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Abstract

Nonmonotonic bending-induced changes of fundamental band gaps and quasiparti-

cle energies are observed for realistic nanoscale phosphorene nanosheets. Calculations

using stochastic many-body perturbation theory (sGW ) show that even slight curva-

ture causes significant changes in the electronic properties. For small bending radii

(< 4 nm) the band-gap changes from direct to indirect. The response of phosphorene

to deformation is strongly anisotropic (different for zig-zag vs. armchair bending) due

to an interplay of exchange and correlation effects. Overall, our results show that fun-
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damental band gaps of phosphorene sheets can be manipulated by as much as 0.7 eV

depending on the bending direction.

Introduction

Since its discovery less than a decade ago,1–3 single layer phosphorene attracted much atten-

tion due to its unique electronic and mechanical properties. Its fundamental band gap (Eg)

can be tuned by increasing the number of stacked monolayers4–6 or by chemical doping,7 and

spans a wide range of values, from Eg = 1.88 eV in single layer phosphorene to Eg = 0.3 eV in

the bulk. The unique mechanical properties8 along with high room temperature mobilities

(around 1, 000cm2/s V)3 make phosphorene a promising candidate for fabrication of next

generation flexible nanoelectronics3,9–12 nanophotonics,13 and ultrasensitive sensors.14,15

Understanding the interplay between the electronic and mechanical properties is central

for future technological developments. Indeed, significant progress has been made in describ-

ing the role of strain. Density functional theory (DFT) calculations predict a decrease in

the band gap as a result of the application of uniaxial strain, which ultimately results in a

direct-to-indirect band gap transition.16,17 However, DFT is not a good proxy for quasiparti-

cle energies .18,19 The case of bent phosphorene is even more challenging, since investigation

of bending effects naturally precludes the use of periodic boundary conditions. Thus, stud-

ies so far have been limited to narrow (quasi-1D) phosphorene nanoribbons20 within DFT,

indicating charge localization and formation of in-gap states for extreme bending conditions

(radii R < 1.3 nm). These bending scenarios are very challenging experimentally.

Ab-initio many-body perturbation theory in the GW approximation21–23 yields accurate

predictions for quasiparticle energies. Its cost was prohibitive, however, so GW was only

feasible for small and medium sized systems.24,25 Luckily, the costs are drastically reduced

by a new stochastic approach to simulating GW, labeled StochasticGW or just sGW ,26–28

which is a part of a general stochastic paradigm .29–34 sGW is sufficiently efficient that it is
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less expensive than the underlying DFT stage, and this makes it possible to treat systems

with thousands of electrons or more.27,28 We employ here sGW for calculating quasiparticle

(QP) energies for a series of large (2.9× 4.3 nm) phosphorene nanosheets (PNS).

The PNS are subject to bending with radii between 1µm and 2 nm – a range that can be

realized experimentally.35,36 Thus, it is possible to directly map the evolution of band gaps

with deformation of a 2D material. We discover here that even a small sample curvature

affects the QP energies and that DFT severely underestimates the response to bending.

Further, irrespective of the direction of bending, we find an interesting crossing of the lowest

unoccupied states leading to a change of character of the gap for radii < 4 nm. The PNS

response is strongly anisotropic and is governed by nontrivial interplay of exchange and

correlation effects. Our results predict that under realistic conditions, the QP gap can be

manipulated solely by deformation by as much as 0.7 eV.

