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ARTICLE

TIGAR: An Improved Bayesian Tool
for Transcriptomic Data Imputation
Enhances Gene Mapping of Complex Traits

Sini Nagpal,1,11 Xiaoran Meng,2,3,11 Michael P. Epstein,2,3 Lam C. Tsoi,4 Matthew Patrick,5

Greg Gibson,1 Philip L. De Jager,6 David A. Bennett,7 Aliza P. Wingo,8,9 Thomas S. Wingo,3,10

and Jingjing Yang3,*

The transcriptome-wide association studies (TWASs) that test for association between the study trait and the imputed gene expression

levels from cis-acting expression quantitative trait loci (cis-eQTL) genotypes have successfully enhanced the discovery of genetic risk loci

for complex traits. By using the gene expression imputation models fitted from reference datasets that have both genetic and transcrip-

tomic data, TWASs facilitate gene-based tests with GWAS data while accounting for the reference transcriptomic data. The existing TWAS

tools like PrediXcan and FUSION use parametric imputationmodels that have limitations for modeling the complex genetic architecture

of transcriptomic data. Therefore, to improve on this, we employ a nonparametric Bayesian method that was originally proposed for

genetic prediction of complex traits, which assumes a data-driven nonparametric prior for cis-eQTL effect sizes. The nonparametric

Bayesian method is flexible and general because it includes both of the parametric imputation models used by PrediXcan and FUSION

as special cases. Our simulation studies showed that the nonparametric Bayesianmodel improved both imputation R2 for transcriptomic

data and the TWAS power over PrediXcanwhenR1% cis-SNPs co-regulate gene expression and gene expression heritability%0.2. In real

applications, the nonparametric Bayesian method fitted transcriptomic imputation models for 57.8% more genes over PrediXcan, thus

improving the power of follow-up TWASs. We implement both parametric PrediXcan and nonparametric Bayesian methods in a conve-

nient software tool ‘‘TIGAR’’ (Transcriptome-Integrated Genetic Association Resource), which imputes transcriptomic data and performs

subsequent TWASs using individual-level or summary-level GWAS data.
Introduction

Genome-wide association studies (GWASs) have success-

fully identified thousands of genetic risk loci for complex

traits. However, the majority of these loci are located

within noncoding regions whose molecular mechanisms

remain unknown.1–3 Recent studies have shown that these

associated regions were enriched for regulatory elements

such as enhancers (H3K27ac marks)4,5 and expression of

quantitative trait loci (eQTL),6,7 suggesting that the genet-

ically regulated gene expressionmight play a key role in ex-

plaining the etiology of complex traits. Multiple studies

have recently generated rich transcriptomic datasets for

diverse tissues of the human body (besides genotype

data), e.g., the Genotype-Tissue Expression (GTEx) project

for >44 human tissues,6 Genetic European Variation in

Health and Disease (GEUVADIS) for lymphoblastoid cell

lines,8 Depression Genes and Networks (DGN) for whole-

blood samples,9 and the North American Brain Expression

Consortium (NABEC) for cortex tissues.10 Previous

studies11–16 have also shown that integrating transcrip-

tomic data in GWASs can help identify functional loci.
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The majority of GWAS projects do not profile transcrip-

tomic data and thus cannot enable direct integrative anal-

ysis. However, existing studies11,12 have shown that one

can impute the genetically regulated gene expression

(GReX) within such GWAS projects by using reference da-

tasets like GTEx6 and GEUVADIS8 to train gene expression

imputation models, and then test for the association

between imputed GReX for GWAS samples and the trait

of interest—referred to as transcriptome-wide association

studies (TWASs).11,12 Specifically, the gene expression

imputation models are fitted by regressing assayed gene-

expression levels on cis-eQTL genotypes with reference

dataset. For examples, the PrediXcan11 method uses an

Elastic-Net17 variable selection model and the FUSION12

tool implements a Bayesian sparse linear mixed model

(BSLMM)18 to estimate the cis-eQTL effect sizes with refer-

ence dataset. The estimated cis-eQTL effect sizes are then

used to impute the GReX for GWAS samples.

