater peak clear-water flows and thus greater sediment fluxes
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from the watershed (Table 3.4). Indeed, Figure 3.5 shows that the percentage of simulations

predicting overtopping roughly scales with the estimated value of ct for each calibration

method (Frequency > MAE > RMSE > % Error).

3.2.4 Long-Term Compound Hazard Predictions with Calibrated

Model

Following calibration and validation, PF2HazMo offers a platform to study future changes

in risks from factors such as changes in wildfire frequency and intensity, changes in precip-

itation and changes in infrastructure design and maintenance. As an illustration, we used

PF2HazMo to simulate the number of channel exceedances over 100 years for Leach and

McVicker watersheds under both a “present fire regime” scenario and a “future fire regime”

scenario in which the fire frequency is increased. We used the model parameters in Table 3.4,

selecting the NSE/RMSE estimate for the ct parameter since it resulted in the best overall

fit between simulated and observed peak bulked flows, number of infrastructure exceedances,

and timing of overtopping events (Sections 3.2.2-3.2.3). The present fire regime scenario was

defined by a mean fire recurrence interval of 40 years, which represents the average period

between wildfires under the presumed historical fire regime, spatially averaged across the

area of the study watersheds (78). The future fire regime, characterized by a fire recurrence

interval of 20 years, was based on a projection from California’s Fourth Climate Change

Assessment that under a high emissions scenario (Representative Concentration Pathway

8.5) by 2100, the frequency of large fires would increase by nearly 50 percent (8). The 100-

year precipitation time series used to force the model was stochastically generated using the

MCMC rainfall simulator described in Jong-Levinger et al. (66).

A comparison of the number of channel exceedances per century under present and future

fire regimes for Leach watershed is shown in Figure 3.6. The Leach flood channel has a design
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Figure 3.5: Percent of simulation runs (n=3,000) that predicted overtopping on each day of
the wet season for (A) Leach flood channel, (B) Leach debris basin, and (C) McVicker debris
basin. Blue shading indicates days when overtopping was observed; height of bar represents
percentage of runs that predicted overtopping. Red dashed line represents 50%.
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capacity capable of conveying a roughly 50-year flood based on the discharge-frequency curve

for the watershed; this means that the median number of floods per century under present

conditions estimated by PF2HazMo, five, represents three more exceedances than would

be expected by ignoring post-fire sediment fluxes and their impact on infrastructure clog-

ging. Under future conditions, PFHazMo estimates a median of seven channel exceedances

per century, or a roughly 14-year flood return period. To put these flood frequencies into

perspective, we define a “hazard amplification factor”,

AF = Tp/Tc = pc/pp (3.11)

which represents a ratio of the return period of channel exceedances for the marginal hazard

(precipitation in the absence of wildfire) to that of the compound hazard (considering both

wildfire and precipitation as hazard drivers). The amplification factor for Leach watershed

under the present fire regime is 2.5, while that under the future fire regime is 3.6, highlighting

the importance of considering the probability of post-fire bulked flows when designing flood

infrastructure. Lastly, turning attention to the shape of the distributions in Figure 3.6, the

tails are quite long and narrow, especially for the present hazards distribution, indicating it is

possible that much greater flood frequencies than the median could be observed, though the

probability is small. Notably, the density of the present distribution is more concentrated

about its minimum value of five than is the future distribution, indicating a future shift

towards a greater likelihood of increased flood frequencies.

In contrast to the hazard estimates for Leach watershed, for McVicker watershed, zero floods

per century were predicted for both the present and future fire regime scenarios. The design

flood channel capacity for McVicker watershed that we estimated using 2D flood inundation

modeling is 52.5 cms (1,854 cfs). Based on the discharge-frequency curve for this watershed

(153), the capacity of the flood channel is greater than even the magnitude of a 500-year
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Figure 3.6: Estimated number of flood channel overtopping events per century under histor-
ical (40-year) and projected future (20-year) fire recurrence intervals for Leach watershed.
Numbers indicate median values. Simulation results for McVicker watershed estimated zero
flood channel overtopping events for both scenarios. Y-axis was log transformed.

.

flood (30.9 cms or 1,090 cfs). Thus, in this case the concrete-lined flood channel provides

a level of protection against floods that can handle the projected compound flood hazards

under the future fire regime.

3.3 Discussion

3.3.1 Model Applications

The preceding results indicate that different calibration methods are suited to different

project goals. For example, the Frequency calibration method appears to work better for

simulating higher magnitude peak flow events with longer return periods. To this point,
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comparing the discharge-frequency curves produced from HEC-HMS simulations to the dis-

charge frequency estimates from StreamStats used to calibrate them reveals a better fit for

events with a 25-year return period or longer (Figure B.3). Thus, the Frequency method

may be best suited for applications for which more conservative peak flow estimates over

longer time horizons are needed, such as the design of debris basins or flood channels down-

stream of watersheds that burn frequently or are know to produce high sediment yields.

This calibration method may also be the best option available if the watershed of interest is

ungauged and no nearby streamflow records exist.

On the other hand, if sufficient streamflow records are available, we have demonstrated that

PF2HazMo can be calibrated based on these observations and an appropriate range for the

post-fire bulking factor to accurately simulate channel exceedances. During the critical pe-

riod just after a wildfire yet before the start of the wet season, the simulation framework

can be used to forecast the number of infrastructure exceedances over the course of the wet

season to direct resources to infrastructure maintenance and capacity enhancement efforts

or identify infrastructure systems with low levels of protection for emergency planning pur-

poses. By calibrating a HEC-HMS model to pre-fire streamflow using the curve number

parameter and subsequently updating the curve number and lag time with satellite-derived

burn severity data following Livingston et al. (84), a range of bulking factors that reflects

the burned watershed can be estimated. Since the lumped model and curve number ap-

proaches are relatively simple to implement and the required data is readily available (from

public land cover, soil property, and topographic databases), the bulking factor range can

be estimated for a given watershed within a matter of days. This post-fire bulking range is

then randomly sampled from to quantify the uncertainty regarding post-fire infrastructure

exceedance probabilities and provide flood risk managers with a range of potential infrastruc-

ture exceedances and bulked flows to plan around. Based on the results presented in Section

3.2.2, we recommend using NSE/RMSE or MAE as the objective function for calibrating

the ct parameter, as % error produces estimates that underpredict exceedances.

65



3.3.2 Comparison to Other Studies of Post-fire Streamflow and

Erosion

By conducting sensitivity and error analyses we identified that the model parameters that

have the greatest influence on model response are the runoff response, ct, the post-fire bulking

factor, k1, the time to peak, tp, and the flood channel design capacity, Ddes
c . The runoff

coefficient and time to peak parameters represent the influence of land cover and precipitation

intensity/storm duration on peak flows, while the post-fire bulking factor and its decay over

time implicitly are estimated using data on watershed morphology (e.g., slope, relief, length

of longest flowpath), the time since the most recent fire, watershed area burned at moderate

to high severity, and soil properties–factors that have all been identified as important drivers

of post-fire hydrologic response (39; 40; 69; 73; 131; 171; 105; 164). Our analysis both

underscores the importance of these variables and calls attention to the influence of the

capacity of the flood channel downstream of the burned watershed on post-fire flood hazards.

Calibrating the model to observed post-fire peak flows produced a range of simulated peak

flows that ranged from ∼1-60 cms with median estimates that differed based on the cali-

bration method and objective function used. The observed peak flows (median=6.24 cms)

for Coldwater watershed had a return period of less than 25 years based on its discharge-

frequency curve (Figure B.3), but estimates from the California Geological Survey for the

peak flow during the 6 December 2018 storm were 34 (±17) cms, which is roughly a 50-year

event (personal communication). These estimates represent the clear-water equivalent flows

needed to generate observed peak flow conditions observed in the field and were developed

through either direct measurement of flow velocity and cross-sectional area or slope-area

back-calculation using the Manning Equation and the broad-crested weir formula. The Cal-

ifornia Geological Survey estimates are much better aligned with the simulated distribution

of peak flows produced using the Frequency method than with the streamgage data for

Coldwater watershed (Figure 3.3). Additionally, Wilder et al. (2020) simulated post-fire
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streamflow for watersheds burned by the Holy Fire in the Santa Ana Mountains, including

Coldwater, using a five-parameter Random Forest model; their estimates for the 13 wa-

tersheds in that region were on the same order of magnitude as our estimates using the

Frequency method and the California Geological Survey’s estimates. While it is possible

that the streamgage used in this study had a negative bias, after calibrating PF2HazMo to

the observed streamflow the number of overtopping events was accurately predicted, with

most simulations overpredicting the number of basin overtopping events. This discrepancy

between measured and estimated post-fire peak flows highlights the need for more post-fire

streamflow gauge data.

3.3.3 Model Limitations

The methods for estimating model parameters and the stochastic hazard framework de-

scribed herein will not perform well in all applications. The post-fire bulking factor range

estimated for Coldwater watershed was 1.001-1.01, which is essentially no different than the

baseline bulking factor value (Table 3.4). While the bulking factors estimated for McVicker

and Leach included those representative of hyperconcentrated flow, those estimated for Cold-

water did not; one potential reason for this is that the drainage area for Coldwater was large

enough to fall into a different area class than that of McVicker and Leach, resulting in the use

of LA Debris Method Equation 2 within HEC-HMS to estimate sediment loads. LA Debris

Method Equation 2 weights drainage area much less than does LA Debris Method Equation

1, used to estimate sediment loads for McVicker and Leach, and since the drainage area for

Coldwater was on the lower end of the range of areas for which the regression equation was

developed (11 km2 versus 7.8-26 km2), this could have led to an underestimate in the post-

fire bulking factor range. Previous studies of post-fire sediment yields find that unit-area

sediment yields decrease as drainage area increases, so this result could be due to the larger

watershed area of Coldwater than Leach or McVicker (164; 40; 105).
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We tested other erosion models implemented in HEC-HMS including the USGS Emergency

Assessment and Long-Term Debris Models, but these also resulted in bulking factors close to

1. Another possibility was that Coldwater watershed simply did not experience much erosion

during the first wet season following the Holy Fire: this idea is supported by an estimate from

the California Geological Survey that sediment concentrations in runoff from Coldwater were

roughly 5-10% based on an analysis of runoff images from a storm event on 29 November 2018

and field observations following the storm (22). The lower threshold for hyperconcentrated

flow is often considered to be a sediment concentration of 20%, so while these estimates are

greater than the estimates we produce using the LA Debris Method Equations in HEC-HMS,

they are still typical of normal streamflow. Post-fire erosion estimates produced from the

differencing of DEMs derived from airborne Lidar show that among ten other watersheds

burned by the Holy Fire, Coldwater produced relatively low estimates; however, McVicker

produced similarly low erosion levels and yet we estimated significantly higher bulking factors

for McVicker watershed (47). Without sediment concentration data it is difficult to know

whether the low bulking factor range estimated for Coldwater was realistic, but modelers

interested in post-fire erosion modeling with HEC-HMS should note that lower bulking factor

estimates for larger watersheds are possible.

The present study was limited in scope to the first wet season following fire due to the lack

of a longer dataset. While the range of post-fire bulking factors in this study was based on

data from the first wet season following the fire, actual sediment concentrations will vary

based on the intensity of subsequent precipitation events and the recovery of vegetation,

which is dependent on climatic factors such as drought (170). Since the hazard estimates are

based on the wet season immediately following the fire and since we assumed an A-T factor

of 1 for the LA Debris Method (representative of the San Gabriel Mountains, which tend to

produce higher sediment yields than do the Santa Ana Mountains), they can be considered

a “worst case scenario” estimate of post-fire flood hazards. Evaluation of model predictions

against longer post-fire streamflow and infrastructure overtopping time series is needed to
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better assess how the model performs after the first post-fire wet season for the first few

years after the fire.

