
UC Irvine
ICS Technical Reports

Title
Obtaining functionally equivalent simulations using VHDL and a time-shift transformation

Permalink
https://escholarship.org/uc/item/5dm5r8tg

Author
Vahid, Frank

Publication Date
1991-10-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dm5r8tg
https://escholarship.org
http://www.cdlib.org/

Notice: This l'v1aterial
may be protncted
by Copyright Law
(Title i 7 U.S.C.)

Obtaining Functionally Equivalent
Simulations Using VHDL and a

Time-shift Transformation

Frank Vahid

Technical Report #91-33
April 2, 1991

Revised October 8, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-7063

vahid@ics.uci.edu

Abstract

z
6ff
c :)
ho, r r ~

The advent of VHDL has brought about a number of VHDL simulators. Many translation
schemes from domain specific languages to supposedly functionally equivalent VHDL have been
developed as an approach to obtaining simulations. However, functionally equivalent VHDL
can not be created for the general case, due to a theoretical limitation to this approach. It
is a very subtle point and has thus been overlooked until now, but it is extremely important
since it can cause incorrect siniulation, therefore making translations to VHDL an unsound
simulation technique. In this paper, we introduce this fundamental limitation. In addition, we
propose an. alternative approach which strives for functionally equivalent simulation rather than
functionally equivalent VHDL, while still taking advantage of VHDL simulators. Our method
uses a novel time-shift transformation, also introduced in this paper, in conjunction with almost
any translation scheme. The method makes correct simulations easily obtainable, thus bridging
the gap to a truly sound and highly advantageous use of VHDL as a tool for simulating domain
specific languages.

1!':
~ ' .

. : \:

Contents

1 Introduction 1

2 The Barrier to Obtaining Functionally Equivalent VHDL 2

3 The Time-shift Transformation 5

4 Improvements 8

5 Examples 9

6 Results 9

7 Conclusion 9

8 Acknowledgements 10

9 References 10

A Appendix 11
12
15
17

A. l Swap examples
A.2 Overdriven Signal Example .
A.3 Signal Initialization Example

List of Figures

1 Various approaches for simul~ting domain specific languages 1
2 An example language based on a derivation of StateCharts 2
3 Various translation schemes considered 3
4 Two time scales found in many languages, including VHDL 3
5 Values for each delta point in hierarchical activation scheme, showing that swap fails 4
6 Values for each delta point in flattened activation scheme, showing that swap fails . 4
7 The current method of mapping control computations to delta-time, causing interference

with micro-time functionality . 5
8 Time-shifted translation, which prevents control computations from interfering with micro-

time functionality . 6
9 Implementation of time-shifted translation, showing the transformation step followed by

the translation step . 6
10 Examples of time-shift applied to domain-specific language's statements 6
11 Time-shift transformation algorithm, applied to a model in the domain-specific language 7
12 Earlier example after the time-shift transformation is applied 7
13 Sample of VHDL processes generated after time-shift; note that control is done in a different

time scale than are micro-time assignments, which are now delayed by 1 fs 7
14 Sample VHDL simulation of earlier example, with inverse shifted and thus final simulation

output . 8
15 Improvements: higher units need not be shifted; micro-time can be shifted higher to meet

time-range constraint . 8
16 Examples which cause problems for translation, all solvable using the time-shift 9
17 Examples simulated without and with the time-shift transformation 10

1 Introduction

The adoption of the VHSIC Hardware Description Language (VHDL) as an IEEE standard
[IEEE88] has given rise to many VHDL tools, such as simulators and design synthesizers. How­
ever, other languages are still being introduced (Ha87, JePA91, DuHG90, VaNG91], since no
single language is ideal for all possible domains. For example, many systems are naturally de­
scribed as a hierarchy of state transition diagrams, which might be tedious to manually describe
in VHDL. We refer to these other languages as being domain specific. Translating such lan­
guages to VHDL can yield enormous advantages, such as the use of existing VHDL simulators.
Advantages over writing a new simulator include: (1) much less implementation time to ob­
tain a simulation capability, (2) more reliable simulations, since VHDL is a standard and thus
its simulators are widely used, and (3) faster simulations, since VHDL simulator manufactur­
ers concentrate on simulation efficiency. Many such translation schemes have thus appeared
[JePA91, ArWC90, DuCH91, MaWa90, NaVG91, TiLK90].

However, the goal of obtaining completely correct simulations is unattainable in many
cases, since it is not possible to create VHD L that is functionally equivalent to the domain
specific language's description. The basic problem involves trying to execute behavior related
to control (e.g. changing states of a state transition diagram) in VHDL's delta time, which then
interferes with delta time behavior for non-control behavior. The current translation schemes
only work for a subset of descriptions, and are thus more of a quick and dirty simulation solution
than a solid technique.

This does not mean that these domain specific languages can not benefit from the advan­
tages of VHDL simulators. We distinguish between (1) obtaining functionally equivalent VHDL,
and (2) obtaining functionally equivalent simulations. The former creates a VHDL file that can
be treated as any other VHDL file. The latter might use VHDL only as an intermediate rep­
resentation; a modeler sees only the domain specific language and simulation output. Though
the VHDL model might not be functionally equivalent, the VHDL simulation output can be
transformed to correct output (see Figure 1).

A

Domain Specific
Language

(ca.en ••••••
\j\-\0\.. ~~p

?~·······

Simulator Simulation
Output

• ''''' '' <;ur Su
• ••• VP.e : common current ''' • • ~t~d appli
V approach ········~'JS!!

--~~~~~---~~~~~~~~~--

New Simulator,
written in C,
assembly, etc.

Translator
to VHDL

VHDL
Simulator

8 Advantages over A:
1. less time to implement
2. more reliable simulations
3. faster simulations

Disadvantages:
1. may change functionality

c

Trans. to VHDL
wl time-shift

transform

VHDL
Simulator

Advantages over B:

Inverse
time-shift
the output

1. functionally correct simulations

Figure 1: Various approaches for simulating domain specific languages

This paper introduces the fundamental problem that prevents translation to functionally
equivalent VHDL. We then introduce a technique that shifts time in the original language,
translates to VHDL, simulates, and then time-shifts the results back. This achieves function­
ally equivalent simulation, eliminating the final obstacle that has prevented implementations of
domain specific languages from benefi tting from VHD L simulators in a sound manner.