Theory and Methods

Fundamental band gaps are defined as differences between ionization potential and electron

affinity, which correspond to quasiparticle (QP) energies of the highest occupied (εQP
H ) and

lowest unoccupied states (εQP
L ), i.e.:

Eg = εQP
L − εQP

H . (1)

While density functional theory yields a set of eigenstates and corresponding eigenvalues,

those cannot be interpreted as QP energies.18 Indeed, DFT eigenvalue differences severely

underestimate true band gaps.19 A solution is to calculate εQP through many-body pertur-

bation theory with Kohn-Sham (KS) DFT as a starting point.22,23,37

KS eigenvalues (εKS) contain contributions from kinetic energy and Hartree, ionic and

a mean field exchange-correlation (xc) potential energies. The QP energy is obtained by
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replacing the xc term (vxc) by exchange (ΣX) and polarization self-energies (ΣP ):

εQP = εKS − vxc + ΣX + ΣP

(
εQP

)
. (2)

The exchange contribution is

ΣX = −
Nocc∑
j

∫∫
φ (r)φj (r)

1

|r− r′|
φj (r′)φ (r′) drdr′, (3)

where φ is the orbital for which εQP is evaluated and the sum extends over all Nocc occupied

states. ΣP is a dynamical quantity describing the polarization of the density due the QP. Note

that Eq. (2) is a fixed point equation, where ΣP is evaluated at the frequency corresponding

to εQP .

The self-energy terms are computed using sGW , which, as mentioned, scales nearly

linearly with number of electrons and allows to compute Σ for extremely large systems with

thousands of atoms.28 While the GW approximation should in theory by solved by a self-

consistent set of Hedin’s equations,21 it is common practice to use a one-shot correction

(G0W0), in which the self-energy is based on underlying KS Hamiltonian. This is however

insufficient in many cases.19 We thus rely on a partially self-consistent ∆̄GW approach38

which is a simple post-processing step on top of G0W0 and yields band gaps in excellent

agreement with experiment.38

Results

We investigated the effects of bending on a set of phosphorene nanosheets derived from the

experimental structure of bulk black phosphorus.39 PNS were constructed from a 10 × 10

single sheet supercell passivated with hydrogen atoms. We relaxed the interatomic positions

using a reactive force field developed for low dimensional phosphorene systems.40 First prin-

ciples geometry minimization, e.g., with DFT, is too expensive due to the size of the system.
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The relaxation was performed such that the phosphorus atoms that are on the straight edge

were fixed and the structure optimized within the LAMMPS code.41,42

A ground state DFT calculation was performed using a real-space grid representation,

ensuring (through the Martyna-Tuckerman approach43) that the potentials are not peri-

odic. The exchange-correlation interaction was described by the local density approximation

(LDA)44 with Troullier-Martins pseudopotentials.45 With a kinetic energy cutoff of 26Eh

and 0.6a0 real-space grids-spacing the Kohn-Sham eigenvalues were converged to <10 meV.

Many-body calculations were performed using the StochasticGW code 1 with 40, 000

fragmented stochastic bases. Only quasiparticle energies were computed, while we kept the

DFT orbitals unchanged. The dynamical part of the self-energy was computed using 8

stochastic orbitals in each stochastic sampling of ΣP using the random-phase approximation

(i.e., time-dependent Hartree) and with a propagation time of 100 atomic units. The total

number of stochastic samples was varied to reach a statistical error of ≤ 0.02 eV for the QP

energies (typically 1,200 samples).

Planar phosphorene nanosheet

Ideal phosphorene geometry has a puckered honeycomb structure with two distinct in-plane

directions: armchair (x) and zig-zag (y) as shown in Fig. 1. The characteristic ridges in the

structure are along the zig-zag direction. Each phophorus atom has two nearest neighbor

distances d1 and d2 constituting a ridge. In two extreme scenarios, the bending axis is

either along the x (armchair) or y (zig-zag) directions (Fig. 1), resulting in a nonuniform

inter-atomic distances.

To focus our investigation purely on the effect of PNS bending, we first construct an

ideal phosphorene monolayer with dimensions 4.3 × 2.9 nm along the armchair and zig-zag

directions with 1, 958 valence electrons. The arrangement of the P atoms is identical to a

layer of the periodic P crystal39 and thus our results can be compared to previous calculations

1Code is available at http://www.stochasticgw.com/
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Figure 1: Phosphorene is characterized by puckered honeycomb lattice with ridges along the
armchair (x) axis. Two nearest neighbor distances are denoted in the left panel (d1 and d2).
Bending of PNS is illustrated on the right for bending radius R = 5 nm; PNS bent along
zig-zag and armchair axes are on the top denoted as (a) and (b), respectively.

for an infinite 2D systems.

