
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Unsampled Digital Synthesis and the Context of Timelab

Permalink
https://escholarship.org/uc/item/5dg7h8n4

Author
Medine, David Eric

Publication Date
2016

Supplemental Material
https://escholarship.org/uc/item/5dg7h8n4#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dg7h8n4
https://escholarship.org/uc/item/5dg7h8n4#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Unsampled Digital Synthesis and the Context of Timelab

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Music

by

David Medine

Committee in charge:

Professor Miller Puckette, Chair
Professor Anthony Burr
Professor David Kirsh
Professor Scott Makeig
Professor Tamara Smyth
Professor Rand Steiger

2016

Copyright

David Medine, 2016

All rights reserved.

The dissertation of David Medine is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2016

iii

DEDICATION

To my mother and father.

iv

EPIGRAPH

For those that seek the knowledge, it’s there. But you have to seek it out, do the

knowledge, and understand it on your own.

—The RZA

Always make the audience suffer as much as possible.

—Aflred Hitchcock

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Supplemental Files . ix

List of Figures . x

Acknowledgements . xiii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Preamble . 1
1.2 ‘Analog’ . 5
1.3 Digitization . 7
1.4 Structure . 8

Chapter 2 A Brief History of Computer Music Techniques 10
2.1 The Telharmonium . 11
2.2 The Theremin . 12
2.3 Analog Synths . 13
2.4 Digital Synthesis . 14

2.4.1 The Early Days 14
2.4.2 Music N and Csound 15
2.4.3 Patching Languages 16
2.4.4 Plugins . 18
2.4.5 Moving Forward 19
2.4.6 Conclusions . 19

2.5 Latency, Priority Scheduling, and Control 20
2.5.1 Logical and Real Time 21
2.5.2 Time Overhead 22
2.5.3 Priority Scheduling 24
2.5.4 Blocking . 25
2.5.5 Blocking and Control 26

vi

Chapter 3 Timelab Specifications . 30
3.1 Structure . 30
3.2 Tl Modules . 31
3.3 Control Messaging . 32
3.4 Audio Signals . 33
3.5 DSP Routines – ADC and DAC 34
3.6 DSP Routines – tl UDS solver 34
3.7 Summary . 36

Chapter 4 Current Approaches to Real-Time Synthesis 37
4.1 Digital Filters for Real-Time Audio 39

4.1.1 ‘Traditional’ Digital Oscillators 40
4.2 Nonlinear Real-Time Digital Networks 42

4.2.1 Clipping . 43
4.3 Physical Modeling and Virtual Analog 47

4.3.1 Digital Waveguides 48
4.3.2 Finite Difference Time Domain 51

4.4 Virtual Analog . 53
4.4.1 Differentiated Parabolic Waves 54
4.4.2 Non Zero Time Delay 55
4.4.3 Wave Digital Filters 57

4.5 Summary . 62

Chapter 5 Unsampled Digital Synthesis and Its Applications 64
5.1 The Problem as it Stands 64
5.2 Basic Example . 66

5.2.1 Eliminating Unit Delay From the Representation 68
5.3 A Host of Examples . 71

5.3.1 Frequency Modulation 71
5.3.2 Reciprocal Sync 73
5.3.3 The Moog Ladder Filter 75
5.3.4 A Bowed Oscillator 77
5.3.5 Developing a Nonlinear Noisebox 79
5.3.6 Direct Audition of Chaos 84
5.3.7 Listening to Lorenz 86
5.3.8 Note: Chaotic Amplitude Envelopes and LFOs . . 89

5.4 Concluding Remarks . 90

Chapter 6 Sound Examples and Discussion 92
6.1 Reciprocal FM Examples 93

6.1.1 Harmonic Reciprocal FM 94
6.1.2 Harmonic FM With FBFM 97
6.1.3 Inharmonic FM 98

vii

6.2 Reciprocal Sync and FM 99
6.2.1 Reciprocal FM/Sync Sketches 101

6.3 Moog Filter Examples 102
6.3.1 UDS Block Diagram Representation 103
6.3.2 A Time Varying Filter 104
6.3.3 Extensions . 104

6.4 Chaotic Oscillators . 105
6.4.1 Chua-inspired Nonlinear Noisebox 106
6.4.2 Audition of the Chua Circuit 107
6.4.3 Lorenz Systems 108
6.4.4 Remarks Regarding Chaotic Systems 109

6.5 Conclusions . 109

Chapter 7 Final Remarks and Conlcusion 110

Bibliography . 113

viii

List of Supplemental Files

Sound Recording 1: medine FM a.wav

Sound Recording 2: medine FM b.wav

Sound Recording 3: medine FM c.wav

Sound Recording 4: medine FM d.wav

Sound Recording 5: medine harmonic FBFM.wav

Sound Recording 6: medine inharmonic FBFM.wav

Sound Recording 7: medine sync FM.wav

Sound Recording 8: medine sync FM sketch a.wav

Sound Recording 9: medine sync FM sketch b.wav

Sound Recording 10: medine sync FM sketch c.wav

Sound Recording 11: medine moog.wav

Sound Recording 12: medine moog timevarying.wav

Sound Recording 13: medine moog extensions a.wav

Sound Recording 14: medine moog extensions b.wav

Sound Recording 15: medine noisebox.wav

Sound Recording 16: medine chua.wav

Sound Recording 17: medine lorenz.wav

ix

LIST OF FIGURES

Figure 1.1: Signal flow diagram for the system given in Equation 1.1. . . . 2

Figure 2.1: A Pd patch for FM synthesis, from Pd’s help menu. 17
Figure 2.2: The CPU-centric digital computer architectures inside all of our

desktops, laptops and mobile devices. 17
Figure 2.3: Computing audio in terms of logical and real time. 22
Figure 2.4: The effect of introducing delay on the real time axis. 23
Figure 2.5: A rule to justify real and logical time. 24
Figure 2.6: Control input to an audio engine that utilizes blocking. 27
Figure 2.7: The scheme of the [vline˜] object. 28
Figure 2.8: Illustration of SupperCollider’s OffsetOut. 28

Figure 4.1: Pole-Zero plot and impulse response for a digital filter as oscillator. 41
Figure 4.2: A 10Hz sinusoid, its magnitude spectrum, and the clipped ver-

sion. Note that there is new harmonic energy in the clipped
sinusoid’s spectrum. 44

Figure 4.3: Filter diagram for a two-pole filter with clipping function. . . . 44
Figure 4.4: Signal flow diagram for a digital waveshaping algorithm. 45
Figure 4.5: Signal flow diagram for a digital Frequency Modulation scheme. 46
Figure 4.6: Frequency Modulation scheme with feedback. 47
Figure 4.7: A depiction of the digital waveguide as a network of filters and

delay lines. 50
Figure 4.8: The magnitude spectrum (unwindowed) of a 5kHz digital saw-

tooth at a 48kHz sampling rate (black) and the same sawtooth
after DPW (red). The aliasing effects are significantly attenuated. 55

Figure 4.9: The stages of creating a DPW sawtooth wave. 56
Figure 4.10: A serial adapter, parallel adapter, and simple WDF schematic

after [VBS+11]. 59

Figure 5.1: Magnitude spectra for various implementations of a reciprocal
FM network. 72

Figure 5.2: Two plots demonstrating the order of operations problem for
digital lookup oscillator sync. 73

Figure 5.3: Both time series and corresponding spectrograms are from two
oscillators (950 Hz and 900 Hz) in a sync regime. Not only the
spectral shape, but also the fundamental frequency is affected
by block size. Here Fs = 48 kHz. 74

Figure 5.4: Unsampled digital synthesis for 950 and 900Hz oscillators in a
reciprocal sync regime. 75

x

Figure 5.5: Plots illustrating the character of the UDS implementation of
the Moog filter. Results compare favorable to those shown in
[Huo04] and [Dal12]. 77

Figure 5.6: The bowed oscillator model given here (solved with RK4) and
that given in [Bil09]. In both implementations, oscillator fre-
quency f = 200, vb = .2 and a = 100. 78

Figure 5.7: RK4 solving Equations 5.19 using (a) the continuous friction
model in Equation 5.18 and (b) Equation 5.20. 79

Figure 5.8: A theoretical (a) and real circuit diagram (b) showing Chua’s
circuit. 79

Figure 5.9: Piecewise linear V − I curve in the canonical Chua model. . . . 80
Figure 5.10: Spectrogram of model given in Equation 5.27. 82
Figure 5.11: Outputs of our nonlinear oscillator with Chua-inspired V − I

curve. 83
Figure 5.12: Two views of the Chua circuit. 84
Figure 5.13: Squelching chaos in a Chua circuit to measure frequency: α =

6.99, β = 14.2896, m0 = −1.27, and m1 = −.68. 85
Figure 5.14: The effect of increasing chaos with α: ω = 2000, β = 14.2896,

m0 = −1.27, and m1 = −.68. 86
Figure 5.15: Ye olde Lorenz system. 87
Figure 5.16: The frequency characteristics of the Lorenz system for various

values of β and ω. Spectra for ω = 500 are shown for each value
of β. The red line in the spectra indicates 500Hz. 88

Figure 5.17: The spectral evolution of x in the Lorenz system as β is in-
creased over time. ω = 500, ρ = 28, σ = 10. 89

Figure 5.18: A conventional ADSR envelope super imposed on one that is
added to the scaled output of a Lorenz system. The end ramps
move the system states to 0 through the parameter ρ. 90

Figure 6.1: Signal flow diagram for a two oscillator reciprocal FM network. 94
Figure 6.2: Time and spectral series for Sound Recordings 1-4. 95
Figure 6.3: A closer look at the time series for oscillators 1 and 2 at the

very beginning of event A and after the bifurcation has occurred. 97
Figure 6.4: Time and spectral series in Sound Recording 5. 98
Figure 6.5: Time and spectral series for Sound Recording 6. 99
Figure 6.6: Signal flow diagram for a two oscillator reciprocal FM network. 99
Figure 6.7: The left and right channels for the y in Sound Recording 7. . . 101
Figure 6.8: Digital biquad filter in direct form II. 102
Figure 6.9: Signal flow diagram for the UDS Moog filter; fnl(x) = tanh(x). 103
Figure 6.10: Signal flow diagram for an extended UDS Moog filter; the dots

stand in for N − 2 identical stages. 104
Figure 6.11: Spectrograms of Sound Recordings 13 and 14. 105
Figure 6.12: Signal flow diagram for Sound Recording 15. 106

xi

Figure 6.13: Signal flow diagram for example 10. 107
Figure 6.14: Spectrograms for Sound Recording 16. 107
Figure 6.15: Signal flow diagram for Sound Recording 17. 108

xii

ACKNOWLEDGEMENTS

First and foremost, I acknowledge the tremendous faith, support, and help

that my adviser Miller Puckette has shown me throughout this process. He took

a chance on me when he didn’t have to and it changed my life for the better. For

this I owe him more than words can say. Thank you, Miller!

I would like to extend my personal thanks to all my fellow graduate stu-

dents, present and past, at the UCSD department of music. They comprise an

amazing collection of talent and I can’t stress enough how fortunate I have been

to be in contact with this remarkable set of individuals. In particular I would like

to acknowledge a handful of my colleagues. Thanks to William Brent for help-

ing me learn C, Kevin Larke for everything he has ever said to me, to Joachim

Gossman for helping me with that performance of Kontakte (and showing me a

glimpse of true Tonmeister at work), to Rick Snow for being the straw that stirred

the cup, and to Cooper Baker for putting on all those computer music concerts.

I would also like to thank Drew Allen, Joe Mariglio and Brendan Gaffney for be-

ing my friends and for all the knowledge that I’ve gotten from them a result. I

also want to extend my thanks to Steve Solook, Scott Worthington, Kurt Miller,

Michael Matsuno, Jon Hepfer, Paul Hembree, Rachel Beetz, Judith Hamman, and

Matthew Kline for helping me out with the UCSD Chamber Orchestra over the

years. Also, thanks to Batya, Steve (again) and Will for playing solos with us.

Thanks to my committee for taking my work seriously and given me ex-

tremely valuable feedback at my defense. Although he had to bow out of the

committee in the end, I would like to acknowledge Shlomo Dubnov with whom I

have had the good fortune to work with (albeit on a project doomed by university

politics). I’d also like to thank Rand Steiger for stepping in at the last minute and

saving the day.

My gratitude is extended to Scott Makeig and all my colleagues at the

Swartz Center for Computational Neuroscience. This has been my home at the

xiii

university since reaching my term limit and it has been a joy. A special shoutout

goes to my office mate and compañero Joaquin Rapela whose lively discussions I

look forward to on my way to work in the morning.

Thank you to Batya for putting up with me these 9 years. I certainly could

not have done this without you.

Finally, propriety obliges me to point out that there are several figures that

appear in previous publications (both authored by myself). Figures 2.6-2.8 are

in ‘David Medine. Timelab: Yet, yet another audio programming environment.

In Proceedings of the International Computer Music Conference, Perth, 2013’.

Figures 5.6-5.7 originally appear in ‘David Medine. Dynamical systems for audio

synthesis: Embracing delay free loops. Applied Sciences, 2016’.

xiv

VITA

2005 B. A. in Music, Manhattan School of Music

2008-2009 Graduate Teaching Assistant, University of California, San
Diego

2009 M. A. in Music, University of California, San Diego

2009-2014 Associate in Department, University of California, San Diego

2014-present Multi-Modal EEG Programmer and Analyst, Swartz Cen-
ter for Computational Neuroscience, University of California,
San Diego.

2016 Ph. D. in Music, University of California, San Diego.

PUBLICATIONS

Medine, David. ‘Timelab: Yet, Yet Another Real-Time Audio Programming Sys-
tem’, Proceedings of the International Computer Music Conference, 441, 2013.

Medine, David. ‘Unsampled Digital Synthesis: Computing the Output of Implicit
and Nonlinear Systems’, Proceedings of the International Computer Music Con-
ference, 2015.

Medine, David. ‘Dynamical Systems for Audio Synthesis: Embracing Delay Free
Loops’, Applied Sciences, 2016.

xv

ABSTRACT OF THE DISSERTATION

Unsampled Digital Synthesis and the Context of Timelab

by

David Medine

Doctor of Philosophy in Music

University of California, San Diego, 2016

Professor Miller Puckette, Chair

A thesis about how to construct digital audio synthesis unit generators

using dynamical models and what they sound like.

xvi

Chapter 1

Introduction

1.1 Preamble

This thesis is about two things that are related. The first is an approach

to digital sound synthesis that is called ‘unsampled digital synthesis’ (UDS). The

other thing is software called ‘timelab’ that demonstrates this approach. The

claims being made are the following. UDS is a method for creating digital synthe-

sis routines wherein the temporal width of one audio sample is not the basic unit

of time. This is accomplished through the use of dynamical models and numerical

solvers to differential equations. As far as timelab is concerned, the claim is that it

is a good idea to have a standardized software package that can ease the develop-

ment of UDS routines. It is also true that the design of real-time audio synthesis

engines is not a well documented subject and the following thesis at least provides

some introduction to that world as well. In particular, issues of control timing and

scheduling are discussed.

To put it succinctly, UDS is a means of computing the output of (certain)

systems that are implicit without resorting to implicit methods. Only a subset of all

possible implicit systems is suitable for this kind of implementation. Namely, the

system must be able to be designated as a set of inter-related first order ordinary

differential equations (ODEs). The equations themselves must be explicit, but this

does not mean that the system itself need be an explicit one. For example, consider

1

2

Figure 1.1: Signal flow diagram for the system given in Equation 1.1.

the following system:

ẋ = g(x, y, u)

ẏ = f(x, y, u).
(1.1)

Both equations are explicit ODEs, and even if g and f are nonlinear, there are

many, many means available for computing the time varying values of x and y (we

take u to be some input to the system) even though the system itself is implicit.

The system is implicit in the sense that both x and y are time varying functions

of each other. That is to say, there is no delay in the feedback loop between the

computation of x and y. However, since each node in the network (here expressed

as an equation) is explicit, we can apply a numerical solver and it will return a

more or less accurate value give the states and parameter values at the time of

computing the solution.

Figure 1.1 shows a signal flow diagram representing the system given in

Equation 1.1. Linear, time invariant (LTI) digital filters are inadequate for imple-

menting this system as it is both nonlinear and time varying (in the sense that one

can think of x and y as parameters governing the behavior of f and g respectively).

It is also an implicit network with multiple feedback loops, none of which contain

any delay.

To put it another way, UDS is a technique of audio synthesis that poses

implicit systems as sets of inter-related explicit ODEs and unleashes explicit nu-

merical methods to compute the output (here the time varying values x and y).

3

This allows us to experiment quickly and easily with systems that have delay-free

loops, and these may be of some interest.

In the game of electrical engineering research in academia, the theory of

such a technique is as far as we need to conern ourselves. This thesis, however is a

musical one, so we will proceed beyond the theory of dynamical systems and their

solutions and proceed towards a musical discussion as well. There is a ‘theory’

of music, of course, but when it comes to the act of music-making, that theory is

far less important than the actual practice of music, which is the act of actually

making sound. Thus we must present material related to the actual manifestation

of the theory of UDS, which is software by which such systems as the one shown

in Equation 1.1 can be specified and computed. This software is the library and

API known as ‘timelab’ which this author continues to develop.

Of course it is somewhat problematic to describe continually changing soft-

ware in an unchanging document, such as a PhD thesis. Obviously, the software

will undergo any number of changes (including, perhaps, total death) as time goes

on; but this text, once submitted, will not. However, said software description

is included here both because it reflects a great deal of work on the part of the

author, and without that work the theoretical part of the thesis (UDS itself) could

never have been formed by him. Furthermore, music (and this is a computer music

thesis) is a form of artistic expression and music is, more than perhaps any other

artistic medium, concerned with detailed minutiae in the procession of time. Since

UDS is concerned with an approach to the treatment of time that is somewhat

alternative to ‘classical’ digital signal processing in computer music, the details of

its implementation at both the theoretical and practical level are pertinent.

The name ‘timelab’ was chosen because it reflects the fact that this software

is overly concerned with issues of timing; and, because everything needs a name.

Timelab is an application programming interface (API) and a kind of plugin host

written in C. It takes a compiled C object file (a dynamic library) that has a

small number of required and specially named functions for creating, computing,

controlling, and destroying a UDS routine. The runtime engine itself has methods

for loading the supplied UDS ‘library’, sending and receiving samples from a host

4

application, running the library functions that compute the new samples, memory

management, and control messaging.

In real-time computer music software, one must not only develop a way

to compute audio samples, but also a way to interact with the system. This

interaction may occur on two levels. The first is at the parameter level. That

is to say, it is desirable that one be able to adjust the parameters of the system

while listening to its output in real-time–control messaging. The second level of

interaction in computer music systems is at the programmatic level. The developer

of a computer music system not only interacts with virtual instruments, but also

constructs them. In some cases (such as the one presented here) the developer also

develops the tools with which the virtual instruments are constructed. So we pack

it all in the following document.

Because timelab is an API, and because it is written in C, without any

reliance on non-standard C libraries, it is highly extensible and can be compiled

for any operating system or even (with some work) an embedded device. Timelab

has been used in the creation of a Pure Data1 extern as well as a standalone

application, using Qt2 as a graphical user interface (GUI) and PortAudio3 as an

audio interface backend. Though this hasn’t yet been attempted, there is no reason

to believe that it cannot be extended to interface with other plugin hosts or audio

APIs. As mentioned above, it is written in plain C without any non-standard

libraries.

It is usually the case that a computer music system consists of a analog to

digital converter which takes a number of real world sound signals and renders them

into time-quantized streams of audio samples, a digital computer to process those

samples, any number of controllers to message the system (these can be hardware

or software), and a digital to analog converter to change the newly rendered digital

data streams into voltages that will drive loudspeakers. Here (as is the case with

most literature about computer music) we are concerned with the middle of this

diagram–everything but the analog/digital converters.

1http://msp.ucsd.edu/
2http://www.qt.io/
3http://www.portaudio.com/

http://msp.ucsd.edu/
http://www.qt.io/
http://www.portaudio.com/

5

Nevertheless, at some point a continuous time signal is converted to a dis-

crete time signal and vice versa. Dealing with discrete rather than continuous time

audio streams is advantageous for a number of reasons4, but it also comes with

certain unwanted baggage. On the one hand, digital computers are cheap, ubiqui-

tous, accurate, and programs can be represented by lightweight and transportable

media. On the other hand, in order to process a digital signals, digital processing

is needed. Quantization and discretization, while a convenient means to a desired

end, distorts the signal. Furthermore, chopping up a signal into atomic units of

time considerably limits the lower limit with which one can apply feedback. In a

digital network we are constantly working with the unit delay as a fundamental

building block. In an ‘analog’ network, feedback is considered to be instantaneous

and delay is zero.

It may seem at first blush that this problem is moot. After all, we have

the many tools of digital signal processing theory at our disposal, and clearly they

work very well (or else we wouldn’t have things like communications satellites and

high definition television broadcasts). But there are situations for us musicians

in which the fact of unit delay is enough distortion to prevent us from achieving

the sound or behavior that we are looking for. Thus we have, for example, a field

of audio research known as Virtual Analog (VA). There, the name of the game is

using digital signal processes to emulate the timbres of analog sound producing

hardware.

1.2 ‘Analog’

It is sometimes bizarre the name that sticks to new technology. The term

‘analog’ came about because in the early days of transistor based technology, the

circuit itself was an analogy for some non-electrical behavior.5 Since the early days

4The most obvious reason is that software can be written to deal with discrete time systems.
To deal with signals purely in the continuous time realm requires the development of specialized
hardware at every phase. This makes development cycles exceedingly long.

5‘Digital’ computers–programmable devices built around discrete circuit technology–are like-
wise oddly named. Why a system of discrete transistor switches should be ‘of the fingers’ remains
somewhat obscure.

6

of transistor based circuit technology, the term ‘analog’, when used to modify the

word ‘circuit, has all but completely shed this original (and literal) denotation. Yet

the original definition persists. For example, we still sometimes see the circuit-as-

analogy in pedagogic literature. A mass-spring systems is explained as a simple

circuit wherein an inductor ‘is’ the mass and a capaticitor ‘is’ the spring (see for

example [Smi10, 5.10]).

In the context of musical devices, the etymology of this term is particularly

interesting. Beginning with the Theremin (which produces a nearly sinusoidal

waveform) and continuing with the modular sound producing analog devices of

Robert Moog and Donald Buchla, analog circuits that make sound (which are now

referred to as ‘analog synthesizers’) introduced tones and timbres that are very

difficult if not impossible to create with real world mechanical systems. These,

more than most devices comprised of analog circuit technology, are therefor mis-

named. The material they produce is not actually an analog to anything, but

rather something new in and of itself.

Beyond that, the term ‘analog’, when applied to the realm of sound, has

come to take on a deeper meaning – one that suggests fidelity, authenticity, and

(to some extent) purity. Partly, this is exasperated by the rapid proliferation of

digital media (sound files), which is most often subjected to data compression.

Particularly in the early days of ubiquitous and liquid digital music files (the

‘Napster era’ of the late 1990s [Ald08]) sonic distortion from data compression was

painfully evident. Again we see digitization as a trade off. The process makes

the material itself much more transportable, but at a cost of decreased sound

quality. Since the time when digital media files first began to spread prolifically

on the internet, data compression techniques have become much better (indeed,

we now have ‘lossless compression’). This theme of producing a rough estimate of

the desired result through digitization and then incrementally improving it through

increasingly sophisticated processing techniques is one that is seen again and again

in the realm of VA.