1

2 The Barrier to Obtaining Functionally Equivalent VHDL

For simplicity, we will focus on translating languages based on some variation of StateCharts
[Ha87]. The problem introduced below generalizes to many other languages. Briefly, Stat­
eCharts provides for specification as a hierarchy of concurrent and sequential states. Most
languages based on StateCharts have added activities that are performed in a given state
[MaWa90, JePA91, DuHG90, VaNG91]. Figure 2 gives a simple example of these types of
languages. Figure 3 shows three translation schemes that we consider; for simplicity, only the
control for activating processes is shown (i.e. deactivation and other details are omitted).

c

not e1 'stable

loop

F x <= y;
loop

i <= i + 1 after 10 ns;
wait for 30 us;

end loop;

y <= x;
wait until not e1 'stable;

end loop;

:a
loop

wait for 30 us;
j <= i after 10 ns;

end loop;

When in A, we are simultaneously in both Band C. When in 8, we are initially in D.
If e1 changes, we are in E, which means we are in F and G simultaneously. When
in a state that has activities, we execute those activities. If we reach the end of
the statements of an activity, that activity is idle.

Things to note:
1. When first in A, the values of x and y should be swapped (by C and D)
2. When in E, j should always have the value of i but with a 30 us phase delay
3. When in 0 and C and e 1 changes, x and y should again be swapped (by C and F)

Figure 2: An example language based on a derivation of StateCharts

In [ArWC90], a scheme is presented for translating StateCharts to VHDL. Each state is
represented as a procedure, and substates are executed by calling each substate's procedure. A
procedural model is a sequential model; thus concurrent items in a StateChart become sequential
in the VHDL (Figure 3a). Many activities will produce quite different results when executed
sequentially rather than concurrently, such as those associated with states F and G. Thus we
do not consider the procedural model further.

Developers of other schemes have focused on translating to a concurrent model of VHDL,
such as the process model [MaWa90, JePA91, NaVG91, DuCH91] which consists of a set of
concurrent processes, each either active or suspended. Generally each StateChart state is trans­
lated to a VHDL process. Activities associated with a state are translated to VHDL sequential
statements in that state's process.

Most of these schemes maintain a hierarchical activation scheme in the VHDL (see Fig­
ure 3b); that is, some processes are created only to activate other processes, just as some
StateChart states exist only to be composed into substates (such as state B). These processes
are now referred to as control processes. This scheme causes a subtle but important change in
functionality. In Figure 2, when state A is entered, it means both B and C are entered. When
B is entered, it means D is entered. Thus note that the statement x <= yin D and y <= x in
C should be executed simultaneously, so that the values of x and y are swapped. However, this
will not happen in this scheme. To understand why not, we must first understand VHDL delta
timing.

VHDL is based on a continuous repetition of a simulation cycle. Briefly, each cycle consists

2

(a) Procedural Model (b) Process Model with hierarchical activation

procedure A
procedure C

procedure a
procedure 0

procedure E
procedure F

proCeciure G

be~i)~ - E
G();

end -E
begin- B

O();
<When not e1 'stable> E();

end - B

Note that F and Gare
executed sequentially instead
of concurrently

Note that D takes
one delta cycle longer
to be activated than
does C.

(c) Process Model with flattened activation

hypothetical only Note that there is still an extra delta cycle
needed to activate a process once an event
has occured.

Figure 3: Various translation schemes considered

of (1) advancing time to the next 'interesting' point, (2) updating signals that should change at
this time, and (3) executing activated processes until they suspend (e.g. reach a wait statement).
If a signal such as xis assigned to, an infinitely small delay time, called a delta delay, is implicit
(unless an after clause states an explicit delay) (see Figure 4). Thus 'advancing time' might
advance by some number of real time units (e.g. seconds) o~ by one delta time unit. A common
misunderstanding is that a delta unit is the smallest real-time unit supported by the language,
such as femtoseconds. This is incorrect; delta-units are on a separate scale from real-time units.

T T+1 T+2

~~yL
micro-time scale
'---- _.)

reaWme scale

* micro-time units are infinitely small
* any number of micro-time units can

occurr between real-time units

Figure 4: Two time scales found in many languages, including VHDL

Figure 5 shows values for x and y at each delta point for the example of Figure 3b, where
we assume A...state was set to true at time 50 ns. Note that since D is one level deeper in the
hierarchy than is C, there is one extra process which must be activated and executed, and thus
one extra delta time unit to execute x <= y than for y <= x. This causes incorrect simulation
results. This problem can occur whenever the 'activation tree' (see Figure 3b) is unbalanced.

To solve this, consider a hypothetical scheme which flattens all activation into a single
control process (Figure 3c). It waits for any event, calculates which processes to activate, and
then sets signals which activate those processes. Note that such a process would likely be
extremely complex (as also noted in [Ma Wa90]), and there is no published scheme which does

3

time A_ state B_state C_state D_state x y Description of simulation cycle

sons true false false false 6 7 update A_state, execute process A;
scheduled: B_state and C_state to get true

delta 1 true true true false 6 7 update B_state and C_state, execute processes Band C;
scheduled: O_state to get true and y to get 6

delta 2 true true true true 6 6 update D_state and y; execute process D;
scheduled: x to get 6

delta 3. true true true true 6 6 update x

Figure 5: Values for each delta point in hierarchical activation scheme, showing that swap fails

this. However it is useful to consider, since it represents the ideal scheme with respect to the
above problem, because we would never have an imbalance in the number of activation levels.
A second problem still exists.

time C_state F _state x y Description of simulation cycle

100ns true false 7 6 e 1 gets new value, execute processes P and C;
scheduled: F _state to get true, y to get 7;

delta 1 true true 7 7 update F _state and y, execute process F;
scheduled: x to get 7

delta 2 true true 7 7 update x;

Figure 6: Values for each delta point in flattened activation scheme, showing that swap fails

Consider the case where we are in states D and C, and the swap has already been per­
formed. Thus no computations are being performed and we are waiting for el to change (so
that the arc from D will be traversed and the wait statement in C will terminate). When el
changes, C should execute y <= x (it loops back to this statement). At the same time, we
should enter E and thus execute x <= y. This implements another swap of x and y. Figure 6
shows the values of x and y for several delta points assuming that el changes at time 100 ns.
Once again, the swap failed. The point to notice is that the statement wait until event followed
by an action is identical, in the semantics of the StateCharts based language, to an arc labeled
with event pointing to a state with the same action. However, the generated VHDL requires
one extra delta for the latter, due to the fact that after the event occurs, the control process
must still activate the appropriate state process (one more delta) before the actual action can
be executed. This is an example of what we refer to as a control computation: any computation
performed solely for obtaining correct simulation.

We can now understand the general problem: the control computations should be per­
formed in zero time in the generated VHDL, but instead require at least one delta. Micro-time
computations in the domain specific language are also translated to delta-time and may be af­
fected by this extra delta. Note that this problem generalizes to any domain specific language
which uses a micro-time scale and whose simulation control requires the use of delta-time when
translated to VHD L.

