
UC San Diego
Technical Reports

Title
Automatically Downloading Images to Improve Web Transfer Times

Permalink
https://escholarship.org/uc/item/5d993006

Authors
Chandranmenon, Girish
Varghese, George

Publication Date
2001-09-11
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5d993006
https://escholarship.org
http://www.cdlib.org/


Automatically Downloading Images to Improve Web Transfer Times

Girish P. Chandranmenon George Varghese

Bell Laboratories University of California, San Diego

girishc@dnrc.bell-labs.com varghese@cs.ucsd.edu

Abstract—

Advances in technology have led to the introduction of Gigabit and even

Terabit links. However, latencies are limited by the speed of light. In this

paper, we propose a technique called Auto Inline Download, which enables

servers and clients to transfer a web page and its associated embedded data

(such as images, applets etc.) using just one GET request. This saves overall

retrieval time by eliminating the delays associated with buffered request

processing, and saves a round trip time if the inline data reference is in

the last segment of the data transfer for the web page itself. During our

experiments, we also found that with the current segment size of 512 bytes,

TCP will take at least 7 round trip times to transfer an average web page,

with its images, due to its slow start mechanism. This implies that even

when we have infinite speed links, TCP slow start will limit the transfer of

a web page to at least 490ms assuming a coast-to-coast latency of 70ms.

The bandwidth of a transmission technology is the number of

bits the transmission technology can carry per second, while the

latency is the time it takes for it to transfer one bit between the

transmission endpoints. In order to minimize the overall transfer

time, we need to minimize both the bulk transfer time, as well

as the latency of the first bit. Although network technology has

improved steadily over the past several years, the improvements

have been primarily in carrying more bits per second over a wire

(i.e., improved bandwidth), rather than transferring a single bit

faster (i.e., improved latency).

We argue that once bandwidth is plentiful, the round trip times

taken in protocol handshakes will dominate the overall trans-

fer time. Our research focuses on reducing the number of such

round trip times spent in transferring a webpage. In this paper

we describe a mechanism that should improve the overall trans-

fer time for a web page, and its associated images.

Our mechanism, automatic download of images allows the

servers to send all the documents (e.g., images) required to ren-

der a page without waiting for explicit client requests for each.

It improves transfer times in two ways: First, in a typical imple-

mentation of a web client (e.g., libwww client from w3c), the

client would try to collect as many requests as possible before

sending it to the server, thus avoiding too many small writes to

the operating system. This buffering mechanism is controlled

by a timer. By eliminating the explicit client requests for inline

data, our idea also eliminates the timers and delays associated

with the buffered request processing. Second, it also eliminates

one round trip time, if the image is in the last segment of the

data transfer for the HTML file.

In order to evaluate our ideas, we implemented them in a pub-

lically available server (apache) and client (libwww) software

and measured the performance. In these experiments we found

that the average savings was 49ms (23.5%), the timeout value

for the buffered request processing stream. We also collected

the web graph of our university 4 levels deep starting at the uni-

versity’s home page, collecting 4780 documents, of which 1055

were HTMLs. This graph enabled us to estimate the impact of

Work done while at Washington University, St. Louis

our ideas, based on the distribution of our university’s graph.

The most surprising finding during our experiments was that

TCP slow start will take 7.2 round trip times to send an average

web page. This implies that even if have a Gb/s link between a

server and a client, if the round trip time is 70ms, we cannot re-

ceive an average web page with its images (total size of around

40K), in less than 490ms, using a TCP that uses a 512 byte seg-

ment size, if we increase the segment size to 1460, the number

or round trip times go down only to 5.8 round trips. Thus we be-

lieve TCP’s slow start mechanism will be the bottleneck in the

future.

In Section I, we introduce and discuss the idea of download-

ing inline data automatically, and discuss why it can be ben-

eficial. Section II discusses our implementation strategy and

results. Section III explains how our downloading idea inter-

acts with TCP congestion control, and provides a model for as-

sessing the benefits of our mechanism, now and in the future.

Section IV summarizes the paper.