In short, the Elastic-Net17 model used by PrediXcan11

assumes a combination of LASSO19 (L1) and Ridge20 (L2)

penalties on the cis-eQTL effect sizes, which is equivalent

to a Bayesian model with a mixture Gaussian and Laplace
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prior.21 In contrast, the BSLMM18 used by FUSION12 is a

combination of Bayesian variable selection model

(BVSR)22 and linear mixed model (LMM)23 by assuming a

normal mixture prior. Since a parametric prior is assumed

for the cis-eQTL effect sizes by both Elastic-Net and

BSLMM, it restricts the capability of PrediXcan and

FUSION for handling the underlying complex genetic

architecture of transcriptomes. Existing studies11,12 have

also shown that both PrediXcan11 and FUSION12 esti-

mated the average regression R2 (i.e., the percentage of

gene expression variation that can be explained by cis-ge-

notypes) as �5% for human whole-blood transcriptome,

while the average genome-wide heritability of gene expres-

sion in human whole-blood transcriptome is estimated to

be more than double that quantity.24,25

Therefore, to flexibly model cis-eQTL distributions, we

use a nonparametric Bayesian method that was originally

proposed for genetic prediction of complex traits,26 where

the prior for effect sizes is nonparametric and can be esti-

mated from the data by assuming a Dirichlet process prior

on effect-size variance. This Bayesian model is also known

as latent Dirichlet process regression (DPR) model,26 which

can flexibly model the underlying complex genetic

architecture of transcriptomes. Thus, DPR is a more gener-

alized model that includes Elastic-Net (implemented in

PrediXcan11) and BSLMM (implemented in FUSION12) as

special cases. Consequently, DPR can robustly estimate

cis-eQTLs and then improve imputation R2 (the squared

Pearson correlation between the observed and imputed

values on test samples). Moreover, a variational Bayesian

algorithm26–28 can be employed as an alternative of Monte

Carlo Markov Chain (MCMC)29 to efficiently fit the

Bayesian model.

Similar to PrediXcan11 and FUSION12 methods, we

employ DPR to estimate cis-eQTLs effect sizes from a refer-

ence dataset, which can then be used for downstream

TWASs using either individual-level or summary-level

GWAS data. In subsequent sections, we first describe the

DPR26 approach for estimating cis-eQTL effect sizes from

a reference dataset and how we can then use these effect

sizes for a downstream TWAS.We then compare the perfor-

mance of DPR with PrediXcan using both simulated data

and real GWAS and transcriptomic data from the Religious

Orders Study and Rush Memory Aging Project (ROS/

MAP)30–33 for studying Alzheimer disease (AD).

Our in-depth simulation studies demonstrated that the

DPR method obtained higher imputation R2 on test sam-

ples, when R1% cis-SNPs are true causal and the true

expression heritability is %0.2. Consequently, better

imputation R2 resulted in improved power for follow-up

association studies. Meanwhile, application of DPR to the

ROS/MAP study imputed GReX for 57.8% more genes

than PrediXcan. Using DPR, we also found a potentially

associated gene TRAPPC6A for AD pathology indices,

which wasmissed by PrediXcan. Further, by using the tran-

scriptomic imputation models fitted from ROS/MAP data

and summary-level GWAS data generated from the Inter-
The Americ
national Genomics of Alzheimer’s Project (IGAP),34 we

identified three known AD loci34–38 that potentially affect

the late-onsite AD risk through transcript abundance. We

conclude with a discussion of future topics and further

describe our software tool TIGAR (Transcriptome-Inte-

grated Genetic Association Resource) implementing both

parametric Elastic-Net and nonparametric Bayesian DPR

methods for public use.
Material and Methods

Here, we briefly describe the underlying statistical model of gene-

expression imputation. Consider the following linear regression

model for estimating the cis-eQTL effect sizes from a reference

study that has both genetic and transcriptomic data available,

Eg ¼Xwþ ε; ε � N
�
0;s2

ε
I
�

(Equation 1)

where Eg denotes the gene expression levels (after corrections for

confounding covariates such as age, sex, and principal compo-

nents) for gene g, X denotes the genotype matrix for all cis-geno-

types (encoded as the number of minor alleles or genotype

dosages), w denotes the corresponding cis-eQTL effect-size vector,

and ε denotes the error term. The intercept term is dropped in

Equation 1 for assuming both Eg and X are centered at 0. Gener-

ally, SNPs within 1 Mb of the flanking 50 and 30 ends (cis-SNPs)

are included in this regression model and non-zero bw will be

used for follow-up analysis. The GReX will be imputed by

dGReX ¼ Xnew bw ;

with cis-SNP data Xnew for GWAS samples.