One possible solution might consider the fact that VHDL variables permit zero time com­
putation. The :flattened activation scheme already assumed that variables were used within the
control process, but it could not use variables to communicate with the other processes since
variables are not defined outside of a process. This is due to variables not being defined over
time; thus they cannot be shared over time, so signals must be used for interprocess communi­
cation. One might replicate the control process (or its relevant parts) within each of the other
processes, thus eliminating the need for a separate control process and for interprocess control
communication.

4

We have strayed quite far from the simple hierarchical activation scheme. This has made
the VHDL code extremely complex, since an inherently hierarchical and concurrent model is
being forced into a flattened and sequential one. Intuitively it would seem that this solution
approach will still create problems, since it aims only to solve the specific problem of activating
processes without an extra control delta, rather than the more general problem of performing
any control computation without an extra delta. This is indeed the case. For example, some
domain-specific languages permit declarations to be associated with an activity. Thus signal i
: integer := 3 could have been declared with F's activity. The semantics of this is that every
time F is entered, i is re-initialized to 3. This requires one delta since i is a signal. The above
solution does not handle this. There are numerous such cases where control must use one or
more deltas [NaVa90].

To summarize, we have shown how translation schemes currently perform control com­
putations in VHD L's delta-time, and have shown that this causes incorrect simulation. We
demonstrated not only the complexity, but also the futility of trying to have control computa­
tions coexist with other delta-time computations without changing the functionality. We can
tune the VHDL to solve one specific problem, but it is impossible to solve in the general case.
The conclusion is that there is currently no practical way to translate such languages to fully
functionally equivalent VHDL.

3 The Time-shift Transformation

Simulation Micro-time
Con~rol ~(lnfinlte*ly small)

I
ideal, but
not ~ossible

t delta-time
zerd-time (Infinitely small)

ts ps ns

* * * ts ps ns

Sample domain specific
language required time-scales

A traditional mapping, leading to a
change in micro-time semantics

VHDL time-scales provided

Figure 7: The current method of mapping control computations to delta-time, causing interference with
micro-time functionality

The problem described in the previous section is shown graphically in Figure 7. Several compu­
tations needed for control are performed in delta-time in the VHDL, which interferes with the
domain-specific language's micro-time functionality, which is also performed in delta-time in the
VHDL. Ideally, we would perform these computations in a smaller time scale than delta-time,
but VHDL offers no smaller time-unit. By stating the problem in this manner, a simple solu­
tion becomes clear: perform the control computations in delta-time in the VHDL, and perform
micro-time computations in the next higher VHDL time scale. Everything that used this higher
time scale must be done in the next higher time scale, and so on. Essentially we are shifting
time to make room at the lower end for the control computations. We call this a time-shifted
translation (Figure 8). The simulation output will now represent correct functionality except
that the times are incorrect (shifted). A shifting back will solve this, and if the translation
scheme was correct, then the resulting output represents a completely functionally equivalent
simulation of the domain language.

The time-shifted translation is implemented by applying a time-shift transformation to
the domain-specific language, and then applying a VHDL translation scheme (Figure 9). The
transformation can be applied to any language used to describe activities. We will introduce the
transformation assuming that the activities are described using VHDL sequential statements.
We do this because the time related statements of other languages can be easily implemented

5

Simulation Micro-time ts ps ns ...

Conltol ~le~~~~
delta-time fs ps ns
(Infinitely small)

TIME-SHIFTED Translation
Control and micro-time do not
conflict. Must be shifted back
after simulation

Figure 8: Time-shifted translation, which prevents control computations from interfering with micro-time

functionality

domain specific language Micro· time fs
ps ns

I

: Time-shift
1 transformation

d . V.~. I
~~~ 

omam specwc anguage 

: Regular translation 
1 scheme 

vJoL 

~~~~~~~) f!s p!s n!s 
(Simulation
Control) ~

delta-time fs ps na

Figure 9: Implementation of time-shifted translation, showing the transformation step followed by the
translation step

by VHDL's time related statements. Thus, the transformation is easily modified to account for
other languages' statements. Remember that the transformation deals with the domain specific
language's statements.

variable t: time:= 10 ns;

t := t + 30 ns;
s <= 1 after 10 ns;

wait fort+ 10 ns;

--. variable t: time:= 10 us;

--. t := t + 30 us;
--. s <= 1 after 10 us;

--. wait fort+ 10 us;
s <= 1; ~ (s <• 1 after 1 micro-unit) ~ s <= 1 after 1 fs;

Figure 10: Examples of time-shift applied to domain-specific language's statements

A signal assignment statement sets a signal's value at a specified time. It's relevant form
is: some_signal <= expression <after time_expression>. If the after clause is omitted, after 0
ns is implicit; we first make these explicit. We then shift all occurrences of time units in all
expressions. Thus fs become ps, ps become ns, and so on. This shifts the real-time but not the
micro-time scale, since an assignment after 0 ns really means after 1 micro-unit. Since the units
of 0 are irrelevant, shifting to 0 us still means 1 micro-unit. The 0 should have been shifted to
1 fs. We can account for this by using a function ShiftlfZero(time_expression), which returns 1
fs if its parameter is 0, else it returns the parameter:

function Shift!fZero(time_expression : in time) return time is
begin

if (time_expression = 0 fs) then -- units of 0 are irrelevant
return(1 fs); -- 1 micro-time unit shifted

else
return(time_expression);

end if;
end;

We need a function since the after clause might contain an expression (e.g. t + s) instead
of just a literal 0. This discussion also applies to the for time_expression clause of a wait

6

For each signal assignment with no after clause
create the after clause: after 0 ns

Replace each occurence of 'fs' with 'ps', of 'ps' with 'ns',
etc., in all expressions.

For each signal assignment, and each wait statement with a for clause
replace the statement's time expression (the after or for clause) by:

ShiftlfZero(time_expression)

Figure 11: Time-shift transformation algorithm, applied to a model in the domain-specific language

statement. Specifically, a wait for 0 ns is identical to a wait for 1 micro-unit; thus we again
replace the time expression by ShiftlfZero(time_expression}.

Figure 11 summarizes the time-shift transformation. Since the micro-time scale is unused
after the transformation, only control computations will be implemented in VHDL's delta time
after translation (see Figure 9). The VHDL simulation output will now be correct except that
the times at which events occur will be wrong. An inverse time-shift must be performed on this
output. Thus fs become micro-time units, ps become fs, etc.