We find that for a planar PNS, one-shot G0W0 predicts a quasiparticle band gap of

Eg = 2.23 ± 0.04 eV. This is larger by ∼ 0.2 eV than Eg for bulk systems .4,5,46 Self-

consistency (∆̄GW ) further increases the fundamental band gap to Eg = 2.47 ± 0.04 eV.

Our ∆̄GW result overlaps a previous study of infinite 2D sheets of phosphorene at the G1W1

level (obtained in first iteration to self-consistency)4 but is larger by 0.17 eV than a similar

self-consistent treatment (GW0) for bulk.47 The larger fundamental gap indicates that the

large PNS considered here is still slightly influenced by quantum confinement, but to a

much smaller degree than several small systems that were previously studied by DFT.20,48

This shows the strength of sGW , which provides reliable results for quasiparticle energies of

extended systems.

By inspecting the nature of individual states (Fig. 2), we find that the valence band

maxima and the conduction band minima have a pz orbital character. In a simplified picture,

the p orbitals are centered on each P atom and their hybridization forms bonding and anti-

bonding states. This is qualitatively shown in the HOMO and LUMO in Fig. 2. Since

bending (discussed later) changes the orbital ordering, we denote the lowest unoccupied

state in a planar system as LUMO1, for clarity.

Both HOMO and LUMO1 states are strongly delocalized around the center of the PNS

and extend to the edges along the armchair (x) direction (see the left isosurfaces in Figs. 3

and 4, in the limit R → ∞). The delocalization along the armchair direction is associated
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Figure 2: Orbital character for the band-edge states. Simplified overlaps of two nearest
neighbors with interatomic distances d1 and d2 are depicted separately for clarity. Identi-
cal colors in the p-orbital lobes correspond to a bonding overlap, distinct colors depict an
anti-bonding overlap. The rightmost column shows details of the orbital isosurfaces. The
character of the HOMO state does not change with bending. LUMO1 is the lowest unoccu-
pied state for radii R ≥ 4 nm. LUMO2 (see text for reference) has either an anti-bonding
px character (for R < 4 nm in zig-zag bending) or mixed px + pz character (for R < 4 nm in
armchair bending).
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with an effective mass that is 7-times lower along the armchair direction compared to the zig-

zag direction.17 The orientation and phase of the orbitals does not change markedly when

translating by a unit-cell vector along x or y direction. This indicates that both HOMO

and LUMO1 are in-phase, consistent with previous calculations for bulk,16,17,48 supporting a

direct band-gap material.

We also performed calculations for phosphorene nanosheets relaxed with a reactive force-

field which was tuned to reproduce the elastic properties of phosphorene.40 Relaxation affects

mainly atoms at the edge and shortens the d2 distance by 0.03Å. As a result, the d1 and d2

bond lengths are almost identical, leading to stabilization of the px character at the expense

of pz states ,5,6,16,17 signifying that the particular ordering of electronic states in phosphorene

is very sensitive to the geometry. In the next subsection, we illustrate however that while

the quasparticle band gaps change dramatically and qualitatively by bending, this does not

depend on the precise geometry of the monolayer.

Bent phosphorene nanosheet

Zig-zag bending

Even the slightest deformation along the zig-zag direction (the y-axis of the sheet is bent, see

Fig. 1) results in changes in quasiparticle energies (Fig. 3). For large bending radii between

1 µm and 100 nm (see inset in the bottom panel of Fig. 3) the HOMO energy increases and

the LUMO1 energy decreases with bending radius. The fundamental band gap consequently

drops by 0.10± 0.04 eV; this is clearly seen in Fig. 5 which shows the evolution of Eg with

1/R. Note that for such large R the change in the atomic positions is rather small, < 0.2%.

