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Abstract

Mesoscale to Microscale Atmospheric Modeling Over Complex Terrain
by
David Wiersema
Doctor of Philosophy in Engineering - Civil and Environmental Engineering
University of California, Berkeley
Professor Fotini Katopodes Chow, Chair

Microscale atmospheric simulations of the planetary boundary layer are frequently used
for wind energy forecasting, emergency response, mountain meteorology, air pollution mod-
eling, and numerous other applications involving atmospheric flows over complex terrain.
These models are typically configured using local observations and are limited to resolving
only microscale flow features. Mesoscale meteorology, regional influences, and large-scale tur-
bulence are not resolved with the traditional microscale modeling techniques. This disserta-
tion details a series of developments to the Weather Research and Forecasting (WREF') model
that enable mesoscale to microscale (i.e. multiscale) simulations. These multiscale simula-
tions dynamically downscale meteorological conditions through a series of nested domains
with increasingly high resolution, which allows mesoscale meteorology, regional influence,
and large-scale flow features to influence microscale simulations.

Over steep terrain, the WRF model develops numerical errors that are due to grid defor-
mation of the terrain-following coordinates. An alternative gridding technique, the immersed
boundary method (IBM), has been implemented into the WRF model (Lundquist et al. 2012;
Bao et al. 2018). Use of an IBM allows for microscale simulations over highly complex terrain
(i.e. urban or mountainous). Here, an IBM and the WRF model’s grid-nesting framework
have been modified to seamlessly work together, which allows for a microscale large-eddy
simulation over complex terrain with an IBM to be nested within a traditional mesoscale
WRF simulation (Wiersema et al. 2020). Additionally, grid configurations are controlled us-
ing the vertical grid nesting method of Daniels et al. (2016) and turbulence development at
intermediate resolutions is improved using the cell perturbation method of Munoz-Esparza
et al. (2015). Multiscale simulations are extremely challenging to configure due to the sen-
sitivity of each nested domain to its configuration and to the configuration of its parent
domain(s). This dissertation also begins to investigate the model sensitivity to grid resolu-
tion and surface boundary condition, which is integral information for modelers configuring
the nested domains of future multiscale simulations.

Multiscale simulations are demonstrated for the prediction of transport and mixing of
a tracer gas (SFg) released in the central business district of Oklahoma City during the



Joint Urban 2003 field campaign. The simulations use either 5 or 6 nested domains with
horizontal resolutions that range from several kilometers for the outermost domain to 2 m
for the innermost domain. The multiscale simulations are compared with microscale-only
simulations and with observations of wind speed, wind direction, and SFg concentrations.
The microscale-only simulations use idealized lateral boundary conditions and are configured
using local meteorological observations from the field campaign. The multiscale simulation,
which is configured independent of local observations, shows similar model skill predicting
wind speed and wind direction, and improved skill predicting SFg concentrations and tur-
bulence kinetic energy when compared with the microscale-only simulations. Additionally,
the multiscale simulation includes the effects of large-scale flow features and turbulence that
the microscale-only simulations are incapable of resolving, which is shown to have a dra-
matic effect on predictions of transport and mixing. The analysis of simulations in this
dissertation demonstrates the potential for multiscale simulations to improve predictions of
transport and mixing over highly complex terrain and enable microscale simulations where
local observations are not available.



To my parents, Michael and Kimberly Wiersema.
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Chapter 1

Introduction

1.1 Motivation

“When dealing with pollution transport and dispersion in such flows one
must take into account such interactions between meteorology and the local to-
pography. Given sufficient resources, one can now do this through detailed,
three-dimensional numerical modeling of the wind field and the resulting disper-
sion. Such methods bring along a host of new issues, including descriptions of
the unresolvable subgrid-scale processes, incorporation of real data on initial and
boundary conditions into the model, and model validation. This type of wind
field modeling is in the mainstream of mesoscale meteorology today (Ray 1986),
although its applications to dispersion are not as common. Given the increasing
availability of supercomputers this approach might become more accessible as
time goes on.” (Venkatram and Wyngaard 1988, p. 56)

Three decades after this was written, high-resolution atmospheric simulations of flow
through complex topography continue to lack realistic meteorological input, do not include
regional or synoptic effects, and struggle with representing subgrid-scale processes. Recent
simulations fall into two categories; low resolution simulations that easily include realistic
meteorological input and regional effects but must parameterize important subgrid-scale
processes, such as turbulence or the effects of complex terrain; and high resolution simulations
that resolve important microscale meteorological processes but omit the effects of regional
and mesoscale meteorology.

This dissertation details the development and validation of a modeling framework for
high-resolution atmospheric simulations of flow through complex topography that resolves
meteorological effects at scales as fine as ~ 2 m. The remainder of Chapter 1 is devoted to
background knowledge and context. Chapter 2 introduces the multiscale modeling framework
and the associated model developments. Chapter 3 suggests best practices for multiscale
model configurations by evaluating simulation errors over complex terrain using a suite of
grid resolutions and bottom boundary conditions. Chapter 4 investigates the representation
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of turbulence in a multiscale simulation and its effects on transport and mixing. Chapter 5
summarizes the developments, findings, and contributions described in this dissertation and
includes suggestions for future research that may further improve multiscale atmospheric
simulations.

1.2 Background

Numerical weather prediction

In 1922, Lewis Fry Richardson proposed a method of weather forecasting by solving differ-
ential equations via a method of finite differences on a geographic grid. Using methods similar
to those proposed by Richardson, the first successful numerical weather prediction (NWP)
simulation (Charney et al. 1950) was performed soon after the construction of ENIAC, the
first electronic general purpose computer. The two-dimensional NWP simulation could only
resolve the largest atmospheric circulations but it demonstrated the feasibility of NWP and
established techniques that persist in modern NWP simulations. Soon thereafter, improved
performance of computing platforms enabled a “2.5-dimensional” simulation that resolved
limited vertical variability (Charney and Phillips 1953). From these first NWP simulations
until today, there has existed a persistent trend of improvements in computing resources
being in lockstep with the fidelity and resolution of NWP simulations.

Scales of variability in the atmosphere range from approximately 10° to 1072 m (Charney
1948; Tennekes and Lumley 1972; Holton 2004). The first NWP models used very coarse
resolution grids and were capable of resolving only the largest scales of atmospheric phe-
nomena (i.e. synoptic scales). In comparison, modern operational NWP models have grids
approaching 1 km horizontal resolution and resolve a much wider range of scales (i.e. syn-
optic to regional) that includes behavior such as thunderstorm convection and orographic
effects. The steady increase in resolved scales of atmospheric variability corresponds with
the gradual improvement of forecast skill over the past 60 years.

In addition to grid resolution, the accuracy and range of NWP simulations is intrinsi-
cally associated with the quality of data used for initialization and forcing (Lorenz 1963).
Improvements in forecast skill correspond with the increases in ground, radiosonde and
satellite meteorological observations. Regional NWP models have benefited greatly from the
improved skill of global NWP, which are used for initialization and forcing of the regional
simulations.

Simulation of the planetary boundary layer

Most recent simulations of the planetary boundary layer (PBL) can be categorized as
either mesoscale NWP simulations with grid resolution A 2 1 km or microscale NWP sim-
ulations with grid resolution A ~ 10 m. Grid resolution limits the smallest scale motions
resolved by a simulation. The spatial extent of a simulation limits the largest scale motions
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that can be resolved. Mesoscale simulations resolve large-scale meteorological effects with
domain extents that range from continental to global but these simulations are unable to
resolve microscale effects. In comparison, microscale simulations resolve small-scale effects
but cannot resolve mesoscale meteorological effects and the domain extents are limited to
regional simulations. As computational resources have improved, mesoscale modelers have
pushed to increasingly high resolutions and microscale modelers have expanded their simu-
lation domains to resolve more large-scale effects.

The spatial extent of a NWP simulation is restricted by the balance of available compu-
tational resources, the number of grid points, the grid resolution and the model time step.
For a simulation to properly resolve the complex physics and meteorology within the PBL,
a high spatial and temporal resolution is required. If a simulation is repeated with identical
spatial extent but the grid spacing is halved then the total number of grid points is increased
by a factor of 8. Additionally, the model time step must be halved to maintain numerical
stability and avoid violating the Courant-Friedrichs-Lewy condition (Courant et al. 1928,
1967). Thus, a combination of increasing the total number of grid points and decreasing the
time step results in a 16 fold increase in the simulation’s computational cost when the grid
is refined by a factor of two.

Adequately resolving microscale meteorology requires considerably higher grid resolution
than used by mesoscale NWP simulations. This restricts the spatial extent of the simulation
and imposes an upper limit to the scales of phenomena that can be resolved by the model.
Because microscale behavior within the PBL is highly dependent upon regional and mesoscale
meteorology, microscale simulations should be provided with, or approximate the effects of,
unresolved large-scales that exist within the PBL. For this reason, potential improvements
to microscale NWP simulations can be achieved by downscaling a mesoscale simulation to
initialize and force a microscale simulation.

Grid nesting is a commonly used downscaling methodology wherein a “parent” simulation
is used to inform lateral boundary conditions of an embedded “child” simulation. This
allows for the child domain to be affected by large scales of motion that are resolved only
by the parent domain. A wide range of spatial scales can be resolved within a simulation by
downscaling through a telescoping sequence of nested domains.

An alternative method of downscaling is adaptive mesh refinement (AMR), where grid
resolution is variable and transitions from coarse to fine resolution near regions of interest.
This downscaling methodology is well demonstrated by the Model for Prediction Across
Scales-Atmosphere (Skamarock et al. 2012). AMR is especially useful when simulating tran-
sient behavior that locally requires high resolution, such as shocks. Because the grid resolu-
tion is not consistent, physics parameterizations must be consistent and accurate throughout
a wide range of potential grid resolutions (i.e. scale-aware). Construction of grids using AMR
is tedious and the simulation accuracy is often highly dependent upon the grid quality.
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The Weather Research and Forecasting model

The Weather Research and Forecasting (WRF) model is an open source, community de-
veloped, NWP model originally developed for mesoscale simulations (Skamarock et al. 2008).
WRF is widely used for both operational forecasting and research applications. Immense
community development has gradually expanded the model’s capabilities to include large
eddy simulation (LES) (Moeng et al. 2007; Kirkil et al. 2012; Mirocha et al. 2013), atmo-
spheric chemistry modeling (Grell et al. 2005), four-dimensional data assimilation (Stauffer
and Seaman 1990), wildland fire modeling (Coen et al. 2012), advanced atmospheric physics
parameterizations, vertical grid refinement during nesting (Daniels et al. 2016), and im-
mersed boundary methods for simulating flow over complex terrain (Lundquist et al. 2012;
Bao et al. 2018). WRF is an ideal choice for future development due to the flexible and
portable code plus the abundant and diverse group of developers.

The WREF model includes two dynamics solver “cores”: the advanced research WRF
(ARW) solver and the nonhydrostatic mesoscale model (NMM) solver. The NMM solver is
primarily applied to operational simulations. Model developments described in this disser-
tation are compatible with the ARW solver and are implemented in WRF versions 3.6.1 and
3.8.1.

The ARW solver uses a time-split integration scheme that advances low-frequency modes
with a third order Runge-Kutta integration scheme (RK3). High-frequency modes are inte-
grated over each RK3 time step by advancing a perturbation form of the governing equations
with a forwards-backwards integration scheme. This time-split approach reduces the model’s
computational expense by allowing for a larger RK3 time step. A comprehensive description
of the ARW time integration scheme is included in the ARW technical note (Skamarock
et al. 2008, see Section 3.1).

Spatial discretization schemes between 2"? and 6* order accuracy are available in the
ARW solver. For both momentum and scalar variables, the simulations in this dissertation
use a 5" order accurate scheme for horizontal advection and a 3" order accurate scheme for
vertical advection. Details regarding the spatial discretization and advection schemes are
also included in the ARW technical note (Skamarock et al. 2008, see Section 3.2.3).

The WREF model uses an Arakawa C staggered grid. Pressure and scalar variables, such
as potential temperature and water vapor, are defined at vertical half-levels on grid cell
centers. The u velocities are defined on centers of the east and west grid cell faces and at
vertical half-levels. The v velocities are defined on centers of the south and north grid cell
faces and at vertical half-levels. The w velocities are defined on centers of the bottom and
top grid cell faces and at vertical full-levels.

The WREF model’s vertical coordinate, denoted as 7, is terrain-following and a function
of the dry hydrostatic-pressure:

Mk = (Pr — Put) / (Phs — Phe) (1.1)

where ppi, prs, and pp; are the hydrostatic pressures at vertical grid index k, the model
bottom (i.e. surface), and the model top. n varies between 1.0 at the model bottom and 0.0
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at the model top. During a simulation, the 7 levels remain constant however the pressures
and heights at n levels will vary by a small amount.

Downscaling in the WRF model

Downscaling in WRF is accomplished with a grid nesting methodology. Nested domains
can optionally be configured to upscale high resolution results to their respective parents
(i.e. two-way nesting) (Moeng et al. 2007). The default horizontal grid refinement ratio
(Aparent/Achita) 1s 3, however larger refinement ratios are possible (see Figure 2.6 in Chap-
ter 2).

Prior to WRF' version 3.8.1, concurrently run nested domains were required to use the
same number and placement of vertical grid levels. The ability to refine the vertical grid
when nesting, developed in part by this author (Daniels, Lundquist, Mirocha, Wiersema,
and Chow 2016), is included within the public release of the WRF code since version 3.8.1.

Boundary conditions in the WRF model

Several idealized lateral boundary conditions (LBCs) are implemented in the WRF model
and can be used on domains that are not nested or forced using a downscaled meteorological
forecast product, including periodic, symmetric and open LBCs.

Periodic LBCs equate conditions along the west-east and south-north boundaries. Flow
can repeatedly recirculate through the domain, which can be especially useful for developing
flow in an idealized large-eddy simulation, where the flow would only reach a quasi-steady
state after traversing many (i.e. hundreds) of grid points that would be computationally
infeasible to simulate. Because grid points along the lateral boundaries are equated, a
domain with periodic LBCs must have topography that is identical along the corresponding
boundaries, which greatly limits simulations over realistic topography. It should also be
noted that simulations with periodic LBCs provide a pseudo infinite domain extent but
the largest resolvable scales are still restricted by the grid dimensions. Periodic LBCs are
frequently used in idealized simulations because they can provide well-developed turbulence
at inflow boundaries.

Open LBCs enforce zero gradients across the lateral boundary for prognostic variables,
such as u, v, w and 6. Unlike periodic LBCs, open LBCs do not require matching topography
along the lateral boundaries. Because open boundary conditions do not fix magnitudes at
the lateral boundaries, variables can globally increase or decrease in magnitude while still
satisfying the open boundary conditions. If a simulation does not include constraints for
variable magnitudes, then open LBCs can result in a problematic runaway effect, such as
wind speeds that continuously increase and eventually lead to model failure. If properly
constrained, open LBCs can be useful in idealized simulations over realistic topography that
is incompatible with periodic LBCs.

The WRF model’s surface boundary condition is variable depending upon the physics
parameterizations used. In Chapters 2 and 4, some simulation domains use the Janji¢ surface
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layer scheme (Janji¢ 2002), the Noah land surface model (LSM) (Chen and Dudhia 2001),
and the Mellor Yamada Janji¢ (MYJ) planetary boundary layer (PBL) scheme.

The Janji¢ surface layer scheme calculates friction velocities and exchange coefficients
at the surface using Monin-Obukhov similarity theory (Monin and Obukhov 1954). The
Noah LSM calculates heat and moisture fluxes using information on radiative forcing from
the shortwave radiation scheme, precipitation forcing from the microphysics and longwave
radiation schemes, and information about the land-surface and state (Skamarock et al. 2008,
see p. 73). These heat and moisture fluxes are used by the MYJ PBL scheme as a bottom
boundary condition for vertical transport.

Most PBL schemes, including the MYJ PBL scheme, are one-dimensional in the vertical
direction and are based on the assumption that the scales of turbulent motions are smaller
than the grid resolution and thus the effects of turbulence are not resolved but are instead
entirely represented by the parameterization. This assumption is valid for mesoscale simula-
tions (i.e. A 2 1 km) but it is inappropriate at finer resolutions (A < 1 km) where the grid
resolution is fine enough to resolve significant turbulent motions. At microscale resolutions, a
large-eddy simulation turbulence closure model should be considered in place of a planetary
boundary layer scheme.

Large-eddy simulation

At microscale resolutions, NWP simulations begin to resolve influential scales of motion
not resolved at mesoscale resolutions, including some of the scales that govern turbulent
diffusion. In particular, the microscale NWP simulations can resolve the larger scales of
turbulence present in the PBL, with the resolved turbulent scales controlled by the grid
resolution.

In an LES simulation, subgrid scale motions, those with a wavelength smaller than the
grid resolution (A), are removed via a low-pass filter represented by the function G. Following
the procedure in Lesieur and Métais (1996), a scalar or vector field (f) simplifies as follows
when filtered,

Tt = [ fla-y.0Cy)dy (12)
When considering the Navier-Stokes equations,
ou; 0 (uuy) 1 0p 0 Ou;  Ou;
— - —_ 1.
ot + 6xj p@xz + 61']‘ v aZL‘j + 6@ ’ ( 3)
applying the filter yields,
ou; 0 (uuy) 1 0p 0 ou;  0u;
= — Tl . 1.4
ot + Ox; p Ox; + Ox; v Ox; + ox; +4 (1.4)

T;; is the subgrid scale tensor defined as,

Tij = ﬂiﬂj — UUy. (15)



CHAPTER 1. INTRODUCTION 7

With an eddy-viscosity assumption, the subgrid scale tensor can be modeled as (for incom-
pressible flow),
— 01
T%j = 2VtSij + ?T%j, (16)

where the filtered deformation tensor is,

5, = 1 <8uZ n 8%) | )
2 8!Ej 6$z

Next, a model is required to approximate the eddy viscosity, ;. Many such turbulence closure

models have been developed with varying levels of accuracy, complexity, and computational

cost.

Simulations in this dissertation use the Smagorinsky eddy-viscosity model (Smagorinsky
1963), which assumes the eddy viscosity is proportional to a characteristic turbulent length
scale and a characteristic turbulent velocity. Assumptions are made that the characteristic
length scale is related to the grid resolution and that the characteristic turbulent velocity is
well represented by the local strain rate. This results in an eddy viscosity model

n

112 _ 1
v = [Cs (AmAyAz>§} ‘(25@752‘]‘)2

. (1.8)

Typical values of the Smagorinsky coefficient are 0.1 < C's < 0.25. The simulations in this
dissertation use Cs = 0.18. It should be noted that the constant coefficient Smagorisnky
model has been found to be overly dissipative and yields excess shear in near-wall regions
(Lesieur and Métais 1996; Kirkil et al. 2012). Additionally, the constant coefficient Smagorin-
sky model is known to produce undesirable elongated flow features (Ludwig et al. 2009) and
under-produce small-scale flow features.

The immersed boundary method

The immersed boundary method (IBM) is a technique for imposing the effects of a
physical boundary on fluid flow. The first IBM algorithm was demonstrated in 1972 by
Charles Peskin with simulations of flow within a human heart that included fluid-boundary
interactions. Various IBM algorithms have been developed and applied to a diverse range of
applications that includes simulations of flow over moving vehicles, fluid-particle interactions,
and geophysical flows (Iaccarino and Verzicco 2003).