Nonparametric Bayesian Method
Following the nonparametric Bayesian DPR model proposed in

previous studies for genetic prediction of complex traits,26 a

normal prior Nð0; s2wÞ is assumed for the cis-eQTL effect sizes

(wi, i ¼ 1,., p) and a Dirichlet process (DP) prior39 is assumed

for the effect-size variance s2
w (as in Equation 1):

wi � N
�
0;s2

w

�
;s2

w � D;D � DPðIGða;bÞ; xÞ: (Equation 2)

The prior distributionD deviates from the DP with base distribu-

tion as an inverse gamma (IG) distribution and concentration

parameter x. Note that s2w can be viewed as a latent variable and

integrating out s2w will induce a nonparametric prior distribution

for wi, which is equivalent to a DP normal mixture model,26–28

wi �
XþN

k¼0

pkN
�
0;s2

k

�
;s2

k � IGðak; bkÞ;pk ¼ nk

Yk�1

l¼0

ð1� nlÞ; nk

� Betað1; xÞ:
(Equation 3)

Here, the nonparametric prior distribution on wi is equivalently

represented by a mixture normal prior that is a weighted

sum of an infinitely number of normal distributions ðNð0; s2
kÞ;

k ¼ 0; .; þ NÞ, corresponding weight pk is determined by (vl,

l ¼ 0,., k) with a Beta prior, and x in the Beta prior (the same

concentration parameter as in Equation 2) determines the

number of components with non-zero weights in the mixture

normal prior. Conjugate hyper priors x � Gammaðax; bxÞ and

s2
ε
� IGðaε; bεÞ are assumed.
an Journal of Human Genetics 105, 258–266, August 1, 2019 259



Generally, the hyper parameters ak; bk; aε; bε in the inverse

gamma distributions can be set as 0.1 and ðax; bxÞ in the gamma

distribution can be set as (1, 0.1) to induce non-informative

priors for ðs2k ; s2ε ; xÞ. That is, the parameters ðs2k ;s2ε ; xÞ will be

adaptively estimated from the data and the nonparametric prior

on wi will be data driven. The posterior estimates for w can be

obtained by the MCMC29 or variational Bayesian algo-

rithm,28,40 from the following joint conditional posterior

distribution

P
�
w;p; n; x;s2

ε
jEg ;X

�
f

P
�
Eg jw;X;s2

ε

�
P
�
w jp;s2

1;.;s2
k ;.

� YþN

k¼0

P
�
s2
k j ak; bk

�!
3

Pðp j nÞPðn j xÞPðx j ax; bxÞP
�
s2
ε
j a

ε
; b

ε

�
:

Particularly, the variational Bayesian algorithm28,40 is an

approximation for the MCMC29 with greatly improved computa-

tional efficiency, which is also used in our tool. Please refer to the

Supplemental Material and Methods for technical details of both

MCMC sampling and variational inference algorithms for obtain-

ing the Bayesian posterior estimates for the cis-eQTL effect sizes.
Elastic-Net and BSLMM Methods
The Elastic-Net model17 (used by PrediXcan11) estimates the cis-

eQTL effect sizes bw in Equation 1 with a combination of L1
(LASSO)19 and L2 (Ridge)20 penalties by

bw ¼ argmin
w

�
kEg �Xwk22 þ l

�
a kwk1 þ

1

2
ð1� aÞ kwk22

��
;

where k$ k 2 denotes L2 norm, k$ k 1 denotes L1 norm, a˛ ½0;1� de-
notes the proportion of L1 penalty, and l denotes the penalty

parameter. Particularly, PrediXcan11 takes a ¼ 0:5 and tunes the

penalty parameter l by a 5-fold cross validation.

As pointed out by previous studies,17,21 the Elastic-Net model

is equivalent to a Bayesian model with a mixture Gaussian

and Laplace (mixture normal) prior for w, that is, pðwÞf
exp

�
� l

�
a kwk1 þ

1

2
ð1� aÞ kwk22

��
. In contrast, the

BSLMM18 assumes a mixture of two normal as the prior for cis-

eQTL effect sizes, wi � pNð0; ðs21 þ s22ÞÞþ ð1� pÞNð0; s22Þ. That

is, the BSLMM18 assumes all cis-SNPs have at least a small effect,

which are normally distributed with variance s22, and some pro-

portion ðpÞ of cis-SNPs have an additional effect, normally distrib-

uted with variance s21. Particularly, with s22 ¼ 0, BSLMM becomes

BVSR,22 and with p ¼ 0, the BSLMM becomes the LMM.23 There-

fore, the DP normal mixture26–28 as assumed by the DPR method

includes the parametric (mixture normal) priors used by Bayesian

Elastic-Net21 and BSLMM18 as special cases, which is the main

reason why DPR is a more generalized model including Elastic-

Net and BSLMM as special cases. This is also why the DPR

method can robustly model complex genetic architecture and

improve the imputation R2.
Association Study with Univariate Phenotype
Given individual-level GWAS data (genotype data Xnew, pheno-