Finally, we note that the impact of short-duration, high-intensity rainfall on peak bulked

flows is not resolved well by the model due to the use of a daily timestep. We aimed to partly

address this by using a 6-hour storm when selecting the precipitation frequency estimates

used to calibrate the ct parameter using the Frequency method, but we acknowledge this is

an indirect way of incorporating the impact of high-intensity precipitation. Short-duration,

high-intensity rainfall has been shown to be important for generating post-fire debris flows

and hyperconcentrated flows as well as generating watershed-scale erosion (68; 69; 164; 139;

140). Additionally, we note that “future” projections of post-fire floods are forced with a

daily rainfall time series that has the statistical properties of the long-term precipitation

gauge record it was parameterized with and does not reflect non-stationary trends such as

an increased frequency of high-intensity events (see Jong-Levinger et al. (66)). Increased

temporal resolution to resolve the effects of high-intensity storm events as well as a modified

precipitation probability distribution that reflects the projected effects of climate change on

the regional precipitation regime are features of the stochastic modeling framework that are

being considered for future work.

3.4 Conclusion

PF2HazMo is a stochastic hazard estimation framework that can be calibrated and param-

eterized with readily available data to estimate post-fire bulked flows and flood infrastruc-

ture overtopping events over single wet season to multi-year timescales. An appropriate

calibration method should be chosen based on the objective of the modeling effort; then

reasonable estimates of bulked flows and infrastructure can be used to inform infrastructure

design/maintenance approaches, emergency planning strategies, and risk communication ef-
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forts. Additionally, the model may be applied to multiple watersheds across a region to

quickly obtain a first-order estimate of the spatial distribution of post-fire flood risk and

inform flood management strategies via stakeholder engagement.
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Chapter 4

Flood Hazard Amplification by

Wildfires

This chapter is based on the following published work:

Jong-Levinger, A., Banerjee, T., Houston, D., & Sanders, B. F. (2022). Compound Post-Fire

Flood Hazards Considering Infrastructure Sedimentation. Earth’s Future, 10(8), e2022EF002670.

https://doi.org/10.1029/2022EF002670

which was highlighted in Nature Climate Change,

Franke, J. (2022). Combined force of fire and water. Nature Climate Change, 12(9), 778-778.

https://www.nature.com/articles/s41558-022-01472-9

4.1 Introduction

PF2HazMo is an original model for estimating compound, post-fire, sediment-laden flood

hazards, and is uniquely poised to improve understanding about changes in flood risks re-
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sulting from changes in wildfire frequency and intensity. Hence, this chapter presents an

examination of flood hazard amplification by wildfires, with hazard amplification defined as

the ratio of future/present exceedance probability.

The ability to characterize hazard amplification is important not only for improving the

design of infrastructure and promoting infrastructure maintenance, but also for increasing

risk awareness within affected communities (95; 27; 54). Moreover, improved understanding

of exceedance probabilities can be paired with 2D simulations of extreme events for more

effective risk communication (85; 129). Two specific questions about post-fire flood hazards

will be addressed herein:

1. How does the frequency of channel exceedances vary in areas exposed to post-fire com-

pound flood hazards based on current design standards and maintenance approaches?

2. How will the frequency of channel exceedances change in the future based on increasing

fire frequency and fire severity?

The remainder of the chapter is organized as follows: Section 4.2 (Methods) presents the sim-

ulation scenarios and model outputs generated to address the preceding questions. Section

4.3 (Results) shows the estimation of hazards for a range of fire frequencies and severities,

infrastructure design standards, and maintenance approaches. Section 4.4 (Discussion) con-

trasts the exceedance probabilities of channels due to the compound hazard versus those of

the precipitation used for design due to the marginal hazard, and contemplates the implica-

tions for risk management. Section 4.5 presents conclusions.
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4.2 Methods

4.2.1 Hazard Simulations

Results are organized into two sets of simulation scenarios: Model Illustration Scenarios

and Stochastic Hazard Scenarios. The Model Illustration Scenarios demonstrate how the

framework estimates compound post-fire flood hazards under three infrastructure manage-

ment scenarios using 100-year stochastic simulations that account for the combined effects of

wildfires, rainfall, infrastructure design and maintenance. The Stochastic Hazard Scenarios

consist of four sets of scenarios used to systematically investigate post-fire flood hazards in

relation to four separate factors: infrastructure design standard, infrastructure maintenance

approach, fire interval, and fire severity. The model settings for each simulation scenario are

shown in Table 4.1.

The model parameters that were not varied within a given simulation scenario were kept

constant between the different scenarios to ensure a fair comparison. The baseline parameter

values used in this study were chosen to simulate a representative watershed system and

flood infrastructure system in southern California and are displayed in Table 4.2. The same

synthetic precipitation time series was used in each simulation (displayed in Figure 4.1a) for

consistency across results.

4.2.2 Model Outputs

For each scenario, a total of 3,000 MC trials were simulated, each trial yielding a 100-year

daily time series of peak channel flows and channel capacities from which the number of years

per century with at least one channel exceedance, nc, was computed. The annual exceedance
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Table 4.1: Simulation scenarios.

Scenario
Name

Model Settings* Model Output Figure

Model
Illustration
Scenarios

Scenario 1:
Low
Protection

50C, S

Overbank flows
(m3/s)

4.1Scenario 2:
Moderate
Protection

50B, S

Scenario 3:
High Protec-
tion

50B, SAW1

Stochastic
Hazard
Scenarios

Design
Standards
and Fire
Interval

50C, 100C, 50B,
100B

Empirical flood
return period
(years)

4.2

50, 20, 15, 10, 5, 2
(years)

Maintenance
Approach
and Fire
Interval

S, SA, SAW7,
SAW1

1. Empirical
flood return pe-
riod (years)

4.3

50, 20, 15, 10, 5, 2
(years)

2. Sediment
excavated from
infrastructure (m3)4.4

Design
Standards
and Burn
Severity

50C, 100C, 50B,
100B

Empirical flood
return period
(years)

4.5
1.10 < k1 < 1.25,
1.25 < k1 < 1.67,
1.67 < k1 < 2.86

Maintenance
Approach
and Burn
Severity

S, SA, SAW7,
SAW1

Empirical flood
return period
(years)

4.6
1.10 < k1 < 1.25,
1.25 < k1 < 1.67,
1.67 < k1 < 2.86

*Abbreviations are defined in Sections 2.2, 2.4, and 2.5.
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Table 4.2: Baseline model parameters.

Variable/Parameter Value Rationale

Watershed Area, A 3 km2 Average area of watershed in
southern California (39)

Pre-fire bulking factor, k0 1.00 Corresponds to clear streamflow

Post-fire bulking factor, k1 1.25-2.86
Represents a range of flow types
from hyperconcentrated flow to
debris flows

Fire Interval 20 years
Roughly representative of south-
ern California (151)

Design Standard 50B

Represents standard used by Los
Angeles County, which has set
precedents in the estimation of
design bulking factors for the re-
gion (48)

Design bulking factor, kdes 1.20
Based on past studies by the Ven-
tura County Watershed Protec-
tion District (159)

Maintenance Approach S
A commonly used approach in
southern California (116)

Infrastructure cleaning
threshold

85% filled
Based on correspondence with
Riverside County (116)

Debris basin cleaning rate
1,800
m3/day

Based on debris basin excava-
tion records provided by River-
side County

Watershed recovery timescale,
Tr

365 days
Assumes recovery time of 5 years
following debris flow event (79)

Runoff coefficient, c 0.3
Used to calculate Qw; based on
commonly used values for natural
land use types with >6% slope
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probability, pc, was computed for each MC trial empirically as follows,

pc = nc/100 (4.1)

and a flood return period, Tc, follows as,

Tc = 1/pc for pc > 0 (4.2)

The progression of MC trials yields distributions of Tc values that are examined to infer

dependencies on infrastructure design standards, infrastructure maintenance approaches,

fire interval, and wildfire severity. Distributions are presented by combining box plots and

violin plots. Box plots are displayed as follows: widths are proportional to the square-root

of the sample size for each scenario; the central line corresponds to the median and the

lower and upper edges correspond to the first and third quartiles, respectively; the upper

whisker is calculated as min(max(x), Q3 + 1.5 × IQR); the lower whisker is calculated as

max(min(x), Q1 - 1.5 × IQR); and outliers are not displayed. For the violin plots, Gaussian

kernel smoothing was used.

We note that a “No Fires” scenario was also considered as a check on numerical consistency.

In the absence of wildfire, the compound hazard reverts to the marginal hazard scenario

(precipitation and runoff in the absence of wildfire), and the channel return period matches

the precipitation return period, Tc = Tp. In all cases, the computed median value of Tc from

3,000 MC simulations was found to match the return period (either 50- or 100- year) of the

precipitation return level used for runoff modeling, peak discharge estimation (Eq. 2.1), and

sizing of channels according to the clear-water design standard.
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4.3 Results

4.3.1 Illustration of Compound Post-Fire Flood Hazard Estima-

tion

a

b

c

d

e

f

Figure 4.1: Time series of (a) daily precipitation, (b) bulking factor, (c) peak bulked flows
from the debris basin into the channel and (d,e,f) the corresponding time series of overbank
flood flows for three management scenarios. Management scenarios are defined in Table 4.1.
The effective flood channel capacity time series for the three scenarios are compared in panel
(c).

.

The simulation begins with 100-year stochastic time series of daily precipitation (Fig. 4.1a),

the bulking factor (Fig. 4.1b), and daily peak bulked flows into flood channels (Fig. 4.1c,

blue stem plot). Note that the simulation includes five fire events with different peak bulking

factors, which correspond to random numbers, and that the bulking factor exponentially

decays back to a baseline value of unity for several years after each fire event. The filling

of infrastructure with sediment is sensitive to the management scenario (Scenario 1, 2 or 3),

which in turn impacts the capacity of the flood channel (Fig. 4.1c, orange, yellow and purple

lines, respectively) and the number of days when peak bulked flows exceed channel capacity

(Fig. 4.1d, e and f, respectively).
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Hazards can be estimated based on the number of years or days with exceedances of the

channel capacity. Figures 4.1d, e and f show that with increasingly conservative flood

management approaches (Scenario 1, 2 and 3, respectively), the number of years with ex-

ceedances of channel capacity is reduced (9, 5, and 3 out of 100) and the number of days

with exceedances is reduced (115, 79 and 45 over 100 years).

An important dynamic captured by the simulation framework is the coincidence of high

bulking factors and high peak precipitation, which leads to high peak bulked flows. For

example, following a fire event in Year 10 that yields a bulking factor exceeding 2.0, overtop-

ping events are predicted across all three management scenarios with rainfall less than 150

mm/day; on the other hand, rainfall of nearly 300 mm/day in Year 20 only yields a small

rate of overtopping in Scenario 1, while no flooding is predicted under Scenarios 2 and 3.

