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Feature-Preserving Image Coding for Very Low Bit Rates 

Dirck Schilling and Pamela Cosman 

Department of Electrical and Computer Engineering 
University of California, San Diego, La Jolla CA, 92093-0407 

{ dschilli, pcosman} @code.ucsd.edu (858) 822-1250 

Abstract: Many progressive wavelet-based image coders are designed for good 
performance on natural images. They attempt to achieve the greatest reduction in mean 
squared error (MSE) with each bit sent, an approach that is most effective when the 
image is composed chiefly of low-frequency content. Many images, however, include 
sharp-edged objects, text characters or graphics that are not well handled by standard 
wavelet-based methods. These features, which may contain information important for 
recognition, become distorted and obscured when highly compressed by standard 
wavelet-based methods. In this paper, we present a new progressive image coder that 
treats an image as being composed of three types of information: edges, texture, and 
edge-associated detail. The locations of important edges are encoded using line graphic 
techniques. Texture is encoded using a wavelet-based zerotree approach. Detail near 
edges - that cannot be efficiently encoded as texture - is encoded separately with a 
bitplane coding technique. With this approach, features in the image that may be 
important for recognition are well preserved, even at low bit rates. 

1 Introduction 
Many images contain features that do not lend themselves well to wavelet-based coding 
methods. Such features may include sharp-edged objects, text characters and graphics. 
During a wavelet transform, the high-frequency content at the edges of these features 
tends to result in significant energy being concentrated in the transform’s higher bands. 
Yet many progressive wavelet-based approaches send information about low-frequency 
coefficients first, e.g., [1,2]. When the image is transmitted at low bit rates, the high- 
frequency coefficients are coarsely quantized or even zeroed out, causing noticeable 
distortion in the reconstructed image. In applications such as fast browsing, where early 
recognition is important, or in low-bandwidth situations such as wireless Internet access, 
distortion of sharp-edged features may slow recognition of the image content by the user. 

It may be advantageous to code these sharp-edged features using other methods, 
while retaining a wavelet-coding approach for the remaining regions. Several techniques 
have been proposed for compressing mixed-mode images - images containing more than 
one type of image data. Some methods segment the image into rectangular regions, and 
then treat each region effectively as a separate image, for which separate coders are 
employed. These methods do not address situations where the different regions are oddly 
shaped or overlap each other. Other approaches [3,4] segment the image into foreground 
and background regions. The segmentation is encoded as a binary bitmap, and wavelet 
techniques are employed to separately encode the foreground and background images. 
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With this approach, every foreground region is surrounded by a sharply defined closed 
contour, since it is defined as a connected component of pixels. Objects that are sharply 
defined on one side, but less clearly on the other, are not well represented by this 
approach, since it creates a sharp edge around the entire object. A further class of 
methods [5,6] addresses both the issue of non-rectangular, overlapping image regions, 
and that of image features not surrounded by a closed sharp contour. These methods 
transmit the locations of sharp-edged features separately, and combine this information 
with texture information to yield a reconstructed image with well-preserved sharp 
features, even at low bit rates. 

In this paper, we present a new progressive image coder that treats an image as being 
composed of three types of information: edges, texture, and edge-associated detail. Each 
component is encoded progressively by a method tailored to its specific characteristics. 
This,approach allows a great deal of flexibility at the encoder in balancing the bits 
budgeted for, and thus the resulting quality of each component. This paper is organized as 
follows. In Section 2 we provide a general overview of the proposed algorithm and its 
components. In Section 3 we describe the feature-preserving wavelet transform 
employed, and discuss the handling of lossy edges and edge-associated detail. We 
present some compression results and conclusions in Section 4. 

2 
Our primary goal in the design of a feature-preserving image codec (FPIC) is to identify 
features in an image that may be important for human recognition and understanding, and 
to preserve the clarity of these features at low bit rates, at the expense of somewhat 
reduced fidelity in other regions of the image. Edges often represent information that is 
valuable for understanding, for example in the case of text characters or graphics. After 
“removing” the edges, the remaining information can be described as background texture. 
An edge itself actually consist of two parts: the location of the edge, and the image 
intensities on each side of it. The method we describe in Section 3 for removing the 
edges, a feature-preserving wavelet transform, allows the intensity information for each 
side of an edge to be stored in most cases in the texture component. In some situations, 
though, it is inefficient to retain edge intensity information in the texture component. 
Such situations occur where edges include sharp corners, are close together, or surround 
small regions, for example small text characters. In these cases, it can be more efficient to 
encode the intensity information separately, hence the third information component, 
edge-associated detail. 