This effect is seen only for nanosheets bent along the zig-zag direction, but irrespective of

the direction of the bending along the z-axis (whether they are bent up or down). It is

likely related to left-right symmetry breaking (along the y-axis) that allows the HOMO and

LUMO1 orbitals to shift towards the edges, as discussed in the next section.

If the bending radius is further decreased (100 nm> R > 4 nm), the HOMO and LUMO1
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Figure 3: Top: Orbital isosurfaces for bending along the zig-zag axis; the phase of the
wave-function is distinguished by its color. Bottom: QP energies in zig-zag bending. The
stochastic error on each point is smaller than the symbol size, and is explicitly shown in the
inset. The line is a guide for the eye. The HOMO state is shown in red, LUMO1 (denoted
L1) in blue and LUMO2 (denoted L2) in black. The fundamental band gap Eg is shown for
R = 2 nm, and the specific values are reproduced in Table 1. Note that LUMO2 is identified
for R = 5 as the fifth state above LUMO1 (for clarity we do not depict intermediate states).
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Figure 4: Top: Orbital isosurfaces for bending along the armchair axis. Bottom: QP energies
for PNS bent along the armchair direction.

Figure 5: Fundamental band gaps (Eg) of phosphorene sheets bent along the armchair (black)
and zig-zag (red) directions. Bent structures for R = 2 nm are illustrated in the insets: top
for armchair bending, bottom for zig-zag. Error bars show the stochastic errors. The lines
are guides for the eye.
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states gradually shift even more towards opposite edges parallel to the bending axis but

remain extended along the armchair direction (Fig. 3). The energies of both states depend

nearly linearly on the inverse bending radius as shown in bottom panel of Fig. 3. The HOMO

decreases with a slope of −0.71 eV nm, but LUMO1 increases with slope of 1.05 eV nm. As

a result, the fundamental band gap opens up with decreasing bending radius. For R = 4 nm

the band gap rises to 2.82± 0.02 eV, significantly larger than the band gap for planar PNS

(2.47± 0.04 eV), as clearly shown in Fig. 5.

For very small bending radii (< 4 nm), we observe a transtion in the order of LUMO1 and

LUMO2. The latter is nearly triply degenerate and becomes the lowest unoccupied orbital.

As a results, the band gap decreases with bending radius and for R = 2 nm the band gap is

Eg = 2.37± 0.04 eV, i.e., even lower than the bulk value (cf. Fig. 5).

At any bending radius, both HOMO and LUMO1 retain their pz character. Similarly,

LUMO2, which is triply degenerate, has a px character (and, as mentioned, dips below

LUMO1 when the bending radius is smaller than 4nm). Note that LUMO2 is characteristi-

cally delocalized over the ridges (i.e., along the zig-zag direction). Some examples of orbital

isosurfaces (including one of the three LUMO2 states) are shown in Fig. 3. Specifically,

for the the outer (dilated) surface of the phosphorene nanosheet, the neighboring P atoms

exhibit anti-bonding px overlap. In contrast, for atoms on the inner (contracted) surface the

overlap has a bonding character. We further note that the LUMO2 orbital is localized on

every other ridge along the armchair direction, i.e., it has periodicity twice as long. This

indicates that the fundamental band gap becomes indirect. The preceding discussion and

the plot in Fig. 3 were for one of the LUMO2 states, but the two other LUMO2 states behave

similarly.

Armchair bending

The PNS is also sensitive to bending along the armchair direction, as summarized in Fig. 4,

but the overall trends are quite different. Now, both HOMO and LUMO1 shift negligibly
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towards the armchair edges. Unlike zig-zag bending, Eg remains practically constant till R

is lower than 100 nm and increases when the system is further bent. This is quantitatively

shown in Fig. 5.