type Y, covariant matrix C) and cis-eQTL effect size estimates bw ,

the follow-up TWAS (using a burden type gene-based test41) is to

test the association between dGReX ¼ Xnew bw and Y based on

the following generalized linear regression model
260 The American Journal of Human Genetics 105, 258–266, August
fðE½Y jX;C�Þ¼hCþ b dGReX: (Equation 4)

Here, f ð $Þ is a pre-specified link function, which can be set as iden-

tity function for quantitative phenotype or set as logit function for

dichotomous phenotype. The gene-based association test is equiv-

alent to test H0 : b ¼ 0 in Equation 4.

If only summary-level GWAS data are available, we can take the

same approach as implemented by the FUSION12 method. Let Z

denote the vector of Z-scores generated by single variant tests

(Wald, likelihood ratio, score tests, etc.) for all cis-SNPs. The

burden Z-score for gene-based association test is defined as

~Z¼ Zcwffiffiffiffiffiffiffiffiffi
Zcwp ¼ Zcwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficw 0

Vcwp ; (Equation 5)

where V denotes the covariance matrix of analyzed SNPs that can

be estimated from training data or reference panels such as 1000

Genomes Project42 (of the same ethnicity).
Association Study with Multivariate Phenotype
To test the association between multivariate phenotypes and

imputed GReX of the focal gene, we take a similar approach as

the MultiPhen method.43 For example, consider two phenotypes

(Y1,Y2) and a covariate matrix C, we first adjust for the covariates

by taking the residuals ðfY1 ; fY2Þ respectively from the linear

regression models Yj ¼ hCþ ε; j ¼ 1;2. Then we test whether

the regression R2 is significantly greater than zero ðH0 : R2 ¼ 0Þ
for the following regression model

dGReXg ¼b1
fY1 þ b2

fY2 þ ε: (Equation 6)

That is, we test whether the multivariate phenotypes can jointly

explain a non-zero percentage of variance in the imputed GReX.

The p value can be calculated by using the F-statistic for the regres-

sion R2 in Equation 6.

Even when only summary-level GWAS data are available, we can

first obtain a burden Z-score per phenotype from Equation 5, i.e.,
~Z ¼ ðfZ1 ;fZ2 Þ with two phenotypes. Then, a similar burden

approach can be used to obtain a joint Z-score for multi-pheno-

type test,

~Zjoint ¼
~ZJffiffiffiffiffiffi
~ZJ

q ¼
~ZJffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 0VYJ

p ; J ¼ ð1;.;1Þ0 ;

where VY is the covariance matrix among multiple traits.
Simulation Study Design
We conducted in-depth simulation studies to compare the perfor-

mance of both PrediXcan and DPRmethods with respect to impu-

tation R2 in the test data and the power of TWASs. Specifically, we

used data from 499 ROS/MAP participants44 which contains both

RNA-sequencing and genotype data as training data, and genotype

data from an additional 1,200 ROS/MAP participants44 as test data.

The test sample size (1,200) was chosen arbitrarily (randomly

selected from the ROS/MAP study) to be comparable with the sam-

ple size (1,164) in the real association study of AD pathology

indices. The genotyped and imputed genetic data for 2,799 cis-

SNPs (with minor allele frequency (MAF) > 5% and Hardy-

Weinberg p value > 10�5) of the arbitrarily chosen gene ABCA7

(see Figure S1 for the LD block structure) were used to simulate

gene expression levels.
1, 2019



Figure 1. Performance Comparison of DPR versus PrediXcan
Plots of average imputation R2 (A) and TWAS power (B) in test samples by DPR and PrediXcan, with various proportions of true causal
SNPs pcausal ¼ (0.001, 0.01, 0.1, 0.2) and true expression heritability h2

e ¼ ð0:05;0:1;0:2;0:5Þ. TWAS power was evaluated with paired
expression and phenotype heritability ðh2

e ;h
2
pÞ ¼ ðð0:05;0:8Þ; ð0:1;0:5Þ; ð0:2;0:25Þ; ð0:5;0:1ÞÞ.
We performed comprehensive scenarios that varied the propor-

tion of causal SNPs (out of 2,799 SNPs, influenced gene expres-

sion) among values in the vector pcausal ¼ (0.001, 0.01, 0.1, 0.2).