I. AVOIDING MULTIPLE REQUESTS

Using current web protocols (HTTP/1.0, HTTP/1.1) to re-

trieve pages embedded with images and other files, a client has

to send one request for the document and one request for each

secondary reference. Since the client does not know the names

of the secondary files in a document until it receives the base

file, it cannot make requests for those until the base level file

has arrived at the client. In the case of frames and applets the

scenario can get worse: it is only after some frame or applet A

referenced in a page is fetched that the client can know that A

has more secondary references, such as B;C , and D that also

need to be fetched. This process can repeat since B could de-

pend on E and F , and so on.

Newer network technology with large delay bandwidth prod-

uct pipes make round trip times more expensive. Since most

web pages are small to medium size, and most requests are small

units of data, a typical web transaction between a browser and

a web server can consist of long periods of waiting interspersed

with small periods of data transfer in both directions. This is

very harmful to TCP, since TCP is optimized primarily for uni-

directional continuous file transfer, and not for intermittent and

short file transfers.

Auto Inline Download (AID) is an attempt to improve overall

transfer time by allowing the server to send the secondary refer-

ences as soon as it has finished sending the base page, without

explicit requests from the browser. In the rest of this paper, we

describe and evaluate the idea and experiments with respect to

images. However, please bear in mind that this ideas is applica-

ble to all inline data including frames, javascripts, applets, and

image maps besides inline images. The idea of downloading all

images was briefly suggested in [PM95] but was not explored



req:home page

reply:smile.img

req:smile.img

reply:weep.img

req:weep.img

Server

img src weep.img

img src smile.img

home page

reply:home page

Client(browser)

smile.img

weep.img

smile.img

weep.img

ServerClient(browser)

req:home page with images
compiled

home page

reply:home page

img: weep.img

reply:smile.img

reply:weep.img

img: smile.img

img src smile.img

img src weep.img

(a) (b)

Fig. 1. Auto Inline Download: (a) shows a typical web transaction without AID,

and (b) shows a transaction with AID. The round trip times saved become

more significant when the images themselves are small. Most images are

icons of various types, many of size less than a few hundred bytes.

1

10

100

1000

10000

0 10 20 30 40 50 60 70

N
um

be
r 

of
 Im

ag
es

number of Refs

Image Reference Distribution.

Fig. 2. Distribution of Image References: a vertical bar at x=i indicates the

number of images with reference count i. Of the 23782 images analyzed

were 22 images with reference count larger than 75. and the largest one had

a reference count of 360.

further.

The example in Figure 1 illustrates our idea. In the normal

case, Figure 1(a), the client has to make a number of requests

to get all inline images. Even if we can send all the requests

for inline images at once, the overall time spent in retrieving

the images may be more than the time it should take to transfer

the images, due to the round trip times involved. These waiting

periods can be avoided altogether, if the server is able to send

all the images the page needs immediately following the page,

as shown in Figure 1(b).

A. Interaction with Image Caching

One could argue that the server should not unilaterally send

all images without the client’s explicit request, since they could

be wasteful in two ways: first, the client may not want any im-

ages as is true for many home users who turn off images in their

browser; and second, the images could possibly be cached.

We believe that the first problem is not that serious; especially

since higher bandwidths, bandwidth saving image formats such

as PNG, and the use of cascading style sheets have made it pos-

sible for people to download pages in full. Besides, most mod-

ern pages are impossible to navigate without the images. Just in

case, someone needs to turn the images off, we can still add a

flag to the GET request to stop the server from sending them.

The second problem, that of redundant image transmision,

needs more careful evaluation. Figure 2 shows the distribution

of image references for the Washington University web graph

that we collected. The x-axis shows the number of times an

image is referenced, and the y-axis shows the number of such

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n 
of

 b
yt

es
 p

ot
en

tia
lly

du
pl

ic
at

ed

Cumulative fraction of docs

Wasted bandwidth due to AID

Fig. 3. Worst Case Bandwidth Wastage: Assuming an extremely conservative

worst case scenario of ’if an image is referenced from more than one doc-

ument, it is cached’, we compute the fraction of bytes transmitted unneces-

sarily. X-axis is the cumulative fraction of documents, and y-axis shows the

wasted percentage of bytes.

images — i.e., the vertical bar at x=1 shows the number of im-

ages referenced exactly once. Of the 23782 images examined,

19046 (80%) are referenced exactly once. A small number (22)

of images with reference counts larger than 75 are left out of

the graph, since their reference counts were sparsely distributed

and cannot be easily depicted. The largest reference count was

360. These numbers suggest that image replication should be

relatively infrequent.