The unmodified WRF model is unable to simulate flow over topography with steep re-
solved slopes because of the limitations imposed by the terrain-following vertical coordinate.
Over steep slopes, the grid cells near the bottom boundary are distorted, which introduces
numerical errors. An IBM allows for use of a nonconforming grid, which can eliminate errors
resulting from grid deformation. Because resolved slopes typically increase as grid resolution
is refined, the benefits of an IBM become especially relevant at microscale grid resolutions
over complex topography.
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Several IBM algorithms have been developed for the WRF model. The first demonstra-
tion of an IBM in the WRF model was by Lundquist et al. (2010), who demonstrated two di-
mensional simulations of flow for canonical cases and over an urban skyline. Lundquist et al.
(2012) extended the IBM implementation in WRF for three-dimensional simulations, inves-
tigated and improved the IBM’s interpolation methods, and demonstrated three-dimensional
idealized simulations of flow over urban terrain.

The simulations of Lundquist et al. (2010, 2012) used a ghost-point IBM algorithm that
imposed a no-slip surface boundary condition. Bao et al. (2018) demonstrated a velocity-
reconstruction IBM algorithm with a surface boundary condition that enforces a log-law by
modifying near-surface velocities. Several IBM algorithms in the WRF model are compared
in Bao et al. (2016) and Arthur et al. (2019), including an IBM algorithm that modifies shear-
stress at grid points near the immersed boundary. Ma and Liu (2017) developed an IBM
implementation independent of the codes used in the aforementioned studies and performed
idealized simulations of flow over the Bolund hill using the constant coefficient Smagorinsky
and the Lagrangian-averaged scale dependent Smagorinsky LES turbulence closure models.

Until recently, WRF simulations with an IBM were restricted to using idealized (i.e. peri-
odic or open) lateral boundary conditions and simplified forcing. Wiersema et al. (2020), in-
cluded as Chapter 2, demonstrates a multiscale WRF simulation with a sequence of domains
extending from mesoscale to microscale grid resolutions, with terrain-following coordinates
used at mesoscale resolutions and an IBM used at microscale resolutions. Initial conditions
and forcing for the multiscale simulation are supplied by a meteorological forecast product,
which is in contrast to the idealized and user-specified initial conditions and forcing used in
previous IBM simulations.

1.3 Primary contributions of this research

1. Development of the Weather Research and Forecasting (WRF') model to allow vertical
grid refinement during nesting.

2. Implementation of the immersed boundary method (IBM) velocity reconstruction method
(VRM) algorithm in the WRF model.

3. Configuration of microscale-only and multiscale (i.e. mesoscale to microscale) simula-
tions of transport and mixing during the Joint Urban 2003 field campaign.

4. Model skill evaluation for microscale-only and multiscale simulation results versus
JU2003 observations.

5. Improvement in predictions of transport and mixing from a multiscale simulation rel-
ative to a traditional microscale-only simulation.

6. Investigation of model sensitivity to the bottom boundary condition and grid resolution
for simulations over complex terrain.
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7. Suggestions for the configuration of future multiscale simulations, particularly the in-
termediate resolution domains.

8. Evaluation of turbulence represented in microscale-only and multiscale simulations of
transport and mixing during the Joint Urban 2003 field campaign.

9. Improvement in the representation of turbulence and predictions of turbulent kinetic
energy from a multiscale simulation relative to a traditional microscale-only simulation.

10. Suggestions for future research and model development that are focused on improving
multiscale atmospheric simulations over complex terrain.
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Chapter 2

Mesoscale to microscale atmospheric
simulations”®

2.1 Introduction

Current numerical weather prediction (NWP) codes have been extensively validated and
designed for mesoscale simulations with horizontal resolutions ranging from tens of kilometers
to several kilometers (i.e. > 3 km). Advances in computational resources have enabled
microscale simulations of the planetary boundary layer (PBL) at large-eddy simulation (LES)
resolutions (i.e. < 100 m) that are beyond the original design space of available NWP
codes. Downscaling of information from mesoscale to microscale resolutions requires the
accurate simulation of phenomena with temporal and spatial scales spanning many orders
of magnitude. Multiscale NWP models, if designed to properly simulate scales spanning the
mesoscale and microscale, have the potential to greatly improve many applications of NWP,
including air quality modeling, emergency response dispersion modeling, and wind energy
forecasting.

Several methods have been developed to enable microscale NWP simulations to ingest
downscaled mesoscale information. A common approach involves the coupling of separate
mesoscale and microscale models. With this method, variables of interest are interpolated
from a coarse mesoscale grid onto a high-resolution microscale grid. The coarse time step
of mesoscale models and a lack of resolved sub-mesoscale motions often necessitates special
treatments to mimic the effect of developed turbulence at inflow boundaries of the microscale
model. Using different models for the mesoscale and microscale is further complicated by
differences in governing equations, coordinate projections, grid systems, advection schemes,
and parameterizations (Baklanov et al. 2002). Despite the potential shortcomings of this

*This chapter is a reproduction, with slight modifications, of the paper “Mesoscale to Microscale Simula-
tions Over Complex Terrain with the Immersed Boundary Method in the Weather Research and Forecasting
Model” by David J. Wiersema (the principal author), Katherine A. Lundquist and Fotini Katopodes Chow,
published in Monthly Weather Review, January 2020, Volume 148(2), pages 577-595 [Wiersema et al. (2020)],
(©Copyright 2020 American Meteorological Society. The full copyright notice is included as appendix A
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approach, coupling of mesoscale and microscale models has been found to improve results
compared to microscale-only simulations of urban flow and dispersion (Park et al. 2015; Li
et al. 2018).

An alternative to coupling separate mesoscale and microscale models is a grid nesting
approach where information is dynamically downscaled from a coarse resolution “parent”
domain that provides initial and lateral boundary conditions to a fine resolution “child”
domain. A multiscale NWP simulation configured with grid nesting is therefore composed of
a telescoping sequence of increasingly higher resolution domains. The Weather Research and
Forecasting (WRF) model, used in this research, has a grid nesting approach to downscaling
that has been previously validated and applied to nested LES simulations (Moeng et al.
2007; Marjanovic et al. 2014; Taylor et al. 2018).

Multiscale modeling with grid nesting may be impaired by poor grid quality (e.g. extreme
aspect ratios and skewed cells), a lack of suitable parameterizations at intermediate scales,
and difficulty in generating small-scale turbulent motions after grid refinements. Despite
these challenges, multiscale modeling with grid nesting holds many advantages over the
model coupling approach, such as the ease of updating lateral boundary conditions at each
time step, conveniently aligned grids that are configured with a common projection, and
compatible numerical methods for each grid.

Many NWP codes, including the WRF model, were originally designed for mesoscale sim-
ulations and require extensive development to permit multiscale modeling. WREF’s terrain-
following vertical coordinate is problematic for high-resolution simulations over complex
terrain because grid distortion resulting from steep terrain slopes leads to numerical errors
(Klemp et al. 2003; Zangl et al. 2004; Klemp 2011). When grid resolution is refined, steeper
terrain slopes are sampled, thus restricting microscale simulations to application over shallow
sloping terrain. Our solution to the challenges associated with complex terrain in microscale
simulations is an alternative gridding technique that does not require a terrain-following co-
ordinate, namely the immersed boundary method (IBM). The IBM implementation in WRF
used here builds on the work of Lundquist et al. (2010, 2012) and Bao et al. (2018). WRF-
IBM enables the simulation of microscale flow over complex terrain, such as urban street
canyons or mountains. Microscale-only urban simulations using WRF-IBM with idealized
boundary conditions by Lundquist et al. (2012) have shown comparable model skill to other
computational fluid dynamics (CFD) codes such as FEM3MP (Chan and Leach 2007) and
QUIC-LES (Neophytou et al. 2011). Previous WRF-IBM simulations by Lundquist et al.
(2012) were performed with the ghost point method (GPM) IBM algorithm. The veloc-
ity reconstruction method (VRM) IBM algorithm, which has been validated by Bao et al.
(2018), is used in these multiscale simulations because it facilitates nesting of a microscale
IBM domain within a mesoscale terrain-following parent domain, a functionality that was
not possible with the GPM.

Over complex terrain, a nested IBM domain will use a different vertical grid than a
terrain-following parent domain, which necessitates vertical interpolation during nesting (see
Fig. 2.1 later). Vertical gridding in the simulations presented here is managed with the
vertical grid refinement method detailed in Section 2.2 (Daniels et al. 2016; Mirocha and
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Lundquist 2017). This method provides control of the grid aspect ratio and placement of
vertical grid levels for each domain in a nested simulation, which Mirocha et al. (2013) found
to be critical for nested large eddy simulations in WRF. The combination of vertical grid
refinement and IBM enable simulations over complex terrain which capture effects across a
wider range of scales than previously possible. A single simulation may now contain nested
domains with grid resolutions ranging between the mesoscale (kilometers) to the microscale
(meters). To the authors’ best knowledge, the simulations presented here are the first to
dynamically downscale from a mesoscale NWP model to a microscale urban simulation within
a single NWP code.

Simulations of a continuous tracer release from the Joint Urban 2003 (JU2003) field cam-
paign in Oklahoma City, OK (Allwine and Flaherty 2006) are used here to systematically
evaluate the performance and potential benefits of the VRM algorithm and the multiscale
modeling framework. Previous JU2003 studies (Chan and Leach 2007; Hanna et al. 2011;
Neophytou et al. 2011; Nelson et al. 2016; Garcia-Sanchez et al. 2018) have examined wind
flow and tracer transport and dispersion using many different models including diagnostic
wind flow models, Reynolds-averaged Navier-Stokes simulations, and large-eddy simulations.
The simulations presented here include a multiscale configuration of five nested domains with
resolutions ranging from 6.05 km to 2 m. The NCEP North American Regional Reanalysis
is used for initial conditions and lateral boundary updates for the outermost domain of the
multiscale simulation. Because current models cannot replicate this multiscale configuration,
we validate the multiscale modeling framework developments by comparison to observations
and to idealized simulations. The two idealized setups (GPM and VRM) evaluated here
are similar to previous modeling efforts by Golaz et al. (2009) and Lundquist et al. (2012)
with a two-domain nested setup, grid resolutions of 10 m and 2 m, periodic lateral boundary
conditions on the outer domain, and a pressure gradient forcing scaled according to JU2003
observations. Configurations for the idealized and multiscale simulations are detailed in Sec-
tion 2.2. Predictions of velocities and passive tracer concentration from the three simulations
are compared to the JU2003 observations using several statistical measures of model skill
proposed by Chang and Hanna (2004) and Calhoun et al. (2004) that are described in Sec-
tion 2.4. Comparison of model skill from the idealized simulations provides insight into the
benefits of a more sophisticated IBM while comparison of the idealized VRM and multiscale
simulations provides insight into the benefits of downscaling using a multiscale grid-nesting
approach.

2.2 Improved multiscale modeling framework

The multiscale simulations presented here rely upon use of two major improvements to
the WRF model; the immersed boundary method and vertical grid refinement.
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Figure 2.1: A vertical slice through a fictional nested domain with 2 grids using the VRM
immersed boundary method and vertical grid refinement. The immersed boundary is shown
in red.

The immersed boundary method

The immersed boundary method (IBM) is a technique for imposing the effects of a phys-
ical boundary on fluid flow. The method is especially useful for the simulation of flow over
complex shapes or flexible surfaces because it does not require complicated meshing and it
provides a convenient way to determine forces exerted by fluid on boundaries (Peskin 1972).
IBM has the additional benefit of using a structured grid, which makes spatial discretiza-
tion easier and eliminates numerical errors associated with grid transformations. Previous
applications of the IBM are diverse and examples include simulations of flow over vehicles,
fluid-particle interactions, and geophysical flows (Iaccarino and Verzicco 2003; Senocak et al.
2004; Mittal and Iaccarino 2005).

As simulations of environmental flows advance to higher resolutions, implementations
of the immersed boundary method are increasingly common and are recently undergoing
substantial research and improvement (Bao et al. 2018; Li et al. 2016). For atmospheric ap-
plications, the immersed boundary method can eliminate grid transformation errors where
terrain-following coordinates are traditionally used or simplify meshing where a more tra-
ditional computational fluid dynamics model would be used with a conforming grid, such
as simulations in urban terrain. Immersed boundary methods have been implemented for
a variety of atmospheric simulations that notably include simulations of the Bolund Hill
complex terrain test case (Jafari et al. 2012; Diebold et al. 2013; Bao et al. 2016; Ma and
Liu 2017; Bao et al. 2018; DeLeon et al. 2018), flow over fractal trees (Chester et al. 2007),
and urban simulations of transport and dispersion (Lundquist et al. 2012).

Figure 2.1 shows a slice through a grid with the immersed boundary (IB) shown in red.
Boundary conditions are enforced at the IB through the addition of a forcing term to the
governing equations. Several IBMs appear in the literature and can be categorized based
upon whether the forcing term is introduced to the continuous or discretized governing
equations. WRF-IBM falls within the latter category, also known as a discrete forcing
approach, and includes a body force term in the conservation equations for momentum
and scalars, Eq. (2.1). These body force terms are not computed directly but are instead
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implicitly applied by modifying variables at grid points near the immersed boundary.
AV +V.-VV =—-aVp+1u V>V + g+ Fg (2.1a)

O+ V -V =k V20 + Fy (2.1b)

In Eq. (2.1a) V is the velocity vector, «a the specific volume, p is pressure, g is gravitational
acceleration, v, is turbulent viscosity, and Fg the body force term. In Eq. (2.1b) ¢ is a
scalar quantity, which could represent potential temperature, moisture, or a passive tracer,
k¢ is the scalar diffusivity, and Fj is the additional scalar forcing. Fpg and Fjy modify
the conservation equations near the IB and assume values of zero away from the IB. The
conservation equations, Eq. (2.1a) and Eq. (2.1b), are presented in a simplified form for
illustrative purposes. Further information regarding the implementation of an IBM on the
WRF governing equations can be found in Lundquist et al. (2010).

The immersed boundary method in WRF (WRF-IBM) has previously been used for a
variety of microscale and large-eddy simulations. Lundquist (2010) developed WRF-IBM in
two dimensions and coupled the IBM to a suite of atmospheric parameterizations, allowing
for surface fluxes of heat and moisture at the immersed boundary. Lundquist et al. (2012) ex-
tended the method to three dimensions and simulated flow and dispersion within the central
business district of Oklahoma City, OK. Arthur et al. (2018a) enabled topographic shading
at immersed boundaries and evaluated the development of thermally driven downslope flow
on an isolated mountain during the MATERHORN field campaign. Bao et al. (2018) imple-
mented a surface stress parameterization at the IB and compared simulations to observations
from the Askervein and Bolund field experiments. Each of these previous simulations used
idealized initial conditions and forcing at lateral boundaries, preventing representation of
time-varying weather effects on these smaller scale simulations.

In previous applications of WRF-IBM, idealized initial conditions and lateral boundary
conditions were used because domains using the immersed boundary method could not easily
be nested within those using WRF’s native terrain-following coordinate. This was due to the
ghost point method (GPM) IBM algorithm requiring computational grid points below the
immersed boundary. These additional grid points introduce a discontinuity in grid heights at
the interface between nested terrain-following and GPM domains, which is incompatible with
the WRF model equations. The velocity reconstruction method (VRM) is an alternative to
the GPM that does not require grid points beneath the IB, which greatly simplifies the
nesting of a domain using VRM within a terrain-following parent grid. WRF-IBM uses a
non-conforming structured grid that can optionally be independent of the IB or, if using
VRM, the grid may optionally and selectively align with the IB. An example grid, shown
in Figure 2.1, illustrates the approach used in these multiscale modeling efforts using VRM
where the grid is allowed to conform to the underlying ground topography while complex
features, such as buildings, are represented by the immersed boundary.
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Ghost point method

The ghost point method (GPM) enforces desired boundary conditions by applying forcing
at computational nodes considered to be within the “solid” portion of the domain. Nodes
where forcing is applied are referred to as “ghost points”. The procedure to modify each
ghost point begins by reflecting the ghost point across the immersed boundary, which creates
an “image point”. The image point’s magnitude is calculated based upon the magnitudes of
nearby computational nodes using an interpolation scheme, which in this case is the inverse
distance weighting (IDW) scheme, the details of which are discussed later in this section. An
example illustrating this procedure is shown in Figure 2.2a. The magnitude of ¢ at a ghost
point is then determined using Eq. (2.2a) for a Dirichlet boundary condition or Eq. (2.2b)
for a Neumann boundary condition.

bc =200 — &1 (2.2a)
I
bc =1 —Glo o (2.2b)

where ¢¢ is the value at the ghost point, ¢; is the value at the image point, and ¢q is the
value at the IB. G is the distance between the ghost and image points and g—fﬂg is the
surface-normal gradient value assigned at the IB for a Neumann boundary condition. For
the simulations presented here using the GPM, a no-slip boundary condition is applied to
velocities.

Because the GPM requires ghost points and at least two vertical grid levels positioned
beneath the IB, the grid’s bottom level is lowered relative to a WRF grid using terrain-
following coordinates. This mismatch complicates nesting between terrain-following and
GPM domains because it creates a discontinuity in domain height across the nest interface.
For this reason, we have modified another WRF-IBM algorithm, the velocity reconstruction
method first introduced by Bao et al. (2018) and described below, which is suited to our
needs for multiscale modeling because it does not require ghost points, and thus is capable
of being used on a domain nested within a parent domain using terrain-following coordi-
nates. Additionally, Bao et al. (2018) found improved model performance when using IBM
algorithms that use log-law boundary conditions, such as the velocity reconstruction method.

Velocity reconstruction method

The velocity reconstruction method (VRM) follows a similar approach to that of Senocak
et al. (2004), where a log-law boundary condition at the IB is enforced by applying forcing
at the computational nodes in the fluid domain that are adjacent to the immersed boundary,
which are referred to here as “reconstruction points” (RP). Extensive validation of the VRM
in WRF-IBM was performed by Bao et al. (2018), which includes simulation of flow over flat
terrain, idealized hills, Askervein Hill in Scotland, and Bolund Hill in Denmark.

Boundary conditions at the IB are enforced by modification of each RP according to the
following procedure, an example of which is illustrated in Figure 2.2b. First, a vector is
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Figure 2.2: Two dimensional examples of point selection by the (a) GPM and (b) VRM
algorithms. The immersed boundary is shown in green, reconstruction points (VRM) and
ghost points (GPM) in purple, interpolation points (VRM) and image points (GPM) in
blue, and nearest neighbors in red. The solid and dashed gray lines represent the Arakawa-C
staggered grid used by WRF, with mass points located at the intersections of the dashed
lines.

calculated that connects the RP and the nearest section of the IB. The “interpolation point”
(IP) is then located by projecting away from the IB along this vector until reaching a cell
face. u, v, and w velocities at the IP are calculated using the inverse distance weighting
interpolation scheme described later in this section. The coordinate orientation at the IP
is then rotated to be surface normal to the IB, aligning with the vector used earlier. The
log-law for flow over a rough surface, Eq. (2.3) as written by Panofsky and Dutton (1984),
is then used to relate velocities at the IP and RP.

U="1 <i) (2.3)

K 20

Here z is the surface normal distance from the IB, z is the roughness height, w, is the friction
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velocity, & is the Von Karman constant, and U is the magnitude of the velocity. It should
be noted that relating the IP and RP using Eq. (2.3) assumes that the friction velocity is
constant in the surface normal direction within the region that contains both the IP and RP.
With this assumption the relationship between the IP and RP can be represented as follows,
where drp and d;p are the surface normal distances between the IB and the RP or IP.