4.3.2 Flood and debris hazards vs. fire interval

Figure 4.2 shows Tc distributions across four different infrastructure design standards (50C,

100C, 50B, and 100B) and six different fire intervals (50-yr, 20-yr, 15-yr, 10-yr, 5-yr and

2-yr). Return period is expected to decrease below that of the precipitation design level (50

or 100 years) with wildfires that alter runoff and sediment production, and Figure 4.2 shows

the rates of decrease with decreasing fire intervals. Notably, median flood return period was

computed to be 2 to 10.5 times smaller than expected based on a 50-year design standard

and 3 to 16 times smaller than expected based on a 100-year design standard. For example,

infrastructure designed based on a 50-year design storm assuming clear-water discharge (50C)

delivers protection corresponding only to a 10-year return period when the fire interval is 10

years. Further, infrastructure designs that take a more conservative approach, such as a 100-

year design storm assuming a bulked discharge (100B), only offer protection corresponding

to a 20-year return period when the fire interval is 10 years. The most conservative design

78



50−year Fire Interval 20−year Fire Interval 15−year Fire Interval 10−year Fire Interval 5−year Fire Interval 2−year Fire Interval

50C 100C 50B 100B 50C 100C 50B 100B 50C 100C 50B 100B 50C 100C 50B 100B 50C 100C 50B 100B 50C 100C 50B 100B

100.0

50.0

33.3

25.0

20.0

10.0

5.0

Design Standard

E
s
ti
m

a
te

d
 F

lo
o
d
 R

e
tu

rn
 P

e
ri

o
d
 (

y
e
a
rs

)

Figure 4.2: Simulated distributions of flood return period versus infrastructure design stan-
dard (50C, 50B, 100C, 100B) and fire interval.

scenario (100B) produces a median flood return period that is 1.8 times larger than that of

the least conservative design scenario (50C), across all fire frequencies.

Figure 4.3 shows Tc distributions across four differentmaintenance approaches (S, SA, SAW7,

and SAW1) based on the same fire intervals as before and infrastructure designed based on

a 50-year storm and a bulked discharge (50B). The comparison of the flood return period

distributions shows that differing maintenance approaches play a major role in moderating

risks. For example, the most conservative maintenance scenario (SAW1) produces a median

flood return period that is twice as large as that of the least conservative maintenance

scenario (S).

Sediment management costs tend to vary based on a number of factors such as sediment size

distribution, presence of contaminants, challenges with access, level of moisture, and access

to a disposal site (10), but a controlling consideration is the volume of material that needs

to be removed.

Figure 4.4 shows the total volume of sediment excavated from debris basins (Fig. 4.4a) and
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Figure 4.3: Simulated distributions of flood return period versus infrastructure maintenance
approach (S, SA, SAW, SA1) and fire interval.

.

flood channels (Fig. 4.4b) per century under the each of the maintenance models. The volume

of sediment removed from debris basins increases with more intensive maintenance practices,

and this results in a decrease in the amount of sediment removed from flood channels. The

median sediment volume removed from the debris basin across fire frequencies for the SAW1

maintenance scenario was approximately 2.2 times greater than that of the S maintenance

scenario. As a result, about 52% less sediment needed to be removed from the channel under

the SAW1 scenario than under the S scenario. Figure 4.4 also shows that the amount of

sediment that needs to be excavated from infrastructure per century increases dramatically

with decreasing fire interval: under the 2-year fire interval scenario, the amount of sediment

removed from the debris basin was 9.7 times greater and the amount removed from the

flood channel 12 times greater than that under the 50-year fire interval scenario across all

maintenance approaches.
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Figure 4.4: Simulated distributions of sediment volume removed from (a) debris basins and
(b) flood channels per century versus maintenance approach (S, SA, SAW7, SAW1) and fire
interval.

81



Low Burn Severity: 1.10 < k1 < 1.25 Moderate Burn Severity: 1.25 < k1 < 1.67 High Burn Severity: 1.67 < k1 < 2.86

50C 100C 50B 100B 50C 100C 50B 100B 50C 100C 50B 100B

100.0

50.0

33.3

25.0

20.0

10.0

5.0

Design Standard

E
s
ti
m

a
te

d
 F

lo
o
d
 R

e
tu

rn
 P

e
ri

o
d
 (

y
e
a
rs

)

Figure 4.5: Simulated distributions of flood return period versus infrastructure design stan-
dard (50C, 50B, 100C, 100B) and fire burn severity (Low, Moderate, and High). Missing
values are due to a lack of annual channel exceedances during simulation trials.

4.3.3 Flood and debris hazards vs. burn severity

Attention now turns to the influence of burn severity on flood return periods, which enters the

modeling framework through the bulking factor, k. Figure 4.5 shows Tc distributions across

the four infrastructure design standards (50C, 100C, 50B, and 100B) and three different lev-

els of burn severity (Low, Moderate, and High). Figure 4.5 shows that with increasing burn

severity, flood return periods are reduced. For example, in the case of Moderate Burn Sever-

ity, infrastructure designed based on a 100-year design storm and bulked design discharge

(100B), the most conservative design standard considered, delivers protection corresponding

to a 100-year return period, based on the median value. In transitioning from Moderate to

High Burn Severity, the median Tc for design standard 100B is reduced from 100 to 33.3

years, corresponding to a three-fold increase in flood frequency.

Figure 4.6 shows Tc distributions across the four maintenance approaches (S, SA, SAW7,

and SAW1) and three different levels of burn severity (Low, Moderate and High). These
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Figure 4.6: Simulated distributions of flood return period versus infrastructure maintenance
approach (S, SA, SAW7, SAW1) and fire burn severity (Low, Moderate, and High). Missing
values are due to a lack of annual channel exceedances during simulation trials.

.

simulations are based on infrastructure designed with a 50-year bulked (50B) design standard,

and for cases of Low Burn Severity, that that level of protection is exceeded under all

maintenance approaches: the median value of Tc is 100 years or greater in all cases. With

Moderate Burn Severity, the median value of the simulated Tc distribution is 50 years based

on the summer-only cleaning model (S)and increases to 100 years with the three other

maintenance models. And finally, the case of High Burn Severity, the median Tc falls to 25

years for the summer cleaning scenarios (S and SA) and to 33.3 years for the SAW7 scenario,

but retains the 50-year level of protection using the SAW1 maintenance approach. In the

case of the High Burn Severity, the level of bulking is much higher than that assumed for

infrastructure design purposes (kdes = 1.2), which leads to a major reduction in the level

of infrastructure performance compared to that of the Low and Moderate Burn Severity

scenarios.
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4.4 Discussion

The previous results clearly show that peak bulked flows may exceed the capacities of chan-

nels located below burn areas at frequencies far greater than inferred by the exceedance

probability of precipitation used for infrastructure design. To this end, we define a hazard

amplification factor,

AF = Tp/Tc = pc/pp (4.3)

which represents a ratio of the frequency of overtopping events for the marginal hazard

(precipitation in the absence of wildfire) to that of the compound hazard. Results presented

here point to hazard amplification factors ranging from 1.0 to 16.0 across all simulation

scenarios.

To get a sense of present post-fire flood risks, consider the range of hazard amplification

factors that results from scenarios combining the 50B and 100B design standards with the

range of historically observed fire intervals in southern California, 7 years to 52 years (151):

the median hazard amplification factors are 1.0, 2.0, 4.0, and 6.0 for the 50B/52-year scenario,

100B/52-year scenario, 50B/7-year scenario, and 100B/7-year scenario, respectively. For

context, we note that the 50B design standard is a generalized representation of the design

standard used by Los Angeles County (76; 77), which operates nearly 200 debris basins

across the county.

Now consider future scenarios in which the fire interval decreases to 5 years or 2 years, re-

sulting in median amplification factors of 4.5 and 7.0 for the 50B design standard and 7.0

and 11 for the 100B design standard, respectively (Figure 4.2). These constitute compound

hazard estimates up to an order of magnitude greater than the return level for which the

flood infrastructure is designed. With respect to our choice of 2 years for the lower bound
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of the fire interval, we do not expect fire intervals in the region to decrease below this value

based on projections of future fire intervals and a review of post-fire watershed recovery in

Mediterranean climates that found a minimum recovery period of 2 years (35; 163). This

simple comparison demonstrates the potential of the modeling framework to predict future

hazards based on any distribution of hazard drivers (e.g., fire interval, fire severity, pre-

cipitation intensity, changes in maintenance). Previous studies have documented the value

of stochastic modeling for studying infrastructure performance (12), and there is growing

interest in understanding non-stationarity in flood hazards. For example, non-stationarity

in flood hazards has been linked to land use or land cover change (86), sea level rise (165),

and more intense precipitation extremes (11; 144). However, predicting future distributions

of hazard drivers is not straightforward. For example, projections of future precipitation

have proven challenging, especially for California (55). That said, our model can be used to

determine the consequences of assuming a particular distribution for a given hazard driver

on the post-fire flood hazard, which may prove useful to flood management agencies until

the uncertainty in projections is reduced.

The design and construction of flood infrastructure, as well as its maintenance, is affected by

many factors including available financial resources and government permit requirements.

Maintenance costs for infrastructure cleaning generally scale with the volume of material

to be excavated, and the timing of the excavation. Excavation during the wet season may

be several times more expensive than dry season excavation due to the physical processing

required of wet sediment and mud, the challenge of finding a disposal site and other factors

(116). Modeling results show the volumes of material requiring excavation increase by about

an order of magnitude as fire interval decreases from 50 years to 20 years (Figure 4.4). Fur-

thermore, simulations show that the volumes of material requiring excavation from channels

decrease as excavation of debris basins becomes more aggressive. Our model produces quan-

titative estimates of the magnitude of excavation required to maintain flood infrastructure

performance that could help flood management agencies evaluate the cost effectiveness of
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different maintenance approaches under multiple climate change scenarios and multidecadal

planning timescales.

Increased awareness of hazard amplification among exposed populations could prove espe-

cially valuable for public safety. Given the short time period between wildfire containment

in Summer or Fall and potential precipitation-induced flooding and debris flows in Winter or

Spring, emergency responders and residents of the wildland-urban interface could be fatigued

from fire mitigation and evacuation and less able to respond quickly to post-fire flooding and

debris flows. Furthermore, residents who trust that debris basins and flood control channels

will be sufficient to contain post-fire runoff and who are unaware of potential overtopping

could be relatively unconcerned about flooding and debris hazards and be less prepared to

respond (95; 54; 56). In addition, post-wildfire debris flows can travel with surprising speed

several kilometers from the burn area, impacting unexpecting residents of the urbanized

lowlands who in many cases may be of a lower socioeconomic status with fewer resources to

respond compared to residents on higher ground along the wildland-urban interface (Fig. 2.1).

Impacts on lowland residents could be particularly severe if sediment fluxes clog downstream

flood control infrastructure resulting in unpredictable flow paths through these communities.

For these reasons, advancing a greater understanding about hazard amplification and the

potential limitations of flood control protections among emergency agencies and residents of

these areas will be very important given the expected intensification of fire and storm events

in coming years.

4.5 Conclusion

In this study, a new model is developed for estimation of compound post-fire flood hazards

below mountain catchments based on multiple interdependent factors including the frequency

and severity of wildfires, the effect of wildfire on sediment production and flood peaks, the
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presence of debris basins and flood channels to mitigate hazards, the loss of channel capacity

from sedimentation and clogging, and the restoration of channel capacity with infrastruc-

ture maintenance. Compound hazards are estimated by counting overtopping events within

century-long Monte Carlo simulations with stochastic inputs. While the model is applied

here with parameters representative of southern California, it can be parameterized for other

regions, making it highly transferable.