C loop
y <= x after 1 f s;
wait until not e1'stable;

end loop;

x <= y after 1 ts:
loop

i <= i + 1 after 1 O us;
wait for 30 ms;

end loop;

I

1G
(The Shi/ti/Zero function is not called in this
example since all time expressions are
literals. In the general case, it would be
called, e.g. i <• i + 1 alter ShiftlfZero(10 us))

Figure 12: Earlier example after the time-shift transformation is applied

Figure 13: Sample of VHDL processes generated after time-shift; note that control is done in a different
time scale than are micro-time assignments, which are now delayed by 1 fs

Figure 12 shows Figure 2 after the time-shift transformation. Figure 13 shows the relevant
VHDL generated by the scheme of Figure 3b. Analysis of Figure 13 demonstrates that the time­
shift has worked: the swap will be achieved in both of the problem cases given in the previous

7

section. The reason is that control is performed in delta time, whereas the assignments have been
shifted to the fs time domain, so there is no interference. Figure 14 shows sample simulation
results of the generated VHDL. Note that the inverse shift essentially divides the time by 1000,
and that any time increments of 1 fs are simply removed, since they are mapped to delta units
which traditionally are not shown. Also note that shifting delta-time back to zero time requires
no change: since delta-time is not shown, events separated by delta-time and those separated by
zero time are indistinguishable; only the order is important. See Figure 1 to review the context
in which these transformations are used.

VHDL simulation output

50,000,000,000 ts (50 us)

A_state = true

B_state = true

C_state =true

D_state =true

50,000,000,001 ts
X=7
Y=6

100,000,000,000 ts (100 us)

e1=99

E_state = true

F _state = true

100,000,000,001 ts
X=6
Y=7

Comments

(assume x - 6, y - 7)

Corresponds to time 50 ns without time-shift
These are actually each separated by t delta, but
simulators don~ usually show this explicitly.

C_state going true activates C's process, which
schedules y to get 6 after t ts.

D_state going true activates D's process, which
schedules x to get 7 after t ts.

The swap worked

(assume et changes)

'note t 'stable' evaluates to true,
which activates processes B and C. Process C
schedules y to get 7 after f ts.
Process E is activated.

Process Fis activated, which schedules
x to get 6 after f Is.

The swap worked

Inverse shifted simulation output

50,000,000 ts (50 ns)

A_state = true

B_state = true

C_state =true

D_state =true

X=7
Y=6

100,000,000 ts (100 ns)

e1=99

E_state =true

F _state = true

X=6
Y=7

Figure 14: Sample VHDL simulation of earlier example, with inverse shifted and thus final simulation
output

4 Improvements

It should be noted that the time-shift might create VHDL which exceeds a simulator's largest
range of time-units (e.g. femtoseconds to seconds is too large a range). This is easily accounted
for by shifting micro-time up to higher unused units. Also note that the number of allowed
micro-time steps goes from infinity to a fixed number after shifting. The time-shift is again
easily modified to permit a number of steps that would likely never be exceeded (e.g. 1,000,000).
Lastly, if a model uses only higher real- time uni ts (e.g. ns), those units need not be shifted.

Simulation Micro-time
Control \

~ r r
delta· time fs ps ns us

Figure 15: Improvements: higher units need not be shifted; micro-time can be shifted higher to meet
time-range constraint

8

5 Examples

Figure 16 shows examples of several problems that can arise due to the delta-time conflict prob­
lem. Figure 16a,b show examples which will simulate incorrectly using a hierarchical activation
scheme in the generated VHDL. In the first case, concurrency is affected (the first swap example
of this report). In the second, the driver for one state is not shut off before that of another
is turned on, causing an overdriven signal error. Figure 16c requires an extra delta for state
activation (second swap example of this report). Figure 16d gives an example where an extra
delta is needed to initialize a signal upon each entry of a state, causing incorrect results. Fig­
ure 16e shows an example in which an extra delta used for handshaking will cause a swap to
fail. In the appendix of this report is shown the original specification, the non-shifted VHDL
and its simulation results, and the shifted VHDL with its simulation results, for several of these
examples.

X <• y; I y <• X I ...
I I

(a) unbalanced adivation tree
affects concurrent functionality

A signal x : integer;

event

(b) unbalanced acpvatio,n tree
causes overdnven signal

B :c avant 1 wait until event;
I y <• x;
I

y I
......

(c) extra delta for state transition
affects concurrent functionality

A

B signal x : integer:- 4; 1C

X<•X+y; !Y<•Y+1;

. (d) extra delta for signal
initialization affects
concurrent functionality

[!)_
B :c

~
: y <.- 7;
1 wait on y;
I y <• x;
I
I
I

' I

extra de/Ila for completion
(e) handshake affeds concurrent

fundionality

Figure 16: Examples which cause problems for translation, all solvable using the time-shift

6 Results

The time-shift transformation has been implemented in C for the domain-specific language
described in [VaNG91]. A translator from this language to VHDL is also implemented [NaVa90]
(we believe this translation scheme to be the most complete and straightforward of any existing
scheme for StateCharts derived languages, but the reasons for this are beyond the scope of this
paper). Numerous examples were tested which, using the translator only, created VHDL which
simulated incorrectly (using a commercial simulator), which would also occur in other schemes
[Ma Wa90, JePA91, DuHG90]. When the time-shift was applied before translation, the results
were correct (see Figure 17; the lettered examples correspond to Figure 16). The transformation
was also applied to examples that previously simulated correctly. We currently perform the
inverse time-shift visually on the simulation results, which is a trivial task (e.g. divide all times
by 1000).

7 Conclusion

This paper introduced an until now unnoticed and unsurmountable limitation that prevents
translation from certain languages to functi'orially equi'valent VHDL. One conclusion is that

9

Example

(a)

(b)

(c)

(d)

(e)

draco

cont_ counter

procesS-Or

Problem

Some processes take longer than others lo activate
(example in this paper), causing swap to fail

Unbalanced activation causes overdriven signal

Stale transition requires extra delta, causing swap
lo fail
Extra delta for initializing signal

Extra deltas for a control handshake

none

none

none

Simulation correct after transform?

yes

yes

yes

yes

yes

yes

yes

yes

Figure 17: Examples simulated without and with the time-shift transformation

translating from one HDL to another is perhaps more complex than previously believed, and
much attention must be given to preserving semantics. While the time-shift introduced provides
for correct simulation, hiding the VHDL can be a very high a price to pay, since other tools
such as VHDL debuggers can not then be used without modification to prevent showing the
time-shifted VHD L to a user.