Even if a large percentage of images are referenced more than

once, the amount of wasted network bandwidth caused by these

images depends on the size of these images with respect to the

HTML files that reference them. To quantify the wastage of

bandwidth, we performed the following experiment.

For each document in the web graph, if an image embedded

in it is referenced more than once in the entire graph, we as-

sumed that that (in the worst case) the image would be cached,

and sending it from the server without a request from the client

would result in wasting bandwidth equivalent to the size of that

image. With this assumption, we calculated the wasted band-

width as a fraction of the total size of the document for each

document in the web graph.

More precisely, we calculated the wasted bandwidth for each

document as

(

P

sizes of images with reference count > 1)

total size of the document including all images
:

This is shown in Figure 3. Notice that this measure is quite con-

servative because it assumes that every access to every replicated

image is redundant. It seems unlikely that access patterns will

conspire to have users frequently access pages that share an im-

age in a short period of time.

Using this conservative measure, 57.6% of the documents

will not waste any bandwidth due to caching, if we send the

images without an explicit request from the client. Clearly,

this is because all their images are referenced only by them-

selves. On the other hand, there are some documents which

can cause an overhead of almost 100%. These are documents

which contain a small description of an image, and an embed-

ded image that is referenced more than once. One such exam-

ple (the document with the largest overhead in our sample) is

http://www.physics.wustl.edu/mcdonnell/cover.html which has

a size of 613 bytes, and contains an image cover.gif of size



110678 bytes. It is promising to note that such cases are only

a small percentage of the overall collection.

We observe that 80% of the images are referenced exactly

once, and 57.6% of the pages do waste any bandwidth due to

caching. The average wasted bandwidth, assuming every page is

accessed with the same frequency, is 11.4%. Note that the actual

wasted bandwidth could be higher if the access frequencies of

pages that contain replicated images is higher than those of other

images.

In summary, preliminary measurements show that the wasted

bandwidth caused by interactions of AID with image caching

should be small. We also note that (increasingly) many pages

contain dynamically generated images (e.g., advertisements)

and are not allowed to be cached in the client. This trend should

further reduce the redundant bandwidth caused by AID. Finally,

AID also can also be used for documents with frames. Frames

have to be fetched in order to render the page, and it is unlikely

that the frames of a document will be cached without the docu-

ment itself being cached.

II. INTEGRATING AID INTO THE WEB

Implementing AID necessitates the server to know the con-

tents of a web page, at least the list of its embedded documents.

In today’s web, the server will have to parse the page to find

the references to inline images, and send them. Since it is pro-

hibitively expensive to have a server parse every web page it

serves, we suggest preprocessing the web pages to add MIME

headers that contain information about all the secondary refer-

ences in the page.

We propose prepending a MIME header Img-File that lists

all the images in the web page. A client making a request to the

server for a web page will send an additional header Send-

Images (in order to inform the server whether it should send

any images at all). When a server receives a request with such

a header, it will send to the client all the images listed in the

Img-File header at the start of the web page. Since the MIME

header is at the start of the page, the server does not have to parse

the entire page to find the list of images.1

We implemented AID (only the simple version) un-

der a testbed that used libwww5.1b2 based client and the

apache1.3a13 server. Required modifications for the server and

the client were very small. We measured the transfer times for

a collection of 24 webpages. The composition of these pages,

and the exact details of the experiment are in [Cha99]. We

found that Auto Inline Download always reduced the overall

time for accessing a document. In our experiments, the aver-

age gain (reduction) in latency was 49ms (23.5%). The gains

were much smaller than we expected. This was due to its in-

teraction with TCP, which is the underlying protocol used by

HTTP. This motivated us to do a detailed analysis on the effects

of TCP. (Section III).