The association of ‘analog’ with purity might also be encouraged by the

disembodied-ness of the digital audio file (its lack of album art, abnegation of

7

human contact at a record-store, the fact that digital soundfiles go against the

ethos of ‘the album’, etc.). So the digital (virtual) medium ‘distorts’ music not only

sonically, but culturally as well. The natural consequence of this is to increase the

status of analog forms of electronic synthesis and recording to a privileged status

in (at least certain sectors of) the popular imagination. In 2014, 14 million vinyl

records were sold in the United State, but in the first half of 2015, this number

was already at 9 million [Bri15] indicating roughly a %30 increase. We can point

to the advent of smart phones and streaming technology as contributing to the

diminishing sales of recorded music generally. Meanwhile (at least in part) the

increasing fetish for ‘analog sound’ accounts for vinyl’s renaissance.6

The Whole Foods grocery store in my neighborhood recently started selling

newly pressed vinyl records. Having been born in 1982, I never remember seeing

records in grocery stores before this, although they used to be commonly sold

there. In Steal This Book Abbie Hoffman mentions that records can be stolen by

concealing them in frozen pizza boxes [Hof02].

1.3 Digitization

Even though digital signal processing may not provide tools with which to

replicate the material tokens that contribute to the entirety of the analog mystique,

many musicians strive to capture may wish to reproduce the ‘analog sound’ using

digital computers. One trouble with this endeavor, and the one we focus on in this

text, is that the sounds that we wish to emulate are primarily modeled through

dynamical systems. Dynamical systems by definition do not contain unit delay.

Thus, when we discretize such a model, the model itself is distorted. Because

a Turing machine, by definition, performs discrete operations on discrete samples

(time samples, in the case of audio), it can only deal with changes over one variable

at a time. Dynamical systems such as the harmonic oscillator, mẍ = −kx, have

6Tape, which some audiophiles may claim sounds better than vinyl – it is certainly less
susceptible to pops and scratches – is inferioir for practical reasons. Cassette tapes and their
players are very complicated machines. The rubber bands on the driver reels wear out and are
extremely difficult to find replacements for. Both magnetic tape and vinyl degrade in quality on
every listen, another feature of their mystique.

8

plural variables (ẍ and x) and changes over any one will instantaneously affect all

the others.

Even in the case of parallel computing, it is impossible to affect plural,

mutually dependent variables simultaneously. This is true because in order to

compute digital samples in such a scenario, not only are simultaneous processes

necessary, but each process must also have access to each others’ states at any

given time. This is very difficult if not impossible to enact determistically. This

is in contrast to the analog ‘computer’ (circuit, really) that describes a harmonic

oscillator. There, the state variables that affect one another, thereby creating the

oscillation, and their rate of change can be read off simultaneously at any two or

more points within the circuit.

Needless to say, digital computers (which we may simply refer to as ‘comput-

ers’ from here on) can compute a very near approximation of a harmonic oscillator;

and, much, much more complicated systems as well. It is of course the theory of

digital signal processing with which a computer’s power for computing audio is

harnessed. Digital computers outstrip their analog counterparts significantly in

terms of accuracy, program-ability, repeatability, durability (a computer program

never needs to be repaired), weight, cost, etc. Beyond that, digital signal process-

ing theory allows us the ability to create sounds and control methodologies that

are unique to the digital realm and extremely impressive in their own right. Bon

chance to he that wishes to build a 1024 band phase vocoder with op-amps.

1.4 Structure

The following is purely concerned with software to be run on digital com-

puters. It is also about implementing digital signal processing techniques. But, at

least we aim for developing tools for using models in such a way that we needn’t

fight against the constraints that unit delay and linear time invariance place on sig-

nal processing theory. We shall develop a number of digital solutions for computing

the output of nonlinear and implicit systems.

The thesis is structured in the following way. The Chapter 2 is concerned

9

with the history of electronic music systems in a way the builds towards the current

state of the art in real-time computer music systems. It goes on to discuss the

challenges associated with building such a system at the procedural level. Chapter

3 is a description of how timelab works. It is in no way documentation of the

API. This is done on purpose since it will undoubtedly change. The fundamental

structure (which may also change) is discussed.

Chapter 4 is a summary of notable computer music techniques. All of

these feature the audio sample as the basic unit of time and its procession as a

fundamental building block. Chapter 5 is about UDS, its theory and applications,

which (hopefully) will support the claim that its treatment of time is fundamentally

different than what is shown in Chapter 4 and that that this is a good.

Chapter 6 (which is added by request of the committee supervising the

creation of this document) contains some thoughts on designing systems that are

suitable for UDS and the related subject of what such systems actually sound like

and why they sound that way. Richard Boulanger’s 1985 thesis about the musical

applications of convolving recorded speech with other audio signals [Bou86] is used

as kind of model for structuring this discussion.

Chapter 2

A Brief History of Computer

Music Techniques

A subject of this dissertation is the audio programming environment called

timelab and its usefulness. A question worth asking here is why create a whole

computer music system, when a simple plugin or Pd extern would do? One mo-

tivation for having a complete system rather than a specialized plugin to some

other, pre-existing complete system, is that UDS demands that audio samples be

calculated at a higher rate than the sampling rate of the audio driver. This could,

however, be dealt with in a plugin in a more or less elegant way. Another mo-

tivation is that there are many possible UDS routines of interest, so they must

be programmed. Again, we could simply write a Pd extern that takes as input

the specification for any such routine and has the machinery to carry it out and

interface with input and output from Pd.

A final motivation is simple general-ness. Again, since time is dealt with

differently, and since connections between nodes in UDS are different than those in

any existing host application, pretty much the whole UDS algorithm is contained

within itself. This implies that it has a kind of stand alone nature.

Yet another motivation is that UDS is computationally expensive. This

immediately suggests ‘bare metal’ (embedded) deployment. All of these things

considered (and because the author became interested in the process) timelab was

written in order to load and solve UDS networks.

10

11

In order to provide context for both UDS as a programming paradigm and

timelab as a programming environment for that paradigm, we proceed with a brief

history of electronic music systems. We will then turn to issues of scheduling and

the timing of control.

2.1 The Telharmonium

Also known as the Dynamophone, the Telharmonium was perhaps the first

fully electronic instrument.1 Its inventor, Thadeus Cahill was granted a patent

for its design on April 26 of 1897. The instrument was massive and controlled by

a keyboard mechanism. When a key was depressed, a current flowed through a

circuit that was coupled to a belt driven cylinder (one for each pitch). Each cylinder

had a series of rheotomes mounted on it that would periodically come into contact

with statically mounted wire brushes. Each rheotome had an integer number of

conducting strips that would contact the brushes throughout the rotation, starting

with one, then two and so on. Thus each rheotome would produce an overtone of

the fundamental frequency of the rotating cylinder. Since these signals operated

on a ‘make and break’ principle, the signal coming off of each rheotome must have

resembled a square wave. These were then smoothed into a sinusoidal shape by

being fed through a series of LC filters before being fed into loudspeakers that were

constructed from telephone receivers.[Wei95]

There are several notable aspects to this design. The first, is that the

instrument itself was clearly inspired by the church organ. Instead of bellows, the

sound was produced electrically, but the control/synthesis relationship was exactly

that of an organ.

Second (and of more importance to the present discussion) is that the signal

flow of the system resembles in two ways modern synthesis techniques. The fact

that each rheotome produced a spectrally rich signal (a square wave has all the odd

1Obviously mechanics have been an integral part of musical instrument design for quite some-
time. But, to avoid the risk of getting bogged down in discussions of the meaning of harpsichords
and church organs, we limit our discussion to one of purely electronic instruments. For a thor-
ough discussion of mechanical as well as electronic instruments and associated social and music
implications, see [LR11]

12

overtones) which was then filtered resembles very much the so-called ‘source filter’

model (also known as ‘subtractive synthesis’) which became an important one in

vocal synthesis[AH71] [RS11]. The second foreshadowing feature was that tones

were ultimately built up out of harmonically related sinusoids. This approach

to synthesis is now known as ‘modal’ or ‘additive’ synthesis (see, for example,

the foundation laying work of Risset [Ris05] and [RW+99]). These techniques are

discussed in a number of important treatments of digital audio techniques as they

are both in frequent use. For example [Moo90] [Puc07] and [Roa96] all discuss

these techniques.2

Indeed these models, source-filter/subtractive and modal/additive synthe-

sis, may be generalized as configurations of oscillators and filters; or, just filters,

if we view an oscillator as merely a special kind of filter. This paradigm for audio

modeling and synthesis is one that has dominated electronic music since the time

of the Telharmonium.

2.2 The Theremin

The Theremin (named after the Anglicized name of its Russian inventor,

Lev Segeryivitch Termen) is arguably the most successful electronic musical in-

strument of all time (the radio and the personal computer – if indeed they may be

called ‘instruments’ – excepted). It works by treating the performer’s hand as a

grounding plate in an LC circuit. By moving the hand nearer and farther from an

antenna, the capacitance of the circuit is varied, thus changing the frequency of a

radio frequency (RF) oscillator. Another RF oscillator is held at a fixed frequency

and the difference tone between the two is in the audible range.

The Theremin (unlike the Telharmonium which weighed over 200 tons)

could, even in the days before silicon transistors, fit inside of a suitcase. It could

2One important note is that there is a slight distinction in the physical modeling community
between the meaning of modal synthesis and additive synthesis as well as between source-filter
model and subtractive synthesis. But, the distinction seems to be largely one of intention rather
than technique. For example, if one wishes to synthesize the sound of a trumpet by modeling
the buzz as a source and the tube as a filter, one is using a source filter model. But if one simply
makes a synthesizer patch that uses a time varying filter to modify a triangle wave, one would
be doing subtractive synthesis.

13

also be cheaply and easily constructed by anyone who possessed any skill at radio

construction/repair (a common hobby in pre-war America). It is thus that the

Theremin’s true power shows itself. As La Rosa argues, the Theremin’s most

important innovation is its represent-ability as a circuit diagram.[LR12]

2.3 Analog Synths

Donald Buchla and Robert Moog independently and simultaneously brought

analog synthesizers into maturity by instituting the idea of Voltage Control (VC).

Since synthesizer modules not only output, but also received as input a voltage

signal, VC meant that the output of any synthesizer module could be the input to

any other. This greatly expanded the oscillator/filter configuration model simply

by greatly increasing the configurability.

One important note is that control parameters (such as the frequency of an

oscillator) are now assignable to an automatic process rather then human input.

The level of complexity that such modularity affords is quite large and, thus, a

great number of sounds and approaches to composition become available. Buchla

in particular saw this feature as an important innovation, and thus he eschewed

Moog’s painstaking development of a piano-sized key board that could throw nor-

malized control voltages at his modules:

‘I saw no reason to borrow from a keyboard, which is a device invented
to throw hammers at strings, later on operating switches for electronic
organs and so on.’[PTP09]

This implies an attitude towards pitch that is quite a departure from most

musical traditions. Throwing away predictable, governable control over frequency

displaces pitch from its relatively lofty position over other musical parameters, such

as timbre or loudness. Using similar processes to control both the frequency of an

oscillator (pitch) and the cutoff frequency of a filter (timbre) democratizes these

elements. Donald Buchla wasn’t the first musician to have such attitudes, of course

(we may go on a lengthy tangent about Arnold Shönberg and the dodechaphonic

system here), but the voltage controlled modular synthesizer was perhaps the first

14

instance of this attitude actually being inherent to a pitched musical instrument

itself.

We note that the modularity of analog synthesizers is also very powerful.

One can ‘plug and play’, thereby modifying sounds in real-time, as they are being

generated. This means that playing the instrument includes active construction of

the instrument.

Modular synthesizers are still being manufactured and are still prized for

their sound and the compositional psychology they afford. However, to a large

extent, analog gear has been digitized, that is to say that software that emulates

the ‘analog sound’ often replaces the genuine article for reasons discussed above

(convenience, durability, cost, etc.). Nevertheless, these devices survive and are an

example of one of very few analog computer systems still in production. This fact

is a testament to the power of sound and music.

2.4 Digital Synthesis

Indeed the ‘analog sound’ is a real thing; and, moreover, the ability to

control such sounds with the kind of plug and play operation afforded through

patchable modules is a powerful and meaningful paradigm for music making. Part

of what is good about that paradigm is that it is easy to do and the results can

be both astonishing and entirely unpredictable. By the same token, however,

music as an art is one that is often conerned with precision and predictability.

Analog computers are imprecise, but digital computers are just the opposite. The

exactitude of specification that software affords is also a powerful position for a

musician to hold, and it is to that position that we now turn.

2.4.1 The Early Days

In 1962, Bell Labs released the album Music From Mathematics whose most

famous track is undoubtedly the computer rendition of Harry Dacre’s ‘Daisy Bell

(Bicycle Built for Two)’. This song was featured in 2001: A Space Odyssey when

HAL sings this song as Dave is shutting him down towards the end of the picture.

15

The choice of song was a direct allusion to the Bell Labs recording. Max Mathews

programmed the accompaniment and John Kelly and Carol Lochbaum synthesized

the ‘vocals’.

The release of Music From Mathematics was meant in part as a demonstra-

tion of Bell Labs’ sophistocated vocal synthesis technique which modeled the vocal

tract as a series of acoustic tubes of varying sizes [KL62]. This technique was later

abandoned by Bell Labs in favor of more efficient speech coding techniques such

as the vocoder and the (already mentioned) source-filter model. However, this

methodology was later taken up by Cook in his PhD thesis, which improved upon

the model by adding a branch for the nasal cavity as well as losses due to radiation

from the neck[Coo90]. Furthermore, the use of d’Alembert’s solution to the wave

equation as a way to calculate the traveling wave through the cross sections of the

vocal tract was an early example of what later became known as Digital Waveg-

uides (DWGs), a term coined by Smith[Smi85], and are still the state of the art in

one-dimensional physical models of tubes and strings.

2.4.2 Music N and Csound

Out of the early computer music experiments at Bell Labs in the 1950s came

a series of iterations of a computer music programming language called Music N. As

early as 1963, Mathews wisely foresaw that digital computers could be used as both

control devices and sound producers.[Mat63] With this duality in mind, Music N

was designed to be both a language for specifying algorithms that produced series

of numbers that can represent time-varying wave forms, and for specifying the

inputs to the parameters that govern the behavior of said algorithms. The same is

true of csound, originally by Barry Vercoe, which grew out of Music N and after

more than 40 years, is still under active development (http://www.csounds.com/).

These languages are notable in that they maintain a separate notion of a

‘score’, and an ‘instrument’. This is in stark contrast to the analog synthesizer

approach which blurs the lines between sound-making (instrumental) and sound-

controlling (compositional) objects.

Also developed by Mathews and others at Bell Labs, the Groove system

http://www.csounds.com/

16

[MMR74] was a hybrid analog/digital system in which the computer played the

role of piano reel, outputting pre-composed control voltages that controlled an

array of analog synthesizer modules. The motivation for this setup was to allow

for real-time control over sound synthesis. Computing power in the 1970s was

not yet sufficient for robust real-time sonic output. It was sufficient, however for

manipulating parameters and processes that controlled parameters.

2.4.3 Patching Languages

We skip the vast and intriguing, but now mostly forgotten, world of pro-

grammable commercial digital synthesizers. We proceed directly on to personal

computer audio programming systems. For a comprehensive treatment of this

subject see [Thé97].

The 1980s saw the initial development of Max. Max and its kin (Max/MSP

and Pure Data) are graphical programming languages and to a great extent rep-

resent a return to the analog synth philosophy of systems in which anything can

be plugged into anything else. In part this came about because the Sogitec X4

computer (for which Max was written) was capable of outputting sound in real-

time [Puc96]. Thus, in contrast to the Groove system, there was no need to offload

real-time sound generation to analog machines. Since everything could be done

in the computer and (within limits) in real-time, this notion of arbitrary inter-

connectivity was possible to realize.

In the patching paradigm we see the playing out of the ever-so-blurry ana-

log/digital dichotomy. What this means is that although Max, Max/MSP, Pure

Data (Pd), and the text-based patching languages SuperCollider, ChucK, etc. are

all completely ‘in the computer’, they represent an approach to programming that

is inherent to analog synthesizers. That is to say, patching languages are com-

prised of atomic elements (which are more or less ‘objects’ in the computer science

sense of the word) that have inputs and outputs and can be connected to one an-

other (see Figure 2.1). This is exactly how systems of analog circuits are designed

[HHH89, 65]. But, this is not in keeping with the canonical Von Nuemann (Fig-

17

Figure 2.1: A Pd patch for FM synthesis, from Pd’s help menu.

(a) The Von Neumann architecture. (b) The Harvard architecture.

Figure 2.2: The CPU-centric digital computer architectures inside all of our

desktops, laptops and mobile devices.

ure 2.2a3) or Harvard digital computer architectures (Figure 2.2b4) in which the

central processing unit plays such a monolithic and critical role.

So the patching paradigm, in its way, encapsulates an ‘analog’ notion of how

to organize things, but (of course) performs that organizational scheme according

to the (obviously very useful and flexible) digital computer schematic. It is a digital

analogy for an analog system.

3This image is available through wikicommons: by Kapooht - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=25789639.

4Also from wikicommons: by Nessa los - Own work, CC BY-SA 3.0, .https://commons.
wikimedia.org/w/index.php?curid=10303637.

https://commons.wikimedia.org/w/index.php?curid=25789639
https://commons.wikimedia.org/w/index.php?curid=10303637
https://commons.wikimedia.org/w/index.php?curid=10303637

18

However, and this is important to note as a practical issue and will be

discussed in greater detail later, the patching languages listed above all (with

the exception of ChucK [WC+03]) maintain a separate sample rate for control

messaging and audio processing. This is to save time. Digital audio, due to the

Nyquist theorem, can only represent frequencies up to one half of the sampling

rate. Since humans can hear up to about 20 kHz, the sampling rate should be

at least twice that in order to be musically meaningful.5 However, control input

need not be faster than either a person can move, or as fast as the just-noticeable-

difference (JND) between two sound events. Both of these periods are much less

than 1/40000 seconds.

A final remark about patching languages is that they come in the visual

(Max/MSP and Pd) and textual (SuperCollider and ChucK) variety. Some things

are easier to represent visually, others textually. For example, the connections

between objects in a Pd patch is easier to grasp by simply examining the lines

that connect them than are connections between objects in various lines of code.

On the other hand, writing a simple for loop in Pd in a flow diagram is rather

inelegant.

2.4.4 Plugins

Plugins are small computer music programs written in adherence to some

software development kit (SDK) so that they may be suitably loaded and under-

stood by some other pre-existing software. Csound, and all the patching languages

cited above are extensible through developing new audio and control objects (also

known as Unit Generators or UGens) that can be loaded by their native engine.

Commercial systems such as Live, Pro Tools, etc. also benefit from the plugin

paradigm. Open or semi-open source SDKs for composing plugins allow com-

mercial (very much closed source) digital audio workstations (DAWs) to benefit

from third-party development without having to open their own source code to the

public.

The plugin is a handy tool for the developer as well. It allows him to

5Curiously enough, speech can be clearly understood at much, much lower sampling rates.

19

lean on the already completed and presumably very well made established audio

systems. He need not write low level code to interface with audio drivers and

human computer interface (HCI) control streams for every operating system on

the market every time he gets an idea about some cool spectral filtering effect.

2.4.5 Moving Forward

Despite a crowded marketplace (dominated by the several examples listed

in the previous section), people keep inventing new computer music programming

environments. To take a notable example, Vesa Norilo continues to develop Kronos

[Nor16]. That language is very interesting since patches can be specified by both

a visual environment, and a text-based language interpreter. The software will

seamlessly translate between those representations on the fly.

This is a very good idea. But, it remains unclear as to what is to be done

next. There is always a trade off between low-level control (what Joel Chadebe

would call ‘control’) and high-level effectiveness (what he would call ‘power’). This

is reflected in the trade-off between ease of use (moving patch chords around)

and specificity (precisely specified software). Patching languages are a wonderful

compromise between the extremes. They offer a high level abstraction over low

level processes all the while providing powerful access to those processes.

The art of designing a computer music programming environment lies in

finding a sweet spot wherein users are afforded the ability to have enough low-level

control over the details they need whilst simultaneously providing enough auto-

mated infrastructure so that they need not have to deal with things like compiling,

interfacing with computer audio devices, garbage collection, etc.

2.4.6 Conclusions

One final thing to note about digital synthesizers, before turning to a more

technical discussion of timing in software systems, is that just as there is an ‘analog

sound’ there is also a ‘digital sound’. In part, this author would argue, this has to

20

do with the precision of digital hardware.6 It is also due to the fact that sampled

audio streams make it impossible to represent certain waveforms and filters. It is

impossible to make a good triangle wave with a computer.

2.5 Latency, Priority Scheduling, and Control

The following discussion is, to a large degree, a summary of lectures given

at IRCAM by Miller Puckette [Puc12], James McCartney [McC12], and Roger

Dannenberg [Dan13]. The subject of that lecture series (the MuTant Multimedia

Seminars in Real-Time Computing) is timing in real-time audio systems.

One of the challenges in creating a real-time music programming environ-

ment is scheduling. For obvious reasons, in order for audio to be coherently output,

buffers full of digital samples need to be delivered to the digital to analog converter

in regular and precisely timed intervals. This is tricky business, but one that op-

erating systems’ audio drivers may handle for us.

In general, the real-time scheduling game is played like this. Step 1: wait

for a clocked7 timing mechanism to indicate that it is time to shove new samples

into the DAC. This can be done either through a callback routine (a function that

calls the clocking mechanism and asks to be ‘called back’ later when it is time to

execute), or through blocking. The idea behind blocking is that while the DAC

is busy (i.e. it is not ready to receive new audio samples to convert to analog

voltages), the functions associated with the processing of control input and audio

samples goes to sleep (they are blocked). Step 2: query changes to control inputs

and perform necessary processing associated with that. Step 3: and query changes

to the synthesis program itself and compute the necessary number of samples of

output that the DAC requires. If there is also input to the system, this would be

gathered during step 3. These steps can be done in any order.

6Anecdottally, the author may support this assertion with a short story about the first time
he and his family, he was a young boy at the time, heard a compact disc being played. A neighbor
had bought a CD player and the families gathered to listen. Everyone kept thinking that they
needed to turn the volume up. The absence of surface noise actually made the music less audible
at first blush.

7The most reasonable choice for a clock to refer to is the actual DAC hardware clock. CPU
clocks can also be used, but are prone to drift and other inconsistencies.

21

However, there are further complications. Obviously, the computer can not

know in the future how parameters to an algorithm (real-time control input) or the

algorithm itself (if the system is dynamically patchable) may change. By the same

token, it is not clear how much time these changes will need to execute (actually

get processed by the computer) or how long the act of processing audio samples

will take.

Finally, as CPU processing speeds are reaching their maximum, throughput

is increased not by making faster CPUs, but rather, making multi-core CPUs that

break up processing tasks into smaller bits that can be handled by multiple cores

in parallel. This paradigm creates a whole other layer of scheduling problems.

Since real-time audio synthesis systems are highly modular and are comprised of

many atomic objects, it is not clear how to appropriately delegate the execution

of these various and critically timed processes in a coherent parallel structure. So,

before turning to a description of timelab and how it works, we shall present a

brief discussion of scheduling problems and some modern solutions.