A block diagram of FPIC is shown in Figure 1. The input image is first passed 
through an edge detection step [7] to extract edges which are deemed to be important for 
recognition. The resulting edge pixels are approximated with connected line segments 
[8]. While our implementation approximates curved edges by sets of linked straight line 
segments, higher-order representations such as arcs, ellipses and polynomials could also 
be used. There is no widely accepted measure for the importance of an edge; however, in 
most situations a longer edge will convey more information than a shorter one. The edge 
detection procedure therefore includes a step to remove short edges. 

Following edge extraction, the edge locations are encoded with a multiring chain 
coder [9], and are transmitted to the decoder. Our implementation is similar to that 

Overview of the Proposed Image Coder 
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Figure 1 : Block diagram of the feature-preserving image coder (FPIC). 
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employed for EEIC in [ 5 ] .  This method allows edges to be encoded nearly losslessly, in 
that no encoded endpoint is further than a given tolerance from the input curve. If e is 
one pixel, for example, the encoded edges are virtually indistinguishable from the input 
edges. The cost of encoding the edges can be adjusted by appropriately selecting this 
parameter: as ! is increased, greater error is allowed, and the bit cost is reduced. 

When the edges have been encoded, the input image is passed through a wavelet- 
based encoder which also receives the encoded (lossy) edge locations as input. This 
encoder, like SPIHT, consists of a forward wavelet transform, a quantization (zerotree 
coding) step, and arithmetic encoding of the quantized wavelet coefficients. The standard 
wavelet transform employed by SPIHT is replaced here by a feature-preserving transform 
that removes the edges as it transforms the image. The transform outputs the coefficients, 
representing the image texture, and a set of isolated or “single” coefficients, which 
represent the edge-associated detail. Finally, the quantized, entropy-encoded texture 
coefficients are transmitted, and the single coefficients are separately encoded and 
transmitted. 

3 Feature-Preserving Wavelet Transform 
In this section we describe the wavelet transform employed in FPIC. Like most image 
transforms, it compacts the energy of the image into a relatively few low-frequency 
coefficients. As it does this, it also uses the encoded edge locations to “remove” the edges 
from the image’s texture information. In so doing, it improves the efficiency with which 
the texture can be encoded, by reducing the energy caused by the edges in the high- 
frequency bands of the transform. Finally, it extracts the edge-associated detail 
information, contained in isolated “single” coefficients near certain edges, and passes this 
out for separate encoding. 
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3.1 Forward Transform 
A standard one-level, one-dimensional forward wavelet transform is illustrated in Figure 
2. The input signal x contains an ideal step function. As the lowpass filter passes over the 
step, its averaging properties cause it to smear the step across several coefficients in the 
transform’s low band. Similarly, as the highpass filter encounters the step, it results in 
several spikes in the transform’s high frequency band. If these spikes are coarsely 
quantized or zeroed during low bit rate transmission, the step becomes distorted. 

Figure 3 illustrates the operation of the forward feature-preserving wavelet transform. 
In this case, both the forward and inverse transforms will have knowledge of the location 
of the ideal step, or edge. In this paper we define edges as crack edges, so that the 
location of an edge falls between two image pixels. In the forward transform, as the 
lowpass filter crosses the edge, the height h of the step is subtracted from each input 
value beyond the edge before that value is fed to the filter. Then, after the center tap of 
the filter passes the edge, h is added to each input value prior to the edge. In this way, all 
values seen by the filter at each position have had the step removed from them. For the 
lowpass filter, this means that the ideal step is reproduced without smearing in the 
transform’s low band. Likewise, since the highpass filter never sees the step, no spikes 
due to that step occur in the high band. Even if the coefficients in either band are coarsely 
quantized, the sharpness of the step remains unaffected. 

3.2 Inverse Transform 
The step removal procedure described above is a linear one, and so can be described fully 
by a system of equations in the form F , . x = c ,  where c is the vector of transformed 
coefficients prior to reordering into high and low bands. F, is an N x N matrix consisting 
of the base wavelet transform matrix F plus an N x N step-removal matrix E .  It is 
therefore possible to reconstruct the original input vector x from the coefficients by 
matrix inversion with 2 = 4-l . c. 

Given an input signal x of length N ,  with lowpass filter f and highpass filter g, the 
standard one-level octave-band wavelet transform is computed by 

or F .  x = c. Note that the filter taps in f and g must be properly reflected back on 
themselves at the signal boundaries. For the following discussion we assume odd-length 
filters, with f=[& f ,  f, f ,  f4]T and g=[g, g, g2IT.  In the step-removal 
procedure applied during the forward transform, the transformed coefficients are 
computed as follows: 



107 

cs-2 = fOxs-4 + h X s - 3  + f 2 5 - 2  + hXs-1 hXs -hf4 

Cs-1 = goxs-2 + g1xs-1 + g 2 x s  4 x 2  

CS+l = goxs + glxs+l+ 82XS+2 

cs = fOXs-2 + fi.s-1 f2xs  + hxs+l + f4xs+2 + h ( f O  + fi ) 

CN-1 = (go +g2)xN-2  + g l x N - l  

where the step occurs between the input values x,-~ and x , ~ ,  and has height h = x, - x5-, . 
In this example, s is even. Stated in matrix notation, and substituting for h, this is: 

F o x +  

0 ... 0 0 ... 0 

f 4  - f4  

- g2 g2 

- ( f o + f i )  fo+h 
0 0 

0 ... 0 0 ... 0 

XO 

xs-l 

X S  

. . . . . . . 