We varied the proportion of gene expression variance explained

by causal SNPs (i.e., expression heritability), along with the pro-

portion of phenotypic variance explained by simulated gene

expression levels (i.e., phenotypic heritability), among values in

the vector ðh2
e ; h

2
pÞ ¼ ðð0:05; 0:8Þ; ð0:1; 0:5Þ; ð0:2; 0:25Þ; ð0:5; 0:1ÞÞ.

The phenotypic heritability was selected arbitrarily with respect

to expression heritability such that the follow-up association

study power fell within the range of (25%, 85%). We also consid-

ered various training sample sizes (100, 300, 499) for simulation

scenario with pcausal ¼ 0.2 and ðh2
e ;h

2
pÞ ¼ ð0:2;0:25Þ.

With genotype matrix Xg of the randomly selected causal SNPs

(according to pcausal), we generated effect sizes wi from N(0,1) and

then re-scaled the effect sizes to ensure the targeted h2
e . Gene

expression levels were generated by Eg ¼ Xgwþ ε, with ε � Nð0;
ð1� h2

e ÞÞ. Then the phenotype values were generated by Y ¼
bEg þ ε, where b was selected with respect to h2

p and ε � Nð0;
ð1� h2

pÞÞ.
For each scenario, we repeated simulations for 1,000 times,

where we applied both PrediXcan11 and DPR methods to obtain

imputation models with training samples, impute the GReX for

test samples, and then conduct follow-up association studies using

the imputed GReX. We did not compare with FUSION12 using

BSLMM because of the computational burden of estimating cis-

eQTL effect sizes by MCMC (�2 h per gene). The association study

power was calculated as the proportion of 1,000 repeated simula-

tions with p value < 2.5 3 10�6 (genome-wide significance

threshold adjusting for testing 20K independent genes).

ROS/MAP Data
Samples in the ROS/MAP data were collected from participants of

the Religious Orders Study (ROS) and the RushMemory and Aging

Project (MAP), which are prospective cohort studies of studying

aging and dementia.30,31,33 The ROS/MAP study recruited senior

adults without known dementia at enrollment who underwent
The Americ
annual clinical evaluation. Brain autopsy was done at the time

of death for each participant. All participants signed an informed

consent and Anatomic Gift Act, and the studies were approved by

the Institutional Review Board of Rush University Medical Center,

Chicago, IL. Specifically, microarray genotype data generated for

2,093 European-decent participants44 were further imputed to

the 1000Genomes Project Phase 342 in our analysis. The post-mor-

tem brain samples (gray matter of the dorsolateral prefrontal cor-

tex) from�30% these participants were profiled for transcriptomic

data by next-generation RNA seqencing.45 In this paper, we con-

ducted TWASs for two important indices of AD pathology that

were quantified with b-antibody specific immunostains:30,31,33

neurofibrillary tangle density (tangles) with stereology and b-am-

yloid load (amyloid) with image analysis. The neurofibrillary

tangle density quantifies the average Tau tangle density within

two or more 20 mm sections from eight brain regions—hippocam-

pus, entorhinal cortex, midfrontal cortex, inferior temporal,

angular gyrus, calcarine cortex, anterior cingulate cortex, and su-

perior frontal cortex. The b-amyloid load quantifies the average

percent area of cortex occupied by b-amyloid protein in adjacent

sections from the same eight brain regions.
Results

Simulation Studies

In the simulation studies, we observed that the DPR

method performed robustly with respect to different causal

proportions and gene expression heritability. Specifically,

when pcausal > 0.01 DPR outperformed PrediXcan across

all expression heritability values, giving higher imputation

R2 in test data (Figure 1A). For example, when pcausal ¼ 0.2,

the average imputation R2 of 1,000 simulations was esti-

mated as 4.55% by using DPR versus 2.64% by using Pre-

diXcan with h2
e ¼ 0:1, while the average imputation R2

was estimated as 12.02% by using DPR versus 9.13% by
an Journal of Human Genetics 105, 258–266, August 1, 2019 261