2.5.1 Logical and Real Time

In general, schedulers have to deal with dilemmas associated with the in-

congruity between ‘logical time’ and ‘real time’8. Here we take logical time to mean

the times that things are finally executed by the computer. Real time means time

in the physical universe (or at least as humans are able to perceived its passage on

planet Earth).

Computers and their processors, as we all know, are not infinitely fast.

There are delays between when instructions are received, when processes are car-

ried out, and when processes return. The first delay we may consider is the time

it takes to actually find a process and cue it for execution. We shall call this

‘scheduling latency’. The next is the amount of time that process actually takes to

compute – ‘execution latency’. There is a third kind of time delay called quantiza-

tion error. This is a very small amount of error that results from the fact that we

8Here, ‘real time’, which is a type of time, should not be confused with ‘real-time’ which
is a kind of computer music program that can be dynamically altered while producing audible
output.

22

Figure 2.3: Computing audio in terms of logical and real time.

are limited by numerical precision as to how accurately a scheduled process may

actually by instructed to begin. On modern computers, this error is very, very

small, but if not checked, it can accumulate into noticeable distortion.

2.5.2 Time Overhead

Again, as we all know, computers need a finite amount of time in order

to compute things. Logically then it is clear that in order to hear the effect of

some execution of audio or music, we must wait.9 In general, though, waiting

is better than not being able to spit out the right samples in time, which would

cause audible clicks and distortion in the output of the computer’s music. Figure

2.3 illustrates the situation. The dashed line shows an ideal (impossible) situation

and the jagged slope shows some probable actuality.

In an ideal world, the output of the computer would coincide exactly with

the passage of time and audio would march up the 45 degree line; e.g. logical

time would be the same as real time. But this is impossible due to execution and

scheduling latencies. It is also the case that in a computer with an operating sys-

tem, the CPU may intermittently be given other tasks to compute in concurrence

with an audio processing algorithm. Thus, we face not only the fact of latency,

but also latency of random duration. So, in reality, the best we can do is keep

the actual output of samples (meaning their output from the CPU, not from the

9Of course, this is true for acoustic instruments as well. The brass section of an orchestra is
accustomed to playing ahead of the beat in order to compensate for the speed of sound.

23

Figure 2.4: The effect of introducing delay on the real time axis.

DAC) above the dashed line. This would ensure that when the DAC is ready for

the next sample or group of samples, they will have been computed and are sitting

in a buffer somewhere, ready to go.

If, however, the output goes below the dashed line then we are in trouble

because the DAC will be calling for output that does not yet exist. The possibility

for this occurring can be reduced by artificially advancing logical time; or, to put

it another way, delaying real time in the eyes of the computer program. This has

the effect of providing time overhead so that the CPU has more time to compute

the audio samples. This adjustment can be seen in Figure 2.4.

This gives us a very good way to make a rule for scheduling computational

tasks. In a complete music system, there are a number of things that need to get

done apart from preparing samples and sending them to the DAC. These include

processing changes to the GUI, allocating/freeing memory, polling other processes,

etc. Some of these may be more or less necessary than getting the samples out.

For example, making changes to the GUI may be less important than polling the

control layer to see if parameters in the algorithm need to be affected. Thus it

behooves us to set a limit above which we may execute tasks in the scheduler and

below which we need to catch up. This is illustrated in Figure 2.5. Here, we have

two diagonal lines, one being the coincidence of real and logical time, the other,

some slightly delayed copy of this line which determines whether or not processes

24

Figure 2.5: A rule to justify real and logical time.

can execute or sleep.

One important note is that if we want our scheduler to be interactive, we cannot

set the latency delay too high. If the latency delay (which we want to be higher

than the worst case total latency that results from execution and scheduling) is

on the order of minutes, then obviously we can not interact with our system in a

meaningful way. In general a 5-10ms latency is considered quite good in a real-time

music system.

2.5.3 Priority Scheduling

We presume that our music scheduler needs to accomplish a number of

tasks before samples are due to be delivered at the DAC with appropriate timing.

This may include polling control input, drawing a GUI, accessing memory, reading

from a disk, and (of course) computing audio.

Dannenberg points out that the minimum total latency delay, α ought to

be greater than the worse case total sum of latencies associated with each task, λ̄i

[Dan13]. We may write this down as:

α > Σiλ̄i

We may, perhaps, gain significant speedup if we prioritize tasks that are more

critical. The idea is that things that are super essential (like computing audio)

get priority control of the processor above other tasks – even if they have a higher

25

maximum latency (λ̄). Then, we have a minimum value for α that is no longer

the sum of all the worst case latencies, but rather a sum of some subset of all

the tasks. Lower priority tasks must wait until the higher priority tasks complete

before getting time to execute.

SuperCollider does this in a seemingly straight forward way: by maintaining

two threads, a real-time and ‘non-real-time’ (meaning audio processing and all

other processing) thread. Unfortunately, this arrangement necessitates a data

transfer routine to communicate between real-time and non-real-time threads. Pd

handles the problem by not having multiple threads at all – it simply contents

itself with having hard edges for the user to be constrained by. Don’t write a Pd

patch that allocates memory while the DSP engine is on, it will probably result in

dropped samples.

2.5.4 Blocking

Unfortunately, this term has two different and unrelated meanings. Above

we used ‘blocking’ to mean when one process prevents another one from executing

(as in ‘block’ a shot in a basketball game). Here, and throughout the rest of this

work, the word ‘blocking’ will refer to the practice of computing audio samples in

groups (as in a ‘block’ of houses on a street), rather than one at a time.

A common technique used to cut down on scheduling latency is to compute

audio samples in blocks. Music processing algorithms are usually created by send-

ing signals in and out of a series of processes that are networked in some kind of

order to achieve a desired end result. By definition this implies that a potentially

large number of function calls need to be cued onto the processor’s execution stack.

It takes time for the computer’s operating system to track down the functions and

put them on the correct place on the stack—even if the order is not changing.

One solution for dealing with this is to render the entire DSP chain down

into a single function. This can be a useful solution when rendering a DSP chain

down to some static, unchanging algorithm.10 However, the instruction set for this

10This could be very useful, for example, in an embedded programming paradigm. A higher
level interpreter can specify a synthesis routine and this routine may be adjustable in real-time
on a computer. Then, once the desired results are achieved, the conglomeration of modular

26

single (possibly huge) function may exceed the cache space on the processor, and

we are back to the execution bottleneck problem. The other way to deal with this

is to specify that each stage of the DSP chain compute not one but many audio

samples per function call. This way, if each function in the DSP chain computes,

for example, 64 samples per call, rather than 1, the scheduling latency will be

significantly reduced. This technique is often referred to as ‘blocking’.

The only ways to cut down on execution latency are either to optimize or

get a faster CPU.

2.5.5 Blocking and Control

It is usual in computer music software to speak of control rate. This is the

frequency with which control input is read and is often an order of magnitude slower

than the sampling rate. The reason for this is both practically and perceptually

motivated. Practically, it is convenient to clock control at the block level and

perceptually this is justified by the fact that (given that the blocks are 64 samples

wide and that the audio rate is 44.1kHz) this period (about 1.5ms) will be shorter

than a mere mortal can move. There is a general problem that arises in a real-time

music processing system when the blocking strategy is employed, and this has to

do with the application of control input to the algorithm. Figure 2.6 illustrates

this problem. If control arrives at points a, b, and c in real time, then the earliest

we can apply these control changes is in the next block of samples. We may then

apply changes at the beginning of the next block, or attempt to apply them to the

sample relative to the point within the next block that corresponds to their arrival

in the first.

This second attitude is more complicated than the first. Applying control

with sample accuracy implies altering the control rate of the system for special

cases. This is indeed what Pd does with the [vline˜]. This object maintains

its own sense of time and can be instructed to hit target values with sub-sample

accuracy. It is used by feeding it a new control value and a time (usually very small)

at which to linearly interpolate to that value. Presuming that the time given is

functions can be boiled down into a single, larger function.

27

Figure 2.6: Control input to an audio engine that utilizes blocking.

equivalent to the time of one audio block, the action of [vline˜] would look like the

bottom figure of Figure 2.7. The top of Figure 2.7 shows what would happen if the

same arguments were given to the non-sample accurate linear control interpolation

[line˜]. This illustrates the difference between [line˜] and [vline˜] objects in Pd. In

this example the time to interpolate across is given as 5/3s of one block. Notice

how [line˜] distorts this period to quantizing not only its starting point, but also

its endpoint to block boundaries.

SuperCollider has an alternative solution for enacting sample accurate con-

trol. It has a unit generator called OffsetOut that can shift a block to the right by

some partial block delay. However, as McCartney notes, this could result in the

possibility of two synths reading the same control envelope with different partial

block delays. This situation, which would result in an audible flam, is depicted in

Figure 2.8. Here is depicted two SuperCollider synths A and B that are delayed to

the right in time by the UGen OffsetOut. They are reading from the same global

signal Z (perhaps an attack envelope) but since they have different partial block

delays, Z is applied at staggered points in time – creating a flam. Z is aligned with

A and B, but not with itself. This figure is drawn by the author, but copied from

McCartney’s slide from his 2012 IRCAM talk.[McC12]

28

Figure 2.7: The scheme of the [vline˜] object.

Figure 2.8: Illustration of SupperCollider’s OffsetOut.

29

A fuller description of timelab follows in the next chapter. However, as a

sneak preview, timelab may compute audio in blocks of any length (depending on

how it is implemented). When it does this, control input is linearly interpolated

between block boundaries. So, control values arrive once per block, but at each

sample within the block, the corresponding interpolated values are given as para-

metric input. This control scheme is not as nuanced as the solutions providing

sample accurate control timing in Pd and SC, but it is simple. This is a good

choice given the fact that timelab is an API that aims at being plugin-able to

other host systems.

This chapter contains material that appears in ‘David Medine. Timelab:

Yet, yet another audio programming environment. In Proceedings of the Interna-

tional Computer Music Conference, Perth, 2013’.

Chapter 3

Timelab Specifications

In the previous chapter, we saw a brief overview of the development of

computer music technology in terms of programming paradigms. In the present

chapter, we present timelab, which was written by the author in order to realize

the unsampled digital approach to audio synthesis. The following is a description

of timelab and how it works.

Timelab is a C language API and and audio plugin host for programs of

a very special kind. It provides methods for loading plugins (which we may call

‘modules’), methods for giving/taking audio samples to/from a higher level host

application, as well as methods for gathering incoming control data and using

these to parameterize modules. There are audio and control processing routines

that handle the scheduling and allocation/freeing of memory for these objects. All

of the above methods operate behind the scenes. What one wants to do with

timelab, is write modules that represent a UDS routine (a dynamical system).

There are also methods for computing the output of dynamical systems specified

by modules themselves.

3.1 Structure

The core of timelab is very simple. It consists of a loader function, a DSP

loop, and cleanup routines. There are a number of ancillary helper functions to

30

31

glue everything together and a small list of DSP ‘objects’1 (data structures and

associated functions) that grind out audio samples. The most important of these

are an ‘ADC’ (which doesn’t actually do analog to digital conversion, but simply

grabs samples passed in from a host application), a ‘DAC’ (same comment, but in

reverse) and a solver (for dealing with UDS routines).

Timelab runs C files that have been compiled as shared objects.2 The com-

pilation uses a standard makefile evoking gcc and are suffixed ‘.tl’ to distinguish

them. These binaries are referred to as ‘modules’ and are passed to timelab’s

loader routine.

3.2 Tl Modules

A proper .tl file must contain four special functions in order for the timelab

loader and audio engine to be able to deal with it. At load time, the timelab loader

receives the full path to the tl file (along with optional arguments), and excerpts

the name of the object (sans the .tl suffix) itself. This name (expressed as a C

string) is then appended to the following four strings:

• tl init

• tl kill

• tl dsp

• tl reveal ctls .

The .tl file itself must contain functions with these names suffixed by the

name of the module itself or else the loader will abort. For example, suppose there

is a .tl file called ‘filter.tl’. When its path is handed to the loader, the loader will

look for functions in the object called tl init filter, etc. If the loader cannot

find the appropriate functions, it will return without having loaded the module.

1Timelab is written in an object-oriented style in only the loosest sense. It does associate
data structures with certain functions, however it does this somewhat informally. There is no
notion of inheritance or polymorphism.

2This is Linux parlance. ‘Dynamically loaded library’ is synonymous with ‘shared object’.

32

The tl init , tl kill , and tl dsp functions are stored in singly linked

lists (there is infrastructure for expressing multiple modules) and are used by the

timelab engine to initialize, destroy, and run the dsp routine of the module. The

call to tl reveal ctls simply returns a pointer to the stack of timelab control

objects that are associated with the module so that external control can be passed

as parameters in real-time during run time.

In order for all of this to work, the loader also needs to have an instance of

the timelab engine itself. This is a special data structure and associated functions

known as a tl procession. A variable of type tl procession contains pointers

to the control, DSP, initialization and kill stacks. It is the host’s way of interfacing

with the timelab audio engine, control processing engine, and cleanup routines.

The creation and destruction of a tl procession variable must be handled by the

timelab host.

This is a fairly flexible way of doing things. For example, timelab as a Pd

extern creates a procession and DSP processing loop and control processing loop

(which are associated with the procession are called during the DSP loop in the

Pd extern.

If, on the other hand, timelab is instantiated as a stand alone program, a

procession object can be setup to maintain two threads, one for the DSP and

one for control, both of which sleep until the operating system requests a new set

of audio samples. The way to do this depends on what audio driver the operating

system is using.

3.3 Control Messaging

The constraints on the interface are that blocks of audio signals be handed

in a buffer of pre-determined and unchanging size and that control messages be

of the form of a duple containing a reference number (an integer indicating which

control parameter is being addressed) and a control value (a floating point value

the parameter should ramp to). So-called ‘bang’ messages – ones that cause some

user defined function to be called – are also admissible.

33

Note that the input to a control object is a single value. The output,

however, is a vector of values, the length of an audio block. Every time a value

changes, a line must be drawn between the old value and the new one. For each

time point in the computation of a block of samples, the corresponding value from

the applied control vector is applied (in whatever manner the .tl file calls for.

At each tick of the DSP loop, the list of control objects is inspected and if a

value has changed, it is pushed onto a special control stack which will draw a line

between the old value and the new value. Once the value is not changing anymore,

the control output vector needs to be ‘leveled off’ (write the steady control value

to every time point in the output vector) so that it stays at the last requested

value (otherwise it will effectively repeat the last control value ramp).

As mentioned above, timelab maintains a singly-linked list of control ob-

jects. They are referenced simply by an integer number which corresponds to each

control object’s place on the control stack. It is wise, but not required, to provide

each control object with a unique name. There are functions for printing out the

name and number of all the objects within the control stack. The control stack

grows in size dynamically at load time and each object is automatically destroyed.

3.4 Audio Signals

Like any audio programming environment and scheduler, timelab passes

vectors of audio signals between DSP routines. In timelab, DSP objects have

inlets and outlets. Each inlet and outlet has an associated ‘signal’ class associated

with it. In the case of outlets, memory is allocated behind the signal pointers when

they are initialized and this memory is free when the module is exiting.

Inlets, on the other hand, are simply pointers to signal classes. Since they

either point to an outlet or nothing at all, there is no need to allocate memory

to inlets. Connection between an inlet and an outlet is made by simply equating

an inlet to the desired outlet. This allows for the possibility of dynamic patching

because the equating of these pointers can be done at any time. Control objects

could also be instantiated to connect or disconnect inlets and outlets. Since no

34

memory needs to be allocated or freed to make a connection change, this can be

done more or less immediately and cheaply (i.e. without causing hiccups in the

output of audio samples).

3.5 DSP Routines – ADC and DAC

As noted above, the only DSP routines in timelab that are germane to the

present study are the sample grabber (‘ADC’), sample sender (‘DAC’), and the

UDS solver itself. The classes tl adc and tl dac need to know about the host

application’s block size. Given this, they maintain a pre-allocated buffer of audio

samples which are written to and read from in the course of the host application’s

DSP tick. These buffers serve as interfaces to timelab’s own notion of samples,

blocks, signals, etc. Helper functions exist to grow or shrink buffer sizes after

they’ve been initialized.

3.6 DSP Routines – tl UDS solver

The class tl UDS solver is where the magic happens, so to speak. It is a

scheduler within a scheduler. It consists of a constructor, a destructor, a sample

computing routine, and any number of tl UDS node objects. These objects are

instances of classes that have a function (which the solver literally solves), any

number of pointers to data in pointers of type ‘audio sample’ 3 and a single pointer

to a data out sample pointer. That is to say, any variable of type tl UDS node

has only one output, and any number of inputs. These are different from signals

because there are single values behind the pointers (as opposed to vectors of values).

Typically (but not always) UDS functions take the form of two or more

ordinary differential equations that are implicitly related. Details of this theory

will be discussed below. But, as a practical illustration of how this all works,

consider the pair of equations:

3Currently, timelab samples are single precision floating point values.

35

ẋ = ay

ẏ = bx+ cy
(3.1)

To instantiate this system, we would create a node for each equation. We

may call them x node and y node. In this case x node would have one data in

field, pointing to the output of y node. The node texttty node, on the other hand,

would have two inlets, one pointing to x node->data out and the other pointing

to its own data out pointer.

As in the case of signals, the outlets are instantiated in memory, but the

inlets need not be. They can simply be equated to the desired outlet in order to

share data.

We would then define a C function for each node that would contain (in the

x node case): return a * *x node->data in[0];.4 This value (which is chang-

ing) is returned to the tl UDS solver object and corresponds to the derivative ẋ.

The state of the integrated value x gets updated by the solver for every sample in

a block of samples.

Our tl UDS solver maintains a list of all the nodes and simply cranks

through them one at a time according to its numerical solving algorithm. The

connections between the nodes must be established according to whatever system

of equations we are solving. The nice thing about this is that given a system of

ordinary differential equations of arbitrary complexity, it is very easy to develop

code that will solve the whole system.

As a final note, timelab control objects are easily thrown into the mix so

that the parameters a, b, and c in our example can be changed in real-time. As a

convenience, the data type tl UDS node has a void *extra data field. Groups of

control objects associated with function parameters can be assigned to this general

purpose pointer for ease of use.

4The translation of this C code is ‘return the value stored in the variable b multiplied by the
value pointed to by the variable data in[0] which is a field in the data structure pointed to by
the variable x node.

36

3.7 Summary

The above is a brief and general description of how timelab can be setup

to compute a UDS routine and how it actual goes about doing the computation.

The details of how this is implemented will doubtless change over time, but the

architecture itself has proved to be a stable and effective one.

One may notice that if timelab is merely computing the output of a tl UDS -

solver object and passing samples to/from it and a host application, it is more

or less superfluous to provide an entire, general purpose DSP engine. Indeed, this

extra layer of function calls does nothing but slow things down (i.e. increase CPU

usage). However, this infrastructure exists in the hopes that timelab will continue

to develop as a stand-alone solution for any deployment, including bare-metal. In

order to keep timelab from relying on external infrastructure provided by operating

systems, audio drivers, and host applications, this extra layer of organization is

provided.

Chapter 4

Current Approaches to Real-Time

Synthesis

As we all know, Digital Signal Processing (DSP) is an area of mathematics

theory that is concerned with manipulating discrete time series. In audio pro-

cessing, this is typically a digitally sampled analog input (like the voltage signal

coming off a microphone) which is then altered in some way by software before

being converted again into an analog signal (likely, another voltage that drives

a loudspeaker). Alternatively, digital signals may be originally constructed by

software itself (a digital oscillator, for example).

A large subset of the mathematical operations in the realm of music DSP

are digital filters. Even processes that aren’t commonly described in terms of filter

nomenclature and symbols, are easily expressible in those terms (e.g. interpolation,

oscillators, and discrete Fourier transforms can all be formulated in terms of filter

theory).

In the time domain, linear digital filters are expressed in terms of a difference

equation. A most general formula is:

a0y(n)+a1y(n−1)+. . .+aMy(n−M) = b0x(n)+b1x(n−1)+. . .+bNx(n−N) (4.1)

or (neglecting the output gain factor a0):

y(n) =
M∑
i=0

bix(n− i)−
N∑
j=1

ajy(n− j) (4.2)

37

38

in which form the term ‘difference equation’ is obvious. Basically this formula

defines an output sequence, y(n), in terms of a linear combination of some N of its

previous values and an input sequence x(n) . . . x(n−M). This is a most convenient

method for treating digital signals because it takes natural advantage of unit delay

in its formulation. The transfer function of the delay operation (y(n) = x(n− 1))

is H(z) = z−1.

In a continuous time representation, an output signal y(t) may be stated in

terms of a linearly filtered input signal x(t) in the following form:

a0y(t) + a1
dy

dt
+ . . .+ an

dny

dtn
= b0x(t) + b1

dx

dt
+ . . .+ bm

dmx

dtm
(4.3)

or (again, ignoring the gain factor a0)

y(t) =
M∑
i=0

dxm

dtm
−

N∑
j=1

dyn

dtn
(4.4)

This appears very similar to the discrete time representation. However,

due to the sampling theorem and the fact that the s plane does not map directly

onto the z plane, there is not a straight forward relation between the coefficients of

continuous time and digital filters. It is possible to approximately map a continuous

time transfer function (a polynomial in s) to a discrete time transfer function (a

polynomial in z) and a great deal of signal processing literature is concerned with

this problem [RG75].

Digital computers may be more precise than analog computers, but the time

resolution in the continuous time representation is literally infinite. In the digital

representation, we are limited by the sampling rate and its inverse, the temporal

width of the unit sample.

For most industrial applications, digital filters are quite obviously the cor-

rect choice. They are cheap, well understood and can be designed for guaranteed

stability. However, when a musician walks in the room, she may have a very dif-

ferent constellation of needs as does an RFIC engineer (to take one example). The

musician’s thought processes runs like this: ‘Hey, this digital filter sounds really

great! What if I put two of them together?’. This is fine. There is no problem.

39

But then she thinks to herself ‘well, in my analog synthesizer, I can control the

cutoff frequency of my state-variable filter with one of my oscillators.’ Now the

filter is time-varying, and the straight-forward discrete version of the filter is no

longer satisfactory.

4.1 Digital Filters for Real-Time Audio

One reason to eschew a continuous time representation is that digital filters

may be very efficiently implemented by way of their impulse responses. Recall that

the discrete Fourier transform (DFT) of a N samples of a signal is:

X(k) =
∑N−1

n=0 x(n)e−2πikn/N k = 0, 1, . . . , N − 1 (4.5)

and that the impulse response of a filter h(n) has a DFT of H(k) that is its

frequency response. We may also note that the the output of a digital filter can be

computed as a convolution of the filter’s impulse response, and the input signal:

y(n) = h(n) ∗ x(n) (4.6)

Convolution in the time domain is equivalent to multiplication in the fre-

quency domain. Thus, we may write down the application of a digital filter as the

inverse Fourier transform of the product of the short time Fourier transform of the

input signal and the frequency response of the filter:

Y (k) = H(k)X(k)

y(n) = 1
N

∑N−1
k=0 Y (n)e2πikn/N n = 0, 1, . . . , N − 1

(4.7)

Given the highly optimized Fast Fourier Transform, and its inverse, this is

an extremely efficient way to implement digital filters, especially long filters (i.e.

ones with many coefficients). This is especially useful in the case of Finite Impulse

Response (FIR) filters (these are ones that have zero valued feedback coefficients

– aj) as they tend to be of very high order. FIR filters are nice because they can

easily be designed to have a linear phase response, which is often desirable.