Application of the model shows that the hazard facing human populations may be up to an

order of magnitude greater than what would be expected based on the return period of the

primary hazard driver (rainfall) used for infrastructure design. Moreover, we find that this

hazard amplification is sensitive to design standards. For example, in southern California

where fire intervals are roughly 20 years on average, infrastructure designed based on ex-

treme rainfall with a 50-year return period yields a level of protection corresponding to a

15- or 25-year return period depending on whether a clear-water (50C) or bulked flow (50B)

design approach is used, respectively. This corresponds to a hazard amplification of 2.0-3.3.

Similarly, designs based on extreme rainfall with a 100-year return period yields a level of

protection corresponding to roughly 20- and 30-year return periods depending on whether a

clear-water (100C) or bulked flow (100B) design approach is used. This corresponds to a haz-

ard amplification of 3.3-5.0. Considering that the 50B and 100B design standard scenarios

were based on infrastructure design standards currently used by two highly populated coun-

ties in southern California, these hazard amplification factors point to concerning limitations

to the protection of human development from post-fire flood risk.

Simulations also show that differing maintenance approaches influence hazard amplification.

For example, with a 20-year fire interval and a 50-year bulked design standard, the flood

return period can range from 25 to 50 years across the four maintenance scenarios based

on operational maintenance approaches in Riverside County. This corresponds to an hazard

amplification of 2.0 and 1.0, respectively.
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Stochastic simulations also reveal the sensitivity of compound post-fire flood hazards to a

prominent aspect of the effects of climate change in southern California, increased wildfire

frequency. For example, if fire intervals were to shift from 20 to 10 years, the median flood

return period for the 50-year bulked flow design approach would be reduced from 25 to

17 years. Hence, the hazard amplification would increase from 2.0 to 3.0. Furthermore,

simulations show that shifts in burn severity also increase the hazard amplification. For

example, infrastructure that is constructed based on a 50-year bulked flow design standard

and experiences only moderate burn severity events (which match the design standard)

exhibit a 50-year level of protection, but a shift to high burn severity reduces the flood

return period to 25 years, corresponding to a hazard amplification of 2.0.

The ability of this original modeling framework to quantify compound post-fire flood hazards

as a function of wildfire severity and frequency, precipitation intensity, and flood infrastruc-

ture design and maintenance makes it a useful tool for risk management. In particular,

model applications can support flood risk communication efforts to increase awareness of

the heightened flood hazards. Furthermore, the model could be applied to back-calculate

the sizing of infrastructure and maintenance levels needed to achieve a specific standard of

protection, such as a 50-year return period.
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Chapter 5

Spatial Distribution of Hazards and

Risks

5.1 Introduction

Characterization of the spatial distribution of sediment-laden flood hazards is essential to

increase risk awareness, develop flood mitigation strategies, and increase community risk

awareness and preparedness. Southern California is especially vulnerable to sediment-laden

flood hazards based on combinations of steep topography, frequent wildfires, expansive urban

development, and intense precipitation (70). Riverside County, California is a particularly

good test case for estimating post-fire flood risk due to the presence of three mountain ranges

forming a border around the most populated portion of the county: the Santa Ana Moun-

tains, the San Bernardino Mountains, and the San Jacinto Mountains. The San Bernardino

Mountains are well known for producing debris flows during post-fire storms, and post-fire

debris flows have been observed in the San Jacinto as well (17; 39). Further, many areas

of Riverside County are currently unoccupied by human development but are rapidly being

89



developed as nearby urban centers such as Los Angeles expand. This rapid urbanization

trend creates a patchwork of rural, peri-urban, and urban areas that is an interesting setting

for the study of sediment-laden floods: for example, concrete-lined flood channels do not

exist for many communities that are less densely populated or that were established before

the construction of formal flood infrastructure was common (117). Instead, these areas have

natural, or unlined, flood channels that have poorly defined banks and tend to shift flow

paths over time. The spatial heterogeneity in population density and the presence (or ab-

sence) of formal flood infrastructure makes Riverside County the ideal setting for a regional

study of flood hazards downstream of mountain canyons.

Previous work developed a parameterization and calibration framework for PF2HazMo to

apply the model to specific watersheds and flood infrastructure systems. The present study

systematically applies PF2HazMo to watersheds across the Santa Ana Mountain Range in

Riverside County to obtain a spatial distribution of sediment-laden flood risk. The identi-

fication of flood risk hotspots can inform the design and maintenance of both current and

future flood infrastructure and support long-term emergency preparedness and risk commu-

nication efforts. An analysis of potential drivers of areas with the greatest risk including

differences in natural factors such as watershed topography, fire recurrence interval, and pre-

cipitation extremes, as well as anthropogenic factors such as the type and capacity of flood

infrastructure, is necessary to develop a better understanding of the spatial distribution of

present-day post-fire flood hazards. Once this baseline hazard is understood, a comparison

to simulations of future post-fire flood risk accounting for changes to wildfire and precipi-

tation frequency and intensity will provide an understanding of the management strategies

needed for long-term flood risk management.

This study aims to address the following research questions:

1. Where are the hotspots of post-fire flood risk in Riverside County, CA based on current
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fire frequencies, precipitation statistics, and infrastructure capacities and maintenance

approaches?

2. What are the key drivers (both natural and anthropogenic) of post-fire flood risk for

catchments with the greatest risks?

Since post-fire flood frequency estimates for Leach watershed, which had an unlined channel,

were much greater than those for McVicker watershed, which had a concrete-lined channel,

we hypothesize that in general, infrastructure systems with lined channels mitigate flood risk

better than those with unlined channels (see Section 3.2.4).

5.2 Methods

The following methodological sections cover a description of the study catchments, the meth-

ods used and data analyzed to apply the modeling framework, and the correlation and sig-

nificance testing analysis used to determine the drivers of the sediment-laden hazard.

5.2.1 Site Identification and Description

Watersheds were selected for hazard modeling by examining maps of wildfire variables (such

as fire recurrence interval and historical fire perimeters), precipitation variables (such as 100-

year 15-minute precipitation intensity), and downstream population characteristics (such as

population density). We targeted areas where high fire hazard, high precipitation hazard,

and high population intersected and noted whether flood infrastructure was present in these

areas. Finally, we consulted with Riverside County to identify additional locations where

post-fire flood hazards had occurred in the past based on their expertise and boots-on-the-

ground experience. Figure 5.1 presents the watersheds included in the regional application of
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Figure 5.1: Map of Riverside County watersheds for which the spatial distribution of hazards
will be estimated. Urban areas are defined by population density >1,000 people per sq. mi.

.

PF2HazMo. Phase I watersheds are covered in this chapter, while the estimation of hazards

for Phase II is currently underway.

The Phase I watersheds included in this study represent mountain watersheds across the

Santa Ana Mountains with variability in drainage area, watershed slope, mean fire interval,

precipitation intensity, and infrastructure type and capacity (n=13). Of the 13 study sites,

six have only a flood channel, three have only a debris basin, and four have both types of flood

infrastructure. Of the ten watersheds with downstream flood channels, five are concrete-lined

and five are unlined (i.e., soft-bottom/natural). Additionally, the downstream populations

display spatial variation in characteristics such as population density, median household
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Figure 5.2: Map of watersheds included in the present study (Phase I). Urban areas are
defined by population density >1,000 people per sq. mi.

.

income, and Neighborhood Disadvantage Index (NDI), a composite social vulnerability index

calculated from 25 socioeconomic variables from the American Community Survey (130).

Figure 5.2 displays a map of the catchments studied in Phase I. The methods used to

calculate these physical and socioeconomic site characteristics are described in Section 5.2.5.

5.2.2 Simulation Scenario

Present-day sediment-laden flood hazards are estimated by considering a 100-year simulation

of wildfires, storm events, and infrastructure maintenance. The model is forced with a time
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series of daily precipitation reflective of historical precipitation statistics that is spatially

averaged over the contributing area of each watershed to reflect differences in spatial rainfall

patterns. Wildfire occurrence and severity are treated as random variables, fire frequency is

set to the mean fire recurrence interval (representative of the historical fire regime), and fire

severity is bracketed by a range of post-fire bulking factors estimated on a site-by-site basis.

The post-fire recovery timescale is also treated as a random variable, since the recovery time

of watershed vegetation following fire has been linked to vegetation type, water availability

during recovery period, terrain slope/aspect, burn severity, and soil hydrological properties

and thus has significant spatial heterogeneity that is best captured through random sampling

for the purposes of this study (45; 53; 72; 24). Across the study sites, infrastructure design

capacities are estimated from data on the actual capacities of “empty” flood infrastructure,

and the infrastructure maintenance approach consists of summer, after-fire, and wet season

cleaning with a cleaning threshold of 85% and a wet season waiting period of 1 day based

the standard maintenance schedules and excavation records of Riverside County. PF2HazMo

model outputs include the number of flood channel and debris basin exceedances per century

and the annual exceedance probability of each type of infrastructure (depending on which is

present for each study site). The annual exceedance probability is calculated as the number

of years with at least one exceedance divided by 100 years, the number of years in the

simulation. We report annual exceedance probabilities based on channel exceedances if the

study site has a flood channel or based on debris basin exceedances if only a debris basin

is present. For each study watershed, 3,000 stochastic simulation trials are produced to

generate a distribution of estimates for each hazard variable.

5.2.3 Parameter Estimation

Table 5.1 summarizes the model parameters and estimation methods used to parameterize

the model for regional hazard estimation.
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Table 5.1: Summary table of model parameters and estimation methods.

Parameter Name Symbol Approach Data Reference

Watershed Area A GIS analysis
10-m DEM from
USGS

-

Runoff Response ct
Frequency Curve Ap-
proach

Regional Rainfall and
Discharge Frequency
Estimates

Section 3.1.4

Time to Peak tp
Median storm dura-
tion across rain gauges

Rain gauge records (71)

Fire Interval tf
Spatially average over
watershed area

30-m raster of mean
fire return interval

(78)

Post-fire Bulking Factor k1

LA Debris Method
with A-T Factor for
Santa Ana Mntns

Regional Rainfall
Frequency Estimates,
sediment yield es-
timates from DEM
differencing, water-
shed morphology

(40)

Recovery Timescale tr

Defin range based on
observed post-fire veg-
etation recovery times

Reported recovery
times in literature

(79; 39; 38)

Debris Basin Design Ca-
pacity

–V des
b GIS analysis 1-DEM from USGS

Flood Channel Design
Capacity

Ddes
c

2D flood inundation
modeling

1-DEM from USGS,
0.5-m Lidar-derived
DEM from Riverside
County

(128)

Infrastructure Cleaning
Threshold

–Vthresh

Set to 85% based on
communication with
Riverside County

- (117)

Wet Season Cleaning
Waiting Period

w
Set to 1 day based on
analysis of excavation
records

Excavated sediment
volumes at roughly
daily intervals

-

Wet Season Debris Basin
Cleaning Rate

r
Average daily volume
excavated

Excavated volumes of
sediment from Leach
and McVicker debris
basins

-
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Runoff Response and Time to Peak

The runoff response parameter, ct was estimated using the Frequency Curve Approach de-

scribed in Chapter 3, Section 3.1.4. Since observed streamflow data was only available for a

single streamgauge in the Phase I study region with <5 years of data, we chose to apply the

Frequency Curve Approach to each watershed, which calibrates the runoff response parame-

ter, ct, to precipitation and discharge frequency estimates spatially interpolated from regional

networks of ground-based observations. Since the objective of this study is to estimate flood

hazards on a multidecadal time scale (100 years), calibrating the runoff response parameter

based on long time series of extreme hazard statistics will ensure the model produces hazard

estimates reflective of the peak flow statistics in the region. Descriptions of the precipitation

and the discharge frequency estimates used to estimate the runoff response parameter are

provided in Sections 5.2.5 and 5.2.5, respectively.