Table 1. Simulation Prediction R2 Comparison

h2
e

Causal Proportion 0.01 Causal Proportion 0.2

DPR PrediXcan DPR PrediXcan

0.05 1.60%* 1.12% 1.54%* 0.76%

0.1 4.54%* 4.13% 4.55%* 2.64%

0.2 12.54%* 12.29% 12.02%* 9.13%

0.5 39.31% 42.05%* 38.78%* 36.04%

Various simulation scenarios were considered, with the proportion of true
causal SNPs pcausal ¼ (0.01, 0.2) and expression heritability h2

e ¼ ð0:05; 0:1;
0:2;0:5Þ. The best prediction R2 per scenario is indicated with asterisk (*).
using PrediXcan with h2
e ¼ 0:2 (Table 1). When pcausal ¼

0.01, DPR performed slightly out-performed PrediXcan

with h2
e ¼ ð0:05;0:1;0:2Þ and PrediXcan outperformed

DPR with h2
e ¼ 0.5 (Table 1, Figure 1). On the other hand,

under a sparse cis-eQTL causality model with pcausal ¼
0.001 (i.e., with 3 true causal cis-eQTL), the Elastic-Net

method resulted in higher imputation R2 and TWAS power

on test data (Figure 1).

Consequently, when pcausal R 0.01 and h2
e%0:2, the

power of association studies was higher by using DPR

than using PrediXcan imputation models (Figure 1B).

When h2
e ¼ 0:5, using both imputationmodels led to com-

parable power for association studies (Figure 1B). Even

though both methods had similar over-estimated training

R2 (Figure S2), the DPR method resulted in higher imputa-

tion R2 for test data (Table 1; Figures 1A) and higher power

for association studies under cis-eQTL causality models

with pcausal R 0.01 and h2
e%0:2 (Figure 1B). In addition,

from the simulation studies with various training sample

sizes (100, 300, 499), pcausal ¼ 0.2, and ðh2
e ; h

2
pÞ ¼ ð0:2;

0:25Þ, the imputation R2 and TWAS power increases as

sample size increases while the DPR method consistently

outperforms PrediXcan (Figure 2). Overall, these results

demonstrated the advantages of the DPR method

formodeling the complex genetic architecture of transcrip-

tomes, especially when the causal proportions R0.01 and

the expression heritability %0.2.
Real Applications to ROS/MAP Data

To illustrate the performance of the DPR method in real

studies, we applied both DPR and PrediXcan on the ROS/

MAP data (see Material and Methods). We trained the

gene expression imputation models using 499 samples

that have both transcriptomic data for prefrontal cortex

tissues and genotype data (imputed to 1000 Genomes

Phase 3, with MAF > 5%, Hardy-Weinberg p value >

10�5, and genotype imputation R2 > 0.3). A total of

15,583 genes had gene expression levels after standard

RNA-sequencing quality control. The gene expression

levels were first adjusted for age at death, sex, postmortem

interval, study (ROS or MAP), batch effects, RNA integrity

number scores, and cell type proportions (with respect to

oligodendrocytes, astrocytes, microglia, neurons) by linear
262 The American Journal of Human Genetics 105, 258–266, August
regressionmodels. For each gene, cis-SNPs within the 1Mb

of the flanking 50 and 30 ends were used in the imputation

models as predictors.

First, we compared transcriptome-wide 5-fold cross vali-

dation (CV) regression R2 estimated by using both DPR and

PrediXcan methods. Specifically, we randomly split 499

training samples into 5 folds, where the imputation R2 of

each fold was calculated using the model trained with

the other 4-fold samples. If the training model is null, we

take the imputation R2 as 0 and take the average imputa-

tion R2 across all 5-fold test samples as 5-fold CV R2. The

transcriptome-wide median of 5-fold CV R2 is 0.013 by

DPR versus 0.005 by PrediXcan. The 5-fold CV R2 was

used as the criterion for selecting significant imputation

models (R2 > 0.01 as used by previous studies11,46). From

Figure 3A, we can see that the DPR method obtained

more imputation models and higher imputation R2 when

5-fold CV R2 is in the range of (0.01, 0.05), which is also

consistent with our simulation studies. Overall, the DPR

method obtained significant imputation models for

8,752 genes versus 5,547 genes by PrediXcan (with

57.8% increases). Thus, the DPR method featuring data-

driven nonparametric prior for the cis-eQTL is preferred

in real studies for identifying more genes with imputable

expression levels.