This method doesn’t lend itself well to real-time music systems, however,

for two reasons. The first is that making use of short time Fourier series to sidestep

40

direct implementation in the time domain incurs a latency penalty that is equal

to the length of the Fourier transform (N samples). The second is that filters

expressed in this method are not easily time-varied, and in music, things that

change over time are usually the more meaningful sounds.

Thus it is that there are a handful of small, elementary filters that get used

over and over again in real-time digital systems. For example, Pd’s [bp˜], Csound’s

reson unit generator and cmusic’s nres are all nearly identical two-pole resonant

filters. Indeed the poles to these filters are identical, but they feature different

zeros which affect the normalization of the filter. Moore describes this filter in

detail [Moo90] and the similarity between this and the other two filters mentioned

may be verified by inspecting the source code to Pure Data and Csound.

The transfer function of this filter can be written as:

H(z) =
a0

1− 2Rcosθz−1 +R2z−2
(4.8)

This is very nice, because given a sampling rate of SR, we may specify a center

frequency of θ = 2πfc/SR and approximate a bandwidth given by R ≈ e−πB/SR.

However, the above filter is linear and will remain stable if varied slowly. If

we want to represent either a nonlinear filter or one whose response varies quickly

with time (which is the case of the popular analog Moog ladder filter and its kin)

we need to develop a different theory of representation.

4.1.1 ‘Traditional’ Digital Oscillators

One can think of a sinusoidal oscillator as an extremely tight bandpass

filter. Indeed, it can be formulated this way. All we need to do to create such a

filter is place a pair of complex conjugate poles on the unit circle in the z-domain

that correspond to the desired frequency.

For example, given a sampling rate of 48kHz, and a desired frequency of

1kHz, the pole-zero plot and impulse response of such a filter would look like Figure

4.1. The filter is designed essentially the same way as the filter shown in Equation

4.8. Noting that we wish to have maximum resonance at fc = 1kHz at a sample

rate of SR = 48kHz, and that in order to have real output from a complex filter,

41

Figure 4.1: Pole-Zero plot and impulse response for a digital filter as oscillator.

we need to include a complex conjugate pair for each pole, the transfer function is

simply:

H(z) =
1

(1− ei2pifc/SRz−1)(1− e−i2pifc/SRz−1)
. (4.9)

This is identical to Equation 4.8 with a bandwidth of 1Hz.

To determine the difference equation, we simply combine the polynomial

coefficients in z−1 to obtain:

y(n) = x(n)− 1.9829y(n− 1) + y(n− 2) (4.10)

A simpler method (and much more versatile method) for realizing a digital

sinusoidal oscillator, is to precompute 1 period of a sinusoid, store the values in

a large table, then reference each value given a time varying index value. Mathe-

matically, this can be expressed as

x(0) = φ

y(n) = sin (2πx(n))

δ = ω
SR

x(n+ 1) = x(n) + δ,

(4.11)

where φ is the initial phase, ω is the desired frequency and SR is the sampling

rate as before.

In practice, however, instead of computing the sine function at every step

(as noted above) this is pre-computed and stored in a table. x(n) is then wrapped

so that it goes from 0 to 1 once every ω Hz and this output is multiplied by the

42

length of the table to determine which value to reference.1 Hence, this kind of

oscillator is known as a ‘lookup’ oscillator. It is very handy and we will refer to it

again.

4.2 Nonlinear Real-Time Digital Networks

For a digital system to be linear it must satisfy the condition that for an

input sequence x(n) = Ax1(n) +Bx2(n) that produces an output sequence y(n) it

must be the case that y(n) = Ay1(n) +By2(n). Indeed, in order to be linear, any

linear combination of inputs must be proportional to the same linear combination

of outputs. A consequence of linearity is that the the (linear) transfer function

h(n) that relates x(n) to y(n) can alter the amplitude and phase of x(n), but not

its frequency. This rule applies to continuous time systems as well.

As Moore points out, the term nonlinear is not particularly meaningful:

. . . talking about the class of nonlinear systems is like talking about the
class of all animals that are not elephants.[Moo90, 315]

And so, while the basic building blocks of LTI systems and clever implementations

of such systems can buy a lot of sounds in computer music, it is only a very small

subset of total possiblities.

Many nonlinear effects are quite common. Compression, to take an exam-

ple, is one of the most frequently used audio effects in studio production. Limiters

are also commonplace as is guitar distortion (which is really just clipping). For

a discussion of these techniques as well as the effect of triode and pentode tubes

see [DDHZ11]. One may also consult Chapter 3.5.4 of [Moo90] for a discussion of

nonlinear waveshaping.

Other typical nonlinear synthesis techniques include frequency and ampli-

tude modulation. Both these forms of modulation add harmonics to the output of

the system, and thus do not satisfy the conditions of linearity.

1Obviously in order to provide good smoothness, some interpolation is needed. Incidentally,
this is exactly how stdlib.h in the C programming language computes the output trigonometric
functions.

43

4.2.1 Clipping

To create nonlinear harmonic distortion, a simple clipping rule such as:

y(n) =


.8 for x(n) >= .8

−.8 for x(n) <= −.8
x(n) for −.8 < x(n) < .8

can be applied. This ‘hard’ clip will create harmonic distortion so that the ouput

signal has frequency content that the input lacks. This can easily be verified by

inspecting the magnitude spectra of a sinusoid and the same signal after the above

clipping rule is applied.

Incidentally this symmetrical hard clipper can be used in conjunction with

the two-pole filter we discussed above (or any filter for that matter) to create a

Virtual Analog filter. The scheme shown in Figure 4.3 is described by Rossum in

[Ros92] and was also used in the Emu EMAX II synthesizer which came out in

1989[VBS+11].

The clipping technique can construct a familiar set of ‘analog-sounding’

effects (clipping is the basis of guitar distortion after all) and it is very easy to

implement. Utilizing so-called ‘soft’ clipping functions, such as hyperbolic tangents

or cubic functions, provide a way to parametrically tailor sounds. Furthermore,

by studying the clipping characteristics of analog circuit componenents, one may

inform her choice of clipping function to yield a particular set of nonlinear harmonic

distortion to match the character of some analog device.

Waveshaping Clipping is a specific kind of a general nonlinear technique known

as waveshaping. Waveshaping is accomplished by passing a signal x(n) through

some function (which need not be a clipping function) to produce a harmonically

distorted y(n). Mathematically, y(n) can be seen as a composition of the wave-

shaping function g(n) and the input signal x(n):

y(n) = g(x(n)) (4.12)

Incidentally, this formulation suggests a very simple digital implementation.

The function of g(n) can be precomputed and stored in a lookup table. Then the

44

-1

-0.5

0

0.5

1

0 200 400 600 800 1000

samples SR=1000

(a) 5Hz sinusoid

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

m
a
g
n
i
t
u
d
e
(
l
i
n
e
a
r
)

frequency, Hz

(b) Magnitude spectrum of sinusoid

-1

-0.5

0

0.5

1

0 200 400 600 800 1000

samples SR=1000

(c) The same sinusoid clipped

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

m
a
g
n
i
t
u
d
e
(
l
i
n
e
a
r
)

frequency, Hz

(d) Magnitude spectrum of clipped

Figure 4.2: A 10Hz sinusoid, its magnitude spectrum, and the clipped version.

Note that there is new harmonic energy in the clipped sinusoid’s spectrum.

Figure 4.3: Filter diagram for a two-pole filter with clipping function.

45

Figure 4.4: Signal flow diagram for a digital waveshaping algorithm.

values of x(n) can simply be used as lookups to this stored function. Clearly, unless

g(n) is a scalar function, this system will be nonlinear. For detailed description of

waveshaping and its applications, please refer to [Moo90], [DJ97] and [Puc07].

FM Synthesis A frequently used waveshaping algorithm is Frequency Modu-

lation (FM). In FM the both the waveshaping function and the input signal are

sinusoidal. The harmonic distortion that results from FM synthesis well studied

and the system itself is highly stable in reasonable realm of operation. Thus, FM

has been a staple of computer music ever since its serendipitous discovery as a

musical tool by John Chowning in the 1970s [Cho77]. Most famously, the Yamha

DX-7 was designed to utilize the rich variety of sounds that could be generated

with FM [Thé97].

FM works by modulating the prescribed frequency of a sinusoidal oscillator

with some other sinusoid. The time domain form of the function may be written

as:

x(n) = cos(A cos(ωmn) + ωcn) (4.13)

where ωm is called the modulation frequency and ωc is the carrier frequency. A is

a scalar that we may take to be the depth of modulation. The spectrum of an FM

signal is predictable given these three parameters. There are numerous texts that

formulate the Bessel functions that describe this spectrum (again, see for example

[Moo90], [DJ97] and [Puc07]).

46

Figure 4.5: Signal flow diagram for a digital Frequency Modulation scheme.

Since it is waveshaping, FM is easily implemented as a digital algorithm.

Provided we have an oscillator whose frequency may be dynamically varied, we

simply use the output of some other oscillator whose frequency is ωm and whose

amplitude is scaled by the factor A and sum this with whatever carrier frequency

ωc that we want. This time-varying sum is then used to control the frequency the

other oscillator.

Depending on the values of ωm and A (both of which may be time-varying),

FM synthesis produces new harmonic content in evenly spaced intervals about the

center (carrier) frequency ωc. If ωc is sufficiently low and the spread of the new

harmonics is sufficiently wide, this may produce undertones that are less than 0Hz.

These negative frequencies are then ‘mirrored across the DC frequency which may

produce a rich, inharmonic spectrum. Similar foldover effects can be created with

other waveshaping functions.

The structure of FM (one oscillator modulating another of exactly the same

type) immediately suggests enlarging the synthesis network. One way would be

to add extra oscillators and create modulation signals out of an FM signal. As

Puckette points out, this is well-trodden ground[Puc07]. Another possibility is to

use non-sinusoidal oscillators in the network.

Yet another possibility is to provide a feedback loop between the modulatee

and the modulator. However, this creates an implicit relation and there will be

47

Figure 4.6: Frequency Modulation scheme with feedback.

a delay greater than or equal to one sample if the network is implemented with

lookup oscillators. We shall return to this point and study a UDS implementation

of just such a network

4.3 Physical Modeling and Virtual Analog

The techniques outlined above may be used to emulate the sounds of real

world instruments or analog sound circuits. However, they are not physics based.

This distinguishes them from what we call physical modeling and virtual analog

where digital filters are formulated by physically informed ideal models of wave

behavior. In bot the case of Digital Wageguides and Wave Digital Filters, we see

a formalism for defining LTI systems that maps to a physical structure according

to the rules of that formalism. In both cases, nonlinearities may be coupled to

they system, expanding their sound pallettes. The difference between this way of

doing things and what we here call UDS is that here, nonlinearities are special

cases and implicit structures are very cumbersome. UDS, on the other hand is

48

much more general in that nonlinear systems are exactly as viable as linear ones.

Implicit structures are also perfectly reasonable to represent using UDS, but there

is a limit to the generality of this claim, which will be discussed in more detail in

the next chapter.

Physical modeling of acoustical spaces, instruments, and analog hardware

is a rich sub-field of computer music and electrical engineering. For a concise

introduction to the state of the art, consult [VPEK06]; and, (of course) J. O.

Smith’s definitive text on the subject [Smi10]. As mentioned above, in physical

modeling, the idea is to analyze the physical laws that control the behavior of the

system itself and then compute a virtual replica given that analysis.

In order for all of this to work, a great deal of simplification and idealization

must be done. This may tarnish the result by stripping the system being modeled

of some inherent, characteristic richness. The trade-off here is simplicity, control,

stability, and precision.

It is often the case that physical models operate on so-called Kirchoff vari-

ables (voltage/current, force/velocity, pressure/volume velocity, etc.), or wave vari-

ables (bi-directional sections of a traveling wave)[KES03]. Thus, when we switch

between K-variables and W-variables, a transform is involved. For example, if we

are modeling the behavior of an electrical circuit, we are concerned with the K-

variables voltage and current (u and i respectively). But, if we wish to model the

circuit in terms of W-variables (the incoming and reflected waves at a particular

circuit element) we would be speaking about W-variables a and b. The nature of

this relation is particular to the thing being modeled. This will be discussed fur-

ther in regards to Digital Waveguides (DWGs) and their kin, Wave Digital Filters

(WDFs).

4.3.1 Digital Waveguides

Digital Waveguides (DWGs) are digital models of analog systems based on

the d’Alembert solution to the one dimensional wave equation:

∂2y

∂x2
= c2

∂2y

∂t2
(4.14)

49

As can be seen this is a partial differential equation in time and space. It says

that in any point in a uni-dimensional medium (e.g. an ideal string or a column

of air) the acceleration, ∂2y/∂t2 is proportional to the curvature of the medium at

that point,∂2y/∂x2. In acoustic models, the proportion is the square of the speed

of sound c2. In a more compact form, the wave equation can be written:

εÿ = Ky′′ (4.15)

In which form the propagation speed c can be expressed:

c =
√
K/ε. (4.16)

It was shown by d’Alembert[d’A73] that this equation can be solved by

treating the wave over the one dimensional surface as a sum of two other waves

moving in opposite directions:

y(x, t) = yr(x− ct) + yl(x+ ct) (4.17)

or

y(x, t) = yr(t− x/c) + yl(t+ x/t) (4.18)

This solution is valid for any arbitrary wave that can be expressed as a weighted

sum of even and odd functions (for example, any continuous function).

It is then easy to imagine how this can be digitized, providing the wave we

model is band-limited to the Nyquist frequency:

y(xk, tn) = yr(n− k) + yl(n+ k) (4.19)

where the indices n and k access times and places quantized by the time step

(inverse of the sampling rate 1/fs) and the spatial step (cT) respectively. This

can then be implemented as a bi-directional delay line. This idealized model can

be enhanced by implementing digital filters that categorize wave behavior at the

boundaries of the delay lines. This is depicted in Figure 4.7.

At one end of Figure 4.7 is a perfect inverting reflection (H(z) = −1—an

idealized string termination at one end of the medium) and a lowpass filter that

50

Figure 4.7: A depiction of the digital waveguide as a network of filters and delay

lines.

characterizes the transfer function at the other end (H(z) = G(z)).2 Furthermore

physical details such as losses, bending stiffness, and frequency dispersion can all

be characterized by digital filters which can be lumped together at an arbitrary

point in the system.

The DWG formulation is the basis of a very large number of physical mod-

eling schemes. Although the term was coined by Smith in 1985[Smi85], its roots

lie in the Kelly-Lochbaum algorithm for vocal synthesis[KL62], the algorithm used

to synthesize the vocal part to the famed ‘Daisy Bell’3.

In that implementation, the vocal tract was modeled as a series of tubes

of different lengths and widths. The wave flow through the tubes is modeled as

a bi-directional delay and the junction between the tubes is modeled with N -port

scattering junctions. Thus each tube can be characterized by its physical dimen-

sions (its width and length) as well as its admittance/impedance in relation to the

tubes at either end (this is the scattering junction). Indeed this scattering junction

is often referred to as the ‘Kelly-Lochbaum implementation’ in the literature.

The junction is characterized by the impedances of either delay line at

the junction (which is a function of the physical dimension of the tube). If this

impedance is denoted Rn the scattering regime at the junction between junction n

and n+ 1 is based on the value k1 = R2 −R1/R1 +R2. Note that this is the case

for a 2-port scattering junction, but the theory is generalizable to N -ports. For a

thorough treatment see [Smi10] and section 5 of [VPEK06].

2In the case of a violin model, this transfer function can be ascertained by measuring the
impulse response of a violin body at the bridge.

3https://www.youtube.com/watch?v=41U78QP8nBk

https://www.youtube.com/watch?v=41U78QP8nBk

51

DWGs are also valid in two and three dimensions. DWGs have been used

to model percussion membranes in 2D and 3D resonators such as rooms[MNH01]

and instrument bodies[HSS00].

One cost of DWG synthesis is the warping that occurs from the approxi-

mations associated with digitization schemes. The most obvious approximation is

that of time/space quantization. For example, in a simple DWG of a string, the

pitch of the string is determined by its length, unit mass and tension. Unit mass

and tension determine the rate at which waves travel along the string (c). How-

ever, c being held constant, pitch corresponds to string lengths that are integer

multiples of the spatial unit. So, if we desire a pitch that is not exactly one of these

values (e.g. if we wish our model to change pitch continuously from one frequency

to another) we have a problem. Fortunately, all-pass filters can rescue us from this

dilemma since their phase delay is a convenient, accurate and controllable digital

method for fractional delay [JS83].

In addition to digital filters, (presumably linear, time-invariant ones) non-

linear functions may also be coupled to DWGs. Indeed, this is necessary if one

wishes to model a piano-hammer (which deforms as it strikes a string) or a nonlin-

ear driving force such as a violin bow or clarinet reed. We may not attach nonlinear

functions to a digital waveguide (or any network of unit delays) without impunity.

As has been stressed often is the fact that nonlinearities coupled to a waveguide

may not converge, or may converge very quickly to 0.

4.3.2 Finite Difference Time Domain

Finite Difference Time Domain (FDTD) is a direct solution to the wave

equation using finite differences to approximate the limit as h approaches zero

in the derivatives. This is another implicit instance of a digital filter in digital

synthesis. But, unlike DWGs (which use W-variables) FDTD uses K-variables to

create difference equations. This approach to solving the wave equation for the

purpose of modeling vibrating bodies is not new. Hiller and Ruiz introduce theses

methods in 1971 [HR71], but in recent years there has been more interest in the

method, particularly in the simulation of complex, multi-dimensional structures

52

[Bil07] [Bil09], but also as an alternative or as an enhancement of 1D waveguide

structures [KES03] [KE04]. It is also one of the most useful techniques for simu-

lating fluid dynamics in the realm of computer graphics (a very similar problem

to multi-dimensional acoustic modeling) [Bri08].

There are a number of difference schemes that can be applied to solving

the wave equation (or any differential equation for that matter). A generic, and

frequently used method, is the so-called leapfrog method. This is a numerical

method for solving second order partial differential equations based on the central

difference scheme.
ÿ(n, k) ≈ (y(n+1,k)−2y(n,k)+y(n−1,k)

h2

y′′(n, k) ≈ (y(n,k+1)−2y(n,k)+y(n,k−1)
δx2

(4.20)

Here h is the finite time step and δx is the spatial difference. If we choose h = 1/fs

(the width of one sample at the sampling rate, and δx = ch, where c is the speed

of sound in the medium we are modeling (which can be determined by physical

observation), we are led to the solution for finding the next value in time at each

non-zero width ‘point’ along the medium we model:

y(n+ 1, k) = y(n, k + 1) + y(n, k − 1)− y(n− 1, k). (4.21)

This equation is known as leapfrog recursion. It says that the next point in time

at point in space k is determined by summing the values immediately adjacent to

that point right now, and the value this point in space had one sample in the past.

We then shift from time to space, and do it again with time and space variables

reversed. This is done for every point in the model in both space and time.

One advantage of this method is the fact that we can choose arbitrarily

small sampling intervals so that very precise approximations are possible. Since

this structure may be coupled to DWGs, FDTD models describing very nuanced

behaviors can be inserted into simpler models, thereby significantly expanding the

power of the DWG. This has, for example, been done to model very fine detail in

bow-string interaction [PW98].

The main difference between FTDT (and DWGs, which turn out to be

isomorphic [Smi10] and what we refer to here as UDS is that in FTDT, differ-

ential equations are transformed into difference equations. For example, in the

53

case of leapfrog recursion the limit as h approaches 0 in the time derivative, is

approximated by the difference in time between successive audio samples:

dx

dt
, lim

h→0

x(t)− x(t− h)

h
≈ x(nT)− x[(n− 1)T]

T
, (4.22)

where T = 1/Fs – the inverse of the sampling rate (which, as mentioned, can locally

be set arbitrarily small). Note that the approximation at the end of Equation 4.22

is implicit to Equation 4.20. This is ultimately a matter of psychology. In UDS we

approach problems with the belief that we are actually operating in the continuous

time realm, with differential rather than difference equations. What this buys is

the freedom to explore models that contain zero delay feedback loops without

having to go through the heavy lifting of accounting for this in the digitization

process. We can simply write a system of nonlinear differential equations that are

coupled together and listen to the output.

This approach also affords the user the pain of having to discretize the

differential equaitons himself. This is relatively trivial for simple, well defined

systems such as Equation 4.9, but when dealing with massive and aribitrarily

defined systems (like a 2D FTDT representation of a drum head, for example)

the work involved in discretize the system may be cumbersome (particularly if the

system is nonlinear). Automating such procedures is an active topic of research in

physical modeling and virtual analog. We will return to this point in our discussion

of recent advances in WDFs and the state-space representation.

4.4 Virtual Analog

Virtual analog (VA) is a field of computer music research concerned with

physics-based emulation of analog electronic circuits. Much VA research is a subset

of physical modeling as it is based on digitizing the continuous time behavior of

circuit components. However, there are also VA algorithms that are not physics-

based, some of which are discussed below.

Recently, VA has begun to occupy a substantial market share of music and

computing research [PV11]. Since the release of the Nord Lead synthesizer in 1995

54

[Smi96], the pursuit of analog ‘sounding’ digital synthesis has been an active and

marketable research field.

It is a very similar problem to physical modeling in that electrical behav-

ior can be modeled as either K-variables (in this case voltage and current) or

W-variables. In general, though, W-variables are inconvenient in VA due the ex-

tremely high speeds at which the ‘waves’ in electrical circuits flow. This leads to

a great challenge in the implementation of VA synthesis, because the time delay

between interactions at the nodes of a circuit is much nearer to instantaneous than

it is to the length of a reasonably chosen time for one sample (approximately 1.5ms

at 44.1kHz sampling rate). This problem also gives rise to scheduling problems

because of the structural reality of delay-free loops in analog circuits.

In general the problem is side-stepped by treating analog feedback as an

instantaneous delay. Such delay-free loops are said to be non-computable, but

there are techniques for coercing output of such systems. The first such method

is to use iterative solvers to approximate the output of implicit equations. This is

inconvenient in the case of real-time synthesis because it may take a long time for

such a solver to converge on an accurate enough solution. The so called K-method

(cite) is a popular technique for rendering implicit nonlinear systems (which we

often encounter in analog networks) computable in real-time. The draw back is

that this method requirese the pre-computation of large lookup tables. Also, in

certain cases, a system may be such that a matrix inversion is required every time

a parameter(e.g. the cutoff frequency of a filter) is adjusted. We will turn to some

such examples at the end of this section.

4.4.1 Differentiated Parabolic Waves

Differentiated Parabolic Waves (DPWs) form a class of synthesis techniques

that are designed to reduce aliasing in digital waveforms [Val05] [VH06] [VNSA10].

Aliasing (or fold-over) occurs due to the discontinuities in certain waveforms such

as the triangle, square, and sawtooth waves.

In Figure 4.8 the spectra of a digital sawtooth before and after DPW are

shown. The digital sawtooth is given by a phase accumulator and modulo function.

55

Figure 4.8: The magnitude spectrum (unwindowed) of a 5kHz digital sawtooth

at a 48kHz sampling rate (black) and the same sawtooth after DPW (red). The

aliasing effects are significantly attenuated.

It is then scaled so that it goes between ±1 rather than 0 and 1. This signal is

then squared, creating a parabolic wave. This is then differentiated, yielding a

sometimes smoother sawtooth waveform (which needs to be again scaled in order

to keep it normalized to ±1 [VH06]). A number of other classical waveforms can

be generated using similar techniques.