In <d”i>
URP = U[p—zo (24&)
In (df—”>
20
wgp is calculated by assuming w = 0 at the IB and a linear relationship of w with d, which
yields
d
WRp = Wyp % (24b)
1P
Urp is then separated into u and v velocities, where 6 is the horizontal wind direction defined
using geographic convention.

0 = arctan (uﬁ) (2.5a)

Urp
URp — URP sin 9, VRpP — URP cos 6 (25b)

Finally, the u, v, and w velocities at the RP are rotated from being surface-normal to the
IB back to the coordinate orientation of the grid.

Inverse distance weighting interpolation scheme

The IDW interpolation scheme is used to determine values for image and interpolation
points when using GPM and VRM, respectively. First, the nearest neighboring grid points
to the image/interpolation point are located by searching a box of grid points centered on
the image/interpolation point. The simulations presented here search for nearest neighbors
within either a 4 x 4 x 4 or 6 x 6 x 6 box of grid points for simulations using the GPM or
the VRM, respectively. Each point in searched region is ranked based upon distance from
the image/interpolation point. Points beneath the IB are removed from consideration. For
the VRM, reconstruction points are also removed from consideration. The nearest n points
are used as the nearest neighbors to the image/interpolation point, where n = 8 for the
GPM and n = 7 for the VRM. Image/interpolation points will occasionally have fewer than
n valid nearest neighbors, especially if the point is located over extremely complex terrain.
The simulations presented below have been configured such that all image/interpolation
points have at least two valid nearest neighbors.

The value at each image/interpolation point, ¢, is calculated using Eq. (2.6a), which is a
weighted average of the nearest neighbors to the image/interpolation point. Weights of near-
est neighbors are calculated using Eq. (2.6b) where 7,4, is the maximum distance between a
nearest neighbor and the image/interpolation point, and W; is the weight of the i*" nearest
neighbor, which is a distance r; from the image/interpolation point. Image/interpolation
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point locations, nearest neighbors, and weights are recalculated at each time step to avoid
complications that may arise if the WRF grid point heights shift during runtime due to the
model’s mass-based vertical coordinate.

27‘1—1 VVz’SOi
=L (2.62)
> i Wi
Tmaz — T4 %
Wi — (—) (2.6b)
TmaxzTs

Vertical grid refinement

A key feature required for multiscale simulations is vertical refinement of nested domains.
Prior to WRF version 3.8.1, the only available method of vertical grid refinement was ndown,
a separate program that ingests parent grid output files and generates boundary updates
for a nest. Because ndown processes output files, the parent simulation must be run to
completion before the nested simulation can be run. Additionally, the boundary update
frequency is limited to that of the parent grid output, which can prohibit downscaling of
resolved turbulent flows.

We previously developed an improved vertical grid refinement method that has been
included within the WRF public release since version 3.8.1 (Daniels et al. 2016) and is
used here in version 3.6.1. This capability allows for nested domains with different vertical
grids to be run concurrently without requiring a separate program like ndown. The lateral
boundary conditions of a nest are updated at every time step using an interpolation between
bracketing time steps from the corresponding parent. We have also included the ability to
specify unique vertical grid levels for every domain in a sequence of nested grids. Additional
details regarding the capabilities, implementation, and validation of the vertical nesting
framework can be found in Daniels et al. (2016).

The vertical grid refinement capability is a critical component of the multiscale modeling
framework described here. The ability to refine vertically provides control over each do-
main’s grid aspect ratio (Axz/Az), an important variable for accurate large-eddy simulations
(Mirocha et al. 2013; Mirocha and Lundquist 2017). It should be noted that our multiscale
simulation, detailed in Section 2.3, successfully applies the vertical grid refinement method to
a sequence of five nested grids, a considerably more complex configuration than simulations
from Daniels et al. (2016).

2.3 Simulations for Joint Urban 2003 dispersion study

During July of 2003, the Defense Threat Reduction Agency (DTRA) and the U.S. De-
partment of Homeland Security (DHS) worked together to facilitate the Joint Urban 2003
(JU2003) atmospheric dispersion study in Oklahoma City, Oklahoma. Investigators from
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universities, government laboratories, and private industry participated in the field cam-
paign and analysis. Some of the primary objectives of this field campaign included the
investigation of flows downwind of tall buildings and in street canyons and the investigation
of tracer dispersion around and downwind of tall buildings. More details can be found in
the study overview (Allwine and Flaherty 2006).

Joint Urban 2003 consisted of ten intensive observational periods (IOPs), each with
8 hours duration, throughout the 34 day span of the field campaign. A tracer gas, sulfur
hexafluoride (SFg), was released during each IOP as either a puff or continuous release.
Meteorological conditions and tracer concentrations were measured at sites throughout the
central business district. The locations of the SFg release site and the instruments used in
this analysis are displayed in Figure 2.3. Observations from several instruments have been
used for configuration and analysis of the simulations presented here, including a miniSO-
DAR deployed by Argonne National Laboratory (ANL), 11 Dugway Proving Ground (DPG)
Portable Weather Information Display Systems (PWIDS) with prop-vane anemometers, 15
DPG super PWIDS with sonic anemometers, 19 Lawrence Livermore National Laboratory
(LLNL) “bluebox” integrating gas samplers, and 25 NOAA Air Resources Laboratory Field
Research Division (ARL FRD) programmable integrating gas samplers (PIGS).

The simulations and analysis presented in this paper are limited to the first continuous
tracer release of IOP 3 from 16:00 to 16:30 UTC 7 July 2003. During IOP 3 the SFg release
location was at the north-east corner of the botanical gardens at 2 m above ground level
(AGL) and Universal Transverse Mercator (UTM) coordinates (634603, 3925763), marked by
the yellow star in Figure 2.3. This particular tracer release was selected for analysis because
it was previously simulated in Chan and Leach (2007) and Lundquist et al. (2012), and
therefore there are previous modeling studies to which we can compare our results. IOP 3
was selected for these previous studies because the wind direction was consistent over the
30 minute release period and the atmospheric stability was near neutral, which are benefits
when using idealized lateral boundary conditions or a computational fluid dynamics model
without atmospheric stability effects. While these attributes are beneficial for our idealized
simulations, our multiscale simulation is capable of simulating a case with shifting wind
conditions and non-neutral atmospheric stability. Demonstration of this ability will be the
subject of future work.

Simulations are configured to enable comparisons between the GPM and VRM IBM
algorithms as well as the idealized and multiscale configurations. Three simulations are
analyzed here; two idealized configurations and one multiscale configuration. In the two
idealized simulations, the GPM and VRM IBM algorithms are used, which builds on the
work presented in Lundquist et al. (2012), where the GPM IBM algorithm was used in
an idealized simulation of JU2003 IOP 3. Although the VRM algorithm was validated
in Bao et al. (2018), its use here is presented as validation for urban applications, and
allows for the quantification of differences between the GPM and VRM algorithms. The
multiscale configuration is then presented, which uses both terrain-following grids and the
VRM-IBM. Comparisons between the idealized and multiscale simulations provide insight
into the performance of the multiscale setup.
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Idealized configuration

The idealized simulations are configured similar to previous JU2003 modeling efforts at
building-resolving scales which used simplified boundary conditions and forcing scaled to gen-
erate agreement with observations. Reynolds-averaged Navier-Stokes (RANS) simulations
by Chan and Leach (2007), Chow et al. (2008), along with both the RANS and LES simula-
tions by Neophytou et al. (2011) used inflow boundary conditions based upon steady velocity
profiles constructed by fitting a log law profile to SODAR and weather station observations.
The idealized simulations presented here adopt a similar configuration to simulations by Go-
laz et al. (2009) using the COAMPS-LES model and WRF-IBM simulations by Lundquist
et al. (2012) and Bao et al. (2018) that use a two-domain nested configuration to produce
turbulent inflow for the nested domain. This configuration simulates only the microscale and
both domains use the 3D Smagorinsky turbulence closure. The parent domain uses periodic
boundary conditions and a pressure gradient forcing term is applied to achieve agreement
between the simulated and observed time-averaged velocity profiles. Figure 2.4 shows the
grid layout for the idealized simulations.

Vertical grid refinement was used to maintain a near surface grid aspect ratio Az/Az =
2.0 for each domain. Aloft, the vertical grid levels are spaced increasingly far apart with a
constant stretching coefficient, (zx41 — 2x) / (2x — 2K-1), of 1.016 for D1 and 1.028 for D2.
Upon reaching Az/Az = 0.5 the grid aspect ratio is maintained for the remaining vertical
grid levels. The coarsening of vertical resolution aloft was used to reduce computational costs
without sacrificing high-resolution and grid quality in the region of interest (near surface).
Due to the need for ghost points beneath each point of the immersed boundary, the WRF-
IBM-GPM simulations have two additional levels located approximately 2 m and 4 m beneath
the ground level.

Our idealized WRF-IBM simulations use a two-domain setup with a periodic parent
domain (D1) at Az = Ay = 10 m and a nested domain (D2) at Az = Ay = 2 m, with a
grid refinement ratio of 5. The domains use time steps of 0.05 s for D1 and 0.01 s for D2. In
the east-west, north-south, and bottom-top dimensions, D1 has dimensions 241 x 241 x 146
grid points and D2 has dimensions 351 x 401 x 243 grid points. D1 has flat terrain while
D2 includes building geometries. Both domains use a Smagorinsky turbulence closure with
coefficient C's = 0.18. D1 was run for seven hours to develop statistically steady turbulence
prior to initialization of D2. D2 was initialized prior to the tracer release by 10 minutes,
roughly twice the time required to traverse the domain at 3 m s and a sufficient amount of
time for the flow to fully develop around the complex urban terrain.

The idealized GPM and VRM simulations are forced by a uniform pressure gradient
which is adjusted to generate agreement between the time-averaged velocity profile from
D2 and the time-averaged miniSODAR observations at approximately 40 m AGL, shown in
Figure 2.5. Both domains have a model top at 400 m AGL and a Rayleigh relaxation layer
applied to W velocities within the top 40 m with a damping coefficient of 0.2 s~*.

The observed velocity profile used for our idealized WRF-IBM simulations is the combi-
nation of data from several closely located instruments that measure at different heights. A
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similar methodology for inflow profile generation was also used by Hanna et al. (2011) and
Lundquist et al. (2012). The instruments used here include an ANL miniSODAR, two DPG
PWIDS (P10 and P11), two DPG super PWIDS (SP17 and SP20), and the NOAA ARL FRD
sonic anemometer located at the SFg release location. The ANL miniSODAR data from the
30 minute SF¢ release window was temporally averaged to provide velocities at 5 m incre-
ments from 15 to 135 m AGL, shown in Figure 2.5. Each of the DPG PWIDS (P10 and
P11) and DPG super PWIDS (SP17 and SP20) was temporally averaged over the SFg re-
lease window. An average of these four stations, with each station given equal weight, was
used as an estimate of velocities at 8 m AGL. Additionally, an ARL FRD sonic anemometer
collocated with the SFy release site was similarly temporally averaged to provide an estimate
of velocities at 2 m AGL.

The GPM simulation uses a no-slip bottom boundary condition for velocities and the
VRM simulation uses the log-law boundary condition with roughness length 2y = 0.1 m.
Both GPM and VRM simulations use the traditional WRF boundary condition for scalar
variables, which is a no-flux condition applied at the model bottom. No treatment is applied
for scalars at the IB (i.e. building surfaces), however this has minimal effect on our results
because the wind fields prevent advection of scalars through the IB and diffusion of scalar
across the IB is negligible. A scalar immersed boundary condition exists for the GPM
but was not used to maintain similarity between the GPM and VRM configurations. A
scalar immersed boundary condition that does not require ghost points is currently under
development for use with the VRM.

Multiscale configuration

The multiscale WRF-IBM simulation uses five nested domains with horizontal resolutions
of 6.05 km, 550 m, 50 m, 10 m and 2 m. Resolutions are selected to optimize computational
resources, while properly resolving flow features at scales of interest. Horizontal dimensions
of the 10 m and 2 m domains are identical to the dimensions of the corresponding domains
in the idealized simulations. Because the predominant wind direction (SSW) is known, the
10 m and 2 m domains are positioned in the northeast quadrant of their respective parent
domains. This offset increases the fetch prior to inflow boundaries, which promotes the
development of turbulence without increasing the domain extents and computational costs.
The multiscale grid layout is depicted in Figure 2.6. The five domains are initialized in a
cascading fashion with start times of 03:00, 06:00, 12:00, 15:00, and 15:50 UTC. Conditions
on the 2 m domain are saved every two seconds during the release window between 16:00 and
16:30 UTC. Ideally, studies would be conducted to evaluate the optimal number of nests,
grid refinement ratios, the necessary spatial extents of each domain, and domain start times,
however the computational costs of such studies currently exceed available resources.

Lateral boundary conditions and initial conditions for the outermost 6.05 km domain are
prescribed using data from the NCEP North American Regional Reanalysis (Mesinger et al.
2006), which has horizontal resolution of 32 km. The VRM IBM algorithm is used on the
10 m and 2 m domains while the standard WREF terrain-following coordinate is used on the
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Table 2.1: Multiscale model configuration for JU2003 simulations. TF = terrain-following
coordinate. KF = Kain-Fritsch cumulus parameterization. Smag = 3D Smagorinsky Tur-
bulence Closure.

D1 D2 D3 D4 D5
Ax & Ay [m] 6050 550 50 10 2
coordinate TF TF TF | IBM | IBM
time-step [s] 30 3 0.25 | 0.05| 0.01
east-west grid points 221 232 254 241 351
south-north grid points 221 232 254 241 401
bottom-top grid points 51 51 76 146 243
turbulence MYJ MYJ Smag | Smag | Smag
micro-physics WSM3 | WSM3 | WSM3 | none | none
longwave radiation RRTM | RRTM | RRTM | none | none
shortwave radiation Dudhia | Dudhia | Dudhia | none | none
surface layer scheme MMb5 MMb MMS5 | none | none
land surface model Noah Noah Noah | none | none
cumulus parameterization KF KF none | none | none

6.05 km, 550 m, and 50 m domains. Domains run with the VRM use a constant roughness
length of 2o = 0.1 m. The 6.05 km and 550 m domains use the Mellor-Yamada-Janji¢
planetary boundary layer scheme (Mellor and Yamada 1982; Janji¢ 2002) while the 50 m,
10 m and 2 m domains use the 3D Smagorinsky turbulence closure scheme with Cs = 0.18.
A summary of grid configuration and physics options is included in Table 2.1.

A model top of 200 hPa is used for all domains of the multiscale simulation. Near surface
vertical grid levels for the multiscale 10 m and 2 m domains are selected to match, as closely
as possible, those used in the comparable domains of the idealized simulations. Above the
model top of the idealized simulations (400 m AGL), vertical grid levels stretch in height
at a constant rate of (zx41 — 2x) / (2x — 2k—1) = 1.05. This greatly reduces the number of
grid points, and correspondingly the computational costs, of the microscale domains while
maintaining an optimal grid aspect ratio near the surface in the region of interest.

Urban geometry

Urban geometry represented by the immersed boundary was created by sampling, at
each grid point, a shapefile containing vectorized building information. Narrow gaps be-
tween buildings and other insufficiently resolved features were manually adjusted to ensure
that each of the VRM interpolation points had a minimum of two nearest neighbors for
the inverse distance weighting interpolation. WRF-IBM currently uses a two-dimensional
array to store the immersed boundary height at each grid point, which restricts the model



CHAPTER 2. MESOSCALE TO MICROSCALE ATMOSPHERIC SIMULATIONS* 23

topography to solid shapes without void space. Due to this restriction, an elevated walkway
at UTM coordinates (634850, 3925800) was omitted from the model topography because
WREF-IBM is currently unable to resolve flow in the free space beneath the suspended struc-
ture. Additionally, several buildings near inflow boundaries, specifically the southern edge,
were removed due to spurious interactions with the inflow conditions. Nonphysical behavior
around buildings near the inflow boundaries of the 2 m domain is not unexpected as these
buildings are not represented on the 10 m parent domain and the flow on the parent domain
is unobstructed. Identical building geometry representations were used for both the idealized
and multiscale simulations.

Variations in the ground elevation within the microscale modeling domain are small in
magnitude, with minimum and maximum elevations of 360 and 365 m ASL. Due to restric-
tions from periodic boundary conditions, the idealized simulations ignore the underlying
ground topography and only building heights above ground level are included in the im-
mersed boundary height. An advantage of the multiscale simulation, in contrast, is that
no periodic boundary conditions are used and the underlying ground topography can be in-
cluded. For the multiscale simulation, the building heights above ground level are combined
with the underlying ground topography interpolated from the parent domain. To maintain
flat rooftops, the IB height is averaged at points within each building footprint, which results
in minor adjustments within each building geometry.

2.4 Simulation results and discussion

The WRF-IBM simulations illustrate the complex behavior of atmospheric flows within
urban environments. Both the idealized and multiscale simulations display channeling ef-
fects in street canyons and many other microscale flow features including separation zones,
return flows, and recirculation in the lee of buildings. Contours of instantaneous wind speed,
Figure 2.7, illustrate many of these intricacies seen in all three simulations. The analysis
presented below includes qualitative comparisons of observations and simulation results of
wind speed, direction, and SFg concentration that have been time-averaged over the SFg
release period. Additionally, quantitative analysis is performed using measures of model
skill to evaluate the accuracy of various model configurations in predicting winds and SFg
concentrations compared to observations.

During IOP 3, the ANL miniSODAR was located within the botanical gardens and sam-
pled flow that was relatively unobstructed upstream. Figure 2.5 compares time-averaged ver-
tical profiles of horizontal wind speed and direction from the simulations to the time-averaged
miniSODAR measurements. Both idealized simulations (GPM and VRM) overestimate the
horizontal wind speed, sometimes by up to 2.5 m s, in the region between ground level and
approximately 40 m AGL, despite tuning the pressure gradient to match the observations
at 40 m AGL. The multiscale simulation, which does not include a priori knowledge of the
JU2003 observations (i.e. tuning), shows improved agreement between 5 and 30 m AGL and
100 to 140 m AGL with an overestimation from the surface until 100 m AGL. Unlike the
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idealized simulations, the multiscale simulation produces a profile with similar shape to that
seen from the miniSODAR, possibly due to the large-scale flow features downscaled from the
mesoscale domains. All of the simulations show excellent agreement with the measured wind
direction. This agreement is expected in the idealized simulations because the pressure gra-
dient forcing is tuned to generate agreement with the observations, but the multiscale model
has no such tuning and yet shows comparable agreement to the observed wind direction.

A possible explanation for the overestimation of the near surface wind speed in all three
simulations is the omission of terrain-features upstream of the miniSODAR. To test this
theory, the multiscale simulation was run a second time with roughness elements added to
D4, the 10 m domain. Ideally we would add the actual building geometries to the 10 m
domain; however, the great majority of structures within the 10 m domain have too few grid
points per building to be properly resolved. According to Tseng et al. (2006), a minimum
of six to eight grid points is necessary across a bluff body to achieve reasonable results
when using an IBM in a LES. For this reason, we have instead used a regular pattern of
large roughness elements to represent the urban terrain. These elements have footprints of
80 x 80 m and are 10 m in height with the element center-points described by an array
with 320 m spacing and 30ffset between rows to roughly align with the predominant wind
direction. Figure 2.8 shows the immersed boundary height on the 10 m domain (D4) of this
modified multiscale simulation.