The time to peak parameter, tp, was estimated from statistical analysis of observed storm

durations using rain gauge data. We calculated tp as storm duration divided 2, an approxi-

mation of the method described by (136). The rain gauge observations used to estimate the

time to peak parameter are described in detail in 5.2.5.

Post-fire Bulking Factor

The range of post-fire bulking factors, k1, for each watershed was estimated by applying the

LA Debris Method to each “n-year” return period event in the frequency curves for each

watershed, using a range of Fire Factors, and setting the lower and upper bounds to the

minimum and maximum estimated bulking factor, respectively. This approach is essentially

the same as that used in Chapter 3 (see Section 3.1.3), but instead of using HEC-HMS to

apply the LA Debris Method to simulated hydrographs, the LA Debris Method is applied

directly using the appropriate peak precipitation and flow statistics for each watershed.
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The LA Debris Method consists of a set of five regression equations with unit sediment yield

as the dependent variable (sediment volume normalized by watershed area) and watershed

area, relief ratio, Fire Factor, and either 1-hour peak precipitation or unit peak discharge

(volumetric discharge normalized by watershed area) as the independent variables. Each

of the five equations is applicable to a class of watershed areas, with Eqn. 1 applicable to

areas in the range (0.256-7.77 km2) and Eqn. 5 applicable to areas in the range (129-518

km2); the fact that the method was developed for a wide range of watershed areas makes it

particularly suited to regional applications. The relief ratio is defined as the watershed relief

(difference between highest and lowest elevation) and the length of the longest flow path

(maximum stream length measured along the longest stream); Section 5.2.5 explains how

these values were obtained. The Fire Factor is a dimensionless parameter that represents the

impact of wildfire on debris yield with a value of 6.5 representing ten years since 100% of a

given watershed burned at a value of 3.15 representing one year since 100% of the watershed

burned; we simulated sediment yields for each of these cases to obtain a representative range

of post-fire bulking factors. Finally, the hydrological forcing for the LA Debris Method is

1-hour peak precipitation for Eqn. 1 and unit peak runoff for Eqns. 2-5. This difference

in hydrological forcing is due to the lack of availability of peak discharge observations for

small watersheds and strong correlation with 1-hour maximum precipitation found in the

study (40). To implement the LA Debris Method, we spatially averaged 1-hour precipitation

frequency grids by watershed area; these were used directly for watersheds that fell in the

area class represented by Eqn. 1. To obtain unit peak runoff, we used the Rational Method

to calculate the peak discharge corresponding to the 1-hour, area-averaged precipitation and

the runoff response parameter, estimated as discussed in Section 5.2.3. The peak discharge

calculated from the Rational Method was then divided by watershed area to obtain the unit

area runoff needed to apply the LA Debris Method.

Another new methodology applied in this study is the use of a dimensionless parameter

termed the Adjustment-Transposition (A-T) Factor to modify the sediment yield estimates
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from the LA Debris Method to account for the erosion rate specific to the Santa Ana Moun-

tains. The A-T Factor, developed by Gatwood et al. (40), allows the LA Debris Method to

be applied outside the region to which its regression equations were developed by estimating

the A-T factor based on event-based or annual average sediment-yield data for the site of

interest. Since this study aims to produce a spatial distribution of flood hazard estimates,

accounting for differences in the geomorphic and geologic properties of the mountain ranges

in the region is important. The estimation of the A-T Factor for the Santa Ana Mountains

from post-fire sediment yield data is described in Section 5.2.5.

Recovery Timescale

The recovery timescale, tr was treated as a random variable by sampling from a range of

values representative of the range of recovery times reported in the literature for post-wildfire

watershed vegetation recovery in southern California. While it is possible to estimate this

parameter on a site-by-site basis using the method using remotely sensed vegetation indices

described in Section 3.1.3, preliminary testing of the application of the method to burn

areas throughout Riverside County found that there is a substantial amount of noise in the

vegetation recovery signal. Indeed, studies have shown that post-fire vegetation recovery

is a function of many factors including water availability during the recovery period (e.g.

drought, soil moisture), terrain slope/aspect, burn severity, and soil hydrological properties

(45; 53; 72; 24). Estimation of these confounding factors across the study region is outside

the scope of this study, and the finding that the recovery time scale is not a highly sensitive

model parameter when ranked by sensitivity coefficient or correlation coefficient (Section

3.2.1) motivate our choice to treat the recovery timescale as a random variable. The range of

recovery timescales was bracketed by watershed recovery times of two to ten years (79; 38; 39).

The recovery timescale was back-calculated by setting k(t) = 1.01k0 when t equals the the

observed recovery time and rearranging Eq. 3.2 (Section 3.1.2) to solve for tr.
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Infrastructure Capacity and Maintenance Parameters

To estimate debris basin capacity, we used the same method as delineated in 3.1.3 in which

we estimated the volume of the empty debris basin using the Surface Volume tool in ArcGIS

(30). The Digital Elevation Model (DEM) used in this analysis had a horizontal resolution

of 1-m and is described in greater detail in Section 5.2.5.

To estimate flood channel capacity, we used PRIMo, a dual-grid flood inundation model,

to determine the maximum flow rate the flood channels could convey without producing

overbank flows (128) as described in 3.1.3. The flood inundation simulations were conducted

for all channels simultaneously owning to PRIMo’s ability to produce flood simulations over

regional scales at fast compute times. Since the model domain was large (roughly 25 km

square), we used spatially distributed Manning resistance parameters based on 30-m National

Land Cover Database (NLCD) 2019 data (29). The NLCD classes were assigned Manning

resistance parameter values based on Chow (25) for most undeveloped land cover types; land

use types that typically represented the location of unlined channels were assigned Manning

resistance values used by Riverside County and the U.S. Army Corps of Engineers repre-

sentative of “natural channels with heavy vegetation” (31). Manning resistance parameters

for medium and high intensity development were based on (34). We used a 1-m DEM from

the USGS as the terrain data used for flood inundation modeling and an upscale factor of 5

for all but three sites: for the Mabey site, the channel width was approximately 5 m, so we

used an upscale factor of 2 to resolve the flow dynamics at the appropriate scale. For the

Dickey and Greenwood sites, channel widths were even smaller, ∼4 m, so we used a 0.46-m

resolution DEM derived from Lidar as the terrain forcing with an upscale factor of 2 (see

Section 5.2.5). Lastly, when calculating infrastructure exeedances we applied a tolerance to

overbank flows to constrain the number of simulated exceedances, which otherwise would

count any amount of overbank flooding as an exceedance. We set the overbank flow tolerance

to 2% of the design infrastructure capacity.
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The same infrastructure maintenance parameter values were used across all sites for con-

sistency and based on communication with Riverside County. The infrastructure cleaning

threshold was set to 85% based on the typical maintenance protocols implemented by River-

side County (116). The wet season cleaning waiting period, w, was set to one day based

on an analysis of wet season debris basin cleaning frequency from excavation records for the

2018-19 wet season for Leach and McVicker debris basins (detailed in Section 3.1.3). The

wet season debris basin cleaning rate, r, was set to the average daily volume of sediment

excavated based on excavation records for both Leach and McVicker debris basins.

5.2.4 Correlations with Hazard Drivers and Population Charac-

teristics

To develop an understanding of the drivers of sediment-laden flood hazards in areas facing

the greatest risks, we performed correlations between the simulated hazard variables and a

suite of physical and socioeconomic variables aggregated to the watershed scale. The physical

factors included: watershed area, runoff response parameter, average percentage slope of the

watershed, mean bulking factor, area-averaged fire interval, area-averaged 15-minute 100-

year precipitation, debris basin capacity, and flood channel capacity. The socioeconomic

factors included: population density per square mile, median household income, and NDI.

Data sources and pre-processing procedures for the correlation variables are described in

Section 5.2.5.

Correlation analysis was conducted using the R programming language and the “rcorr”

function from the Hmisc package (111; 51). Spearman correlation was used to determine

whether a monotonic correlation between hazard variables and the aforementioned physical

and socioeconmic variables existed; we used Spearman correlation, a nonparametric measure

of rank correlation between variables, since the data for several variables were not normally
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distributed. The sign of the reported Spearman rank correlation coefficient, ρ, indicates the

direction of the relationship between two variables, while the value ranges between -1 and 1;

a value close to -1 or 1 indicates a monotonic, though not necessarily linear, relationship in

which one variable tends to increase or decrease as the other increases.

5.2.5 Data Sources

Precipitation

We retrieved Daymet V4 daily rainfall grids at 1-km resolution for 42 years (1 January

1980 to 31 December 2021) from Google Earth Engine and averaged them by watershed

area to generate the model forcing. Daymet V4 daily precipitation summaries represent an

interpolation of rainfall observations from a national network of ground-based meteorological

stations, the NOAA National Centers for Environmental Information’s Global Historical

Climatology Network (146). To obtain a 100-year time series of daily rainfall from the 42-

year time series for each watershed, we first spatially averaged the rainfall grid by watershed

area using ArcGIS (30) for each day in the time series; then, we repeated the time series

sequentially three times and truncated the result to 100 years. This allowed us to capture

the historical precipitation statistics of each site while accounting for spatial variability over

the area of the watershed, which is especially important for larger watersheds.

Precipitation frequency estimates were needed to estimate the runoff response parameter,

the post-fire bulking factor, and the 15-minute precipitation variable for the correlation

analysis. To estimate the runoff response parameter, we retrieved precipitation frequency

estimate grids for a 6-hour storm duration for return periods of 2, 5, 10, 25, 50, 100, 200, and

500 years from NOAA Atlas 14 as described in Chapter 3 (106). We then spatially averaged

the precipitation estimates by watershed area to obtain a spatial average for each watershed.

To estimate the post-fire bulking factor, the LA Debris Method Eqn. 1 specifies that 1-
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hour maximum precipitation must be used to estimate debris yield, so we retrieved NOAA

Atlas 14 precipitation frequency estimates for the same return periods for a 1-hour storm

duration and performed the same spatial average analysis to produce a 1-hour precipitation

frequency curve for each watershed. Finally, as a precipitation variable to include in the

correlation analysis described in Section 5.2.4, we retrieved the 15-minute duration, 100-

year precipitation grid and calculated a spatial average over the area of each watershed. We

chose the 15-minute duration because 15-minute peak rainfall intensity was found to be a

significant driver of debris flow volumes during storms within two years after wildfire in the

Transverse Ranges of southern California (39).

Lastly, sub-daily rainfall data were needed to estimate the time to peak parameter from

observed storm duration. We used precipitation data from six tipping-bucket rain gauges

located near the study watersheds at high elevations to calculate storm durations; the rain

gauge records had record lengths from one wet season to 26 years, with gauge 202 having

the longest record (see Figure 5.2). Rainfall data was quality controlled by removing values

greater than 0.08 in, or twice the precipitation per tip. We then applied a storm identification

algorithm written in MATLAB that separates the precipitation into storms after 6 hours

with <0.05 in of rainfall and omits storms with a depth of <0.3 and an intensity of <0.2 in

[add matlab citation]; the intensity threshold is based on the 6-hour precipitation intensity

threshold for triggering debris flows reported in (139).