The increase in the fundamental gap for R < 100 nm is mainly due to a shift of the

HOMO that decreases linearly with slope of −1.05 eV nm. This slope is 50% larger in

magnitude than in deformation along the zig-zag axis. For radii < 4 nm, we also observe

a crossing of the two unoccupied states, as was the case for zig-zag bending. The shape of

LUMO2 in this armchair bending case is, however, quite different. LUMO2 has now a mixed

pz and px character and its phase is roughly four times larger than a single unit-cell, while

HOMO and LUMO1 have the same spatial periodicity as the ionic structure. This suggests

that for highly bent systems, the band gap is indirect. We further observe that the QP

energy of LUMO2 decreases slowly (−0.66 eV nm). Consequently, the band gap opens with

a mild positive slope (0.39 eV nm). For R = 2 nm, we obtain Eg = 3.08 ± 0.02 eV, which

is 0.7 eV larger than for a PNS bent by a similar amount along the zig-zag direction, and

0.6 eV larger than for a planar phosphorene. The QP band gaps are shown in Fig. 5 and,

for selected radii, in Table 1.

Force-field-optimized bent structures

We have also computed band gaps for relaxed phosphorene nanosheets with R = 4 and

2 nm. The geometries were relaxed keeping the outermost edge P atomic positions fixed. As

we mentioned in the previous section, with force-fields relaxation even a planar (R → ∞)

structure the lowest LUMO has a px character. With force-field relaxation, bending along

the zig-zag direction does not lead to state crossing. The LUMO keeps a px character, and

its energy decreases with bending radius.

In contrast, when a force-field relaxed structure is bent along the armchair direction, the

pz-type orbital becomes a tiny bit more stable than the px one. The difference is so small

that both LUMO states are practically degenerate.
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In spite of the difference in state character between the idealized and force-field optimized

structures, they both show the same difference (0.7eV) between the band-gaps of zig-zag

and arm-chair bent structure at R=2nm. Therefore, the precise state ordering depends on

geometrical details, but the overall response to bending is highly anisotropic.

Discussion

Small curvatures

We now turn to analyze the results, and start with large R. Here, the behavior described in

the previous section is remarkable. Recall that upon a tiny change of curvature in the zig-zag

direction (from R → ∞ to R ≥ 100 nm), the band-gap decreases by about 0.1 eV (Fig. 5).

This is not a big change compared with the changes at R ∼ 2 − 4 nm, but it occurs with

only a tiny modification of geometry. Further, this effect was not seen in DFT calculations.

To understand this zig-zag induced 0.1 eV change, we need to first recall that the system is

highly anisotropic. Fig. 3 shows that HOMO and LUMO1 are strongly confined only along

the armchair direction. This is consistent with the highly anisotropic effective masses of

electrons and holes (0.16/0.15me and 1.24/4.92me along the armchair and zig-zag directions,

respectively for electrons/holes17). Upon even a tiny bending (i.e., at any finite R), the

HOMO and LUMO1 can easily migrate to the sides, as shown in Fig. 3. The energy required

to localize the orbitals along the y-axis is negligible due to the large effective mass along the

zig-zag direction.

In a previous DFT study,17 a large amount of strain (4%) was required to induce the same

size of band-gap modification (0.1 eV). This is much larger than the strain in small-curvature

bending (for R = 100 nm the strain is only 0.02% along the y direction). Further, the 0.1 eV

induced zig-zag bending effect is only observed in GW . The underlying DFT calculations

do not show eigenvalue modifications for such tiny bending (i.e., R > 100 nm). This mech-

anism suggests that even small curvature of real finite samples may change significantly the
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fundamental gaps.

Large curvatures

We now turn to large-curvature bending, with R between 100 nm and 2 nm. In DFT the

QP energies change is small (0.1 eV or less). In GW , however, the changes are significant,

as we mentioned in the previous section, and as also shown quantitatively in Table 1.