Thus several possible outcomes of the translation limitation include: (1) An extension to
VHDL itself that eliminates the limitation. This is even more likely when one considers that
the limitation is not just a translation issue. It is also a VHDL modeling issue, e.g. how does
one write a VHDL model for a system which is conceptualized as a hierarchy of behaviors? The
same problems will arise as during translation, since modeling is essentially a translation from a
modeler's system conceptualization to VHDL. (2) Domain-specific language developers will use
the time-shift in conjunction with VHDL tools as hidden pieces of their own tools. (3) Domain­
specific language developers will lower their expectations of the usefulness of VHDL tools. For
example, they may write a new simulator rather than trying to use VHDL simulators.

Until any VHDL extensions occur, the time-shift introduced makes possible an advanta­
geous and sound use of VHDL simulators for simulating domain specific languages.

8 Acknowledgements

This work was supported by the Semiconductor Research Corporation (grant #90-DJ-146). We
are grateful for their support. We would also like to thank Sanjiv Narayan, Nikil Dutt, Tedd
Hadley, and Loganath Ramachandran for their help and suggestions.

9 References

[ArWC90] Arsenault, A., Wong, J .J ., Cohen, lVI., "VHDL Transition from System to Detailed Design",
VHDL User's Group Meeting, Boston, April 1990.

[AyWS86] Aylor, J., Waxman, R., and Scarratt, C., "VHDL-Feature Description and Analysis", IEEE
Design and Test, April 1986.

[DuCH91] Dutt, N., Cho, J., and Hadley, T., ''A User Interface for VHDL Behavioral Modeling," CHDL,
April 1991.

[DuHG90] Dutt, N., Hadley, T., and Ga.jski, D., "An Intermediate Representation for Behavioral Syn­
thesis," DAC, 1990.

[Ha87] Harel, D., "StateCharts : A Visual Formalism for Complex Systems", Science of Computer
Programming 8, 1987 pp 231-274.

[IEEE88] IEEE Standard VHDL Language Reference ivia.nual, IEEE, March 1988.

10

(JePA91) Jerraya, A., Paulin, P., and Agnew, D., "Facilities for controllers modeling and synthesis in
VHDL", VHDL Users' Group Conference, April 1991.

[MaWa90] MacDonald, R., and Waxman, R., "Operational Specification of the SINCGARS Radio in
VHDL", AFCEA-IEEE Tactical Communications Conference, April 1990.

[NaVa90] Narayan, S. and Vahid, F., "Translating SpecCharts to VHDL", UC Irvine, TR 90-21, July
1990.

(NaVG91] Narayan, S. Vahid, F., and Gajski, D., "Translating System Specifications to VHDL", The
European Conference on Design Automation, Amsterdam, February 1991.

[Sh85) Shahdad, M., et al., "VHSIC Hardware Description Language", Computer, February 1985.

(TiLK90) Tikanen T., Leppanen T., and Kivela J., "Structured Analysis and VHDL in Embedded ASIC
Design and Verification", EDAC, 1990.

(VaNG91] Vahid, F., Narayan, S., and Gajski, D., "SpecCharts: A Language for System Level Synthe­
sis," CHDL, April 1991.

(Wa86] Waxman, R., "The VHSIC Hardware Description Language - A Glimpse of the Future",
IEEE Design and Test, April 1986.

A Appendix

This appendix gives the details of several examples. The domain-specific language used is the
StateChart based language called SpecCharts (VaNG91]. For each example, a textual dump of
the original SpecChart is given. Simulation results for VHDL files generated automatically for
non-shifted and shifted examples are then given. The translator has a flag that indicates that a
time-shift should be performed, so it is done automatically. A few of the VHDL files are shown,
but space does not permit displaying all of them. The time-shifted simulation output should
be mentally shifted back by dividing times by 1000. Remember that events separated by 1 fs
simply get shifted to the same time (they are actually delta events).

11

A.1 Swap examples
This is the example of Figure 2, showing the swap problems
discussed in the report. The swap problems also con-espond
to Figure 16a,c. Note from the VHDL outputs that without
the time shift the swap fails, but with it, the swap succeeds
both times (i.e. x and y change values from 6,7 to 7,6 and
back to 6 1 7).

Spec Chart

state
{

name {A}

declarations
{

}

signal x integer := 6;
signal y integer := 7;
signal i integer := 1;
signal j integer;
signal e1 : integer := 99;

concurrent substates
{

}

B
c

}

state
{

}

name {B}
sequential substates
{

}

D: (EI, not e1'stable, E);
E • '

state
{

name {C}
declarations
{

signal cs integer := 1;
}

code
{

}

loop
y <= x;
vait until not e1'stable;

end loop;

}

state
{

}

name {D}
code
{

x <= y;
e1 <= e1 + 1 after 100 fs;

}

state
{

name {E}
concurrent substates

12

{

F . ,
G •I

}
}

state
{

name {F}

code
{

x <= y;
loop

}

i <= i + 1 after 10 fs;
wait for 30 ps;

end loop;

}

state
{

name {G}
code
{

loop
wait for 30 ps;
j <= i after 10 fs;

end loop;
}

}

Non-shifted VHDL simulation results
Note that X and Y do not get swapped.

0 FS
SMOH:

SMON6:
SMOH10:
SMOH10:

SMOH5:
SMOH3:
SMOH2:
SMON1:
SMON7:
SMON8:
SMON6:

SMON10:
SMON12:
SMON11:

SMOH7:
SMON10:
SMON16:
SMON13:
SMON15:

SMOH1:
SMON17:
SMON18:
SMON16:
SMON17:

SMON2:
100 FS

SMOH5:
SMON14:
SMON13:

SMON2:
SMOH1:

110 FS

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/E1 (value = 99)
ACTIVE /AE/I (value = 1)
ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 6)

ACTIVE /AE/DONEA_IIIT (value = TRUE)
ACTIVE /AE/IIA_ORIG (value = TRUE)
ACTIVE /AE/INA_INIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/IIC (value = TRUE)
ACTIVE /AE/A/A_ORIG/IIB (value = TRUE)
ACTIVE /AE/DONEA_IIIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/IIC_IIIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IID (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/CS (value = 1)
ACTIVE /AE/X (value = 7)
ACTIVE /AE/A/A_ORIG/C/DOIEC_IIIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/IIC_ORIG (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/IIC_IIIT (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/DOIEC_IIIT (value = FALSE)
ACTIVE /AE/Y (value = 7)

ACTIVE /AE/E1 (value = 100)
ACTIVE /AE/A/A_ORIG/B/IIE (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IID (value = FALSE)
ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 7)

SM013: ACTIVE / AE/ I (value = 2)

30110 FS
SM013: ACTIVE /AE/I (value = 3)

SM014: ACTIVE / AE/ J (value = 2)

60110 FS
SMOl4: ACTIVE /AE/J (value = 3)

SM013: ACTIVE /AE/I (value = 4)

90110 FS
SM013: ACTIVE /AE/I (value = 5)
SM014: ACTIVE / AE/ J (value = 4)

120110 FS
SM014: ACTIVE /AE/J (value = 5)
SMOl3: ACTIVE /AE/I (value = 6)

Time-shifted VHDL simulation results

Note that X and Y do get swapped two times.