Figure 2.5 shows that the addition of these roughness elements to the 10 m domain re-
sulted in noticeably improved agreement between the 2 m domain (D5) and the observed
near-surface wind speed profile, particularly between 15 and 40 m AGL. If future computa-
tional resources allow, the 2 m domain could be extended southward to provide additional
fetch and resolve flow around more buildings upstream from the miniSODAR and the SFg re-
lease location. Another solution could be to add artificial drag at grid points that fall within
poorly resolved terrain features. While these modifications could potentially yield improve-
ments, the current simulation configurations are sufficient for the focus of this paper, which
is analyzing the performance and benefits of the multiscale configuration. Investigation and
analysis of treatments for poorly resolved terrain features will be the focus of future research
as it appears to be of importance for improving future multiscale models.

A quantitative analysis of model skill is discussed below, however visual comparison
of model results to time-averaged wind speed/direction from DPG PWIDS (P) and super
PWIDS (SP), shown in Figure 2.9, indicate that all three simulations have similar behavior to
observations within the street canyons, in the lee of buildings, and on rooftops. Importantly,
all three simulations agree reasonably well with P11 and SP17, which are collocated at the
SF¢ release location.

Figure 2.10 shows time series of horizontal wind speed and wind direction at 8 m AGL
above the SF¢ release location. All simulations, idealized and multiscale, display similar
behavior of the time-averaged horizontal wind speed, but differences between simulations
are clearly visible in the timeseries of wind direction. Fluctuations in wind direction from
the idealized GPM and idealized VRM simulations are of lower magnitude than those in the
multiscale simulation, which includes larger deviations from the mean wind direction and
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lower frequency variations. These characteristics indicate the presence of large-scale features
from the coarse resolution parent domains transitioning into the 2 m domain of the multiscale
simulation. The effects of increased meandering of the flow in the multiscale simulation are
evident in Figure 2.11 where the time-averaged plume of the idealized VRM simulation is
considerably more spatially constrained compared to that from the multiscale simulation. As
hypothesized by Nelson et al. (2016), our multiscale simulation appears to reproduce some
of the transient flow interactions within the urban topography that are driven by oscillations
in the prevailing wind direction.

Quantitative performance measurements of the simulations compared to JU2003 obser-
vations are calculated using methods suggested by Chang and Hanna (2004): fraction of
predictions within a factor of x (FACx); fractional bias (FB); geometric mean bias (MG);
geometric variance (VG); and normalized mean squared error (NMSE). Differences in wind
direction are evaluated using the scaled average angle (SAA) skill test devised by Calhoun
et al. (2004). Combinations of these performance metrics have previously been applied to
Joint Urban 2003 simulations by Chan and Leach (2007) and Chow et al. (2008) using the
FEM3MP model, Hanna et al. (2011) when comparing four diagnostic urban wind flow
models with Lagrangian particle dispersion models, and by Lundquist et al. (2012) using the
WRF-IBM-GPM model.

FACx =fraction of data that satisfies...

1z <X,/ X, <x (2.7a)
FB=2(X, - X,) / (X, +X,) (2.7b)
MG = exp (m (X,) —In (Xp)) (2.7¢)
VG =exp ((m (X,) —In (Xp))2) (2.7d)
NMSE =(X, — X,)*/ (X, X,) (2.7)
SAA =X (|Uil|¢il) / (NTi) (2.7f)

In the above equations, X, is the set of observational data and X, are the corresponding
predictions from the simulation, N is the number of observations, ¢; is the difference between
observed and predicted wind directions, and |U;| is the predicted wind speed. Here we use
values for X, and X, that are time-averages over the 30 minute release period. An overbar
indicates averaging of all locations.

The methods above are chosen to provide a broad analysis of model performance. FACx,
MG, and FB provide insight into the systematic bias of the predictions. NMSE and VG
provide insight into the scatter of the data and indicate whether there is agreement between
the distributions of predictions and observations. Some skill metrics, such as FB and NMSE;,
are more heavily influenced by data points with large magnitudes versus small, which is fine
for variables such as wind speed that do not vary over many orders of magnitude. The
time-averaged observed and predicted SFg concentrations span several orders of magnitude
(0.001 to 100 ppbv), so the logarithmic forms of mean bias and variance, MG and VG, are
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more appropriate for analysis of SFg concentrations as these metrics evenly weigh the under
and over predictions (Hanna et al. 1993).

Concentration floors are applied to the LLNL “bluebox” samplers and the NOAA ARL
FRD PIGS because each dataset has a minimum concentration that could be accurately
measured due to errors from the instruments and analysis procedures. Additionally, several
of the skill test calculations are mathematically valid only for predictions and observations
that are nonzero. PIGS data points of SFg concentration less than the method limit of detec-
tion (MLOD) have a quality control flag. Flagged PIGS data points are modified to 1 pptv,
which corresponds to half of the minimum analyzed concentration used during calibration.
Instrument limit of detection and MLOD are not available from the LLNL “bluebox” sam-
plers. A 5 pptv floor to the LLNL “bluebox” concentrations is introduced by modifying
data points that are below the lowest reference concentration from the calibration curves of
the gas chromatograph used to analyze the samples, 9.3 pptv. To maintain consistency, the
concentration floors are also applied to the predicted time-averaged station concentrations.

Graphical representations of model skill for predicting wind speed/direction and con-
centration are shown in Figure 2.12. The simulations display excellent FAC2 scores for
predicting horizontal wind speed with all three simulations reporting a score of 0.91 com-
pared to PWIDS and the lowest score compared to Super PWIDS being an impressively
high value of 0.73. Despite at least one of the idealized simulations matching or slightly
outperforming the multiscale simulation in every wind speed/direction skill test, it is im-
portant to remember that both idealized simulations (GPM and VRM) were provided with
an initialization constructed using JU2003 observations. Additionally, the pressure gradient
forcing used for the idealized simulations was tuned to maintain agreement with miniSODAR
velocity profile observations. While the idealized simulations rely upon a priori knowledge
of the local meteorology, the multiscale simulation is run as a forecast and uses initial con-
ditions and forcing that are independent of the JU2003 observations and are provided by
external datasets, as is typical in mesoscale forecasting. Thus, the agreement of the multi-
scale simulation with observations of wind speeds/directions and SFg concentrations is quite
remarkable considering the absence of model tuning.

Eq. (2.7b) can be rearranged to yield Eq. (2.8), from which it becomes clear that the
negative fractional bias scores in Figure 2.12 indicate that all three models are slightly
overestimating wind speeds compared to both PWIDS and super PWIDS.

1-1FB

_ 2.8
1+ ;FB (28)

&

The idealized VRM simulation shows the least overestimation of wind speeds with FB scores
of -0.05 (PWIDS) and -0.09 (super PWIDS), which implies overprediction by factors of 1.05
and 1.09. FB scores from the idealized GPM and multiscale simulations are clustered around
-0.25%0.01, which roughly corresponds to a factor of 1.29 overprediction. Earlier, when evalu-
ating the vertical profiles of wind speed, it was suggested that the omission of terrain-features
could be responsible for the overestimation of the near surface wind speed. The negative
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FB scores are another indication that the simulations presented here are missing some im-
portant small-scale features of the terrain that would produce additional drag and slow the
near-surface winds. When compared to the idealized GPM simulation, the improved FB
score of the idealized VRM simulation indicates that the log-law bottom boundary condition
used by the VRM yields less bias in the magnitude of wind speeds than the no-slip bottom
boundary condition used by the GPM. Drawing conclusions about the multiscale simulation
from the differences in FB scores is complicated by variations in the idealized and multiscale
model configurations, such as the lateral boundary conditions and forcing methods.

Skill tests evaluating the prediction of SFg concentrations, displayed in the second row
of Figure 2.12, show the multiscale simulation produced the highest model skill followed
by the idealized VRM simulation, which outperformed the idealized GPM simulation. For
each simulation, the FAC5 agreement with the bluebox samplers is higher than that of the
FRD samplers, likely because of the FRD samplers being sited further downwind from the
release location. FAC5H5 comparing to the bluebox samplers was 0.68, 0.74, and 0.95 for
the idealized GPM, idealized VRM, and multiscale simulations respectively and 0.44, 0.56,
and 0.64 compared to the FRD samplers. The multiscale simulation’s exceptional skill test
results show that we can achieve admirable predictions of urban dispersion by appropriately
downscaling mesoscale forecasts to force microscale simulations.

Both the idealized and multiscale simulations display model skill that exceeds the mini-
mum performance for an acceptable model as noted in many previous studies, such as Chang
and Hanna (2004) and Tewari et al. (2010). These standards include greater than 50% of pre-
dictions within a factor of two (FAC2 > 0.5) and less than 30% mean bias (0.7 < MG < 1.3).
Compared to previous microscale simulations of transport and dispersion during JU2003,
(Chan and Leach 2007; Hanna et al. 2011; Lundquist et al. 2012; Li et al. 2018), the model
skill of the multiscale simulation for prediction of SFg concentrations is exceptional, with
FAC2 / FAC5 scores of 0.58 / 0.95 and 0.56 / 0.76 compared to the bluebox and FRD
samplers, respectively. The simulation of transport and dispersion during IOP 3 by Li et al.
(2018), which used coupled mesoscale and microscale models, offers an excellent comparison
to the multiscale model presented here and produced FAC2 / FAC5 of 0.37 / 0.84 compared
to the bluebox samplers. The favorable FAC2 / FAC5 scores of the multiscale simulation
indicate that transport and dispersion models can obtain substantial improvements in model
skill by dynamically downscaling meteorological fields from the mesoscale to microscale.

2.5 Summary and conclusions

The expansion of WRF’s multiscale framework presented here enables simulations over
complex terrain with resolutions ranging from the mesoscale to the microscale and forcing
supplied by an operational forecast. The velocity reconstruction method (VRM) immersed
boundary method (IBM) algorithm is designed such that a domain run with VRM can
be nested within a terrain-following parent domain. Using VRM, microscale domains can
accurately simulate flow over complex terrain, such as dense urban environments. The
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vertical grid refinement functionality of Daniels et al. (2016) facilitates transitioning from
terrain-following domains in the mesoscale to IBM domains in the microscale. The vertical
refinement method also enables control over the grid aspect ratio of each domain in a sequence
of nests, which is critical for producing high quality simulations across a range of scales.

The performance of the multiscale model was evaluated here by comparison to idealized
simulations of a continuous tracer release from IOP 3 of the Joint Urban 2003 (JU2003)
field experiment in Oklahoma City, OK. The idealized simulations use a two-domain nested
configuration with resolutions of 10 m and 2 m, periodic lateral boundary conditions (parent
domain only), simplified terrain, and forcing based upon local measurements taken during
JU2003. Two idealized simulations were also analyzed, one using the ghost point method
IBM algorithm of Lundquist et al. (2012) and another using the VRM. The idealized simula-
tions share many features with configurations of previous JU2003 modeling efforts by Chan
and Leach (2007), Neophytou et al. (2011), and Lundquist et al. (2012). The multiscale
simulation consisted of five nested domains with horizontal resolutions of 6.05 km, 550 m,
50 m, 10 m, and 2 m. Initial conditions and boundary conditions were supplied by the
NCEP North American Regional Reanalysis dataset. Unlike the idealized simulations, the
multiscale simulation did not use large scale forcing parameters dependent on observations
from the JU2003 field experiment. Terrain-following coordinates were used on the 6.05 km,
550 m, and 50 m domains and VRM was used for the 10 m and 2 m domains.

Evaluation of the three simulations included a suite of statistical measurements of model
skill for the prediction of wind speeds and SFg concentrations, as suggested by Chang and
Hanna (2004). All three simulations displayed excellent skill at predicting wind speeds/directions,
including the multiscale simulation, which was run in a forecasting mode. For prediction
of SFg concentrations, the multiscale simulation outperformed the idealized simulations by
displaying the highest skill in nine out of the ten metrics calculated. These impressive skill
scores may be a result of increased plume meandering caused by downscaled motions with
scales larger than those produced in the idealized simulations. The high level of skill shown by
the multiscale simulation implies that microscale simulations over complex terrain, especially
transport and dispersion simulations, may greatly benefit from downscaled meteorology.

Future studies of the multiscale modeling framework will focus on the development and
quantification of turbulence and the impacts of improved representation of land surface het-
erogeneity at resolutions between the mesoscale and microscale. Additionally, these studies
will evaluate the multiscale modeling framework’s applicability to non-neutral atmospheric
conditions, such as those observed during nighttime IOPs of JU2003.
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Figure 2.3: A map of the Oklahoma City business district showing measurement stations
used during the analysis of simulation results. The SFg release location was located at
UTM coordinates (634603, 3925763). The ANL miniSODAR was located at UTM coordi-
nates (634451, 3925592). The plot’s limits are coincident with the lateral boundaries of the
innermost domain with 2 m horizontal resolution.
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Figure 2.4: A plan view of the two domain nested configuration used for idealized WRF-IBM
simulations. The outer domain is marked with UTM coordinates.
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Figure 2.5: Vertical profiles at the ANL miniSODAR location (634451, 3925592) of horizontal
wind speed and direction. Profiles have been time-averaged over the 30 minute SFg release
period. Observations from the ANL miniSODAR are included along with results from the
idealized VRM, idealized GPM, multiscale simulation, and the multiscale simulation with
added roughness elements on the 10 m domain (cubes).
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Figure 2.6: Configuration of domains used in the multiscale simulation centered over the
business district of Oklahoma City, OK. The five domains have resolutions of 6.05 km,
550 m, 50 m, 10 m, and 2 m. The 550 m, 50 m, and 10 m domains include contour levels
of topography. The 2 m domain includes contours of the building heights AGL (colorbar
not shown). Dimensions of each domain and other configuration information is included in

Table 2.1
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Figure 2.7: Instantaneous horizontal wind speed 8 m AGL at 16:16:52 UTC from the 2 m
domain of the multiscale simulation. Quivers are included at every fifth grid point. An
animation of horizontal wind speed at 8 m AGL from the innermost four domains of the
multiscale simulation is included in the supplementary materials.
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Figure 2.10: A timeseries of horizontal wind speed and wind direction at 8 m AGL at the
SFg release location for the idealized GPM, idealized VRM, and multiscale simulations. Also
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Figure 2.11: SFg concentrations at 2.5 m AGL from the idealized WRF-IBM-VRM simu-
lation (left) and multiscale simulation (right). Both the observed and predicted concentra-
tions shown are time-averaged over the 30 minute release period. Large circles represent
time-averaged measurements from LLNL “bluebox” stations. Small circles represent time-
averaged measurements from NOAA ARL FRD PIGS stations. Only LLNL stations with
height of 2.5 m AGL and NOAA stations with a height of 8 m AGL are shown. An animated
version of this plot is available in the supplemental materials.
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Chapter 3

Investigation of sensitivity to grid
resolution

3.1 Introduction

Recent developments to numerical weather prediction (NWP) models have made feasible
large-eddy simulations (LES) of the planetary boundary layer (PBL) over complex topogra-
phy using microscale resolutions (i.e. A < 100 m). Results of these simulations are partic-
ularly sensitive to the model configuration and grid quality (Mirocha et al. 2013; Mirocha
and Lundquist 2017). Recent research, such as the multiscale simulations of Wiersema et al.
(2020), highlight the difficulty of configuring nested simulations with five or more model-
ing domains that are each sensitive to both their configuration and that of their parent
domain(s).

In multiscale simulations, an inaccurate or nonphysical solution on a parent domain will
corrupt the solutions of any nested child domains. Following this logic, modelers should
use best practices when constructing grids, selecting parameterizations and configuring each
simulation. Unfortunately, defining “best practices” is easier said than done, especially
when modeling within notoriously complicated regimes, such as the terra incognita (i.e. the
turbulence gray zone) (Wyngaard 2004).

The turbulence gray zone is a numerical regime where the energy-containing length scales
of turbulence are roughly the same magnitude as the scale of the LES filter (i.e. related to the
grid resolution). In this regime, the use of a planetary boundary layer scheme is inappropriate
because the largest turbulent features can be resolved, however the use of a LES turbulence
closure model is also questionable because a large portion of energetic turbulence cannot
be resolved. Because multiscale simulations use a telescoping sequence of nested domains
with grid resolutions spanning between the mesoscale and microscale, at least one of the
intermediate domains is likely to be within the turbulence gray zone.

Another problem that can hinder multiscale NWP simulations is grid distortion over steep
terrain slopes due to the body-fitted (i.e. terrain-following) coordinates commonly used in
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NWP models, such as the Weather Research and Forecasting (WRF) model that is used in
this study. When simulating over real topography at LES resolutions (i.e. A < 200 m), the
resolved terrain slopes are increased compared to those in more coarse resolution simulations.

Immersed boundary methods (IBMs) are techniques for imposing the effects of a physi-
cal boundary on fluid flow. These methods do not require a body-fitted coordinate system,
such as the terrain-following vertical coordinate in the WRF model, which can greatly sim-
plify gridding. IBMs provide a robust and convenient procedure for implementing bottom
boundary conditions, particularly at high resolutions over complex topography where terrain-
following coordinates result in grid distortion that may cause model failure. Variations of
IBMs have been developed for a wide variety of applications and excellent summaries of cur-
rent techniques have been written by Iaccarino and Verzicco (2003), Senocak et al. (2004),
Mittal and Iaccarino (2005) and Bao et al. (2016).

In this study, we attempt to clarify some of the “best practices” for configuring simu-
lations of the PBL over complex terrain when using grid resolutions that range from 25 to
200 m. In particular, this study examines simulation sensitivity at various grid resolutions
to the choice of IBM algorithm that is used to maintain the bottom boundary condition.
Additionally, the hybrid Reynolds Averaged Navier Stokes (RANS) and LES scheme of Seno-
cak et al. (2007) is investigated and found to improve the results of simulations within the
turbulence gray zone.

The 24 simulations compared here use topography specified using an Agnesi function that
resembles a smooth, steep, symmetric hill. To avoid errors resulting from the topography
gray zone, where grid resolution is of the the same magnitude as the scale of topographic
features, the idealized terrain has been configured such that it is adequately resolved for all
grid resolutions evaluated.

There are many past sensitivity studies evaluating simulations over complex terrain,
including the Bolund hill (Diebold et al. 2013) and Askervein hill (Silva Lopes et al. 2007;
Arthur et al. 2019). Both the Bolund and Askervein hills have small spatial scales and cannot
be adequately resolved at the coarse grid resolutions (i.e. 50, 100 and 200 m) evaluated in
this study, which is why idealized topography is used. It should be noted that most, but
not all, previous grid resolution sensitivity studies over complex terrain have purposefully
avoided using resolutions within the turbulence gray zone.

A notable previous grid resolution sensitivity study that includes gray zone resolutions
is that of Bao (2018), which also evaluated flow over an idealized hill at 50, 100 and 200 m
resolutions using three IBM algorithms. There are several differences between the current
study and that of Bao (2018), including changes to the IBM algorithms, different idealized
hill slopes, the addition of simulations at 25 m grid resolution, differences in the methodology
used to calculate the simulation error, and an increased emphasis on the spatial distribution
of the simulation error.

More recently, Arthur et al. (2019) evaluated the performance of two IBM algorithms,
also used in this study, including analysis of simulations over topography of an idealized hill
with horizontal grid resolutions of 16, 32, 64 and 128 m. Additionally, the configuration
at each horizontal resolution was evaluated at several grid aspect ratios ranging from 1 <
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A, /A, < 16. While the configurations of Arthur et al. (2019) are similar to those evaluated
here, the present study evaluates only one grid aspect ratio, includes more coarse resolutions,
and emphasizes the spatial distribution of the error.

3.2 Immersed boundary method algorithms

Two IBM algorithms are evaluated in this study; the velocity reconstruction method
(IBM-VRM) and the shear reconstruction method (IBM-SRM), which are detailed below.