4.4.2 Non Zero Time Delay

An improvement to the DPW methods which is outlined in [VH06] is to

use a more sophisticated differentiator than the one proposed therein. In that

formulation, the digital differentiation is given by the transfer function H(z) =

(1− z−1)(1 + z−1)/2 = (1− z−2)/2, a very simple FIR filter. A second order filter

improves upon the first order solution (H(z) = 1− z−1) by attenuating the upper

harmonics more steeply, thus limiting the possibility of some aliased partial beating

with a desired one. It follows that a longer filter would improve this situation, but

it would also complicate the algorithm and increase the latency.

There are other methods. One is the direct method of computing the digital

56

(a) Digital sawtooth. (b) Parabolic wave.

(c) Differentiated parabolic wave.

Figure 4.9: The stages of creating a DPW sawtooth wave.

wave at some integer multiple of the sampling rate, attenuating the frequencies

that will alias, then under-sampling at the last stage. Another is to introduce

ramps and rounded corners into the wave (see for example Chapter 10 in [Puc07]).

Yet another is simply to create the desired wave form using modal synthesis (i.e.

representing it as a sum of sinusoids appropriately attenuated and phase shifted at

integer multiples of the desired fundamental frequency). This is sometimes called a

‘band-limited’ wave form because we may easily control for frequencies that reach

above the nyquist frequency.

DPW is an attractive technique because it provides a way to synthesize

high-frequency digital waveforms without resorting to oversampling. However, the

factor by which the DPW must be normalized is frequency dependent. Using a FIR

filter as a differentiator introduces a zero into the system. The effect of the filter

on amplitude is frequency dependent (by definition) and this must be corrected

for in order to have a normalized waveform.

57

4.4.3 Wave Digital Filters

Wave digital filters (WDFs) were developed by Fettweis in the late 1960s

[Fet71]. Fettweis also provides a detailed description of the theory and some ap-

plications in [Fet86]. These were created with analog circuit emulation in mind.4

As the name implies, WDFs operate on W-variables. There are two kinds of

building blocks in WDFs: elements and adapters. Elements are digital filters that

emulate the behavior of circuit components (resistors, capacitors, voltage sources,

etc.) and adapters are N-port scattering junctions that define the nature of the

connection between elements. There are two types of adapters: series and parallel.

Both adapters and elements have associated impedance (also called port

resistances and normally denoted Zp) depending on their type. In order to deter-

mine the correct behavior, we must first convert from K-variables to W-variables.

This is given by the relation: [
A

B

]
=

[
1 + Z0

1−−Z0

][
u

i.

]
(4.23)

We will limit our discussion to the electrical realm and will discuss WDFs

in terms of current(i) and voltage (u), but WDFs are applicable to mechanical

systems as well.5 Also, the theory will be confined to one-port adapters – capac-

itors, resistors, etc. – but two-port adapters such as gyrators and QUARLS are

discussed in Fettweis [Fet86].

To go back to K-variables, we do the reverse of the operation to obtain the

W-variables: [
u

i

]
=

1

2

[
1 1

1/Z0 −1/Z0

][
A

B

]
(4.24)

Now, we define the port reflectance as the Laplace transform of the reflected

wave divided by the Laplace transform of the incoming wave.

Sz(s) =
Lb
La

=
Lu(t)− Z0i(t)

Lu(t) + Z0i(t)
=
Z(s)− Z0

Z(s)− Z0

(4.25)

4The derivation of WDFs that proceeds from here is essentially summary to that given in
[VPEK06] and [VBS+11]

5For a development of WDF theory in terms of mechanical, rather than electrical, elements,
see [Smi10].

58

In order to determine the appropriate values for Z0 for any given component, we

must apply the bilinear transform, and substitute the following values for Z0:

Z0 =



R for Resitance R

1/2CFs for capacitance C

2LFs for inductance L

∞ for an open circuit

0 for a short circuit

0 for a voltage source

∞ for a current source

where Fs is the sampling rate. The corresponding z-transforms of the associated

components’ reflectances are given by:

S(z) =



0 for Resitance R

z−1 for capacitance C

−z−1 for inductance L

1 for an open circuit

−1 for a short circuit

2u− 1 for a voltage source

1− 2u for a current source

where u is the voltage generated by the source.

Now we have the building blocks of circuitry and their associated, digital

transfer functions. These components are then connected by the adapters. The

adapters are simply N -port scattering junctions whose refelctances are determined

by the port impedance values of the elements that are connected to them. This

structure suggests a tree wherein the adapters are nodes and the elements are

leaves.

Figure 4.10a shows the waveflow for a serial adapter, Figure 4.10b shows

a parallel adapter, and Figure 4.10c shows an imaginary WDF schematic with

a nonlinear ‘root’ element. The root element is the center of the computation

schedule and is often of a special nature. The order of operations is first to compute

the waves traveling up towards the root, reflect off the root, and then calculate

59

(a) (b)

(c)

Figure 4.10: A serial adapter, parallel adapter, and simple WDF schematic after

[VBS+11].

60

the waves going down towards the leaves and repeat. The crosses on the arrows

pointing towards the root indicate that these ports are adapted ports (more on

this in a moment).

The behavior at the adapters is nothing unusual and is derived from the

same theory of scattering junctions that is used in DWG synthesis. For our three

port examples in Figure 4.10c we have:

bn =

{
an − Zn(a1 + a2 + a3)/(Z1 + Z2 + Z3) for a serial port

2(Y1a1 + Y2a2 + Y3a3)/(Y1 + Y2 + Y3) for a parallel

where bn is the outgoing wave at point n, a is the incoming wave, Zn is the port

impedance and Y is admittance (the inverse of impedance).

If the root is nonlinear, it poses a problem. The adapter needs to know

both its own port impedance and the incoming waves in order to compute the

outgoing wave. Since we haven’t yet determined the wave coming from the root (it

is the last scattering junction we compute) we are faced with an implicit problem.

Oddly enough, choosing the correct value for the port impedance at the output

of an adapter can eliminate this dilemma. Note that by choosing Z1 = Z2 + Z3,

where Z1 is the impedance facing the root, Equation 4.4.3 simplifies to:

b1 =

{
−a2 − a3 for a serial port

Y2/(Y2 + Y3)a2 + Y3/Y2 + Y3)a3 for a parallel port

This altered port is what is meant by the term adapted port.

In order to determine the reflections at the elements, we may simply refer

to the transfer functions, which we already know. For example, in the case of the

resistor, the outgoing wave is 0 (the entire wave is passed), and for a capacitor it

is the previous state of the capacitor (again, we see unit delay in effect).

Knowing the reflections at the elements and the nature of the scattering at

the adapters we can completely characterize the network, except for the behavior

at the root. Recall that we chose a special value of Z1 at the junction between the

root and the adapter immediately below it in order to adapt the port. Now, by

definition of a scattering junction, the impedance looking into the root should be

the same at both the adapter and the root. But, we also have a signal dependent

61

impedance at the root Zr by its definition. The way to justify this paradox is to

set the reflected wave from the root as:

br =
Zr − Z1

Zr + Z1

ar (4.26)

where ar and br are the outgoing and incoming waves at the root, and Z1 is the

port impedance that was adapted for the adapter. It is now possible to compute

the wave behavior of the network without resorting to iterative methods at any

point.

Augmenting Wave Digital Filter Theory WDFs are an attractive choice

for virtual analog and physical modeling. They are computationally cheap and

highly modular. Furthermore they have been used to model a variety of nonlinear

behaviors: a piano hammer (with a felt tip whose stiffness varies at the moment of

impact) [BBMS03] [VDPS94]; tone-hole modeling in woodwind models [vWC03];

and in various virtual analog models [VBS+11] [PK10] [PTK09].

In this explanation, WDFs are presented in a uni-dimensional context so

that time, but not distance is considered. This is fitting for the simulation of

circuits and (relatively) minute physical objects like the felt on a piano hammer

or a tone-hole. But, multidimensional structures are clearly realizable, though

exceedingly complex. Fortunately, WDFs can be coupled to other models, such as

DWGs, as shown in [VPEK06].

There are several drawbacks to WDFs. The most obvious is that the root

element is given special precedence over the other elements and adapters. This

greatly limits the modularity. Indeed, the only nonlinearity that is representable is

the root element itself (although there is a class of special elements called ‘mutators’

that are not discussed but can emulate certain kinds of nonlinearities without being

the root [SDP99]).

The other drawback of WDFs is that they cannot represent delay-free struc-

tures. Recently, the K-method [BDPR00] has been harnessed to overcome this

difficulty in the realm of WDFs [WNSIA15] [WSIA15].

Essentially the K-method operates on a dynamical state-space system of

62

the form:

ẋ = Ax + Bu + Ci(v) (4.27)

y = Dx + Eu + Fi(v) (4.28)

v = Gx + Hu + Ki(v) (4.29)

where x is the ‘state’, u is an input vector, y is the output and i is a nonlinear

vector function of v.

The nonlinearity in Equation 4.29 can be solved with an iterative solver such

as Newton-Raphson method. Furthermore multidimensional lookup tables can be

pre-computed to avoid convergence issues, rendering the solution more suitable

to real-time computation. The method also requires discretizing Equations 4.27 -

4.28 (e.g. with Backward Euler or the trapezoidal rule). A consequence of this is

that if an adjustable parameter presents itself in the discretized version of matrix

A it may be the case that multiple matrix inversions need to be performed in order

to find the correct discretized coefficients that correspond to B, C, etc. There are

times when analysis can resolve this issue (as in [DHZ10]), but this difficulty can

potentially lead to significant slowdown if controllable parameters are desired.

4.5 Summary

Much of the above is not news to anyone working in digital audio. How-

ever, we present commonly used linear and nonlinear synthesis techniques such as

digital filters and waveshaping, because a different, UDS implementation of these

techniques is presented in the next chapter. The concept of Virtual Analog is

also presented as is physical modeling since we will see that that UDS offers some

interesting solutions to problems in these realms as well.

We dwell on the practice of representing systems as LTI filters for digital

synthesis to emphasize that this is only a small subset of the possibilities that

exist. Indeed, the main purpose of UDS is to access more of these possibilities.

The reason for explicating DWGs and WDFs is to make the point that there can be

a tendency to approach digital audio problems as ones that can building structures

63

that reduce to the language of digital filter theory; and, that nonlinear elements

are treated as perturbations of something that is more inherently linear.

The extension of WDFs with the K-method is an example of this kind of

psychology. This is not to say that WDF theory extended with the K-method

isn’t a powerful tool, because it is. However, our goals here motivate us to seek

alternative approaches. Namely, we want to hear the output of a dynamical system

immediately, without having to formulate large lookup tables and perform deep

analysis in advance. It is fun to audition dynamical systems immediately. Further-

more, as mentioned above, it is often the case that a circuit (real or theoretical)

represented as a state-space system such as the one given in Equations 4.27 - 4.29

may result in a system wherein a parameter that we wish to control in real-time

(e.g. a potentiometer that determines the cutoff frequency of a nonlinear filter)

finds its way into a matrix that needs to be inverted in order to solve the system.

With these concerns in mind, UDS is a technique for creating and solving

dynamical systes that are restricted to the form given in Equation 1.1. This differs

from Equations 4.27 - 4.29 in that each equation is an ordinary differential one.

Equations 1.1 show only a two-dimensional system, but any dimensions (within

the bounds of computational limitations) may be used.

What we buy by restricting ourselves thus is that we can represent implicit

systems with explicit equations. This means that we can solve the system numer-

ically in real-time without having to build any lookup tables, invert any matrices;

and, we are free to parameterize the system in any way we wish without incur-

ring extra computational cost beyond that of passing the parameters to the solver.

What we lose, is the implicit relation that exists between y and v in Equations

4.28 and 4.29. The following chapter presents a summary of the theory behind

solving equations such as 1.1 and number of examples of UDS that illustrate that

this is a powerful tool in its own right and that the cost of the restrictions may be

sonically rewarding.

Chapter 5

Unsampled Digital Synthesis and

Its Applications

5.1 The Problem as it Stands

As with most applications of DSP, digital audio is to a large degree con-

cerned with linear, time-invariant (LTI) systems. Nonlinearities are often dealt

with by treating them as special perturbations to a system that is, for the most

part, inherently linear. Examples of this abound. In physical modeling we see

this in models of air-driven reeds and bow-string interactions. Nonlinear func-

tions (bow/reed) are coupled to standard linear models of (for example) simplified

clarinet bores or violin strings. In the realm of WDFs, we see the nonlinear root

element as a special case among a conglomeration of linear elements.

In general, nonlinearities are difficult to deal with in digital signal pro-

cessing. This is because most of the theory used to design and analyzed digital

systems is based on assumptions that hold only in the case of linear and time

invariant (LTI) systems. Digitizing a nonlinear or time-varying system can result

in instability and/or unwanted aliasing.

An exemplar of this practice is the various digital implementations of the

Moog ladder filter, which we shall address in some detail later. The history of the

theory behind the digital Moog filter is one that starts with taking the bilinear

64

65

transform of the continuous-time transfer function of a filter stage (in its linear

region) and deriving a discrete time model. Then, the nonlinear part of the filter

is tacked on and the delay-free loop in the network is approximated with unit

delay. Deep analysis is then applied to rectify the shortcomings in the behavior

of the systems, shortcomings that result directly from using LTI tools to model a

time-varying, nonlinear system [SS96].

In computer music we are usually in search of easily manipulable tools.

When digitizing a system using the standard techniques (impulse-invariant, bi-

linear transform, etc.) we often see a situation in which every time we adjust a

system parameter, the digital system returned by the digitization process needs to

be re-computed. In this practice, every case becomes a special case. Thus, it may

be wise to develop an approach to computer synthesis in which we may interact

with nonlinear and time-varying systems without having to worry about having

to constantly redevelop the patchwork of tweaks that are necessary for keeping a

nonlinear or time-varying system stable and predictable.

All of which is to say: we here claim that UDS is a useful approach to

digital synthesis. Nonlinear systems are still difficult or perhaps impossible to

analyze for the entirety of their parameter space, but at least with UDS, we can

synthesize such systems in real-time and listen to them without having to write

an engineering thesis. This is fitting with the experimental nature of computer

music in general. Furthermore, if it is easier/faster to throw together a functioning

dynamical network than it is to study it analytically; and, if that systems turns

out not to make noise (i.e. it converges or diverges very rapidly) it doesn’t matter

that we didn’t carry out lengthy mathematical analysis to come to this conclusion.

If it doesn’t work it doesn’t work.

The inverse of this argument also applies. If some system ‘sounds good’,

it doesn’t matter (in the context of music making) that we may not be able to

completely characterize it by analytic solutions.

Furthermore, sometimes sonification is the best way to quickly examine a

system anyway. Recently (at the time of writing) physicists believe they detected

gravitational waves [AAA+16]. This result (if vindicated by repeated experiment)

66

is confirmation of Einstein’s theory of gravity stretching and contracting the shape

of space time. The physical evidence of this result is a expressed as a sound.

The aim here, of course, is to concoct raw material with which to make

music, however, the possiblity of sonifying these things in order to study them (if

only in a cursory manner) is a real bonus.

That being said, the following examples show some applications of UDS.

The systems are presented as equations, and their character is analyzed via exper-

imentation (i.e. running the simulation and various features are examined). An

analytic solution to these systems may be impossible, and, furthermore, we must

take the effects of the numerical solution method itself into account in order to

completely understand the sonic properties of this stuff anyway. For these rea-

sons (and because this is not a thesis in mathematics) mathematical analyses are

eschewed.

5.2 Basic Example

We begin at a good place to start for any computer music system: a si-

nusoidal oscillator. In physics, simple harmonic motion is often modeled as the

motion of a mass connected to a string.

m
d2x

dt
= −kx(t) (5.1)

Here, m is the mass, and k is the spring constant. Since we will consistently

be relating rates of change over time, to functions of time throughout, we will drop

the time variable t when speaking of these dynamical models. We will use the

conventional ‘dot’ notation to denote a derivative over time.

Equation 5.1 is a second order differential equation, but we may render it

a first order system in the usual way:

ẋ = y

ẏ = − k
m
x.

(5.2)

Departing from the realm of physical proportions, we can control the frequency

of the system by noting that the term −k/m is essentially a gain on the rate

67

of change for each node in the system. When −k/m = 1, the system oscillates

at a frequency of 1/2πHz. By eliminating this term and incorporating a general

purpose time-scale gain ω, we may represent the system thus:

ẋ = y

ẏ = −ω2x,
(5.3)

where the frequency of the system is f = ω/2π =
√
k/m. One caveat of synthe-

sizing this system is that the values of y (position of the mass) are very, very small

compared with the value of x (the velocity of the mass). We may remedy this by

placing both x and y in units of position. This can be done by scaling the first

equation by ω and the second by 1/ω:

ẋ = ωy

ẏ = −ωx.
(5.4)

We can verify that Systems 5.3 and 5.4 are equivalent by noting that differentiating

ẋ = ωy yields ẍ = ωẏ = −ω2x. Another way to say this is that we put the

intermediate variabl y in terms of positional units rather than velocity since we

are scaling it by the inverse of frequency (which also has time in the demoninator).

To make up for the operation, we need to scale y back up when integrating to find

the time varying values of x.

The outputs of this system in Equation 5.4 (which we are interested in

hearing) are the changing values x and y, which we get by integrating ẋ and ẏ.

Note that the frequency has nothing to do with the sampling rate we choose

for our digital simulation. This is in stark contrast to our ‘classic’ digital oscillator

where we determine the phase increment by dividing the intended frequency by the

sampling rate. We also note that although the time variable t is now absent, these

are still functions of time. The rate of solution (i.e. how long a period between

solution points) is clocked by the audio rate, and (indeed) the sample width is

a factor that effects the stability of the numerical solution (in the case of fourth

order Runge-Kutta, which we choose here1). However, if we accept that our solver

1For an examination of various numerical solvers in the context of audio synthesis, the reader
may consult [Yeh09].

68

is sufficiently accurate, we may discuss the models independently of the sample

rate.

We are now in a position to solve our unsampled digital oscillator given

initial conditions and a numerical solver. By understanding the initial values of

x and y as the real and imaginary parts of a complex number Z, we can control

the amplitude (|Z|) and initial phase (∠Z) of the system. For example, by setting

x(0) = 0 and y(0) = −1, x will take the form of a sine function with an amplitude

of 1. The output of such a system is a pair of sinusoids in quadrature.

This implementation of simple harmonic motion is not new in digital audio.

Mathews and Smith used oscillators in a similar form to design high-q bandpass

filters [MS03]; and, this oscillator is analyzed quite thoroughly in Chapter 3 of

[Bil09]. In that work it is presented as a basic building block for lumped networks.

In genereal then, this technique of declaring a system of inter-connected

ODEs to a software application which will then compute the solution to each node

on the network is what we mean when we say UDS. It should be noted, however,

that the application of numerical solvers to ODEs is not new in digital audio.

The technique has been used, for example, to model diodes in guitar distortion

circuitry [YAS07] [MS09]. Furthermore, such a scheme is essentially a subset of

the more general family of techniques known as finite difference methods, whose

use in digital audio applications is well studied [Bil09].

5.2.1 Eliminating Unit Delay From the Representation

A very important detail here is that each equation in a UDS network must

be approximated in an interleaved fashion. Many numerical integrators, such as

Runge-Kutta, have multiple stages, and to ensure that the solutions to implicit

equations 5.4 are not tainted by unit delay, these stages must be computed in

lockstep with one another.

This is a very important point, and the claim that UDS eliminates the

impossibility of zero delay in feedback loops hinges on the validity of the previous

statement. Here the author may, for a moment, admit to a certain liberty being

taken when he says ‘there is zero time delay in such and such a feedback loop’. In

69

reality there is only an approximation of what the solution to the equations would

be if, in fact, there were no time delay. This is different than saying there is some

delay. What is computed is not a tight feedback loop wherein the delay is very

nearly zero – this being the premise of digital systems theory in the time domain.

Rather, we approximate a tight feedback loop where the delay is actually zero.

To clarify this most important point in detail, let us investigate the Runge-

Kutta solution to the quadrature oscillator. According to the Runge-Kutta method

we may solve for y by choosing a temporal step size of h > 0 (the sampling period

is an obvious choice for this value) and then setting

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4) (5.5)

for n = 0, 1, 2, ..., and

k1 = f(yn)

k2 = f(yn +
h

2
k1)

k3 = f(yn +
h

2
k2)

k4 = f(yn + hk3).

But, since values for xn+1 and yn+1 depend on yn and xn respectively, in order

to avoid unit delay, we must interleave the stages of Runge-Kutta in which we

compute kn for x and for y. The written out solution for xn+1 and yn+1 would then

be:

ky1 = −ωxn

kx1 = ωyn

ky2 = −ω(xn +
h

2
ky1)

kx2 = ω(yn +
h

2
kx1)

ky3 = −ω(xn +
h

2
ky2)

kx3 = ω(yn +
h

2
kx2)

ky4 = −ω(xn + hky3)

70

kx4 = ω(yn + hkx3)

yn+1 = yn +
1

6
h(ky1 + 2ky2 + 2ky3 + ky4)

xn+1 = xn +
1

6
h(kx1 + 2kx2 + 2kx3 + kx4)

This interleaving must be done, otherwise there is unit delay between the

solution of either xn+1 and yn+1 or yn+1 and xn+1, depending on which order we

evaluate for x and y.

Now, it may appear that unit delay has not been eliminated, but merely

reduced – that Runge-Kutta is simply a technique for increasing the sampling

rate. But at each step of Runge-Kutta, we are taking into account the changes

on the local approximations of kxn and kyn at every point. Thus we are not

merely upping the sampling rate, but also doing a 4-point, dynamically adjusted

interpolation. This interpolation approximates the exact solution for this pair of

implicit continuous-time equations.

Then, to generalize this solution scheme to any number of nodes we may

write:

xi(n+ 1) = xi(n) +
h

6
(k1 + 2k2 + 2k3 + k4) (5.6)

ki1 = vi(n) (5.7)

ki2 = vi(n) +
h

2
ki1 (5.8)

ki3 = vi(n) +
h

2
ki2 (5.9)

ki4 = vi(n) + hki3. (5.10)

In the simulations shown throughout, this scheme, Runge-Kutta (RK4), is

used. It has been remarked that any robust Runge-Kutta solver should have a vari-

able sampling rate in order to achieve better accuracy in regions of rapid change,

[PTVF96]. However, in the case of real-time sound synthesis, it is unwise to rely

on an algorithm that has a compute time that will vary according to unforeseeable

conditions.

However, any number of numeric solvers may be used to solve the systems

outlined below and to varying degrees of success (given the frequency and sampling

71

rate, of course). This is well trodden ground and the curious reader may be referred

to [Gea71]. For issues of stability and accuracy (which are beyond the scope of the

present work) the reader may be referred to [MQ08].

5.3 A Host of Examples

The example above is a trivial one. The lookup oscillator shown in Equa-

tion 4.11 is a much more computationally efficient means of synthesizing a sinusoid

and the analytic solution to the system given in Equation 5.1 is very well known.2

However, by treating the sinusoidal oscillator as an implicit network of ordinary

differential equations, we open the door to sound synthesis routines that are un-

realizable when feedback is delayed by the temporal width of at least one digital

sample (z−1).