0 FS
SMOI:

SMOl6:
SM0110:
SMOl10:

SMOl5:
SMOl3:
SMOl2:
SM011:
SM017:
SM018:
SMOl6:

SMOl10:
SMOl12:
SM0111:

SMOl7:
SMOl10:
SM0116:
SM0113:
SMOl15:
SMOl17:
SM0118:
SMOl16:
SM0117:

1 FS
SMOl1:
SMOl2:

100000 FS
SMOl5:

SMOl14:
SMOl13:

100001 FS
SMOl2:
SMOl1:

110000 FS
SMOl3:

30110000 FS
SMOl3:
SMOl4:

60110000 FS
SMOl4:
SM013:

90110000 FS
SMOl3:
SMOl4:

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/E1 (value = 99)
ACTIVE /AE/I (value = 1)
ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 6)
ACTIVE /AE/DOIEA_IIIT (value = TRUE)
ACTIVE /AE/IIA_ORIG (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/INC (value = TRUE)
ACTIVE /AE/A/A_ORIG/INB (value = TRUE)
ACTIVE /AE/DOIEA_INIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/INC_INIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IND (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/CS (value = 1)
ACTIVE /AE/A/A_ORIG/C/DONEC_INIT (value TRUE)
ACTIVE /AE/A/A_ORIG/C/INC_ORIG (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/INC_INIT (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/DONEC_INIT (value = FALSE)

ACTIVE /AE/X (value = 7)
ACTIVE /AE/Y (value = 6)

ACTIVE /AE/E1 (value = 100)
ACTIVE /AE/A/A_ORIG/B/INE (value
ACTIVE /AE/A/A_ORIG/B/IND (value

ACTIVE /AE/Y (value = 7)
ACTIVE /AE/X (value = 6)

ACTIVE /AE/I (value = 2)

ACTIVE /AE/I (value = 3)
ACTIVE /AE/J (value = 2)

ACTIVE /AE/J (value = 3)
ACTIVE /AE/I (value = 4)

ACTIVE /AE/I (value = 5)
ACTIVE /AE/J (value = 4)

TRUE)
FALSE)

Non-shifted VHDL (generated auto­
matically)

use work.A_pack.all;

entity AE is
end;

Architecture AA of AE is
signal inA : boolean :=false;
-- NOTE: A's decls (except variables) have been pulled up to here.
type A_integer_RES is array (natural range <>) of integer;
function A_integer_RESfct(IIPUT : A_integer_RES) return integer i1

begin
assert (INPUT'length = 1) report "overdriven signal,

type: A_integer_RES 11 severity earning;
return INPUT(O);

end;
signal x A_integer_RESfct integer register;
signal y A_integer_RESfct integer register;
signal i A_integer_RESfct integer register;
signal j A_integer_RESfct integer register;
signal e1 : A_integer_RESfct integer register;
signal inA_init : boolean :=false;
signal doneA_init : boolean :=false;
signal inA_orig : boolean :=false;
signal doneA_orig : boolean :=false;

begin
A: block
begin

A_init: block (inA_init and not(inA_init'stable))
begin

code: process
variable REMAil_TIME: time;
variable GLOBAL_TIME: time;

begin
if guard then
REMAIN_TIME := 0 fs;
e1 <= 99;
i <= 1;
y <= 7;
x <= 6;
wait for REMAil_TIME;
doneA_init <=transport true;
wait until not (inA_init) ;
doneA_init <= transport false;
end if;
x <= transport null;
y <=transport null;
i <=transport null;
e1 <= transport null;
wait on guard;
end process code;

end block A_init;
A_ orig: block

signal inB boolean :=false;
signal inC boolean :=false;

begin
B: block

signal inD boolean :=false;
signal inE boolean :=false;

begin
D: block (inD and not(inD>stable))
begin

code: process
variable REMAil_TIME: time;

begin
if guard then
D_Loop : loop
x <= y;

e1 <= e1 + 1 after 100 fs;
vait until not (inD)
if (not inD) then
exit D_Loop;
end if;
exit D_Loop;
end loop D_Loop;
end if;
e1 <=transport null;
x <=transport null;
wait on guard;
end process code;

end block D;
E: block

signal inF
signal inG

boolean :=false;
boolean :=false;

begin
F: block (inF and not(inF'stable))
begin

code: process
variable REMAIN_TIHE: time;

begin
if guard then
x <= y;
loop
i <= i + 1 after 10 fs;
wait for 30 ps;
end loop
wait ;
end if;
i <= transport null;
x <= transport null;
vait on guard;
end process code;

end block F;
G: block (inG and not(inG'stable))
begin

code: process
variable REMAIN_TIHE: time;

begin
if guard then
loop
wait for 30 ps;
j <= i after 10 fs;
end loop
vait ;
end if;
j <=transport null;
vait on guard;
end process code;

end block G;

control: process begin
if (inE and not(inE'stable)) then

inF <=transport true;
inG <=transport true;

end if;
vait until (not inE>stable);

end process control;
end block E;
control: process begin

if (inB and not(inB'stable)) then
inD <=transport true;

elsif (inD and (not e1'stable)) then
inD <=transport false;
inE <= transport true;

end if;
vait until (not inB'stable)

14

or (inD and (not e1'stable));
end process control;

end block B;
C: block

type C_integer_RES is array (natural range <>)
of integer;

function C_integer_RESfct
(INPUT : C_integer_RES) return integer is
begin

assert (IIPUT'length = 1) report
"overdriven signal, type: C_integer_RES"
severity warning;
return IIPUT(O);

end;
signal cs : C_integer_RESfct integer register;
signal inC_init : boolean :=false;
signal doneC_init : boolean :=false;
signal inC_orig : boolean :=false;
signal doneC_orig : boolean :=false;

begin
C_init: block (inC_init and not(inC_init'stable))
begin

code: process
variable REMAll_TIME: time;
variable GLOBAL_TIME: time;

begin
if guard then
REMAll_TIME := 0 fs;
cs <=
vait

1;
for REKAll_TIME;

doneC_init <= transport true;
wait until not (inC_init) ;
doneC_init <= transport false;
end if;
cs <= transport null;
vait on guard;
end process code;

end block C_init;
C_orig: block (inC_orig and not(inC_orig'stable))
begin

code: process
variable REMAil_TIME: time;
variable GLOBAL_TIKE: time;