For the IBM algorithms considered here, the surface boundary is immersed within the
modeling grid and divides the domain into grid points in the fluid domain that are above
the immersed boundary (IB) and grid points in the solid domain that are beneath the IB.
IBMs maintain a bottom boundary condition by modifying velocities at grid points that are
in proximity to the IB through the addition of a body force term shown here in a simplified
form of the governing equation for momentum,

OV +V . -VV =-aVp+1y,V?’V +g+ Fg (3.1)

where V is the velocity vector, a the specific volume, p is pressure, g is gravitational acceler-
ation, v, is turbulent viscosity, and Fg the body force term. For the simulations simulations
in this study, F'g is not directly calculated; instead, the effects of Fig are implied by adjusting
variables near the immersed boundary to maintain a desired boundary condition.

Velocity reconstruction method

The IBM-VRM used here is similar to the method used in Senocak et al. (2004), which
modifies near-surface velocities above the IB to maintain a log-law boundary condition. IBM-
VRM reconstructs velocities at grid points above and adjacent to the IB, which are referred
to as reconstruction points (RPs). Further details and validation of the IBM-VRM can be
found in Bao et al. (2018) and Wiersema et al. (2020).

For each RP, the method calculates a vector that passes through the RP and is normal
to the nearest section of the IB. Next, an interpolation point (IP) is located by projecting
away from the IB and along the vector until reaching the face of a grid cell. The IP magni-
tude is determined using an inverse distance weighting (IDW) interpolation scheme and the
magnitudes of the nearest neighboring grid points that are above the IB. Additional details
of the IDW interpolation scheme are included in Lundquist et al. (2012) and Wiersema et al.
(2020). The IP and RP magnitudes can then be related, as shown in Equations 3.3a and
3.3b, by assuming a log-law for neutrally-stratified flow over a rough surface,

U="1n (i) , (32)

K 20

where z is surface normal distance from the 1B, 2z, is a roughness height, w, is the friction
velocity,  is the von Kdrmdan constant (x = 0.4 is used here), and U is the magnitude of
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the velocity. Using the assumed log-law relationship, the RP velocities are related to the IP
as follows,

Urp = U]P@. (3.3a)

By assuming a linear relationship of w, the surface normal velocity, with d, the distance from
the IB, and w (d = 0) = 0 then wgp is found to be,

drp
WRp — Wyp d_ (33b)
P
The tangential wind speed, Ugp, can then be separated into u and v velocities, where 6 is
the tangential wind direction defined using geographic convention.

f = arctan (uﬁ) (3.4a)

Urp
URp — URP sin 9, VRpP — URP cos 6 (34b)

Finally, the u, v, and w velocities at the RP, which are calculated in Equations 3.3b and
3.4b using a surface-normal coordinate system, are rotated to the grid orientation.

Velocities beneath the IB, which do not represent physical flow, are involved in the
calculation of the resolved strain-rate tensor, 5;;. This can lead to errors in the eddy viscosity
that can be particularly noticeable as grid resolution is coarsened. For the 3D Smagorinsky
closure scheme used in these simulations, the eddy viscosity v; is calculated as,

1\ 2
v, = (cs (A$AyAz)3> 1551, (3.52)

where Cj is the Smagorinsky coefficient (0.18 is used here) and the resolved strain-rate tensor

is defined as,
1 (Ou; Ouj
= .5b
55 =3 (axj * (‘Qmi> (3.5b)

The eddy viscosity is reconstructed at grid points above and adjacent to the IB. This recon-
struction assumes a linear relationship of v, with distance from the IB and v, = 0 m? s=! at
the IB (Senocak et al. 2004; DeLeon et al. 2018; Arthur et al. 2019).

Shear reconstruction method

The IBM-SRM used in these simulations has previously been evaluated by Bao et al.
(2016) and Bao (2018) and follows comparable implementations by Chester et al. (2007)
and Ma and Liu (2017). At grid points near the immersed boundary, IBM-SRM calculates
the model stresses necessary to maintain a log-law boundary condition. Unlike IBM-VRM,
velocities above the IB are not directly modified but instead are indirectly controlled by
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modification of the stresses. IBM-SRM reconstructs the stress tensor for each grid point
adjacent to and above the IB. Reconstructed stress values are then extrapolated to the grid
points adjacent to and below the IB. Velocities are set to 0 m s~! at all grid points beneath
the IB but they are not directly modified at grid points located above the IB.

For each grid point where reconstruction is to be performed, the surface-tangential stress

7 is calculated as,
2

(3.6)

where £ is the von Kdrmén constant (k = 0.4), Ul is the surface-tangential velocity at
the surface-normal distance d, from the IB, and z; is the roughness length. For this study,
d, = 1.2A, and U}, is calculated using the IDW interpolation scheme.

After calculating the stress components at all reconstruction points, the stresses above
the IB are then extrapolated to grid points that are beneath and adjacent to the IB. For
each stress set via extrapolation, the grid point location is projected in the surface normal
direction across the IB and three interpolation points (IP) are specified at distances from
the IB of 1.1, 2.2 and 3.3 times A,. At each IP, the stress component is calculated using
the IDW interpolation scheme and the stresses at nearest neighboring grid points. A second
order Lagrange polynomial,

TEp = 3Tip1 — 37Tip2 + Tip3 (3.7)

is used to calculate the stress at an extrapolation point, 7gzp, using the stress at three IPs,
where IP1 is nearest to the IB and IP3 is farthest.

Because the IBM-SRM requires grid points beneath the bottom boundary (i.e. ghost
points) for the extrapolation of above-boundary stresses, this IBM algorithm is currently not
compatible with nested domains of WRF simulations that include a terrain-following parent
domain, such as the multiscale simulations of Wiersema et al. (2020). This incompatibility
arises due to the WRF model’s restriction that nested domains have the same total column
pressure at coincident grid points. For this reason, the IBM-SRM is currently limited to
idealized and microscale-only simulations.

3.3 Hybrid RANS/LES scheme

In LES, a subgrid-scale (SGS) turbulence model is used to parameterize turbulent motions
at scales that are unable to be resolved. Optimally, the LES grid resolution will be fine enough
to resolve the bulk of energetic turbulent motions and it is assumed that the SGS model
parameterizes a small portion of the total turbulent energy. Near the rough bottom boundary,
the characteristic length scale of turbulence decreases and the fraction of turbulent energy
parameterized by the SGS model increases. This typically results in inaccurate behavior by
the SGS model near the surface.
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One workaround of this problem is a hybrid formulation of Reynolds-averaged Navier
Stokes and LES proposed by Senocak et al. (2007). Away from boundaries, where the
LES resolves the energy-containing scales of turbulence, the SGS model is applied. Near
boundaries, a RANS solution for the eddy viscosity, v, is applied. Transitioning between
these regimes is accomplished using an exponential blending function (Equation 3.8) (van

Driest 1956):
v, = [(1 — exp (%))2 (C.A?) + exp (%)2 (mf] 15]. (3.8)

In the above equation, z is the height above the boundary, h is a user-specified blending
height, C; is the Smagorinsky coefficient (0.18 for these simulations), x is the von Karman
constant of 0.4, and A is a function of the horizontal and vertical grid resolutions (A,, A,
and A,) and map scale factors (m, and m,) calculated using Equation 3.9.

a- (B2 Az)é (3.9

My My

Selection of a blending height A is informed by bounds based on numerical and physical
limits. Following Senocak et al. (2007), we assume a physical upper bound of the surface
layer depth. Stull (1988) observes that a surface layer with a logarithmic velocity profile
exists in approximately the bottom 10% of a neutrally stratified PBL with depth hppgr. The
lower bound of h is based upon the numerical length scale of the LES closure inferred using
the Nyquist theorem to be twice the grid resolution. These bounds provide an acceptable
range of values to guide our choice of h for each simulation configuration.

2 min (Aan Ay, Az) < h<0.1 hpBL (310)

A value of h = 6 A, is used for our simulations with the hybrid RANS/LES scheme enabled.

3.4 Sensitivity study over idealized topography

Six model configurations are evaluated using the WRF model version 3.8.1 by simulation
of flow over an idealized hill at four different resolutions. These 24 simulations are distin-
guished by their grid resolution, bottom boundary condition, and whether the RANS/LES
hybrid scheme is enabled.

Horizontal resolutions of A, = 25, 50, 100 and 200 m are used with vertical resolutions
of A, =5, 10, 20 and 20 m, respectively. Simulations with A, = 25, 50 and 100 m have
a near-surface aspect ratio (A,/A,) of 5, which is near the recommended aspect ratio of 4
from Mirocha et al. (2013). Maintaining an aspect ratio of 5 in the present simulations with
A, = 200 m would result in a problematically coarse vertical resolution near the surface.
We have chosen to instead use the same vertical resolution as the A, = 100 m simulations
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Table 3.1: Simulation details for the idealized hill cases, including the domain extents in
each dimension (L,, L, and L,), the number of grid points N in each dimension (N,, N,
and N,) and the grid resolutions (A, and A,). The vertical grid resolution A, is constant
up to 400 m above which it is stretched by a factor r until reaching A,=100 m, above which
it remains constant. L, and NN, are increased for IBM cases to accommodate an additional
two grid cells beneath the terrain, which are necessary for the IBM-SRM algorithm.

Case (L, Ly, L./L.am) (Noy N, NJN.wm) A=A, A, 7
1 (true) (6, 6, 4/ 4.01) (240, 240, 150/ 152) 25 5  1.050
2 (6, 6, 4/ 4.02) (120, 120, 99/ 101) 50 10 1.050
3 (6, 6, 4/ 404) (60, 60, 69/ 71) 100 20 1.049
4 (6, 6, 4/ 404) (30, 30, 69/ 71) 200 20 1.052

and not maintain the grid aspect ratio, which may introduce additional variability to the
simulations with A, = 200 m. We note also that the optimal grid aspect ratio discussed
previously is not necessarily expected to hold over topography (Mirocha et al. 2010). A
summary of the four grid configurations is included as Table 3.1.

The simulation terrain is of an idealized hill defined by an Agnesi function (Equa-
tion 3.11). Each domain has horizontal extents of 6 km and the idealized hill is sized such
that it is large enough to allow the model configurations to be tested at coarse horizontal
resolutions of A, = 100 and 200 m.

hp
1+ (x/Ln)* + (y/Ly)

h(x,y) (3.11)

Values of h, = 250 m and L; = 800 m are used for all simulations. These constants result
in topography that is a compromise between providing a tall enough obstruction to create
a well defined flow separation in the lee of the hill and the need to avoid steep slopes that
would be prohibitive for the terrain-following simulations.

The simulations use periodic lateral boundary conditions and are forced by a geostrophic
velocity of 4§ = 10 m s™!. The 3-dimensional Smagorinsky turbulence closure is used with
coefficient Cy = 0.18. A uniform surface roughness of zo = 0.1 m is applied when using the
IBM methods. Rayleigh damping is applied to vertical velocities within the top 2000 m of
each domain using a damping coefficient of 0.2 s71.

High-resolution results

First we examine the results from simulations using the basic implementations of both the
IBM-VRM and IBM-SRM compared to terrain-following WRF at A, = 25 m. The results
of each simulation are time averaged over hours 24-48, during which the flow is turbulent
and quasi-steady. A similar flow solution is achieved by all three methods, with a turbulent
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wake in the lee of the hill and the highest velocities observed as the flow passes over the hill
summit. The flow veers near the surface due to the Coriolis force and the resulting time-
averaged surface winds are from the southwest. For this reason, we evaluate the simulation
results along a transect angled at 75° clockwise from north and intersecting the domain
center (i.e. hill summit). The time-averaged along-transect velocity, V;, is defined as

(Vi) = (V) cos ((9) — ¢1) , (3.12)

where (V}) is the time-averaged wind speed, (¢) is the time-averaged wind direction, and
¢: is the angle of the transect. Vertical profiles of time-averaged along-transect velocity
(V) from the simulations with A, = 25 m are shown in Figure 3.1. The results of these
simulations are qualitatively similar to those of Ma and Liu (2017), who compared multiple
IBM algorithms in the WRF model for simulation of flow over an idealized hill with a similar
domain setup and grid resolution.

Further examination of the flow profiles along the transect in Figures 3.1 reveals differ-
ences between the six simulations at 25 m horizontal resolution. While the along-transect
profiles are visually aligned over the flatter parts of the topography (e.g., the first four pro-
files in Figure 3.1a), minor differences occur at the steepest regions and at the summit.
Large differences in (V;) between the A, = 25 m simulations are evident in the lee of the
hill (Figure 3.1b). In general, both the IBM-VRM and IBM-SRM yield slower flow near the
surface, especially in the lee of the hill, compared to WRF. All three methods do produce
an inflection point in the velocity profile in the lee of the hill, which indicates the presence
of recirculating flow.

With the hybrid RANS/LES scheme enabled, all three configurations show a notable
reduction in the strength of the recirculation formed in lee of the hill. Both terrain-following
WRF and the IBM-VRM simulation produce velocity profiles in lee of the hill, shown in
Figure 3.1b, that maintain a logarithmic shape comparable to those upwind of the hill,
shown in Figure 3.1a. Only the IBM-SRM simulation appears to produce flow separation
in lee of the hill and establish a recirculation. The strength of this recirculating flow is
nearly identical to that predicted by the terrain-following WRF simulation when the hybrid
RANS/LES scheme is disabled.

The high-resolution (A, = 25 m) idealized hill case highlights the limits imposed upon
native WRF by errors related to the terrain following grid. When configuring these simula-
tions, multiple idealized hill heights were completed prior to settling on the current terrain
configuration. As the hill height is increased, the maximum slopes correspondingly increase.
The current configuration, which has a maximum slope of 20.3°, is near the limits of the
WRF model when using terrain-following coordinates because of the errors associated with
grid distortion.

At A, = 25 m, topography of realistic hills would likely yield significantly higher resolved
slopes that would prove problematic for the use of terrain-following coordinates. It should
also be noted, as discussed by Daniels et al. (2016), that errors due to grid distortion are
a function of both the terrain slope and the grid aspect ratio, « = A,/A,. Over sloped
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Figure 3.1: Time-averaged along-transect velocity profiles (V;) from simulations with terrain-
following WRF, IBM-VRM, and IBM-SRM at A, = 25 m with and without the hybrid
RANS/LES scheme. The profiles are oriented along a transect angled at 75° clockwise from
north and passing through the domain center (i.e. hill summit). The transect is split into
two subplots showing in lee of the idealized hill (a) and upwind of the idealized hill (b).
Simulations with the hybrid RANS/LES scheme enabled are labeled with “-H”.

topography, a high a may cause the elevation difference between adjacent grid points being
larger than the vertical grid spacing, which results in numerical errors when approximating
the horizontal gradient terms (Mahrer 1984). Despite a relatively gentle maximum slope,
the grid aspect ratio of @ = 5 provides an additional potential for errors (see Figure 1 in
Daniels et al. 2016).
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The idealized hill results demonstrate that even when using relatively high resolution
(A, = 25 m), there may be significant differences in the flow predicted over complex terrain
by terrain-following WRF, IBM-VRM and IBM-SRM. These differences were most pro-
nounced in the lee of the hill where recirculating flow may develop. In the next section,
these differences will be explored more thoroughly, and as a function of grid resolution.

Grid resolution study

A grid resolution study is performed to examine WRF and IBM performance as the model
grid is coarsened from the simulations in Section 3.4. Flow over the idealized hill is simulated
using terrain-following WRF, as well as the IBM-VRM and the IBM-SRM with horizontal
resolutions of A, = 25, 50, 100 and 200 m. A summary of the four grid configurations is
included as Table 3.1. The finest (A, = 25 m) terrain-following WRF case is taken to be the
“true” solution, such that the error in other simulations is defined relative to it. An aspect
ratio value of 5 is used here for cases 1-3. As mentioned in Section 3.4, when A, = 200 m,
A, is kept at 20 m because an extremely coarse A, of 40 m would lead to poor results and
undesired behavior near the surface.

The following process is used to calculate the difference between each simulation and the
true solution. First, both solutions are time averaged between hours 24-48 to remove turbu-
lent fluctuations. Then, the time-averaged wind fields are vertically interpolated onto planes
at constant heights above ground level. Because we are most interested in the near-surface
differences in the flow, we consider ten planes at 10 m increments between 10 and 100 m
above ground level (AGL). Next, if the comparison case has coarser horizontal resolution
than the true solution, the true solution is horizontally downsampled to the resolution of the
coarser case. When downsampling, fine domain grid cells within a coarse domain grid cell
are averaged with equal weight given to each. Finally, the error E is calculated based on the
total velocity magnitude V' = \/u_f as,

E=(V) = (V)true- (3.13)

If £ > 0 the flow is fast relative to the true flow, and if £ < 0 it is slow. A single estimate
for the error in each simulation is calculated by spatially averaging the absolute value of
on each plane AGL and then averaging again to yield a column-averaged absolute error,

§|E<zz~>|

By = = (3.14)

where n is the number of planes AGL, z; is the height AGL of plane i, and ¥ represents
the horizontal spatial average of a variable v. The results of the grid resolution study are
summarized in Figure 3.2, which shows FE,, calculated using n = 10 at 10 m intervals
between 10 and 100 m AGL. This study focuses on the error resulting from the surface
boundary condition, which is why F,, is calculated over the bottom 100 m of the boundary
layer.
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Figure 3.2: Summary of grid resolution study results, showing the average error E,, cal-
culated from Equation 3.14, over the bottom 100 m AGL from the 24 simulations. The 24
simulation configurations are detailed in Table-3.1. Configurations include terrain-following
WRF, IBM-VRM, and IBM-SRM. Each configuration is tested at four grid resolutions (25,
50, 100 and 200 m) with and without the hybrid RANS/LES scheme. Simulations with the
hybrid RANS/LES scheme enabled are labeled with “-H”.

With the hybrid RANS/LES scheme disabled, terrain-following WRF produces the lowest
FEavg over the range of resolutions tested, with a maximum average error of roughly 0.7 m s™*
over the bottom 100 m AGL when Az = 200 m. The performance of IBM-SRM follows a
similar trend to native WRF, although its E,y, is higher by roughly 0.25 m s~'. IBM-VRM
displays the highest F,,, at all resolutions and the largest increase in F,y, as A, is increased.

When the hybrid RANS/LES scheme is enabled, all three configurations display decreased
error at all resolutions and F,y, ~ 0.375 m s™! at A, = 25 m. Impressively, terrain-following
WRE shows a relatively flat trend of F,,, with A,. Both IBM-VRM and IBM-SRM yield
lower E,y, when the hybrid RANS/LES scheme is enabled, with the lower error of the two
IBM configurations produced by IBM-SRM at all resolutions.
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The current topography is near to the slope limits imposed by terrain-following coor-
dinates and, especially at the resolutions considered here, terrain-following coordinates are
unlikely to be feasible for simulations over real topography. Based upon the simulations
analyzed here, either of the IBM algorithms with the hybrid RANS/LES scheme would be
an excellent configuration to use over complex terrain at 25 or 50 m resolution. If an IBM
is necessary at more coarse resolutions of 100 or 200 m then the IBM-SRM with the hybrid
RANS/LES scheme is recommended.

A more complete understanding of the differences between each simulation and the high-
resolution solution as a function of grid resolution can be gained from Figure 3.3 which in-
cludes horizontal contour plots of E averaged across the 10 planes between 10 and 100 m AGL
for each simulation configuration.