5.3.1 Frequency Modulation

Frequency modulation (FM) is a tried and true computer audio technique

that has been used to simulate the human voice and many other real musical

instruments [Cho73]. Keeping with the digital lookup oscillator that we describe in

Equation 4.11 we can instantiate a digital FM algorithm using phase modulation

as is often done in practice [Puc07]. In this implementation, the output of the

modulating oscillator is multiplied by the modulation depth parameter µ and is

added to the phase of the accumulator. Ignoring initial phase, this changes our

equation for the digital oscillator phase accumulator (Equation 4.11) to:

δ = ω+µm(n))
Fs

x(n) = x(nt− 1) + δ

y(n) = sin (2πx(n)),

(5.11)

where m(n) is the output of the modulating oscillator. If we take the output of y(n)

and use it to modulate the oscillator produces the output m(n), the two oscillators

are modulating each other. If such a network is formed with lookup oscillators

2Lookup oscillators are also very handy because they can be generalized for any wave shape,
thus provide a robust palette for creating arbitrary periodic wave-forms.

72

Figure 5.1: Magnitude spectra for various implementations of a reciprocal FM

network.

such as the one given in Equation 5.11, any feedback in the network will entail at

least one audio sample worth of time delay. This severely distorts the output of

the system, essentially adding broad band noise to the desired signal as is evident

in Figure 5.1.

In order to make a more accurate digital simulation of a reciprocal FM

network (i.e. one with zero delay in the feedback loop), we may modify our UDS

oscillator given in Equation 5.4

ẏi = (ωi + λi)xi

ẋi = −(ωi + λi)yi.
(5.12)

Here, there are k oscillators that modulate one another (given by xi and yi), and

λi is some linear combination of each other’s outputs:

λi = αi1x1 + αi2x2 . . . αijxk. (5.13)

The coefficients αij define the depth of modulation on oscillator i by the current

state of oscillator j. Note that these oscillators modulate themselves when αij is

non-zero for i = j .

In Figure 5.1 spectra of the output of 2 lookup oscillators in a reciprocal FM

network and the same network with a UDS implementation are shown. Reciprocal

FM with the lookup oscillator implementation creates unwanted broadband noise.

The situation is somewhat helped by reducing the block size, but not entirely. In

73

Figure 5.2: Two plots demonstrating the order of operations problem for digital

lookup oscillator sync.

the UDS implementation, on the other hand, broad band noise is absent. In these 3

examples, the frequencies were identical and the modulation depth was analogous.

It is also interesting to note that the spectral envelope is quite different in all 3

examples.

5.3.2 Reciprocal Sync

Oscillator ‘sync’ is a classic technique in analog synthesizer patches. The

output of a ‘master’ oscillator is compared to a threshold value. If the threshold

(θ) is crossed, the phase of a ‘slave’ oscillator is reset. This nonlinear technique is a

simple way of creating complex timbres out of two purely sinusoidal wave-forms.3

If the routine is computed using lookup oscillators, the order of operations

is important. Depending on whether or not the output of the master or slave

oscillator is computed first, the output wave-forms will be quite different. This

distortion is amplified by the magnitude of the block size (which we denote bs).

By way of illustration, consider Figure 5.2. Here the blue waveform shows the

master oscillator, the red the slave (fm = 8 Hz, fs = 15 Hz, Fc = 100 Hz, bs = 10,

). In the top plot, the master oscillator is computed first, and goes to 0 at the

correct time. However, if we calculate the output of the slave first, it will not go to

3Oscillator sync is often done with other, harmonically rich wave-forms in analog synthesizers;
see for example http://www.keithmcmillen.com/blog/simple-synthesis-part-7-oscillator-sync/.

http://www.keithmcmillen.com/blog/simple-synthesis-part-7-oscillator-sync/

74

(a) Time series and spectrogram for dig-

ital lookup oscillator in reciprocal sync

regime.

(b) The same simulation parameters,

but with block size equal to 1.

Figure 5.3: Both time series and corresponding spectrograms are from two oscil-

lators (950 Hz and 900 Hz) in a sync regime. Not only the spectral shape, but also

the fundamental frequency is affected by block size. Here Fs = 48 kHz.

0 until an entire block of samples in the future: it won’t ‘know’ until then whether

or not its master crossed θ.

We may couple two unsampled digital oscillators together through a sync

rule and achieve very different results. As with the digital lookup oscillators, we

define a threshold θ that, when crossed by the master (xm), the slave (given by xs

and ys) must reset its phase. We make a rule that if xm > θ, then substitute

ẋs = (0− xs)g
ẏs = (−1− ys)g

(5.14)

for Equation 5.4 in the slave oscillator. Here, g is a gain factor that speeds

this return to the ‘zero’ phase (x = 0, y = −1). We are now free to couple two or

more oscillators using this sync rule in a tight feedback loop so that they are both

masters and slaves to each other in a time-accurate manner.

Figure 5.4 shows the results of the unsampled digital simulation of a re-

ciprocal sync regime using the same parameters for θ and the same frequencies as

those shown in Figure 5.3. By contrast, if a large value is given for g, we see that

the effect is essentially to reduce the amplitude and shift the phase of one of the

oscillators. Some harmonic distortion is also present due to the wave-shaping effect

75

(a) A pair of UDS oscillators (sine por-

tion only) in a reciprocal sync regime,

g = 1000.

(b) The same but with a much smaller

gain parameter, g = 1.

Figure 5.4: Unsampled digital synthesis for 950 and 900Hz oscillators in a recip-

rocal sync regime.

of the sync rule. When a small value is chosen for g, chaotic behavior emerges.

By adjusting the values of g and θ dynamically and in real time, a vast array of

unique and unpredictable sounds are possible.

Another evident difference between the UDS method and the lookup oscil-

lator method, is that in the case of lookup oscillator reciprocal sync has the effect

of reducing the fundamental frequency of the oscillators’ output. This is due to the

nature of the sync rule, which forces the slave to effective maintain an output of 0

when it is in the sync regime.4 This literally lengthens the period of the wave-form.

It is interesting the dynamics of the UDS implementation do not have this effect.

5.3.3 The Moog Ladder Filter

As an example of a musically interesting UDS model that is not based on

harmonic motion, we consider the ‘ladder filter’ invented by Robert Moog in 1965

[Moo65]. This filter has been studied extensively and many digital simulations

have been demonstrated (e.g. [SS96][VH06]).

Most digitizations that have been done use the bilinear transform or some

4Oscillator sync rules come in a wide variety of flavors, so this feature is somewhat unique to
the particular algorithm outline here.

76

similar procedure to map the linear portion of the analog transfer function to the

unit circle. Since there is feedback in the circuit, a standard digitization of the filter

includes unit sample feedback – the famous z−1. This is problematic because the

unit sample delay in the feedback couples the gain parameter g (which controls

the cutoff frequency of the filter) to the resonance parameter r (which controls

the bandwidth of the filter). This causes additional phase shifting so that effect

of the resonance parameter varies with frequency and vice versa [Huo04]. Many

adjustments have been suggested to abnegate this artifact of digitization [Dal12].

Here, we propose an unsampled digital which greatly reduces this effect.

The Moog filter is a four-pole network, wherein the voltage across each

stage is defined:

V̇i = ω(tanh(Vi−1)− tanh(Vi)), (5.15)

where ω is the gain that governs the cutoff frequency of the filter, V̇i is the change

in voltage across stage i, Vi is the present voltage across stage i, and Vi−1 is the

present voltage across the previous stage for i = 1, 2, 3. Ideally, the actual cutoff

frequency has a ratio of fc = ω/2π for all frequencies.

Since each stage of the filter shifts the input signal phase by pi/4 radians,

the output of the filter is inverted and fed back into the input to create resonance.

So, for i = 0 we have:

V̇0 = ω(tanh(Vin − rV 3)− tanh(V0)). (5.16)

When r = 4 (1 for each stage), the filter saturates will oscillate on its own.

Some results for the performance of the UDS implementation of this filter

are shown in Figure 5.5. We see in Figure 5.5a that doubling the sample rate

improves the quality of the filter (ideally the difference between target frequency

and measured frequency should be equal, as should the peak amplitude at every

frequency). In Figure 5.5b we shows that the effect of the resonance parameter r

on the cutoff frequency is negligible.

77

(a) Shown is the difference between tar-

get frequency and highest peak in the

spectrum as well as amplitude for the

UDS Moog filter.

(b) To illustrate the independence of r

and fc, we show the frequency response

for various values over a wide frequency

range.

Figure 5.5: Plots illustrating the character of the UDS implementation of the

Moog filter. Results compare favorable to those shown in [Huo04] and [Dal12].

5.3.4 A Bowed Oscillator

In addition to arranging simple harmonic oscillators in delay-free feedback

networks, we may use UDS as a means of introducing physically motivated non-

linearities. As an example, consider a harmonic oscillator driven by friction – such

as a point on a violin string.

The physics of bow-string interaction is well understood [MW79] [CA84]

[Ser04]. The effect of the bow on the point of bowing is usually modeled through a

nonlinear function which is coupled to the point of bowing (here given as a single

oscillator). The motion of this oscillator is

ü = −ω2u− Fφ(v − vb). (5.17)

In this model u is displacement of the oscillator, f = 2πω is the fundamental

frequency, F is the force of the bow, v is the oscillator’s velocity, vb is the velocity

of the bow, and φ is a nonlinear friction model such as:

φ(vrel) =
√

2avrele
−2av2rel+1/2, (5.18)

where a is a coefficient of friction and vrel = v − vb.

78

(a) F/m = 500 (b) F = .5

Figure 5.6: The bowed oscillator model given here (solved with RK4) and that

given in [Bil09]. In both implementations, oscillator frequency f = 200, vb = .2

and a = 100.

As is the case with the second order spring-mass system given in Equation

5.1, we can re-write Equation 5.17 as a pair of ODEs:

ẏ = −ω2x− FbΦ(y − vb)
ẋ = ωy.

(5.19)

A slightly different form of this model is discussed in Chapter 3 of [Bil09].

In that model, bow force over mass, rather than just bow force, is a parameter.

Another difference is that in [Bil09] Newton-Raphson is employed to solve for the

nonlinear contribution φ and the linear part is solved using Backward Euler. This

requires, of course, that φ be differentiable and that the derivative be determined.

Furthermore, Newton-Raphson is an iterative solver so it may not be appropriate

for real-time implementation due to convergence issues. These two implementa-

tions are compared in Figure 5.6. It comes as no surprise that they are very

similar.

Since RK4 puts us in a position to solve the system without having to dif-

ferentiate φ, we are free to experiment with friction models that are discontinuous.

For example, we may study the discontinuous friction model given by

φ(vrel) = sign(vrel)e
−a|vrel|, (5.20)

Being able to swap nonlinearities is very good. However, RK4 may not be up to

79

(a) Differentiable friction model. (b) Discontinuous friction model.

Figure 5.7: RK4 solving Equations 5.19 using (a) the continuous friction model

in Equation 5.18 and (b) Equation 5.20.

Figure 5.8: A theoretical (a) and real circuit diagram (b) showing Chua’s circuit.

the job of accurately integrating the sharp discontinuity—as Figure 5.7 indicates.

In order to get a more symetrical output of both x and y values, we may

depart from the realm of physics and employ the same scaling trick that we intro-

duced in Equation 5.4. This leaves the folowing system:

ẏ = −ωx− Fφ(v − vb)/ω
ẋ = ωy.

(5.21)

Not that the contribution from the bow model also needs to be scaled by 1/ω.

5.3.5 Developing a Nonlinear Noisebox

Chua’s circuit is a very well studied chaotic oscillator that can be real-

ized through analog circuitry [JLK+84] [Mad93]. One such realization is shown

80

Figure 5.9: Piecewise linear V − I curve in the canonical Chua model.

in Figure 5.8 (b).5 The abstracted circuit (with a theoretical nonlinear resistive

component) is illustrated in Figure 5.8 (a).6

The nonlinearity in the circuit is often model as a piecewise linear set of

negatively sloping lines. The canonical equation for this (shown in Figure 5.9 is:

f(x) = m1x+ .5(m0 −m1)(|x+ 1| − |x− 1|). (5.22)

The circuit itself is often modeled:

ẋ = α(y − x− f(x))

ẏ = x− y − z
ż = −βz,

(5.23)

Where x, y, and z are the voltage across C1, voltage across C2, and current

across the inductor L (respectively) in Figure 5.8. The parameters α and β are

determined by the values of the circuit components and are obtained through

analyzing the circuit. When β = 14.286, α < 10, m0 = −1.27, and m1 = −.68, the

circuit will exhibit chaotic behavior and show a double scroll pattern [CKEI92].

Rodet [Rod93] proposes a clarinet-like model based on a modified Chua’s

circuit. In this model, the inductor and capacitors are removed and a voltage

5This is a public domain image: Public Domain, https://commons.wikimedia.org/w/index.
php?curid=4320592.

6This is a wikicommons image: By Chetvorno - Own work, CC0, https://commons.wikimedia.
org/w/index.php?curid=31049859.

https://commons.wikimedia.org/w/index.php?curid=4320592
https://commons.wikimedia.org/w/index.php?curid=4320592
https://commons.wikimedia.org/w/index.php?curid=31049859
https://commons.wikimedia.org/w/index.php?curid=31049859

81

source is added. From this circuit, a time-delayed mapping is developed so that

the solution looks like a DWG:

Φ(n) = γ(Φ((n− 2T))), (5.24)

where Φ is a sum of left and right going waves, γ is the Chua nonlinearity, and T

is a time delay (in seconds).7

The resulting waveform from this model is periodic and has a rich, harmonic

spectrum, presumably similar to a clarinet reed. By varying the values for m0 and

m1 (which presumably correspond to the canonical piecewise linear V − I curve

given in Equation 5.22) the peaks in the spectrum exhibit more or less frequency

correlated noise resulting from the chaotic behavior of the model.

We may borrow from this model, but modify it. We can not implement this

model using UDS as we don’t have the machinery to compute the time delay.8

As a side note, if Equation 5.24 were a second order system, we could very

well do this. Since the first order Taylor approximation of

v(t) = z(t− τ) (5.25)

is

v(t) = z(t)− τ ż(t), (5.26)

if we are in a position to compute the solution to ż and z̈, we would have the

machinery to compute the time delay τ .9

However, we may indeed couple a nonlinearity to a UDS oscillator in a

similar manner to how we coupled our bow model:

ẋ = ω(y + φ(x))

ẏ = −ω(x),
(5.27)

7Although Rodet is here able to boil down a dynamical system into a nonlinear difference
equation, he does include the oft repeated comment when dealing with dynamical systems ‘[t]he
study of this dynamical system is difficult to analyze . . . ’.

8Of course, we note that this model is very much a DWG with a nonlinearity coupled to it.
Thus, in this formulation it wouldn’t make sense to ‘translate’ the model directly into a UDS
formulation anyway.

9This is done in practice. See for example [RA] in which two nonlinear pendulums driven
by Van Der Pol torque are synchronized by a time-delayed, second order coupling mechanism in
exactly this way.

82

Figure 5.10: Spectrogram of model given in Equation 5.27.

where φ(x) is given by the piecewise linear map given in Equation 5.22. By

setting m0 = 0 (hard clip) and adjusting the value for m1 we see a flattening effect

and nonlinear harmonic distortion (Figure 5.10).

We do not see, however, the chaotic structures reported in [Rod93]. Switch-

ing to a cubic V − I curve:

g(x) = ax3 + bx, (5.28)

as has been detailed in the vast literature on Chua’s circuits (see for example

[Zho94] and is hinted at in [Rod93], we can push this nonlinear oscillator into a

heavily noisy regions (Figure 5.11).

Again, we see the flattening effect and strengthening of upper partials as

the parameter b increases. But as it reaches a certain value, chaotic noise sets

in. Apart from the flattening, this begins to resemble Rodet’s model in that there

is a harmonic spectrum colored by a noise component. It is difficult to tell from

Figure 5.11b, but in this regime, there are slow periodic rhythms to the sound.

The nature of these rhythms that emerge in the noisy regimes is unpredictable

and depend on all the parameters, including the frequency ω/2π which we take to

be the ‘natural’ frequency of the oscillator. Unfortunately, this model will diverge

when pushed to far into these regions.

In order to provide more nuanced control, we can add more nonlineari-

tiesinto the equations. For example, if we compute the output of the following

83

(a) Spectrogram of model given in

Equation 5.27, but with the V −I curve

Equation 5.28. (b) The same, but in the noisy regime.

Figure 5.11: Outputs of our nonlinear oscillator with Chua-inspired V − I curve.

system:

ẋ = ω(y + α(g(y)− βg(x)))

ẏ = −ωx
(5.29)

we can produce lovely chaotic noises by adjusting α, β and a and b from

Equation 5.28.

The reason for marching through this particular, and rather meandering,

process is to illustrate an important point. The dynamical system shown in 5.29

is now somewhat devoid of any physical interpretation. It is a nonlinear oscillator,

and contains elements of the Chua circuit, but it is now something entirely different.

However, it can be used to make extraordinary sounds.

This suggests that given the programming paradigm shown here, one can

construct audible output out of a small subset of atomic elements. Namely, in-

tegrators, gains, and nonlinear functions. Of course, there are at least as many

nonlinear functions as there are non-elephant animals. But, by drawing ideas from

previous work on known and well studied systems, good things may happen.

84

(a) A Chua circuit given two different

initial values.

(b) The Chua circuit in the time do-

main.

Figure 5.12: Two views of the Chua circuit.

5.3.6 Direct Audition of Chaos

As noted above, the Chua circuit (Equations 5.23 and 5.22) is chaotic in

certain regions of its parameter space. In its canonical form, it maintains a ‘double-

scroll’ orbiting pattern. Figure 5.12a shows the output for each variable given two

different initial values. Clearly the system exhibits chaos.

We may listen to the output of the circuit at any point. To accomplish this,

we first note the locations of the attractors. To do this analytically is difficult, but

from inspecting the waveform we see that y is centered about 0, and that x and z

jump from oscillating about somewhere in the vicinity of ±1.8. For our purposes,

we wish to have an amplitude that is within ±1. Thus we can simply divide x and

z by 5 and leave y alone.

To control the frequency of the system, we simply use our time gain trick and

multiply each of the equations in 5.23 by a parameter ω. In order to determine the

character of effect of the time gain factor ω on the system, we can simply measure

the peak frequency for various request frequencies. The results for x are shown in

Figure 5.13.10

We may take α to be a throttle controlling how ‘chaotic’ the model is. The

effects of this is shown in Figure 5.14. There is definitely some flattening of the

10The results for z are almost identical, but slightly larger. The y direction corresponds to the
movement between the 2 orbits in the system, but is roughly the same frequency.

85

Figure 5.13: Squelching chaos in a Chua circuit to measure frequency: α = 6.99,

β = 14.2896, m0 = −1.27, and m1 = −.68.

desired frequency (approximately one half of ω), but we do have a nice control

over the harmonic content of the spectrum. In some examples from the literature,

α = 10 is given as a reasonable choice for setting the oscillator into a chaotic

regime [CKEI92]. In the experiments presented here, this value varies somewhat

with ω, but in general values between 6.8 and 8.5 are good. Below the minimum,

the system dies, and beyond the maximum it will explode.

Some concluding remarks about the Chua circuit follow. First of all, this

is a good example of control afforded by UDS that is not available in WDFs.

This circuit, with its simple structure and lone nonlinearity is a good candidate

for simulation with WDFs (a WDF tree is only slightly more complicated that

the dynamical model given in Equation 5.23). However, that paradigm does not

provide the machinery for time scaling up (controlling frequency with ω). Also,

since each element (apart from nonlinear root elements) in WDFs are LTI filters,

rapid variation of the parameters may not be possible. In this implementation, we

can throttle α (which is the product of the inverse of the capacitance of C1 and

the conductance resistor R in Figure 5.8) at audio rates with impunity (e.g. with

another oscillator).

86

Figure 5.14: The effect of increasing chaos with α: ω = 2000, β = 14.2896,

m0 = −1.27, and m1 = −.68.

5.3.7 Listening to Lorenz

The Lorenz attractor [Lor63] is another example of an extremely well stud-

ied chaotic dynamical system [GW79] [Spa12]. The Lorenz equations are:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz.

(5.30)

The usual initial values used to through this system into a region of chaotic

oscillation is σ = 10, ρ = 28, and β = 8/3. This produces the classic butterfly

wing shapes that is now so emblematic of chaos theory.

We note that there are circle-ish orbits around the stationary points:

(±
√
β(ρ− 1),±

√
β(ρ− 1), ρ− 1).

The origin is also a stationary point when ρ < 1.

As was the case with the Chua circuit, the evolution of the Lorenz system

can be controlled by multiplying each stage by a time scalar ω. By also changing

the parameter β, we can control the degree to which the system tends to move

between the two attractors. So, again, we have an oscillator that we can listen to

as we throttle it in and out of chaotic regions. Also, again, we are obliged to scale

the output to a reasonable range. Here I chose satten = 1/(3
√
β(ρ− 1)).

87

Figure 5.15: Ye olde Lorenz system.

The ‘chaos-ness’ of the system (in a UDS implementation, at any rate)

depends not only on β, but also on ω (all other parameters held the same). But,

if we choose β = .5, we can swing ω from 50-1000 without crossing over into the

chaotic regime.

In Figure 5.16 we see 5 scenarios for β = .1, β = .2,. . . ,β = .5. This is for

the x value in the system.

The first thing to note is that when β = .1, sometimes the second harmonic

is of greater magnitude than is the fundamental frequency. This is evinced by the

outliers in Figure 5.16a. Obviously there is a strong DC component (the orbit is

around one of the stationary points or the other, not around the origin). It is also

the case that small changes in β will alter the pitch drastically, although in this

range in parameter space, the spectral envelope is quite similar.

We can also look at the effect of β itself in the audible range. As noted,

pushing β from very near to 0 to the usual value of 8/3 increases the rapidity with

which the x and y values in the system move between the two orbits. The erratic

nature of this motion is literally noisiness. A spectrogram illustrates this in Figure

5.17.

88

(a) (b)

(c) (d)

(e)

Figure 5.16: The frequency characteristics of the Lorenz system for various values

of β and ω. Spectra for ω = 500 are shown for each value of β. The red line in the

spectra indicates 500Hz.

89

Figure 5.17: The spectral evolution of x in the Lorenz system as β is increased

over time. ω = 500, ρ = 28, σ = 10.

5.3.8 Note: Chaotic Amplitude Envelopes and LFOs

Chaotic systems for the use of automatic parameter control in computer

music has been and continues to be an active research topic. Often this takes

the form of organizing compositional parameters [Spa15]. But the use of chaotic

oscillators in the analog synth-style context of LFOs and amplitude envelope gen-

erators is not well studied. Again, because we have nuanced, real-time control over

frequency and the ‘chaos-ness’ of the output, we may say this is a special applica-

tion of dynamical systems in music that this programming paradigm affords and

which others do not.

To use either the Lorenz system or the Chua circuit as an LFO is trivial,

simply set the desired, low frequency, and scale appropriately. In the case of an

envelope generator, there is more work to do. The primary challenge we face is

that both oscillators wiggle between orbits that are on either side of 0. This poses

a problem because amplitude envelopes are only positive. Thus, if we wish to

throttle the chaos lever during an envelopes lifetime, we would either have to start

a non-zero initial value (for the envelope) or else add the output to a traditional

envelope generator such as an ADSR (attack, sustain, decay, release) envelope – a

kind of carrier, modulator situation.