begin
if guard then
REHAil_TIHE := 0 fs;
loop
y <= x;
GLOBAL_TIHE := nov;
wait until not ei'stable
GLOBAL_TIHE := nov - GLOBAL_TIHE;
REHAIH_TIHE := HAX(REMAll_TIME - GLOBAL_TIME,O fs);
end loop ;
wait for REHAll_TIME;
doneC_orig <= transport true;
wait until not (inC_orig) ;
doneC_orig <=transport false;
end if;
y <= transport null;
wait on guard;
end process code;

end block C_orig;
control: process begin

if (inC and not(inC'stable)) then
inC_init <= transport true;

elsif (doneC_init and (true)) then
inC_init <= transport false;
inC_orig <= transport true;

elsif (doneC_orig and (true)) then
inC_orig <=transport false;

end if;
vait until (not inC>stable)

or (doneC_init and (true))
or (doneC_orig and (true));

end process control;
end block C;

control: process begin
if (inA_orig and not(inA_orig'stable))

inB <=transport true;
inC <= transport true;

end if;
vait until (not inA_orig'stable);

end process control;
end block A_orig;
control: process begin

if (inA and not(inA 1stable)) then
inA_init <= transport true;

elsif (doneA_init and (true)) then
inA_init <=transport false;
inA_orig <=transport true;

elsif (doneA_orig and (true)) then
inA_orig <=transport false;

end if;
vait until (not inA'stable)

or (doneA_init and (true))
or (doneA_orig and (true));

end process control;
end block A;

start: process begin
inA <=transport true;
vait;

end process start;

end AA;

A.2 Overdriven Signal Example
This is the example of Figure 16b. Note that the non-shifted
VHDL simulation output has an error indicated that a signal
was overdriven. The shifted VHDL has no such problem.

SpecChart

state
{

}

name {A}
declarations
{

}

signal x : integer ;
signal evnt : integer

sequential substates
{

}

B (EI, not (evnt'stable) , C);
c

state
{

name {B}
concurrent substates
{

D
E

then

1.5

}

}

state
{

name {C}
code
{

x <= 2;
}

}

state
{

name {D}
code
{

x <= 1 j
}

}

state
{

name {E}
code
{

evnt <= 1 after 10 ns;
}

}

Non-shifted VHDL simulation results
Note the overdriven signal error.

0 FS
SMON: ACTIVE /AE/IHA (value = TRUE)

SMON3: ACTIVE /AE/IHB (value = TRUE)
SMON6: ACTIVE /AE/A/B/IHE (value = TRUE)
SMON5: ACTIVE /AE/A/B/IID (value = TRUE)
SMOH8: ACTIVE /AE/A/B/D/GUARD (value = TRUE)
SMON9: ACTIVE /AE/A/B/E/GUARD (value = TRUE)
SMON9: ACTIVE /AE/A/B/E/GUARD (value = FALSE)
SMON8: ACTIVE /AE/A/B/D/GUARD (value = FALSE)
SMON1: ACTIVE /AE/X (value = 1)

10 FS
SMON2: ACTIVE /AE/EVHT (value = 1)

SMON4: ACTIVE /AE/IHC (value = TRUE)
SMON3: ACTIVE /AE/IHB (value = FALSE)
SMON7: ACTIVE /AE/A/C/GUARD (value = TRUE)

Assertion WARNIHG in AA: "overdriven signal, type: A_integer_RES"
SMON6: ACTIVE /AE/A/B/IHE (value =FALSE)
SMON5: ACTIVE /AE/A/B/IHD (value= FALSE)
SMON7: ACTIVE /AE/A/C/GUARD (value= FALSE)
SMON1: ACTIVE /AE/X (value= 2)
SMON8: ACTIVE /AE/A/B/D/GUARD (value= FALSE)
SMON9: ACTIVE /AE/A/B/E/GUARD (value = FALSE)
SMON9: ACTIVE /AE/A/B/E/GUARD (value= FALSE)
SMON8: ACTIVE /AE/A/B/D/GUARD (value = FALSE)
SMON1: ACTIVE /AE/X (value= 2)

1000000000 FS

Time-shifted VHDL simulation results

Note the overdriven signal error is eliminated.

0 FS
SHON:

SMON3:
SMON6:
SMONS:
SMON8:
SMON9:

ACTIVE /AE/INA (value = TRUE)
ACTIVE /AE/INB (value = TRUE)
ACTIVE /AE/A/B/IHE (value = TRUE)
ACTIVE /AE/A/B/IID (value = TRUE)
ACTIVE /AE/A/B/D/GUARD (value = TRUE)
ACTIVE /AE/A/B/E/GUARD (value = TRUE)

SMOl9:
SMOl8:

FS
SM011:

10000 FS
SM012:
SM014:
SMOl3:
SMOl7:
SMOl6:
SMOl6:
SMOl7:
SM018:
SMOl9:
SMOl9:
SM018:

10001 FS

ACTIVE /AE/A/B/E/GUARD (value FALSE)
ACTIVE /AE/A/B/D/GUARD (value FALSE)

ACTIVE /AE/X (value = 1)

ACTIVE /AE/EVIT (value = 1)
ACTIVE /AE/IIC (value = TRUE)
ACTIVE /AE/IIB (value = FALSE)
ACTIVE /AE/A/C/GUARD (value = TRUE)
ACTIVE /AE/A/B/IIE (value = FALSE)
ACTIVE /AE/A/B/IID (value = FALSE)
ACTIVE /AE/A/C/GUARD (value = FALSE)
ACTIVE /AE/A/B/D/GUARD (value = FALSE)
ACTIVE /AE/A/B/E/GUARD (value FALSE)
ACTIVE /AE/A/B/E/GUARD (value FALSE)
ACTIVE /AE/A/B/D/GUARD (value FALSE)

SMOl1: ACTIVE /AE/X (value= 2)
1000000000 FS

Time-shifted VHDL (generated auto­
matically)

use vork.A_pack.all;

entity AE is
end;

Architecture AA of AE is
signal inA : boolean :=false;

x <= 1 after ShiftifZero(1 fs);
wait until not (inD)
if (not inD) then
exit D_Loop;
end if;
exit D_Loop;
end loop D_Loop;
end if;
x <= transport null;
wait on guard;
end process code;

end block D;
E: block (inE and not(inE 1stable))
begin

code: process
variable REMAil_TIME: tiae;

begin
if guard then
E_Loop : loop
evnt <= 1 after ShiftifZero(10 ps);
wait until not (inE)
if (not inE) then
exit E_Loop;
end if;
exit E_Loop;
end loop E_Loop;
end if;
evnt <= transport null;
wait on guard;
end process code;

end block E;