The errors associated with each configuration have similar patterns and generally increase
in magnitude as grid spacing increases. All configurations display a positive wind speed bias
near the summit of the idealized hill and a negative bias in the recirculation zone formed
in the lee of the hill. Simulations with the IBM-VRM and the IBM-SRM show domain-
wide errors that increase in magnitude as A, is increased. These errors are likely related
to the varying location of the intersection between the immersed boundary and grid. The
IBM-VRM appears to be significantly more sensitive to the immersed boundary position
than the IBM-SRM, especially at A, = 200 m, which has been previously observed in other
studies (Bao et al. 2016; Bao 2018; Arthur et al. 2019). This sensitivity primarily results
from interpolation errors due to increased physical distance between nearest neighboring
grid points, and the increased distance of RPs from the IB, which can greatly influence the
applicability of the log-law. Additionally, the larger aspect ratio used for the A, = 200 m
grid may increase these errors.

Enabling the hybrid RANS/LES scheme generally yields a visible reduction in the mag-
nitude of F everywhere except for the hill summit. Of the 24 simulations, those using
IBM-VRM show the most pronounced improvements at all resolutions when the hybrid
RANS/LES scheme is applied. In particular, the strong negative wind speed bias in the lee
of the hill is nearly eliminated. At A, = 100 and 200 m, there is a negative wind speed bias
everywhere except for the hill summit, which is greatly reduced when the hybrid RANS/LES
scheme is enabled.

Enabling the hybrid RANS/LES scheme appears to cause a clear improvement to the
IBM-VRM simulations at all resolutions. The cause of this dramatic improvement becomes
clear when examining the inner workings of the IBM-VRM. By directly modifying velocities
above the immersed boundary, the IBM-VRM reduces the effect of turbulent transfer of
momentum on the near-surface velocities. This reduces momentum transport to the near-
surface, which reduces wind speeds in regions where there is substantial mixing and down-
ward transport of high-momentum flow from aloft, such as the lee of the hill. By enabling
the hybrid RANS/LES scheme, the near-surface velocities are more strongly influenced, via
an increase in 14, by the downward transport of momentum from aloft.
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3.5 Summary and conclusions

Diagnosing and understanding the complexities of LES of the PBL is necessary for im-
proving multiscale modeling efforts. Simulations of flow over an idealized hill were used
to evaluate three bottom boundary conditions; that of the standard terrain-following WRF
model and two immersed boundary methods (IBM-VRM and IBM-SRM). Simulations of
each bottom boundary condition were evaluated at grid resolutions of 25, 50, 100 and 200 m.
These grid resolutions were selected to observe the applicability of each bottom boundary
condition at various grid resolutions, including resolutions within the turbulence gray zone.
Even at high resolutions (A, = 25 m) the bottom boundary condition is found to have a large
effect on the flow solution, especially in lee of the hill where recirculating flow develops. As
the grid resolution is coarsened, there is an increase in the magnitude of differences between
the flow solutions with different surface boundary conditions.

Additionally, the grid resolution sensitivity study was repeated with the hybrid RANS/LES
scheme of Senocak et al. (2007), which modifies the near-surface eddy viscosity in an attempt
to account for a decrease in the characteristic turbulence length scale near the bottom bound-
ary. The hybrid RANS/LES scheme was found to improve simulations at all resolutions with
the most pronounced improvement in those using the IBM-VRM.

The finest grid resolution used in this study was constrained by the available computa-
tional resources. If sufficient computational resources are available, future research should
consider a wider range of grid resolutions, which will hopefully provide a more specific rec-
ommendation for grid resolutions at which it is recommended to use the hybrid RAMS/LES
scheme. Because error decreases as the grid is refined, future studies should consider using a
higher resolution specifically for the true simulation. With additional computing resources,
this author would expand this study to use 10 m resolution for the true simulation and
evaluate model performance at resolutions of 20, 40, 60, 80, 100, 150, 200, 250 and 300 m.

If this study is repeated and expanded then the hybrid VRM/SRM approach of Bao
et al. (2018) should be considered. The hybrid IBM algorithm attempts to address the
deficiencies of the individual methods by combining the VRM and SRM algorithms. With
this approach, the near-surface velocities and stresses are jointly modified to maintain a
log-law boundary condition. It should be noted that this hybrid IBM algorithm has shown
improved performance relative to the individual VRM and SRM algorithms, however this
new algorithm requires ghost-points and is thus incapable of being applied on a domain that
is nested within a terrain-following parent domain.

The results of this study can be distilled into several “best practices” and observations.
First, modelers should attempt to avoid the complexities introduced by an IBM for as
long as the resolved topographic slopes remain tolerable by a NWP model’s native terrain-
conforming grid. Second, even at fine resolutions, modelers should take care when setting a
bottom boundary condition because there are large differences between flow solutions with
different surface boundary conditions as demonstrated by the simulations here with 25 and
50 m grid resolutions. Third, if the introduction of ghost points is not problematic then the
IBM-SRM is recommended over the IBM-VRM algorithm because IBM-SRM produced lower
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error regardless of the resolution. Finally, the hybrid RANS/LES scheme is recommended
because it reduced the error of each configuration tested.
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Figure 3.3: Error in three dimensional wind speed (E based on Equation 3.13) be-
tween terrain-following WRF, IBM-VRM, and IBM-SRM solutions with and without the
RANS/LES hybrid scheme for grid resolutions of A, = 25, 50, 100 and 200 m as detailed in
Table 3.1. Simulations with the hybrid RANS/LES scheme enabled are labeled with “-H”.
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Figure 3.4: Error in the three dimensional wind speed (E based on Equation 3.13) along a
transect through the modeling domain. E is shown from 6 simulations configurations each
run at 4 resolutions (A, = 25, 50, 100 and 200 m). The six configurations include terrain-
following WRF, IBM-VRM and IBM-SRM, each with and without the hybrid RANS/LES
scheme. The profiles are oriented along a transect angled at 75° clockwise from north
and passing through the domain center (i.e. hill summit). Simulations with the hybrid
RANS/LES scheme enabled are labeled with “-H”.
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Chapter 4

Investigation and comparison of
turbulence represented in microscale
and multiscale simulations

4.1 Introduction

Many applications for high resolution numerical weather prediction (NWP) are compli-
cated by transient meteorological conditions or phenomena that span a wide range of spa-
tial scales from centimeters to kilometers. Accurate downscaling of time-varying mesoscale
(Ax > 1 km) meteorological data to microscale resolutions (Ax < 10 m) has recently been
shown to improve microscale resolution simulations of scalar transport in an urban environ-
ment (Wiersema et al. 2020). While these simulations (see Chapter 2) demonstrated the
importance of downscaling, they also highlight the associated difficulties.

As named by Wyngaard (2004), the terra incognita, also called the turbulent gray zone,
is a range of spatial scales where planetary boundary layer turbulence parameterizations
(i.e. PBL schemes) and large-eddy simulation (LES) turbulence closure models are both ill
suited. This problem arises due to the assumption that a domain using a PBL scheme is
coarse enough that negligible turbulent motions are resolved and that a domain using an
LES closure has high enough resolution that the majority of the turbulent energy spectra
is resolved. Multiscale modeling necessitates the transition from coarse resolutions using a
PBL scheme to fine resolutions using a LES closure. Simulating and downscaling through
these intermediate resolutions is a major challenge for multiscale modeling.

Predictions of transport and mixing require the accurate representation of turbulence,
especially for flows over complex terrain. Wiersema et al. (2020) demonstrated that com-
pared to a microscale-only simulation, a multiscale simulation might show weaker agreement
with wind field observations but improved predictions of transport and mixing. It is hy-
pothesized that this results from large-scale meteorological forcing and turbulence that is
only downscaled and resolved in the multiscale simulation. In LES, it is possible that “mean
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velocity profiles are sometimes well predicted, while the turbulence quantities may be under
or over-predicted by a factor of two” (Ferziger and Peri¢ 2002, p. 337). With this in mind,
the goal of this study is to to improve microscale predictions for transport and mixing over
complex topography by understanding and improving the representation and downscaling of
turbulence within a multiscale model.

Depending on the study, the forcing applied to microscale NWP simulations can vary
greatly in complexity. The most basic forcing methodology is to enforce a fixed atmospheric
state, such as neutral and dry with a logarithmic velocity profile, at the inflow lateral bound-
aries and an open condition at the outflow lateral boundaries; see Chan and Leach (2007)
for an example using the FEM3MP model. Steady inflow conditions are problematic for
LES because a significant distance from the inflow boundaries (i.e. fetch) is required for
turbulence to develop.

A common method of providing turbulent inflow is to develop turbulence within a coarse
resolution simulation with periodic boundary conditions. This periodic domain can be tuned
by adjusting the forcing such that it provides the desired inflow conditions to the nested
domain of interest; see Sullivan et al. (1996) and Golaz et al. (2009). A disadvantage of
this nested approach is that tuning requires a priori meteorological knowledge (i.e. local
observations). Additionally, the resolved turbulent scales are restricted by the extent of the
parent domain and this configuration does not include the effects of regional or mesoscale
meteorology.

Coupling of mesoscale NWP and microscale models allows for regional and mesoscale
effects to influence a LES, which has been shown to improve simulations of transport and
mixing in urban areas (Park et al. 2015; Li et al. 2018). Because mesoscale NWP mod-
els produce smooth velocity fields, relative to an LES, the downscaled meteorology is often
modified to include synthetic turbulence or turbulence extracted from a precursor LES sim-
ulation. Running multiple models in sequence adds significant complexity to the simulation.
Additionally, the coupling approach only downscales what is resolved by the mesoscale NWP.
This coupled model approach does not resolve meteorological phenomena, including turbu-
lence, with scales smaller than that resolved in the mesoscale NWP but larger than those
resolved in the LES.

The multiscale modeling approach of Wiersema et al. (2020) provides a downscaling
methodology for providing a LES with turbulent forcing that includes regional and mesoscale
meteorology. Additionally, this methodology does not require a priori knowledge but instead
downscales a meteorological forecast product. Downscaling is performed through a telescop-
ing series of nested domains with grid resolutions that range between the mesoscale and
microscale. In this way, the highest resolution domain is supplied forcing that includes me-
teorological features and turbulence from all scales that are resolved within the telescope of
nested domains.

In this study we evaluate a modified configuration of the multiscale simulation from
Wiersema et al. (2020) with a specific focus on the representation of turbulence in the highest
resolution domain. Asin Wiersema et al. (2020), we simulate transport and mixing of a tracer
gas (SFg) released during the Joint Urban 2003 field campaign (JU2003) in the central
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business district of Oklahoma City, OK. Section 4.2 includes details of the JU2003 field
campaign. Our multiscale configuration is comprised of six nested domains with horizontal
resolutions ranging between 4.95 km and 2 m. Initial conditions and mesoscale forcing are
supplied by the North American Regional Reanalysis (NARR) (Mesinger et al. 2006).

This multiscale simulation is evaluated both with and without the cell perturbation
method (CPM) of Mufioz-Esparza et al. (2015), which is detailed in Section 4.3. The CPM
introduces small temperature perturbations along the inflow boundaries that follow a grid
refinement. These perturbations promote the development of turbulence and are applied here
when transitioning from a coarse resolution domain with a PBL scheme to a fine resolution
domain using a LES turbulence closure model.

Two multiscale simulations (with and without the CPM) are compared to a microscale-
only simulation with periodic lateral boundary conditions and forcing that is tuned using
local observations. The microscale-only configuration is representative of traditional com-
putational fluid mechanics simulations, such as the configurations used in previous JU2003
simulations by Chow et al. (2008), Golaz et al. (2009), Lundquist et al. (2012) and Bao et al.
(2018). Sections 4.4 and 4.5 include comprehensive details about the microscale-only and
multiscale configurations, respectively.

Performance of the three simulations (microscale-only, multiscale and multiscale CPM)
is qualitatively evaluated in Section 4.6 and quantitatively evaluated in Sections 4.7 and
4.8 by comparing the simulations to observations of meteorological conditions and tracer gas
concentrations during JU2003. These comparisons include statistical measures of model skill
for the prediction of wind speed, wind direction, tracer concentration and turbulence kinetic
energy. Additionally, spectra of turbulence kinetic energy are analyzed and compared to
sonic anemometer observations.

4.2 Joint Urban 2003 Field Campaign

The Joint Urban 2003 (JU2003) atmospheric dispersion study in Oklahoma City, Okla~
homa was led by the Defense Threat Reduction Agency (DTRA) and the U.S. Department
of Homeland Security (DHS) with the objective of investigating flows downwind of tall build-
ings and in street canyons and tracer dispersion around and downwind of tall buildings. A
detailed overview of the study can be found in (Allwine and Flaherty 2006).

Numerous and extensive simulations have been performed using models of varying degrees
of fidelity and a focus on urban meteorology and tracer dispersion within the central business
district of Oklahoma City during the JU2003 intensive observational periods (IOPs). Hanna
et al. (2011) compared results from four diagnostic urban wind flow models coupled with
Lagrangian particle dispersion models (LPDMs) applied to IOP 8. Burrows et al. (2007)
applied a Reynold’s-averaged Navier-Stokes (RANS) model with a k-w turbulence model to
five JU2003 tracer releases. Gowardhan et al. (2011) also applied a RANS model, QUIC-
CFD, to IOP 8 and compared these results to a diagnostic wind flow model. Chan and
Leach (2007) and Lundquist et al. (2012) ran large-eddy simulations of IOP 3 using the
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FEM3MP and the WRF-IBM models, respectively, with initial conditions and boundary
conditions specified using a one-dimensional vertical wind profile synthesized from JU2003
observations. Li et al. (2018) initialized and forced a large-eddy simulation of IOP 3 using a
precursor mesoscale simulation modified with a diagnostic turbulence reconstruction scheme.
Most recently, Wiersema et al. (2020) simulated the first continuouse tracer release of IOP 3
using a multiscale simulation consisting of six nested domains that transition between the
mesoscale and microscale.

Several datasets of observations from JU2003 are used in this study for initializing and
forcing the microscale-only simulation and also for analyzing model performance and the
simulations’ skill. Observations used in this study include a sonic anemometer at the SFg
release location that was deployed by the Field Research Division of the NOAA Air Resources
Laboratory (ARL-FRD), a SODAR deployed by Argonne National Laboratory (ANL) in
the botanical gardens located to the south-west of the SFg release location, 11 portable
weather information display stations (PWIDS) with propeller and vane anemometers and 15
Super PWIDS with sonic anemometers deployed by the Dugway Proving Grounds (DPG),
20 programmable integrating gas samplers (PIGS) deployed by NOAA ARL-FRD, and 19
“bluebox” integrating gas samplers deployed by Lawrence Livermore National Laboratory
(LLNL). The LLNL bluebox gas samplers are sited, relatively, near the SFg release location,
and the ARL-FRD gas samplers are sited further afield.

Structures within the central business district are represented using an immersed bound-
ary method (IBM) in the highest resolution domain of each simulation. Details of the IBM
are included in Chapter 2 and Wiersema et al. (2020). Height of the immersed boundary
is specified by sampling a LiDAR dataset of building geometries in the central business dis-
trict of Oklahoma City, OK. Some manual adjustments are applied to the LiDAR dataset,
especially near concave geometries, to ensure high quality interpolations for the IBM. Ad-
ditionally, structures located near the southern domain boundary are removed to prevent
nonphysical flow effects that could develop as a result of the inflow not including the effects
of these buildings. Finally, two elevated walkways are removed because the IBM implemen-
tation does not currently allow for void space, such as the gap beneath the walkways. The
processed urban geometry is shown in Figure 4.1a. Grid points where manual adjustments
were made are shown in Figure 4.1b.

4.3 The cell perturbation method

In nested multiscale models, traversing the turbulence “gray zone” involves the transition
from a planetary boundary layer (PBL) scheme used on coarse resolution domains to a
large-eddy simulation (LES) turbulence closure model used on high resolution domains. In
contrast to turbulent flow resolved in a high resolution LES, the flow on coarse resolution
domains using a PBL scheme is smooth with minimal resolved turbulence. When a LES
domain is nested within a parent domain using a PBL scheme the nested LES domain
requires a prohibitively long distance to fully develop turbulence (i.e. fetch) (Mirocha et al.
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Figure 4.1: (a) Building geometries and heights above ground level that are used to specify
the immersed boundary height within the A = 2 m domain and (b) grid points where
the building geometry was manually modified to a value different than that of the LiDAR
dataset.

2013). The cell perturbation method (CPM) (Munoz-Esparza et al. 2014, 2015; Munoz-
Esparza and Kosovié 2018) greatly reduces the fetch necessary for turbulence development
by introducing small temperature perturbations along the lateral inflow boundaries. The
CPM has previously been demonstrated to improve LES simulations of flow over complex
urban terrain by Lee et al. (2019), which used the CPM to develop turbulence in a microscale-
only simulation forced using fixed inflow velocity profiles.

Potential temperature perturbations are applied on patches of 8 x 8 grid points in the
horizontal dimensions and patches of 2 grid points in the vertical dimension up to a spec-
ified distance in the horizontal and vertical. These dimensions were selected to be large
enough that they would not be quickly dissipated by the WRF model. As discussed in
Munoz-Esparza et al. (2014), the WRF model’s finite difference schemes introduce numeri-
cal diffusion that rapidly dissipates energy for k 2 27 /6Az (Skamarock 2004; Knievel et al.
2007). Perturbations are applied three patches (24 grid points) inward from the boundary
if the predominant flow in the PBL along the boundary is directed into the high-resolution
domain. Perturbations are not applied if the predominant flow in the PBL along a boundary
is directed outward from the high-resolution domain.

Following Munoz-Esparza et al. (2015), the perturbation magnitudes for each patch are
randomly assigned with a uniform distribution and a maximum amplitude calculated based
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on the relative strength of advective and buoyant forcing that are represented by a pertur-

bation Eckert number,
U

2
Ec=—2 (4.1)

CpOpm

where épm is the maximum perturbation amplitude, ¢, is the specific heat capacity at constant
pressure, and U, is the geostrophic wind speed. This procedure differs from that of Munoz-
Esparza et al. (2015) in that U, is calculated as the horizontal domain-averaged wind speed
at a height of 1.1 times the maximum height of the PBL within the domain. Rather than
diagnosing a PBL height from the mesoscale domains, the simulations here use a constant
PBL height of 500 m and Ec =0.2.

The timescale at which perturbations are recalculated, I'; is determined by approximating
the time required for the mean flow to traverse a horizontal distance of three patch lengths.
I' varies only in the vertical dimension. Calculation of I" at vertical index k£ begins with a
domain-average of u and v velocities at the topmost vertical grid level in the patch, yielding
ur and vg. Next, the perturbation timescale is calculated as

r, pna (4.2a)

(@2 + T52)* cos (¢r)

¢ = min (00, 5 — 0c) (4.2b)

0, = arctan <@) (4.2¢)

where p is the number of patches extending inward from the boundary, n is the number of
horizontal grid points per patch, and A is the horizontal grid resolution.

Since 'y, depends upon the vertical grid level, meteorological variables (i.e. velocities),
and grid variables (i.e. resolution, patch sizes, and number of patches) it is difficult to
provide a typical value. For reference, if considering a case with p = 3 patches, n = 8 grid
points per patch, A = 30 m and w, = 7 = 7 m s, then I';, ~ 100 s.