In the case of the Lorenz system (5.30, the parameter ρ gives us a convenient

means for accomplishing this. Recall that when ρ < 1 a Hopf bifurcation occurs

and the state of all the variables go to 0 [Spa12]. Thus, if we use the conventional

90

Figure 5.18: A conventional ADSR envelope super imposed on one that is added

to the scaled output of a Lorenz system. The end ramps move the system states

to 0 through the parameter ρ.

envelope generator’s attack ramp to move ρ from 1 to 28 and the release ramp

to do the opposite, we can safely move in and out of chaotic oscillations during

the sustain period whilst ensuring a start from and return to 0 at the ends of the

envelope. This is illustrated in Figure 5.18.

5.4 Concluding Remarks

Dynamical systems are tricky business. They are unpredictable, often un-

stable, and can be infuriatingly counter-intuitive. However, there are a wide variety

of applications for using dynamical systems in computer music. It is good and right

to experiment with using these tools in computer music, even if they are seldom

within the total control of the musician that wields them.

The technique of Unsampled Digital Synthesis is an approach that makes

this possible. Because it removes the audio sample as the basic unit of time, it also

makes possible enacting synthesis networks that have zero delay feedback loops.

In order to experiment these synthesis routines and to adjust their param-

eters in real-time, a generally ‘plug-in-able’ but specifically ‘UDS-ish’ audio sched-

uler called timelab was written in C. It allows for the creation of UDS networks

and the computation of their output. It is also written with an eye to maximum

compatibility and diversity of employment.

91

Future work on timelab includes the continuing development of code itself,

ensuring that it is as robust as it hopes to be, and developing higher level tools to

speed up the development of UDS routines.

Furthermore, all the systems shown here are based on differential equations.

There are many systems, however, that we may wish to model that are implicit and

nonlinear, but are not expressible through ODEs alone. A family of such examples

are the Koren models for vacuum tubes [Kor96]. These models have been digitized

using techniques that involve unit delay such as WDFs [PK10] and FDTD schemes

[MS10]. This is a prime candidate for implementation through UDS, but since

the model contains implicit relations that are not expressed through differential

equations, and since timelab does not currently have the machinery to compute

implicit equations that are not differential, we can not currently implement it.

There are many models left to explore. Hopefully this work can continue

and will be taken up by others. What is most desirable is an editable, real-time

patching environment for designing topologies of gains, integrators, sums, and non-

inear functions. This would greatly speed the development cycle for experimenting

with dynamical models and provide a means of doing so for musicians who are not

C programmers.

This chapter contains material that originally appears in ‘David Medine.

Dynamical systems for audio synthesis: Embracing delay free loops. Applied Sci-

ences, 2016’.

Chapter 6

Sound Examples and Discussion

In this chapter we present a number of soundfiles illustrating some of the

existing sounds that have been generated using UDS via timelab. A description

of each sound example and why it sounds the way it does accompanies the audio

examples. The manner of this discussion is very much modeled on the PhD thesis

of Richard Boulanger [Bou86]. A notable difference between the present study and

the previously mentioned work of Boulanger is that there, the author contextualizes

the meaning of his sounds in the language of 20th Century Western compositional

theory and works. Here we choose a context for musical discussion that draws less

from such traditions.

It would be possible (although exceedingly difficult) to ‘explain’ the behav-

ior discussed below with mathematical analysis of the systems. That is to say,

one could systematically explore the entire space of parameter combinations for

each system and compute flow diagrams and points where Hopf bifurcations occur.

However, in addition to being cumbersome to present, such an analysis would not

be of much practical use as a means of describing a set of tools intended for musi-

cal applications. For one thing, many of the examples below (being the output of

dynamical systems) demonstrate unpredictable and chaotic behavior. This can be

considered a good feature or as a hurdle.

Sometimes unpredictability is not a good thing. This is particularly true in

the case of physical modeling and VA applications. In those cases the user wants

stability and full control over the behavior of the system. However, this author is

92

93

far more interested in the unstable and the unpredictable (which is exciting) than

the development of well behaved computer emulations of mechanical and analog

systems (which is commercially viable).

Furthermore, many mechanical instruments are in fact highly unstable, non-

linear dynamical systems. It is the expertise of the player of a violin that makes

the violin sound beautiful and clean. The system itself is anything but—a fact

to which any parent of a child learning the violin can attest. However, the very

richness and potential beauty of such instruments is related to the instability of the

system. The following statement is certainly tangential from most of this thesis,

but it is the opinion of some, the present author included, that the very act of

controlling an unstable musical instrument (which is primarily an act of listening)

is in and of itself a musically interesting process–indeed a process that underlies

(to some extent) any musical endeavor.

Thus the aim of this chapter is to give a whiff of what it is like to deal with

these systems and what kinds of sounds and behaviors they tend to produce.

6.1 Reciprocal FM Examples

In order to represent the nature of the UDS algorithms (or ‘patches’) that

the sound examples demonstrate, we shall resort to signal flow diagrams such

as the one in Figure 1.1. Such diagrams are useful for explaining the nature of

systems. Furthermore, this a convenient visual form of representation for the

creation and defining of UDS routines. Indeed it is a natural extension of the work

currently presented here to develop a software layer for organizing the basic atomic

elements of a UDS routine (gains, nonlinear functions, and integrators) in such a

representations that can then be used to automatically generate the code which

represents the same routine in the parlance of timelab. This is left to the general

heading of ‘future work’.

94

Figure 6.1: Signal flow diagram for a two oscillator reciprocal FM network.

6.1.1 Harmonic Reciprocal FM

As a first example, we examine a reciprocal FM network involving two

oscillators. The signal flow diagram for this routine is given in Figure 6.1. The

mathematical expression of this system for the general case of n oscillators was

given in Equations 5.12 and 5.13. In the case of 2 oscillators, this is:

ẏ1 = (ω1 + α11x1 + α12x2)x1

ẋ1 = −(ω1 + α11x1 + α12x2)y1

ẏ2 = (ω2 + α11x1 + α12x2)x2

ẋ2 = −(ω2 + α11x1 + α12x2)y2.

(6.1)

This is a nonlinear system as it is quadratic in x and y. If we were to couple

more oscillators in this manner (there can be N of them up until the CPU limit is

reached), the order of the system will be N .

Shown in Figure 6.2 are the time series and spectrograms for the two os-

cillators in Sound Recordings 1-4. The timeline of the parameter specification is

as follows. To start the left channel oscillator is at f1 = 440 Hz and the right is

at f2 = 220 Hz. Here f = 2πω—the conversion from angular frequency to cycles

per second. During the first 5 seconds, the modulation index from oscillator 2 to

oscillator 1, α21 is raised from 0 to 10,000 (event A). Over the next 2 seconds,

nothing changes. For 5 seconds after this, the modulation index from 1 to 2, α12,

increases from 0 to 5000 (event B). Then there is another 2 second hiatus of pa-

rameter adjustment. Following this, α12 climbs from 5000 to 7000 over another 5

second period (event C). After 2 seconds, α21 is returned to 0 and α12 is returned

to 0 2 seconds after this (events D and E).

95

(a) φ = 0 (b) φ = π/2

(c) φ = π (d) φ = 3π/2

Figure 6.2: Time and spectral series for Sound Recordings 1-4.

96

The only parametric difference in these examples is the initial phase of the

oscillator 1. In this case, oscillator 1 begins at φ = 0 for Sound Recording 1,

φ = π/2 for Sound Recording 2, φ = π for Sound Recording 3, and φ = 3π2 in

Sound Recording 4.

These sounds in and of themselves are not particularly rich or even very

interesting. However, they serve to illustrate some important features of such a

network. One thing to notice is that in the case of harmonic reciprocal FM, once

the feedback loop is completed (event B), the oscillators unite in frequency almost

immediately. The harmonic content is different, but the fundamental frequency

becomes synchronized.

Also, the initial phase is very important to the behavior of the system. It is

evident that there are points in the examples that the oscillators suddenly jump to

a higher frequency immediately after a sudden dip down in frequency. These are

clearly points of bifurcation. The point in time at which this bifurcation appears

is different in each example due the initial phases (except for Sound Recording

3 in which this bifurcation does not occur). For example in Sound Recording 1

and 2, the bifurcation appears twice near the middle of event B, whereas in Sound

Recording 2, the system bifurcates approximately one third of the way through

event C.

There are other differences as well. The fundamental frequency of the sys-

tem is different in each case, as is the region on the unit circle that each oscillator

occupies in the high frequency (post-bifurcation) regime.

To clarify this last point, it is important to note that the views of the

time series in Figure 6.2 is 1 dimensional across time, but each oscillator shown in

Equation 6.1 is 2d. Since the system retains its energy throughout, the oscillation,

the complex amplitude is always 1.

To illustrate this, we may examine both the x and y values given in equation

6.1. In Figure 6.3 we see that at the very beginning of the sequence of events

both oscillators phase plots are on the edge of the unit circle. Midway through

the examples, the oscillators still cling to the edge of the circle, but due to the

dynamics of the system, they occupy only a portion of the circle, retracing their

97

(a) Sound Recording 3. (b) Sound Recording 4.

Figure 6.3: A closer look at the time series for oscillators 1 and 2 at the very

beginning of event A and after the bifurcation has occurred.

phases in a pattern prescribed by the initial phases and the progression of the

parameters throughout the examples.

An interesting feature of Sound Recordings 1-4 is that the reciprocal feed-

back synchronizes the fundamental frequency of the oscillators. This is the so-called

high frequency regime.

6.1.2 Harmonic FM With FBFM

In Sound Recording 5 the left channel oscillator is again given a frequency

of ω1/2π = f1 = 440 Hz, the right ω2/2π = f2 = 220. Throughout the first 5

seconds (event A), the modulation index α21 (the index of oscillator 2 to oscillator

1) ramps from 0 to 10,000. The classical FM sound is apparent. After 2 seconds,

the modulation index α22 (from oscillator 2 to itself) is increased from 0 to 1000

over the course of 2.5 seconds (event B). This sound is sustained for 2 seconds at

which the same parameter (α22) is ramped from 1000 to 1500 over the next 2.5

seconds (event C). When this value reaches about 1300, we reach a bifurcating

point. At this point, the output of oscillator 2 becomes a constant value, that

is its oscillation is completely squelched by its own output’s contribution to its

frequency via its modulation index. Again, we can see that this is correct behavior

and not an artifact due to the fact that the oscillator will return to its original

frequency and amplitude when the modulation parameters return to 0. At event

98

Figure 6.4: Time and spectral series in Sound Recording 5.

D (16 seconds in) α21 returns to 0 and 2 seconds later (event E), α22 returns to 0.

The time series and spectrogram of this example is shown in Figure 6.4.

One notable feature is that the left channel sound demonstrates an inharmonic

spectrum and as well as low frequency pulsing as a result of the feedback FM

(FBFM) in oscillator 2. Another is that oscillator 2 is eventually held still as a

result of the 0 delay feedback FM. At this point, of course, oscillator 1 loses all of

its harmonics since it is effectively unmodulated. Again, once the FM coefficients

revert to 0, the oscillators return to their original unmodulated regimes indicating

a perfect preservation of energy throughout the course of the parameter changes.

6.1.3 Inharmonic FM

We here present an example of inharmonic FM in a reciprocal network.

In Figure 6.5 the left and right channels show y1 and y2 for a network given by

Equation 6.1. This corresponds to Sound Recording 6. The frequency of oscillator

1 is 440 Hz and 273 for oscillator 2. The value of α21 is held constant at 5k, and

the value of α21 between 0 and 20k. This is shown as a black line in the upper

plots of Figure 6.5, although the value is scaled so that it can be superimposed on

the image of the waveform. The FBFM indices (α11 and α22) are both 0.

The value of α21 is given as a triangle wave with a frequency of 1/6 Hz and

amplitude range of 0 to 2k. After 4.5 oscillations, it remains at its upper peak for 2

99

(a) (b)

Figure 6.5: Time and spectral series for Sound Recording 6.

Figure 6.6: Signal flow diagram for a two oscillator reciprocal FM network.

seconds. It is evident that in the 3rd and 4th periods of the parameter adjustment,

the oscillators fall into the high frequency regime (the oscillators become united

in frequency at these points). It is notable that this happens for different values

of α21. It is also notable that this regime is reached on the downward slope of α21

in its 1st and 3rd periods; and, that the regime is reached again during the steady

state of α21 at the end of the example.

6.2 Reciprocal Sync and FM

We now consider a two oscillator network such as the one given in Figure

6.6. This is the same network as the one shown in Figure 6.1,but with the addition

of the nonlinear sync rule. Mathematically, the dynamics of the network is defined

100

thus:

ẏ1 =

(ω1 + α11x1 + α12x2)x1 if x2 < θ1

g1(0− y1) if x2 ≥ θ1

ẋ1 =

−(ω1 + α11x1 + α12x2)y1 if x2 < θ1

g1(−1− x1) if x2 ≥ θ1

ẏ2 =

(ω2 + α11x1 + α12x2)x2 if x1 < θ2

g2(0− y2) if x1 ≥ θ2

ẋ2 =

−(ω2 + α11x1 + α12x2)y2 if x1 < θ2

g2(−1− x2) if x1 ≥ θ2.

(6.2)

Sound example Sound Recording 7 illustrates the kind of behavior that can

be generated by varying the parameters in Equation 6.2. A spectrogram of y1

and y2 are shown in Figure 6.7. In this example the frequency of oscillators 1

and 2 are 440 and 550 Hz, respectively. In event A, α12 increases from 0 to 5000

in 2.5 seconds. 2.5 seconds later (event B), α21 is increased from 0 to 3000 over

2.5 seconds (reciprocal FM). Event C initiates a 2.5 second period over which θ1

decreases from 1.2 (well above the amplitude of the oscillator) to .5, initiating a

sync regime. 2.5 seconds later, at event D, θ2 likewise decreased from 1.2 to .5.

Event E reduces the modulation from oscillator 1 to 2 (α12) from 5000 to 0 over

2.5 seconds. Another 2.5 seconds of no parameter changes go by. Then, at event

F, the FM coefficient α21 is brought back down to 0 (again, over the course of

2.5 seconds). Event G initiates a further reduction in θ1 from 50 to 4. 2.5 more

seconds pass with no changes, then (event H) θ2 is also reduced to 4. 12.5 seconds

pass with these parameters held fixed.

At event E, both reciprocal FM and reciprocal sync are in full effect. The

result is a highly chaotic pair of oscillators that intermittently lock in and out of

oscillating regimes. Both the pitch and the timbre jumps about wildly. Again, a

notable effect is the fusion and fission of the hard panned oscillators. As in the

earlier examples, reciprocal FM locks the frequencies of the oscillators together.

Although the harmonics have different strengths, they are harmonic (and thus also

equal in pitch) for both cases. The introduction of a sync threshold destroys this

101

Figure 6.7: The left and right channels for the y in Sound Recording 7.

fusion. But when the reciprocal sync circuit is completed (both θ1 and θ2 are

below 1) the oscillators are mutually dependent in frequency and behavior and

perceptually somewhat united.

6.2.1 Reciprocal FM/Sync Sketches

Sound Recordings 8-10 illustrate a variety of sounds that can be made

simply with two oscillators in a reciprocal FM/sync structure as shown in Figure

6.6. In all three examples only the FM indices, sync thresholds, and frequencies

of the oscillators were adjusted. There was no post processing apart from fades in

and out.

Sound Recording 8 is a free form improvisation and serves to show the range

of sounds that such a structure can create. The sudden leaps between of highly

chaotic noises to clear high frequency hits that occur in the section beginning

around 3:30 was made by placing the oscillators in tight reciprocating loops and

quickly ramping the oscillator of one of the oscillators from the low hundreds of

Hertz to several thousands of Herz.

Sound Recording 9 is a low frequency process. There are some other minor

parameter adjustments, but essentially the oscillators are very near each other in

frequency, α21 is kept low, and α12 is slowly ramped from 0, to 60,000 and back.

On the way back down, oscillator 1 is slave to oscillator 2 in the sync regime.

Sound Recording 10 is about high frequencies. Here, both α12 and α21 are

non-zero and ω1 ∗ 2π is 2500 Hz. Oscillator 2 alternates between slaving to both

102

Figure 6.8: Digital biquad filter in direct form II.

oscillator 1 and itself and slaving only to oscillator 1. When the oscillator is slaving

to itself, its movement is highly squelch. It is only able to move in short impulse-

like bursts. When this sync rule is removed, it is still highly restricted, but has

more of a voice. During these periods, α12 and ω2 are adjusted.

The adjustment of parameters in all 3 examples were improvised (with the

exception of the slow automatic ramping of α12 in Sound Recording 9). These

examples are studies in the sonic nature of this highly chaotic network. From the

space of all sounds that such a network can create, nearly everything is represented

in these three examples. However, the fine grained behavior of the sounds is

extremely unpredictable. Through listening and familiarity with the network, one

can only somewhat control the output.

6.3 Moog Filter Examples

We begin with an example that illustrates the ‘sound’ of the UDS imple-

mentation of the Moog ladder filter, Sound Recording 11. The input to the filter

here is a 100 Hz sawtooth wave. The cutoff frequency is swept between 0 Hz, 2.5

kHz and back in 10 second intervals. There are 4 passes, at the first the parame-

ter r in Equation 5.16, is 1, then 2, then 3, and finally 3.9. This is the feedback

parameter that controls the bandwidth of the filter. For lower values, this param-

eter causes the filter to have a low-pass characteristic. As it increases, the filter

becomes a band-pass filter. Once r reaches 4, the filter self oscillates.

103

Figure 6.9: Signal flow diagram for the UDS Moog filter; fnl(x) = tanh(x).

6.3.1 UDS Block Diagram Representation

It is often convenient to represent digital audio pipelines in terms of block

diagrams. This is commonly done, especially in describing digital filter topologies.

Consider, for example, the oft seen depiction of a digital biquad filter in direct from

II (Figure 6.81). This is a more specific language of signal flow than the ones we’ve

seen thus far in that one can infer the actual difference equation from inspecting

the diagram itself. Borrowing from this symbology, we may draw UDS algorithm

topologies. To accomplish this we introduce a symbol to show integration (
∫

) and

a black box to indicate a nonlinear function (fnl). With this repertoire of symbols,

the Moog filter depicting the system given by the Equations 5.15 and 5.16 is easily

constructed (Figure 6.9). In this case, the nonlinear function is a smooth clipping

function (fnl = tanh) and is depicted graphically as such in the diagram.

1Taken from Wikipedia, https://en.wikipedia.org/wiki/Digital filter#/media/File:Biquad
filter DF-II.svg

https://en.wikipedia.org/wiki/Digital_filter#/media/File:Biquad_filter_DF-II.svg
https://en.wikipedia.org/wiki/Digital_filter#/media/File:Biquad_filter_DF-II.svg

104

Figure 6.10: Signal flow diagram for an extended UDS Moog filter; the dots stand

in for N − 2 identical stages.

6.3.2 A Time Varying Filter

One of the nice things about the Moog ladder filter given in Equations 5.16

and 5.15, as opposed to any LTI filter is that it is time varying. As any analog

synthesizer owner knows, filters sound best when they are modulated with other

audio signals. Implementing the Moog filter using UDS puts us in a position to

use it this way.

Sound Recording 12 gives an impression of some of the games that one can

play with a time varying filter such as this. The input is again a 100 Hz sawtooth

wave. Various other oscillators are used to control the frequency and amplitude

of the cutoff frequency. Throughout this example, the value of r was adjusted by

hand between .01 and 10 (which is well beyond the saturation point).

6.3.3 Extensions

This representation immediately suggests modifying the filter simply by

adding stages. In Figure 6.10, we have a more general form of that shown in

Figure 6.9. Not only are there N stages, each stage can be fed back into the input

with a unique rn resonance parameter. Furthermore, the gain factor ωn is also

generalized so that it is unique and controllable at each stage of the filter.

Sound Recordings 13 and 14 illustrate the sounds of a structure such as the

one in Figure 6.10 with 8 stages. In example 8a, the input is a 100 Hz sawtooth and

the cutoff frequency for each stage (which is now an independent control in Figure

105

(a) (b)

Figure 6.11: Spectrograms of Sound Recordings 13 and 14.

6.10) is swept between 0 and 2.5 kHz as in example 6. However, the resonance

parameters (r0 through r7) are as follows: r1 = −1, r2 = −1, r3 = 2, r4 = .5,

and all the rest are 0. In this configuration, the filter takes on multiple resonances

and the output (which we read off of the 4th stage) will chaotically jump between

them.

This behavior is clarified in Sound Recording 14 which has the same reso-

nance parameters, but the cutoff frequency at each stage is held fixed at 800 Hz.

When the cutoff frequency sweeps, the resonance jumping comes off as a kind of

roughness to the sound. It is also notable that there is a significant flattening to

the sound. Spectrograms for these examples are given in Figure 6.11.

6.4 Chaotic Oscillators

In Section 5.3.5 we saw a nonlinear noisebox that was partially inspired by

previous use of the Chua circuit in physical modeling. We also saw some analysis

of the unadulterated Chua circuit model with the addition of a frequency throttle.

The next section showed a similarly frequency controllable Lorenz attractor. The

following sound/signal flow diagrams refer to these examples.

106

Figure 6.12: Signal flow diagram for Sound Recording 15.

6.4.1 Chua-inspired Nonlinear Noisebox

Sound Recording 15 is the realization of the system given by Equation 5.29

with g(x) given by Equation 5.28. Essentially this is a cubic nonlinear oscillator

with a controllable frequency parameter, ω. The signal flow diagram for such a

circuit is shown in Figure 6.12.

In the sound example all the parameters are held fixed except for the value

of a in Equation 5.28: ω = 75, α = 2.3, β = .03, and b = −.65. The value of a is

swept from 1 to 60 over the course of 100 seconds.

This gives a taste of the kinds of horrible noise that such a noisebox can

generate. There is a great deal of high frequency content in the sound, and aliasing

is a strong feature. There are times, though, that the oscillator will settle into a

somewhat harmonic regime.

It should also be noted that this system is highly unstable. Furthermore

the realm of stability in the system is dependent on the rather complex feature

space. Being a chaotic system, the direction from which vectors in the parameter

space are approached, and the state of the oscillator at the time the parameters

are attained will effect the output significantly.

Such a system is a good example of a viable application for UDS. Indeed

this is a highly chaotic and unstable system, but there are some real sonic gems in

there if one is willing to hunt for them. ‘Practice’ controlling such an instrument

is not a fruitless endeavor. Of course, the method of controlling such a noisemaker

is an enormous and open ended question.

107

Figure 6.13: Signal flow diagram for example 10.

Figure 6.14: Spectrograms for Sound Recording 16.

6.4.2 Audition of the Chua Circuit

Sound Recording 16 is a 3 channel soundfile that illustrates the plain old

Chua circuit in action. Recorded in the file is the x, y, and z values as they

change over time. The amplitude was attenuated by a factor of 0.025 in order

to keep the amplitude safely between -1 and 1 (which is necessary for digital to

analog conversion). The circuit itself (in UDS signal flow parlance) is shown in

Figure 6.13. the system itself is given in Equation 5.23 with the exception that

each node is multiplied by the frequency throttle parameter ω. In the example,

the parameters in this example are those given in Section 5.3.5. The value of ω is

ramped between 0 and 6000 over the course of 45 seconds. Spectrograms for each

variable in the system (x, y and z) are shown in Figure 6.14.

This sound is fairly interesting, but the system itself maintains limit cycles

108

Figure 6.15: Signal flow diagram for Sound Recording 17.

only in a fairly narrow band of parameter space. This means that the texture,

while rich, can not be greatly varied. Of course, the chaoticness of the oscillator

(and the fact that it has 3 mutually dependent, chaotic outputs suggest that this

is a good candidate for use as an LFO.