Second, to investigate how both DPR and PrediXcan

methods perform in real studies with independent predic-

tion cohort, we used the ROS cohort (256 samples) to train

gene expression imputation models and then used the

MAP cohort (243 samples) as a test dataset. Specifically,

we compared the median prediction R2 by both DPR and

PrediXcan with MAP test cohort. As shown in Table 2,

the DPR method obtained higher median prediction R2

than PrediXcan among 8,752 genes that have 5-fold CV

R2 > 0.01 by DPR (0.011 versus 0.003), performed similarly

as PrediXcan among 5,547 genes that have 5-fold CV R2 >

0.01 by PrediXcan (0.026 versus 0.026), obtained slightly

lower median predication R2 among 4,819 genes that

have 5-fold CV R2 > 0.01 by both DPR and PrediXcan

(0.033 versus 0.036). These results are also consistent

with our simulation results and 5-fold cross validation re-

sults with ROS/MAP data. That is, PrediXcan method is

preferred for genes with sparse causal eQTL that have rela-

tively large effect sizes, whereas DPR is preferred for genes

with less sparse causal eQTL that have minor effect sizes

due to low expression heritability.

Third, we used all 499 training samples to fit imputation

models for genes with respective 5-fold CV R2 > 0.01 by

both DPR and PrediXcan, and then used these models to

impute the GReX for all GWAS samples. We conducted

univariate phenotype association studies (Material and

Methods) using all GWAS samples (n ¼ 1,164) that have

the AD pathology indices (neurofibrillary tangle density

and b-amyloid load, with Pearson correlation 0.48) quanti-

fied. Possible confounding covariates including age at

death, sex, study (ROS or MAP), smoking, education, and

first three genotype principle components were adjusted
1, 2019



Figure 2. Performance of DPR and Pre-
diXcan with Respect to Various Training
Sample Sizes
Test R2 (A) and TWAS power (B) from
simulation studies with causal propor-
tion pcausal ¼ 0.2, expression heritability
and phenotype heritability ðh2

e ;h
2
pÞ ¼

ð0:2;0:25Þ; and various training sample
sizes (100, 300, 499).
in the association studies. Interestingly, the association

studies for both AD pathology indices using the DPR impu-

tation models identified the same top significant gene

TRAPPC6A (within the 2 Mb region from the major risk

gene APOE, encoding apolipoprotein E, but independent

of APOE) with p values 1.64 3 10�5 and 5.35 3 10�5 (Fig-

ures S3A and S4A). Moreover, the multivariate phenotype

association studies (Material andMethods) for both AD pa-

thology indices identified TRAPPC6A as the most signifi-

cant gene with p value 5.81 3 10�6 and FDR 0.08

(Figure 3C). On the other hand, the PrediXcan failed to

obtain a transcriptomic imputation model for TRAPPC6A

(Figures S3B, S4B, and S6). Quantile-quantile plots for

these TWAS p values were presented in Figure S5.

In addition, for 14 known common and rare loci of late-

onset AD34–38 with significant imputation models, we

conducted association studies using transcriptomic impu-

tation models (DPR and PrediXcan) fitted from ROS/MAP

data and summary-level GWAS data from IGAP.34 Using

the imputation models fit by DPR, we identified three sig-

nificant loci with FDR < 0.05 (Figure 3B)—ADAM10,

CD2AP, and TREM2—that potentially affect late-onset AD

risk through transcriptomic changes. Here, TREM2 was

also identified by using the PrediXcan imputation model

(Figure 3B). Particularly, the PrediXcan method imputed

GReX for only 5 out of these 14 loci. In summary, these re-

sults show that the DPR method has superior power for

follow-up TWASs.
Discussion

In this paper, by both in-depth simulations and real appli-

cations using individual-level ROS/MAP30–33 and sum-

mary-level IGAP34 GWAS data, we demonstrated that the

nonparametric Bayesian DPR method is preferred for

imputing gene expression when the proportion of causal

cis-eQTL R 0.01 and the true gene expression heritability

% 0.2. The advantage of DPR model is due to the flexible

nonparametric modeling of cis-eQTL effect sizes that

results in improved imputation R2 for gene expression

levels and higher power for TWASs. Here, we provide an
The American Journal of Human G
integrated tool (freely available on

GITHUB), referred as Transcriptome-

Integrated Genetic Association Re-

source (TIGAR), which integrates

both parametric Elastic-Net and non-
parametric Bayesian DPR models as two options for tran-

scriptomic data imputation, along with TWAS options

using individual-level and summary-level GWAS data for

univariate and multi-variate phenotypes. TIGAR also con-

ducts 5-fold cross validation by default and output signifi-

cant imputation models with CV R2 > 0.01.