1We have also identified a a couple of more ways to reduce the chances of
server sending images unnecessarily. Due to lack of space, we have omitted
them in this paper; interested readers plesae refer to [Cha99].
2http://www.w3.org/Library/
3http://www.apache.org/

III. TCP INTERACTION

Why did AID not perform upto expectations? We used the

packet traces collected using tcpdump to analyze the data

transfer. Figure 4 illustrates what really happened. We had ex-

pected the server to be able to send all the image data as soon as

it has finished sending the base level HTML page. However, the

data transfer using TCP progresses at a much slower pace.

This is because TCP, at the beginning of a transfer does not

send all the data available at once. It opens its congestion win-

dow using slow-start [Jac88], starting at 1 segment, increasing

exponentially until a loss. Thus, the second and third packets

do not get sent until the acknowledgment for the first one is re-

ceived. Therefore, even if the server side HTTP processing has

handed the image data to the TCP processing in the kernel, the

data cannot be sent until several round trips are over.

One may think that this problem is because the HTML page

is fetched on a new connection. However, even with the use of

HTTP/1.1 which advocates persistent connection — i.e., use of

the same connection for multiple transfers from the same server

— the problem still persists. TCP goes back to slow start as soon

as the connection has been idle for the duration of a retransmis-

sion timout (starts at roughly 1.5 seconds), as estimated during

the previous non-idle period. Even with persistent connection

HTTP, after one file has been transferred with images, the next

file will be requested at the next user click. It is almost certain

that the wait before a user click will be more than a retransmis-

sion timeout, thus causing TCP to return to slow start.

A. A model of TCP Interaction Effects

Although our savings over a small sample of real experiments

were small, we wanted to analyze the interaction of TCP slow

start and AID further. In the following paragraphs we propose a

model and evaluate the number of round trips required to trans-

mit a file with and without the use of AID. This provides us with

a rough characterization of a document that can benefit from

AID in terms of its size, and the underlying packet sizes that

TCP uses.

We assume the following: the link between the server and the

client has infinite bandwidth, both the server and the client can

do all processing in zero time and the entire HTTP transfer takes

place in the slow start phase of TCP. Thus our model assumes

that the only component of latency is the number of round trip

delays. Since the slow start phase of TCP starts off at 1 seg-

ment, exponentially increasing its window on every round trip,

the number of round trips required to transfer a data segment of

length ` bytes using a TCP segment size of p bytes is

dlg(d`=pe+ 1)e (1)

(e.g., for a data transfer of 1 segment it takes 1 round trip, for

2-3 segments it takes 2 round trips, for 4-7 segments it takes 3

round trips and so on.)

Whether or not AID saves a round trip delay, depends on

where the last reference to an image in the original document

is. If the reference to the last image arrives at the client early

in the document, and at least one extra round trip is required

to transfer the remainder of the data needed for the document

(remainder of HTML file and images), then adding an explicit



Client Server

image request

web page

request

image

Client Server

image
web page

request

Client Server

image

web page

TCP ack

request

without AID expected ideal with AID reality

Fig. 4. Interactions of AID with TCP: Although the server has passed the image data to the kernel, it is not sent to the client until after the acknowledgment for the

web page itself is received. During this time the client can send the image request concurrently with the acknowledgment for the web page, thus nullifying the

savings of AID.

request for the image will not cause an additional round trip. On

the other hand, if the reference to the last image arrives towards

the end of the document and the remainder of the document (in-

cluding images) does not require an additional round trip, then

AID will save a round trip delay over the normal mechanism.

To make this precise, let x be the offset of the reference to

the last image from the start of the base document and let S be

the total size of the document including all images. The client

will know about the last image reference in i = dlg(dx=pe+ 1)e

round trips from the start of the request for the web page. This

means that the client can send an image request to the server

and receive the image (using the normal mechanism) within one

more round trip time. In other words, the server can respond to

a request for this image from the client in i+1 round trips, even

without the use of AID.

Let k = dlg(dS=pe+ 1)e be the number of round trips re-

quired for the server to send all the data including the images to

the client, using AID. If k � i+ 1 AID will not save any round

trips in the data transfer. Also, k can never be smaller than i.

Therefore, in the case where k = i, AID will save one round

trip.

Note that this criterion depends on the TCP segment size p.

In what follows, we evaluate when this condition can be satis-

fied for various values of p, using the documents from our web

graph.