The change of QP energies in GW comes from two sources: exchange (ΣX) and polar-

ization (ΣP ). Exchange is overall stronger, but we find many cases where the polarization is

almost as big in magnitude. To analyze the relative contributions, we fit the exchange-only

contribution by a tight-binding-like expression:

∆ (ΣX) ' O1∆

(
1

d1

)
+O2∆

(
1

d2

)
. (4)

Here, O1 and O2 are fitted parameters, while d1 and d2 are the average interatomic distances

and ∆ refers to the change relative to the planar structure.

Due to the finite thickness of a single PNS, atoms on the “outside” and “inside” experience

slightly different curvature and hence the interatomic distances vary. This is reflected in

Eq. 4 by considering an average interatomic distance. Upon bending, the average distances

increase as the dilatation of the outer-surface distances is larger than the compression of

the inner surface ones, so 1/d decreases. For armchair bending both d1 and d2 change (the

former about 10-times as much as the latter); for the zig- zag bending only d1 changes. 2

In our model (Eq. 4), the bonding orbitals stabilize ΣX : they have a negative value of

O1,2 and upon shortening of interatomic distances (i.e., when ∆ (1/d1,2) > 0) the exchange

self-energy becomes more negative (i.e., ∆ (ΣX) < 0) . In contrast, the anti-bonding orbitals

destabilize the QP energy as the atoms become closer, i.e., they are associated with positive

values of O1,2.

2For the maximum bending, i.e., R = 2 nm, we achieve the largest change of the interatomic distance:
on average d1 is elongated by 9% for bending along both x and y axes, while d2 changes merely by 1% and
happens only for bending along the zig-zag direction.
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Table 2 contains the fitted O1,2 coefficients for the HOMO, LUMO1 and LUMO2 (the

latter for zig-zag bending during which LUMO2 has a px character). Note the reverse signs

of O1 and O2 for HOMO and LUMO1 (first two rows of Table 2). The opposite signs indicate

distinct bonding/anti-bonding characters along d1 and d2 for the two band-edge states. As

mentioned in the previous paragraph, bending causes (on average) d1 to increase much more

than d2, i.e., the O2 contribution results in smaller quantitative changes.

During bending along both directions, HOMO becomes less destabilized by the “anti-

bonding interaction” along d1 (O1 term in Table 2) and its energy decreases. In contrast,

the energy of LUMO1 increases since the “bonding interaction” (characterized by O1) is

getting smaller.

In bending along the armchair direction, this decrease/increase of the HOMO/LUMO1

energy is counteracted by contributions from O2. However, zig-zag bending does not affect

d2, so ∆ΣX shows much higher slopes for both HOMO and LUMO1.

The overall change of the QP energy (∆εQP ) with the curvature (1/R) is smaller as shown

in Table 3. This is because of partial cancellation of ∆ΣX by the changes in ΣP , which in

all cases studied raises the QP energy. 3

A similar consideration applies also to the LUMO2 states which have distinct character

for bending along the zig-zag and armchair axes. In the first case, LUMO2 has an overall

anti-bonding px character 4, but we note that ∆ΣX/∆( 1
R

) significantly underestimates the

variation of εQP ( by ∼ 50% as shown in Table 3). The remaining part stems from the

changes in the Hartree and external potential energies.

For bending along the armchair direction, LUMO2 has a mixed pz and px bonding char-

acter. Due to an increase of d1 and d2 with 1/R, ΣX increases (i.e., destabilizes LUMO2)

3The change of ΣP with curvature is 0.85/0.95 eV nm and −0.84/− 0.88 eV nm for HOMO and LUMO1

along the zig-zag/armchair directions.
4As mentioned in Sec.III B, the LUMO2 state appears as anti-bonding only on the outer surface (with

respect to the bending axis), while it is bonding on the inner surface. The former interaction dominates
since the interatomic distances on the outer surface increase faster (by a factor of ≈ 3.5) with 1/R. Hence,
the exchange contribution shows overall stabilization with decreasing bending radii; indeed ΣX of px state
decreases with slope of −1.37 eV nm.
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with a slope of 0.12 eV nm. This is similar to what happens with LUMO1 (but the change

is much smaller). This exchange effect is counterbalanced by large changes in ΣP and the

electrostatic potential. The LUMO2 QP energy thus slightly decreases with energy.