With respect to user-friendly interface and computa-

tional efficiency, TIGAR can (1) take standard input files

such as genotype files in VCF and dosage formats, pheno-

type files in PED format, and a combined text file for gene

annotations and expression levels; (2) load input data per

gene by TABIX for memory efficiency; (3) filter SNPs based

on input thresholds of MAF and Hardy-Weinberg p value;

(4) provide options of training both Elastic-Net (use

Python3 scripts) and DPR (generate input files and call

the executable tool developed with Cþþ26) imputation

models with unified output format; and (5) implement

multi-threaded computation to take full advantage of

multi-core clusters. These features make TIGAR a preferred

tool for saving tedious data preparation and computation

time for users. For example, TIGAR can complete training

imputation models for �20K genes and �1K samples

within �20 h and TWAS within �1 h with a 2.4 GHz

16-core CPU.

It is important to notice that imputing GReX with cis-

eQTL effect sizes estimated from a training dataset is anal-

ogous to the idea of estimating polygenic risk scores

(PRSs).47 Even though studies of population heterogeneity

are lacked for imputing GReX, the same philosophy of esti-

mating PRSs still applies because of the same underlying

statistical models. That is, given both genetic and tran-

scriptomic heterogeneities across different populations,

one needs to be cautious not using training dataset of a

different ethnicity for a TWAS.47

As observed in the real ROS/MAP studies, there remains a

large gap between the 5-fold CV R2 using cis-eQTL

predictors (�5%) and the average genome-wide heritabili-

ty of gene expression levels (21.8% estimated by GCTA48

based on a LMM). This is likely due to the large trans-

acting contribution to transcript abundance documented

for most genes. Thus, we hypothesize that it is pro-

mising to further improve the imputation R2 by fitting
enetics 105, 258–266, August 1, 2019 263



Figure 3. TWAS Results of Studying
Alzheimer’s Disease
Transcriptome-wide 5-fold cross validation
R2 (A) by PrediXcan and DPR with 499
ROS/MAP training samples, with different
colors denoting whether the imputation
R2 > 0.01 by DPR, PrediXcan, or both
methods (genes with R2 > 0.01 by both
DPR and PrediXcan were excluded from
the plot). TWAS results (B) at known AD
loci using GWAS summary-level statistics
from IGAP and imputation models fitted
from ROS/MAP data, where missing values
are due to NULL imputation models by
PrediXcan. Manhattan plot (C) for the
multiphenotype TWAS (with neurofibril-
lary tangle density and b-amyloid load),
using individual-level ROS/MAP data.
transcriptomic imputation models with genome-wide

variants as predictors. Scalable Bayesian inference tech-

niques such as the Expectation Maximization MCMC

(EM-MCMC) algorithm49 are required for incorporating

genome-wide variants.

Another limitation of existing TWASmethods is that the

uncertainty of cis-eQTL effect-size estimates has not been

taken into accounted in the association studies. A Bayesian

framework can also be derived by taking the standard er-

rors of these cis-eQTL effect-size estimates as prior standard

deviations, which is part of our continuing research.

Besides the follow-up gene-based association studies

(i.e., TWASs) described in this paper, the transcriptomic

imputation models can be further extended by incorpo-
Table 2. Real Study Prediction R2 Comparison

Number of Genes DPR PrediXcan

8,752a 0.011 0.003

5,547b 0.026 0.026

4,819c 0.033 0.036

Median prediction R2 in MAP test cohort by using imputation models trained
with ROS cohort with both DPR and PrediXcan methods.
aGenes that have 5-fold CV R2 > 0.01 by DPR.
bGenes that have 5-fold CV R2 > 0.01 by PrediXcan.
cGenes that have 5-fold CV R2 > 0.01 by both DPR and PrediXcan.
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rating environmental contributions.

The imputed transcript abundance

levels can then be used for gene

network analysis, differential gene

expression analysis, and transcrip-

tome mediation analysis with GWAS

data. Validation of transcriptomic pre-

diction accuracy in independent data-

sets will be critical in this regard, but

unfortunately multiple large and

similar datasets are not yet generally

available for tissues other than pe-

ripheral blood.
In conclusion, we expect our work will provide a conve-

nient and improved tool for transcriptomic imputation

using the currently available rich reference datasets, as

well as enhanced gene mapping for better understanding

the genetic etiology of complex traits.

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.05.018.
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