For each document in the graph, we computed two numbers:

the number of round trips it takes the client to learn about the

last image reference in the file (i), and the number of round trips

it takes the server to send all the data, including all the images

to the client, without any request from the client (k). k is the

number of round trips required with AID. k and i are calculated

using equation 1.

When k = i, AID saves one round trip. Figure 5 shows the

improvement in the 1055 documents we analyzed using AID for

several packet sizes. As we can see, there is improvement only

in a few documents (less than 2%) for packet sizes smaller than

16 KBytes. In order to save 50% of the overall transfer time

for 70% of the documents, we need a TCP segment size of 256

Kbytes! The problem is that most documents are large enough

to force TCP slow start to take several round trip times.

To quantify this effect, we estimated the average number of

round trips required to transfer an average web page with its im-

ages (total size about 40K4), using several packet sizes. Using a

packet size of 512 bytes it takes 7.2 round trips to transfer a doc-

4This was based on the measurements from [AW96].

ument, and using the popular Ethernet packet size (TCP packet

of 1460 bytes), it takes 5.8 round trips. Thus we believe that

TCP is the limiting factor in the overall transfer time, especially

over very high bandwidth links.

These results indicate that with the current version of TCP

and current segment sizes, AID will not provide dramatic im-

provements in latency because current documents require sev-

eral round trips anyway. However, our results also indicate that

if segment sizes increase sufficiently that AID can reduce la-

tency from two round trip delays to one round trip delay. Alter-

nately, it can be argued that while TCP Slow Start is extremely

successful at combating congestion, there is a need for a differ-

ent version of TCP (perhaps use rate based congestion control)

that reduces the number of round trip delays required for docu-

ments over high bandwidth (and large latency) links.

B. When will AID be useful?

In the previous subsection, we saw that using the current ver-

sion of TCP, standard segment sizes, and typical Web docu-

ments, AID can reduce round trip delays (by at most one) for

only 2% of the pages. However, in our experimental evalua-

tions we saw that we had 49ms savings on the average, even

with a very small round trip delay on an Ethernet (around 1 or

2ms). How can we reconcile these two seemingly conflicting

statements?

The explanation of this apparent anomaly is that our model

assumes that round trip delays are the only component of la-

tency. However, in the Ethernet experiment, the delay between

finding an image reference and sending the actual request hap-

pens to be significant (around 50 ms) and this delay is avoided

by AID.

Thus savings are caused by the implementation of client side

requestor. In libwww, once the base HTML page is being

downloaded, the client side collects further requests (typically

image requests) in a buffer, until there is a packet’s worth to

send to the server. This is done for two reasons: first, the client

side wants to avoid small writes to the kernel, and thus avoid the

generation of small packets on the Internet. Second, the server

side will benefit from large reads, instead of one request at a

time from the server kernel. The delay added to flush this buffer

at the client side is 50ms. We believe that this is the time we

saved in our experiments, since we do not send any request at

all to the server.

While the reader may feel that this improvement is specific

to the implementation we used, it is likely that any client im-



0

0.2

0.4

0.6

0.8

1

0.7 0.75 0.8 0.85 0.9 0.95 1

S
av

in
gs

cumulative fraction of documents

Round trip estimates using TCP model

512 bytes
1024 bytes
1460 bytes
4096 bytes
4460 bytes
8192 bytes

32768 bytes

0

0.2

0.4

0.6

0.8

1

0.95 0.96 0.97 0.98 0.99 1

S
av

in
gs

cumulative fraction of documents

Round trip estimates using TCP model

512 bytes
1024 bytes
1460 bytes
4096 bytes
4460 bytes
8192 bytes

32768 bytes

Fig. 5. Estimated Savings of Round Trip Times: The x-axis is the cumulative fraction of the documents, and the y-axis is the fractional savings in round trip times.

Note that the maximum savings is 0.5, in the case where the HTTP transfer takes 2 round trips, and AID saves 1 round trip time. For the part of the graph

x=(0..0.7) y = 0.0, i.e., there was no gain in number of round trips.

plementation would use a similar mechanism to improve per-

formance. There is a basic conflict between making image re-

quests as soon as a reference is detected (to improve latency) and

batching small requests (to improve throughput). This tradeoff

is avoided by AID. Alternately, the Img-File header can help

the client batch requests without resorting to a delay timer.