4.4 Microscale-only configuration

The microscale-only simulation in this study uses a two-domain nested configuration with
horizontal grid resolutions of 10 and 2 m and closely follows the setup of Wiersema et al.
(2020). The parent 10 m domain has periodic lateral boundary conditions and is allowed to
“spin up” for 6 hours and 50 minutes prior to the initialization of the 2 m domain. This two-
domain configuration has the advantage of providing turbulent inflow to the 2 m simulation.
Due to the simplified nature of the microscale-only simulation, it is necessary for the modeler
to specify idealized initial conditions and forcing for the 10 m domain.
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Initial conditions are specified as neutral and dry with a velocity profile that is con-
structed from local observations recorded near the SFg release location during the JU2003
field campaign. These observations include the ANL miniSODAR, DPG PWIDS 10 and
11, DPG super PWIDS 17 and 20, and the NOAA ARL-FRD sonic anemometer sited at
the release location. Data from each of these instruments is temporally averaged over the
30 minute SF¢ release period. Near-surface velocities are set using the ARL-FRD sonic
anemometer for 2 m AGL and an average of the four DPG stations for 8 m AGL. The ANL
miniSODAR observations are used to set velocities between 15 and 135 m AGL. Velocities at
135 m AGL are maintained until reaching the model top, which is approximately 400 m AGL
in the microscale-only simulation.

Forcing is applied by the addition of a uniform pressure gradient throughout the 10 m
and 2 m domains. The magnitude of this pressure gradient is tuned to maintain agreement
between velocities in the 2 m domain and JU2003 observations, specifically the observed ve-
locity profile that is also used as initial conditions. Asis common with microscale simulations,
this configuration does not include transient forcing or the effects of regional meteorology.

4.5 Multiscale configuration

The multiscale model configuration uses six nested domains with horizontal resolutions
of 4.95 km, 1.65 km, 330 m, 30 m, 10 m and 2 m. Positions of the six domains are shown
in Figure 4.2. For this set of simulations, since the predominant wind direction on the LES
domains is consistent and known, the 10 m and 2 m domains are positioned in the north-east
quadrant of their respective parent domains such that the “fetch” distances between inflow
boundaries of the nested domains is increased versus a centered arrangement of the domains.

There are slight differences between the multiscale configuration used here and the con-
figuration from Wiersema et al. (2020) and Chapter 2. The primary change is switching from
five domains with resolutions of 6050, 550, 50, 10 and 2 m to six domains with resolutions
of 4950, 1650, 330, 30, 10 and 2 m. The multiscale simulation from Wiersema et al. (2020),
specifically the 50 m domain, produced elongated flow structures and few small-scale struc-
tures, which is common in coarse resolution LES using the Smagorinsky turbulence closure
model (Hutchins and Marusic 2007; Ludwig et al. 2009; Kirkil et al. 2012). The updated
domain configuration uses 30 m resolution for the first LES domain, which was chosen to
reduce the prominence of the elongated flow features.

The outermost (4.95 km) domain is initialized and forced by the NCEP North American
Regional Reanalysis (NARR) dataset (Mesinger et al. 2006). Unlike the microscale-only
simulation, the multiscale simulation does not use JU2003 observations. By only relying on
a meteorological forecast product, such as the NARR dataset, the multiscale configuration
is running as a “forecast” and, if computational resources were significantly more powerful,
the simulation could be used in a predictive capability.

The computational burden of the multiscale simulation is reduced by staggering the start
times of each nested domain, which allows for development of the flow within a parent prior
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Figure 4.2: Positioning of grids in the six-domain multiscale model configuration. A map
showing state boundaries is overlaid on the 4.95 km domain. Contours of ground elevation
above sea level are shown on the 1.65 km, 330 m, 30 m, and 10 m domains. The 2 m
domain uses a different colorbar and is overlaid with contours of surface elevation, including
buildings, as resolved within the simulation.

to initializing a child domain. This spin-up time is crucial as it allows for each domain to
advance sufficiently beyond the initial conditions and develop features of scales not resolved
in the initial flow field or the corresponding parent domain. Beginning with the 4.95 km
domain, the six domains have start times of 0300, 0600, 0900, 1200, 1500, and 1550 UTC.
The simulation is terminated at 1630 UTC, corresponding to the shutoff of the SF¢ release.

Terrain-following coordinates and the standard WRF bottom boundary conditions are
used on the 4.95 km, 1.65 km, 330 m and 30 m domains. The velocity reconstruction
immersed boundary method is used on the 10 m and 2 m domains with a constant roughness
length zp = 0.1 m. The Mellor-Yamada-Janjic planetary boundary layer scheme is enabled
on 330 m domain and its parents. At LES resolutions (30 m, 10 m, and 2 m), the three-
dimensional Smagorinsky turbulence closure scheme is used with a coefficient Cy = 0.18.
Additional details on the multiscale simulation configuration are included in Table 4.5.

As with the microscale-only configuration, the vertical levels of each domain are carefully
controlled. A model top of 200 hPa is used for all domains in the multiscale configuration.
Because this covers approximately 30 times the vertical extent of the microscale-only sim-
ulation, substantially more vertical grid levels are necessary for the 10 m and 2 m domains
relative to their counterparts in the microscale-only simulation. Near-surface vertical grid
levels for the 10 m and 2 m multiscale domains are selected to match, as closely as possible,
the vertical grid levels from the microscale-only configuration. Above 400 m AGL, which
is the height of the model top of the microscale-only configuration, the vertical grid levels
are stretched in height at a constant rate of (zx11 — 2x) / (2 — 2x—1) = 1.05. This aggressive
stretching greatly reduces the computational costs but results in highly stretched grid cells
with small aspect ratios (A,/A, j 1) near the model top. Any error associated with poor
grid quality is restricted to the topmost levels of the 10 and 2 m domains, where it does not
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Table 4.1: Six-domain multiscale model configuration for JU2003 simulations. TF = terrain-
following coordinate. IBM = immersed boundary method. MYJ = Mellor-Yamada-Janjic
planetary boundary layer turbulence parameterization. Smag = 3D Smagorinsky turbulence
closure scheme. WSM3 = WRF Single-Moment 3-class microphysics scheme. RRTM =
Rapid Radiative Transfer Model longwave radiation model. KF = Kain-Fritsch cumulus
parameterization.

D1 D2 D3 D4 D5 D6
Ax ; Ay [m] 4950 1650 330 30 10 2
Start Time [UTC] 0300 0600 0900 1200 | 1500 | 1550
Coordinate TF TF TF TF | IBM | IBM
Time Step [s] 30 10 2 : = =
East-West Grid Points 301 301 311 342 301 351
South-North grid Points 301 301 311 342 301 401
Bottom-Top Grid Points 51 51 96 121 146 243
Tell Perturbation Method - - - | enabled - -
Turbulence MYJ MYJ MYJ Smag | Smag | Smag
Micro-Physics WSM3 | WSM3 | WSM3 none | none | none
Longwave Radiation RRTM | RRTM | RRTM | RRTM | none | none
Shortwave Radiation Dudhia | Dudhia | Dudhia | Dudhia | none | none
Surface Layer Scheme MM5 MM5 MM5 MMS5 | none | none
Land Surface Model Noah Noah Noah Noah | Noah | Noah
Cumulus Parameterization KF KF none none | none | none

affect the near-surface flow.

4.6 Qualitative analysis of simulation results

A visual comparison of the simulation results reveals several noteworthy differences in the
predictions of SFg concentrations and turbulence kinetic energy (TKE). Figure 4.3 includes
horizontal contours at 2.5 m AGL of SFg concentrations that are time-averaged over the
30 minute release period. The plumes from both multiscale simulations are significantly
less constrained than that in the microscale-only simulation. This increased width of the
multiscale plumes is due to oscillations in the inflow of the 2 m domain that are not replicated
when using the idealized forcing of the microscale only configuration. Visually, the multiscale
simulations show improved agreement with the observations, especially at sensors west of
the SF¢ release location.

Transport of SF¢ upwind, relative to the predominant flow direction, from the SF¢ release
location is also seen in both multiscale simulations. This upwind transport does not appear
in the microscale-only simulation because it results from the downscaling of flow variability



CHAPTER 4. INVESTIGATION AND COMPARISON OF TURBULENCE
REPRESENTED IN MICROSCALE AND MULTISCALE SIMULATIONS 64

microscale-only multiscale multiscale CPM 10°

3926200 '
3
102 a
o 3926000 =
c e
€ 10t ©
5 ©
€ 3925800 =
s 10° G
5
3925600 M 101 ¢
[V
[0p]
1072

o o o o o (@] o o o o o o

(@] o o o (@] o o o o o o o

< (=} «©Q o < O «©Q o < (< (o] o

< < < ) < < < ) < < < 0

m m m m m m m m m m m m

[(e} (e} (e} (e} [(e} (e} ©o (e} (e} (e} (e} (e}

UTM easting UTM easting UTM easting

Figure 4.3: Horizontal contours of SFg concentrations at 2.5 m above ground level time-
averaged over the SFg release window (1600-1630 UTC) from the microscale-only, multiscale
and multiscale with CPM simulations. Concentration observations are overlaid as filled
circles with the larger markers corresponding to the LLNL bluebox gas samplers and small

markers the NOAA ARL-FRD gas samplers.

from the intermediate resolution domains. Intermittent periods of near-zero wind speed and
highly variable wind direction occur at the SF¢ release location in both multiscale simulations
and in the JU2003 observations (see Figure 10 in Wiersema et al. 2020). It is during these
intermittent periods that coherent flow patterns may induce substantial upwind transport of
the SFg plume. When the CPM is enabled, the additional small-scale turbulence generated
in the 30 m domain helps to break apart these coherent flow patterns, which results in a
reduction in the upwind transport. The extent of upwind transport in the three simulations
is evident when comparing the time-averaged plumes shown in Figure 4.3.

The resolved TKE within each simulation is determined using Equation 4.3 with the
perturbation velocity components calculated by subtracting a 10 minute rolling average
from each velocity component time series:

= % (u/2 o4 w/2) (4.3)
At Super PWIDS locations, the three velocity components are output at each model time
step; % s for the 2 m domain. Due to hardware limitations, velocities at every model time
step are only saved at the grid points nearest to a Super PWIDS and the six adjacent grid
points (north, south, east, west, above and below). Because a single grid point may not be the
best choice for representing a real-world station, the TKE is calculated at each Super PWIDS
as the average of TKE in the seven grid point cluster. Calculations of TKE at locations other
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than the Super PWIDS stations, such as the horizontal contours of TKE in Figure 4.5 and
vertical profiles of TKE in Figure 4.6a, are performed using simulation history files with a
3 s output interval. Due to difference in the spatial averaging and temporal resolution of
the velocity fields, small variations are expected between TKE calculated with the two data
sources.

To verify that the two data sources result in a comparable estimate of TKE, we calculate
TKE along vertical profiles at the ANL miniSODAR and DPG PWIDS 03 using both data
sources from the multiscale CPM simulation, which is shown in Figure 4.4. TKE calculated
with the two data sources is compared at 20 grid points per vertical profile, which yields a
mean absolute difference of 0.11 m? s~2 and a standard deviation of the absolute differences
of 0.14 m? s~2. At each grid point evaluated, the percent difference between TKE calculated
with different data sources is found as the ratio of the absolute difference and average of
the TKE calculations. For the two profiles evaluated, the average percent difference is 2.5%,
which lends confidence in the calculations of TKE using simulation history files with the
lower temporal resolution of 3 s.

100 - E
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60 -

\
40 - /}
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0 1 2 3 4 5 6
TKE [m? s2]

——=s—— ANL miniSODAR
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Figure 4.4: Vertical profiles of TKE from the A=2 m domains above the ANL miniSODAR
and DPG PWIDS 03. The dotted lines represent TKE calculated using simulation history
files with a 3 s output interval. Square markers represent TKE calculated using output at
every model time step. The profiles have been time-averaged over the 30 minute SFgy release
period between 1600 and 1630 UTC.

A similar spatial pattern of resolved TKE is produced by all three simulations, which can
be seen in the horizontal contours of time-averaged resolved TKE at 8 m AGL in Figure 4.5.
Regions of elevated TKE develop throughout the simulation and are pronounced where build-
ings obstruct the flow and channel it through narrow gaps (see coordinates 634500, 3926000
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in Figure 4.5), at the intersection of street canyons (see coordinates 634850, 3925900), and
in the lee of tall buildings (see coordinates 634850, 3926050). Both multiscale simulations
resolve more TKE compared to the microscale-only simulation. Qualitatively, the microscale-
only simulation appears to underestimate TKE compared to the DPG Super PWIDS and
the multiscale simulations show improved visual agreement. This visual analysis is confirmed
by the model skill metrics for TKE that are discussed in the following section.
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Figure 4.5: Horizontal contours of resolved TKE at 8 m above ground level time-averaged
over the SFg release period (1600-1630 UTC) from the microscale-only, multiscale and mul-
tiscale with CPM simulations. TKE calculated from the DPG Super PWIDS observations
is overlaid using filled circles. Contours of TKE are calculated using simulation history files.

Figure 4.6a shows vertical TKE profiles along a transect between the ANL miniSODAR
and DPG PWIDS 03. This transect was selected to loosely follow the predominant wind
direction, pass near the SFg release location and provide a transition from the inflow and
outflow of the 2 m domain. The location of each vertical profile within the 2 m domain is
shown in Figure 4.6b. As seen in Figure 4.5, the three simulations produce similar shape
profiles with different magnitudes. In each vertical profile, the microscale-only simulation
resolves less TKE than the multiscale simulations. Generally, the multiscale simulations
produce similar profiles; however, enabling the CPM generally causes a slight increase in
TKE, especially in the lee of buildings.

Figure 4.6¢ shows the overlaid TKE profiles from the multiscale CPM simulation with the
color of each profile corresponding to the associated marker in Figure 4.6b. When advancing
along the transect from south to north, there is an increase in the maximum height that
TKE is influenced by the buildings. In these simulations, the region upwind of the inflow
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boundaries consists of single story structures and parking lots. If taller structures were
present upstream of the inflow then the 2 m domain would need to be expanded to ensure
sufficient distance over which the flow can develop prior to reaching the SFg release location.

4.7 Statistical analysis of model skill

Measures of model skill proposed by Chang and Hanna (2004) and Calhoun et al. (2004)
are used to compare the predictions of each simulation to JU2003 observations. These
measures model skill have been applied to numerous previous studies, including several
JU2003 simulations (Burrows et al. 2007; Chan and Leach 2007; Chow et al. 2008; Hanna
et al. 2011; Lundquist et al. 2012; Wiersema et al. 2020). Six model skill scores are used in this
study: the fraction of predictions within a factor of x (FACx); fractional bias (FB); geometric
mean bias (MG); geometric variance (VG); normalized mean squared error (NMSE); and
scaled average angle (SAA).

FACx =fraction of data that satisfiesl/z < X,/ X, < x (4.4a)
FB=2(X,-X,)/ (X, +X,) (4.4b)
MG = exp (m (X,) —In (Xp)) (4.4c)
VG =exp ((m (X,) —In (X,,))Q) (4.4d)
NMSE =(X, — X,)?/ (X, X,,) (4.4¢)
SAA =X (|Uil|¢:) / (N|T:]) (4.4f)

In the above equations, X, is the set of observational data and X, are the corresponding
predictions from a simulation, /N is the number of observations, ¢; is the difference between
observed and predicted wind directions, and |U;| is the predicted wind speed. Values for X,
and X, are time-averages over the 30 minute release period. An overbar indicates averaging
of all locations.

Skill scores evaluating wind speeds, direction and SFg concentrations predicted by the
microscale-only and multiscale simulations are graphically represented in Figure 4.7. These
skill scores are comparable with those from the 5-domain multiscale setup reported in Chap-
ter 2 and in Wiersema et al. (2020) where it was observed that microscale-only simulations
performed best at predicting wind speeds and a multiscale simulation performed best at
predicting SFg concentrations. It is not surprising that the microscale-only simulation, the
only simulation with forcing based upon local JU2003 observations, would perform best at
prediction of wind speed and direction. The microscale-only simulation was provided inflow
that was tuned to ensure agreement with local observations, whereas the multiscale simula-
tions were provided a meteorological forecast product with a horizontal resolution of 32 km.
Another perspective is that the 2 m domain’s entire footprint could fit approximately 18000
times within a single grid cell of the NARR datal!
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Each simulation yields negative FB scores for wind speed, which indicate that all simu-
lations overestimate near-surface wind speeds. We hypothesize this is due to the absence of
drag induced by buildings in the intermediate resolution domains and also due to missing
small-scale sources of drag in the 2 m domain, such as vegetation and architectural features.
Enabling the CPM results in a further decrease in the FB score, which is likely due to
increased vertical mixing that transports high momentum flow from aloft towards the sur-
face. Overall, the microscale-only simulation displays the highest model skill for predicting
wind speeds and direction, followed by the multiscale simulation and the multiscale CPM
simulation.

Similar to the simulations from Chapter 2 and Wiersema et al. (2020), the multiscale sim-
ulation outperforms the microscale-only simulation at predicting SFg concentrations. Com-
pared to the microscale-only simulation, the multiscale simulations show improved skill for
every metric evaluating prediction of both SFg and TKE. Enabling CPM results in a slight
decrease in the model skill scores for the prediction of SFg and TKE.

The microscale-only simulation’s large and positive FB score indicates a substantial un-
derestimate of TKE. The upper limit of turbulence length scales supported on the microscale-
only simulation’s 10 m domain may be partly responsible for the underestimation of TKE.
The multiscale simulations develop energetic, large-scale, coherent flow structures in the do-
mains with 30, 330, and 1650 m horizontal resolution, which the microscale-only simulation
is unable to reproduce. Analysis of TKE spectra is performed in the following section to
investigate the scales of motions resolved by the different simulations.

Overall, both multiscale simulations overestimate TKE but the magnitude of this error
is less than the underestimate by the microscale-only simulation. Enabling CPM increases
the overestimation of TKE and results in slightly reduced model skill for both TKE and
SF¢. Both multiscale simulations show improved model skill at predicting SFg and TKE
compared to the microscale-only simulation.

4.8 Spectral analysis of turbulence kinetic energy

Spectral analysis of TKE is used to investigate differences in the forcing between the
microscale and multiscale simulations as well as the effects of the CPM. Energy spectra are
calculated following Equation 4.5 where F (x) represents the discrete Fourier transform of
series x.

E(w) = % (IF @)+ |F @)+ [F @)) (4.5)

DPG Super PWIDS 17 (SP17), located 8 m AGL at the SFg4 release location, is well
sited to observe flow with relatively unobstructed upstream conditions. SP17 is the most
reliable observation of unobstructed flow leading into the central business district because
directly upwind from the sonic anemometer are botanical gardens, single story structures
and parking lots. TKE spectra at SP17 calculated using the sonic anemometer observations
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and the three simulations are shown in Figure 4.8. The TKE spectra of SP17 observations
displays excellent agreement with the expected —% power law scaling in the inertial subrange.

Compared to the microscale-only simulation, the multiscale simulation has improved
agreement with SP17 within the inertial subrange, particularly at frequencies greater than
0.05 s~1. This extension of the resolved inertial subrange within multiscale simulations is due
to the energetic low-frequency motions generated on the intermediate resolution domains.
When downscaled and allowed to develop on a higher resolution domain, these large-scale
motions break down into smaller, higher frequency motions. While the microscale-only
simulation receives fully developed turbulent flow at the lateral boundaries of the 2 m domain,
the 10 m parent domain does not resolve the larger scales of turbulence that are generated
and downscaled using the telescoping grids of the multiscale simulation.