'N-I 

= C  

Denoting the edge removal matrix as E, the transform becomes ( F +  E ) x  = c .  The one- 
level inverse transform is therefore given by 2 = ( F  + E)- 'c .  The effect of additional 
edges is additive, . so  that for L edges, ( F +  E, + E 1  +...+ EL-I )x  = c ,  and 

.?=(F+E,+E,+ ...+ E,- , ) - 'c .  The combined step removal matrix i s  
E = E, + E, + . . . + EL-, , and the overall transform matrix is then F, = F + E .  Note that, as 
with the base transform matrix F ,  care must be taken when constructing E to properly 
reflect the filter taps near the matrix boundaries. 

Computational Complexity of the Inverse Transform: As described above, the inverse 
transform requires inverting an N x N matrix for each N-length signal, i.e., each row and 
column of an image. Although matrix inversion in general is approximately an O(N3) 
process, inversion of the overall transform matrix F, can be accomplished by methods 
costing substantially less than O(N3),  since F is constant, and each E, contains only two 
nonzero columns. The Sherman-Morrison formula can be applied [lo], reducing the cost 
when the number of edges in a given input line is small in relation to N .  Another 
possibility is to use matrix inversion only on the portions of the input signal affected by 
an edge. That is, only submatrices of F, containing the edges need be inverted. 
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Computational complexity can further be reduced by precomputation. The matrix F, 
contains only information about the edge locations, not their heights, so that its inverse is 
valid for any signal having the same edge positions. The inverses of submatrices of F, can 
be precomputed for common edge combinations. A precomputed submatrix for a lone 
edge, and submatrices for two edges within one to K pixels of one another, given filter 
length K ,  would be applicable to many commonly occurring cases. The overall inverse 
matrix F, can then be assembled at run-time by reading these submatrices from lookup 
tables. 
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Figure 2: Schematic of a standard one-level wavelet transform on a one-dimensional 
input signal containing an ideal step function. 

Input 
signal 

X 

Transform 
coefficients 

c l l l  

low 
band 

high 
band 

Figure 3: Schematic of a one-level feature-preserving wavelet transform on a one- 
dimensional input signal containing an ideal step function. 
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3.3 Edge Preprocessing 
It is clear from the preceding discussion that the wavelet transform is dependent on an 
accurate initial knowledge of the edge locations. If an edge is reported to lie several 
pixels away from the actual location of the sharpest gradient in image intensity, the value 
of h, taken as the difference between the image intensities on both sides of the reported 
edge, will not be equal to the true height of the edge. As a result, the benefit of 
subtracting and adding h during the transform will be lost. When edges are encoded 
lossily, though, their reported locations differ frequently from the actual edge positions. 
To allow for lossy edges, FPIC incorporates an edge adjustment step prior to the wavelet 
transform. This step successively interpolates pixel values near each reported edge using 
values farther from the edge, starting at a radius R (typically 2-4 pixels) from the edge 
and progressing successively nearer. It has the effect of moving the image data slightly, 
to match the lossy edges as encoded. In this way the benefit of the step-removal process 
for texture coding can be achieved, with little loss in overall image fidelity. 

3.4 Edge-Associated Detail 
At each level of the forward transform, the current map of edge locations is subsampled 
to correspond with the current low-low (LL) band of the transform, using a procedure 
like that employed in [6 ] .  When edges in the original image are close together, a situation 
may occur after one or more transform levels where an LL-band pixel is surrounded on 
each side by an edge. If such a pixel lies at an even-numbered position, it is encountered 
by the lowpass filter, and so is placed in the low band after filtering. If it lies at an odd- 
numbered position, however, it is encountered by the highpass filter, and would have to 
be placed into the high band. Its statistics do not match those of the other high-band 
coefficients, though. These isolated, “single” coefficients contain the information about 
image color near closely spaced edges, which we call edge-associated detail. 

Since the statistical characteristics of singles differ from the other coefficients in the 
high bands, it is desirable to employ a separate coding method for them. This is 
simplified by the fact that both the encoder and decoder possess the same information 
about edge locations, and therefore know the location of each single, and when it arises 
during the transform. The only information that need be transmitted is the magnitude of 
the single. FPIC encodes this information progressively. Singles from each transform 
level are scaled to the same dynamic range, and bitplane-encoded using adaptive 
arithmetic coding. For progressive coding, individual bitplanes of the edge-associated 
detail can be interspersed between bitplanes of the texture information and information 
about edges sorted by length. 