Discharge Frequency Estimates

Discharge frequency estimates corresponding to the same return periods as the precipitation

frequency estimates were obtained by applying the StreamStats online tool to each water-

shed individually (153). These discharge estimates are calculated using regional regression

equations developed by fitting a log-Pearson Type III distribution to annual peak flow data

through water year 2006 from a network of USGS streamgages in California with 10 or more

102



years of data (44).

Topography and Watershed Morphology

Watershed area was calculated using a 10-m DEM from the U.S. Geological Survey (USGS)

using ArcGIS software (30). Average percentage slope of the watershed was determined

using the same 10-m DEM after applying the Fill tool in ArcGIS to remove noise in the form

of elevation sinks. Watershed characteristics such as relief and length of longest flow path

were used to estimate the post-fire bulking factor and were calculated for each watershed

using the StreamStats online tool (153).

Debris basin capcity and most of the channel capacities were estimated using a 1-m DEM

from the USGS produced in 2018 before the start of the wet season (154). Dickey and

Greenwood channels were estimated from We used a DEM produced from a 0.46-m DEM

derived from an airborne Lidar survey conducted in September 2018 before the start of the

wet season with a resolution of 0.46 m (1.5 ft) and vertical accuracy of 3.02 cm (0.099 ft,

RMSE). The reason it is important that the topographic data were surveyed before the start

of the wet season is that sediment can accumulate in the flood channels during post-fire

storms, and the infrastructure capacity estimates are meant to represent clean/empty in-

frastructure. DEMs used for channel capacity estimation were hydro-conditioned in ArcGIS

to remove bridges and culverts.

Fire Interval

A 30-m raster of mean fire return interval from the LANDFIRE program was used to calculate

a spatially averaged fire interval for each watershed area (78). This variable represents

the average number of years between fires under the presumed historical fire regime as

calculated by a vegetation disturbance dynamics model (123). It is a joint product of the
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U.S. Department of Agriculture Forest Service and the U.S. Department of the Interior.

Sediment Yield Estimates

To apply the LA Debris Method equations for estimating post-fire sediment yields regionally,

Gatwood et al. (40) developed a dimensionless parameter to account for regional differences

in geomorphology and geology called the Adjustment-Transposition, or “A-T” Factor. The

A-T Factor can be estimated using event-based or periodically collected sediment yield data

to modify the sediment yield estimates produced by the method based on the erosion rates

of the specific location to which they pertain. For this study, we calculated the A-T Fac-

tor as the ratio of observed event-based sediment yields to the unadjusted sediment yield

estimated from the LA Debris Method for several post-fire storm events (40, Appendix B,

Technique 1). Our observed sediment yields are derived from DEMs produced from five (5)

photogrammetric surveys of the Leach and McVicker debris basins conducted throughout

the 2018-19 wet season following the Holy Fire (described in Chapter 3, Section 3.1.3). We

calculated the difference in elevation between DEMs from successive surveys (a technique

known as “DEM differencing”) to estimate the volume change in the debris basin over time.

The DEM differencing resulted in four (4) estimates of sediment change for each of the two

debris basins throughout the wet season (n=8); excavation of the debris basins was occurring

during this time, and excavation volumes obtained from excavation record kept by Riverside

County were used in conjunction with the sediment volume change values to calculate the

sediment flux into the debris basin by computing a mass balance.

Once sediment yields were estimated from debris basin surveys, the corresponding maximum

1-hour precipitation for the time period corresponding to each sediment yield estimate was

calculated from rain gauge data for use in the LA Debris Method equations. Finally, the

A-T Factor for each for each pair of observed and estimated sediment yields was calculated

as:
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A− T Factor =
Sediment Yield Calculated from DEMDifferencing

Sediment Yield Calculated from LA Debris Method
(5.1)

and an overall A-T Factor for the Santa Ana Mountains was calculated as the median of

the event-based A-T Factors. We note that each sediment yield estimate derived from DEM

differencing does not correspond precisely to one storm event due to logistical limitations

on the frequency of UAV surveys by Riverside County, contributing some uncertainty to

the sediment yield estimates. However, these estimates represent the best available post-fire

sediment yield data for the watersheds in this mountain range at this time.

Population Characteristics

Socioeconomic characteristics for populations downstream of the flood infrastructure systems

at each study site were selected from the 2016-2020 American Community Survey (ACS)

variables at the block group level (149). We chose population density in terms of people per

square mile to determine whether risks were greater in more populated areas and median

household income as a proxy for the ability of households to manage their flood risk based

on the financial resources available to them. NDI is a composite index of 25 variables from

the 2016-2020 ACS at the block group level that include measures of socioeconomic, housing,

education, and employment status (130). Higher NDI values indicate greater disadvantage.

To define a single estimate of each socioeconomic variable for each study site to include in the

correlation analysis, we first defined the block groups that comprised the population exposed

to flood hazards downstream of each study watershed. This was done by intersecting the

length of flood channels used in channel capacity estimation with the block group boundaries

in ArcGIS; any block group with a boundary intersected by the flood channel was included
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as a “downstream community” of the channel with the potential to be affected by flooding

if the channel overtopped. We note that while this definition may exclude block groups

not immediately adjacent to the channel yet still subject to flooding if the magnitude of

overbank flows is great enough, this method is designed to identify exposed populations in

a systematic way and at the very least ensures those populations exposed directly to fluvial

flooding are captured. The downstream community for watersheds with only debris basins

present was defined by simulating overtopping just downstream of the debris basin with

PRIMo and including those block groups within the flood extent.

Based on these methods, downstream communities varied between one and three block

groups for each study site. It was possible to calculate a representative value for each

downstream community for population density and median household income because the

ACS includes variables for total population and aggregate household income at the block

group level. We calculated population density as the total population in all the block groups

of each downstream community and divided by the total area of these block groups in square

miles. We calculated median household income as the sum of the aggregate household in-

come of all block groups in the downstream community divided by the number of households

in these block groups. NDI, however, could not be aggregated at the downstream community

level, so we calculated an average NDI and an area-weighted NDI, to account for differences

in the area covered by each block group, across block groups and used both metrics in our

correlation analysis.
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5.3 Results

5.3.1 Spatial Distribution of Sediment-laden Flood Hazards

The distributions of annual exceedance probability (AEP) of the flood infrastructure at the

outlet of each study watershed based on a 100-year simulation and 3,000 simulation trials

are presented in Figure 5.3. It is immediately clear that two study sites have far greater

AEPs than the others: Greenwood Dr. and Indian. Both of these channels are unlined, and

Greenwood Dr. has the smallest channel capacity of all the watersheds with flood channels,

while Indian had the third lowest channel capacity (the same channel capacity as Rice).

We note that the estimated median AEP of 0.98 for Greenwood Dr. means that the model

predicts that the channel would overtop nearly once every year, which seems unrealistically

high; that said, it is reasonable that the exceedance probability would be high compared to

the other sites given the unlined flood channel in question is more of an informal drainage

ditch <4 m wide with poorly defined channel banks based on inspection of the 0.46-m DEM

used to estimate its capacity.

Turning attention now to the sites with the third and fourth greatest median AEPs, the Oak

St. and Main St. watersheds both have debris basins and concrete-lined channels and yet

are predicted to have among the highest AEP values. The median AEPs for Oak St. and

Main St. are 0.20 and 0.16 which correspond to flood return periods of 5 and 6.25 years,

respectively. It is an interesting finding that two watersheds with both types of flood infras-

tructure are predicted to have such high AEPs once the possibility of infrastructure clogging

with sediment is taken into account. The fact that both of these watersheds have lined flood

channels contradicts our hypothesis that lined channels are generally more protective than

are unlined channels.

Figure 5.4 displays the predicted number of debris basin exceedances for the 100-year sim-
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Figure 5.3: Distributions of annual exceedance probability of flood infrastructure.
.

ulation period across all watersheds with a debris basin. Main St. and Oak St. again

rank highly in terms of infrastructure exeedances, and the distributions of the number of

exceedances span two orders of magnitude. In contrast to the sites with high AEPs, Main

St. and Oak St. have debris basin with high capacities: the second and third largest debris

basins after Mabey debris basin. However, these two sites do have the largest watershed ar-

eas and among the highest mean bulking factors of all the study watersheds, and PF2HazMo

was found to be highly sensitive to both parameters (Chapter 3, Section 3.2.1). The two

sites with the lowest median number of basin exceedances and least variability within the

distributions, Mabey and Horsethief, also have the lowest mean bulking factors of all the

sites. The ranking of watersheds from greatest to least basin exceedances per century roughly

tracks with the ranking of greatest to least mean bulking factor (with the exception of Oak

St., which has a greater mean bulking factor than does Main St.).

The number of channel exceedances that occurred over the 100-year simulation for watersheds

with a flood channel is shown in Figure 5.5. Greenwood Dr. is estimated to have ∼1,000

channel exceedances over the century and Indian is expected to have about 200, while the rest
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Figure 5.4: Distributions of the number of debris basin exceedances per century.
.

of the watersheds are predicted to have 33 or fewer (based on the median of the distributions).

Oak St., Main St., and Rice have medians of 33, 28, and 15 channel exceedances per century,

respectively.

5.3.2 Correlation Analysis and Significance Testing to Determine

Flood Hazard Drivers

Scatterplots for correlations between model response variables and physical variables that

were significant at the 95% confidence level, and socioeconomic variables that were significant

at the 90% confidence level, are shown in Figure 5.6 (additional correlation results shown

in Figure C.1). Figures 5.6a and 5.6b show the expected positive relationships between the

post-fire bulking factor and the number of basin exceedances and watershed area and the

number of basin exceedances. The negative correlation between channel capacity and the

maximum number of channel exceedances across simulation trials illustrated by Figure 5.6c

corroborates the result that channels with lower capacities tended to have greater AEPs
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Figure 5.5: Distributions of the number of flood channel exceedances per century.
.

(Figure 5.7).

With respect to correlations between population characteristics and model response vari-

ables, an unexpected positive correlation between population density and the maximum

number of basin exceedances is shown in Figure 5.6c. This result indicates that when con-

sidering the highest estimates of debris basin exceedances across simulation trials, areas with

greater debris basin exceedances are also those with greater downstream population densities.

Further, we found a negative correlation between average NDI and the median number of

debris basin exceedances. This negative correlation suggests that downstream communities

exposed to higher numbers of debris basin exceedances tend to exhibit less socioeconomic

disadvantage (i.e., more advantage) on average. Since the p-values for these correlations are

slightly greater than p=0.05, the threshold for the 95% significance level, more data would

help establish confidence in these relationships; it will be interesting to see if the results for

the Phase II watersheds support these findings for the Phase I watersheds of the Santa Ana

Mountains.
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Figure 5.7 compares the distributions of AEP based on the different types of infrastructure

present at each study watershed. Interestingly, watersheds that have both types of infras-

tructure are not more protective against floods and actually have the highest median AEP

compared to watersheds with only one type of infrastructure. This is almost certainly due

to the influence of the Oak St. and Main St., which had the third and fourth highest AEPs

across all the study sites. While there is great variability in the AEP distribution for wa-

tersheds with only flood channels, in general they tended to have a lower number of years

with exceedances than did those with only debris basins. A Kruskal-Wallis Rank Sum Test

and subsequent Pairwise Wilcoxon Rank Sum Test conducted using the R programming lan-

guage finds that the medians of the distributions are significantly different from one another

(p <0.001). That said, it is important to keep in mind that the sample sizes for each infras-

tructure group are small for this set of Phase I watersheds; hazard estimates from additional

Phase II watersheds will help determine whether these results hold true across the region.