6.4.3 Lorenz Systems

Figure 6.15 demonstrates the system given by Equation 5.30 with the ad-

dition of the frequency throttle parameter ω which multiplies each node of the

system. This is the system that was used to generate the spectrogram in Figure

5.17.

Sound Recording 17 is a 3 channel soundfile that uses the same parameters

as the one used to generate Figure 5.17. In that example, ω = 500, ρ = 28, σ = 10,

and β is swept from .001 to 8/3. That picture also shows only the x dimension

of that system. Sound example 11 is the same only its three channels are each of

the three dimension in the Lorenz system (x, y and z) and the soundfile lasts 50

seconds (the one used to generate Figure 5.17 only lasted 5 seconds).

The other difference is that in order to place the time-varying values of

the state variables in the system in an appropriate range for a DAC, they have

had their DC component removed (through a simple high-pass filter with a cutoff

frequency of 5 Hz) and attenuated by a factor of .025.

109

6.4.4 Remarks Regarding Chaotic Systems

The last three examples show highly nonlinear systems. In the case of the

last two, these are also three dimensional systems. All of them are chaotic. One

issue that arises when working with such ‘extreme’ systems for audio synthesis is

that the parameter space in which they will maintain limit cycles (oscillations) is

rather narrow. The Chua circuit is particularly rigid in this regard. This poses a

challenge of designing a control mechanism for an instrument incorporating such a

system; namely, how does one restrict the user’s input so that it does not stray from

the ‘sweet spots’ in the parameter space? Another issue is that the variety of sounds

available from such restrictions is also narrow. That doesn’t mean the systems

aren’t rich and useful pieces of larger structures, but these problems are posed.

For these very reasons, musical applications of these models has traditionally been

in generating very slowly changing structures (i.e. formal structures such as section

durations etc.).

6.5 Conclusions

The use of dynamical models in sound synthesis is not well studied. By and

large it is still virgin territory and the above is but a small foray into that realm.

Chapter 7

Final Remarks and Conlcusion

To sum up: we present a technique for audio synthesis that we call unsam-

pled digital synthesis, or UDS for short. The methods comprising the technique

itself (numerical solutions to dynamical systems given by first order ordinary dif-

ference equations) are not new. But, attempting to provide a general framework

for experimenting with such methods in a cohesive manner is new. Furthermore,

(cohesive framework or no) there is not a lot of work being done with such methods

in the realm of digital audio synthesis anyway.

This is odd. After all, many tried and true nonlinear models that are

familiar in the computer music literature incorporate dynamical systems. However,

usually such models try to linearize and discretize the system prior to the solution

stage: that is to say, such systems are often forced into the template of an LTI

system with a special case nonlinear modification at some point. This is the case

with nonlinear modifications to digital waveguides and linear wave digital filters.

While UDS is not general enough to cover all nonlinear systems (specifically

it does solve for implicit equations) it does provide a cheap, straight forward, and

meaningful avenue to experiment with a large subset of all nonlinear and implicit

systems, namely those that are of the form given in Equation 1.1 or those like it

of higher dimensions.

Obviously, incorporating tools for handling implicit equations is a desirable

extension of what we have here. On the other hand, the light-weight-ness of UDS

it is part of its virtue and implicit solvers would obliterate this feature–at least for

110

111

the time being.

The question remains: what is the subset of such systems that makes sound?

We provide a short list and demonstrate that these are powerful tools. However,

more work needs to be done.

With the aim of accomplishing this, there are several techniques. One is

experimentation through trial and error, naively getting a feel for what works and

what doesn’t all the while using one’s ears as a guide. To this end, expressing

dynamical systems as signal flow diagrams such as the ones shown in the previous

chapter is a good way to proceed. An application that could allow a user to

‘draw’ systems and translate them into the corresponding timelab code could be a

powerful tool.

Another technique for fleshing this out is to use mathematical tools to

determine the space of systems and the space of parameters within those systems

that produce limit cycles. This is nontrivial to say the least.

Yet another way to develop systems that sound good, is to draw inspiration

from nature. At no point in this thesis is analysis addressed. However, it is not

unreasonable to develop tools that can take sound waves as input and will in turn

output parameterized systems that will produce such oscillations, much the same

way linear predictive coding does.

All of which is to say, there is plenty of work left to do in this area of

research.

And so we come to the end of yet another PhD thesis. Another nugget of

knowledge has been added to the project of human understanding. Its value, if

any, to the world beyond the walls of the mind of the author, and the cloisters of

the University is now free to be proved. As for the greater question (and really

the ultimate question) of from whence the world comes and how it came to be,

we must acknowledge the insight of Witgenstein and be content to know that the

meaning of the world is not contained within the world. That meaning is thus

unknowable to us that reside within the world. Where this all came from and

where it is going is beyond the scope of our understanding; but, at least we now

know how to make a digital noisebox out of interconnected gains, integrators, and

112

nonlinear functions.

Bibliography

[AAA+16] BP Abbott, R Abbott, TD Abbott, MR Abernathy, F Acernese,
K Ackley, C Adams, T Adams, P Addesso, RX Adhikari, et al. Obser-
vation of gravitational waves from a binary black hole merger. Physical
Review Letters, 116(6):061102, 2016.

[AH71] Bishnu S Atal and Suzanne L Hanauer. Speech analysis and synthesis
by linear prediction of the speech wave. The journal of the acoustical
society of America, 50(2B):637–655, 1971.

[Ald08] John Alderman. Sonic boom: Napster, MP3, and the new pioneers of
music. Basic Books, 2008.

[BBMS03] J Bensa, S Bilbao, Kronland R Martinet, and JO Smith. A power nor-
malized non-linear lossy piano hammer. In Proceedings of the Stokholm
Muisc Acoustics Conference, Stokholm, pages 365–368, 2003.

[BDPR00] Gianpaolo Borin, Giovanni De Poli, and Davide Rocchesso. Elimi-
nation of delay-free loops in discrete-time models of nonlinear acous-
tic systems. Speech and Audio Processing, IEEE Transactions on,
8(5):597–605, 2000.

[Bil07] Stefan Bilbao. A digital plate reverberation algorithm. Journal of the
Audio Engineering Society, 55(3):135–144, 2007.

[Bil09] Stefan Bilbao. Numerical Sound Synthesis: Finite Difference Schemes
and Simulation in Musical Acoustics. Wiley Online Library, 2009.

[Bou86] Richard Charles Boulanger. The Transformation of Speech Into Mu-
sic: A Musical Exploration and Interpretation of the Two Recent Dig-
ital Filtering Techniques. University Microfilm International, 1986.

[Bri08] Robert Bridson. Fluid Simulation for Computer Graphics. A K Peters,
Ltd., 2008.

[Bri15] Luke Morgan Britton. Millenials push 2015 vinyl sales to 26-year high
in us. New Music Express, November 2015.

113

114

[CA84] Lothar Cremer and John S Allen. The physics of the violin. MIT
press Cambridge, MA, USA:, 1984.

[Cho73] John M Chowning. The synthesis of complex audio spectra by means
of frequency modulation. Journal of the Audio Engineering Society,
21(7):526–534, 1973.

[Cho77] John M Chowning. The synthesis of complex audio spectra by means
of frequency modulation. Computer Music Journal, pages 46–54, 1977.

[CKEI92] Leon O Chua, Ljupco Kocarev, Kevin Eckert, and Makoto Itoh. Ex-
perimental chaos synchronization in chua’s circuit. International Jour-
nal of Bifurcation and Chaos, 2(03):705–708, 1992.

[Coo90] Perry R. Cook. Identification of Control Parameters in an Articula-
tory Vocal Tract Model, with Applications to the Synthesis of Singing.
PhD thesis, Stanford, 1990.

[d’A73] J. l. R. d’Alembert. Investigation of the curve formed by a vibrat-
ing string, 1747. In R. B. Lindsay, editor, Acoustics: Historical
and Philosophical Development, pages 119–123. Stroudsburg: Dow-
den, Hutchinson & Ross, 1973.

[Dal12] Paul Daly. A comparison of virtual analogue moog vcf models. Mas-
ter’s thesis, University of Edinburgh, 2012.

[Dan13] Roger Dannenberg. Principles for effective real-time music processing
systems, May 2013.

[DDHZ11] P. Dutilleux, K. Dempwolf, M. Holters, and U. Zölzer. Nonlinear pro-
cessing. In Udo Zölzer, editor, DAFX: Digital Audio Effects, Second
Edition. John Wiley & Sons, 2011.

[DHZ10] Kristjan Dempwolf, Martin Holters, and Udo Zölzer. Discretization of
parametric analog circuits for real-time simulations. In Proceedings of
the 13th International Conference on Digital Audio Effects (DAFx10),
2010.

[DJ97] Charles Dodge and Thomas A Jerse. Computer music: synthesis,
composition and performance. Macmillan Library Reference, 1997.

[Fet71] Alfred Fettweis. Digital filters related to classical structures. AEU:
Archive f\” ur Elektronik und\” Ubertragungstechnik, 25:78–89, 1971.

[Fet86] Alfred Fettweis. Wave digital filters: Theory and practice. Proceedings
of the IEEE, 74(2):270–327, 1986.

115

[Gea71] C William Gear. Numerical initial value problems in ordinary differ-
ential equations. Prentice Hall PTR, 1971.

[GW79] John Guckenheimer and Robert F Williams. Structural stability of
lorenz attractors. Publications Mathématiques de l’IHÉS, 50:59–72,
1979.

[HHH89] Paul Horowitz, Winfield Hill, and Thomas C Hayes. The art of elec-
tronics, volume 2. Cambridge university press Cambridge, 1989.

[Hof02] Abbie Hoffman. Steal this book. instinct. org, 2002.

[HR71] Lejaren Hiller and Pierre Ruiz. Synthesizing musical sounds by solving
the wave equation for vibrating objects: Part 1, part 2. Journal of
the Audio Engineering Society, 19(6):462–470, 542–551, 1971.

[HSS00] Patty Huang, Stefania Serafin, and JO Smith. A waveguide mesh
model of high-frequency violin body resonances. In Proc. 2000 Int.
Computer Music Conf., Berlin, 2000.

[Huo04] Antti Huovilainen. Nonlinear digital implementation of the moog lad-
der filter. In Proc. Int. Conf. on Digital Audio Effects (Naples, Italy,
October 2004), pages 61–4, 2004.

[JLK+84] L Jackson, A Lindgren, Y Kim, et al. A chaotic attractor from chuas
circuit. IEEE Trans. Circuits Syst, 31(12):1055–1058, 1984.

[JS83] David A Jaffe and Julius O Smith. Extensions of the karplus-strong
plucked-string algorithm. Computer Music Journal, 7(2):56–69, 1983.

[KE04] Matti Karjalainen and Cumhur Erkut. Digital waveguides versus finite
difference structures: Equivalence and mixed modeling. EURASIP
Journal on Applied Signal Processing, 2004:978–989, 2004.

[KES03] Matti Karjalainen, Cumhur Erkut, and Lauri Savioja. Compilation
of unified physical models for efficient sound synthesis. In Acoustics,
Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). 2003
IEEE International Conference on, volume 5, pages V–433. IEEE,
2003.

[KL62] John L Kelly and Carol C Lochbaum. Speech synthesis. Proceedings
of the Fourth International Congress on Acoustics, Copenhagen, pages
1–4, 1962.

[Kor96] Norman Koren. Improved vacuum tube models for spice simulations.
Glass Audio, 8(5):18–27, 1996.

116

[Lor63] Edward N Lorenz. Deterministic nonperiodic flow. Journal of the
atmospheric sciences, 20(2):130–141, 1963.

[LR11] Jaime E Oliver La Rosa. A Computer Music Instrmentarium. PhD
thesis, University of California, San Diego, 2011.

[LR12] Jaime E Oliver La Rosa. Theremin in the press: Construing electrical
music. 2012.

[Mad93] Rabinder N Madan. Chua’s circuit: a paradigm for chaos, volume 1.
World Scientific, 1993.

[Mat63] M. V. Mathews. The digital computer as a musical instrument. Sci-
ence, 142(3592):pp. 553–557, 1963.

[McC12] James McCartney. SuperCollider and time, September 2012.

[Med13] David Medine. Timelab: Yet, yet another audio programming envi-
ronment. In Proceedings of the International Computer Music Con-
ference, Perth, 2013.

[Med16] David Medine. Dynamical systems for audio synthesis: Embracing
delay free loops. Applied Sciences, 2016.

[MMR74] Max V Mathews, FR Moore, and JC Risset. Computers and future
music. Science, 183:263–268, 1974.

[MNH01] Damian T Murphy, Chris JC Newton, and David M Howard. Dig-
ital waveguide mesh modelling of room acoustics: Surround-sound,
boundaries and plugin implementation. In Proceedings of the COST
G-6 Conference on Digital Audio Effects (DAFx),(Limerick, Ireland),
2001.

[Moo65] Robert A Moog. A voltage-controlled low-pass high-pass filter for
audio signal processing. In Audio Engineering Society Convention 17.
Audio Engineering Society, 1965.

[Moo90] F. Richard Moore. Elements of Computer Music. Prentice Hall, 1990.

[MQ08] Don Morgan and Sanzheng Qiao. Accuracy and stability in mass-
spring systems for sound synthesis. In Proceedings of the 2008 C 3 S
2 E conference, pages 69–80. ACM, 2008.

[MS03] Max Mathews and Julius O Smith. Methods for synthesizing very high
q parametrically well behaved two pole filters. In Proceedings of the
Stockholm Musical Acoustics Conference (SMAC 2003)(Stockholm),
Royal Swedish Academy of Music (August 2003), 2003.

117

[MS09] Jaromir Macak and Jiri Schimmel. Nonlinear circuit simulation using
time-variant filter. Proc. of the International Conference on Digital
Audio Effects (DAFx), 2009.

[MS10] Jaromir Macak and Jiri Schimmel. Real-time guitar tube amplifier
simulation using an approximation of differential equations. In Pro-
ceedings of the 13th International Conference on Digital Audio Effects
(DAFx10), 2010.

[MW79] ME McIntyre and J Woodhouse. On the fundamentals of bowed-string
dynamics. Acta Acustica united with Acustica, 43(2):93–108, 1979.

[Nor16] Vesa Norilo. Kronos: A declarative metaprogramming language for
digital signal processing. Computer Music Journal, 2016.

[PK10] Jyri Pakarinen and Matti Karjalainen. Enhanced wave digital triode
model for real-time tube amplifier emulation. Audio, Speech, and
Language Processing, IEEE Transactions on, 18(4):738–746, 2010.

[PTK09] Jyri Pakarinen, Miikka Tikander, and Matti Karjalainen. Wave dig-
ital modeling of the output chain of a vacuum-tube amplifier. In
Proceedings of the International Conference on Digital Audio Effects
(DAFx09), pages 1–4, 2009.

[PTP09] Trevor J Pinch, Frank Trocco, and TJ Pinch. Analog days: The
invention and impact of the Moog synthesizer. Harvard University
Press, 2009.

[PTVF96] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P
Flannery. Numerical recipes in C, volume 2. Citeseer, 1996.

[Puc96] Miller Puckette. Pure Data: another integrated computer music en-
vironment. Proceedings of the Second Intercollege Computer Music
Concerts, pages 37–41, 1996.

[Puc07] Miller Puckette. The Theory and Technique of Electronic Music.
World Scientific Publishing, 2007.

[Puc12] Miller Puckette. Timeless problems in real-time audio software design,
March 2012.

[PV11] Jussi Pekonen and Vesa Välimäki. The brief history of virtual ana-
log synthesis. In Proceedings of the 6th Forum Acusticum, Aalborg,
Denmark, pages 461–466, 2011.

[PW98] R Pitteroff and J Woodhouse. Mechanics of the contact area between
a violin bow and a string. part ii: Simulating the bowed string. Acta
Acustica united with Acustica, 84(4):744–757, 1998.

118

[RA] Jonatan Pena Ramırez and Joaquın Alvarez. Conditions to synchro-
nize nonlinear oscillators interacting via time-delayed dynamic cou-
pling.

[RG75] Lawrence R Rabiner and Bernard Gold. Theory and application of
digital signal processing. Englewood Cliffs, NJ, Prentice-Hall, Inc.,
1975. 777 p., 1, 1975.

[Ris05] Jean-Claude Risset. Computer study of trumpet tones. The Journal
of the Acoustical Society of America, 38(5):912–912, 2005.

[Roa96] Curtis Roads. The computer music tutorial. MIT press, 1996.

[Rod93] Xavier Rodet. Models of musical instruments from chua’s circuit with
time delay. Circuits and Systems II: Analog and Digital Signal Pro-
cessing, IEEE Transactions on, 40(10):696–701, 1993.

[Ros92] D Rossum. Making digital filters sound analog. In Porceedings of the
International Computer Music Conference, San Jose, pages 30–33,
1992.

[RS11] Lawrence Rabier and Ronald Schafer. Theory and Applications of
Digital Speech Processing. Upsaddle River: Pearson, 2011.

[RW+99] Jean-Claude Risset, David L Wessel, et al. Exploration of timbre by
analysis and synthesis. The psychology of music, 28, 1999.

[SDP99] Augusto Sarti and Giovanni De Poli. Toward nonlinear wave digital
filters. Signal Processing, IEEE Transactions on, 47(6):1654–1668,
1999.

[Ser04] Stefania Serafin. The sound of friction: real-time models, playability
and musical applications. PhD thesis, stanford university, 2004.

[Smi85] Julius Orion Smith. A new approach to digital reverberation using
closed waveguide networks. In Proceedings of the International Com-
puter Music Conference, Vancouver, pages 47–53, 1985.

[Smi96] Julius O Smith. Physical modeling synthesis update. Computer Music
Journal, pages 44–56, 1996.

[Smi10] J. O. Smith. Physical Audio Signal Processing. W3K Publishing, 2010.

[Spa12] Colin Sparrow. The Lorenz equations: bifurcations, chaos, and strange
attractors, volume 41. Springer Science & Business Media, 2012.

[Spa15] Miroslav Spasov. Using strange attractors to control sound processing
in live electroacoustic composition. Computer Music Journal, 2015.

119

[SS96] Tim Stilson and Julius Smith. Analyzing the moog vcf with consid-
erations for digital implementation. In Proceedings of the 1996 Inter-
national Computer Music Conference, Hong Kong, Computer Music
Association, 1996.

[Thé97] Paul Théberge. Any sound you can imagine: Making mu-
sic/consuming technology. Wesleyan University Press, 1997.

[Val05] V Valimaki. Discrete-time synthesis of the sawtooth waveform with re-
duced aliasing. Signal Processing Letters, IEEE, 12(3):214–217, 2005.

[VBS+11] V. Välimäki, S. Bilbao, J. O. Smith, J. S. Abel, J. Pakarinen, and
D.Berners. Virtual analog effects. In Udo Zölzer, editor, DAFX:
Digital Audio Effects, Second Edition. John Wiley & Sons, 2011.

[VDPS94] Scott A Van Duyne, John R Pierce, and Julius O Smith. Traveling
wave implementation of a lossless mode-coupling filter and the wave
digital hammer. In Proceedings of the International Computer Music
Conference, Aarhus, pages 411–418, 1994.

[VH06] Vesa Välimäki and Antti Huovilainen. Oscillator and filter algorithms
for virtual analog synthesis. Computer Music Journal, 30(2):19–31,
2006.

[VNSA10] Vesa Valimaki, Juhan Nam, Julius O Smith, and Jonathan S Abel.
Alias-suppressed oscillators based on differentiated polynomial wave-
forms. Audio, Speech, and Language Processing, IEEE Transactions
on, 18(4):786–798, 2010.

[VPEK06] Vesa Välimäki, Jyri Pakarinen, Cumhur Erkut, and Matti Kar-
jalainen. Discrete-time modelling of musical instruments. Reports
on progress in physics, 69(1):1, 2006.

[vWC03] Maarten van Walstijn and Murray Campbell. Discrete-time modeling
of woodwind instrument bores using wave variables. The Journal of
the Acoustical Society of America, 113(1):575–585, 2003.

[WC+03] Ge Wang, Perry R Cook, et al. Chuck: A concurrent, on-the-fly au-
dio programming language. In Proceedings of International Computer
Music Conference, pages 219–226, 2003.

[Wei95] Reynold Weidenaar. Magic music from the telharmonium. Reynold
Weidenaar, 1995.

[WNSIA15] KJ Werner, V Nangia, JO Smith III, and JS Abel. Resolving wave
digital filters with multiple/multiport nonlinearities,. submitted to
DAFx, 2015.

120

[WSIA15] KJ Werner, JO Smith III, and JS Abel. Wave digital filter adaptors
for arbitrary topologies and multiport linear elements. submitted to
DAFx, 2015.

[YAS07] David T Yeh, Jonathan Abel, and Julius O Smith. Simulation of
the diode limiter in guitar distortion circuits by numerical solution
of ordinary differential equations. Proceedings of the Digital Audio
Effects (DAFx07), pages 197–204, 2007.

[Yeh09] David Te-Mao Yeh. Digital implementation of musical distortion cir-
cuits by analysis and simulation. PhD thesis, Stanford University,
2009.

[Zho94] Guo-Qun Zhong. Implementation of chua’s circuit with a cubic
nonlinearity. IEEE Transactions on Circuits and Systems-Part I-
Fundamental Theory and Applications, 41(12):934–940, 1994.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Supplemental Files
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Preamble
	`Analog'
	Digitization
	Structure

	A Brief History of Computer Music Techniques
	The Telharmonium
	The Theremin
	Analog Synths
	Digital Synthesis
	The Early Days
	Music N and Csound
	Patching Languages
	Plugins
	Moving Forward
	Conclusions

	Latency, Priority Scheduling, and Control
	Logical and Real Time
	Time Overhead
	Priority Scheduling
	Blocking
	Blocking and Control

	Timelab Specifications
	Structure
	Tl Modules
	Control Messaging
	Audio Signals
	DSP Routines – ADC and DAC
	DSP Routines – tl_UDS_solver
	Summary

	Current Approaches to Real-Time Synthesis
	Digital Filters for Real-Time Audio
	`Traditional' Digital Oscillators

	Nonlinear Real-Time Digital Networks
	Clipping

	Physical Modeling and Virtual Analog
	Digital Waveguides
	Finite Difference Time Domain

	Virtual Analog
	Differentiated Parabolic Waves
	Non Zero Time Delay
	Wave Digital Filters

	Summary

	Unsampled Digital Synthesis and Its Applications
	The Problem as it Stands
	Basic Example
	Eliminating Unit Delay From the Representation

	A Host of Examples
	Frequency Modulation
	Reciprocal Sync
	The Moog Ladder Filter
	A Bowed Oscillator
	Developing a Nonlinear Noisebox
	Direct Audition of Chaos
	Listening to Lorenz
	Note: Chaotic Amplitude Envelopes and LFOs

	Concluding Remarks

	Sound Examples and Discussion
	Reciprocal FM Examples
	Harmonic Reciprocal FM
	Harmonic FM With FBFM
	Inharmonic FM

	Reciprocal Sync and FM
	Reciprocal FM/Sync Sketches

	Moog Filter Examples
	UDS Block Diagram Representation
	A Time Varying Filter
	Extensions

	Chaotic Oscillators
	Chua-inspired Nonlinear Noisebox
	Audition of the Chua Circuit
	Lorenz Systems
	Remarks Regarding Chaotic Systems

	Conclusions

	Final Remarks and Conlcusion
	Bibliography