-- IOTE: A's decls (except variables) have been pulled up to here.
function ShiftifZero(tirne_expression : in time) return time is
begin

control: process begin
if (inB and not(inB 1stable)) then

inD <= transport true;
inE <= transport true;

if (time_expression = 0 fs) then
return (1 fs);
else
return (time_expression);
end if;

end;
type A_integer_RES is array (natural range <>) of integer;
function A_integer_RESfct(INPUT : A_integer_RES)

return integer is
begin

assert (IIPUT'length = 1) report
"overdriven signal, type: A_integer_RES"
severity warning;

return IIPUT(O);
end;
signal x : A_integer_RESfct integer register;
signal evnt : A_integer_RESfct integer register;
signal inB boolean :=false;
signal inc : boolean :=false;

begin
A: block
begin

B: block
signal inD boolean :=false;
signal inE boolean :=false;

begin
D: block (inD and not(inD'stable))
begin

code: process
variable REMAIN_TIHE: time;

begin
if guard then
D_Loop : loop

16

elsif (inB=false and not(inB'stable)) then
inD <= transport false;
inE <=transport false;

end if;
wait until (not inB'stable);

end process control;
end block B;
C: block (inC and not(inC'stable))
begin

code: process
variable REMAil_TIME: time;

begin
if guard then
x <= 2 after ShiftifZero(1 fs);
wait ;
end if;
x <= transport null;
wait on guard;
end process code;

end block C;
control: process begin

if (inA and not(inA'stable)) then
inB <= transport true;

elsif (inB and (not (evnt'stable))) then
inB <= transport false;
inC <= transport true;

end if;
wait until (not inA'stable) or (inB and (not (evnt'stable)))

end process control;
end block A;

start: process begin

inA <=transport true;
vait;

end process start;

end AA;

A.3 Signal Initialization Example
This is the example of Figure 16d. Assuming y is initially
O, the final value of x during simulation should be 4. In
the non-shifted VHDL, y is incremented earlier than x is
updated, thus xis 5, which is incorrect.

SpecChart

state
{

name {A}
declarations
{

signal y : integer :=O;
}

concurrent substates
{

}

B
c

}

state
{

}

name {B}

declarations
{

signal x integer :=4;
}

code
{

x <= x + y;
}

state
{

name {C}
code
{

}
y <= y + 1;

}

Non-shifted VHDL simulation results
Note that x equal 5 at the end, which is incorrect.

0 FS
SMOI:

SMOl2:
SMOl6:
SMOl6:
SMOl1:
SMOl3:
SMOl4:
SMOl2:
SMOl6:
SMOl8:
SMOl7:
SM013:
SMOl6:

SMOl14:

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/Y (value = 0)
ACTIVE /AE/DOIEA_INIT (value = TRUE)
ACTIVE /AE/INA_ORIG (value = TRUE)
ACTIVE /AE/INA_INIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/INC (value = TRUE)
ACTIVE /AE/A/A_ORIG/INB (value = TRUE)
ACTIVE /AE/DONEA_INIT (value = FALSE)
ACTIVE /AE/A/A_INIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/GUARD (value = TRUE)

17

SMON10: ACTIVE /AE/A/A_ORIG/B/IIB_IIIT (value = TRUE)
SMON14: ACTIVE /AE/A/A_ORIG/C/GUARD (value =FALSE)

SHON1: ACTIVE /AE/Y (value= 1)
SMON9: ACTIVE /AE/A/A_ORIG/B/X (value= 4)

SMON11: ACTIVE /AE/A/A_ORIG/B/DOIEB_IIIT (value= TRUE)
SMON12: ACTIVE /AE/A/A_ORIG/B/IIB_ORIG (value• TRUE)
SMON10: ACTIVE /AE/A/A_ORIG/B/IIB_IIIT (value • FALSE)
SMON11: ACTIVE /AE/A/A_ORIG/B/DOIEB_IIIT (value• FALSE)

SMON9: ACTIVE /AE/A/A_ORIG/B/X (value• 5)
SMON13: ACTIVE /AE/A/A_ORIG/B/DOIEB_ORIG (value •TRUE)
SHON12: ACTIVE /AE/A/A_ORIG/B/IIB_ORIG (value= FALSE)
SHON13: ACTIVE /AE/A/A_ORIG/B/DOIEB_ORIG (val~e = FALSE)

1000000000 FS

Time-shifted VHDL simulation results

Note that x equals 4 at the end, which is correct.

0 FS
SMON:

SHON2:
SHON6:
SHON6:
SHON1:
SMON3:
SHON4:
SHON2:
SHON6:
SMON8:
SHON7:
SMON3:
SMON6:

SMON14:
SMON10:
SMON14:

SMON9:
SMON11:
SHON12:
SMON10:
SMON11:
FS

SMON1:
SMON9:

SHON13:
SMON12:
SHON13:

1000000000 FS

ACTIVE /AE/IIA (value = TRUE)
ACTIVE /AE/IIA_IIIT (value = TRUE)
ACTIVE /AE/A/A_llIT/GUARD (value = TRUE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/Y (value = 0)
ACTIVE /AE/DONEA_llIT (value • TRUE)
ACTIVE /AE/INA_ORIG (value = TRUE)
ACTIVE /AE/IIA_llIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value • FALSE)
ACTIVE /AE/A/A_ORIG/llC (value = TRUE)
ACTIVE /AE/A/A_ORIG/IIB (value = TRUE)
ACTIVE /AE/DONEA_IIIT (value = FALSE)
ACTIVE /AE/A/A_IIIT/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/C/GUARD (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IIB_IIIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/C/GUARD (value = FALSE)
ACTIVE /AE/A/A_ORIG/B/X (value = 4)
ACTIVE /AE/A/A_ORIG/B/DOIEB_IIIT (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IIB_ORIG (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IIB_IIIT (value = FALSE)
ACTIVE /AE/A/A_ORIG/B/DOIEB_llIT (value = FALSE)

ACTIVE /AE/Y (value = 1)
ACTIVE /AE/A/A_ORIG/B/X (value = 4)
ACTIVE /AE/A/A_ORIG/B/DOIEB_ORIG (value = TRUE)
ACTIVE /AE/A/A_ORIG/B/IIB_ORIG (value = FALSE)
ACTIVE /AE/A/A_ORIG/B/DOIEB_ORIG (value = FALSE)

1111111111111111111 ~1111111~ II Ill I lllll lll llllll llll Ill lll ll
3 1970 00882 6544

DATE DUE

-

-
-

-

GAYLORD PRINTED IN U.S.A.