Hence, the behavior of the LUMO2 states for bending along the zig-zag and armchair

axes has a different origin. While in the first case (zig-zag bending), it is qualitatively

given by variation of ΣX , the response to bending in the armchair direction is governed by

correlations and electrostatic effects. Combined, this leads to a very anisotropic response of

the QP energies (and fundamental gaps) to bending.

Table 1: Fundamental band-gaps for ideally planar (R → ∞) PNS and two bent systems
with radii R = 4 and 2 nm along the zig-zag and armchair axes. The stochastic error is
0.04 eV in all cases.

R→∞ R = 4 nm R = 2 nm

zig-zag 2.47 2.82 2.37
armchair 2.47 2.84 3.07

Table 2: Fitted parameters

O1 [eV nm] O2 [eV nm]

HOMO 3.22 -4.63
LUMO1 -4.22 5.03
LUMO2 (px) 2.94 -

Table 3: Selected slopes (with respect to 1/R) of the change in the exchange and QP energies
for several band-edge states.

∆ΣX

∆(1/R)
[eV nm] ∆εQP

∆(1/R)
[eV nm]

zig-zag armchair zig-zag armchair

HOMO −1.67 −1.24 −0.71 −1.05
LUMO1 2.07 1.20 1.05 0.44
LUMO2 (px) −1.54 −2.91
LUMO2 (px+z) −0.66
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Conclusions

Ab-initio many-body perturbation theory was used here to study bending-induced changes

of εQP and band gaps in PNS. Extremely large PNSs containing 1, 958 valence electrons

were studied for bending radii ranging between 1µm and 2 nm along the armchair and zig-

zag directions. Bending along the zig-zag direction shows changes in the QP energies even

for very small curvatures (which corresponds to strain � 1%) and a bandgap decrease for

R > 100 nm, not observed in the armchair direction. Sample roughness leading to slight

distortion would thus explain variation in experimental Eg as well as apparent in-gap states

and peaks in scanning tunneling data.46

Bending PNS to smaller radii R < 100 nm results in an opening of the fundamental band

gap, regardless of the bending direction. This trend persists however only till R ∼ 4 nm,

at which unoccupied states reorder, leading to a nonmonotonic behavior of the fundamental

gap for bending along the zig-zag but not armchair directions. Thus, the behavior of Eg with

increasing deformation depends on the direction of the bending and as a result, it is possible

to achieve band gap variation as large as ≈ 0.7 eV within the same material depending only

on the bending direction.

We explained the emergence of the different response to curvature by analyzing indi-

vidual energy contributions to the quasiparticle levels. Distinct stability of various unoccu-

pied states was found to derive mostly from exchange terms dominated by the bonding or

anti-bonding character of nearest-neighbor orbital overlaps. Variation of QP energies with

bending is substantially modified however by dynamical screening, which dominates the re-

sponse for bending along the armchair direction. For large zig-zag deformations, the first

unoccupied state has a px anti-bonding character. Its energy quickly decreases with further

bending leading to a drop of Eg. For the same bending radii along the armchair direction,

the first unoccupied state is a hybridized bonding combination of pz and px. Due to com-

peting exchange-correlation effects this hybridized state only weakly depends on curvature.

Therefore Eg keeps increasing with 1/R even for R < 4 nm for armchair bending.

17



Results for relaxed bent phosphorene nanosheets corroborate our prediction of LUMO

reordering and strong Eg variation depending on the bending direction. Hence, bending ap-

pears as a very efficient way to manipulate band gaps and orbital characters in phosphorene.

Due to changes in the orbital shape and distribution, such modification could be very useful

in understanding and developing optoelectronics and valleytronics devices.49
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