4 Results and Conclusions 
FPIC is similar to an edge-based compression algorithm presented by Mertins in [6], 
however there are several significant differences. First, FPIC allows edges to be coded 
lossily, by adjusting the image to the lossily encoded edges prior to performing the 
wavelet transform. Second, the transform filters are not boundary filters, as in Mertins’ 
approach, but pass across the edges, incorporating texture information from both sides of 
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an edge in the resulting transform coefficients - while ignoring the edge itself. Third, 
single coefficients are not placed into the transform’s high bands, as they are with 
Mertins’ method. Single coefficients possess the statistical characteristics of low-band 
coefficients, so placing them in the high bands is inefficient. Further, by the nature of 
SPIHT’s zerotree coding, the locations of significant coefficients are encoded together 
with their magnitudes. If singles are encoded this way, however, their locations are 
effectively being transmitted twice - both in the edge information and in the coefficient 
information. Instead, FPIC separates the single coefficients from the others, and then 
transmits only their magnitudes. The savings achieved by this technique is dependent on 
the detail in the input image: an image with only a few important edges will also have 
few singles, while an image with many edges may have hundreds of singles, making the 
separate coding of these singles worthwhile. 

Note that each component of FPIC could be swapped in a modular way with that 
employed by Mertins: i.e., lossy segment-based vs. lossless pixel-based edge coding, the 
two edge-based wavelet transforms, and the differing methods of encoding singles. 

An objective comparison of FPIC with Mertins’ entire algorithm, as well as with its 
individual components, is difficult, since PSNR is not a good measure of the 
effectiveness of edge-based coders. In order to provide a reasonable visual comparison 
while excluding the effect of the differing edge-coding approaches, a test was performed 
with FPIC using edges identical to those reported in [6] ,  and assuming the same edge cost 
of 0.052 bpp. In this work we are primarily interested in the low end of the bit rate 
progression, where recognition is likely to take place, rather than the high-rate, high- 
quality end. The low overall bit rate for the following comparisons reflects this focus. 

shown in Figure 4b, Mertins’ approach in Figure 4c and FPIC in Figure 4d, all at 0.10 
bpp. Both edge-based methods provide significantly improved sharpness over the SPIHT 
image, though at lower PSNR. In the FPIC image, substantial improvement over the 
Mertins image can be seen in the details. Since the edge coding is fixed to be the same, 
the improvement can be attributed to a combination of the different filtering method 
employed by FPIC in its wavelet transform, the use of SPIHT instead of EPWIC [l 11 for 
texture coding, and the separate coding of edge-associated detail (singles). 

Figure 5 shows an example of the full FPIC algorithm’s output, including lossy edge 
coding. In each case the image was compressed to 0.10 bpp. The central object is 
significantly sharper in the FPIC images (c and d) than in the SPIHT image (b). In (c), the 
edges were encoded nearly losslessly with L = 1 pixel, consuming 20.6% of the bit 
budget. In (d), e was set to 4 pixels, so that the edges consumed 12.6% of the bit budget. 

In conclusion, we have presented a progressive feature-preserving image coder that 
treats an image as being composed of three types of information: edges, texture, and 
edge-associated detail. Each information component is encoded using a method tailored 
to its specific characteristics. FPIC allows the user a degree of flexibility in deciding the 
relative importance of the three information components. For images containing features 
such as sharp-edged objects, text characters or graphics, FPIC can substantially reduce 
ringing and distortion near these features. In applications such as fast browsing, where 
early recognition is important, or for wireless access to the Intemet, where bandwidth is 
strictly limited, the technique may prove useful in allowing recognition of image content 
at very low bit rates. 

Figure 4a shows the input “cameraman” image. The image compressed by SPIHT is 
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Figure 4: a) The original 256x256 image; b) compressed by SPIHT to 0.10 bpp, 
PSNR = 24.37; c) as reported in [6], 0.10 bpp, PSNR = 22.39 dB; 
d) compressed by FPIC, using edges identical to those in (c) and assuming the same edge 
bit rate, 0.052 bpp, for those edges. Overall bit rate is 0.10 bpp, PSNR = 22.39 dB. 
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Figure 5: A shoe. a) Original 250 x 135 image, b) SPIHT at 0.10 bpp, PSNR = 21.62 dB; 
c) FPIC at 0.10 bpp, of which edges consumed 20.6%, PSNR = 20.34 dB; d) FPIC at 
0.10 bpp, of which edges consumed 12.6%, PSNR = 19.43 dB. 
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