The distributions of the number of channel exceedances per century for lined versus unlined

channels are shown in Figure 5.8. As expected, the median number of channel exceedances is

greater for unlined channels, likely owing to the much higher number of channel exceedances

for the unlined channels of Greenwood Dr. and Indian. A Wilcoxon Rank Sum Test per-

formed in R found that the medians of the distributions are significantly different (p <0.001).

There is no consistent trend in channel capacity with channel type other than that there is

a large range of channel capacities among unlined channels (0.5 cms to 107 cms).

5.4 Discussion and Conclusions

The preceding results highlight multiple hotspots of sediment-laden flood risks among canyons

in the Santa Ana Mountains. The Oak St. and Main St. watersheds represent large drainage

areas (∼10 km2) with relatively high bulking factors upstream of densely populated areas
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that exhibit the greatest simulated number of debris basin exceedances as well as channel

AEPs with return periods that correspond to approximately 5 years. According to historical

fire perimeter data, these watersheds have not burned since 1977 and 1960, respectively, and

this modeling study shows that the clogging of flood infrastructure during post-fire storms

could result in severe flooding problems. Despite the fact that the populations downstream

of Oak St. and Main St. watersheds are protected by both concrete-lined flood channels

and debris basins, the estimated flood hazards for these areas are some of the highest along

the Santa Ana Mountains.

AEPs predicted for Greenwood Dr. may appear unrealistically high (median of 0.98), how-

ever flooding issues have been documented for this channel in the past. The majority of the

watershed area was burned by the Holy Fire, and during the first wet season following the

fire, field teams from Riverside County observed hyperconcentrated flows in the channel and

overtopping or imminent overtopping at least twice near the watershed outlet and once at

a downstream culvert that impacted a major road (117). Flood complaint data provided

by Riverside County shows there were approximately 25 flood complaints made within 0.5

km2 of the channel since 1968. Dickey Canyon, which had the sixth highest estimated chan-

nel exceedances, also burned in the Holy Fire; sediment buildup in the flood channel and

overtopping at a culvert was observed during the 2018-19 wet season. For comparison, only

nine flood complaints have been made within 0.5 km2 of Dickey Canyon Channel since 1986.

Further, the Greenwood Dr. had a channel capacity of only 0.5 cms, which is two orders of

magnitude lower than the median channel capacity of all watersheds with channels, 21 cms.

We estimated the channel capacity for Greenwood Dr. using a fine-resolution DEM (0.46 m)

and an upscale factor of 2, leading to an effective terrain resolution of 1 m; this should be

sufficient to resolve a channel about 3 m in width. The correlation between channel capacity

and the number of channel exceedances shown in Figure 5.6c leads to the conclusion that a

small channel capacity is the main reason why the AEP of Greenwood Dr. was so high.
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Lastly, Indian watershed, which had the second highest median AEP, likely has such a high

potential for sediment-laden floods due to a combination of factors. It has the third lowest

channel capacity, and also has a relatively large drainage area and bulking factor. For

comparison, Rice had the fifth highest median AEP and has the same channel capacity as

that of Indian (10 cms). However, the drainage area of Indian is almost twice that of Rice

(8.36 vs. 4.98 km2) and its mean bulking factor is higher (0.17 vs. 0.13, Table C.1). A greater

drainage area translates to greater peak discharge, while a higher bulking factor translates

to greater sediment fluxes from the watershed. Additionally, Indian has the second lowest

fire return interval across study watersheds, which entails greater sediment fluxes due to a

greater fire frequency. It is this confluence of drivers that leads to the relatively high flood

risk downstream of Indian watershed.

This study highlighted the challenge of quantifying channel capacity for unlined flood chan-

nels, such as that of Rice Canyon, which could be categorized as more of an informal “flow

path” than a flood channel. Since the natural channel was not deep in many reaches and

since its banks were not well defined, the PRIMo modeling showed that flood flows left the

main channel even at a relatively low flow rate. Thus, the characterization of flood channel

capacity is more nuanced and involves more uncertainty than that for lined channels, and

this uncertainty should be taken into account when interpreting simulation results for the

number of channel exceedances and related variables. Future work could develop a method

to quantify the uncertainty of channel capacity estimates of unlined channels, as well as

consider the impact of heavy vegetation growing in channels, which often occurs when main-

tenance funding lapses or there are no major floods for several years. Moreover, development

immediately downstream of Rice Canyon began in 2020, and the construction of a levee near

the watershed outlet has been proposed to protect the new community (118). Modeling

studies such as this one could be beneficial to inform the design of flood infrastructure such

as levees considering the risk of sediment-laden flows after wildfires.
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In conclusion, the present study demonstrates the regional application of PFHazMo across

watersheds in the Santa Ana Mountains to produce a spatial distribution of post-fire, sediment-

laden flood hazard estimates. The hazard modeling identifies hotspots of flood risk near nar-

row, unlined channels as expected, but also downstream of infrastructure systems with formal

debris basins and concrete-lined flood channels. Correlation analysis reveals that flood chan-

nel exceedances are negatively correlated with channel capacity, debris basin exceedances

are positively correlated with the mean post-fire bulking factor, and basin exceedances may

be correlated with population density in communities downstream of infrastructure. Fu-

ture work to apply PF2HazMo to 16 additional watersheds will shed more light on the key

drivers and management implications of the spatial distribution of sediment-flood hazards

across Riverside County.
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Chapter 6

Conclusions and Future Work

The geographic distribution of near-mountain, sediment-laden flood hazards is not well un-

derstood compared to that of fluvial and coastal flood hazards. Increasingly, large segments

of the population are becoming exposed to sediment-laden floods due to increases in wildfire

frequency and severity, the frequency of extreme precipitation, and urban development at

the wildland-urban interface. This dissertation develops an original modeling framework,

PF2HazMo, that captures the interconnected influences of wildfire, storms, and flood in-

frastructure on post-fire, sediment-laden floods. For the first time, a spatial distribution of

post-fire flood risk can be quantified for populations downstream of watersheds that span an

entire mountain range. The stochastic treatment of variables such as precipitation and wild-

fires allows for the quantification of uncertainty and comparison of alternative climate and

management scenarios, while the continuous simulation approach accounts for antecedent

conditions and enables the calculation of hazard statistics over long planning horizons. Esti-

mates of sediment-laden flooding can be used to create maps to raise awareness of compound

post-fire flood risks and facilitate stakeholder engagement in flood risk management. Simu-

lations from PF2HazMo can also inform the placement, design, and maintenance approaches

for flood infrastructure by accounting for the hazard amplification caused by post-fire erosion.
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The development of this new modeling framework and the lessons learned from its application

to multiple watersheds have laid the foundation for future work. In Chapter 3, I discussed

the fact that the impact of short-duration, high-intensity rainfall on peak bulked flows is not

currently resolved well by the model due to the use of a daily timestep. Short-duration, high-

intensity rainfall has been shown to be important for generating post-fire debris flows and

hyperconcentrated flows as well as generating watershed-scale erosion (68; 69; 164; 139; 140).

Future modeling studies could focus developing the capability to reduce the timestep only on

days when precipitation is simulated to occur such that sub-hourly rainfall can be resolved

while also keeping compute times relatively low, even for multidecadal simulation durations.

Moreover, Chapter 4 simulated the amplication of flood hazards under scenarios of increased

wildfire frequency and severity. The next logical step is to examine the effect of the in-

creased frequency of precipitation extremes based on regional climate projections. This can

be accomplished by adjusting the mean and variance of the precipitation probability distri-

bution used to calibrate the stochastic rainfall generator. Further, given the importance of

atmospheric rivers to the total annual rainfall in California and the fact that these intense,

multi-day storms are responsible for much of the flood damages in the state, future work

could simulate the effect of atmospheric rivers on sediment-laden flood hazards.

Lastly, once the regional application of PF2HazMo across Riverside County has been com-

pleted, the estimates of peak bulked flows and channel exceedance probabilities can be used

to force 2D simulations of street-level, sediment-laden flooding. This spatially distributed,

fine-resolution quantification of downstream impacts does not currently exist and would not

only support the needs of flood risk managers, but also provide a pathway for stakehold-

ers to learn about their own post-fire flood risk and participate in flood risk management

efforts. The spatially distributed, multi-decadal sediment-laden flood estimates produced

with PF2HazMo will enable the forward-thinking emergency planning, sustainable land de-

velopment, and stakeholder engagement needed to protect southern Californians from floods
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while ensuring resilient adaptation to the new hazards landscape.
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[91] Mayor, Á. G., Bautista, S., and Bellot, J. (2011). Scale-dependent variation in runoff
and sediment yield in a semiarid mediterranean catchment. Journal of Hydrology, 397(1-
2):128–135.

[92] Meyer, G. A. and Wells, S. G. (1997). Fire-related sedimentation events on alluvial
fans, yellowstone national park, usa. Journal of Sedimentary Research, 67(5):776–791.

[93] Meyer, G. A., Wells, S. G., and Timothy Jull, A. (1995). Fire and alluvial chronol-
ogy in yellowstone national park: climatic and intrinsic controls on holocene geomorphic
processes. Geological Society of America Bulletin, 107(10):1211–1230.

[94] Mockus, V., Hjelmfelt, A. T., and Moody, H. F. (2004). Chapter 10: Estimation of
Direct Runoff from Storm Rainfall, pages 10–i–10A–51. U.S. Department of Agriculture.

[95] Montz, B. E. and Tobin, G. A. (2008). Livin’large with levees: Lessons learned and
lost. Natural Hazards Review, 9(3):150–157.

[96] Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., and Martin, D. A.
(2013). Current research issues related to post-wildfire runoff and erosion processes. Earth-
Science Reviews, 122:10–37.

[97] Nadal-Romero, E., Mart́ınez-Murillo, J. F., Vanmaercke, M., and Poesen, J. (2011).
Scale-dependency of sediment yield from badland areas in mediterranean environments.
Progress in Physical Geography, 35(3):297–332.

[98] National Research Council (1996). Alluvial fan flooding. National Academies Press.

[NOAA] NOAA. Climate data online search. https://www.ncdc.noaa.gov/cdo-web/

datasets/GHCND/stations/GHCND:USC00040798/detail. Accessed: 2022-01-06.

[100] O’Brien, J. S., Julien, P. Y., and Fullerton, W. (1993). Two-dimensional water flood
and mudflow simulation. Journal of hydraulic engineering, 119(2):244–261.

[101] Osanai, N., Mizuno, H., Mizuyama, T., et al. (2010). Design standard of control
structures against debris flow in japan. Journal of Disaster Research, 5(3):307–314.

[102] Pak, J. H. and Lee, J.-J. (2008). A statistical sediment yield prediction model incorpo-
rating the effect of fires and subsequent storm events 1. JAWRA Journal of the American
Water Resources Association, 44(3):689–699.

[103] Parks, S. and Abatzoglou, J. (2020). Warmer and drier fire seasons contribute to in-
creases in area burned at high severity in western us forests from 1985 to 2017. Geophysical
Research Letters, 47(22):e2020GL089858.

128

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00040798/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00040798/detail


[104] Pathiraja, S., Westra, S., and Sharma, A. (2012). Why continuous simulation? the
role of antecedent moisture in design flood estimation. Water Resources Research, 48(6).

[105] Pelletier, J. D. and Orem, C. A. (2014). How do sediment yields from post-wildfire
debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin
area? insights from airborne-lidar change detection. Earth Surface Processes and Land-
forms, 39(13):1822–1832.