Thus we believe that the usefulness of AID today comes not

from saving round trips, but saving server and client side pro-

cessing. This was a somewhat surprising discovery for us. We

leave a more detailed evaluation of this effect for future work.

Even if AID is not useful at some level of technology, we

believe the Img-File header is still useful. If this header is

sent to the client, it enables the client to make image requests

early, without waiting for the HTML page to arrive, which may

take several round trip times, to arrive and be parsed.

IV. SUMMARY

In this paper, we proposed and evaluated the idea of sending

the images, applets and other inline data to the client without

an explicit request for each of such documents. Although we

had expected significant reduction in overall retrieval time be-

cause of the elimination of explicit image requests, we did not

see as much improvement in the experimental evaluation. Fur-

ther studies revealed that interaction with TCP forces explicit

requests to overlap with the transfer of the base HTML file it-

self, and thus the explicit requests do not often cause any extra

waiting period. The actual improvement appears to be a result

of avoiding a request buffering timer and not a result of reduced

round trips.

Despite this, we make the following observations about the

potential utility of AID. First, in a pathological case where the

image file reference is at the end of an HTML file, the request

from the client can force a waiting period at the server. There-

fore, the more modest idea of collecting all the image names as

a header can be a good idea. This can help the client fire off

all the image request as soon as the start of the web page ar-

rives at the client. Second, in the future when TCP slow start

is not the dominant congestion control protocol, AID may be

much more important for HTTP transfers. Third, AID can be

useful for more complex documents that consists of frames with

multiple levels of nesting.

The AID measurements taught us another lesson. TCP slow

start is a major cause of extra round trip delays because the ratio

of the size of a web page to the TCP segment size is fairly large

today. For example, our model and measurements indicate that

the average web document takes 7 round trips using the standard

network segment size of 512 bytes. This problem can be solved

using larger segment sizes. However, increases in segment size

only result in logarithmic reductions in round trip times. For

example, a number of TCP implementations are already using

1460 byte segment sizes; our measurements indicate that the

average web document takes around 6 round trip times using a

1460 byte segment size. Thus, we believe that designing a new

version of TCP that can handle congestion but can also allow

high initial throughput (at least in the absence of congestion) is

an important research problem.

This experience teaches us an important lesson: an idea that

makes perfect sense by itself may not work as well when in-

corporated into an entire system because of interactions with

other parts of the system. This interaction could be as simple

as discovering that the part to which our idea applies is not a

significant bottleneck for system performance. It can also be

that the idea itself is excellent, but the idea cannot be incorpo-

rated into the system because it is not backward compatible, and

the system has a widely installed base which cannot be changed

overnight.

Neither of these two standard problems afflicts AID. The real

problem is that it interacts undesirably (in terms of performance,

not correctness) with two existing system features: client docu-

ment caching and TCP slow start. While we believe the former

is not a problem, we have shown experimentally that TCP slow

start does limit the gains of AID. We have also described a sim-

ple model that can predict when (and by how much) AID can

provide round trip latency gains in the face of slow start.

To quote Tanenbaum[Tan92]: the moral of the story is, get-

ting it right in practice is much harder than getting it right in

principle.

REFERENCES

[AW96] M. Arlit and C. Williamson. Web server workload characterization:
The search for invariants. In In proceedings of SIGMETRICS’96, May
1996.



[Cha99] Girish Chandranmenon. Reducing web latencies using precomputed
hints. Technical Report PhD Thesis. Technical report WUCS-99-18,
Dept of Computer Scie nce, Washington University in St. Louis, Au-
gust 1999.

[Jac88] Van Jacobson. Congestion avoidance and control. Proceedings of the
ACM Sigcomm ’88 Symposium on Communications Architectures and
Protocols, 18(4):314–329, August 1988. part of ACM Sigcomm Com-
puter Communication Review.

[PM95] Venkat Padmanabhan and J. Mogul. Improving http latency. Computer
Networks and ISDN systdms., 28:25–35, Dec 1995.

[Tan92] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall, Upper
Saddle River, NJ 07458, 1992.