Both of the multiscale simulations overestimate the energy in large-scale motions at
frequencies lower than 0.05 s~!. This overestimation may be the result of persistent large-
scale structures in the flow that are not realistically cascading into smaller scale motions. The
use of a more sophisticated LES turbulence closure model, such as the dynamic reconstruction
method (Chow et al. 2005; Chow and Street 2009), might help to reduce this buildup of energy
in the large scales. In the LES domains, extending the “fetch”, the distance between the
inflow boundaries and grid refinement interfaces, may also improve the results by providing
additional time for the flow to develop smaller scales of turbulence prior to downscaling.
Configuring a multiscale simulation requires striking a difficult-to-optimize balance between
the simulation’s computational costs, the resolution and extent of each grid, and the degree of
physical accuracy that can be expected. The sensitivity of terrain-following coordinates and
different IBM algorithms to grid resolution for simulations over complex terrain is explored
in Chapter 3, however significantly more research is required before any “best practices” can
be decisively stated.

Enabling the CPM in the multiscale simulation results in a clear increase in the energy
resolved at frequencies greater than 0.04 s~!. As expected, the CPM promotes the develop-
ment of turbulence on the 30 m domain and highly energetic turbulent features that develop
on the 30 m domain are then downscaled through the 10 m domain and into the 2 m domain,
where they are a major contributor to the increase in resolved TKE seen in Figure 4.8.

4.9 Conclusions

This chapter demonstrates that, compared to a microscale-only simulation, a multiscale
simulation can substantially improve predictions of transport and mixing and TKE. Two
simulation configurations are compared; a traditional microscale-only simulation and a six-
domain multiscale simulation. These simulations predict meteorology and the transport and
mixing of SFg throughout the central business district of Oklahoma City, OK, during the
JU2003 field campaign. The microscale-only simulation uses a two-domain nested configu-
ration with idealized boundary conditions and forcing that is tuned using local observations
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from JU2003. The multiscale simulation uses a six-domain nested configuration with initial
conditions and forcing provided by NARR, a meteorological forecast product.

Several statistical measures of model skill are used to evaluate the performance of each
simulation versus JU2003 observations. As was observed in Chapter 2 and Wiersema et al.
(2020), the microscale-only simulation shows the most skill at predicting wind speed and
direction due to tuning of the simulation forcing to match JU2003 observations. The multi-
scale simulation shows the most skill at predicting both SFg concentrations and TKE. The
superior skill of the multiscale simulation results from downscaling of large-scale turbulence
through a telescoping series of nested domains. These results demonstrate the importance
of including large-scales when forcing a microscale simulation.

Enabling the CPM of Mutioz-Esparza et al. (2015) was found to promote the development
of turbulence and improve the transition from a RANS parent domain to a LES child domain,
however the associated increased downward transport of high momentum flow exacerbated
the existing positive wind speed bias in the 30 m and 10 m domains. Future research should
focus on reducing this positive wind speed bias by improving the representation of poorly
resolved obstacles, such as buildings, and including their effects on flow in the intermediate
resolution domains. Additionally, future studies should consider more advanced turbulence
closures, such as the dynamic reconstruction model (Chow et al. 2005), that may improve
the development of turbulence at intermediate resolutions.
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Figure 4.6: Vertical profiles of TKE from the A=2 m domains along a transect between the
ANL miniSODAR and DPG PWIDS 03 (a), profile locations within the 2 m domain (b), and
vertical profiles of TKE from the multiscale CPM simulation with line-color corresponding
to the profile location (c). All vertical profiles have been time-averaged over the SF¢ release
period (1600-1630 UTC). The red marker at the south west corner of (b) corresponds to
the ANL miniSODAR. The pink marker that is nearest to the northern boundary in (b)
corresponds to the DPG PWIDS 03.
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Figure 4.7: Model skill test results evaluating horizontal wind speed and wind direction (top

row), SFg concentration (middle row), and turbulence kinetic energy (bottom row) for the

microscale-only simulation and multiscale simulations with and without CPM. Simulation
results are evaluated against DPG PWIDS and super PWIDS, LLNL “bluebox” and NOAA
ARL FRD integrated tracer samplers. The thick black lines represent the score of a perfect

model.
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Figure 4.8: Frequency spectra of turbulent kinetic energy (TKE) at 8 m above ground
level at the SFg release location. Included on this plot are observations from the DPG
Super PWIDS 17 and simulation results from three model configurations; microscale-only,
multiscale, and multiscale with the cell perturbation method. The large markers are mean
values of frequency bins.
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Chapter 5

Conclusions and recommendations

5.1 Summary of findings

Mesoscale to microscale atmospheric simulations

Multiscale atmospheric simulations over complex terrain are demonstrated using the
WREF model with the immersed boundary method, vertical grid refinement, and a cell per-
turbation method. These WRF developments allow for realistic meteorology and large-scale
turbulence to be downscaled from a NWP meteorological forecast product through a telescop-
ing sequence of nested domains and ultimately force a microscale simulation over complex
urban terrain.

A five-domain multiscale WRF simulation is demonstrated with the model initialization
and mesoscale forcing supplied by the NARR dataset. This simulation predicts transport
and mixing of a passive tracer gas (SFg) released during the third intensive observational
period of the Joint Urban 2003 field campaign in the central business district of Oklahoma
City, OK. The simulation’s five domains have horizontal resolutions of 6050, 550, 50, 10
and 2 m. The IBM VRM algorithm (Bao et al. 2018; Wiersema et al. 2020) is enabled for
the 10 and 2 m domains. This algorithm is especially useful since it does not rely upon
ghost points, which greatly simplifies the nesting of an IBM VRM child domain inside of a
traditional terrain-following WRF parent domain.

A vertical grid nesting procedure (Daniels et al. 2016) is used to specify the number and
placement of vertical grid levels in each of the five domains. Crucially, this provides control
over the grid aspect ratio of the domains using a large-eddy simulation turbulence closure
model.

In addition to the multiscale simulation in Chapter 2, two microscale-only model config-
urations are also evaluated. The microscale-only configurations are representative of typical
microscale large-eddy simulations from the literature, such as those by Golaz et al. (2009);
Lundquist et al. (2012); and Bao et al. (2018). The two configurations differ only in the
choice of IBM algorithm, which is either the no-slip ghost point method of Lundquist et al.
(2012) or the velocity reconstruction method of Bao et al. (2018).
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Both microscale-only configurations use a two-domain nested configuration with hori-
zontal resolutions of 10 and 2 m. Periodic lateral boundary conditions are applied to the
10 m parent domain, which is allowed to develop turbulence and reach a quasi-steady-state
prior to initializing the 2 m domain. The 2 m domain of these microscale-only simulations
is configured to be as similar as possible to the 2 m domain of the multiscale simulation.

Qualitative analysis of the wind field solution and SFg plume from each simulation shows
similar behavior of the microscale simulations. In the time series of horizontal wind speed
and wind direction, Figure 2.10, the multiscale simulation displays an increased variability
of the wind speed and wind direction, which results in additional SFg plume meandering
relative to the microscale-only simulations. This effect is pronounced in the time-averaged
SFg plumes shown in Figure 4.3, where the multiscale simulation’s plume is much wider and
includes significantly more transport upwind of the SFg release location.

Quantitative analysis of the microscale-only and multiscale simulations involves a suite of
model skill metrics suggested in Chang and Hanna (2004) and Calhoun et al. (2004) that are
used to evaluate the performance of each simulation for the prediction of wind speeds, wind
directions, and SFg concentrations. A graphical representation of the simulations’ model
skill is included in Figure 2.12.

The relative performance of the two IBM algorithms is evaluated by comparing the
model skill of the microscale-only simulations. The microscale-only simulation using the
VRM IBM algorithm shows slightly improved model skill compared to that using the GPM
IBM algorithm. This improvement is attributed to the VRM algorithm enforcing a log-law
boundary condition, which, at the resolutions being evaluated, is more appropriate than the
GPM algorithm’s no-slip boundary condition.

The impact of downscaling realistic meteorology is evaluated by comparing the skill of
the microscale-only simulations to that of the multiscale simulation. The microscale-only
simulations have higher model skill at predicting wind speeds and wind direction. This is
expected because the microscale-only simulations are tuned using local observations. De-
spite not being tuned using local observations, the multiscale simulation outperforms the
microscale-only simulations at predicting SFg concentrations. This is attributed to differ-
ences in the forcing, such as the large-scale flow features from the mesoscale and intermediate
resolution domains of the multiscale simulation.

All three simulations overestimate the near-surface wind speed, as shown in Figure 2.5,
which shows vertical profiles of time-averaged wind speed above a location near the inflow
of the 2 m domain. It is hypothesized that this overestimation is due to upstream roughness
elements (i.e. buildings and vegetation) that are not well represented in the intermediate
resolution domains. This hypothesis is tested by introducing large rectangular roughness
elements in the 10 m domain to represent the missing sources of drag. The simulation
with these roughness elements shows improved agreement with the vertical profile of wind
speed observed near the inflow and shown in Figure 2.5. Future research should include
treatments on the intermediate resolution domains for poorly resolved sources of roughness,
such as buildings and vegetation.
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Investigation of sensitivity to grid resolution

Chapter 3 includes a series of simulations over a steep idealized hill that explore the
parameter space of grid resolution and surface boundary condition (i.e. IBM algorithm).
The primary objective of this sensitivity study is to better inform future multiscale modeling
efforts over complex terrain. In particular, this study seeks to improve domain configurations
at intermediate resolutions (i.e. 25 m < A < 200 m) where there are presently no obvious
“best practices”.

Simulations at 25, 50, 100 and 200 m grid resolution are evaluated using the standard
WRF bottom boundary condition and terrain-following coordinates, the velocity reconstruc-
tion method IBM algorithm (Senocak et al. 2004; Bao et al. 2018), and the shear reconstruc-
tion method IBM algorithm (Chester et al. 2007; Bao et al. 2016; Ma and Liu 2017). These
12 configurations are also evaluated with a hybrid RANS/LES scheme (Senocak et al. 2007),
which blends solutions for the eddy viscosity from the Smagorinsky turbulence closure away
from the surface and a RANS solution near the surface.

Each of the simulations is evaluated relative to the 25 m resolution standard WRF sim-
ulation, which is treated as a “true” solution. An emphasis is placed on the solution within
100 m of the surface. Domain-averaged error over the bottom 100 m is evaluated for each
of the simulations. The spatial distribution of error is thoroughly investigated, including an
analysis of error along a transect through the domain center and aligned with the predomi-
nant wind direction.

The results of this study are distilled into several “best practices”. First, terrain-following
coordinates should be used for domains where the resolved topographic slopes are mild
or moderate and the corresponding numerical errors are manageable. Second, there is a
large sensitivity to the surface boundary condition at all resolutions tested and modelers
should not assume that high grid resolution will negate errors from an inappropriate surface
boundary condition. Third, the SRM IBM algorithm outperformed the VRM IBM algorithm,
however the SRM IBM requires ghost points and cannot be used on a domain nested within
a terrain-following parent domain. The SRM IBM should be used if an IBM is necessary and
the simulation can support the restrictions imposed by the algorithm. Finally, the hybrid
RANS/LES scheme of Senocak et al. (2007) yielded improved results at all resolutions tested
and is highly recommended for use at similar grid resolutions (i.e. 25 < A <200 m).

Investigation and comparison of turbulence represented in
microscale and multiscale simulations

Chapter 4 investigates the downscaling of turbulence in a slightly altered configuration of
the multiscale simulation from Chapter 2 and compares the results to those from a microscale-
only simulation. The updated multiscale configuration has six domains with resolutions of
4950, 1650, 330, 30, 10 and 2 m. Changes in the domain resolutions are intended to improve
the development of turbulence in the intermediate resolution domains. A 30 m resolution
is used for the first LES domain versus the 50 m resolution used in the previous multiscale
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simulation. The microscale-only configuration remains unchanged with a 10 m resolution
parent domain with periodic lateral boundary conditions and a 2 m resolution child domain.

The multiscale simulation is run with and without the cell perturbation method from
Munoz-Esparza et al. (2014, 2015); Munoz-Esparza and Kosovié¢ (2018). The CPM intro-
duces small potential temperature perturbations within the PBL and along inflow lateral
boundaries. When transitioning from a parent domain using a PBL scheme to an LES
child domain, the CPM can promote the development of small-scale turbulence following
transition across a grid refinement interface.

As in Chapter 2, the microscale-only and multiscale simulations (with and without the
CPM) are compared to JU2003 observations, however additional consideration is given to the
resolved turbulence kinetic energy throughout the 2 m domain. TKE is calculated from sonic
anemometers deployed during JU2003 and compared to that resolved in the simulations. The
model skill metrics used in Chapter 2 are also applied to these simulations for evaluating
wind speed, wind direction, SFg concentrations and TKE.

Figure 4.7 shows a graphical comparison of the model skill from the microscale-only and
multiscale simulations. The relative behavior is similar to what was reported in Chapter 2
and Wiersema et al. (2020). The microscale-only simulation, which is tuned using local ob-
servations, best predicts wind speeds and directions, however the multiscale simulation best
predicts SFg concentrations. Importantly, the multiscale simulation also best predicts TKE,
with a slight overestimate versus the large underestimate by the microscale-only simulation.
This is hypothesized to be a result of downscaled large-scale flow features and turbulence,
which cannot be resolved in the microscale-only simulations.

With the CPM enabled, the skill of the multiscale simulation decreases slightly for pre-
dictions of wind speed, SFg concentration, and TKE. This reduction is thought to result
from the CPM causing an increase in the energetic large-scale flow features that contribute
heavily to the resolved TKE. These additional energetic flow features cause an increase in
the vertical transport and mixing of high momentum flow from aloft to the near-surface.
This results in higher wind speeds and resolved TKE. Even with the CPM disabled, the
multiscale simulation overpredicts both wind speeds and TKE. This problem is exacerbated
by enabling the CPM.

Qualitative analysis confirms the underprediction of TKE by the microscale simulation
and overprediction by the multiscale simulation. This qualitative analysis includes a visual
comparison of horizontal contours of resolved TKE from the three simulations and vertical
profiles of resolved TKE along a transect through the central business district, shown in
Figures 4.5 and 4.4, respectively.

A spectral analysis of resolved TKE at the SFg release location, shown in Figure 4.8,
displays trends expected by the conclusions from the qualitative analysis and the analysis
of model skill scores. Both multiscale simulations resolve more energy at all scales than
the microscale-only simulation. Enabling the CPM slightly increases the resolved TKE at
most scales. Relative to sonic anemometer observations, both of the multiscale simulations
overpredict energy at the large scales and underpredict energy at the small scales. A more so-
phisticated LES turbulence closure model, such as the dynamic reconstruction model (Chow
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et al. 2005), may reduce the persistence of large-scale coherent features and increase the
energy contained in small scale motions.

5.2 Recommendations for future research and
development

While multiscale atmospheric modeling over complex terrain is achievable using the
framework developed and described here, there are many opportunities for improvement
of the existing modeling methods and tools.

The IBM algorithm is one potential method that should be a focus for future development
and improvement. In particular, the velocity reconstruction method IBM algorithm, which is
used in the multiscale simulations of Chapters 2 and 4, works well at the microscale but is less
accurate at more coarse resolutions. The simplicity of the VRM IBM algorithm contributes
to the method being robust enough to handle complex urban terrain at high resolutions,
however more advanced methods should be investigated for use at resolutions greater than
approximately 2 m. Future developers of IBM algorithms for the WRF model should be
cautious of algorithms that require ghost points beneath the 1B, as the governing equations
of the model have fundamental problems associated with nesting domains that do not share
bottom and top pressure levels along the refinement interfaces.

Another model development for consideration is an IBM algorithm to enforce a flux
boundary condition for scalar variables (i.e. potential temperature, moisture, chemical
species, and tracers) without requiring ghost points. Such a method is simple to develop for
uncomplicated topography, however urban IB geometries prove challenging as the interpo-
lation scheme may have few options for nearest neighbors and select grid points that result
in a feedback effect. This is particularly problematic when modifying potential temperature
and moisture since a grid point with an inaccurate solution for these variables will affect the
pressure and result in spurious flow.

The multiscale simulations in Chapters 2 and 4 are configured with static data sets,
including topography and land use, at a low resolution relative to the microscale grids.
While not insurmountable, there are several nuanced challenges associated with the use of
higher resolution static data sets. First, it can be quite difficult to gather and assemble
enough tiles of a data set to cover the spatial extent of the mesoscale resolution domains
in a multiscale simulation. The WRF model version 3.8.1 requires uniform tile dimensions
for static data sets, which complicates the manual manipulation required for high resolution
data sets when many tiles are necessary. Additionally, if different data sets are used for
mesoscale and microscale domains then these data sets are required to share any necessary
lookup tables.

As discussed in Chapter 4, domains at resolutions within the turbulence gray zone are
likely to benefit from a more sophisticated LES turbulence closure model. The dynamic
reconstruction model (DRM) (Chow et al. 2005; Kirkil et al. 2012) would be an excellent
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choice due to consistent performance across a wide range of grid resolutions (Simon et al.
2019). Development of the DRM for use with an IBM would require intelligent adjustment
of filters when in proximity to the IB.

Another potential enhancement for the multiscale simulations is an improved treatment
for poorly resolved subgrid-scale topographic features, particularly in the intermediate reso-
lution domains. One possible solution may be to introduce drag at grid cells where buildings
are present. A canopy model framework could be another useful option (Arthur et al. 2018b).

Configuring each nested grid in a multiscale simulation involves numerous decisions that,
for the moment, are primarily based upon the modeler’s judgement because there are few
established “best practices”. Chapter 3 begins to investigate the model performance at grid
resolutions within the turbulence gray zone, however many additional studies are needed
to better inform future multiscale modeling efforts. It is recommended that these studies
investigate the model’s sensitivity to grid resolution, nesting refinement ratio, grid aspect
ratio, and choice of LES turbulence closure model.

5.3 Advice for multiscale atmospheric modeling

An important, although quite obvious, lesson learned from this study was that an inaccu-
rate solution in an intermediate or mesoscale resolution domain will result in an inaccurate
solution in the microscale resolution domains. When modelers evaluate future multiscale sim-
ulations, they should cautiously evaluate the accuracy of each simulation domain. Relative to
a microscale-only simulation, the many domains of a multiscale simulation provide additional
opportunities for the introduction of errors, which influence the solution at the microscale.
As demonstrated here, multiscale simulations can greatly benefit from the intermediate and
mesoscale resolution domains, however they also complicate the model configuration process.

Similar to the lesson above, modelers should reduce the simulation complexity by only
modeling the scales where high quality forecasts do not yet exist. This was demonstrated by
a multiscale configuration, not shown here, that was similar to that in Chapter 2 however, for
purely aesthetic purposes, the outermost domain covered a much larger spatial extent that
included the Rocky Mountains and a significant portion of the Gulf of Mexico. Configuring
this outermost domain proved to be challenging due to inaccurate sea surface temperatures
and the complications introduced by the Rocky Mountains. Ultimately, a much improved
result was achieved by relying more heavily on the NARR forecast product and reducing
the domain extent such that the Gulf of Mexico and the Rocky Mountains were no longer
included in the simulation domain.

When evaluating future multiscale simulations, care should be taken to ensure that high
skill scores are due to the physical accuracy of the model and not due to compensating
errors. An illustrative example of this can be seen in Chapter 4. The 30 m domain’s flow
solution is quite smooth relative to a comparable simulation with periodic lateral boundary
conditions. Relatively speaking, a reduction in turbulent mixing yields a reduction in the
vertical transport of momentum and thus a reduction in the near-surface wind speed. Mean-
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while, large sources of drag, such as buildings and vegetation, are poorly represented on
intermediate resolution domains, which adds a positive bias to the near-surface wind speeds
due to missing drag. These inaccuracies appear to be compensating, and result in a slight
overestimate in near-surface wind speeds. This theory is reinforced by enabling the CPM,
which improves the development of turbulence, which increases momentum transport and
near-surface wind speeds.
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