[106] Perica, S., Dietz, S., Heim, S., Hiner, L., Maitaria, K., Martin, D., Pavlovic, S., Roy, I.,
Trypaluk, C., Unruh, D., et al. (2011). Precipitation-frequency atlas of the united states.
volume 6 version 2.3. california.

[107] Pierson, T. C. (2005). Hyperconcentrated flow—transitional process between water
flow and debris flow. In Debris-flow hazards and related phenomena, pages 159–202.
Springer.

[108] Piton, G. and Recking, A. (2016). Design of sediment traps with open check dams. ii:
woody debris. Journal of Hydraulic Engineering, 142(2):04015046.

[109] PRISM Climate Group (2023). Oregon State University. Accessed 23 May 2023 at
https://prism.oregonstate.edu.

[110] Prochaska, A. B., Santi, P. M., and Higgins, J. D. (2008). Debris basin and deflec-
tion berm design for fire-related debris-flow mitigation. Environmental & Engineering
Geoscience, 14(4):297–313.

[111] R Core Team (2021). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

[112] Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H., Alexandre, P. M.,
Bar-Massada, A., Butsic, V., Hawbaker, T. J., Martinuzzi, S., Syphard, A. D., et al.
(2018). Rapid growth of the us wildland-urban interface raises wildfire risk. Proceedings
of the National Academy of Sciences, 115(13):3314–3319.

[113] RCEPD (2003). Santa Ana Mountains Bioregion: Volume 2 - Section 2.4. Riverside
County Environmental Programs Division.

[114] RCFCWCD (1978). Hydrology Manual. Technical report, Riverside County Flood
Control and Water Conservation District.

[115] RCFCWCD (2019). Personal communication. Riverside County Flood Control and
Water Conservation District.

[116] RCFCWCD (2021). Personal communication. Riverside County Flood Control and
Water Conservation District.

[117] RCFCWCD (2022). Personal communication. Riverside County Flood Control and
Water Conservation District.

129

https://prism.oregonstate.edu


[118] RCFCWCD (2023). Personal communication. Riverside County Flood Control and
Water Conservation District.

[119] Renard, K. G. (1997). Predicting soil erosion by water: a guide to conservation plan-
ning with the Revised Universal Soil Loss Equation (RUSLE). United States Government
Printing.

[120] Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., Dobre, M., Robichaud,
P. R., and Swetnam, T. (2021). Movement of sediment through a burned landscape: Sedi-
ment volume observations and model comparisons in the san gabriel mountains, california,
usa. Journal of Geophysical Research: Earth Surface, 126(7):e2020JF006053.

[121] Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature,
and solar radiation. Water resources research, 17(1):182–190.

[122] Rickenmann, D., Laigle, D., McArdell, B., and Hübl, J. (2006). Comparison of 2d
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Appendix A

Supporting Information for Chapter 2

This supporting information contains figures that were used to develop the Monte Carlo

Markov Chain (MCMC) rainfall simulator (Figures A.1-A.3), determine return levels of pre-

cipitation used to size infrastructure (Figure A.4), and analyze model sensitivity to watershed

area (Figure A.5). It also contains a table (Table A.1) that compares the summary statistics

of the precipitation record used to calibrate the MCMC rainfall simulator and those of 100

rainfall simulations to ensure the statistical properties of the observed and synthetic time

series were similar.

Table A.1: Comparison of summary statistics between observed and synthetic daily precip-
itation time seriesa

Statistic Observed (mm) Synthetic (mm)
Observed:

Non-zero (mm)
Synthetic:

Non-zero (mm)

Sample Size 28,806 3,102,500 3,065 322,154

Mean 1.84 1.72 17.3 16.6

Standard Deviation 10.6 9.47 28.1 24.9

Skewness 11.7 11.2 4.09 3.98
aObserved time series consisted of 85 years of daily data with approximately 7% missing values. Summary

statistics for synthetic precipitation represent 100 realizations of an 85-year time series (1 year = 365 days).

Skewness was not bias-corrected.
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Figure A.1: Daily transition probabilities from (A) dry to wet within a wet year, (B) dry to
wet within a dry year, (C) wet to wet within a wet year, and (D) wet to wet within a dry year.
Empirical probabilities are represented by blue X’s while the smoothed probabilities used
in the MCMC rainfall simulator to determine daily precipitation occurrence are represented
by orange lines. Smoothed probabilities were calculated as a 14-day moving mean of the
empirical daily probabilities.
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Figure A.2: Comparison of quantile-quantile plots for observed vs. fitted non-zero daily pre-
cipitation between four probability distributions commonly used in the literature for fitting
to non-zero daily precipitation amounts. Observed values include all non-zero precipitation
amounts on record.
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Figure A.3: Quantile-quantile plots of observed vs. fitted non-zero daily precipitation sepa-
rated into wet-year and dry-year subsets. Fitted probability distribution is Weibull.
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Figure A.4: Quantiles of annual maximum daily precipitation derived from a 100-year real-
ization of the MCMC rainfall simulator vs. quantiles of the fitted General Extreme Value
(GEV) distribution. The fitted GEV distribution was used to calculate the return levels
that correspond to 50-year and 100-year return period storm events used in the model to
determine the capacity of the flood channel and debris basin.
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Figure A.5: (A) Total runoff entering flood channel per century normalized by watershed
area, (B) total sediment flux from watershed per century normalized by watershed area,
and (C) number of years per century with at least one channel overtopping event. The
model scenario for this simulation used a 50B infrastructure design standard, S maintenance
infrastructure approach, 20-year fire interval, and post-fire bulking factor range of 1.25 < k <
2.86.
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Appendix B

Supporting Information for Chapter 3

This supporting information contains figures that were used to define peak flow rates from

observed stream gage records (Figure B.1), assess the fit of exponential curves to vegetation

indices to estimate the recovery timescale parameter (Figure B.2), calibrate the curve num-

ber used in HEC-HMS modeling of post-fire hydrology (Figure B.3), and compare simulated

fluxes of sediment to debris basin storage to ensure the mass/volume of sediment was con-

served (Figure B.4). It also contains a table (Table B.1) that compares model error metrics

between the calibration methods developed to calibrate PF2HazMo.

Table B.1: Error metrics for calibration of PF2HazMo by calibration method. MAE, NSE,
RMSE, and % Error comprise the Gage Data Approach, while Frequency represents the
Frequency Curve Approach.

Calibration Method ct (1/s) MAE (cms) NSE RMSE (cms) % Error

MAE 1.47×10−5 4.88 0.568 6.20 190

NSE 1.24×10−5 5.29 0.642 5.65 160

RMSE 1.24×10−5 5.29 0.642 5.65 160

% Error 2.38×10−5 7.94 -0.499 11.6 58.9

Frequency 3.36×10−5 19.9 -4.83 22.8 519
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Coldwater Watershed
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Figure B.1: Total daily precipitation and maximum daily flow rate time series (top panel),
and observed peak flow rates (bottom panel) for Coldwater watershed. Fire occurred before
start of time series on 6 August 2018.
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Figure B.2: Normalized NDVI and EVI time series and exponential curves fit to post-fire
data (top panels) and bulking factor time series corresponding to recovery timescale estimates
(bottom panels) for (A) Coldwater, (B) Leach, and (C) McVicker watersheds.
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B CA

Figure B.3: Peak discharge-frequency curve from StreamStats (solid red line) with 90%
confidence intervals (dotted green lines), estimated pre-fire discharge from HEC-HMS before
adjusting curve number (green points), and estimated post-fire discharge (red points) from
HEC-HMS for (A) Coldwater, (B) Leach, and (C) McVicker watersheds. Plot template
modified from U.S. Army Corps of Engineers.
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Figure B.4: Sediment volume change, influx, and outflux for (A) Leach debris basin and
(B) McVicker debris basin for the 2018-19 wet season comparing simulation results across
calibration methods. Blue points represent the total volume of sediment excavated by the
end of the wet season for each debris basin recorded by Riverside County Flood Control and
Water Conservation District.
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Appendix C

Supporting Information for Chapter 5

This supporting information contains a figure of correlation results between model response

variables and physical/socioeconomic variables from the regional application of PF2HazMo

to 13 watersheds located in the Santa Ana Mountains (Figure C.1). It also contains a table

that compares the values of physical and socioeconomic characteristics across sites (Table

C.1).

Variable definitions for Table C.1:

• Area = drainage area

• ct = runoff response parameter

• Slope = average watershed slope

• k1 = post-fire bulking factor

• mFRI = mean fire return interval

• PrecipInt = 15-minute, 100-year precipitation intensity

• DBCap = debris basin capacity
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• FCCap = flood channel capacity

• PopDens = population density

• MedInc = median household income

• NDI = average neighborhood disadvantage index

• NDIAW = area-weighted average neighborhood disadvantage index

• nBGs = number of block groups in downstream population

• DPA = total area of block groups that comprise downstream population
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Figure C.1: Correlation matrix of all model output variables and physical/socioeconomic
variables included in correlation analysis. Lower left diagonal shows scatterplots for each
combination of variables by column and row. Upper right diagonal reports Spearman’s
rank correlation coefficients, with three asterisks (***) indicating significance at the 99.9%
confidence level, two asterisks (**) at the 99% level, one asterisk (*) at the 95% level, and a
dot (·) at the 90% level.
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Table C.1: Comparison of site characteristics for Phase I study watersheds (n=13).

Site
Area
(km2)

ct×
10−5

Slope
(%)

k1
mean

mFRI
(yrs)

PrecipInt
(mm/r)

DBCap
(m3)

FCCap
(cms)

PopDens
(/mi2)

MedInc
($) NDI NDIAW nBGs

DPA
(mi2)

Brown 4.37 2.54 61.8 1.17 63 19.4 15,859 30 2,058 108,639 0.340 0.341 2 3.5

Dickey
Canyon

1.33 2.91 49.0 1.17 45 15.7 - 6 427 101,348 0.435 0.433 2 11.5

Fresno
Canyon

3.95 3.96 55.5 1.12 55 20 - 107 953 139,769 0.325 0.325 1 1.0

Greenwood
Dr

1.16 2.87 40.3 1.15 42 15.5 - 0.5 577 97,962 0.435 0.433 3 11.7

Horsethief 0.26 3.56 48.5 1.07 48 17.4 2,003 0 1,169 122,175 0.329 0.340 3 6.4

Horsethief
West

8.43 2.96 58.8 1.17 32 19.6 - 60 756 132,876 0.332 0.344 2 8.2

Hunt 1.04 2.73 59.9 1.13 63 18.8 4,161 0 4,389 105,366 0.349 0.344 2 1.3

Indian 8.36 2.82 59.1 1.17 35 19.7 - 10 540 144,750 0.348 0.348 1 7.3

Mabey 3.74 3.58 56.3 1.09 53 20.3 158,910 25 317 141,202 0.351 0.335 3 25.3

Main St 10.56 2.55 54.6 1.17 55 20.1 24,751 17 4,221 162,465 0.316 0.308 2 1.3

Oak St 13.37 3.07 62.2 1.17 50 20.7 124,334 25 4,169 143,045 0.313 0.313 1 0.6

Rice 4.98 2.80 56.9 1.13 36 18.4 - 10 559 120,193 0.380 0.377 2 11.1

Santiago 0.62 2.67 62.2 1.14 45 17.7 1,160 0 21 83,941 0.342 0.342 1 14.8
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